
USOO940.0654B2

(12) United States Patent (10) Patent No.: US 9.400,654 B2
Atzmon et al. (45) Date of Patent: Jul. 26, 2016

(54) SYSTEM ON A CHIP WITH MANAGING (58) Field of Classification Search
PROCESSOR AND METHOD THEREFOR None

See application file for complete search history.
(71) Applicants: Nir Atzmon, Netanya (IL);

Ron-Michael Bar, Ramat-Hasharon
(IL); Eran Glickman, Rishon le Zion U.S. PATENT DOCUMENTS
(IL); Stas Yosupov, Gedera (IL)

(56) References Cited

6,931,568 B2 8/2005 Abbondanzio et al.
(72) Inventors: Nir Atzmon, Netanya (IL); 2007/0O38732 A1 ck 2/2007 Chandwani et al.

Ron-Michael Bar, Ramat-Hasharon 2007, OO61646 A1* 3, 2007 WhetSel GO1R 31,318572
(IL); Eran Glickman, Rishon le Zion T14,726 s s 2007/0226795 A1* 9, 2007 Conti GO6F 21.74
(IL); Stas Yosupov, Gedera (IL) 726/22

2012/0102192 A1* 4/2012 Takeshima HO4L 29, 12066
(73) Assignee: FREESCALE SEMICONDUCTOR, TO9,224

INC., Austin, TX (US) 2012/0131309 A1* 5, 2012 Johnson Gogi, 2.

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 214 days. Primary Examiner — William B Partridge

(21) Appl. No.: 14/316,876 (57) ABSTRACT

(22) Filed: Jun. 27, 2014 A system on a chip comprises a managing processor for
controlling operations of the system on a chip. The managing

(65) Prior Publication Data processor comprises a core monitor control logic circuit oper
ableto: receive at least one instruction; determine whether the

US 2015/O37873O A1 Dec. 31, 2015 instruction is an activation instruction; determine whether the
managing processor is in or transitioning to an idle state; and

(51) Int. Cl. transition the managing processor from a first mode of opera
G06F 9/30 (2006.01) tion to a second mode of operation in response to the instruc
G06F II/30 (2006.01) tion being an activation instruction and the managing proces

(52) U.S. Cl. Sor being in or transitioning to an idle state. 9. 9.
CPC G06F 9/30.145 (2013.01); G06F II/3024

(2013.01); G06F II/3055 (2013.01) 19 Claims, 4 Drawing Sheets

-- C Receive and process at least one command
fr- 402

401

Relevant
activation
instruction
received

YES

ls command
queue
empty?

404

408

YES

Determine information on: unique ID, port to
monitor, type of monitoring 407

4.08
X.

fra- Read attached MAC code
410

Activate port duplication hardware to create mirror between the
port to be monitored and a port of the managing processor

r- Fetchiread processing code from memory
414

Copy monitored transactions and analyse
48

Regular
command
received?

412

418

YES

Interrupt the core
420

U.S. Patent Jul. 26, 2016 Sheet 1 of 4 US 9.400,654 B2

PrOCeSSOr Chipset Controller
120 130

140 140

Hardware Management
Module

190 140

Board Management Mezzanine Card
Controller 145

110 140 14

Management Bus

FIG. 1
-PRIOR ART

US 9.400,654 B2 Sheet 2 of 4 Jul. 26, 2016 U.S. Patent

U.S. Patent Jul. 26, 2016 Sheet 3 of 4 US 9.400,654 B2

COre Monitor COntrol
(CMC)

COmmand
dueue

FIG. 3

U.S. Patent Jul. 26, 2016 Sheet 4 of 4 US 9.400,654 B2

Receive and process at least one Command
402

401

Relevant
activation NO

404 instruction
received?

YES

ls (Sn
Queue

4O6 empty?

YES

Determine information on: unique ID, port to
monitor, type of monitoring 407 O 408

412 Read attached MAC COde
410

Activate port duplication hardware to create mirror between the
port to be monitored and a port of the managing processor

Fetch/read processing code from memory

Copy monitored transactions and analyse

414

416

Regular
COmmand

418 received?

YES

Interrupt the core

FIG. 4

420

US 9,400,654 B2
1.

SYSTEM ON A CHP WITH MANAGING
PROCESSOR AND METHOD THEREFOR

FIELD OF THE INVENTION

The field of this invention relates to a system on a chip
having a managing processor and method therefor, and in
particular to providing a managing processor with additional
performance capabilities, such as monitoring capability dur
ing idle state periods.

