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(57) ABSTRACT

A system for generating a 3D segmentation of a target
volume is provided. The system accesses views of an X-ray
scan of a target volume. The system applies a 2D CNN to
each view to generate a 2D multi-channel feature vector for
each view. The system applies a space carver to generate a
3D channel volume for each channel based on the 2D
multi-channel feature vectors. The system then applies a
linear combining technique to the 3D channel volumes to
generate a 3D multi-label map that represents a 3D segmen-
tation of the target volume.
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3D SEGMENTATION USING SPACE
CARVING AND 2D CONVOLUTIONAL
NEURAL NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application claims the benefit of priority to
U.S. Provisional Patent Application No. 62/908,750 filed on
Oct. 1, 2019, which is hereby incorporated by reference in
its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0002] The United States government has rights in this
invention pursuant to Contract No. DE-AC52-07NA27344
between the U.S. Department of Energy and Lawrence
Livermore National Security, LLC, for the operation of
Lawrence Livermore National Laboratory.

BACKGROUND

[0003] In many environments, there is a need to identify
regions of interest within an image. For example, in an
airport, an image generated from a scan of a bag may need
to be analyzed to determine whether the bag contains any
prohibited objects (i.e., regions of interest). As another
example, in a medical environment, an image generated
from a scan of a patient may need to be analyzed to
determine whether the patient has a tumor. The scanning
technology may be computed tomography (“CT”), and the
images may be three-dimensional (“3D”) images.

[0004] Computed Tomography is a technique that nonin-
vasively generates cross-sectional images of the linear
attenuation coefficients (“LLACs”) of materials in an object
of interest. CT has been used extensively in medical and
security applications such as for generating a scan of a brain
or a scan of baggage at an airport. The LAC is a measure of
the attenuation of X-rays as the X-rays pass through a certain
material and is in units of inverse length (e.g., per centime-
ter). To generate the LACs, CT employs an X-ray source and
an X-ray detector. The X-ray source transmits X-rays
through the object with an initial intensity, and the X-ray
detector, which is on the opposite side of the object from the
source, measures the final intensities of the X-rays that pass
through the object and impinge on pixels of a detector. CT
collects measurements by positioning the source and detec-
tor at various angles relative to the object and collecting the
measurements of the final intensity at each angle. The
measurements for an angle are referred to as a projection or
a view. The measurements of the intensities may be repre-
sented as a negative of a logarithm of a ratio of transmission
data of a scan of the object to transmission data of a scan
without the object (e.g., scan of air). Various techniques may
be used to collect measurements at different angles relative
to the object. For example, the source and detector may be
stationary and the object may be rotated, the object may be
stationary and the source and detector may be rotated, and
multiple stationary transmitters and detectors may be posi-
tioned at different angles. CT algorithms then reconstruct
from the collection of measurements a 3D image of the
object that specifies the LAC for each volume element
(“voxel”) within the 3D volume that the object is within. The
cross-sectional images may be generated from the 3D image.
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[0005] A forward model may be used to represent the
relationship between the unknown 3D volume (e.g., that
includes an object) and the CT measurements as represented
by the following equation:

Af=g

where g represents a vector of the measurements, f represent
a vector with an LAC for each voxel, and A represent a
forward projection matrix. The forward projection matrix
indicates which voxels an X-ray passed through in travelling
from the X-ray source to the X-ray detector. The goal of CT
is to determine f given A and g.

[0006] Conventional CT requires that the number of pro-
jections be roughly equal to the number of pixels in a
projection. In practice, the number of projections that can be
collected may be severely limited for various reasons. For
example, some CT protocols require that the X-ray dose
delivered to the object (e.g., baggage or patient) be limited.
One way to reduce the dose is to limit the number of
projections that are collected. As another example, CT
systems that are flux-limited may employ long integration
times per projection to collect adequate measurements. CT
systems may be flux-limited because of dim sources (low
current), large source-to-detector distances, small detector
pixels, and/or highly attenuating objects. To increase
throughput, a flux-limited CT system may have time to
generate only a small number of projections. As another
example, when the object is in motion (e.g., a beating human
heart), a CT system may deliberately collect a limited
number of projections to shorten the data acquisition time to
reduce the artifacts associated with the object motion. As
another example, some CT systems employ multiple source-
detector pairs mounted on a stationary gantry (e.g., for
scanning carry-on baggage at an airport). The projections of
such a CT system are limited by the number of sources.
[0007] When the number of projections is limited to one or
more orders of magnitude smaller than the number pixels in
a projection, a problem arises in that the reconstructed 3D
image is generally polluted with streak artifacts. This prob-
lem is referred to as the few-view reconstruction problem.
The few-view reconstruction problem arises because the
number of unknowns (i.e., the number of voxels) is much
greater than the number of linear equations represented by
the projections and the measurements are noisy.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1(a) illustrates a typical X-ray imaging sys-
tem using cone-beam X-rays.

