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CIRCUIT FOR CALCULATING WEIGHT
ADJUSTMENTS OF AN ARTIFICIAL
NEURAL NETWORK, AND A MODULE
IMPLEMENTING A LONG SHORT-TERM
ARTIFICIAL NEURAL NETWORK

RELATED APPLICATION

[0001] The present application claims the benefit of pri-
ority of Provisional Application No. 62/906,405, filed Sep.
26, 2019 which is hereby incorporated by reference herein.

BACKGROUND

[0002] The present application relates to the field of neural
network hardware circuit design. The embodiments herein
more particularly relate to a multilayer artificial neural
network circuit with fast convergence and to long short-term
memory neural network circuits based on memristors.
[0003] First, we provide an optimized design for a mem-
ristor-based multilayer perceptron (MLP) artificial neural
network (ANN). In particular, the design incorporates
momentum and adaptive learning rate adjustment to the
training circuit, both of which significantly accelerate the
convergence of network parameters. Second, based on the
first component, this invention provides a complete long
short-term memory (LSTM) ANN hardware circuit design
based on a memristor crossbar structure.

[0004] Traditional circuits for implanting ANN are known
to suffer the drawbacks of high power consumption and
large hardware area.

[0005] Modern deep ANN have achieved dramatic perfor-
mance improvements in various areas of machine learning.
Yet, training a large-scale ANN usually takes a long time.
Thus, efforts have been made to accelerate neural network
training through hardware; in particular, neural network
implementations have shifted from CPUs to GPUs, FPGAs,
and customized ASICs such as Google’s Tensor Processing
Units (TPUs), available through their cloud platform. These
advancements focus on improving the capabilities of pro-
cessing units, by increasing their speed and parallelism. As
the processing units become faster, the memory wall has
emerged as a major performance bottleneck: no matter how
fast the processing units can perform computations, they still
need to wait for the memory to load inputs (i.e. ANN
parameters and data), and write back outputs (adjusted
parameters). Although memory size has been increasing
exponentially, progress in the reduction of memory latency
has been slower. This motivates novel computing architec-
tures where the memory actively participates in computa-
tions.

[0006] In recent years, neural morphological systems have
been studied extensively using traditional CMOS hardware.
In such systems, each synaptic weight is stored in an SRAM
unit, and computations such as training and prediction are
done with pulse signals. New proprietary hardware includes
PudianNao and IBM TrueNorth. However, CMOS-based
designs suffer from several inherent problems, including
high power leakage and low storage density. Consequently,
a large amount of energy is required in storing, program-
ming, and reading synaptic weights, which severely limits
the scalability of such systems. This motivates memristor-
based designs, which has unique electrical characteristics.
Notably, multiplications can be done naturally and near-
instantly, based on Ohm’s law. This means that a large
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number of multiplication modules can be removed from the
circuits, which dramatically simplifies circuit design and
reduces power consumption, which, in turn, promises higher
scalability and efficiency.

[0007] Memristors have been successfully fabricated
using semiconductor materials at nanoscale. Hence, mem-
ristor-based neural morphological systems may potentially
lead to major speed boosts to neural network computations.
[0008] Memristors are typically of nanometer size, and
possess the characteristics of non-volatility, high density,
low power consumption, and compatibility with CMOS
technology. Although memristor-based neural morphologi-
cal systems have witnessed several successful applications,
training an ANN implementing memristors remains a diffi-
cult problem. Specifically, while nanoscale memristors pro-
vide the possibility for compact synaptic design, the scal-
ability of ANN modules based on discrete systems is still
challenged by the synaptic signalling pathway. The difficulty
and cost of the pathway increase exponentially with the
number of neurons or nodes being represented.

[0009] Hardware designs for implementing a stochastic
gradient descent (SGD) algorithm have been proposed,
which use memristors to implement scalable online learning
of multilayer ANN. However, such training algorithms per-
form only basic SGD, which converges slowly and is liable
to become “trapped” at saddle points. In other words, these
algorithms have a relatively high probability of converging
to one of multiple local minima having a far higher error that
the global minimum, and therefore effectively becoming
falsely optimised to a less desirable solution with a higher
error than desired.

