

US007442519B2

(12) United States Patent

Cavarec et al.

(54) KCNQ2-15 POTASSIUM CHANNEL

- (75) Inventors: Laurent Cavarec, Paris (FR); Ilya Chumakov, Vaux-le-Penil (FR); Benoit Destenaves, Brunoy (FR); Catherine Gonthier, Corbeil-Essonnes (FR); Isabelle Elias, Sonchamp (FR)
- (73) Assignee: Serono Genetics Institute, S.A., Evry (FR)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 47 days.
- (21) Appl. No.: 10/519,335
- (22) PCT Filed: Jun. 20, 2003
- (86) PCT No.: PCT/EP03/50246

§ 371 (c)(1), (2), (4) Date: **Jul. 25, 2005**

(87) PCT Pub. No.: WO04/000875

PCT Pub. Date: Dec. 31, 2003

(65) **Prior Publication Data**

US 2006/0099210 A1 May 11, 2006

Related U.S. Application Data

- (60) Provisional application No. 60/391,359, filed on Jun. 25, 2002.
- (51) Int. Cl.

C12P 21/	06 (2006.01)	
C12N 15/	00 (2006.01)	
C12N 5/0	0 (2006.01)	
C07K 1/0	9 (2006.01)	
C07H 21/	<i>02</i> (2006.01)	
	`	

- (52) **U.S. Cl.** **435/69.1**; 435/320.1; 435/325; 530/350; 536/23.1
- (58) **Field of Classification Search** None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

6,372,767B14/2002McNaughton-Smith et al.6,472,165B110/2002Rundfeldt et al.

FOREIGN PATENT DOCUMENTS

WO	WO 99/31232	6/1999
WO	WO 01/09612 A2	2/2001
WO	WO 01/91026 A2	11/2001
WO	WO 02/12279 A2	2/2002
WO	WO 03/019186 A2	3/2003

OTHER PUBLICATIONS

Altschul, S. F. et al. "Basic Local Alignment Search Tool" J. Mol. Biol., 1990, pp. 403-410, vol. 215.

(10) Patent No.: US 7,442,519 B2 (45) Date of Patent: Oct. 28, 2008

Altschul, S. F. et al. "Gapped Blast and PSI-Blast: A New Generation of Protein Database Search Programs" *Nucleic Acids Research*, 1997, pp. 3389-3402, vol. 25, No. 17.

Andrieux, A. et al. "The Suppression of Brain Cold-Stable Microtubules in Mice Induces Synaptic Defects Associated with Neuroleptic-Sensitive Behavioral Disorders" *Genes and Development*, 2002, pp. 2350-2364, vol. 16.

Biervert, C. et al. "A Potassium Channel Mutation in Neonatal Human Epilepsy" *Science*, Jan. 16, 1998, pp. 403-406, vol. 279.

Biervert, C. et al. "Structural and Mutational Analysis of *KCNQ2*, the Major Gene Locus for Benign Familial Neonatal Convulsions" *Hum. Genet.*, 1999, pp. 234-240, vol. 104.

Borresen, A-L. et al. "Detection of Base Mutations in Genomic DNA using Denaturing Gradient Gel Electrophoresis (DGGE) followed by Transfer and Hybridization with Gene-Specific Probes" *Mutation Research*, 1988, pp. 77-83, vol. 202.

Dempster, A. P. et al. "Maximum Likelihood from Incomplete Data via the *EM* Algorithm" *JRSSB*, 1977, pp. 1-38, vol. 39.

Detera-Wadleigh, S. D. et al. "A High-Density Genome Scan Detects Evidence for a Bipolar-Disorder Susceptibility Locus on 13q32 and other Potential Loci on 1q32 and 18p11.2" *Proc. Natl. Acad. Sci. USA*, May 1999, pp. 5604-5609, vol. 96. Devereux, J. et al. "A Comprehensive Set of Sequence Analysis

Devereux, J. et al. "A Comprehensive Set of Sequence Analysis Programs for the VAX" *Nucleic Acids Research*, 1984, pp. 387-395, vol. 12, No. 1.

Elbashir, S. M. et al. "RNA Interference is Mediated by 21 and 22-Nucleotide RNAs" *Genes and Development*, 2001, pp. 188-200, vol. 15.

Ellington, A. D. et al. "In vitro Selection of RNA Molecules that Bind Specific Ligands" *Nature*, Aug. 30, 1990, pp. 818-822, vol. 346.

Excoffier, L. et al. "Maximum-Likelihood Estimation of Molecular Haplotype Frequencies in a Diploid Population" *Mol. Biol. Evol.*, 1995, pp. 921-927, vol. 12, No. 5.

Gamper, N. et al. "Subunit-Specific Modulation of KCNQ Potassium Channels by Src Tyrosine Kinase" *Journal of Neuroscience*, Jan. 1, 2003, pp. 84-95, vol. 23, No. 1.

Grantham, R. "Amino Acid Difference Formula to Help Explain Protein Evolution" *Science*, Sep. 6, 1974, pp. 862-864, vol. 185. Grompe, M. et al. "Scanning Detection of Mutations in Human

Grompe, M. et al. "Scanning Detection of Mutations in Human Ornithine Transcarbamoylase by Chemical Mismatch Cleavage" *Proc. Natl. Acad. Sci. USA*, Aug. 1989, pp. 5888-5892, vol. 86.

Hu, P. et al. "Molecular Cloning and Mapping of the Brain-Abundant B1γ Subunit of Protein Phosphatase 2A, *PPP2R2C*, to Human Chromosome 4p16" *Genomics*, 2000, pp. 83-86, vol. 67.

Kaelin, W. G. et al. "Identification of Cellular Proteins That Can Interact Specifically with the T/E1A-Binding Region of the Retinoblastoma Gene Product" *Cell*, Feb. 8, 1991, pp. 521-532, vol. 64.

(Continued)

Primary Examiner-Olga N Chernyshev

(74) Attorney, Agent, or Firm—Saliwanchik, Lloyd & Saliwanchik

(57) **ABSTRACT**

The invention encompasses polypeptides and polynucleotides of three novel bipolar disorder-associated potassium channel polypeptides, KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz. The invention further relates to the use of potassium channels comprising KCNQ2 subunits for screening for modulators thereof, the use of these modulators for treating mental disorders such as bipolar disorder, schizophrenia and depression, and drugs comprising these modulators. The invention also discloses biallelic markers located in the KCNQ2 gene and their use for diagnosing mental disorders.

8 Claims, 4 Drawing Sheets

OTHER PUBLICATIONS

Kaelin, W. G. et al. "Expression Cloning of a cDNA Encoding a Retinoblastoma-Binding Protein with E2F-Like Properties" *Cell*, Jul. 24, 1992, pp. 351-364, vol. 70.

Kim, S. et al. "Multiplex Genotyping of the Human β 2-Adrenergic Receptor Gene using Solid-Phase Capturable Dideoxynucleotides and Mass Spectrometry" *Analytical Biochemistry*, 2003, pp. 251-258, vol. 316.