BACKGROUND OF THE INVENTION

Utilising managing processors (MPs) is a common method
to simplify complex control scenarios in a system on a chip
(SoC) architecture. These managing processors are typically
integrated within a SoC in order to assist a user (e.g. a pro
grammer) to control a very large SoC.
Complex SoC architectures generally require hundreds of

commands in order to function in a desired mode of opera
tion. If one or more of the commands is/are incorrect, the
complex SoC architecture may not function as desired.
Therefore, managing processors are generally configured to
allow a user to input a single command to the managing
processor, which may then be expanded into an enormous
control flow by the managing processor, or provide a platform
for control processes running in the background of the SoC.
A problem with a use of such managing processors in SoC

architectures is that they can remain in an idle state for a
considerable amount of time. This is particularly the case for
configuration processors, which are active during a configu
ration phase, and then stay online, but in an idle state, in case
on the fly changes are required. Generally, these on the fly
changes are infrequent, and are usually spaced widely apartin
time. As a result, there is typically a large amount of process
ing bandwidth that is not being used at any particular point in
time. Thus far, this inefficiency of the managing processor has
been addressed by creating specialized efficient processors
(in addition to other trivial steps, such as introducing addi
tional power management routines, etc.) or architectures that
Support the minimum number of possible processors.

Referring to FIG. 1, a known block diagram of a hardware
management module 140 on board 115 is illustrated. The
hardware management module 140 performs hardware man
agement for a modular platform system (not shown).
The hardware management module 140 is implemented as

a separate component from and/or residing within one or
more of aboard management controller 110, a processor 120,
a chipset controller 130, a mezzanine card 145 or a memory
148. These components of board 115 are all coupled via
communication channels 105. Communication channels 105
contain communication links such as fabric interfaces, in
order to facilitate the forwarding of data and/or instructions
between components within board 115 and/or to/from com
ponents remote to board 115, which are facilitated by com
munication links 112 and management bus 150.

In the case of FIG. 1, this known hardware management
module provides a general purpose dedicated hardware to
perform certain management tasks. However, Such a known
dedicated hardware management module is not able to per
form additional functionality, and cannot be utilised for other
tasks when in an idle state, without adding dedicated hard
ware to perform the required task.

SUMMARY OF THE INVENTION

The present invention provides a system on a chip and
method for increasing functionality of a managing processor
in a system on a chip as described in the accompanying
claims.

10

15

25

30

35

40

45

50

55

60

65

2
Specific embodiments of the invention are set forth in the

dependent claims.
These and other aspects of the invention will be apparent

from and elucidated with reference to the embodiments
described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects and embodiments of the invention
will be described, by way of example only, with reference to
the drawings. In the drawings, like reference numbers are
used to identify like or functionally similar elements. Ele
ments in the figures are illustrated for simplicity and clarity
and have not necessarily been drawn to Scale.

FIG. 1 illustrates a block diagram of a known hardware
management module.

FIG. 2 illustrates an example block diagram of a System on
a chip.

FIG. 3 illustrates an example of a managing processor.
FIG. 4 illustrates an example of a flow chart operation of

the managing processor.

DETAILED DESCRIPTION

Because the illustrated embodiments of the present inven
tion may, for the most part, be implemented using electronic
components and circuits known to those skilled in the art,
details will not be explained in any greater extent than that
considered necessary as illustrated below, for the understand
ing and appreciation of the underlying concepts of the present
invention and in order not to obfuscate or distract from the
teachings of the present invention.

Examples of the invention describe a system on a chip
comprising a managing processor for controlling operations
of the system on a chip. The managing processor comprises a
core monitor control logic circuit operable to: receive at least
one instruction; determine whether the instruction is an acti
Vation instruction; determine whether the managing proces
sor is in or transitioning to an idle state; and transition the
managing processor from a first mode of operation to a sec
ond mode of operation, in response to the instruction being an
activation instruction and the managing processor being in or
transitioning to an idle state. In some examples, a dynamic,
modifiable monitoring operation may be achieved using an
algorithm (the term algorithm hereinafter also used inter
changeably with the term 'code). For example, in response to
an event happening, the managing processor can activate
code A. By use of the algorithm the managing processor can
be reconfigured and the same event can alternatively activate
code B. In code A the managing processor may read a
register from the monitored IP port and write it out, whereas
in code B the managing processor may wait to see if another
event happens. This dynamic flexibility is very powerful, as it
allows the SoC to fine tune the various monitoring operations,
for example by changing, modifying or adding monitoring
algorithms based on any determined results.

In examples of the invention, the data processing device
may, for example, be implemented as a microprocessor, Such
as a general purpose microprocessor, a microcontroller, a
digital signal processor or other suitable type of microproces
sor. The microprocessor may, for example, comprise one, two
or more central processing units (CPU) or cores. Addition
ally, the microprocessor may comprise one or more periph
erals, such as hardware accelerators, co-processors or other
wise, and/or memory, such as on-chip flash or RAM. For
instance, if the SoC has powerful general purpose cores,
digital signaling cores, digital signaling accelerators and

US 9,400,654 B2
3

image coding and decoding accelerator, the SoC may be
configured as, say, a digital image processor. Alternatively,
for example, if the SoC has communication protocol accel
erators, data management accelerators, etc., the SoC may be
configured as, say, a networking processor. In some
examples, the software used in the SoC may be tailor made for
networking, in that it may be used to activate various hard
ware accelerators in Such a way as to construct a stream of
data traffic that complies to networking protocols. In this
manner, by use of the SoC configured as, say, a networking
processor may allow high-bandwidth traffic to be supported,
which could not otherwise be supported using general pur
pose cores since they would need to run significant amounts
of code with high line rates per port and relatively low power.