[0010] Modern software implementations of ANN are
usually trained with SGD optimized with momentum and an
adaptive learning schedule. Using a momentum term in the
objective function of the training algorithm implements
relatively large steps to avoid becoming trapped at specific
localised saddle points. An adaptive learning schedule
allows the momentum learning rate to change during learn-
ing at predefined stages, so as to enable avoidance of
localised saddle points at early stages of the learning pro-
cess, and then converge in smaller steps towards a global
minimum value. These techniques, however, have not been
applied to memristor-based neural morphological systems,
and implementing them is highly non-trivial.

[0011] In addition to the aforementioned multi-layer neu-
ral network problem, we propose a new memristor-based
design for recurrent neural networks (RNN) based on the
long short-term memory (LSTM) memory cells. Existing
memristor-based RNN neural network circuit designs are
limited to basic Elman memory units, and no previous
design has incorporated the more complex LSTM memory
unit.

[0012] The present invention seeks to reduce or overcome
one or more problems associated with the prior art.

SUMMARY

[0013] A preferred embodiment of this invention presents
an online training circuit for memristor-based ANN with
momentum and adaptive learning rate, and a LSTM neural
network circuit system based on memristors.

[0014] Using these techniques we describe a multilayer
ANN with high integration, using a memristor synapse
circuit, which can be applied to pattern recognition, for
example. Moreover, the momentum module and the adap-
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tive learning rate modules are added to speed up conver-
gence. Thus, the technical problems of poor expansibility,
limited integration density, high power consumption and
slow convergence speed are addressed.

[0015] According to a first aspect of the invention we
provide a circuit structure for implementing a multilayer
artificial neural network, the circuit comprising:

[0016] a plurality of memristors implementing a syn-
aptic grid array, the memristors storing weights of the
network; and

[0017] a calculation and control module configured to
calculate the value of weight adjustments within the
network.

[0018] In some embodiments of the circuit structure, the
synaptic grid arrays comprise memristor synapse circuits
each having a memristor for storing a weight, a MOS tube
comprising a PMOS transistor for inputting positive voltage
signals quantized by samples to the memristor, and a NMOS
transistor for inputting negative voltage signals to the mem-
ristor, having the same absolute value as PMOS; and a
control signal input for controlling the on-off state of the
PMOS and NMOS transistors.

[0019] In some embodiments of the circuit structure, the
calculation and control module is configured to generate
control signals by initiating a read process for reading the
weight stored a memristor, calculating the output of the
network; and initiating a write process for adjusting the
weights of memristors.

[0020] In some embodiments, the circuit structure is con-
figured such that during a first half of the read process the
control signal e=V,,,, in which state the NMOS transistor is
turned on and the PMOS transistor is off, the input voltage
is =V, such that the current flows from the negative pole of
the memristor to its positive electrode, and the value of the
memristor increases with time, and during a second half of
the read process the control signal e=-V,, the PMOS
transistor is on, the NMOS transistor is off, and the input
voltage is —V,,, such that the current then flows from the
positive pole of the memristor to its negative electrode, such
that the resistance of the memristor decreases by the same
amount as it increased by during the first half of the read
operation, thus returning it to its original state.

[0021] In some embodiments of the circuit structure, the
input voltage pulses, and the memristor is multiply operated,
to calculate the output of the weight stored by the memristor.
[0022] In some embodiments of the circuit structure, the
calculation and control module is configured such that the
value of the control signal is initially sign(error)V, the
conduction of the MOS tube depends on the sign of the error,
the voltage signal from the MOS tube and its duration
T, paas. determines the correction quantity of the memristor,
such that after time T, ;,,., the value of the memristor is no
longer changed until the writing process completes.

