US 20220147428A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0147428 A1

Gupta et al. 43) Pub. Date: May 12, 2022
(54) FAILOVER METHODS AND SYSTEM IN A (52) US. CL
NETWORKED STORAGE ENVIRONMENT CPC GOG6F 11/2069 (2013.01); GO6F 11/2064
(2013.01); GO6F 11/2058 (2013.01); GO6F
(71) Applicant: NETAPP, INC., San Jose, CA (US) 2201/82 (2013.01); GO6F 11/1662 (2013.01)
(72) Inventors: Ratnesh Gupta, Dublin, CA (US);
Kalaivani Arumugham, Sunnyvale, (57) ABSTRACT
CA (US); Ram Kesavan, Los Altos,
CA (US); Ravikanth Dronamraju,
Pleasanton, CA (US) Failover methods and systems for a storage environment are
) provided. During a takeover operation to take over storage
(73) Assignee: NETAPP, INC., San Jose, CA (US) of a first storage system node by a second storage system
) node, the second storage system node copies information
(21) Appl. No.: 17/648,531 from a first storage location to a second storage location. The
o first storage location points to an active file system of the
(22) Filed: Jan. 20, 2022 first storage system node, and the second storage location is
Related U.S. Application Data assigned to the second storage system node for the takeover
)] o operation. The second storage system node quarantines
(63) Continuation of application No. 17/026,785, filed on gtorage space likely to be used by the first storage system
Sep. 21, 2020, now Pat. No. 11,249,869. node for a write operation, while the second storage system
A . . node attempts to take over the storage of the first storage
Publication Classification system node. The second storage system node utilizes infor-
(51) Imt. ClL mation stored at the second storage location during the
GO6F 1120 (2006.01) takeover operation to give back control of the storage to the
GO6F 11/16 (2006.01) first storage system node.
- - —-—=-= - - |
I Storage Tenant 140
’ | 100
‘ e
Client | , o o | Client |
Management i 116A 116N | |
Console 132 | be— —d Storage System
108
Storage
Storage Operating
Provider 124 System 134
Host System Failover Module
102N 120
Host .OS. — Guest Guest l
Application -~ XR oS
6 OS 104A [} 102A
12 104N D -
VMM 106 l ané Storage Sub-system
=== 112
Hardware Resources 128

US 2022/0147428 Al

AN
wolsAs-gng abelolg

May 12, 2022 Sheet 1 of 14

0cl
8|NPOoJ\ Jono|re

PET weishs
Bunesadp
abe.olg

801
wolsAg abelolg

VI Ol

2T $90in0Say aiempieH

cclh
TA 90l WINA

NVOL 1 72OT |[¥507 so

9l
uoneslddy

Hmwm_@ ©0 0| wseno
(
NOE | <owm 8

[T SO 1SoH

NcO}
WolsAS 1S0H

Patent Application Publication

¥ZT Jepinoid
abe.olg

ZET 9|0Su0)
Juswabeuey

US 2022/0147428 Al

May 12, 2022 Sheet 2 of 14

Patent Application Publication

VeI | weisAs-gng abelolg

dl Ol
gc | [weisAg-gng abelols
8l Fr————-— Sr1
<= <=
q6ST BOAN Jouled
a8cl 6oTAN
dv¥ | WYdAN
dovi
ayde Jajing rAdl
doclt < >
3INPON —
Janojeq arel
wolsAg
Bunelsadp
90T abe.ols
9PON WolsAg abelolg

8Ly F————— L
<= <~
V6ET BOAN Jouled
V8El 6OIAN
V¥¥ | WYHAN
YOvli
ayoen Jajng
VYVEr YOcl
wolsAg SINPON
Bunesadp 19A0|leH
6 __
ORI VS0l

9pPON wWalsAg abelolg

US 2022/0147428 Al

May 12, 2022 Sheet 3 of 14

Patent Application Publication

Ol Ol

[T welsAgs-gng abeiols

— T0GT (2as) MOGT (€gs) 0GT (29S) T0GT (1as)
NZSI NO yooig Jedng yooig Jadng mOo_m Jadng yoo|g Jedng
T _ _ “ _
_ _ | _ |
| | | | “
_ HOST (vas) 50CT (€a9) JOGT (29s) 3061 (199)
_ oolg Jedng yoo|g Jedng yoolg Jedng o0|g Jedng
_
|
VZST 10 docr (ras) 5OGT (eaS) goGr (egs) YOGT (189)
3o0|g J1adng 3oo|g Jedng 300|g Jodng yoolg Jedng
N8O V8ol
spoN* |] 9PON
wolsAs wolsAg
abeiolg abeiolg

US 2022/0147428 Al

May 12, 2022 Sheet 4 of 14

Patent Application Publication

\ ARSI
£80c¢
dJON €8¢ eINPON
uswabeuey
. £ore EVIe
C8llle—t»| onpopy | oNpony
abe.olg YIOM]ON

NcO I
wielsAs
1SOH

veol

ﬁ =915 cVIe k 6re~}-
N a|Npo
s qiomen | [*Le] OreomgRs 7"
Buiyopmg
Nw —.N 9NPON) 121sNiD
¢80¢ | juswabeuepy . ﬁ a
JAON
6le__ |-
IA [~
[olc e || |
> OINPON f¢—» aINPON |7
<4, abei0)g YOMISN
\ 1'81¢ °INPON
1'80¢ Juswabeuepy
c0c 300N

_llll.l
| | N'¥02C Ol_
_ oy | ¥ _
1 |
_ 5]
|
(0]
| [T Er= 3|
_ I'¥0¢ | o
_ “ wely
_ _
_ —Il U S |
_ el
_ lapinoid
_ abe.olg
| > el
8|0SuU0D
| uswabeuep

Patent Application Publication = May 12, 2022 Sheet S of 14 US 2022/0147428 A1

Failover Module
120

File System Manager 240
r==1
| N
- |
Protocol Layer 242 : : Storage Accessﬁer
| |
O O
s || § N[T : IR T
A E = H | A S H
| |
N E I 3 E
5.8 R || Il D R
2428[p42BI242Qp4pp) | | ||244A] 298] | 2440
' I
Network Access I | Storage Driver Layer
Layer | |
246 | | 2438
' I
v oy

To/From Host To/From Storage

/ Systems

134

FIG. 2B

Patent Application Publication = May 12, 2022 Sheet 6 of 14 US 2022/0147428 A1

300

META-DATA SECTION 302

Time Stamps 308
ub 310

GID 312 .
X Inode 314 Pointer 316

Data Section 18

FIG. 3

US 2022/0147428 Al

May 12,2022 Sheet 7 of 14

Patent Application Publication

v 'Old
00¥ vV 3114
0¥ 90¥ 90¥ 90¥
100|g T %00|d 100Ig - - -| XO0Id
ele(eleq eleq eleq
1017 qoy [<10}7 <107
lowiwog |° 71 Jswiogd owiod |° 71 Jewog
(2007 Y0¥
300|g 108.Ipy| 00| 108lIpy|

N

[S0}7
lajulod

o &

oy
Jajulod

20v epou|

(07) syooig
0 1987

V (17) sxooig
| [9A8T

Patent Application Publication

Buffer Cache
140

May 12, 2022 Sheet 8 of 14

US 2022/0147428 Al

Storage Sub-system
112

FIG. 5

File System Manager 240
Caching Module
NVLog 512
138 — Write Module Read
, 204 Module
Parter Failover 508
NVLog Module Consistency Point
139 Interface (“CP”) Module
502 510
Failover
Module
120
— R
A
I
D
244A
Storage
Driver
248A

Patent Application Publication = May 12, 2022 Sheet 9 of 14 US 2022/0147428 A1
Start
B602

Configure a first storage location (e.g.
super blocks SB1 & SB2) to store a
pointer to a root of a file system tree for
each storage system node within a cluster
B604

\ 4
Configure a second storage location (e.g.
super blocks SB3 and SB4) for each
storage system node to store information
from SB1 and SB2 of an unresponsive node
during a takeover operation
B606

600

FIG. 6A

Patent Application Publication = May 12, 2022 Sheet 10 of 14 US 2022/0147428 A1l

Start
B612
Initiate a takeover operation to take over a
first storage system node by a second

storage system node
B614

!

Retrieve, by the second storage system
node, configuration information regarding
storage of the first storage system node, and
take over ownership of the storage by the
second storage system node
B616

e

Copy storage configuration information at
superblocks, SB3 and SB4 of the second
storage system node B618

!

Read SB1 and SB2 of the first storage system
node, and copy the information from SB1 and
SB2 to SB3 and SB4 of the second storage
system node
B620

!

Quarantine storage area that may potentially be
used by the first storage system node, during
the takeover operation
B622

Y

Allocate storage to process requests during the
takeover operation and use SB3 and SB4 of the
second storage system node for recording new
/ write operations

B624
610

FIG. 6B

Patent Application Publication = May 12, 2022 Sheet 11 of 14 US 2022/0147428 A1l

Detect potential failure of a second
storage system node during a takeover
operation of Figure 6B
B634

l

Initiate takeover of the second storage system node by a
third storage system node; and retrieve, by the third storage
system node, storage information from super blocks, SB3
and SB4 of the second storage system node
B636

'

Copy storage configuration information at
SB3 and SB4 of the third storage system
node B638

!

Read SB3 and SB4 of the second storage
system node, and copy information to SB3 and
SB4 of the third storage system node

B640Q

!

Quarantine storage area that may potentially be
used by the first storage system node during the
takeover operation
B642

!

Allocate storage to process requests during the
takeover operation, and use SB3 and SB4 of
/ the third storage system node for recording new

write operations
630 B644 FIG. 6C

Patent Application Publication = May 12, 2022 Sheet 12 of 14 US 2022/0147428 A1l

Start
B652
Initiate a “giveback” operation to give
control of storage back to the first storage

system node of Figure 6B
B654

l

[Copy storage configuration information from
super blocks, SB3 and SB4 of the second
storage system node to super blocks, SB1
and SB2 of the first storage system node

B656

e

Copy SB3 and SB4 information of the
second storage system node to SB1 and
SB2 of the first storage system node B658

!