Lessa, E. P. et al. "Screening Techniques for Detecting Allelic Variation in DNA Sequences" *Molecular Ecology*, 1993, pp. 119-129, vol. 2.

Main, M. J. et al. "Modulation of KCNQ2/3 Potassium Channels by the Novel Anticonvulsant Retigabine" *Molecular Pharmacology*, 2000, pp. 253-262, vol. 58.

Newton, C. R. et al. "Analysis of any Point Mutation in DNA. The Amplification Refractory Mutation System (ARMS)" *Nucleic Acids Research*, Nov. 7, 1989, pp. 2503-2516, vol. 17, No. 7.

Orita, M. et al. "Detection of Polymorphisms of Human DNA by Gel Electrophoresis as Single-Strand Conformation Polymorphisms" *Proc. Natl. Acad. Sci. USA*, Apr. 1989, pp. 2766-2770, vol. 86.

Pan, Z. et al. "Alternative Splicing of KCNQ2 Potassium Channel Transcripts Contributes to the Functional Diversity of M-Currents" *Journal of Physiology*, 2001, pp. 347-358, vol. 531.2.

Pearson, W. R. "Rapid and Sensitive Sequence Comparison with FASTP and FASTA" *Methods in Enzymology*, 1990, pp. 63-98, vol. 183.

Pearson, W. R. et al. "Improved Tools for Biological Sequence Comparison" *Proc. Natl. Acad. Sci. USA*, Apr. 1988, pp. 2444-2448, vol. 85.

Ruano, G. et al. "Haplotype of Multiple Polymorphisms Resolved by Enzymatic Amplification of Single DNA Molecules" *Proc. Natl. Acad. Sci. USA*, Aug. 1990, pp. 6296-6300, vol. 87.

Sarkar, G. et al. "Haplotyping by Double PCR Amplification of Specific Alleles" *BioTechniques*, 1991, pp. 436-440, vol. 10, No. 4. Schwake, M. et al. "Surface Expression and Single Channel Properties of KCNQ2/KCNQ3, M-Type K+ Channels Involved in Epilepsy" *Journal of Biological Chemistry*, May 5, 2000, pp. 13343-13348, vol. 275, No. 18. Singh, N. A. et al. "sA Novel Potassium Channel Gene, *KCNQ2*, is Mutated in an Inherited Epilepsy of Newborns" *Nature Genetics*, Jan. 1998, pp. 25-29, vol. 18.

Smith, T. F. et al. "Comparison of Biosequences" Advances in Applied Mathematics, 1981, pp. 482-489, vol. 2.

Towbin, H. et al. "Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and some applications" *Proc. Natl. Acad. Sci. USA*, Sep. 1979, pp. 4350-4354, vol. 76, No. 9.

Wang, H-S. et al. "KCNQ2 and KCNQ3 Potassium Channel Subunits: Molecular Correlates of the M-Channel" *Science*, Dec. 4, 1998, pp. 1890-1893, vol. 282.

Wen, S-Y. et al. "Rapid Detection of the Known SNPs of CYP2C9 using Oligonucleotide Microarray" *World J. Gastroenterol.*, 2003, pp. 1342-1346, vol. 9, No. 6.

Wu, D. Y. et al. "Allele-Specific Enzymatic Amplification of β -Globin Genomic DNA for Diagnosis of Sickle Cell Anemia" *Proc. Natl. Acad. Sci. USA*, Apr. 1989, pp. 2757-2760, vol. 86.

Jentsch, T. J. et al. "Pathophysiology of KCNQ Channels: Neonatal Epilepsy and Progressive Deafness" *Epilepsia*, 2000, pp. 1068-1069, vol. 41, No. 8.

Tinel, N. et al. "The KCNQ Potassium Channel: Splice Variants, Functional and Developmental Expression. Brain Localization and Comparison with KCNQ3" *FEBS Letters*, Nov. 6, 1998, pp. 171-176, vol. 438, No. 3.

Smith, J. S. et al. "Differential Expression of KCNQ2 Splice Variants: Implications to M Current Function during Neuronal Development" *Journal of Neuroscience*, Feb. 15, 2001, pp. 1096-1103, vol. 21, No. 4.

SwissProt Accession No. O43526, Jul. 10, 2007.

EMBL Accession No. NM_172107, Jun. 27, 2007.

EMBL Accession No. NM_172106, Jun. 26, 2007.

EMBL Accession No. NM_004518, Jun. 26, 2007.

EMBL Accession No. NM_172108, Jun. 26, 2007.

EMBL Accession No. NM_172109, Jun. 26, 2007.

Genbank Accession No. AF086924, Dec. 12, 2000.

Genbank Accession No. AF033348, Jan. 21, 1998.

RefseqN Accession No. NT_006051, Aug. 29, 2006.

Fig. 1B

TDS DLCT PCGP PPRSATGEGPFGDVGWAGPRK 841 ID NO:7 ID NO:2 ID NO:4 ID NO:6 NO:2 NO:2 NO:6 8888

LKDSDTSISIPSVDHEELERSESGFSISOSKENLDALMSCYAAVAPCAKVRPYIAEGESD

781

1 ġ

 MO: 7 123 SSEGALATILETUVIVEGVERYRAMAGCCCHYNGARGELLKFARKEPCUTDIWLLAST
 MO: 8 123 SSEGALATILETUVIVEGVERYRIAMAGCCCHYNGARGELKFARKEPCUTDIWLLAST
 MO: 8 123 SSEGALATILETUVIVEGVERYRIAMAGCCCHYNGARGLKFARKEPCUTDIWLLAST
 MO: 8 123 SSEGALATILETUVIVEGVERYRIAMAGCCCHYNGARGLKFARKEPCUTDIWLLAST
 MO: 9 121 SSEGALATILETUVIVEGVERYRIAMAGCCCHYNGARGLKFARKERUCYDIWLLAST
 MO: 9 121 SSEGALATILETUVIVEGVERYRIAMAGCCCHYNGARGLKFARKERUCYDIWLLAST
 MO: 9 121 SYLAAGSGOBWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAWFATSALBSLRFLOITBKIRDBNRGTWKLLGSVVYABSKELVTAWTOF
 MULAGCSGAMFATSALBUDDHRGTKRANAAGCCGNSTANDORGTWRLLGSVVABSKELATAWTOF
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIGANRFTAGGSVATABSKELUTAKTUGF
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIGANRFTAGGSRAPADSKEN
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIGANRFTATALGF
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIGANRFTAGGSRAPADSKEN
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIGANRFTATALLASTULISSTW
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIARNOGRLAARTOF
 MULAGCSGATARUTOF
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIARNOGRLAARTOF
 MULAGCSGATAVCOPORGCHREFKRANBAAGCLIARNOGRLAARTOF
 MULAGCSGATARUTOF
 MULAGCSGATANCOPORGCHREFKRANBAAGCLIARNOGRLAARTOF