[0023] In some embodiments of the circuit structure, the
calculation and control module comprises one or more local
gradient computation modules, configured to calculate local
gradients in the process of reverse propagation; one or more
momentum modules, configured to add a momentum adjust-
ment to the weight correction and speeding up the conver-
gence of the circuit; and an adaptive learning rate module
configured to adjust the learning rate by speeding up con-
vergence of the circuit.

[0024] In some embodiments of the circuit structure, the
local gradient computation module(s) comprises a 9,,,, cal-
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culation module for calculating the local gradient of the
output layer; and a §,,,, calculation module for calculating
the local gradient of the hidden layers.

[0025] In some embodiments of the circuit structure, the
d,,; calculation module satisfies the mean square error
function and/or wherein the 9,,,, calculation module satisfies
the cross entropy error function.

[0026] In some embodiments of the circuit structure, the
85, calculation module comprises: a derivation of transfer
function module configured to calculate the derivation of the
transfer function at the corresponding input; and a synapse
grid array module for calculating vector products of weights
at each layer, and for determining the local gradient d,,,,,,
of next layer of the network.

[0027] In some embodiments of the circuit structure, the
momentum module(s) comprises a sample and hold module,
an adder and a multiplier, and preferably also comprises a
comparator module, an amplifier and a constant module.

[0028] According to a second aspect of the invention we
provide a memristor-based LSTM neural network system,
comprising:

[0029] an internal loop control layer providing a data
memory and a LSTM cell, wherein the data memory is
configured to store data of an input layer of the net-
work, and to store data after feature extraction; and

[0030] an external classified output layer providing an
external memristor crossbar and a voltage comparator,
the external memristor crossbar being configured to
classify features extracted by the internal loop control
layer, and the voltage comparator being configured to
compare the analog voltages output by the external
memristor crossbar to obtain a comparison result of the
analog voltage;

[0031] wherein an classification result is output based
on the achieved comparison result.

[0032] In some embodiments of the memristor-based
LSTM neural network system, the internal memristor cross-
bar includes voltage input ports, threshold memristors, volt-
age inverters, operational amplifiers and multipliers,
wherein for each voltage input port connected to the thresh-
old memristor there exists another one of the voltage input
ports connected to the threshold memristor through a voltage
inverter, and the operational amplifier is connected in par-
allel so that one end of the voltage inverter is connected with
the operational amplifier where the output is connected, and
the other end is connected to the input of the multiplier.

[0033] In some aspects of the memristor-based LSTM
neural network system, the or each operational amplifier is
connected in parallel with a threshold memristor so as to
provide the operation function of a sigmoid activation
function, and so as to transform current signal into voltage
signal.

[0034] In some aspects of the memristor-based LSTM
neural network system, the external memristor crossbar
comprises voltage input ports, threshold memristors and
voltage inverters, so that between two voltage input ports, a
voltage input port is connected to a threshold memristor
through a voltage inverter, and the other port is directly
connected to a threshold memristor.

[0035] Other features of these aspects of the invention are
set out in the appended claim set.
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[0036] We describe the structure of a memristor-based
LSTM hardware system. In broad terms the system com-
prises an internal loop control layer and an external classi-
fied output layer.

[0037] We provide a complete LSTM neural network
hardware circuit design scheme based on the memristor
crossbar, which overcomes the defects of high power con-
sumption and large hardware area of the existing traditional
materials.

[0038] Memristors, due to their nanoscale dimensions,
non-volatility, high-density, low-power consumption, and
compatibility with CMOS technology, simplify the hard-
ware circuit design process and make ANN parameters (i.e.
weights) easier to store. Moreover, memristors are smaller in
size and higher in density than conventional materials used
for storing network weights, resulting in a significant reduc-
tion in overall hardware area. Since the parameters saved in
memristors are not lost during power down, the entire
system consumes less energy.