[0009] FIG. 1(b) shows the location of pixels that are
affected by a given voxel as determined by drawing a
straight line from the X-ray point source through the voxel.
[0010] FIG. 1(c) illustrates pixels impacted by an X-ray
passing through a voxel at various angles the X-ray source.
[0011] FIGS. 2(a) and 2(b) illustrate differences in an
alternative deep learning architecture and the CTIS system
architecture.

[0012] FIG. 3 is a block diagram that illustrates the CTIS
system architecture in some embodiments.

[0013] FIG. 4 shows an architecture of U-net that uses a
multi-resolution approach to process images by progres-
sively downsampling and then upsampling an image via a
downsampling path that uses a pooling operator and an
upsampling path that uses an upsampling operator.
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DETAILED DESCRIPTION

[0014] A CT image segmentation (“CTIS”) system inputs
views collected during a CT scan of a target volume (i.e., a
3D volume) and outputs a 3D multi-label map representing
a segmentation of the target volume. The 3D multi-label map
includes for each voxel a probability distribution of the
voxel belonging to each class label. For example, each label
may represent one type of object such as a metal object or
a plastic object and the 3D multi-label map indicates the
probability for each voxel to belong to a particular object
type. In some embodiments, the CTIS system collects views
or projections of the target volume from different angles of
the X-ray source relative to the target volume. In some
embodiments, the CTIS system inputs each view into a 2D
convolutional neural network (“CNN”) layer that has a 2D
CNN for each view. The output of each 2D CNN is a 2D
multi-channel feature map that includes, for each pixel of the
view, a feature vector having a channel value for each
channel. The output represents a rasterization of the channel
values for each channel. Thus, the output of the 2D CNN
layer is a 2D multi-channel feature map for each view. The
CTIS system inputs the 2D multi-channel feature maps to a
2D-to-3D transform layer that combines the feature vectors
of the 2D multi-channel feature maps to generate the 3D
multi-label map. In some embodiments, the 2D-t0-3D trans-
form layer includes a space carver layer and a linear com-
bining layer. The space carver layer is informed by the
backprojector operator, PZ, which contains information on
the geometrical characteristics of X-ray propagation. For
each channel, the space carver layer inputs the 2D feature
vectors for that channel (i.e., the same channel from each
view or 2D CNN) and performs a 2D-to-3D transform on the
feature vectors to generate a 3D feature vector for that
channel. The linear combining layer inputs the 3D feature
vector for each channel generated by the space carver layer,
performs a linear summation of the 3D feature vectors, and
computes a softmax function of each voxel to generate the
3D multi-label map, which is a segmentation of the target
volume. The sofimax function represents the probability
distribution over multiple classes. (See, Goodfellow, 1.;
Bengio, Y., and Courville, A., “Deep Learning,” Massachu-
setts Institute of Technology, 2016, p. 178-182.)

[0015] The CTIS system requires less computer resources
(e.g., memory and computational power) than some prior
reconstruction algorithms that simultaneously reconstruct
the entire 3D volume. These prior reconstruction algorithms
are used for views collected using popular geometries such
as cone-beam or fixed-gantry computed tomography used in
industrial imaging and helical-scan used in medical imaging.
Although some prior reconstruction algorithms do not
simultaneously reconstruct the entire 3D volume and thus
require less computer resources, they are used only for
certain scanner geometries such as parallel-beam or fan-
beam. The CTIS system is not limited to such scanner
geometries while simultaneously reconstructing the entire
3D volume.

[0016] One approach to 3D reconstruction is based on
direct inversion of the forward model that expresses the
X-ray images as a function of the LACs. However, this
approach requires a large number of images densely
acquired at several views around the 3D volume and cause
streaking artifacts when the number of views is less. In many
applications, only a few number of views, in the range of
5-15, can be acquired due to, for example, experimental or
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dose limitations. In fixed-gantry X-ray CT, several pairs of
X-ray sources and X-ray detectors are placed in a 3D
arrangement around the 3D volume and views are acquired
simultaneously. Hence, each new view of the object requires
the installation of a new X-ray source and X-ray detector
which may not be feasible in certain applications. In bio-
logical imaging, increasing the number of views will
increase the dose that may damage the tissue of a patient.

[0017] Regularized iterative algorithms have been used
for 3D reconstruction when the noise is high or the number
of views is low. These algorithms achieve higher quality
than direct inversion methods by minimizing a certain
sparsifying criterion over the 3D reconstructed values. How-
ever, these algorithms fail by causing artifacts or excessive
smoothing when the views are severely limited like in
fixed-gantry X-ray CT where the number of views is typi-
cally less than 20. Furthermore, since the interim LAC
values progressively move towards the solution over several
iterates, these algorithms are also computationally expen-
sive.