Referring to FIG. 2, a block diagram of an example SoC
200 is illustrated, according to some example embodiments
of the invention. In this example, a managing processor 202,
core 204, memory 206, for example double data rate (DDR)
random access memory (RAM), and at least one intellectual
property (IP) logic circuit 208 (which may comprise any
thing, Such as a security engine to an Ethernet controller),
may be comprised within the SoC 200, wherein all of the
above-mentioned logic circuits may be operably coupled to a
coherency fabric 210. In some examples, the coherency fabric
210 may be an interface fabric that provides interconnections
amongst the core 204, peripheral devices (not shown), secure
memory (not shown), and system memory, for example DDR
RAM 206.
The coherency fabric 210 may allow synchronisation of

ports of the SoC 200, thereby allowing data that is transmitted
within the SoC 200 to be “coherent. Therefore, transmitted
data may be synchronised with caches and memories of the
SoC 200, thereby allowing the correct and/or synchronised
data to be obtained and passed between respective compo
nents. In operation, the coherency fabric 210 may bearranged
to receive data on one port, for example port-4 from core 204.
for passing to another port, say port-5 for DDR 206.

In accordance with some examples of the invention, the
managing processor 202 has been adapted to comprise a
controller (for example in a form of a core monitor control
logic circuit), which controls the operational functionality of
the managing processor 202 to enable the managing proces
Sor 202 to perform additional functions in contrast to entering
quiet or idle state periods. One such additional function is to
monitor communications to/from one or more ports attached
to coherency fabric 210 within the SoC 200. In this manner,
managing processor 202 is able to perform useful additional
functions, such as being responsive to dynamic instructions to
perform data and/or port monitoring capability, in contrast to
the managing processor 202 typically remaining in an idle
State.

For example, the SoC 200 may determine that there is a
need and/or a benefit to monitor communications to from
port-1 IP1208. In this context, the managing processor 202
may receive one or more instructions, say from core 204 via
the coherency fabric 210, to re-configure itself to performan
additional monitoring capability in contrast to entering an
idle state. In one example, communications to/from port-1
coupled to IP1208 are copied and the copied representation
of the communications routed to managing processor 202.

Thus, in a first mode of operation, the coherency fabric acts
as a media interface between all the SoC 200 elements,
wherein the managing processor 202 is operable to send and
receive data through its port, in this example port-2 212. In
this first, normal, mode of operation, the managing processor
202 is responsive to commands from core 204 and or DDR
RAM 206, amongst others. In accordance with some

10

15

25

30

35

40

45

50

55

60

65

4
examples, and once the managing processor 202 has com
pleted its allocated normal tasks, it may transition to a second
mode of operation.

In the second mode of operation, Port duplication hard
ware (PDH) 216) located within the coherency fabric 210 is
activated to enable a copy of communications to/from a port
to be monitored to be additionally routed to managing pro
cessor 202. In this example, the port duplication hardware
216 may already have been present within the SoC 200 or
coherency fabric 210, and has been adapted to be utilised by
the managing processor 202 for the additional port monitor
ing capability.

Thus, in this example, the second mode of operation may
follow on from the first mode of operation, once the managing
processor 202 has completed its normal tasks. In transitioning
to the second mode of operation, an upper Software layer (not
shown) located in the core 204 may activate data and/or port
monitoring capability function of the managing processor
202 by applying a new command coded in the managing
processor's 202 memory 214, for example via an instruction
from DDR random access memory (RAM) 206. Upon receiv
ing this new command, the managing processor 202 may
fetch new code, for example monitor activation control code
from DDR RAM 206 for installation in and/or use by, say, the
controller in managing processor 202, as described in relation
to FIG. 3. In some examples, the managing processor 202
may utilise code already residing in its memory 214, which
may be an instruction RAM.
A number of advantages in activating the innovation by

upper layer Software exist, including:
1. The upper layer software knows what is active in the

system and knows when it wants to monitor actions,
activity, processes, data, etc.

2. The upper layer software is the entity decoding the
monitored data, so it needs to be aware when the moni
tored data is available and address it.

3. The use of upper layer software allows for more flex
ibility, as the programmer is able to insert several types
of monitoring code and activate them based on its needs.

It should be noted that in other example embodiments, a
point-to-point network may equally be constructed to replace
the coherency fabric 210 of FIG. 2, and benefit from the
concepts herein described. Also, it is envisaged in other
examples that the managing processor 202 may work auto
matically when in idle mode of operation, whereby the moni
toring function may be switched on automatically.