Copy any remaining information to a primary
storage location of the first storage system node
B660

'

Release ownership of taken over storage to the
first storage system node to complete the
giveback operation
B662

650

FIG. 6D

US 2022/0147428 Al

May 12, 2022 Sheet 13 of 14

L Ol
1'80¢
— — 1474
oT2 r'd
8L} ouge4
SER]NETg| Buiyoums SINONAS . .
abe.o)g 181sn|D £1EQ UONEINBULOD N¥0Z/1 ¥0c
woJi4/0 | woi4/0] Sjual|D Wwoi4/0]
H H ™ H
o1/ rAVA Jo1depy abel0lg 800 017
N—
seldepy $5000y e Jeydepy
abelolg leIsn|H YIOMION
80L
ayoen Jajing Vel 10SS900.d 10SS900.d
wolsAg
0er uonesadQ abeiolg
3INPOIN JoAo|ie
¥0/ fowsp

Patent Application Publication

Patent Application Publication = May 12, 2022 Sheet 14 of 14 US 2022/0147428 A1l

800
Processor Memory 804
Instructions
802 806
(805

< >

_ Network

I/O Device Storage Adapter

808 810 812

To/From Network

FIG. 8

US 2022/0147428 Al

FAILOVER METHODS AND SYSTEM IN A
NETWORKED STORAGE ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application claims priority of and is a
continuation of U.S. patent application Ser. No. 17/026,785,
filed on Sep. 21, 2020, the disclosure of which is incorpo-
rated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure generally relates to net-
worked storage systems, and more particularly, to innovative
computing technology for efficiently executing failover
related operations.

BACKGROUND

[0003] Various forms of storage systems are used today.
These forms include direct attached storage, network
attached storage (NAS) systems, storage area networks
(SANSs), and others. Storage systems are commonly used for
a variety of purposes, such as providing multiple users with
access to shared data, backing up data and others. A storage
system typically includes at least one computing system
(may also be referred to as a “server”, “storage server”,
“storage node”, “storage system node” or “storage control-
ler”) executing a storage operating system configured to
store and retrieve data on behalf of one or more computing
systems at one or more storage devices.

[0004] To provide redundancy in networked storage sys-
tems, a first storage system node and a second storage
system node may be configured to operate as partner nodes
within a multi-node cluster. This means that all write opera-
tions managed by the first storage system node are mirrored
at the second storage system node, and vice versa. If the first
storage system node becomes unresponsive, then the second
storage system node takes over the storage of the failed first
storage system node by executing a failover (also referred to
as “takeover” throughout this specification) operation.

[0005] During takeover, in conventional systems, the sec-
ond storage system node makes a reservation on the storage
managed by the first storage system node to prevent the first
storage system node or any other node to write any data
during the takeover operation. One reservation technique is
provided by the Small Computer System Interface (SCSI)-3
specification. During a SCSI-3 reservation, an initiating
node sends a storage reservation request to reserve a logical
unit number (LUN). This prevents another node to make any
changes to the LUN. This is undesirable because the SCSI-3
reservation may delay takeover. Furthermore, in a multi-
node cluster with multiple nodes, the reservation limits a
third storage system node’s ability to write to the reserved
storage. Continuous efforts are being made to improve
computing technology for efficiently executing failover
operations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The various features of the present disclosure will
now be described with reference to the drawings of the
various aspects disclosed herein. In the drawings, the same
components may have the same reference numerals. The

May 12, 2022

illustrated aspects are intended to illustrate, but not to limit
the present disclosure. The drawings include the following
Figures:

[0007] FIG. 1A shows an example of an operating envi-
ronment for various aspects of the present disclosure;
[0008] FIG. 1B shows an example of two storage system
nodes operating as partner nodes, according to aspects of the
present disclosure;

[0009] FIG. 1C shows an example of configuring storage
locations for managing failover and giveback operations,
according to aspects of the present disclosure;

[0010] FIG. 2A shows an example of a clustered storage
system with a plurality of storage system nodes that can be
configured as partner nodes for failover operations, accord-
ing to aspects of the present disclosure;

[0011] FIG. 2B shows an example of a storage operating
system executed by a storage system node, according to
aspects of the present disclosure;

[0012] FIG. 3 shows an example of an “inode” used by a
storage system node for storing and retrieving data from a
storage device, according to aspects of the present disclo-
sure;

[0013] FIG. 4 shows an example of a buffer tree used by
a storage operating system of a storage system node, accord-
ing to aspects of the present disclosure;

[0014] FIG. 5 shows a block diagram illustrating an
example of various components of a file system manager of
a storage operating system, according to aspects of the
present disclosure;

[0015] FIG. 6A shows an example of various operations of
a process for configuring storage space for managing
failover operations, according to aspects of the present
disclosure;

[0016] FIG. 6B shows an example of various operations a
process for a takeover operation, according to aspects of the
present disclosure;

[0017] FIG. 6C shows an example of various operations a
process for handling a failure during a takeover operation,
according to aspects of the present disclosure;

[0018] FIG. 6D shows an example of various operations a
process for handling a giveback operation, according to
aspects of the present disclosure;

[0019] FIG. 7 shows an example of a storage system node,
according to aspects of the present disclosure; and

[0020] FIG. 8 shows an example of a processing system,
used according to aspects of the present disclosure.

DETAILED DESCRIPTION

[0021] The present disclosure generally relates to net-
worked storage systems, and more particularly, to innovative
computing technology for efficiently executing failover
related operations in a networked storage system having a
plurality of storage system nodes. As described below in
detail, each storage system node uses logical storage objects
(e.g. a storage volume, a logical unit number (LUN) or any
other logical object) to store information in and retrieve
information from one or more storage devices. The storage
space at the storage devices is represented by one or more
“aggregates,” and within each aggregate one or more storage
volumes/LUNs are created. Each storage system node has
access to one or more aggregates to store and retrieve
information i.e. the storage system node owns the “storage.”
To store and retrieve information, a computing device,
typically issues write and/or read requests to a storage

US 2022/0147428 Al

system node. Based on the request type (i.e. write or read
request), the storage system node stores information at
storage space within one or more aggregate or retrieves
information.

[0022] To provide redundancy in the networked storage
system, a first storage system node and a second storage
system node may be configured to operate as partner nodes,
each node having access to its own assigned storage space.
This means that information written by the first storage
system node using a first logical storage object is mirrored
at the second storage system node, using a second logical
storage object, and vice versa. If the first storage system
node becomes unresponsive or fails, then a failover opera-
tion is triggered. The failover operation can also be initiated
based on a user request, without detecting any failure or
potential failure.

[0023] During the failover operation, a logical interface
provided by the first storage system node to client systems
maybe migrated to the second storage system node. The
logical interface is used by client system to communicate
with the first storage system node (i.e. send read and write
requests). Thereafter, a takeover operation is initiated. Dur-
ing the takeover operation, the second storage system node
“takes” over the storage (i.e. the aggregate) of the first
storage system node. The term “takes” over in this context
means that the second storage system node becomes the
“owner” of the first storage system node’s storage so that it
can process all read and write requests that are sent to the
first storage system node. The term takeover operation and
failover operation maybe used interchangeably throughout
this specification. Although the above example is based on
two storage system nodes, in a system with more than two
nodes, a third storage system node may be configured to take
over the first and/or the second storage system node.
[0024] In conventional systems, during the takeover
operation, the second storage system node makes a reser-
vation on a first logical storage object (e.g. a LUN) of the
first storage system node. The reservation is made to prevent
the first storage system node or any other node to write any
data using the LUN, while the second storage system is
taking over the storage of the first storage system node. One
reservation technique is provided by the Small Computer
System Interface (SCSI)-3 specification. During a SCSI-3
persistent reservation, the second storage system node sends
a reservation request to reserve the LUN owned by the first
storage system node. Once the request is granted, it prevents
another node to make any changes to the LUN or write any
data. This is undesirable because executing the SCSI-3
reservation process delays takeover by the second storage
system node. Furthermore, in a multi-node cluster with
multiple nodes, the reservation also limits a third storage
system node’s ability to write to the reserved LUN. As
described below in detail, the adaptive aspects of the present
disclosure overcome the shortcomings of the SCSI-3 reser-
vation process and enables the takeover operation without
making a reservation on the LUN of the first storage system
node.

[0025] In one aspect, each of the plurality of storage
system nodes is assigned a set of storage locations in one or
more storage devices. A first storage location of each storage
system node stores information, e.g. a pointer that points to
an active file system of each of the storage system node. The
first storage location includes one or more storage blocks to
store the information that points to the active file system.

May 12, 2022

These storage blocks are referred below as “super blocks”
and shown as SB1/SB2 in FIG. 1C. The term “super block”
in this context means a storage location that stores informa-
tion to access the active file system. Therefore, super blocks,
SB1 and SB2 can be referred to as storage locations or
storage blocks for storing a pointer to the active file system.
Each storage system node maintains information at the first
storage location during normal operation i.e. prior to a
takeover operation.

[0026] A second storage location is also assigned to each
storage system node. The second storage location includes
one or more storage blocks that are used during the takeover
operation by the storage system node (e.g. the second
storage system node) that is taking over storage of another
storage system node (e.g. the first storage system node). The
storage blocks of the second storage location are referred
below as SB3/SB4 (see FIG. 1C).

[0027] In one aspect, as an example, during a takeover
operation to take over storage of the first storage system
node by the second storage system node, the second storage
system node copies information from a first storage location
(i.e. SB1/SB2) of the first storage system node to a second
storage location ((i.e. SB3/SB4) assigned to the second
storage system node. The first storage location directly or
indirectly points to an active file system of the first storage
system node as well as other configuration information,
prior to the takeover operation. By copying the information,
the second storage system node can access information
related to the storage of the first storage system node and the
active file maintained by the first storage system node,
before the takeover operation. The second storage system
node also quarantines (or isolates/fences off) storage space
likely to be used by the first storage system node for any
write operations, while the second storage system node
attempts to take over the storage of the first storage system
node. The second storage system node predicts the storage
space likely to be used by the first storage system node,
based on a pattern of write requests processed by the first
storage system node, prior to the takeover operation. The
second storage system node then utilizes information stored
at the second storage location, during the takeover operation,
to take over the storage of the first storage system node, as
described below in detail. In one aspect, the takeover
operation is executed using the first and second storage
locations, without making any SCSI-3 reservations. This
makes the takeover operation more efficient and no storage
space is exclusively reserved for the takeover operation.