[0018] In some embodiments, the CTIS system helps
solve for the few-view 3D imaging problem using a neural
network architecture that may use 2D CNNs to perform 2D
processing of the views followed by a 2D-t0-3D transfor-
mation. Because the CTIS system uses 2D convolutions, the
computational and memory costs are much lower than if 3D
convolutions were used. The CTIS system can be used with
various scanner technologies such as cone beam scanners,
helical scanners, and fixed-gantry CT scanners. In addition,
although the CTIS system is described primarily in the
context of X-ray scanner, the CTIS system can be used with
acoustic scanners and other electromagnetic scanners. As
used herein, the term “object” refers a volume of material
within a 3D volume. For example, the object may be a gun,
and the 3D volume may be luggage that contains the object.
Also, the object may fill the 3D volume or may be partially
outside of the 3D volume. The 3D volume may be in any
shape such as cubic or spherical.

[0019] Although the CTIS system is described primarily in
the context of generating a 3D segmentation of a 3D volume,
the CTIS system may also be adapted to generate 2D
segmentations of slices of the 3D volume. Those 2D seg-
mentations can then be combined to form a 3D segmenta-
tion. The generation of 3D segmentations for certain types of
scanners such as parallel beam and fan-beam is typically
performed by combining such 2D segmentations. To support
the generating of such 2D segmentations, the CTIS system
employs a 1D CNN layer and a 1D-t0-2D transform layer
rather than a 2D CNN layer and a 2D-to-3D transform layer.
The 1D CNN layer may include a 1D CNN for each view.
To generate a 2D segmentation representing a slice of a 3D
volume, for each view, the pixels of that view corresponding
to that slice are input to a 1D CNN. The pixels correspond-
ing to a slice are pixels of each view that have the same
linear alignment that is in the same row or column. Each 1D
CNN generates a 1D multi-channel feature map that is
analogous to the 2D multi-channel feature map that is output
by a 2D CNN. The CTIS system then inputs the 1D
multi-channel feature maps to the space carver layer of the
1D-to-2D transform layer. The space carver layer generates
a 2D feature vector for each channel. The linear combining
layer combines the 2D feature vectors to generate the 2D
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segmentation of a slice. The 2D segmentations for each slice
can then be combined into a 3D segmentation of the 3D
volume.

[0020] FIG. 1(a) illustrates a typical X-ray imaging sys-
tem using cone-beam X-rays. The X-ray source 100 emits a
diverging beam of X-ray radiation 101 that penetrates the
sample (or target volume) 102 and the attenuated X-ray
beam emerging out of the sample is recorded by a 2D
detector array 103 as a view. In this X-ray imaging system,
the sample is rotated 104 and views are collected at various
angles. Alternatively, the sample may be stationary. In such
a case, the X-ray source and the 2D detector array may
revolve around the sample collecting view at various angles,
or there may be multiple stationary X-ray sources and 2D
detector arrays at various angles (in two or three dimen-
sions) surrounding the sample.

[0021] The interior morphology of a target volume may be
characterized by the variation in its LACs, which is a
physical quantity that expresses the magnitude of X-ray
attenuation as a function of position within the target vol-
ume. The mathematical relation between the LAC pu(r) and
a measurement A" at pixel index i and view index n is
represented by the following equation:

MR exp(=fy on(r)dr), M

where X, is the measurement in the absence of an object, r is
a position vector in 3D space, and L, is the line of
integration along the direction of X-ray propagation. FIG.
1(b) illustrates an X-ray passing through a voxel of the
sample and impacting a pixel of the 2D detector array. X-ray
105 passes through voxel x; and impacts pixel 2% at when
the X-ray source is at an angle 6% Equation 1 is non-linear
in W(r) but can be transformed to a linear relation by
expressing the line integral in terms of the projection yj(")
=_log(,"’/%,) as indicated by the following equation:

¥ @)

[0022] To computationally reconstruct the LAC, the con-
tinuous LAC () is first discretized. The vector x is a vector
of LAC values over all the voxels within the target volume.
Since line integration is a linear operation, a matrix A may
be used to represent the transformation from x to y* as
represented by the following equation:

y("):A(")x, 3)

where y* is a vector of all log-normalized detector mea-
surements y,".