[0039] Compared to the traditional neural network circuit,
the circuit of multilayer neural network based on memristor
does not have the disadvantage of electrical loss. This
provides greater accuracy since the “stored” weights need
not be re-populated. Due to the advantage that memristors
have the functions of storage and operation, separate register
and multiplication modules are no longer needed, which
greatly simplifies the circuit, reduces the area and the power
consumption of the ANN circuit. Meanwhile, the introduc-
tion of momentum and adaptive learning rate modules
accelerates the convergence speed of the ANN.

BRIEF DESCRIPTION

[0040] We now describe features of embodiments of the
invention, by way of example only, with reference to the
accompanying drawings of which:

[0041] FIG. 1 is a schematic diagram of a multilayer
neural network incorporating two synaptic grid circuits,
according to embodiments of the present invention;

[0042] FIG. 2 is a schematic diagram of a synaptic grid
circuit of the prior art;

[0043] FIG. 3 is a schematic diagram of a synapse circuit
consisting of two MOS tubes and one memristor;

[0044] FIGS. 4 and 5 illustrate the variations of a mem-
ristor resistance value during a read process, and during the
weight updating process (i.e. the write process), respec-
tively;

[0045] FIG. 6 illustrates an example momentum module
of embodiments of the present invention;

[0046] FIG. 7 illustrates an adaptive learning rate module
of embodiments of the present invention;

[0047] FIG. 8 is a block diagram of a memristor-based
LSTM hardware system of embodiments of the present
invention;

[0048] FIG. 9 illustrates a circuit diagram of an LSTM
Cell internal unit structure based on memristor crossbars
according to embodiments of the present invention;

[0049] FIG. 10 illustrates a single unit circuit diagram
inside the LSTM Cell of embodiments of the present inven-
tion; and

[0050] FIG. 11 illustrates an external circuit diagram of an
LSTM based memristor crossbar according to embodiments
of the present invention.
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DETAILED DESCRIPTION

[0051] A circuit structure 10 of a multilayer neural net-
work incorporating memristors is presented in FIG. 1. The
diagram illustrates the multilayer neural network comprising
two synaptic grid circuits 12, 14 (also referred to as synaptic
grid arrays) designed to store weights, and to calculate
outputs based on the received inputs and the stored weights.
The circuit also comprises a calculation and control module
16, wherein the calculation and control module is designed
to calculate the value of weight adjustment in response to
each input and feedback.

[0052] FIGS. 2 to 5 of the accompanying drawings illus-
trate an implementation of the features of the multilayer
neural network. FIG. 2 illustrates a synaptic grid array, as is
known in the art. A suitable memristor synapse circuit is as
shown in FIG. 3, comprising: a memristor for storing a
weight; a PMOS transistor for inputting positive voltage
signals (quantized by samples); an NMOS transistor for
inputting negative voltage signals (of the same value as that
of PMOS); and a control signal e to turn operation of the
MOS tube on/off.

[0053] Each control step comprises a read process for
reading the weight stored by memristor and calculating the
output of the network; and a write process for adjusting the
weight of memristor.

[0054] According to an embodiment herein, and as illus-
trated in FIG. 4, the duration of the read process is T,,.
During the first half of the read process, the control signal
e=V,, results in the NMOS being turned on, the PMOS
being turned off. The input voltage is —V,,,. As current flows
from the negative pole of the memristor to the positive
electrode, the value of the memristor (S) increases with time.
In the remaining half of the read process, the control signal
e=-Vp, so that the PMOS is on, and the NMOS is off. The
input voltage is thus again —V,,,. The current then flows from
the positive pole of the memristor to the negative electrode.
The resistance of the memristor decreases by the same
amount as in the first half of the operation, returning to the
state before the read process. The variation of the memristor
resistance value during a read process is as shown in FIG. 4.
At the time O+, the input voltage pulses and the memristor
are multiply operated, calculating the output.

[0055] According to an embodiment herein, the duration
of the write process is T,,,,,.- The value of the control signal
is initially sign(error)V,,, and the duration is T, ... The
conduction of the MOS tube depends on the sign of the error.
The voltage signal from the MOS tube and its duration
determines the correction quantity of the memristor. After
T, paaze- the value of the memristor is no longer changed until
the writing process is over. The variation of the memristor
value during the weight updating process is as shown in FIG.
5. The T is obtained by the calculation and control
module.