Referring to FIG. 3, a more detailed block diagram of an
example of managing processor 202 is illustrated. In this
example, managing processor 202 comprises at least memory
214, command queue logic circuit 302 and core complex 304.
Additionally, according to some example embodiments, the
managing processor 202 further comprises a core monitor
control (CMC) logic circuit 306. With reference to the second
mode of operation described in FIG. 2, the CMC logic circuit
306 could be configured to operate in a bypass mode.

In this example, the CMC logic circuit 306 may comprise
a buffer 310 and one or more registers 308. In some examples,
the CMC logic circuit 306 may be memory mapped, for
example it comprises one or more registers 308 that are pro
grammable by upper layer software to monitor communica
tions to identify at least one activation instruction, for
example received from core 204 of FIG. 2.

In this example, the CMC logic circuit 306 may be imple
mented as a controller, which may be responsible for balanc
ing the original managing processor usage (in a first mode of
operation) with a possible additional managing processor
usage if it is arranged to perform an additional data and/or

US 9,400,654 B2
5

port monitoring capability in a second mode of operation. In
this regard, the managing processor receives on-the-fly con
figuration commands and dynamically transitions between a
monitoring mode to a normal mode, and as Such a balancing
operation a soft transition is performed to guarantee the
proper quality of service to the first mode command. In some
examples, the additional data and/or port monitoring capabil
ity may be performed using a software algorithm residing in
the one or more registers 308. The CMC logic circuit 306 may
further control the command queue 302 and ensure that it only
activates when there is no configuration debug and port dupli
cation hardware that is active.

Therefore, in Such examples, the command queue 302 may
be arranged to exert priority over background core accesses,
such as those from the CMC logic circuit 306 when config
ured to perform an additional data and/or port monitoring
capability.

In some examples, the managing processor 202 may be
also connected to a debug network, Such as a high perfor
mance network that is designed to accumulate debug data into
high speed frames and transmit it out without causing an
impact on the coherency fabric 210. By controlling the acti
vation of this network the CMC logic circuit 306 may be able
to transmit the monitoring results without causing an impact
on the timing of transactions moving through the coherency
fabric, thereby allowing an accurate replication of scenarios.
It is important for all monitoring devices not to change the
process they monitor, especially in cases of dynamic moni
toring where the same scenario is required to be run over and
over again to facilitate fine tuning.

In some examples, the at least one activation instruction
may comprise a unique identity (ID), which separates it from
regular commands received by the CMC logic circuit 306.

Further, the at least one activation instruction may com
prise monitoring information, for example a port to monitor
and a monitoring type, which may indicate the type of moni
toring that is to be performed. In some examples, information
regarding the type of monitoring to be performed may be user
defined.

In some examples, the monitoring type may comprise one
or more of the following: matching data patterns, matching
bus attributes (e.g. counting cacheable transactions), obtain
an indication of a monitoring code to fetch, match to a
sequence of events, send an interrupt to a controller core to
affect a functional flow of data within the system, etc. This
means that the monitoring operation is capable of seeking
specific transactions, for example, containing a specific data
patternand send data to the cache even though it may not have
a high security level. Thus, once monitored, the algorithm can
do whatever it sees fit and search for more combinations,
dependent upon what is written in the code.

Further, in Some examples, the monitoring type may relate
to matching a sequence of events, and creating an interrupt if
there is a certain command followed by another command
etc. The managing processor 202 is connected to an interrupt
controller (not shown) in the SoC. In some examples, the code
is able to program the interrupt controller to raise an interrupt,
thereby alerting all the processors in the SoC (functional
processors in core 204) that this event happened and that they
can take action too. For example, if a core 204 writes to the IP
with the wrong bus attributes, an interrupt can be raised and
the core 204 is able to correct the bus attributes.

Therefore, in some examples of the invention, the moni
toring type may be an indication of a monitoring code to
fetch, for example a monitoring command to be fetched from
DDR or internal RAM in the managing processor 202.

10

15

25

30

35

40

45

50

55

60

65

6
Therefore, in Some aspects of the invention, the managing

processor 202 may be adapted to additionally perform a
monitoring function that is dynamically activated whilst the
managing processor 202 is in, or transitioning to, an idle state.

In some examples, the CMC logic circuit 306 may bypass
the command queue 302 and utilise its own buffer 310. In
Some examples, this may be because the command queue 302
cannot be accessed by the CMC logic circuit 306. If the CMC
logic circuit 306 were to access the command queue 302,
once the managing processor 202 was activated, the com
mand queue 302 would need to be completely cleared, e.g.
flushed, each time the managing processor 202 was reutilised.
This additional clearing operation would take time and, there
fore, it may be beneficial to stop the CMC logic circuit 306,
return to the original managing processor 202 operation, and
once completed, return to the CMC logic circuit 306 opera
tion, without allowing the CMC logic circuit 306 to access the
command queue 302.