[0023] Unlike traditional computer vision using visible
light cameras, every voxel in the sample volume affects the
measurement at one or more pixels of the 2D detector. In
normal operations, there is no occlusion since every material
within the target volume is assumed to be translucent to
X-rays. In rare cases, occlusion may occur if there is some
heavy metal which completely attenuates all X-rays passing
through it. As shown in FIG. 1(5), the location of pixels that
are affected by a given voxel x; is determined by drawing a
straight line from the X-ray point source through the voxel
X,. As long as the voxel is within the field of view of the
detector, pixels that are impacted by the voxel at every view
angle can be identified. FIG. 1(c) illustrates pixels impacted
by an X-ray passing through a voxel at various angles the
X-ray source. The X-ray passing through voxel x; at six
angles 0" through 6® 111-116 impact pixel y,*’ to y,¢ at
each of the six angles.
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[0024] FIGS. 2(a) and 2(b) illustrates differences in an
alternative deep learning architecture and the CTIS system
architecture. The alternative deep learning architecture of
FIG. 2(a) is for a limited view (or angle) CT imaging. Such
an architecture is well-suited those CT geometries where 3D
reconstruction can be performed by slicing together multiple
2D images from the output of neural networks. If the
architecture is extended to fully 3D imaging geometries such
as cone-beam CT, the extended architectures would use 3D
CNNs 201. Such an architecture would require a prohibi-
tively large amount of computer resources because 3D
CNNs perform 3D convolutions while storing and process-
ing 3D volumes instead of 2D images at each layer. The
CTIS system, in contrast, performs neural network process-
ing of 2D images (the views) and employs a memory
efficient 2D-to-3D transform layer with only a few trainable
parameters. The CTIS system architecture of FIG. 2(b)
employs a 2D-to-3D transform layer 202 to generate a 3D
segmentation of the 3D volume without using a 3D CNN
and thus avoids the associated high computational and
memory costs.

[0025] FIG. 3 is a block diagram that illustrates the CTIS
system architecture in some embodiments. The CTIS system
architecture 300 includes a 2D CNN layer 301 and a
2D-to-3D transform layer 302. The 2D CNN layer includes
multiple 2D CNNs. The 2D-to-3D transform layer includes
a space carver layer 303 and linear combining layer 304.
Each view y* is input to a 2D CNN that produces a 2D
multi-channel feature map z*" at its output. The vector y*
represents view n in raster order, and the vector z* repre-
sents a 2D multi-channel feature vector at the output of the
n” 2D CNN in raster order. The 2D CNNs can be any
convolutional neural network such as a U-net, densenet, etc.
(See, O. Ronneberger, P. Fischer, and T. Brox. U-net:
Convolutional networks for biomedical image segmenta-
tion. In N. Navab, J. Hornegger, W. M. Wells, and A. F.
Frangi, editors, Medical Image Computing and Computer-
Assisted Intervention—MICCAI 2015, pages 234-241,
Cham, 2015. Springer International Publishing and G.
Huang, 7. Liu, L. van der Maaten, and K. Q. Weinbergers,
“Densely Connected Convolutional Networks, arXiv: 1608.
06993, 2016, which are hereby incorporated by reference.)
Each 2D multi-channel feature vector that is output by a 2D
CNN is an input to the space carver layer that space carves
multiple 3D volumes, &, one each for channel of z®. The
linear combining layer performs a weighted linear combi-
nation of all the 3D volumes and applies a sofimax function
to produce a 3D segmentation x. The CTIS system archi-
tecture may alternatively employ a combining layer that is
not linear.

[0026] In some embodiments, the CTIS system may use a
U-net architecture for the 2D CNNs. The CTIS system
employs U-nets with shared parameters to process the
views. FIG. 4 shows an architecture of U-net that uses a
multi-resolution approach to process images by progres-
sively downsampling and then upsampling an image via a
downsampling path that uses a pooling operator and an
upsampling path that uses an upsampling operator. The last
layer of the U-net does not use any activation function such
as sigmoid, softmax, or ReLLU. The purpose of the U-net is
to produce a soft 2D representation of the segmentation of
distinctive features in the target volume. The space carver
layer then combines the 2D segmentations of the views and
carves a 3D channel volume for each channel. The majority
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of the processing occurs in the 2D U-nets and this results in
savings in memory cost when compared to 3D CNN archi-
tecture.

[0027] Although the CTIS system is described above as
employing a 2D CNN layer to generate the 2D multi-
channel feature maps, other machine learning techniques
may be used. For example, an autoencoder may be used to
generate a latent representation of each view and that latent
representation is input into a neural network that outputs the
2D multi-channel feature map for that view. The layer that
generates the 2D multi-channel feature maps may more
generally be referred to as a feature map layer with the 2D
CNN layer being an example of such a feature map layer.
[0028] The space carver layer computes the column nor-
malized projection matrix A?, whose matrix element A, J(")
is given by the following equation:

AL if %A >0 @
S0 - L 2y Ay >
Al =1 Al T AP a (R
0 otherwise
where Ak >0, For every i channel, the space carver layer

space carves a 3D volume %, from 7% over all views
indexed by n, where z,%" is a vector of all pixel values in the
channel of Z(”) in raster order. The voxel value for X are
represented by the following equation:

% U VOB A Pz, NI ®

where N is the number of views, z, k ) represents the k™
pixel value of %", and o is the 51gm01d activation function.
The computation for X, , based on this equation may be prone
to overflow errors. To avoid these errors, the CTIS system
may compute X,  using the following equation:

%= exp[——z log(exp(O) + exp( ZA,injzf'}()]]]

The voxel value %, ; depends on those pixel values z, k(") for
which A ’](”)#0 that is only those pixels that are affected by
voxel j, as shown in FIG. 1(b), contribute to the value of X, ,
In equation 6, within the outer exponential, the computation
of the logarithm of the sum of the exponentials for each n is
numerically stabilized.