[0028] Upon take over in the above example, the second
storage system node manages the storage resources of the
taken over, first storage system node, until the first storage
system node becomes healthy again (i.e. becomes respon-
sive again). Thereafter, a “giveback” operation is performed
during which the second storage system node gives back
control of the storage that was taken over during the take-
over operation. During the giveback operation, the second
storage system node copies content of the second storage
location to the first storage location of the first storage
system node to give back the taken over storage to the first
storage system node. The quarantined storage space is
released, and the first storage system node utilizes the copied
information to take back its storage resources (i.e. it is able
process read and write requests using the storage given back
by the second storage system node), as described below in
detail.

US 2022/0147428 Al

[0029] As a preliminary note, the terms “component”,
“module”, “system,” and the like as used herein are intended
to refer to a computer-related entity, either software-execut-
ing general-purpose processor, hardware, firmware and a
combination thereof. For example, a component may be, but
is not limited to being, a process running on a hardware
processor, a hardware processor, an object, an executable, a
thread of execution, a program, and/or a computer.

[0030] By way of illustration, both an application running
on a server and the server can be a component. One or more
components may reside within a process and/or thread of
execution, and a component may be localized on one com-
puter and/or distributed between two or more computers.
Also, these components can execute from various computer
readable media having various data structures stored
thereon. The components may communicate via local and/or
remote processes such as in accordance with a signal having
one or more data packets (e.g., data from one component
interacting with another component in a local system, dis-
tributed system, and/or across a network such as the Internet
with other systems via the signal).

[0031] Computer executable components can be stored,
for example, at non-transitory, computer readable media
including, but not limited to, an ASIC (application specific
integrated circuit), CD (compact disc), DVD (digital video
disk), ROM (read only memory), floppy disk, hard disk,
storage class memory, solid state drive, EEPROM (electri-
cally erasable programmable read only memory), memory
stick or any other storage device type, in accordance with the
claimed subject matter.

[0032] System 100: FIG. 1A shows an example of a
networked storage environment 100 (also referred to as
system 100), for implementing the various adaptive aspect
of'the present disclosure. System 100 may include a plurality
of computing devices 102A-102N (may also be referred to
as a “host system 102,” “host systems 102”7, “computing
device 1027, “computing devices 1027, “server 102” or
“servers 102”) communicably coupled via a connection
system 110 (e.g. a local area network (LLAN), wide area
network (WAN), the Internet and others) to a storage system
108 (may also be referred to as “storage server 108,
“storage controller 108, “storage node 108, “storage nodes
108>, “storage system node 108 or “storage system nodes
108”) that executes a storage operating system 134 for
storing and retrieving data to and from a storage subsystem
112 having mass storage devices 118. As used herein, the
term “communicably coupled” may refer to a direct con-
nection, a network connection, or other connections to
enable communication between devices Although only a
single storage system 108 is shown in FIG. 1A, according to
aspects of the present disclosure, system 100 may include a
plurality of storage systems 108 arranged in one or more
high-availability pairs (see FIG. 1B/1C/FIG. 2A) for a
failover operation. The storage system 108 also executes a
failover module 120 for managing a failover operation,
described below in detail.

[0033] As an example, host system 102A may execute a
plurality of virtual machines (VMs) in a virtual environment
that is described below in detail. Host 102N may execute
one or more application 126, for example, a database
application, an email application or any other application
type to use the storage system 108 for storing information in
storage devices 118. Host 102N executes an operating
system 114, for example, a Windows based operating sys-

May 12, 2022

tem, Linux, Unix and others (without any derogation of any
third-party trademark rights) to control the overall opera-
tions of host 102N.

[0034] Clients 116A-116N are computing devices that can
access storage space at the storage system 108 via the
connection system 110. A client can be the entire system of
a company, a department, a project unit or any other entity.
Each client is uniquely identified and, optionally, may be a
part of a logical structure called a storage tenant 140. The
storage tenant 140 represents a set of users (may be referred
to as storage consumers) for a storage provider 124 (may
also be referred to as a cloud manager, where cloud com-
puting is utilized) that provides access to storage system
108. It is noteworthy that the adaptive aspects of the present
disclosure are not limited to using a storage provider or a
storage tenant, and instead, may be implemented for direct
client access.

[0035] Inone aspect, the storage operating system 134 has
access to storage devices 118 of the storage subsystem 112.
The storage devices 118 may include solid state drives
(SSDs), storage class memory, writable storage device
media such as hard disk drives (HDD), magnetic disks,
video tape, optical, DVD, magnetic tape, and/or any other
similar media adapted to store electronic information. The
storage devices 118 may be organized as one or more groups
of Redundant Array of Independent (or Inexpensive) Disks
(RAID). The various aspects disclosed are not limited to any
specific storage device type or storage device configuration.
[0036] As an example, the storage operating system 134
may provide a set of logical storage volumes (or logical unit
numbers (LUNs)) that present storage space to host systems
102, clients 116, and/or VMs (e.g. 130A/130N, described
below) for storing information. Each volume may be con-
figured to store data containers (e.g. files, directories, struc-
tured or unstructured data, or data objects), scripts, word
processing documents, executable programs, and any other
type of structured or unstructured data. From the perspective
of one of the client systems, each volume can appear to be
a single drive. However, each volume can represent storage
space at one storage device, an aggregate of some or all of
the storage space in multiple storage devices, a RAID group,
or any other suitable set of storage space.

[0037] An example of storage operating system 134 is the
Data ONTAP® storage operating system available from
NetApp, Inc. that implements a Write Anywhere File Layout
(WAFL®) file system (without derogation of any trademark
rights of NetApp Inc.). The various aspects disclosed herein
are not limited to any specific file system type and maybe
implemented by other file systems and storage operating
systems.

[0038] The storage operating system 134 organizes stor-
age space at the storage subsystem 112 as one or more
“aggregate”, where each aggregate is identified by a unique
identifier and a location. Within each aggregate, one or more
storage volumes are created whose size can be varied. A
qtree, sub-volume unit may also be created within the
storage volumes. As a special case, a qtree may be an entire
storage volume.

[0039] The storage system 108 may be used to store and
manage information at storage devices 118. A request to
store or read data may be based on file-based access proto-
cols, for example, the Common Internet File System (CIFS)
protocol or Network File System (NFS) protocol, over
TCP/IP (Transmission Control Protocol/Internet Protocol).

US 2022/0147428 Al

Alternatively, the request may use block-based access pro-
tocols, for example, iSCSI (Internet Small Computer Sys-
tems Interface) and SCSI encapsulated over Fibre Channel
(FCP). The term file/files as used herein include data con-
tainer/data containers, directory/directories, and/or data
object/data objects with structured or unstructured data.

[0040] To facilitate access to storage space, the storage
operating system 134 implements a file system (also referred
to as file system manager 240, FIG. 2B) that logically
organizes stored information as a hierarchical structure for
files/directories/objects at the storage devices. Each “on-
disk” file may be implemented as a set of data blocks
configured to store information, such as text, whereas a
directory may be implemented as a specially formatted file
in which other files and directories are stored. The data
blocks are organized within a volume block number (VBN)
space that is maintained by the file system, described below
in detail. The file system may also assign each data block in
the file a corresponding “file offset” or file block number
(FBN). The file system typically assigns sequences of FBNs
on a per-file basis, whereas VBN are assigned over a larger
volume address space. The file system organizes the data
blocks within the VBN space as a logical volume. The file
system typically consists of a contiguous range of VBNs
from zero to n, for a file system of size n-1 blocks.

[0041] The storage operating system 134 may further
implement a storage module (for example, a RAID system
for the storage subsystem 112) that manages the storage and
retrieval of the information to and from storage devices 118
in accordance with input/output (I/O) operations. When
accessing a block of a file in response to servicing a client
request, the file system specifies a VBN that is translated at
the file system/RAID system boundary into a disk block
number (“DBN™) (or a physical volume block number
(“PVBN”) location on a particular storage device (storage
device, DBN) within a RAID group of the physical volume).
Each block in the VBN space and in the DBN space maybe
fixed, e.g., 4k bytes (kB), in size; accordingly, there is
typically a one-to-one mapping between the information
stored on the storage devices in the DBN space and the
information organized by the file system in the VBN space.

[0042] A requested block is retrieved from one of the
storage devices 118 and stored in a buffer cache (e.g. 140,
FIG. 1B) of a memory of the storage system 108 as part of
a buffer tree (e.g. 400, FIG. 4) of the file. The buffer tree is
an internal representation of blocks for a file stored in the
buffer cache and maintained by the file system. Broadly
stated and as described below in detail, the buffer tree has an
inode at the root (top-level) of the file.

[0043] An inode is a data structure used to store informa-
tion, such as metadata, about a file, whereas the data blocks
are structures used to store the actual data for the file. The
information in an inode may include, e.g., ownership of the
file, file modification time, access permission for the file,
size of the file, file type and references to locations on
storage devices 118 of the data blocks for the file. The
references to the locations of the file data are provided by
pointers, which may further reference indirect blocks (e.g,
404, FIG. 4) that, in turn, reference the data. blocks (e.g.
406, FIG. 4), depending upon the amount of data in the file.
Each pointer may be embodied as a VBN to facilitate
efficiency among the file system and the RAID system when
accessing the data.

May 12, 2022

[0044] Volume information (“volinfo”) and file system
information (“fsinfo) blocks specify the layout of informa-
tion in the file system, the latter block including an inode of
a file that includes all other inodes of the file system (the
inode file). Each logical volume (file system) has an fsinfo
block that is preferably stored at a fixed location, e.g., at a
RAID group. The inode of the fsinfo block may directly
reference (or point to) blocks of the inode file or may
reference indirect blocks of the inode file that, in turn,
reference direct blocks of the inode file. Within each direct
block of the inode file are embedded inodes, each of which
may reference indirect blocks that, in turn, reference data
blocks (also mentioned as “L.0” blocks) of a file. An example
of an inode and a buffer tree are described below with
respect to FIG. 4.

[0045] The storage operating system 134 also maintains
storage blocks, referred to as super blocks that point to the
volinfo and fsinfo blocks, and hence indirectly point to an
active file system maintained by the storage operating sys-
tem 134. The super blocks are dedicated storage locations
that can be used to access an active file system at any given
time. It is noteworthy that the term “super block” maybe
used interchangeably with the fsinfo block. Details regard-
ing using the super blocks are provided below.

[0046] In a typical mode of operation, a computing device
(e.g. host system 102, client 116 or any other device)
transmits one or more 1/O requests over connection system
110 to the storage system 108. Storage system 108 receives
the 1/O requests, issues one or more I/O commands to
storage devices 118 to read or write data on behalf of the
computing device, and issues a response containing the
requested data over the network 110 to the respective client
system.