In some examples, the CMC logic circuit 306 may only
access cores, for example core complex 304, on a condition
that the original command queue 302 is empty. Further, the
CMC logic circuit 306 may bypass the command queue 302
in order to prevent any priority issues with any original com
mands.

In Some examples, once the monitoring command has been
received, and the core complex 304 is free to handle the
instruction, the CMC logic circuit 306 may interrogate the
monitoring command.

In some examples, the core complex 304 may not be free to
handle the received instruction if, for example, it was cur
rently busy with a managing processor 202 command. This
may be because a single command to the managing processor
202 can result in thousands of actions by the managing pro
cessor 202. Therefore, the CMC logic circuit 306 may only
fetch and read a relevant MAC once the managing processor
202 has completed its current task(s).

After the CMC logic circuit 306 has read the relevant
MAC, it may subsequently activate a PDH logic circuit, for
example PDH 216, which may create a mirror between a port
to be monitored (provided by the activation instruction) and a
relevant managing processor's 202 port. Further, any trans
actions to the monitored port may also be directed to the same
relevant port of the managing processor 202.

In some examples, the managing processor 202, which
may have been reconfigured via the CMC logic circuit 306,
may be operable to perform additional functions, such as
Sniffing communications to the monitored port, and, in some
examples, communications from the monitored port.

According to the monitoring type, in Some examples, a
processing code may be selected or brought from DDR, for
example DDR RAM 206 of FIG.2. This processing code may
also hold a location of where to write/send a monitoring
output. Therefore, in Some examples, there may be a number
of functions that may be monitored, and dependent on what
function(s) is/are to be monitored, a processing code may be
selected, which may be retrieved from DDR 206, which may
identify a location to send the monitored port(s).

In some other examples, the CMC logic circuit 306 may be
operable to activate a core complex debug network314 within
the core complex 304 and send an accumulated trace through
it, which may be performed by, for example, the CMC logic
circuit 306 choosing a different processing code, or in the type
of coding. In this example, the code read by the CMC logic
circuit 306 may have its own configuration data, allowing
activation of the debug network.

In some examples, the CMC logic circuit 306 may be able
to access the core complex debug network 314 in the core

US 9,400,654 B2
7

complex 304, in order to debug any data that may be retrieved
from the core complex 304. In some examples, a decision on
whether or not to route core data through the core complex
debug network 314 may beachieved using a different code or
monitoring type in the MAC code. In this example, an accu
mulated trace may comprise compressed a plurality of moni
toring results, which may be transmitted via a debug port to
DDR, for example DDR RAM 206. Therefore, in this
example, the CMC module 306 may be capable of bypassing
the command queue 302.

From this point onwards, the core complex 304 may make
a copy of every transaction to the monitored port and perform
required analysis on the copied transactions. The core com
plex 304 may be required to copy and perform analysis on
every transaction so that it can identify the monitoring
sequences that it wishes to monitor.

If a Subsequent configuration sequence is received by the
managing processor 202, the CMC logic circuit 306 may send
an interrupt command to the core complex 304, and regular
programming may recommence. Further, once regular pro
gramming has been completed, and the managing processor
202 would otherwise enter an idle state, the CMC logic
circuit 306 may push the command queue 302 again for
continuous monitoring, unless instructed not to by another
command.

Therefore, in some examples of the invention, a monitoring
exercise may be performed by the managing processor 202 in
contrast to it being in, or entering, an idle state. The monitor
ing exercise may subsequently be interrupted when normal
operation is to be recommenced.

Thus, in Some examples of the invention, a controller (Such
as CMC 306) has been introduced into managing processor
202 to enhance its functionality, for example by dynamically
converting the managing processor 202 into a programmable,
flexible and agile performance monitor in contrast to the
managing processor 202 being in, or transitioning to, say, idle
periods. Further, in Some examples, the managing processor
202 may be capable of changing its monitoring capabilities
via tailor made algorithms. In some examples, by implement
ing a CMC logic circuit 306 within managing processor 202,
in combination with PDH 216 and one or more activation
instructions, additional capabilities may be realised for the
managing processor 202 to perform additional functionality,
which may negate a need to provide dedicated logic circuits in
other areas of the SoC 200. In some examples, there may be
a cost benefit, from providing a user with a flexible way to
monitor their systems behaviour, through dynamic adapta
tion of the managing processor functions, without needing to
add or modify significant hardware resources.

Referring to FIG. 4, a flow chart illustrates an operation of
a managing processor of a system on a chip. Initially, at 402.
the managing processor (say managing processor 202 of FIG.
2) may be functioning in a first mode of operation 401, for
example as a configuration engine. Therefore, the managing
processor 202 may process a received command and access a
memory, for example DDR, in order to perform one or more
functions. In this first mode of operation 401, a core monitor
control logic circuit may be in a bypass mode of operation,
wherein monitoring processes for example may be inter
rupted during the managing processor's configuration phase.