[0029] The linear combining layer linearly combines all
the space carved volumes over all the channels indexed by
i and applies softmax activation to arrive at the final 3D
multi-label map X the 3D segmentation. This linear combi-
nation recovers non-convex shapes. Thus, the j” voxel
value, X, of the 3D segmentation output may be represented
by the following equation:

5cj = sofrmax(z w;ic;yj) +b, M

where softmax is softmax activation function, w, is the
weight parameter, and b is the bias. Softmax is an activation
function that provides for multi-label classification.
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[0030] The CTIS system architecture illustrated in FIG. 3
produces a 3D segmentation of the target volume as repre-
sented by the 3D multi-label map. This 3D segmentation can
be used as prior information by an appropriately designed
iterative algorithm to produce a 3D reconstruction of the
target volume.

[0031] The 3D segmentation may be used to obtain infor-
mation on the location of edges or boundaries of uniform
valued regions. The target volume can be reconstructed by
solving the following equation:

®
x= gmm{z [y = AP+ S ﬁvjp(xj—xa}

(eN

where % is the reconstructed volume, p(A) is a penalty
function such as IAI* or IAl, N is a set of all pairs of
neighboring voxel indices, [} is a regularization parameter,
and v, is proportional to the probability that the segmented
Voxel X, is not an edge. The vector v, ensures that the
regularlzatlon is low if the j* voxel is an edge and is high if
it is not an edge. The regularization parameter may be
chosen to be a large value such that the reconstructed
volume X is very smooth in regions with no edges.

[0032] Another approach to reconstruct the target volume
assumes that the voxel values within each label in the
segmentation are approximately equal. Under this assump-
tion, the approach only needs to reconstruct as many values
as the number of labels in the segmentation. Since the
number of labels is typically a small number (in many cases,
less than 10), this problem can be solved using iterative least
squares. (See, U.S. Pat. No. 10,282,869, Title: “Few-View
Image Reconstruction;” Applicant: Lawrence Livermore
National Security, LLC; Inventor: Kyle Champley.)

[0033] In some embodiments, the CTIS system performs
machine learning training to learn weights of the 2D CNNis,
the space carver layer, and the linear combining layer. The
CTIS system access training data that represent training
views of training volumes and labels each training volume
with a training 3D segmentation. The CTIS system concur-
rently inputs the views to the 2D CNNgs, inputs the output of
the CNNSs to the space carver layer, inputs the output of the
space carver layer to a linear combining layer. The output of
the linear combining layer represents a 3D segmentation of
the object. The CTIS system then applies a loss function that
indicates how closely the output 3D segmentations match
the training segmentations. The CTIS system may select
new weights using a gradient descent technique and repeat
the process with the new weight. The training is complete
when the loss function indicates that a termination criterion
is satisfied. The training data may be collected from X-rays
scan of target volumes or generated based on simulated
X-rays and simulated 3D segmentation. In additional, the 2D
CNN layer may be replaced by a 2D machine learning layer
that does not include CNNs. For example, the 2D machine
learning layer may include neural network that are not
convolutional.

[0034] Convolutional neural networks (“CNNs”) are a
type of neural network that has been developed specifically
to process images. A CNN may be used to input an entire
image and output a classification of the image. For example,
a CNN can be used to automatically determine whether a
scan of a patient indicates the presence of a tumor. A CNN
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has multiple layers such as a convolution layer, a rectified
linear unit (“Rel.U”) layer, a pooling layer, a fully connected
(“FC”) layer, and so on. Some more complex CNNs may
have multiple convolution layers, ReLU layers, pooling
layers, and FC layers.

[0035] A convolution layer may include multiple filters
(also referred to as kernels or activation functions). A filter
inputs a convolution window of an image, applies weights to
each pixel of the convolution window, and outputs an
activation value for that convolution window. For example,
if the image is 256 by 256 pixels, the convolution window
may be 8 by 8 pixels. The filter may apply a different weight
to each of the 64 pixels in a convolution window to generate
the activation value also referred to as a feature value. The
convolution layer may include, for each filter, a node (also
referred to a neuron) for each pixel of the image assuming
a stride of one with appropriate padding. Each node outputs
a feature value based on a set of weights for the filter that are
learned during a training phase for that node. Continuing
with the example, the convolution layer may have 65,536
nodes (256%256) for each filter. The feature values generated
by the nodes for a filter may be considered to form a
convolution feature map with a height and width of 256. If
an assumption is made that the feature value calculated for
a convolution window at one location to identify a feature or
characteristic (e.g., edge) would be useful to identify that
feature at a different location, then all the nodes for a filter
can share the same set of weights. With the sharing of
weights, both the training time and the storage requirements
can be significantly reduced. If each pixel of an image is
represented by multiple colors, then the convolution layer
may include another dimension to represent each separate
color. Also, if the image is a 3D image, the convolution layer
may include yet another dimension for each image within
the 3D image. In such a case, a filter may input a 3D
convolution window.