[0047] As mentioned above, system 100 may also include
a virtual machine environment where a physical resource is
time-shared among a plurality of independently operating
processor executable virtual machines (VMs). Each VM
may function as a self-contained platform, running its own
operating system (OS) and computer executable application
software. The computer executable instructions running in a
VM may be collectively referred to herein as “guest soft-
ware.” In addition, resources available within the VM may
be referred to herein as “guest resources.”

[0048] The guest software expects to operate as if it were
running on a dedicated computer rather than in a VM. That
is, the guest software expects to control various events and
have access to hardware resources on a physical computing
system (may also be referred to as a host system), which may
be referred to herein as “host hardware resources”. The host
hardware resources may include one or more processors,
resources resident on the processors (e.g., control registers,
caches and others), memory (instructions residing in
memory, e.g., descriptor tables), and other resources (e.g.,
input/output devices, host attached storage, network
attached storage or other like storage) that reside in a
physical machine or are coupled to the host system.
[0049] As shown in FIG. 1A, host system 102A includes/
provides a virtual machine environment executing a plural-
ity of VMs 130A-130N (may also be referred to as VM 130
or VMs 130) that may be presented to client computing
devices/systems 116 A-116N. VMs 130 execute a plurality of
guest OS 104A-104N (may also be referred to as guest OS
104) that share hardware resources 128. Application 126
may also be executed within VMs 130 to access the storage

US 2022/0147428 Al

system 108. As described above, hardware resources 128
may include storage, CPU, memory, I/O devices or any other
hardware resource.

[0050] In one aspect, host system 102A interfaces with or
includes a virtual machine monitor (VMM) 106, for
example, a processor executed Hyper-V layer provided by
Microsoft Corporation of Redmond, Wash., a hypervisor
layer provided by VMWare Inc., or any other type (without
derogation of any third party trademark rights). VMM 106
presents and manages the plurality of guest OS 104A-104N
executed by the host system 102A. The VMM 106 may
include or interface with a virtualization layer (VIL) 122 that
provides one or more virtualized hardware resource to each
OS 104A-104N.

[0051] In one aspect, VMM 106 is executed by host
system 102A with VMs 130. In another aspect, VMM 106
may be executed by an independent stand-alone computing
system, referred to as a hypervisor server or VMM server
and VMs 130 are presented at one or more computing
systems.

[0052] It is noteworthy that different vendors provide
different virtualization environments, for example, VMware
Inc., Microsoft Corporation and others. Data centers may
have hybrid virtualization environments/technologies, for
example, Hyper-V and hypervisor based virtual environ-
ments. The generic virtualization environment described
above with respect to FIG. 1A may be customized to
implement the various aspects of the present disclosure.
Furthermore, VMM 106 (or VIL 122) may execute other
modules, for example, a storage driver, network interface
and others. The virtualization environment may use different
hardware and software components and it is desirable for
one to know an optimum/compatible configuration.

[0053] In one aspect, system 100 uses a management
console 132 for configuring and managing the various
components of system 100. As an example, the management
console 132 may be implemented as or include one or more
application programming interfaces (APIs) that are used for
managing one or more components of system 100. The APIs
may be implemented as REST APIs, where REST means
“Representational State Transfer”. REST is a scalable sys-
tem used for building web services. REST systems/inter-
faces may use HT'TP (hyper-text transfer protocol) or other
protocols for communicating with one or more devices of
system 100.

[0054] Although storage system 108 is shown as a stand-
alone system, i.e. as a non-cluster based system, in another
aspect, storage system 108 may have a distributed architec-
ture, for example, a cluster based storage system that is
described below in detail with respect to FIG. 2A.

[0055] High-Availability Pair: FIG. 1B shows an example
of storage system nodes 108A/108B connected by a link 142
(e.g. a communication link or any other interconnect type)
configured to operate as partner nodes. This means that any
data written by one storage system node (e.g. 108A) is
mirrored at the partner storage system node (e.g. 108B). If
one storage system node (e.g. 108A) fails or becomes
unresponsive, then the other storage system node (e.g.
108B) takes over the storage volumes/LUNs of the failed
storage system node, during a takeover operation. Once the
storage system node 108A returns to normal operation,
during a giveback operation, the storage system node 108B
gives back control of the storage volumes/[LUNs that were
taken over during the takeover operation.

May 12, 2022

[0056] Each storage system node 108A/108B executes the
storage operating system 134 (shown as 134A for storage
system node 108A, and 134B for storage system node
108B). The storage operating system 134 uses a volatile,
buffer cache 140 (shown as buffer cache 140A for storage
system 108A, and buffer cache 140B for storage system
140B) for managing write and read requests.

[0057] To protect against failures, each storage system
node uses a non-volatile random access memory (NVRAM)
144 (shown as NVRAM 144A for the storage system node
108A, and NVRAM 144B for the storage system node
108B) that persistently stores a log, referred to as “NVLog”,
to track each write operation that is being processed by the
buffer cache 140 of each storage system node at any given
time. For example, NVLog 138A tracks all the write opera-
tions that are buffered in buffer cache 140A of storage
system node 108A. A partner NVLog 139A tracks all the
write operations that are being processed by the partner
storage system node 108B at buffer cache 140B. Similarly,
the NVLog 138B tracks all the write operations that are
buffered in buffer cache 140B, and the partner NVLog 139B
tracks all the write operations of buffer cache 140A that are
being processed by the storage system node 108A at any
given time. Although for clarity, NVLogs 138A/138B and
partner NVLogs 139A/139B are shown as separate logical
structures within NVRAMs 144A/144B, the adaptive
aspects of the present disclosure maybe implemented by
maintaining a single NVLog at each storage system node to
track the write operations processed by each node.

[0058] During a failover operation, before the storage
volumes of a failed storage system node (e.g. 108A) can be
made available to incoming read and write requests, a
partner storage system node (e.g. 108B) replays (i.e. pro-
cesses) all the entries mirrored in the partner NVLog 139B
to ensure that all the mirrored write requests at the time of
failure are executed. The failover operation is managed by
the failover module 120 (i.e. 120A for the storage system
node 108A and 120B for the storage system 108B) inter-
facing with the storage operating system 134. Failover
module 120 may be integrated with the storage operating
system 134.

[0059] Although only two storage system nodes are shown
in FIG. 1B, multiple nodes may be configured to take over
each other’s storage during a failover operation. For
example, as shown in FIG. 1C, a networked storage system
may have a plurality of storage system nodes 108 A-108N.
During a failover operation, if the storage system node 108B
fails, while attempting to take over the storage of the storage
system node 108A, another storage system node (e.g. 108N)
can take over the storage system node 108B, as described
below.

[0060] Inone aspect, innovative technology is provided to
efficiently execute a takeover operation, without making a
reservation for the storage that is being taken over. In one
aspect, at least a set of four storage locations are assigned to
each storage system node that is configured to take over
another storage system node in a multi-node, networked,
storage environment. For example, storage blocks (referred
to as super blocks and shown as SB1 and SB2) 150A/150B)
are used by the storage system node 108A to store a pointer
to point to a fsinfo block. This enables a file system to
traverse a tree structure of the active file system of the first
storage system node 108A. When data is written, the tree
structure is updated, which updates the fsinfo block, hence

US 2022/0147428 Al

SB1 150A/SB2 150B always indirectly point to the latest
version of the active file system. Instead of pointing to the
fsinfo blocks, SB1 150A and SB2 150B may be configured
as the fsinfo blocks. SB3 150C and SB4 150D are storage
locations that are used by the storage system node 108A,
during a failover operation to take over storage of another
storage system node, as described above.

[0061] Similar to SB1 150A and SB150B, SB1 150E and
SB2 150F are assigned to the storage system node 108B for
use during normal file system operations, while SB3 150G
and SB4 150H are used by the second storage system node
108B during a failover operation. SB1 1501 and SB2 150J
are assigned to the storage system node 108N for use during
normal file system operations. SB3 150K and SB4 1501 are
used by the storage system node 108N during a failover
operation.

[0062] Furthermore, each storage system node 108A-
108N may include or use one or more active file systems.
Each file system may be assigned a set of blocks (e.g. SB1
150A/SB2 150B). When a storage system node (e.g. 108A)
is operational, it uses its dedicated storage blocks (e.g.
150A/150B) and upon takeover, the node that takes over
(e.g. 108B), copies the information from SB1 150A/SB2
1508 to SB3 150G/SB4 150H of storage system node 108B.
[0063] In yet another example, assume that each storage
system manages two active file systems, and if the storage
system node 108A fails, then the storage system node 108B
can take over the first file system of the first storage system
node 108A by using SB3 150G/SB4 150H, while the storage
system node 108N takes over the second file system of the
storage system node 108B using super blocks 150K/150L.
[0064] The number of designated SB3/SB4 blocks and
any other blocks used by different storage operating sys-
tem’s subsystems (e.g. a RAID label) within the storage
sub-system 112 vary based on the number of storage system
nodes configured to take over another node during a cas-
cading failure. For example, example, assume that storage
system 108B and 108N are configured to take over the
storage system node 108A. If the storage system node 108A
becomes unresponsive, first the storage system node 108B
attempts to take over the storage system node 108A. If the
storage system node 108B is unable to takeover, then the
storage system node 108N takes over the storage system
node 108A. To handle this cascading failure, each storage
system node can be assigned multiple pairs of SB3/SB4
blocks. The number of SB3/SB4 blocks will depend on how
many storage system nodes a storage system node is con-
figured to take over. For example, if a storage system node
is configured to take over two other nodes, then the storage
system node is assigned two pairs of SB3/SB4 blocks. The
[0065] SB3/SB4 blocks are assigned when a storage sys-
tem node is configured as a partner node that can take over
another storage system node.

[0066] Although FIG. 1C shows a set of four super-blocks
(i.e. SB1/SB2/SB3/SB4) for each storage system node, the
adaptive aspects of the present disclosure may include more
than four super-blocks per storage system node, especially,
when one storage system node is configured to take over
more than one file system of an unresponsive node. The
adaptive aspects of the present disclosure are not limited to
any specific number of super blocks. The details for con-
figuring and using the super blocks during a takeover and
giveback operation are provided below with respect to
FIGS. 6A-6D.