[0056] According to an embodiment herein, the calcula-
tion and control module comprises one or more local gra-
dient computation modules 18, wherein the local gradient
computation modules 18 are designed for calculating local
gradients in the process of reverse propagation. The calcu-
lation and control module further includes one or more
momentum modules 20, wherein the momentum modules 20
are designed for adding a momentum to the weight correc-
tion and speeding up the convergence of the circuit. The
circuit further includes an adaptive learning rate module 22,
wherein the adaptive learning rate module 22 is designed for

update
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adjusting the learning rate and speeding up the convergence
of the circuit, as is known in the art.

[0057] The local gradient computation modules 18 may,
for example, comprise: a 9,,,, calculation module, wherein
the 9,,,, calculation module is designed for calculating the
local gradient of the output layer; and 3, calculation
module is designed for calculating the local gradient of the
hidden layers. According to an embodiment herein, the §,,,,
calculation module satisfies the mean square error function;
or, alternatively the §,,, calculation module may satisfy the
cross entropy error function.

[0058] According to an embodiment herein, the d,,,
calculation module comprises: a derivation of transfer func-
tion module, wherein the derivation of transfer function
module is designed for calculating the derivation of the
transfer function at the corresponding input; and the synapse
grid array module is designed for calculating vector product
of weights and local gradient d,,,,, of next layer.

[0059] A suitable momentum module 20 is set out in FIG.
6. The momentum module 20 uses a sample and hold
module, an adder and a multiplier as shown in FIG. 6. The
values applied by the momentum module may be predefined
and/or encoded to suitable values as will be understood by
the skilled person.

[0060] An adaptive learning rate module 22 suitable for
use in the system of the present invention is shown in FIG.
7. The adaptive learning rate module 22 may include, for
example, a comparator module, a sample and hold module,
an adder, a multiplier, an amplifier, and a constant module as
shown in FIG. 7. The parameters applied by the adaptive
learning rate module 22 may be predefined and/or encoded
to suitable values as will be understood by the skilled
person.

[0061] In an example implementation in which a data set
has been used to train the network, the Iris data set has been
used. The data set has a sample size of 150. It is divided into
two equal halves, so that the sample sizes of training
samples and test samples are both 75. The dimensionality of
the data set is 4. There are three different class labels: 1, -1,
-1 represents Setosa, —1, 1, -1 represents Versicolour, -1,
-1, 1 represents Virginia. A pulse electrical signal is derived
from the Iris data set. The iteration period of neuromorphic
computing circuit is 0.1 s. Because the input signal of the
circuit is pulse form, the input sample should be processed
first. In the scheme, 0.1 s is divided into 1000 pulse signals,
that is, the circuit interface receives an input pulse vector x,,,,
a control pulse e and a target output vector d per 10™*
seconds.

[0062] Turning now to FIGS. 8 to 11, a memristor-based
LSTM neural network system is described. FIG. 8 illustrates
the overall structure of the system, which comprises an
“internal loop” control layer 24 and an “external” classified
output layer 26. The internal loop control layer 24 includes
a data memory 28 and a LSTM cell 30, wherein the data
memory is configured to store data of the input layer and
data after feature extraction.

[0063] The LSTM cell 30 comprises n units. In the
example shown in FIG. 9, n=64, and as a result the LSTM
30 includes 64 LSTM units (of which four are shown). It can
be seen that at each time step t, cell state ¢, and hidden state
h from the data memory 28 is fed as an input to the LSTM
cell. In the example given, 64 c¢ values representing the
current state of the system are fed as inputs c, (1) to
¢, 1(64) to the 64 respective LSTM units.
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[0064] Similarly, 64 hidden state values h, [1, ..., 64]
are also received from the data memory 28, as input to each
of the LSTM units. The input 32 to the system at time t, X,,
is also input to each LSTM unit. In the example given, the
input 32 comprises 50 values x[1, . . ., 50]. Of course it
should be understood that the same general structure and
principals apply where n is any other number (and not
necessarily 64), and where the input comprises more or less
than 50 values.