[0036] The Rel.U layer may have a node for each node of
the convolution layer that generates a feature value. The
generated feature values form a RelL.U feature map. The
ReL.U layer applies a filter to each feature value of a
convolution feature map to generate feature values for a
ReL.U feature map. For example, a filter such as max(0,
activation value) may be used to ensure that the feature
values of the ReLLU feature map are not negative.

[0037] The pooling layer may be used to reduce the size of
the ReL.U feature map by downsampling the RelLU feature
map to form a pooling feature map. The pooling layer
includes a pooling function that inputs a group of feature
values of the RelLU feature map and outputs a feature value.
For example, the pooling function may generate a feature
value that is an average of groups of 2 by 2 feature values
of the RelLU feature map. Continuing with the example
above, the pooling layer would have 128 by 128 pooling
feature map for each filter.

[0038] The FC layer includes some number of nodes that
are each connected to every feature value of the pooling
feature maps. For example, if an image is to be classified as
being a cat, dog, bird, mouse, or ferret, then the FC layer
may include five nodes whose feature values provide scores
indicating the likelihood that an image contains one of the
animals. Each node has a filter with its own set of weights
that are adapted to the type of the animal that the filter is to
detect.
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[0039] The computing systems on which the CTIS system
may be implemented may include a central processing unit,
input devices, output devices (e.g., display devices and
speakers), storage devices (e.g., memory and disk drives),
network interfaces, graphics processing units, accelerom-
eters, cellular radio link interfaces, global positioning sys-
tem devices, and so on. The computing systems may include
servers of a data center, massively parallel systems, and so
on. The computing systems may access computer-readable
media that include computer-readable storage media and
data transmission media. The computer-readable storage
media are tangible storage means that do not include a
transitory, propagating signal. Examples of computer-read-
able storage media include memory such as primary
memory, cache memory, and secondary memory (e.g.,
DVD) and other storage. The computer-readable storage
media may have recorded on them or may be encoded with
computer-executable instructions or logic that implements
the CTIS system. The data transmission media are used for
transmitting data via transitory, propagating signals or car-
rier waves (e.g., electromagnetism) via a wired or wireless
connection.

[0040] The CTIS system may be described in the general
context of computer-executable instructions, such as pro-
gram modules and components, executed by one or more
computers, processors, or other devices. Generally, program
modules or components include routines, programs, objects,
data structures, and so on that perform particular tasks or
implement particular data types. Typically, the functionality
of the program modules may be combined or distributed as
desired in various embodiments. Aspects of the CTIS system
may be implemented in hardware using, for example, an
application-specific integrated circuit (ASIC).

[0041] The following paragraphs describe various
embodiments of aspects of the CTIS system. An implemen-
tation of the CTIS system may employ any combination of
the embodiments. The processing described below may be
performed by a computing device with a processor that
executes computer-executable instructions stored on a com-
puter-readable storage medium that implements the CTIS
system.

[0042] In some embodiments, one or more computing
systems are provided for generating a 3D segmentation of a
target volume from views collected during a scan of a target
volume. The one or more computing systems include a
computer-readable storage medium that stores computer-
executable instructions for controlling the one or more
computing system and one or more processors for executing
the computer-executable instructions stored in the computer-
readable storage medium. The instructions include instruc-
tions of a feature map layer that inputs the views and outputs
a 2D multi-channel feature vector for each pixel of the
views. The 2D multi-channe] feature vectors for a view
represent a 2D multi-channel feature map of that view. The
instructions include instructions of a 2D-to-3D transform
layer inputs the 2D multi-channel feature maps and outputs
the 3D multi-label map that represents a 3D segmentation of
the target volume. In some embodiments, the feature map
layer includes, for each view, a 2D CNN that inputs that
view and outputs a 2D multi-channel feature vector for each
pixel of that view. In some embodiments, the 2D CNNs and
the 2D-to-3D transform layer are trained using views of
training volumes. Each training volume may be labeled with
a 3D segmentation. In some embodiments, the 2D CNNs
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may include weights that are learned based on a loss
function that factors in the weights of the 2D CNNs in
parallel. In some embodiments, the 2D-to-3D transform
layer includes a space carver layer that inputs the 2D
multi-channel feature maps and outputs a 3D channel vol-
ume for each channel. The 3D channel volume for a channel
may include a feature for each voxel that is derived from
feature values of the 2D multi-label feature maps for that
channel. In some embodiments, the 2D-to-3D transform
layer further includes a combining layer that combines the
3D channel volumes for the channels to generate the 3D
multi-label map for the target volume. In some embodi-
ments, the instructions further include instructions to gen-
erate a 3D image of the target volume based on the 3D
multi-label map of the target volume. In some embodiments,
the feature map layer includes a 2D CNN that inputs each of
the views. In some embodiments, the feature map layer
includes, for each view, a 2D CNN that inputs that view and
outputs a 2D multi-channel feature vector for each pixel of
that view, and each 2D CNN includes a downsampling path
and an upsampling path. In some embodiments, the down-
sampling path includes pooling operators and the upsam-
pling path includes upsampling operators. In some embodi-
ments, the scan is an X-ray scan.