 MULAGCSGATAG WYQKSRMGGVY FEPSGEKKLIKVGF VGL/PEA. POSTFROALLI AGSEA FRASTLIKFBAG WYQKSRMGGVY FEPSGEKKLIKVGF VL/PEA. POSTFROALLI AGSEA FRAGSTLIKFFAG WYQKSRMGGVY FEPSGEKKLIKVGF VGL/PEA. POSTFROALLI AGSEA FRAGSSLISFFFAG WYQKSRMGGVY FEPSGEKKLIKVGFVCL/PEA. POSTFROALLI AAGSEA FRAGSSLISFFFAG WYQKSRMGGVY FEPSGEKKLIKVGFVCL/PEA. POSTFROALLI AAGSEA FRAGSSLISFFFAG DRDRTWGFAARI PEOPSHMGRUGKVERQVLSHEKKLDFLVNI YWQRAGTEPTEJEAFG [GGMASGREPVJAIGGSAGGWAGPPEHERKLJ2KSVSSQSIG] 1 LGMASGREPVJAIGGSAGGWAGPPEHERR2LSASVVSSQSIG] GAGAGKPEKKNAFTRKLØVELYØVLERFOMA FI YHAYVE LLVFSCIVLEVFSTIKEZEK
 GAGAGKPEKKNAFTRKLØVELYØVLERPERAAFT FI YHAYVE LLVFSCIVLESVFSTIKEZEK
 GLGAGKPEKKNAFTRKLØVELYØVLERPERAAFTYHAYVE LLVFSCIVLESVFSTIKEZEK
 GLGAGKPEKKNAFTRKLØVELYØVLERPERAAFTYHAYVE LLVFSCIVLESVFSTIKEZEK PKSNSFODRSRAROAFLIKGAASRONSEEAL PGEDLVDDKSCPCEEVTEDLAFOLKVSI PKSNSFCDRSRAROAFLIKGAASRONSEEAL PGEDLVDDKSCPCEEVTEDLAFOLKVSI PKSNSFGDRSRAROAFLIKGAASRONSEEAL PGEDLVDDKSCPCEEVTEDLAFOLKVSI PKSNSFGDRSRAROAFLIKGAASRONSEEAL PGEDLVDDKSCPCEEVTEDLAFOLKVSI PKSNSFFGDRSRAROAFLIKGAASRONSEEDSLIFEGEDLVDDKSCPCEEVTEDLAFOLKVSI PKSNSFFGDRSRAROAFLIKGAASRONSEEDSLIFEGEDLVDDKSCPCEEVTEDLAFOLKVSI RAVOWRELVSKRKKSLRPYDWNVLEQ/SAGHLDMLSRLKSLQGRVD[VGRGFATT RAVOWRELVSKRKKSLRPYDWNUVLEQ/SAGHLDMLSRLKSLQGRQEPLPVQQGR I RAVOWRELVSKRKKSLRPYDWNUVLEQ/SAGHLDMLSRLKSLQGGEPLPVQGGR RAVOWRELVSKRKKSLLPYDVVUVLEQ/SAGHLDMLSRLKSLQSGEPLPVQGGR 661 AKEPEPAPPYHSPEDSREHVDRHGC1VKIVRSSSSTGQKNESAPPAPFVQCPPSTSWQP QSH PROCHGTS PVGDHGSLVRT PPPPAHERSLSAYGGGNRASMEFLRQEDTPGCRPPEGN _____ Ì 481 481 463 453 541 541 523 513 601 583 573 721 NO: 3 NO: 2 NO: 4 NO:7 NO:2 NO:4 NO:6 NO:2 NO:2 NO:4 NO:6 NO:7 NO:2 NO:6 NO:6 NO:7 6 NO:2 NO:4 NO:6 NO:7 NO:2 NO:4 NO:6 NO:7 NO:2 NO:2 NO:6 ID NO:7 ID NO:2 ID NO:4 ID NO:4 NO: 7 NO: 2 NO: 4 NO: 6 NO:7 NO:2 NO:4 NO:6 N0:2 N0:2 N0:6 NO:7 NO:2 NO:4 NO:6 NO:7 NO:2 NO:4 NO:6

Figure 3

Figure 4

	Ex 13-17	Ex-13-15b	Ex 13-15
Ex 13-17	++	-/+	-/+
Ex 13-15b	-	++	++
Ex 13-15	-	++	+

Figure 5

Time (ms)

Figure 6B

KCNQ2-15 POTASSIUM CHANNEL

CROSS-REFERENCE TO RELATED APPLICATION

This application is the U.S. national stage application of International Patent Application No. PCT/EP2003/050246, filed Jun. 20, 2003, which claims the benefit of U.S. Provisional Patent Application No. 60/391,359, filed Jun. 25, 2002.

The Sequence Listing for this application is on duplicate 10 compact discs labeled "Copy 1" and "Copy 2." Copy 1 and Copy 2 each contain only one file named "G-194US03PCT-Subst-Seq-List.txt" which was created on Jun. 22, 2005, and is 264 KB. The entire contents of each of the computer discs are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

This invention is in the field of mental disorders such as bipolar disorder, schizophrenia, depression and other mood 20 disorders. More specifically, this invention relates to three novel potassium channels subunits, KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz. The invention also relates the use of potassium channels comprising KCNQ2 subunits for screening for modulators, and to the use of said modulators for 25 treating said mental disorders. The invention further relates to the use of biallelic markers located in the KCNQ2 gene for diagnosing said mental disorders.

BACKGROUND

1. KCNQ Potassium Channels

Malfunction in ion channels, due to mutations in genes encoding channel proteins or the presence of autoantibodies, are increasingly being implicated in causing disease condi-35 tions, termed channelopathies. For instance, dysfunction of potassium channels has been associated with the pathophysiology of a number of neurological disorders both affecting the central and peripheral nervous system (e.g., episodic ataxia, epilepsy, neuromyotonia, Parkinson's disease, congenital 40 mV. However, Src had no effect on currents generated by deafness, long QT syndrome). Potassium channels, which demonstrate a high degree of diversity and ubiquity, are fundamental in the control of membrane depolarisation and cell excitability. A common feature of potassium channelopathies is a reduction or loss of membrane potential repolarisation. 45 Marketed potassium channels openers include for example flupirtine, an analgesic drug used for treating pain.

KCNQ polypeptides belong to the potassium channel family. KCNQ polypeptides associate to form homomeric or heteromeric potassium channels, each polypeptide corre- 50 sponding to a subunit of the channel. Currently, five different members of the KCNQ family are known: KCNQ1, KCNQ2, KCNQ3, KCNQ4 and KCNQ5. Heteromeric KCNQ potassium channels can be comprised either of different members of the KCNQ family, or of KCNQ polypeptides associated 55 with other members of the potassium channel family. KCNQ potassium channels underlie the M-current, an important regulator of neuronal excitability. Both their amino-terminal and their carboxyl-terminal extremities are located on the intracellular side of the membrane. These extremities play an 60 important role both in interactions with other proteins and in modulation of the channel's activity.

KCNQ1 is expressed in heart, cochlea, intestine and kidney. It assembles with either the product of the KCNE1 gene or with the product of the KCNE3 gene. Mutations in the 65 KCNQ1 gene have been shown to cause one form of inherited long QT syndrome and a form of deafness.