May 12, 2022

[0067] Furthermore, as an example, storage subsystem
112 also includes quarantined (or isolated/fenced off) stor-
age locations 152A-152N. The quarantined storage locations
are storage locations that an unresponsive storage system
node that is being taken over may attempt to write during a
takeover operation, as described below in detail. This
ensures that the unresponsive storage system node does not
overwrite any blocks within the active file system. It is
noteworthy that there may be more than one quarantine/
isolated storage location associated with each file system of
an unresponsive storage system node.

[0068] Clustered Storage System: Before describing the
various takeover/giveback aspects of the present disclosure
in detail, the following describes a clustered based net-
worked storage environment where the innovative technol-
ogy for the takeover/giveback operations are executed. FIG.
2A shows a cluster-based, networked storage environment
(may also be referred to as “storage environment”) 200 with
a plurality of storage system nodes (208.1-208.3) operating
to store data on behalf of clients at storage devices 118.1-
118.3. The various storage system nodes may be configured
to operate as partner nodes, described above with respect to
FIG. 1B, and are configured to takeover another node’s
storage using the super blocks of FIG. 1C.

[0069] Storage environment 200 may include a plurality of
client systems 204.1-204.N (may also be referred to as
“client system 204” or “client systems 204”") as part of or
associated with storage tenant 140, a clustered storage
system 202 (similar to the storage system 108 of FIG.
1A/1B) and at least a network 206 communicably connect-
ing the host system 102A-102N, client systems 204.1-204.
N, the management console 132, the storage (or cloud)
provider 124 and the clustered storage system 202. It is
noteworthy that these components may interface with each
other using more than one network having more than one
network device.

[0070] The clustered storage system 202 includes the
plurality of storage system nodes 208.1-208.3 (also referred
to as “node 208” or “nodes 208”), a cluster switching fabric
210, and a plurality of mass storage devices 118.1-118.3
(similar to 118, FIG. 1A). The various nodes 208.1-208.3
can be configured as high-availability, pair nodes to operate
as partner nodes, as shown in FIG. 1B. For example, node
208.1 and 208.2 may operate as partner nodes. If node 208.1
fails, node 208.2 takes over the storage volumes that are
exposed by node 208.1 during a failover operation. Further-
more, node 208.3 may be configured to takeover node 208.1
or 208.2.

[0071] Each of the plurality of nodes 208.1-208.3 is con-
figured to include a network module, a storage module, and
a management module, each of which can be implemented
as a processor executable module. Specifically, node 208.1
includes a network module 214.1, a storage module 216.1,
and a management module 218.1, node 208.2 includes a
network module 214.2; a storage module 216.2, and a
management module 218.2, and node 208.3 includes a
network module 214.3, a storage module 216.3, and a
management module 218.3.

[0072] The network modules 214.1-214.3 include func-
tionality that enable the respective nodes 208.1-208.3 to
connect to one or more of the host systems 102A-102N, and
the client systems 204.1-204.N (or the management console
132) over the computer network 206. The network modules
214.1-214.3 handle network file protocol processing (for

US 2022/0147428 Al

example, CFS, NFS and/or iSCSI requests). The storage
modules 216.1-216.3 connect to one or more of the storage
devices and process 1/O requests. Accordingly, each of the
plurality of nodes 208.1-208.3 in the clustered storage server
arrangement provides the functionality of a storage server.
[0073] The management modules 218.1-218.3 provide
management functions for the clustered storage system 202.
The management modules 218.1-218.3 collect storage infor-
mation regarding storage devices, such as storage devices
118.1-118.3.

[0074] A switched virtualization layer including a plural-
ity of virtual interfaces (VIFs) 219 is provided to interface
between the respective network modules 214.1-214.3 and
the client systems 204.1-204.N, allowing storage space at
the storage devices associated with the nodes 208.1-208.3 to
be presented to the client systems 204.1-204.N as a single
shared storage pool.

[0075] The clustered storage system 202 can be organized
into any suitable number of storage virtual machines
(SVMs) (may be referred to as virtual servers (may also be
referred to as “SVMs™)), in which each SVM represents a
single storage system namespace with separate network
access. A SVM may be designated as a resource on system
200. Each SVM has a client domain and a security domain
that are separate from the client and security domains of
other SVMs. Moreover, each SVM is associated with one or
more VIFs 219 and can span one or more physical nodes,
each of which can hold one or more VIFs 219 and storage
associated with one or more SVMs. Client systems can
access the data on a SVM from any node of the clustered
system, through the VIF(s) 219 associated with that SVM.
[0076] Each node 208.1-208.3 is a computing system to
provide services to one or more of the client systems
204.1-204.N and host systems 102A-102N. The nodes 208.
1-208.3 are interconnected by the switching fabric 210,
which, for example, may be embodied as a Gigabit Ethernet
switch or any other type of switching/connecting device.
[0077] Although FIG. 2A depicts an equal number (i.e., 3)
of the network modules 214.1-214.3, the storage modules
216.1-216.3, and the management modules 218.1-218.3, any
other suitable number of network modules, storage modules,
and management modules may be provided. There may also
be different numbers of network modules, storage modules,
and/or management modules within the clustered storage
system 202. For example, in alternative aspects, the clus-
tered storage system 202 may include a plurality of network
modules and a plurality of storage modules interconnected
in a configuration that does not reflect a one-to-one corre-
spondence between the network modules and storage mod-
ules. In another aspect, the clustered storage system 202 may
only include one network module and storage module.
[0078] Each client system 204.1-204.N may request the
services of one of the respective nodes 208.1, 208.2, 208.3,
and that node may return the results of the services requested
by the client system by exchanging packets over the com-
puter network 206, which may be wire-based, optical fiber,
wireless, or any other suitable combination thereof.

[0079] Storage Operating System: FIG. 2B illustrates a
generic example of the storage operating system 134 of FIG.
1A executed by the storage system node 108 (or nodes
208.1-208.3, FIG. 2A), according to one aspect of the
present disclosure. In one example, storage operating system
134 may include several modules, or “layers” executed by
one or both of network module 214 and storage module 216.

May 12, 2022

These layers include a file system manager 240 that keeps
track of a hierarchical structure of the data stored in storage
devices 118 and manages read/write operation, i.e. executes
read/write operation on storage in response to 1/O requests,
as described below in detail. The file system manager 240
interfaces with the failover module 120 during a takeover
and giveback operation, described below in detail.

[0080] Storage operating system 134 may also include a
protocol layer 242 and an associated network access layer
246, to allow node 208.1 to communicate over a network
with other systems, such as clients 204.1/204. N. Protocol
layer 242 may implement one or more of various higher-
level network protocols, such as SAN (e.g. iSCSI) (242A),
CIFS (242B), NFS (242C), Hypertext Transfer Protocol
(HTTP) (not shown), TCP/IP (not shown) and others
(242D). The network access layer 246 may include one or
more drivers, which implement one or more lower-level
protocols to communicate over the network, such as Ether-
net. Interactions between host systems and mass storage
devices are illustrated schematically as a path, which illus-
trates the flow of data through storage operating system 134.
[0081] The storage operating system 134 may also include
a storage access layer 244 and an associated storage driver
layer 248 to allow storage module 216 to communicate with
a storage device. The storage access layer 244 may imple-
ment a higher-level storage protocol, such as RAID (244A),
a S3 layer 244B to access a capacity tier for object-based
storage (not shown), and other layers 244C. The storage
driver layer 248 may implement a lower-level storage device
access protocol, such as Fibre Channel or SCSI. The storage
driver layer 248 may maintain various data structures (not
shown) for storing information regarding storage volume,
aggregate and various storage devices.

[0082] As used herein, the term “storage operating sys-
tem” generally refers to the computer-executable code oper-
able on a computer to perform a storage function that
manages data access and may, in the case of a storage system
node, implement data access semantics of a general-purpose
operating system. The storage operating system can also be
implemented as a microkernel, an application program oper-
ating over a general-purpose operating system, such as
UNIX® or Windows ®, or as a general-purpose operating
system with configurable functionality, which is configured
for storage applications as described herein.

[0083] In addition, it will be understood to those skilled in
the art that the disclosure described herein may apply to any
type of special-purpose (e.g., file server, filer or storage
serving appliance) or general-purpose computer, including a
standalone computer or portion thereof, embodied as or
including a storage system. Moreover, the teachings of this
disclosure can be adapted to a variety of storage system
architectures including, but not limited to, a network-at-
tached storage environment, a storage area network and a
storage device directly attached to a client or host computer.
The term “storage system” should therefore be taken broadly
to include such arrangements in addition to any subsystems
configured to perform a storage function and associated with
other equipment or systems. It should be noted that while
this description is written in terms of a write any-where file
system, the teachings of the present disclosure may be
utilized with any suitable file system, including a write in
place file system.

[0084] Inode Structure: FIG. 3 shows an example of an
inode structure 300 (may also be referred to as inode 300)

US 2022/0147428 Al

used to store data on storage devices 118 of the storage
subsystem 112, according to one aspect of the present
disclosure. Inode 300 may include a meta-data section 302
and a data section 318. The information stored in the
meta-data section 302 of each inode 300 describes a file and,
as such, may include the file type (e.g., regular, directory or
object) 304, size 306 of the file, time stamps (e.g., access
and/or modification time) 308 for the file and ownership,
i.e., user identifier (UID 310) and group 1D (GID 312), of the
file. The metadata section 302 may also include an X-inode
field 314 with a pointer 316 that references another on-disk
inode structure containing, e.g., access control list (ACL)
information associated with the file or directory.

[0085] The contents of data section 318 of each inode 300
may be interpreted differently depending upon the type of
file (inode) defined within the type field 304. For example,
the data section 318 of a directory inode structure includes
meta-data controlled by the file system, whereas the data
section of a “regular inode” structure includes user-defined
data. In the latter case, the data section 318 includes a
representation of the data associated with the file. Data
section 318 of a regular on-disk inode file may include user
data or pointers, the latter referencing, for example, data
blocks for storing user data at a storage device.

[0086] Inode structure 300 may have a restricted size (for
example, 122 bytes). Therefore, user data having a size that
is less than or equal to 64 bytes may be represented, in its
entirety, within the data section of an inode. However, if the
user data is greater than 64 bytes but less than or equal to,
for example, 64 kilobytes (KB), then the data section of the
inode comprises multiple pointers, e.g. 16 pointers, each of
which references a block of data stored at a disk. Moreover,
if the size of the data is greater than 64 kilobytes but less
than or equal to 64 megabytes (MB), then each pointer in the
data section 318 of the inode references an indirect inode
that contains multiple pointers (e.g. 1024 pointers), each of
which references a data block on disk.