[0043] In some embodiments, a method performed by one
or more computing systems is provide for generating a 3D
segmentation of a target volume from views collected during
a scan of a target volume. The method accesses accessing
views of an X-ray scan of a target volume. The method
generates a 2D multi-channel feature map for each view. The
2D multi-channel feature map for a view includes a feature
vector for pixel of the view with a feature value for each
channel. The method generates a 3D channel volume for
each channel based on the 2D multi-channel feature maps.
The method generates a 3D multi-label map that represents
a 3D segmentation of the target volume based on the 3D
channel volumes. The method outputs an indication of the
3D multi-label map. In some embodiments, the generating
of the 2D multi-channel feature map for a view applies a 2D
CNN to the view where each view has a separate 2D CNN
are trained in parallel. In some embodiments, the generating
of'a 3D channel volume for a channel applies a space carver
technique to the feature values of the 2D multi-channel
feature maps for that channel. In some embodiments, the
generating of the 3D multi-label map combines the values of
the 3D channel volumes and applies a softmax function to
generate a probability distribution for each voxel of the 3D
multi-label map. In some embodiments, the method further
generates a 3D image of the target volume is based on the
3D multi-label map of the target volume.

[0044] In some embodiments, a method performed by one
or more computing systems is provided for training a
machine learning system to generate a 3D segmentation of
a target volume from views of the target volume. The
method accesses training data represent training views of
training volumes. Each training volume is labeled with a 3D
segmentation of that training volume. The method performs
the following until a termination condition is satisfied. For
each view, the method applies a 2D convolutional neural
network (CNN) to that view where each 2D CNN outputs a
2D multi-channel feature vector for each pixel of that view.
Each 2D CNN has weights, and the 2D multi-channel
feature vectors for a view forming a 2D multi-channel
feature map for that view. For each channel, the method
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applies a space carver to each of the feature values of the 2D
multi-channel feature maps to generate a 3D volume for
each channel. The space carver has weights for each chan-
nel. The method applies a combining layer to the 3D
volumes for the channels to generate a 3D multi-label map
representing a 3D segmentation of the image. The combin-
ing layer has weights. The method generates new values for
one or more of the weights. The method applies a loss
function to determine whether the termination condition is
satisfied. In some embodiments, the views of a target volume
represent views of an X-ray scan. In some embodiments, the
views are generated from X-ray scans of target volumes.
[0045] In some embodiments, one or more computing
systems are provided for generating a 2D segmentation of a
slice of a target volume from views collected during a scan
of a target volume. The one or more computing systems
includes a computer-readable storage medium that stores
computer-executable instructions for controlling the one or
more computing system and one or more processors for
executing the computer-executable instructions stored in the
computer-readable storage medium. The instructions
include instructions of a feature map layer that inputs the
views and outputs a 1D multi-channel feature vector for
each pixel of the views that corresponds to the slice. The 1D
multi-channel feature vectors of a view represents a 1D
multi-channel feature map for that view. The 1D-to-2D
transform layer inputs the 1D multi-channel feature maps
and outputs a 2D multi-label map that represents the 2D
segmentation of the slice of the target volume.

[0046] Although the subject matter has been described in
language specific to structural features and/or acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as example forms of imple-
menting the claims. Accordingly, the invention is not limited
except as by the appended claims.

I/We claim:

1. One or more computing systems for generating a 3D
segmentation of a target volume from views collected during
a scan of a target volume, the one or more computing
systems comprise:

a computer-readable storage medium that stores com-
puter-executable instructions for controlling the one or
more computing system, the instructions include
instructions of:

a feature map layer that inputs the views and outputs a
2D multi-channel feature vector for each pixel of the
views, the 2D multi-channel feature vectors for a
view represent a 2D multi-channel feature map of
that view; and

a 2D-to-3D transform layer inputs the 2D multi-chan-
nel feature maps and outputs the 3D multi-label map
that represents a 3D segmentation of the target
volume; and

a processor for executing the computer-executable
instructions stored in the computer-readable storage
medium.