KCNQ2 was first cloned in 1996. In 1998, geneticists discovered that an inherited form of juvenile epilepsy, the benign familial neonatal convulsions, is caused by mutations in the potassium channel KCNQ2 (Singh et al. Nat Genet, 1998, 18:25-9; Biervert et al., Science, 1998, 279:403-6). More specifically, Bievert et al. showed that a five-base pair insertion deleting more than 300 amino acids from the carboxyl-terminus of KCNQ2 leads to impairment of potassiumselective currents in vitro. It was thus demonstrated that loss of function mutations in KCNQ2 causes the epileptic syndrome. Wang et al. showed KCNQ2 to be expressed in brain, and to be associated with KCNQ3. In addition, they showed that the KCNQ2/3 heteromultimers underlie the M-current (Wang et al., Science, 1998, 282:1890-3). In 2000, Main et al. showed that KCNQ2 is the molecular target of retigabine, a potent anticonvulsant compound, and that retigabine acts as a KCNQ2/3 potassium channel opener (Mol Pharmacol, 2000, 58:253-62). Biervert et al. determined that the KCNQ2 gene has at least 18 exons, occupying more than 50 kb of genomic DNA (Genet., 1999, 104:234-240). Until now six different isoforms of KCNQ2 produced by alternative splicing have been described (see, e.g., SwissProt Accession No. O43526).

KCNQ4 is expressed in inner ear, and it has been shown that mutation in the KCNQ4 gene lead to a form of inherited deafness

KCNQ5 is expressed in brain and skeletal muscle, and can co-assemble with KCNQ3, suggesting that it may also play a role in the M-current heterogeneity. It has been suggested that KCNQ5 deficiency leads to retinal degeneration.

The activity of KCNQ channels has been shown to be modulated by Protein kinase A (PKA) and by the c-Src tyrosine kinase (Src). Schroeder et al. showed that currents generated by heteromeric KCNQ2/KCNQ3 channels can be increased by intracellular cyclic AMP, and that this effect is mediated by PKA. PKA stimulated current intensity by 66% (Schroeder et al., Epilepsia (2000) 41:1068-1069). Gamper et al. showed that coexpression of Src with KCNQ2/KCNQ3 heteromeric channels resulted in a 4.5-fold reduction of current density and a 2-fold slowing of activation kinetics at 0 KCNQ2 homomultimeric channels (J. Neurosci. (2003) 23:84-95). In view of these results, modulation of KCNQ channels by kinases and phosphatases is believed to be important for control of neuronal excitability.

Studying KCNQ channels in humans and animal models is of great importance for the understanding of how M-channels control excitability at the cellular, network, and behavioral levels. A better understanding of the physiological role of KCNQ channels is a promising way of finding of new targets for novel diseases, thus leading to the possibility of novel screenings of drug candidates.

2. The PP2A Phosphatase

The PP2A phosphatase is an intracellular serine/threonine protein phosphatase constituted by two or three subunits. PP2A phosphatases comprise of a catalytic subunit (PP2A/ C), a scaffolding subunit (PP2A/A) and eventually a regulatory subunit (PP2A/B).

Regulatory subunits are thought to confer tissue specificity, subcellular localization and developmental regulation to PP2A. More than eleven ndifferent regulatory subunits are currently known, and PP2A/By is one of them. PP2A/By is encoded by the PPP2R2C gene that was mapped to human chromosome 4p16 between markers D4S2925 and D4S3007 (Hu et al., Genomics., 2000, 67:83-6). The PP2A/By protein can only be detected in brain and is enriched in the cytosolic fraction of the cell. Furthermore, PPP2R2C is developmentally regulated.

Mental disorders encompass a wide range of CNS disorders. Mental disorders include, e.g., mood disorders, psychotic disorders, anxiety disorders, childhood disorders, eating disorders and personality disorders, all these terms being 5 defined according to the DSM-IV classification (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition, American Psychiatric Association, Washington D.C., 1994). Mood Disorders encompass bipolar I disorder (mania with or without major depression), bipolar II disorder (hypomania 10with major depression), cyclothymic disorder (numerous brief episodes of hypomania and minor depression), dysthymic disorder (prolonged minor depression without mania/ hypomania) and major depressive disorder (major depression without mania). Psychotic disorders encompass schizophre- 15 nia, schizoaffective disorder, schizophreniform disorder, brief psychotic disorder, delusional disorder and shared psychotic disorder. Bipolar disorder, schizophrenia and depression are three particularly serious and widespread mental disorders. 20

3

3.1. Bipolar Disorder

Bipolar disorders are relatively common disorders, occurring in about 1.3% of the population, and have been reported to constitute about half of the mood disorders seen in psychiatric clinics with severe and potentially disabling effects. 25 Bipolar disorders have been found to vary with gender depending of the type of disorder; for example, bipolar disorder I is found equally among men and women, while bipolar disorder II is reportedly more common in women. The age of onset of bipolar disorders is typically in the teenage years 30 and diagnosis is typically made in the patient's early twenties. Bipolar disorders also occur among the elderly, generally as a result of a neurological disorder or other medical conditions. In addition to the severe effects on patients' social development, suicide completion rates among bipolar patients are 35 reported to be about 15%.

Bipolar disorders are characterized by phases of excitement and often depression; the excitement phases, referred to as mania or hypomania, and depressive phases can alternate or occur in various admixtures, and can occur to different 40 degrees of severity and over varying duration. Since bipolar disorders can exist in different forms and display different symptoms, the classification of bipolar disorder has been the subject of extensive studies resulting in the definition of bipolar disorder subtypes and widening of the overall concept to 45 include patients previously thought to be suffering from different disorders. Bipolar disorders often share certain clinical signs, symptoms, treatments and neurobiological features with psychotic illnesses in general and therefore present a challenge to the psychiatrist to make an accurate diagnosis. 50 Furthermore, because the course of bipolar disorders and various mood and psychotic disorders can differ greatly, it is critical to characterize the illness as early as possible in order to offer means to manage the illness over a long term.

The mania associated with the disease impairs perfor-55 mance and causes psychosis, and often results in hospitalization. This disease places a heavy burden on the patient's family and relatives, both in terms of the direct and indirect costs involved and the social stigma associated with the illness, sometimes over generations. Such stigma often leads to 60 isolation and neglect. Furthermore, the earlier the onset, the more severe are the effects of interrupted education and social development.

The DSM-IV classification of bipolar disorder distinguishes among four types of disorders based on the degree 65 and duration of mania or hypomania as well as two types of disorders which are evident typically with medical conditions

or their treatments, or to substance abuse. Mania is recognized by elevated, expansive or irritable mood as well as by distractability, impulsive behavior, increased activity, grandiosity, elation, racing thoughts, and pressured speech. Of the four types of bipolar disorder characterized by the particular degree and duration of mania, DSM-IV includes:

bipolar disorder I, including patients displaying mania for at least one week;

- bipolar disorder II, including patients displaying hypomania for at least 4 days, characterized by milder symptoms of excitement than mania, who have not previously displayed mania, and have previously suffered from episodes of major depression;
- bipolar disorder not otherwise specified (NOS), including patients otherwise displaying features of bipolar disorder II but not meeting the 4 day duration for the excitement phase, or who display hypomania without an episode of major depression; and
- cyclothymia, including patients who show numerous manic and depressive symptoms that do not meet the criteria for hypomania or major depression, but which are displayed for over two years without a symptom-free interval of more than two months.