[0065] FIG. 9 shows that each LSTM unit takes an input
comprising its respective values of ¢, the array h of hidden
values, and input X comprising an array of input values. The
LSTM unit implements a ‘forget gate’, ‘input gate’ and
‘output gate’ as is known in the art. These gates are imple-
mented as set out in FIG. 10 using a memristor crossbar.
[0066] FIG. 10 illustrates a 230x4 memristor crossbar. As
shown in FIG. 10, the input voltages in the circuit include
Vi1 10 Vg, (40) (corresponding to inputs X, to X,,. where
m=50 in the example according to FIG. 9) and V,,, to V,,,
(42) (corresponding to hidden state values h; to h,, where
n=64 in this example), and the voltages are input to the trunk
circuit through the voltage input port.

[0067] A threshold memristor can only express a positive
weight, and in any adjacent voltage input port of the present
invention, a voltage input port and a threshold memristor are
connected by a voltage inverter (56, for example). A voltage
input port and a threshold memristor are directly connected,
so that two adjacent threshold memristors are configured to
express a positive and negative weight. For example, look-
ing at FIG. 10, the first set of rows receive input voltage V,
to Vy,, (i.e. to V). The following rows replicate those
same input voltages but via voltage inverters 56, so that the
memristors of those rows express corresponding positive
and negative weights.

[0068] In the same manner, the following rows receiving
voltage inputs V,,, to V,,, (i.e. to V,, in the given example)
are replicated in the next set of rows, each via a voltage
inverter 56.

[0069] Both M1 and M2 are threshold memristors, V,, is
1V DC voltage, V,,_ ground, Vs2+ is 1V DC voltage, V,_
is =1V DC voltage, and the values of resistors R, -R should
be identical (between 1K ohm to 10K ohm).

[0070] The operational amplifiers 46 are connected in
parallel with the threshold memristors M1, as shown in FIG.
10, to implement the sigmoid activation function and con-
vert the current signal into a voltage signal.

[0071] A further operational amplifier 48 is connected in
parallel with the threshold memristor M2 to implement a
hyperbolic tangent activation function and convert the cur-
rent signal into a voltage signal. One end of the voltage
inverter is connected to the output of the operational ampli-
fier, and the other end is connected to the input of the
multiplier for converting the direction of the voltage.
[0072] According to an embodiment herein, the external
classified output layer includes an external memristive
crossbar circuit 34 and an auxiliary circuit, wherein the
external memristive crossbar circuit 34 includes voltage
input ports (labelled V,, to V,  in FIG. 11), threshold
memristors 60, and voltage inverters 58. The specific imple-
mentation circuit is shown in FIG. 11. Among any adjacent
voltage input ports, one voltage input port is connected to
the threshold memristor through a voltage inverter, and the
other voltage input port is directly connected to the threshold
memristor. There is no electrical connection at the intersec-
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tion of the crossbar. The auxiliary circuit is a voltage
comparator 36 that compares the analogue voltages to obtain
a comparison of the analogue voltages. The result of the
comparison is finally taken as the classification result V,
(38) of the input layer.

[0073] Embodiments of the subject matter and the func-
tional operations described herein can be implemented in
digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed in this
specification and their structural equivalents, or in combi-
nations of one or more of them.

[0074] Some embodiments are implemented using one or
more modules of computer program instructions encoded on
a computer-readable medium for execution by, or to control
the operation of, a data processing apparatus. The computer-
readable medium can be a manufactured product, such as
hard drive in a computer system or an embedded system.
The computer-readable medium can be acquired separately
and later encoded with the one or more modules of computer
program instructions, such as by delivery of the one or more
modules of computer program instructions over a wired or
wireless network. The computer-readable medium can be a
machine-readable storage device, a machine-readable stor-
age substrate, a memory device, or a combination of one or
more of them. As used herein, in some embodiments the
term module comprises a memory and/or a processor con-
figured to control at least one process of a system or a circuit
structure. The memory storing executable instructions
which, when executed by the processor, cause the processor
to provide an output to perform the at least one process.
Embodiments of the memory include non-transitory com-
puter readable media.