2. The one or more computing systems of claim 1 wherein
the feature map layer includes, for each view, a 2D CNN that
inputs that view and outputs a 2D multi-channel feature
vector for each pixel of that view.

3. The one or more computing systems of claim 2 wherein
the 2D CNNs and the 2D-to-3D transform layer are trained
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using views of training volumes, each training volume
labeled with a 3D segmentation.

4. The one or more computing systems of claim 3 wherein
the 2D CNNs include weights that are learned based on a
loss function that factors in the weights of the 2D CNNs in
parallel.

5. The one or more computing systems of claim 1 wherein
the 2D-10-3D transform layer includes a space carver layer
that inputs the 2D multi-channel feature maps and outputs a
3D channel volume for each channel, the 3D channel
volume for a channel includes a feature for each voxel that
is derived from feature values of the 2D multi-label feature
maps for that channel.

6. The one or more computing systems of claim 5 wherein
the 2D-10-3D transform layer further includes a combining
layer that combines the 3D channel volumes for the channels
to generate the 3D multi-label map for the target volume.

7. The one or more computing systems of claim 1 further
including instructions to generate a 3D image of the target
volume based on the 3D multi-label map of the target
volume.

8. The one or more computing systems of claim 1 wherein
the feature map layer includes a 2D CNN that inputs each of
the views.

9. The one or more computing systems of claim 1 wherein
the feature map layer includes, for each view, a 2D CNN that
inputs that view and outputs a 2D multi-channel feature
vector for each pixel of that view and wherein each 2D CNN
includes a downsampling path and an upsampling path.

10. The one or more computing systems of claim 9
wherein the downsampling path includes pooling operators
and the upsampling path includes upsampling operators.

11. The one or more computing systems of claim 1
wherein the scan is an X-ray scan.

12. A method performed by one or more computing
systems for generating a 3D segmentation of a target volume
from views collected during a scan of a target volume, the
method comprising:

accessing views of an X-ray scan of a target volume;

generating a 2D multi-channel feature map for each view,

the 2D multi-channel feature map for a view includes
a feature vector for pixel of the view with a feature
value for each channel;

generating a 3D channel volume for each channel based

on the 2D multi-channel feature maps;

generating a 3D multi-label map that represents a 3D

segmentation of the target volume based on the 3D
channel volumes; and

outputting an indication of the 3D multi-label map.

13. The method of claim 12 wherein the generating of the
2D multi-channel feature map for a view applies a 2D CNN
to the view, each view having a separate 2D CNN are trained
in parallel.

14. The method of claim 12 wherein the generating of a
3D channel volume for a channel applies a space carver
technique to the feature values of the 2D multi-channel
feature maps for that channel.

15. The method of claim 12 wherein the generating of the
3D multi-label map combines the values of the 3D channel
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volumes and applies a softmax function to generate a
probability distribution for each voxel of the 3D multi-label
map.

16. The method of claim 12 further comprising generating
a 3D image of the target volume is based on the 3D
multi-label map of the target volume.

17. A method performed by one or more computing
systems for training a machine learning system to generate
a 3D segmentation of a target volume from views of the
target volume, the method comprising:

accessing training data represent training views of train-
ing volumes, each training volume labeled with a 3D
segmentation of that training volume; and

until a termination condition is satisfied,
for each view, applying a 2D convolutional neural

network (CNN) to that view where each 2D CNN
outputs a 2D multi-channel feature vector for each
pixel of that view, each 2D CNN having weights, the
2D multi-channel feature vectors for a view forming
a 2D multi-channel feature map for that view;

for each channel, applying a space carver to each of the
feature values of the 2D multi-channel feature maps
to generate a 3D volume for each channel, the space
carver having weights for each channel;

applying a combining layer to the 3D volumes for the
channels to generate a 3D multi-label map represent-
ing a 3D segmentation of the image, the combining
layer having weights;

generating new values for one or more of the weights;
and

applying a loss function to determine whether the
termination condition is satisfied.

18. The method of claim 17 wherein the views of a target
volume represent views of an X-ray scan.

19. The method of claim 18 wherein the views are
generated from X-ray scans of target volumes.

20. One or more computing systems for generating a 2D
segmentation of a slice of a target volume from views
collected during a scan of a target volume, the one or more
computing systems comprise:

a computer-readable storage medium that stores com-
puter-executable instructions for controlling the one or
more computing system, the instructions include
instructions of:

a feature map layer that inputs the views and outputs a
1D multi-channel feature vector for each pixel of the
views that corresponds to the slice, the 1D multi-
channel feature vectors of a view represents a 1D
multi-channel feature map for that view; and

a 1D-to-2D transform layer inputs the 1D multi-chan-
nel feature maps and outputs a 2D multi-label map
that represents the 2D segmentation of the slice of
the target volume; and

a processor for executing the computer-executable
instructions stored in the computer-readable storage
medium.