[0087] Buffer Tree: FIG. 4 is an example of an inode buffer
tree of a data container that may be used by the storage
operating system 134. The buffer tree is an internal repre-
sentation of blocks for a data container (e.g., file A 400)
loaded into the buffer cache 140 (e.g., of a storage system
node 108 as illustrated in FIG. 1B) and maintained by the file
system manager 240. A root (top-level) inode 402, such as
an embedded inode, references indirect blocks 404 (e.g.,
Level 1). The root inode 402 may be referenced by a fsinfo
block that in turn maybe referenced by a super block.
[0088] The indirect Hocks (and inode) contain pointers
405 that ultimately reference data blocks 406 used to store
the actual data of file A. That is, the data of file A 400 are
contained. in data blocks and the locations of these blocks
are stored in the indirect blocks of the file, Each Level 1
indirect block 404 may contain pointers to a plurality of data
blocks.

[0089] In one aspect, the file system manager 240 allo-
cates blocks, and frees blocks, to and from a virtual volume
(may be referred to as VVOL) of an aggregate. The aggre-
gate, as mentioned above, is a physical volume comprising
one or more groups of storage devices, such as RAID
groups, underlying one or more VVOLs of the storage
system. The aggregate has its own physical volume block
number (PVBN) space and maintains metadata, such as
block allocation bitmap structures, within that PVBN space.
Each VVOL also has its own virtual volume block number

May 12, 2022

(VVBN) space and maintains metadata, such as block allo-
cation bitmap structures, within that VVBN space. Typi-
cally, PVBNs are used as block pointers within buffer trees
of files (such as file 400) stored in a VVOL.

[0090] As an example, a VVOL may be embodied as a
container file in an aggregate having [0 (data) blocks that
comprise all blocks used to hold data in a VVOL,; that is, the
L0 data blocks of the container file contain all blocks used
by a VVOL. L1 (and higher) indirect blocks of the container
file reside in the aggregate and, as such, are considered
aggregate blocks. The container file is an internal (to the
aggregate) feature that supports a VVOL; illustratively, there
is one container file per VVOL. The container file is a hidden
file (not accessible to a user) in the aggregate that holds
every block in use by the VVOL.

[0091] When operating in a VVOL, VVBN identifies a
FBN location within the file and the file system uses the
indirect blocks of the hidden container file to translate the
FEN into a PVBN location within the physical volume,
which block can then be retrieved from storage 118.
[0092] File System Manager 240: FIG. 5 shows a block
diagram of the file system manager 240 (first introduced
with respect to FIG. 2B), according to one aspect of the
present disclosure. The file system manager 240 includes a
write module 504 that manages write requests for writing
data in storage device 118 (FIG. 1A) and a read module 508
that manages read requests for reading data from storage
devices 118.

[0093] The write module 504 may include a write alloca-
tor sub-module (not shown) that allocates storage space for
storing data. The write allocator maintains a list of free
blocks that may be used by a node for writing data. The write
allocator may predict what storage blocks may get written at
any given time, based on a pattern of write requests. For
example, for requests from a certain source to write large
amount of data, the write allocator will predict larger storage
space and blocks for storing data. For requests to write
smaller files, the write allocator predicts smaller storage
space. Since the write module 504 is aware of the write
requests at any given time, it can predict where data maybe
written soon.

[0094] The buffer cache 140 is managed by a caching
module 512. A consistency point (C1>) module 510 is used
to manage CP operations to flush data from the buffer cache
140 to persistent storage (e.g. storage devices 118). in one
aspect, when data is to be persistently stored, the data is
marked as dirty at the buffer cache 140, and then the CP
module 510 flushes the dirty data from the buffer cache 140
to the storage subsystem 112 e.g. at storage devices 118.
[0095] The read module 508 is used to fetch data from the
storage devices 118 at the storage subsystem 112 in response
to read requests. The RAID layer 244A using a storage
driver 248A, for example a Fibre Channel driver, is used to
access the storage devices 118 at the storage subsystem 112
to retrieve the requested data and present the data to an
application that requested the data.

[0096] In one aspect, the file system manager 240 inter-
faces with the failover module 120 via a failover module
interface (e.g. an API) 502 during a takeover and a giveback
operation. The failover module 120 manages the takeover
and the giveback operation, as described below in detail.
[0097] Process Flows: FIG. 6A shows a process flow 600
for allocating storage locations for a plurality of storage
system nodes of a networked storage system. Process 600

US 2022/0147428 Al

begins in block B602, when the plurality of storage system
nodes of the networked storage system is deployed or at any
time while the nodes are operational.

[0098] In block B604, a first storage location is assigned
for each storage system node. The first storage location may
include a first block (e.g. SB1 150A, FIG. 1C) and a second
block (e.g. SB2 150A) for a first storage system node (e.g.
108A). Similarly, SB1 150E and SB2 150F are assigned to
the second storage system node 108B, and SB1 1501 and
SB2 15017 are assigned to the storage system node 108N, for
a cluster having more than two nodes. The SB1 and SB2
blocks of each storage system node_are used during normal
file system operation as a fsinfo block (or point to an fsinfo
block) of an active file system to record write operations to
the active file system. In one aspect, during normal opera-
tions, when data is written, the write module 240 of each
storage system node adds a sequence number in SB1 and
SB2. The sequence number is incremented upon each write
operation and indicates the latest version of the active file
system.

[0099] To manage a takeover operation, in block B606, a
second storage location is assigned for each storage system
node. For example, SB3 150C and SB4 150D are assigned
to the first storage system node. SB3 150C and SB4 150D
are used when the first storage system node 108 A takes over
another node, e.g. 108B or 108N (see FIG. 1C). Similarly,
SB3 150G and SB4 150H are assigned to the second storage
system node 108B. SB3 150G and SB4 150H are used when
the second storage system node 108B takes over another
node, e.g. 108A or 108N (see FIG. 1C). Furthermore, SB3
150K and SB4 150L are assigned to the storage system node
108N. SB3 150K and SB4 150L are used when the storage
system node 108N takes over another storage system node,
e.g. 108A or 108B.

[0100] As described above, the number of SB3 and SB4
blocks vary based on the number of nodes within a cluster
that are configured to takeover another node during a
takeover operation, as well as the number of file systems that
are supported by each node.

[0101] FIG. 6B shows a process 610 for executing a
takeover operation, according to one aspect of the present
disclosure. Process 610 is executed by a storage system node
of a networked storage system having a plurality of storage
system nodes. It is noteworthy that although the description
below describes how a second storage system node (e.g.
108B) takes over a first storage system node (e.g. 108A), the
adaptive aspects of the present disclosure are not limited to
just two nodes. The technology described herein may be
implemented in a cluster having more than two nodes, such
that any node, if configured for takeover, can take over a
failing/unresponsive node.

[0102] Process 610 begins in block B612, after the second
storage system node 108B detects that the first storage
system node 108 A is unresponsive. In one aspect, the second
storage system node 108B regularly transmits “heartbeat”
messages to the first storage system node 108 A, expecting a
response to the heartbeat messages. When a response is not
received within a threshold duration, the second storage
system 108B assumes that the first storage system node
108A maybe failing and hence, may need to be taken over.
The use of heartbeat messages is not the only way to
determine if a storage system node is being unresponsive,
there may be other techniques to make that determination.
For example, a failing node may transmit a message indi-

May 12, 2022

cating that one or more components may be failing; the
management console 132 may detect a potential storage
system failure, based on monitoring data received from a
failing storage system node or any other technique. The
adaptive aspects of the present disclosure are not limited to
any specific technique for detecting non-responsiveness of a
storage system node. Furthermore, the takeover operation
can be triggered by a user request, without detecting any
potential or actual failing node.

[0103] In block B614, the second storage system node
108B initiates the takeover operation, as part of a failover
operation, to take over the storage that was managed by the
first storage system node 108A. The takeover operation is
initiated by the failover module 120B that notifies the
storage operating system 134B to take over the storage that
was assigned to the first storage system node 108A for
processing any read and write requests associated with the
assigned storage. The takeover operation maybe initiated
after a logical interface (LIF) associated with the first
storage system node 108A is migrated to the second storage
system node 108B. This ensures that the second storage
system node 108B receives read and write requests that are
addressed to the first storage system node 108A.

[0104] In block B616, the second storage system node
102B retrieves information regarding the storage used by the
first storage system node 108A. This information may
include striping, mirroring, and parity information for a
RAID configuration. This information may also include
aggregate details including volume/LUN identifiers, disk
partition information or any storage space related data. This
information may be stored at a dedicated storage location for
the first storage system 108A. Once the storage related
information is retrieved, the ownership of the first storage
system node storage is transferred to the second storage
system node 108B.

[0105] In block B618, the retrieved storage configuration
information is stored by the second storage system node
108B at storage blocks, SB3 150G and SB4 150H, as shown
in FIG. 1C.

[0106] In block B620, the second storage system node
108B reads storage blocks SB1 150A/SB2 1508 assigned to
the first storage system node 108A. The information from
SB1 150A/SB2 150B is copied to SB3 150G and SB4 150H
of'the second storage system node 108B, respectively. In one
aspect, the second storage system node 108B reads the latest
sequence number from the SB1 150A/SB2 150B. The sec-
ond storage system node 108B increases the sequence
number by “N” at SB1 150A and SB2 150B such that the
first storage system node 108A does not perform a CP
operation during the takeover. This allows the second stor-
age system node 108B to execute the takeover operation
reliably, based on the latest sequence number read from SB1
150A/SB2 150B.

[0107] In block B622, the second storage system 108B
quarantine’s (or isolates or fences off) the storage space that
the first storage system node 108A may use during the
takeover operation. In one aspect, the write module 504 of
the first storage system node 108A predicts the blocks that
may written. The prediction may be based on a write pattern
tracked by the write module 504. This information may be
stored in a list at a storage location. The second storage
system 108B retrieves the list and quarantine’s the storage

US 2022/0147428 Al

space that is likely to be written, in case the first storage
system node 108 A may be partially operational, while being
unresponsive.

[0108] The quarantined space, shown as 152A-152N in
FIG. 1C, ensures that if the first storage system node 108A
performs any write operations during the takeover operation,
those entries are not included in the takeover by the second
storage system node 108B. This ensures that the active file
system of the first storage system node 108A built by the
second storage system node 108B, during the takeover
operation, is built accurately from the information copied
from SB1 150A and SB2 150B.