[0075] The terms “computing device” and “data process-
ing apparatus” encompass all apparatus, devices, and
machines for processing data, including by way of example
a programmable processor, a computer, or multiple proces-
sors or computers. The apparatus can include, in addition to
hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database manage-
ment system, an operating system, a runtime environment,
or a combination of one or more of them. In addition, the
apparatus can employ various different computing model
infrastructures, such as web services, distributed computing
and grid computing infrastructures.

[0076] The processes and logic flows described in this
specification can be performed by one or more program-
mable processors executing one or more computer programs
to perform functions by operating on input data and gener-
ating output.

[0077] Processors suitable for the execution of a computer
program include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read-only
memory or a random access memory or both. The essential
elements of a computer are a processor for performing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such
devices. Devices suitable for storing computer program
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instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM
(Erasable Programmable Read-Only Memory), EEPROM
(Electrically Erasable Programmable Read-Only Memory),
and flash memory devices; magnetic disks, e.g., internal
hard disks or removable disks; magneto-optical disks; and
CD-ROM and DVD-ROM disks.

[0078] To provide for interaction with a user, some
embodiments are implemented on a computer having a
display device, e.g., a CRT (cathode ray tube) or LCD
(liquid crystal display) monitor, for displaying information
to the user and a keyboard and a pointing device, e.g., a
mouse or a trackball, by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input.

[0079] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.
Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described is this specification, or any
combination of one or more such back-end, middleware, or
front-end components. The components of the system can be
interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN”), an inter-
network (e.g., the Internet), and peer-to-peer networks (e.g.,
ad hoc peer-to-peer networks).

[0080] Therefore, while the embodiments herein have
been described in terms of preferred embodiments, those
skilled in the art will recognise that the embodiments herein
can be practiced with modification within the spirit and
scope of the appended claims.

[0081] When used in this specification and claims, the
terms “comprises” and “comprising” and variations thereof
mean that the specified features, steps or integers are
included. The terms are not to be interpreted to exclude the
presence of other features, steps or components.

[0082] The features disclosed in the foregoing description,
or the following claims, or the accompanying drawings,
expressed in their specific forms or in terms of a means for
performing the disclosed function, or a method or process
for attaining the disclosed result, as appropriate, may, sepa-
rately, or in any combination of such features, be utilised for
realising the invention in diverse forms thereof.

[0083] Although certain example embodiments of the
invention have been described, the scope of the appended
claims is not intended to be limited solely to these embodi-
ments. The claims are to be construed literally, purposively,
and/or to encompass equivalents.
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What is claimed is:
1. A circuit structure for implementing a multilayer arti-
ficial neural network, the circuit structure comprising:
a plurality of memristors implementing a synaptic grid
array, the memristors storing weights of the network;
and
a calculation controller configured to calculate the value
of weight adjustments within the network.
2. The circuit structure according to claim 1, wherein the
synaptic grid arrays comprise memristor synapse circuits
each having
a memristor for storing a weight,
a MOS tube comprising
a PMOS transistor for inputting positive voltage signals
quantized by samples to the memristor, and

a NMOS transistor for inputting negative voltage sig-
nals to the memristor, having the same absolute
value as PMOS; and

a control signal input for controlling the on-off state of
the PMOS and NMOS transistors.

3. The circuit structure according to claim 1, wherein the
calculation controller is configured to generate control sig-
nals by:

initiating a read process for reading the weight stored a
memristor,

calculating the output of the network; and

initiating a write process for adjusting the weights of
memristors.