The remaining two types of bipolar disorder as classified in DSM-VI are disorders evident or caused by various medical disorder and their treatments, and disorders involving or related to substance abuse. Medical disorders which can cause bipolar disorders typically include endocrine disorders and cerebrovascular injuries, and medical treatments causing bipolar disorder are known to include glucocorticoids and the abuse of stimulants. The disorder associated with the use or abuse of a substance is referred to as "substance induced mood disorder with manic or mixed features".

Evidence from twin and adoption studies, and the lack of variation in incidence worldwide, indicate that bipolar disorder is primarily a genetic condition, although environmental risk factors are also involved at some level as necessary, sufficient, or interactive causes. Aggregation of bipolar disorder and schizophrenia in families suggests that these two distinct disorders share some common genetic susceptibility. Several linkage studies of bipolar disorder have been reported, and several susceptibility regions have been identified. The regions that are associated with bipolar disorder include 1q31-q32, 4p16, 7q31, 12q23-q24, 13q32, 18p11.2, 21q22 and 22q11-q13 (Detera-Wadleigh et al. (1999) Proc Natl Acad Sci USA A96(10):5604-9). Some of these regions, like 4p16, 12q24, 18p11, 21q21 and 22q11 have been repeatedly implicated by independent investigators. Furthermore, some regions that are linked to bipolar disorder such as, e.g., 13q32 and 18p11.2, are also implicated in genome scans of schizophrenia, confirming that these two distinct disorders share some common genetic susceptibility. However, the genes underlying bipolar disorder and/or schizophrenia have not yet been identified.

3.2. Schizophrenia

There are an estimated 45 million people with schizophrenia in the world, with more than 33 million of them in the developing countries. In developed countries schizophrenia occurs in approximately 1% of the adult population at some point during their lives. If there is one grandparent with schizophrenia, the risk of getting the illness increases to about 3%; one parent with Schizophrenia, to about 10%. When both parents have schizophrenia, the risk rises to approximately 40%. Most schizophrenia patients are never able to work. Standardized mortality ratios (SMRs) for schizophrenic patients are estimated to be two to four times higher than the general population and their life expectancy overall is 20% shorter than for the general population. The most common cause of death among schizophrenic patients is suicide (in 10% of patients) which represents a 20 times higher risk than for the general population. Deaths from heart disease and from diseases of the respiratory and digestive system are also 5 increased among schizophrenic patients.

Schizophrenia comprises a group of psychoses with either 'positive' or 'negative' symptoms. Positive symptoms consist of hallucinations, delusions and disorders of thought; negative symptoms include emotional flattening, lack of volition 10 and a decrease in motor activity.

A number of biochemical abnormalities have been identified and, in consequence, several neurotransmitter based hypotheses have been advanced over recent years; the most popular one has been "the dopamine hypothesis," one variant 15 of which states that there is over-activity of the mesolimbic dopamine pathways at the level of the D₂ receptor. However, researchers have been unable to consistently find an association between various receptors of the dopaminergic system and schizophrenia. 20

3.3. Depression

Depression is a serious medical illness that affects 340 million people worldwide. In contrast to the normal emotional experiences of sadness, loss, or passing mood states, clinical depression is persistent and can interfere significantly 25 with an individual's ability to function. As a result, depression is the leading cause of disability throughout the world.

Symptoms of depression include depressed mood, diminished interest or pleasure in activities, change in appetite or weight, insomnia or hypersomnia, psycho-motor agitation or 30 retardation, fatigue or loss of energy, feelings of worthlessness or excessive guilt, anxiety, inability to concentrate or act decisively, and recurrent thoughts of death or suicide. A diagnosis of unipolar major depression (or major depressive disorder) is made if a person has five or more of these symptoms 35 and impairment in usual functioning nearly every day during the same two-week period. The onset of depression generally begins in late adolescence or early adult life; however, recent evidence suggests depression may be occurring earlier in life in people born in the past thirty years. 40

The World Health Organization predicts that by the year 2020 depression will be the greatest burden of ill-health to people in the developing world, and that by then depression will be the second largest cause of death and disability. Beyond the almost unbearable misery it causes, the big risk in 45 major depression is suicide. Within five years of suffering a major depression, an estimated 25% of sufferers try to kill themselves. In addition, depression is a frequent and serious complication of heart attack, stroke, diabetes, and cancer. According to one recent study that covered a 13-year period, 50 individuals with a history of major depression may also be a feature in up to 50% of patients with mental disorders such as Parkinson's disease and Alzheimer's disease.

3.4. Treatment

There are currently no cures for mental disorders such as bipolar disorder, schizophrenia, depression and other mood disorders, so the objective of treatment is to reduce the severity of the symptoms, if possible to the point of remission. Due 60 to the similarities in symptoms, schizophrenia, depression and bipolar disorder are often treated with some of the same medicaments.

3.4.1. Treatment of Bipolar Disorder

Depressive episodes may be treated like depression. How- 65 ever, most antidepressants can cause swings from depression to hypomania or mania and sometimes cause rapid cycling

between them. Therefore, these drugs are used for only short periods, and their effect on mood is closely monitored. At the first sign of a swing to hypomania or mania, the antidepressant is stopped. Most people with manic-depressive disorder are given drugs with a mood-stabilizing effect such as lithium, carbamazepine and divalproex.

Lithium has no effect on normal mood but reduces the tendency toward mood swings in about 70% of the people with manic-depressive illness. A doctor monitors the level of 10 lithium in the blood with blood tests. Possible adverse effects of lithium include tremor, muscle twitching, nausea, vomiting, diarrhea, thirst, excessive urination, and weight gain. Lithium can make acne or psoriasis worse, can cause the blood levels of thyroid hormone to fall, and rarely can cause 15 excessive urination. A very high level of lithium in the blood can cause a persistent headache, mental confusion, drowsiness, seizures, and abnormal heart rhythms. Adverse effects are more likely to occur in the elderly. Women who are trying to become pregnant must stop taking lithium, because lithium 20 may cause heart defects in a developing fetus.

Newer drug treatments have evolved over the past several years. These include the carbamazepine and divalproex. However, carbamazepine can seriously reduce the number of red and white blood cells, and divalproex can cause liver damage (primarily in children). With careful monitoring by a doctor, these problems are rare, and carbamazepine and divalproex are useful alternatives to lithium, especially for people with the mixed or rapid cycling form of manic-depressive illness who haven't responded to other treatments.