[0109] In block B624, the second storage system node
108B allocates storage space to store data for any storage
requests that maybe received during the takeover operation
and while it owns the storage of the first storage system node
108A. SB3 150G and SB4 150H are used for tracking any
write operations, while the second storage system node
108B own the storage of the first storage system node 108A.
The takeover operation is completed after the second storage
system node 108B is configured to process any write
requests that are addressed to the first storage system node
108A.

[0110] In one aspect, if the first storage system node 108A
reboots during the takeover operation, it does not use SB1
150A/SB2 150B until the takeover operation is complete.
This is based on a configuration setting established by the
second storage system node 108B to indicate to the first
storage system node 108A that it is being taken over.
[0111] FIG. 6C shows a process 630 for handling a failure
of the second storage system node 108B (i.e. a cascading
failure), while it attempts to take over the first storage
system node 108A, as described above with respect to FIG.
6B. The process 630 begins in block B632, after a takeover
operation has been initiated by the second storage system
node 108B and process blocks B614-B620 of FIG. 6A have
been executed.

[0112] In block B634, a potential failure of the second
storage system node 108B is detected. In one aspect, another
storage system node (e.g. 108N) sends a “heartbeat” mes-
sage to the second storage system node 108B, and if an
expected response is not received within a certain duration,
then the storage system node 108N initiates a takeover of the
second storage system node 108B in block B636. The
storage system node 108N also retrieves the storage infor-
mation from SB3 150G and SB4 150H of the second storage
system node 108B. The retrieved information is copied to
the storage blocks SB3 150K and SB4 150L (see FIG. 1C)
of the storage system node 108N in block B638. It is
noteworthy that although this example mentions the storage
system node 108N taking over the storage system node
108B, the storage system node 108N may also be configured
to take over one or more file systems of other storage system
nodes.

[0113] In block B640, the third storage system node 108N
reads SB3 150G and SB4 150H of the second storage system
node 108B and copies that information to SB3 150K and
SB4 150L of storage system node 108N.

[0114] Blocks B642 and B644 are like blocks B622 and
B624, respectively, described above with respect to FIG. 6B
to complete the takeover operation.

[0115] FIG. 6D shows a process 650 for executing a
giveback operation to give back control to the first system
node 108A by the second storage system node 108B, after

May 12, 2022

the first storage system node 108A becomes responsive. As
described above with respect to FIG. 6B, the availability of
the first storage system node 108A is detected by the second
storage system node 108B by sending a heartbeat message,
and if an expected response is received within an expected
duration, the second storage system 108B assumes that the
storage system node 108A is responsive.

[0116] In block B654, the giveback operation is initiated
by the second storage system node 108B. Storage configu-
ration information is copied from SB3 150G and SB4 150H
of second storage system node 108B to SB1 150A and SB2
150B of the first storage system node 150A. The storage
configuration information is the updated configuration infor-
mation for storage used by the second storage system node
108B for the takeover operation.

[0117] In block B658, the pointers and file system infor-
mation from SB3 150G and SB4 150H of the second storage
system node 108B is copied to SB1 150A and SB2 150B of
the first storage system node 108A.

[0118] In block B660, any remaining information that was
stored by the second storage system node 108B, while the
first storage system node 108 A was down, is copied back to
the primary storage location assigned to and managed by the
first storage system node 108A. Thereafter, in block B662,
the ownership of the storage is transferred back to the first
storage system node 108A from the second storage system
node 108B, and the giveback operation concludes. After, the
giveback operation, the first storage system node 108A is
able to process read and write requests, and accordingly,
updates SB1 150A/SB 150B.

[0119] In one aspect, an innovative, computer executable
method is provided. The method includes, copying (B616-
B620, FIG. 6B), by a second storage system node (108A,
FIG. 1B), information from a first storage location (SB1
150A/SB2 150B, FIG. 1C) to a second storage location (SB3
150G/SB4 150H), the first storage location pointing to an
active file system of a first storage system node, the second
storage location assigned to the second storage system node
for a takeover operation to take over storage of a first storage
system node by the second storage system node. The method
further includes quarantining (B622, FIG. 6B), by the sec-
ond storage system node, storage space likely to be used by
the first storage system node for a write operation, while the
second storage system node attempts to take over the storage
of the first storage system node; and utilizing (B656-B662,
FIG. 6D), by the second storage system node, information
stored at the second storage location during the takeover
operation to give back control of the storage to the first
storage system node by copying the information stored at the
second storage location to the first storage location.

[0120] In another aspect, a non-transitory, machine read-
able storage medium having stored thereon instructions
comprising machine executable code. The machine execut-
able code, when executed by a machine, causes the machine
to: allocate a first storage location (e.g. 150A/150B, FIG.
1C) to a first storage system node (e.g. 108A, FIG. 1B) to
point to an active file system of the first storage system node;
allocate a second storage location (e.g. 150C and 150D, FIG.
1C) to the first storage system node to take over storage of
a second storage system node (e.g. 108B, FIG. 1B), upon
detecting the second storage system node is unresponsive;
assign a third storage location (e.g. 150E and 150F, FIG. 1C)
to the second storage system node to point to an active file
system of the second storage system node; assign a fourth

US 2022/0147428 Al

storage location (e.g. 150G and 150H, FIG. 1C) to the
second storage system node to take over storage of the first
storage system node, upon detecting the first storage system
node is unresponsive; and copy (B636/B638, FIG. 6B), by
the second storage system node, information stored at the
first storage location to the fourth storage location, during a
takeover operation to take over storage of the first storage
system node.

[0121] In one aspect, the innovative takeover and give-
back technology, enables a storage system node to takeover
storage of a failed or failing node, without having to make
a storage reservation (e.g. a SCSI-3 reservation). Because no
reservation is made, the takeover process is efficient and
flexible, enabling other nodes to use the storage space that
is taken over.

[0122] Storage System Node: FIG. 7 is a block diagram of
a node 208.1, (including the storage system nodes 108A/
108B) that is illustratively embodied as a storage system
comprising of a plurality of processors 702A and 702B, a
memory 704, a network adapter 710, a cluster access adapter
712, a storage adapter 716 and local storage 718 intercon-
nected by a system bus 708. In one aspect, when node 208.1
becomes unresponsive, another node, e.g. 208.2 takes over
the storage that was managed by the node, as described
above with respect to FIGS. 6A-6D. The node 208.1 may
become unresponsive due to an error associated with one its
components, due to a network connection or for any other
reason.

[0123] As an example, processors 702A-702B may be, or
may include, one or more programmable general-purpose or
special-purpose microprocessors, digital signal processors
(DSPs), programmable controllers, application specific inte-
grated circuits (ASICs), programmable logic devices
(PLDs), or the like, or a combination of such hardware
devices.

[0124] The local storage 718 comprises one or more
storage devices utilized by the node to locally store con-
figuration information for example, in a configuration data
structure 714. The configuration information may include
striping, mirroring, and parity information for a RAID
configuration. The configuration information may also
include aggregate details including volume/LUN identifiers,
disk partition information or any storage space related data.
This information during a takeover operation is retrieved by
a storage system node taking over node 208.1.

[0125] The cluster access adapter 712 comprises a plural-
ity of ports adapted to couple node 208.1 to other nodes of
cluster 202 (FIG. 2A). In one aspect, an error associated with
the cluster access adapter 712 may result in the node 208.1
becoming unresponsive. In the illustrative aspect, Ethernet
may be used as the clustering protocol and interconnect
media, although it will be apparent to those skilled in the art
that other types of protocols and interconnects may be
utilized within the cluster architecture described herein. In
alternate aspects where the network modules and storage
modules are implemented on separate storage systems or
computers, the cluster access adapter 712 is utilized by the
network/storage module for communicating with other net-
work/storage-modules in the cluster 202.

[0126] Each node 208.1 is illustratively embodied as a
dual processor storage system executing the failover module
120 for managing a failover operation, and the storage
operating system 134 that preferably implements a high-
level module, such as a file system 240, to logically organize

May 12, 2022

the information as a hierarchical structure of named direc-
tories and files at storage 118. However, it will be apparent
to those of ordinary skill in the art that the node 208.1 may
alternatively comprise a single or more than two processor
systems. Illustratively, one processor 702A executes the
functions of the network module on the node, while the other
processor 702B executes the functions of the storage mod-
ule.

[0127] The memory 704 illustratively comprises storage
locations that are addressable by the processors and adapters
for storing programmable instructions and data structures.
The processor and adapters may, in turn, comprise process-
ing elements and/or logic circuitry configured to execute the
programmable instructions and manipulate the data struc-
tures. It will be apparent to those skilled in the art that other
processing and memory means, including various computer
readable media, may be used for storing and executing
program instructions pertaining to the disclosure described
herein.

[0128] The storage operating system 134 portions of
which is typically resident in memory and executed by the
processing elements, functionally organizes the node 208.1
by, inter alia, invoking storage operation in support of the
storage service implemented by the node.

[0129] In one aspect, data that needs to be written is first
stored at a buffer cache 140 in memory 704. The written data
is moved to NVRAM storage, stored at a partner NVRAM
(FIG. 1B) and then stored persistently at storage devices 118
during a CP operation.

[0130] The network adapter 710 comprises a plurality of
ports adapted to couple the node 208.1 to one or more clients
204.1/204.N over point-to-point links, wide area networks,
virtual private networks implemented over a public network
(Internet) or a shared local area network. The network
adapter 710 thus may comprise the mechanical, electrical
and signaling circuitry needed to connect the node to the
network. Each client 204.1/204. N may communicate with
the node over network 206 (FIG. 2A) by exchanging discrete
frames or packets of data according to pre-defined protocols,
such as TCP/IP.

[0131] The storage adapter 716 cooperates with the stor-
age operating system 134 executing on the node 208.1 to
access information requested by the clients. The information
may be stored on any type of attached array of writable
storage device media such as hard drives, solid state drivers,
storage class memory, video tape, optical, DVD, magnetic
tape, bubble memory, electronic random access memory,
micro-electro mechanical and any other storage media
adapted to store information, including data and parity
information. However, as illustratively described herein, the
information is preferably stored at storage device 118. The
storage adapter 716 comprises a plurality of ports having
input/output (I/O) interface circuitry that couples to the
storage devices over an I/O interconnect arrangement, such
as a conventional high-performance, Fibre Channel link
topology. In one aspect, if an error prevents the storage
adapter 716 to access storage device 118, then the node
208.1 may become unresponsive and trigger a takeover
operation, described above with respect to FIGS. 6B-6D.
[0132] Processing System: FIG. 8 is a high-level block
diagram showing an example of the architecture of a pro-
cessing system 800 that may be used according to one
aspect. The processing system 800 can represent the storage
system node 108, host system 102, management console

US 2022/0147428 Al

132, or clients 116, 204. Note that certain standard and
well-known components which are not germane to the
present aspects are not shown in FIG. 8.