At 404, a CMC logic circuit within the managing processor
may determine whether there is a relevant activation instruc
tion received from the upper layer software (e.g. core 204), to
initiate a monitoring mode of operation. If it is determined by
the CMC logic circuit that there is a relevant activation
instruction, the process may transition to 406, wherein the
activation instruction may be interrogated in later steps. Oth

5

10

15

25

30

35

40

45

50

55

60

65

8
erwise, if the CMC logic circuit determines at 404 that there
is not a relevantactivation instruction, the process may loop to
402, and the managing processor may continue to operate in
the first mode of operation 401.
At 406, the CMC logic circuit may determine whether a

command queue within the managing processor is empty,
which can indicate that the managing processor is in, or
transitioning to, an idle State. If it is determined that the
managing processor's command queue is empty, the CMC
logic circuit may activate a command queue bypass mode,
and transition the managing processor into a second mode of
operation 407. If, however, it is determined that the command
queue is not empty, the CMC logic circuit may enter a con
tinuous loop monitoring the command queue until it is deter
mined that the command queue is empty.
At 408, the at least one received activation instruction may

be interrogated by the CMC, in order to determine informa
tion regarding, for example, one or more of a unique identi
fier (ID), an indication of a port to monitor, and the type of
monitoring to be performed, which may be a monitoring
command to be fetched, i.e. an indication of what monitoring
code to fetch.

In some examples, the type of monitoring to be performed
may be, for example, one or more of the following: matching
certain data patterns, matching attributes (counting all cache
able transactions), and matching a sequence of events, creat
ing an interrupt to core 204 if there is a certain command,
followed by another command etc.
At 410, the managing processor may read an attached

MAC code within the at least one received activation instruc
tion. In some examples, the CMC logic circuit may not be free
to receive the MAC code due to on-going actions by the
managing processor.
At 412, the CMC logic circuit may activate a PDH, which

may create a mirror between the port to be monitored and a
relevant port of the managing processor, wherein all transac
tions bound for and/or from the to be monitored port may also
be directed to the mirrored port of the managing processor.
At 414, depending on the monitoring code read from the

attached MAC in 410, a processing code may be selected or
fetched from memory, for example DDR RAM 206 of FIG. 2.
This code may comprise a location of where to write an output
of the monitoring operation. Further, in Some examples, the
CMC may be operable to activate a core complex debug
network 314 and send an accumulated trace through it, for
example by choosing a different code or in the type of coding.
In some examples, the accumulated trace may comprise a
plurality of monitoring results, which may be transmitted via
a debug port to DDR, for example DDR RAM 206.
At 416, a resultant copy of monitored transactions, which

in Some examples may be a Subset or all monitored transac
tions, may be passed to a core, for example core complex 304.
and analysis performed on the copied transactions by the
COC.

At 418, the CMC logic circuit may determine whether a
regular command, for example a configuration command, has
been received. If it is determined that a regular command has
been received, the CMC logic circuit may transition to 420
and interrupt the core, allowing the core to return to regular
processing of commands. If, however, it is determined at 418
that there are no received regular commands, the CMC logic
circuit may not interrupt the core and, therefore, monitoring
and analysis of copied transactions may continue.

In some examples, if the CMC logic circuit interrupts the
core at 420, the CMC logic circuit may push for previous or
new monitoring instructions and/or commands, for example
activation instructions, once the processing of regular com

US 9,400,654 B2

mands has been completed. In some examples, the CMC logic
circuit may perform continuous monitoring, unless instructed
not to do so by another command, for example a higher
priority command.

Therefore, utilising some aspects of the invention, addi
tional monitoring capability may be added to existing
resources through a dynamic re-configuration of functional
ity, without a need to add further hardware.

Further, utilising some aspects of the invention may addi
tionally introduce a capability of integrating new queries and
data gathering, which may have previously been undefined.
Therefore, exploiting, for example, idle times within the
hardware (such as idle times of the managing processor) it is
possible to introduce these new capabilities without any per
formance impact or additional hardware being required.

Furthermore, some aspects of the invention may allow a
flexible monitoring capability to be implemented, which may
also serve as a debug funnel, where information may be
conveyed over a debug connection. Advantageously, this may
prevent a requirement to activate an entire grid during, say,
light debug loads.
As illustrated, aspects of the invention may be imple

mented in a computer program for running on a computer
system, at least including code portions for performing steps
of a method according to the invention when run on a pro
grammable apparatus, such as a computer system or enabling
a programmable apparatus to perform functions of a device or
system according to the invention.
A computer program is a list of instructions such as a

particular application program and/or an operating system.
The computer program may for instance include one or more
of a Subroutine, a function, a procedure, an object method, an
object implementation, an executable application, an applet, a
servlet, a source code, an object code, a shared library/dy
namic load library and/or other sequence of instructions
designed for execution on a computer system.
The computer program may be stored internally on a tan