3.4.2. Treatment of Schizophrenia

For schizophrenia, antipsychotic medications are the most common and most valuable treatments. There are four main classes of antipsychotic drugs which are commonly prescribed for schizophrenia. The first, neuroleptics, exemplified by chlorpromazine (Thorazine), has revolutionized the treatment of schizophrenic patients by reducing positive (psychotic) symptoms and preventing their recurrence. Patients receiving chlorpromazine have been able to leave mental hospitals and live in community programs or their own homes. But these drugs are far from ideal. Some 20% to 30% of patients do not respond to them at all, and others eventually relapse. These drugs were named neuroleptics because they produce serious neurological side effects, including rigidity and tremors in the arms and legs, muscle spasms, abnormal body movements, and akathisia (restless pacing and fidgeting). These side effects are so troublesome that many patients simply refuse to take the drugs. Besides, neuroleptics do not improve the so-called negative symptoms of schizophrenia and the side effects may even exacerbate these symptoms. Thus, despite the clear beneficial effects of neuroleptics, even some patients who have a good short-term response will ultimately deteriorate in overall functioning.

The well known deficiencies in the standard neuroleptics have stimulated a search for new treatments and have led to a 55 new class of drugs termed atypical neuroleptics. The first atypical neuroleptic, Clozapine, is effective for about one third of patients who do not respond to standard neuroleptics. It seems to reduce negative as well as positive symptoms, or at least exacerbates negative symptoms less than standard 60 neuroleptics do. Moreover, it has beneficial effects on overall functioning and may reduce the chance of suicide in schizophrenic patients. It does not produce the troubling neurological symptoms of the standard neuroleptics, or raise blood levels of the hormone prolactin, excess of which may cause 65 menstrual irregularities and infertility in women, impotence or breast enlargement in men. Many patients who cannot tolerate standard neuroleptics have been able to take clozap-

ine. However, clozapine has serious limitations. It was originally withdrawn from the market because it can cause agranulocytosis, a potentially lethal inability to produce white blood cells. Agranulocytosis remains a threat that requires careful monitoring and periodic blood tests. Clozapine can also cause 5 seizures and other disturbing side effects (e.g., drowsiness, lowered blood pressure, drooling, bed-wetting, and weight gain). Thus only patients who do not respond to other drugs usually take Clozapine.

Researchers have developed a third class of antipsychotic 10 drugs that have the virtues of clozapine without its defects. One of these drugs is risperidone (Risperdal). Early studies suggest that it is as effective as standard neuroleptic drugs for positive symptoms and may be somewhat more effective for negative symptoms. It produces more neurological side 15 effects than clozapine but fewer than standard neuroleptics. However, it raises prolactin levels. Risperidone is now prescribed for a broad range of psychotic patients, and many clinicians seem to use it before clozapine for patients who do not respond to standard drugs, because they regard it as safer. 20 to an isolated KCNQ2-15b polypeptide selected from the Another new drug is Olanzapine (Zyprexa) which is at least as effective as standard drugs for positive symptoms and more effective for negative symptoms. It has few neurological side effects at ordinary clinical doses, and it does not significantly raise prolactin levels. Although it does not produce most of 25 clozapine's most troubling side effects, including agranulocytosis, some patients taking olanzapine may become sedated or dizzy, develop dry mouth, or gain weight. In rare cases, liver function tests become transiently abnormal.

3.4.3. Treatment of Depression

Several types of antidepressants are available. These antidepressants belong to four main categories: tricyclic antidepressants, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors and psychostimulants. Tricyclic antidepressants include, e.g., Amitriptyline, Amoxapine, 35 Bupropion, Clomipramine, Desipramine, Doxepin, Imipramine, Maprotiline, Nefazodone, Nortriptyline, Protriptyline, Trazodone, Trimipramine and Venlafaxine. Selective serotonin reuptake inhibitors include, e.g., Fluoxetine, Fluvoxamine, Paroxetine and Sertraline. Monoamine oxidase 40 inhibitors include, e.g., Isocarboxazid, Pargyline, Phenelzine and Tranylcypromine. Psychostimulants include, e.g., Dextroamphetamine and Methylphenidate.

All these antidepressants must be taken regularly for at least several weeks before they begin to work. The chances 45 that any given antidepressant will work for a particular person are about 65%. However, most of these drugs have side effects varying with each type of drug. For example, the tricyclic antidepressants often cause sedation and lead to weight gain. They can also be associated with side effects such as an 50 increased heart rate, a decrease in blood pressure when the person stands or blurred vision.

Thus, for mental disorders such as bipolar disorder, schizophrenia, depression and other mood disorders, known molecules used for the treatment have side effects and act only 55 against the symptoms of the disease. Consequently, there is a strong need for new molecules without associated side effects that are specifically directed against targets which are involved in the causal mechanisms of such mental disorders. Therefore, there is a need to identify proteins involved in 60 bipolar disorder and schizophrenia. Providing new targets involved in bipolar disorder and schizophrenia will allow new screenings for drugs, resulting in new drugs that are efficient in treatment of these serious mental disorders.

Furthermore, there is also a need for diagnostic tools. There 65 is increasing evidence that leaving schizophrenia untreated for long periods early in course of the illness may negatively

affect the outcome. However, the use of drugs is often delayed for patients experiencing a first episode of the illness. The patients may not realize that they are ill, or they may be afraid to seek help; family members sometimes hope the problem will simply disappear or cannot persuade the patient to seek treatment; clinicians may hesitate to prescribe antipsychotic medications when the diagnosis is uncertain because of potential side effects. Indeed, at the first manifestation of the disease, schizophrenia or bipolar disorder is difficult to distinguish from, e.g., drug-related disorders and stress-related disorders. Accordingly, there is a need for new methods for detecting a susceptibility to mental disorders such as bipolar disorder, schizophrenia, and depression.

SUMMARY OF THE INVENTION

The present invention is based on the identification of novel splice variants of the KCNQ2 potassium channel.

Therefore, in a first aspect, the present invention is directed group consisting of:

- a) a polypeptide comprising a span of at least ten amino acids of amino acids 589 to 643 of SEQ ID NO: 2;
- b) a polypeptide comprising amino acids 589 to 643 of SEQ ID NO: 2;
- c) a polypeptide comprising amino acids 545 to 643 of SEQ ID NO: 2;
- d) a polypeptide comprising SEQ ID NO: 2;
- e) a polypeptide comprising SEQ ID NO: 4;
- f) a polypeptide comprising SEQ ID NO: 6;
- g) a mutein of any of (a) to (f), wherein the amino acid sequence has at least 50% or 60% or 70% or 80% or 90% or 95% or 99% identity to at least one of the sequences in (a) to (f);
- h) a mutein of any of (a) to (f) which is encoded by a DNA sequence which hybridizes to the complement of the DNA sequence encoding any of (a) to (f) under moderately stringent conditions or under highly stringent conditions; and
- i) a mutein of any of (a) to (f) wherein any changes in the amino acid sequence are conservative amino acid substitutions to the amino acid sequences in (a) to (f).

The present invention further relates to a potassium channel comprising at least one KCNQ2-15b polypeptide.

The invention further relates to a purified KCNQ2-15b polynucleotide encoding a KCNQ2-15b polypeptide or a polynucleotide complementary thereto.

An expression vector comprising a KCNQ2-15b polynucleotides, a host cell comprising an expression vector comprising a KCNQ2-15b polynucleotides and an antibody that specifically binds to a KCNQ2-15b polypeptide are also within the present invention.