[0133] The processing system 800 includes one or more
processor(s) 802 and memory 804, coupled to a bus system
805. The bus system 805 shown in FIG. 8 is an abstraction
that represents any one or more separate physical buses
and/or point-to-point connections, connected by appropriate
bridges, adapters and/or controllers. The bus system 805,
therefore, may include, for example, a system bus, a Periph-
eral Component Interconnect (PCI) bus, a HyperTransport
or industry standard architecture (ISA) bus, a small com-
puter system interface (SCSI) bus, a universal serial bus
(USB), or an Institute of Electrical and Electronics Engi-
neers (IEEE) standard 1394 bus (sometimes referred to as
“Firewire”).

[0134] The processor(s) 802 are the central processing
units (CPUs) of the processing system 800 and, thus, control
its overall operation. In certain aspects, the processors 802
accomplish this by executing software stored in memory
804. The processors 802 may be, or may include, one or
more programmable general-purpose or special-purpose
microprocessors, digital signal processors (DSPs), program-
mable controllers, application specific integrated circuits
(ASICs), programmable logic devices (PLDs), or the like, or
a combination of such devices.

[0135] Memory 804 represents any form of random-ac-
cess memory (RAM), read-only memory (ROM), flash
memory, or the like, or a combination of such devices.
Memory 804 includes the main memory of the processing
system 800. Instructions 806 may be used to implement the
process steps of FIGS. 6A-6D described above, may reside
in and executed (by processors 802) from memory 804.
[0136] Also connected to the processors 802 through the
bus system 805 are one or more internal mass storage
devices 810, and a network adapter 812. Internal mass
storage devices 810 may be or may include any conventional
medium for storing large volumes of data in a non-volatile
manner, such as one or more magnetic or optical based disks,
solid state drives, or any other storage media. The network
adapter 812 provides the processing system 800 with the
ability to communicate with remote devices (e.g., storage
servers) over a network and may be, for example, an
Ethernet adapter, a Fibre Channel adapter, or the like.
[0137] The processing system 800 also includes one or
more input/output (I/O) devices 808 coupled to the bus
system 805. The /O devices 808 may include, for example,
a display device, a keyboard, a mouse, etc.

[0138] Cloud Computing: The system and techniques
described above are applicable and useful in the cloud
computing environment. Cloud computing means comput-
ing capability that provides an abstraction between the
computing resource and its underlying technical architecture
(e.g., servers, storage, networks), enabling convenient, on-
demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management effort or service pro-
vider interaction. The term “cloud” is intended to refer to the
Internet and cloud computing allows shared resources, for
example, software and information to be available, on-
demand, like a public utility.

[0139] Typical cloud computing providers deliver com-
mon business applications online which are accessed from
another web service or software like a web browser, while

May 12, 2022

the software and data are stored remotely on servers. The
cloud computing architecture uses a layered approach for
providing application services. A first layer is an application
layer that is executed at client computers. In this example,
the application allows a client to access storage via a cloud.
After the application layer, is a cloud platform and cloud
infrastructure, followed by a “server” layer that includes
hardware and computer software designed for cloud specific
services, for example, the storage system 108 is accessible
as a cloud service. Details regarding these layers are not
germane to the embodiments disclosed herein.

[0140] Thus, methods and systems for efficiently manag-
ing a failover operation in a networked storage environment
have been described. Note that references throughout this
specification to “one aspect” (or “embodiment”) or “an
aspect” mean that a particular feature, structure or charac-
teristic described in connection with the aspect is included in
at least one aspect of the present disclosure. Therefore, it is
emphasized and should be appreciated that two or more
references to “an aspect” or “one aspect” or “an alternative
aspect” in various portions of this specification are not
necessarily all referring to the same aspect. Furthermore, the
particular features, structures or characteristics being
referred to may be combined as suitable in one or more
aspects of the disclosure, as will be recognized by those of
ordinary skill in the art.

[0141] While the present disclosure is described above
with respect to what is currently considered its preferred
aspects, it is to be understood that the disclosure is not
limited to that described above. To the contrary, the disclo-
sure is intended to cover various modifications and equiva-
lent arrangements within the spirit and scope of the
appended claims.

What is claimed is:
1. A method, comprising:

quarantining, by a second storage system node, storage
space likely to be used by a first storage system node
for a write operation, while the second storage system
node attempts to take over storage of the first storage
system node during a takeover operation to take over
storage of the first storage system node, the second
storage system node and the first storage system node
configured to operate as failover partner nodes;

copying, by the second storage system node, for a give-
back operation to give back control of the storage to the
first storage system node after the takeover operation,
information from a second storage location to a first
storage location, the first storage location assigned to
the first storage system node and points to an active file
system of the first storage system node and the second
storage location assigned to the second storage system
node for the takeover operation; and

releasing, by the second storage system node, ownership
of the storage to the first storage system to complete the
giveback operation.

2. The method of claim 1, further comprising:

for the giveback operation, copying by the second storage
system node, updated configuration information
regarding the storage from the second storage location
to the first storage location, the updated configuration
information used by the second storage system node for
the takeover operation.

US 2022/0147428 Al

3. The method of claim 1, further comprising:

for the giveback operation, copying, by the second storage
system node, information that was stored by the second
storage system node after the takeover operation to a
storage location of the first storage system node.

4. The method of claim 1, further comprising:

processing, by the first storage system node, read and

write requests received after the giveback operation is
completed.

5. The method of claim 1, further comprising:

upon detecting a failure in the second storage system node

during the takeover operation, using a third storage
system node to take over the second storage system
node for completing the takeover operation.

6. The method of claim 1, further comprising:

for the takeover operation, copying, by the second storage

system node, information from the first storage location
to the second storage location to take over storage of
the first storage system node, without storage reserva-
tion.

7. The method of claim 1, further comprising:

allocating, by the second storage system node, storage

space for storing data for a write request that would
have been written by the first storage system node.

8. A non-transitory, machine readable storage medium
having stored thereon instructions comprising machine
executable code, which when executed by a machine, causes
the machine to:

quarantine, by a second storage system node, storage

space likely to be used by a first storage system node
for a write operation, while the second storage system
node attempts to take over storage of the first storage
system node during a takeover operation to take over
storage of the first storage system node, the second
storage system node and the first storage system node
configured to operate as failover partner nodes;

copy, by the second storage system node, for a giveback

operation to give back control of the storage to the first
storage system node after the takeover operation, infor-
mation from a second storage location to a first storage
location, the first storage location assigned to the first
storage system node and points to an active file system
of the first storage system node and the second storage
location assigned to the second storage system node for
the takeover operation; and

release, by the second storage system node, ownership of

the storage to the first storage system to complete the
giveback operation.

9. The non-transitory, machine readable storage medium
of claim 8, wherein the machine executable code further
causes the machine to:

for the giveback operation, copy by the second storage

system node, updated configuration information
regarding the storage from the second storage location
to the first storage location, the updated configuration
information used by the second storage system node for
the takeover operation.

10. The non-transitory, machine readable storage medium
of claim 8, wherein the machine executable code further
causes the machine to:

for the giveback operation, copy, by the second storage

system node, information that was stored by the second
storage system node after the takeover operation to a
storage location of the first storage system node.

13

May 12, 2022

11. The non-transitory, machine readable storage medium
of claim 8, wherein the machine executable code further
causes the machine to:
process, by the first storage system node, read and write
requests received after the giveback operation is com-
pleted.
12. The non-transitory, machine readable storage medium
of claim 8, wherein the machine executable code further
causes the machine to:
upon detecting a failure in the second storage system node
during the takeover operation, use a third storage
system node to take over the second storage system
node for completing the takeover operation.
13. The non-transitory, machine readable storage medium
of claim 8, wherein the machine executable code further
causes the machine to:
for the takeover operation, copy, by the second storage
system node, information from the first storage location
to the second storage location to take over storage of
the first storage system node, without storage reserva-
tion.
14. A system, comprising:
a memory containing machine readable medium compris-
ing machine executable code having stored thereon
instructions; and
a processor coupled to the memory to execute the
machine executable code to:
quarantine, by a second storage system node, storage
space likely to be used by a first storage system node
for a write operation, while the second storage sys-
tem node attempts to take over storage of the first
storage system node during a takeover operation to
take over storage of the first storage system node, the
second storage system node and the first storage
system node configured to operate as failover partner
nodes;

copy, by the second storage system node, for a giveback
operation to give back control of the storage to the
first storage system node after the takeover opera-
tion, information from a second storage location to a
first storage location, the first storage location
assigned to the first storage system node and points
to an active file system of the first storage system
node and the second storage location assigned to the
second storage system node for the takeover opera-
tion; and

release, by the second storage system node, ownership
of the storage to the first storage system to complete
the giveback operation.

15. The system of claim 14, wherein the machine execut-
able code further causes to:

for the giveback operation, copy by the second storage
system node, updated configuration information
regarding the storage from the second storage location
to the first storage location, the updated configuration
information used by the second storage system node for
the takeover operation.

16. The system of claim 14, wherein the machine execut-

able code further causes to:

for the giveback operation, copying, by the second storage
system node, information that was stored by the second
storage system node after the takeover operation to a
storage location of the first storage system node.

US 2022/0147428 Al May 12, 2022
14

17. The system of claim 14, wherein the machine execut-
able code further causes to:
process, by the first storage system node, read and write
requests received after the giveback operation is com-
pleted.
18. The system of claim 14, wherein the machine execut-
able code further causes to:
upon detecting a failure in the second storage system node
during the takeover operation use a third storage system
node to take over the second storage system node for
completing the takeover operation.
19. The system of claim 14, wherein the machine execut-
able code further causes to:
for the takeover operation, copying, by the second storage
system node, information from the first storage location
to the second storage location to take over storage of
the first storage system node, without storage reserva-
tion.
20. The system of claim 14, wherein the machine execut-
able code further causes to:
allocate, by the second storage system node, storage space
for storing data for a write request that would have been
written by the first storage system node.

#* #* #* #* #*