4. The circuit structure according to claim 3, configured

such that:

during a first half of the read process the control signal
e=Vp, in which state the NMOS transistor is turned
on and the PMOS transistor is off, the input voltage is

-V,,,» such that the current flows from the negative pole
of the memristor to its positive electrode, and the value
of the memristor increases with time, and

during a second half of the read process the control signal
e=-Vp, the PMOS transistor is on, the NMOS tran-
sistor is off, and the input voltage is -V,,,, such that the
current then flows from the positive pole of the mem-
ristor to its negative electrode, such that the resistance
of the memristor decreases by the same amount as it
increased by during the first half of the read operation,
thus returning it to its original state.

5. The circuit structure according to claim 4, wherein the
input voltage pulses, and the memristor is multiply operated,
to calculate the output of the weight stored by the memristor.

6. The circuit structure according to claim 2, wherein the
calculation controller is configured such that

the value of the control signal is initially sign(error)V ,p,

the conduction of the MOS tube depends on the sign of
the error,

the voltage signal from the MOS tube and its duration
T, paaze determines the correction quantity of the mem-
ristor, such that after time T,,,,., the value of the
memristor is no longer changed until the writing pro-
cess completes.

7. The circuit structure according to claim 1, wherein the

calculation controller further comprises:

one or more local gradient computation configured to
calculate local gradients in the process of reverse
propagation;
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one or more momentum computation configured to add a
momentum adjustment to the weight correction and
speeding up the convergence of the circuit; and

an adaptive learning rate configured to adjust the learning
rate by speeding up convergence of the circuit.

8. The circuit structure according to claim 7, wherein the

local gradient computation comprises:

a 9,,,, calculation for calculating the local gradient of the
output layer; and

a dj,,, calculation for calculating the local gradient of the
hidden layers.

9. The circuit structure according to claim 8, wherein the
;.5 calculation satisfies the mean square error function
and/or wherein the § calculation satisfies the cross
entropy error function.

10. The circuit structure according to claim 8, wherein the
O5on; calculation comprises:

a derivation of transfer configured to calculate the deri-
vation of the transfer function at the corresponding
input; and

a synapse grid array for calculating vector products of
weights at each layer, and for determining the local
gradient 8,,,,, of next layer of the network.

11. The circuit structure according to claim 7, wherein the
momentum computation comprises a sample and hold, an
adder and a multiplier, and preferably also comprises a
comparator, an amplifier and a constant.

12. A memristor-based LSTM neural network system,
comprising:

an internal loop control layer providing a data memory
and a LSTM cell, wherein the data memory is config-
ured to store data of an input layer of the network, and
to store data after feature extraction; and

an external classified output layer providing an external
memristor crossbar and a voltage comparator, the exter-
nal memristor crossbar being configured to classify
features extracted by the internal loop control layer, and
the voltage comparator being configured to compare
the analog voltages output by the external memristor
crossbar to obtain a comparison result of the analog
voltage;

wherein an classification result is output based on the
achieved comparison result.

13. The memristor-based LSTM neural network system
according to claim 12, wherein the internal memristor cross-
bar includes

voltage input ports,

threshold memristors,

voltage inverters,

operational amplifiers and

multipliers,

wherein for each voltage input port connected to the
threshold memristor there exists another one of the
voltage input ports connected to the threshold memris-
tor through a voltage inverter, and

the operational amplifier is connected in parallel so that
one end of the voltage inverter is connected with the
operational amplifier where the output is connected,
and the other end is connected to the input of the
multiplier.

14. The memristor-based LSTM neural network system

according to claim 13, wherein the or each operational
amplifier is connected in parallel with a threshold memristor

last
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s0 as to provide the operation function of a sigmoid activa-
tion function, and so as to transform current signal into
voltage signal.

15. The memristor-based LSTM neural network system
according to claim 14, wherein the external memristor
crossbar comprises voltage input ports, threshold memris-
tors and voltage inverters, so that between two voltage input
ports, a voltage input port is connected to a threshold
memristor through a voltage inverter, and the other port is
directly connected to a threshold memristor.

#* #* #* #* #*
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