gible and non-transitory computer readable storage medium
or transmitted to the computer system via a computer read
able transmission medium. All or some of the computer pro
gram may be provided on computer readable media perma
nently, removably or remotely coupled to an information
processing system. The tangible and non-transitory computer
readable media may include, for example and without limi
tation, any number of the following: magnetic storage media
including disk and tape storage media; optical storage media
such as compact disk media (e.g., CD-ROM, CD-R, etc.) and
digital video disk storage media; non-volatile memory Stor
age media including semiconductor-based memory units
such as FLASH memory, EEPROM, EPROM, ROM: ferro
magnetic digital memories: MRAM; Volatile storage media
including registers, buffers or caches, main memory, RAM,
etc.
A computer process typically includes an executing (run

ning) program or portion of a program, current program Val
ues and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) is the Software that manages the shar
ing of the resources of a computer and provides programmers
with an interface used to access those resources. An operating
system processes system data and user input, and responds by
allocating and managing tasks and internal system resources
as a service to users and programs of the system.
The computer system may for instance include at least one

processing unit, associated memory and a number of input/
output (I/O) devices. When executing the computer program,

10

15

25

30

35

40

45

50

55

60

65

10
the computer system processes information according to the
computer program and produces resultant output information
via I/O devices.

In the foregoing specification, the invention has been
described with reference to specific examples of embodi
ments of the invention. It will, however, be evident that vari
ous modifications and changes may be made therein without
departing from the scope of the invention as set forth in the
appended claims and that the claims are not limited to the
specific examples described above.
The connections as discussed herein may be any type of

connection Suitable to transfer signals from or to the respec
tive nodes, units or devices, for example via intermediate
devices. Accordingly, unless implied or stated otherwise, the
connections may for example be direct connections or indi
rect connections. The connections may be illustrated or
described in reference to being a single connection, a plurality
of connections, unidirectional connections, or bidirectional
connections. However, different embodiments may vary the
implementation of the connections. For example, separate
unidirectional connections may be used rather than bidirec
tional connections and vice versa. Also, plurality of connec
tions may be replaced with a single connection that transfers
multiple signals serially or in a time multiplexed manner.
Likewise, single connections carrying multiple signals may
be separated out into various different connections carrying
Subsets of these signals. Therefore, many options exist for
transferring signals.

Those skilled in the art will recognize that the boundaries
between logic circuits/blocks are merely illustrative and that
alternative embodiments may merge logic circuits/blocks or
circuit elements or components or impose an alternate
decomposition of functionality upon various logic blocks or
circuit elements. Thus, it is to be understood that the archi
tectures depicted hereinare merely exemplary, and that in fact
many other architectures can be implemented which achieve
the same functionality.
Any arrangement of components to achieve the same func

tionality is effectively associated such that the desired func
tionality is achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as
associated with each other such that the desired functional
ity is achieved, irrespective of architectures or intermediary
components. Likewise, any two components so associated
can also be viewed as being operably connected, or oper
ably coupled, to each other to achieve the desired function
ality.

Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined into a
single operation, a single operation may be distributed in
additional operations and operations may be executed at least
partially overlapping in time. Moreover, alternative embodi
ments may include multiple instances of a particular opera
tion, and the order of operations may be altered in various
other embodiments.

Also for example, in one embodiment, the illustrated
examples may be implemented as circuitry located on a single
integrated circuit or within a same device. Alternatively, the
examples may be implemented as any number of separate
integrated circuits or separate devices interconnected with
each other in a Suitable manner.

Also for example, the examples, or portions thereof, may
implemented as Soft or code representations of physical cir
cuitry or of logical representations convertible into physical
circuitry, such as in a hardware description language of any
appropriate type.

US 9,400,654 B2
11

Also, the invention is not limited to physical devices or
units implemented in non-programmable hardware but can
also be applied in programmable devices or units able to
perform the desired device functions by operating in accor
dance with Suitable program code, such as mainframes, mini- 5
computers, servers, workstations, personal computers, note
pads, personal digital assistants, electronic games,
automotive and other embedded systems, cell phones and
various other wireless devices, commonly denoted in this
application as computer systems. 10

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between paren- 15
theses shall not be construed as limiting the claim. The word
comprising does not exclude the presence of other elements
or steps then those listed in a claim. Furthermore, the terms a
or 'an, as used herein, are defined as one or more than one.
Also, the use of introductory phrases Such as at least one and 20
one or more in the claims should not be construed to imply
that the introduction of another claim element by the indefi
nite articles 'a' or an limits any particular claim containing
Such introduced claim element to inventions containing only
one Such element, even when the same claim includes the 25
introductory phrases one or more or at least one and indefi
nite articles such as 'a' oran. The same holds true for the use
of definite articles. Unless stated otherwise, terms such as
first and second are used to arbitrarily distinguish between
the elements such terms describe. Thus, these terms are not 30
necessarily intended to indicate temporal or other prioritiza
tion of such elements. The mere fact that certain measures are
recited in mutually different claims does not indicate that a
combination of these measures cannot be used to advantage.