Further, the present invention pertains to a method of making a polypeptide, said method comprising the steps of culturing a host cell comprising an expression vector comprising a KCNQ2-15b polynucleotides under conditions suitable for the production of a KCNQ2-15b polypeptide within said host cell.

The present invention is further based on the finding that KCNQ2 is associated with the onset and the development of mental disorders.

Therefore, in a second aspect, the present invention is directed to the use of a KCNQ2 polypeptide as a target for screening candidate modulators.

The present invention further relates to the use of a modulator of a KCNQ2 polypeptide for preparing a medicament for the treatment of a mental disorder.

30

40

45

The invention also concerns a method of assessing the efficiency of a modulator of a KCNQ2 polypeptide for the treatment of a mental disorder, said method comprising administering said modulator to an animal model for said mental disorder; wherein a determination that said modulator 5 ameliorates a representative characteristic of said mental disorder in said animal model indicates that said modulator is a drug for the treatment of said mental disorder.

In the frame of the present invention, biallelic markers located in the KCNQ2 gene have been identified and vali- 10 dated.

Therefore, a third object of the invention consists of the use of at least one KCNQ2-related biallelic marker for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder.

The invention further encompasses the use of at least one KCNQ2-related biallelic marker for determining whether there is a significant association between said marker and a mental disorder.

The invention also relates to a method of genotyping com- 20 prising the step of determining the identity of a nucleotide at a KCNQ2-related biallelic marker or the complement thereof in a biological sample.

The invention further pertains to a method of diagnosing a mental disorder in an individual comprising the step of geno- 25 typing at least one KCNQ2-related biallelic marker using a method of genotyping comprising the step of determining the identity of a nucleotide at said KCNQ2-related biallelic marker or the complement thereof in a biological sample.

BRIEF DESCRIPTION OF THE FIGURES

FIGS. 1A and 1B show an alignment between the fulllength KCNQ2 polypeptide (KCNQ2-fl, SEQ ID NO: 7), KCNQ2-15bx (SEQ ID NO: 2), KCNQ2-15by (SEQ ID NO: 35 4) and KCNQ2-15bz (SEQ ID NO: 6). The box shows highlights the amino acids that are unique to KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz compared to KCNQ2-fl.

FIG. 2 shows a sheme of the structure of the KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz cDNAs.

FIG. 3 shows the results of a mating test between PP2A/By and different KCNQ2 polypeptides, as described in detail in Example 3.

FIG. 4 shows the results of a mating test between different KCNQ2 polypeptides, as described in detail in Example 3.

FIG. 5 compares the intensity of the currents generated by homotetrameric potassium channels comprised of KCNQ2-15bx, KCNQ2-15by, KCNQ2-15bz or KCNQ2-fl subunits respectively.

FIG. 6A shows the voltage clamp traces of the current 50 generated by a homotetrameric potassium channels comprised of KCNQ2-15bx subunits.

FIG. 6B shows the voltage clamp traces of the current generated by a homotetrameric potassium channels comprised of KCNQ2-15by subunits.

BRIEF DESCRIPTION OF THE SEQUENCES OF THE SEQUENCE LISTING

- SEQ ID NO: 1 corresponds to a polynucleotide consisting of $_{60}$ the CDS of KCNQ2-15bx
- SEQ ID NO: 2 corresponds to the KCNQ2-15bx polypeptide.

SEQ ID NO: 3 corresponds to a polynucleotide consisting of the CDS of KCNQ2-15by

- SEQ ID NO: 4 corresponds to the KCNQ2-15by polypeptide. 65 SEQ ID NO: 5 corresponds to a polynucleotide consisting of
- the CDS of KCNQ2-15bz

SEQ ID NO: 6 corresponds to the KCNQ2-15bz polypeptide.

- SEQ ID NO: 7 corresponds to the KCNQ2-fl polypeptide.
- SEQ ID Nos. 8 to 36 correspond to primers and probes used in Examples 1 to 4.
- SEQ ID NO: 37 corresponds to the PPP2R2C gene which encodes the PP2A/By subunit, on which PP2A/By-related biallelic markers are indicated.

SEQ ID NO: 38 corresponds to the PP2A/By subunit.

- SEQ ID Nos. 39 to 41 correspond to primers used for microsequencing some of the PP2A/By-related biallelic markers.
- SEQ ID Nos. 42 to 47 correspond to regions of the KCNQ2 gene, on which KCNQ2-related biallelic markers are indicated.

BRIEF DESCRIPTION OF THE TABLES

- Table 1 presents the structure of KCNQ2-fl, KCNQ2-15bx KCNO2-15by and KCNO2-15bz.
- Tables 2A and 2B present the location of the primers used for amplification of genomic DNA by PCR in PPP2R2C and in the KCNQ2 gene respectively
- Table 3A and 3B present biallelic markers located in the PP2R2C and in the KCNQ2 gene respectively.
- Tables 4A and 4B present the the primers used for microsequencing biallelic markers located in PP2R2C and in the KCNQ2 gene respectively.
- Tables 5A and 5B present the p-values for biallelic markers located in PPP2R2C and in the KCNQ2 gene respectively.
- Tables 6A and 6B present the genotypic odds ratios for a biallelic marker located in PPP2R2C and in the KCNQ2 gene respectively.
- Tables 7A and 7B present the risk haplotypes for two sets of biallelic markers located in PPP2R2C

DETAILED DESCRIPTION OF THE INVENTION

The present invention stems from the cloning and the sequencing of three novel splice variants of the KCNQ2 gene, KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz. These splice variants all display a novel exon (exon 15b), corresponding to amino acids 545 to 643 of SEQ ID NO: 2. Data showing that KCNQ2-15bx and KCNQ2-15by can assemble as functional homotetrameric potassium channels are provided. In the frame of the present invention, it has been demonstrated that these novel splice variants interact with the By subunit of the serine/threonine protein phosphatase 2A (PP2A/By) both in vitro and in vivo. Furthermore, association studies are described in example 15, and it was shown that both the KCNQ2 gene and the gene coding for PP2A/By are strongly associated with bipolar disorder. Novel validated biallelic markers located in the KCNQ2 gene and associated with bipolar disorder are provided. In the frame of the present invention it was further shown that KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz are (i) dephosphorylated by PP2A; 55 and (ii) phosphorylated by the PKA and GSK3β kinases. Moreover, the phosphorylation of KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz is inhibited in the presence of lithium, a known mood-stabilizing agent.

Accordingly, the present invention provides novel KCNQ2 polypeptides and means to identify compounds useful in the treatment of mental disorders such as bipolar disorder, schizophrenia, depression and other mood disorders. The invention further relates to the use of KCNQ2 polypeptides as targets for screening for modulators thereof. The use of said modulators for treating mental disorders, and the use of biallelic markers located in the KCNQ2 gene for diagnosing mental disorders are further aspects of the present invention.

1. Definitions

The term "treat" or "treating" as used herein is meant to ameliorate, alleviate symptoms, eliminate the causation of the symptoms either on a temporary or permanent basis, or to prevent or slow the appearance of symptoms of the named 5 disorder or condition. The term "treatment" as used herein also encompasses the term "prevention of the disorder", which is, e.g., manifested by delaying the onset of the symptoms of the disorder to a medically significant extent. Treatment of the disorder is, e.g., manifested by a decrease in the 10 symptoms associated with the disorder or an amelioration of the reoccurrence of the symptoms of the disorder.