35

The invention claimed is:
1. A system on a chip comprising a managing processor for

controlling operations of the system on a chip, the managing
processor comprising:

a core monitor control logic circuit operable to: 40
receive at least one instruction while the managing pro

cessor is executing instructions in a first mode of
operation;

determine whether the instruction is an activation
instruction; 45

determine whether the managing processor is in or tran
sitioning to an idle State in the first mode of operation;

activate a command queue bypass mode in response to
the managing processor being in or transitioning to
the idle state; and 50

transition the managing processor from the first mode of
operation to a second mode of operation in response
to the instruction being an activation instruction and
the managing processor being in or transitioning to an
idle state. 55

2. The system on a chip of claim 1, wherein the activation
instruction comprises an instruction for the managing proces
Sor to perform a monitoring function in the second mode of
operation.

3. The system on a chip of claim 2, wherein the activation 60
instruction comprises at least one from a group of a unique
identifier; at least one port to monitor, a monitoring type.

4. The system on a chip of claim 3, wherein the core
monitor control logic circuit is arranged to copy a Subset orall
communications to or from the at least one monitored port. 65

5. The system on a chip of claim 4, wherein core monitor
control logic circuit is operably coupled to a core complex

12
arranged to analyse the copy of the Subset or all communica
tions to or from the at least one monitored port.

6. The system on a chip of claim 3, wherein the system on
a chip comprises a coherency fabric coupling a plurality of
components via a plurality of ports within the system on a
chip and comprising port duplication hardware (PDH),
wherein the core monitor control logic circuit is arranged to
copy communications to or from the at least one monitored
port to a port configured by the PDH.

7. The system on a chip of claim 6, wherein dependent
upon the communications or ports to be monitored, the core
monitor control logic circuit is arranged to select a processing
code to identify a location to output the monitored port com
munications.

8. The system on a chip of claim 1, wherein the activation
instruction comprises an instruction to activate a core com
plex debug network within the managing processor and trans
mit an accumulated trace of monitored debug information.

9. The system on a chip of claim 8, wherein the monitoring
type comprises at least one from a group of match data
patterns, match bus attributes, obtain an indication of a moni
toring code to fetch, match to a sequence of events, an ability
to send an interrupt to a controller core to affect a functional
flow of data within the system.

10. The system on a chip of claim 1, wherein the core
monitor control logic circuit is arranged to balance a usage of
the managing processor usage in the first mode of operation
with additional managing processor usage in the second
mode of operation.

11. The system on a chip of claim 1, wherein the managing
processor comprises a command queue operably coupled to
the core monitor control logic circuit, and the core monitor
control logic circuit determines an idle state of the managing
processor by interrogating a state of the command queue.

12. The system on a chip of claim 11 wherein the core
monitor control logic circuit is arranged to control the com
mand queue Such that the command queue only activates
when there is no configuration debug and port duplication
hardware that is active.

13. The system on a chip of claim 11, wherein in response
to the managing processor being in or transitioning to an idle
state, the command queue is bypassed by the core monitor
control logic circuit during the second mode of operation.

14. The system on a chip of claim 13 wherein the core
monitor control logic circuit comprises at least one buffer and
is arranged to bypass the command queue and use the at least
one buffer when communicating with a core in the managing
processor.

15. The system on a chip of claim 1, wherein the core
monitor control logic circuit is operable to transition the
managing processor from the second mode of operation to the
first mode of operation upon receipt of a further received
instruction that is not an activation instruction.

16. The system on a chip of claim 15, wherein the core
monitor control logic circuit registers an interrupt with the
managing processor to transition it from the second mode of
operation to the first mode of operation.

17. The system on a chip of claim 1, wherein the core
monitor control logic circuit is arranged to only respond to an
activation instruction following the managing processor hav
ing completed the tasks performed in the first mode of opera
tion.

18. The system on a chip of claim 1 wherein the managing
processor is operably coupled via a control fabric to at least
one of at least one core, at least one peripheral, at least one
memory, a secure memory.

US 9,400,654 B2
13

19. A method for increasing functionality of a managing
processor in a system on a chip, the method comprising:

receiving at least one instruction while the managing pro
cessor is executing instructions in a first mode of opera
tion; 5

determining whether the instruction is an activation
instruction;

determining whether the managing processor is in or tran
sitioning to an idle state in the first mode of operation;

activating a command queue bypass mode in response to 10
the managing processor being in or transitioning to the
idle state; and

transitioning the managing processor from the first mode
ofoperation to a second mode of operation in response to
the received instruction being an activation instruction 15
and the managing processor being in or transitioning to
an idle state.

14