The term "mental disorder" refers to diseases characterized as mood disorders, psychotic disorders, anxiety disorders, childhood disorders, eating disorders, personality disorders, 15 adjustment disorder, autistic disorder, delirium, dementia, multi-infarct dementia and Tourette's disorder in the DSM-IV classification (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition, American Psychiatric Association, Washington D.C., 1994).

The term "schizophrenia" refers to a condition characterized as schizophrenia in the DSM-IV classification (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition, American Psychiatric Association, Washington D.C., 1994).

The term "bipolar disorder" as used herein refers to a condition characterized as a Bipolar Disorder in the DSM-IV. Bipolar disorder may be bipolar I and bipolar disorder II as described in the DSM-IV. The term further includes cyclothymic disorder. Cyclothymic disorder refers to an alternation of 30 depressive symptoms and hypomanic symptoms. The skilled artisan will recognize that there are alternative nomenclatures, posologies, and classification systems for pathologic psychological conditions and that these systems evolve with medical scientific progress.

The terms "comprising", "consisting of", or "consisting essentially of" have distinct meanings. However, each term may be substituted for another herein to change the scope of the invention.

As used interchangeably herein, the term "oligonucle- 40 otides", and "polynucleotides" include RNA, DNA, or RNA/ DNA hybrid sequences of more than one nucleotide in either single chain or duplex form. The term "nucleotide" as used herein as an adjective to describe compounds comprising RNA, DNA, or RNA/DNA hybrid sequences of any length in 45 single-stranded or duplex form. The term "nucleotide" is also used herein as a noun to refer to individual nucleotides or varieties of nucleotides, meaning a compound, or individual unit in a larger nucleic acid compound, comprising a purine or pyrimidine, a ribose or deoxyribose sugar moiety, and a phos- 50 phate group, or phosphodiester linkage in the case of nucleotides within an oligonucleotide or polynucleotide. Although the term "nucleotide" is also used herein to encompass "modified nucleotides" which comprise at least one modifications (a) an alternative linking group, (b) an analogous form 55 non-human vertebrate, birds and more usually mammals, of purine, (c) an analogous form of pyrimidine, or (d) an analogous sugar, for examples of analogous linking groups, purine, pyrimidines, and sugars see for example PCT publication No. WO 95/04064, the disclosure of which is incorporated herein by reference. However, the polynucleotides of 60 the invention are preferably comprised of greater than 50% conventional deoxyribose nucleotides, and most preferably greater than 90% conventional deoxyribose nucleotides. The polynucleotide sequences of the invention may be prepared by any known method, including synthetic, recombinant, ex 65 vivo generation, or a combination thereof, as well as utilizing any purification methods known in the art.

The term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or DNA or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotide could be part of a vector and/or such polynucleotide or polypeptide could be part of a composition, and still be isolated in that the vector or composition is not part of its natural environment.

The term "primer" denotes a specific oligonucleotide sequence which is complementary to a target nucleotide sequence and used to hybridize to the target nucleotide sequence. A primer serves as an initiation point for nucleotide polymerization catalyzed by either DNA polymerase, RNA polymerase or reverse transcriptase.

The term "probe" denotes a defined nucleic acid segment (or nucleotide analog segment, e.g., polynucleotide as defined herein) which can be used to identify a specific poly-20 nucleotide sequence present in samples, said nucleic acid segment comprising a nucleotide sequence complementary of the specific polynucleotide sequence to be identified.

The terms "complementary" or "complement thereof" are used herein to refer to the sequences of polynucleotides which are capable of forming Watson & Crick base pairing with another specified polynucleotide throughout the entirety of the complementary region. This term is applied to pairs of polynucleotides based solely upon their sequences and not any particular set of conditions under which the two polynucleotides would actually bind.

The term "polypeptide" refers to a polymer of amino acids without regard to the length of the polymer; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not specify or exclude prost-expression modifications of polypeptides, for example, polypeptides which include the covalent attachment of glycosyl groups, acetyl groups, phosphate groups, lipid groups and the like are expressly encompassed by the term polypeptide. Also included within the definition are polypeptides which contain one or more analogs of an amino acid (including, for example, non-naturally occurring amino acids, amino acids which only occur naturally in an unrelated biological system, modified amino acids from mammalian systems etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.

As used herein, the term "exon" refers as well to the portion of a DNA that codes for portion of spliced mRNA as to the amino acids encoded by said part of a DNA.

As used herein, "splice variants" refer to different mRNAs produced by alternative splicing events and translated from the same gene. The term splice variant refers as well to the mRNA as to the corresponding polypeptide.

As used herein, the term "non-human animal" refers to any preferably primates, farm animals such as swine, goats, sheep, donkeys, and horses, rabbits or rodents, more preferably rats or mice. As used herein, the term "animal" is used to refer to any vertebrate, preferable a mammal. Both the terms "animal" and "mammal" expressly embrace human subjects unless preceded with the term "non-human".

The terms "trait" and "Phenotype" are used interchangeably herein and refer to any clinically distinguishable, detectable or otherwise measurable property of an organism such as symptoms of, or susceptibility to a disease for example. Typically the terms "trait" or "phenotype" are used herein to refer to symptoms of, or susceptibility to bipolar disorder; or to

refer to an individual's response to an agent acting on bipolar disorder; or to refer to symptoms of, or susceptibility to side effects to an agent acting on bipolar disorder.

As used herein, the term "allele" refers to one of the variant forms of a biallelic marker, differing from other forms in its nucleotide sequence. Typically the first identified allele is designated as the original allele whereas other alleles are designated as alternative alleles. Diploid organisms may be homozygous or heterozygous for an allelic form.

The term "polymorphism" as used herein refers to the 10 occurrence of two or more alternative genomic sequences or alleles between or among different genomes or individuals. "Polymorphic" refers to the condition in which two or more variants of a specific genomic sequence can be found in a population. A "polymorphic site" is the locus at which the 15 variation occurs. A polymorphism may comprise a substitution, deletion or insertion of one or more nucleotides. A single nucleotide polymorphism is a single base pair change. Typically a single nucleotide polymorphism is the replacement of one nucleotide by another nucleotide at the polymorphic site. 20 comprising at least one KCNQ2-15b polypeptide. The potas-A "single nucleotide polymorphism" (SNP) refers to a sequence polymorphism differing in a single base pair.

2. KCNQ2-15b Polypeptides of the Present Invention

The term "KCNQ2-15b polypeptides" is used herein to embrace all of the polypeptides of the present invention.

Preferably, the KCNQ2-15b is selected from a peptide, a polypeptide or a protein selected from the group consisting of:

- a) a polypeptide comprising a span of at least ten amino 30 acids of amino acids 589 to 643 of SEQ ID NO: 2;
- b) a polypeptide comprising amino acids 589 to 643 of SEQ ID NO: 2;
- c) a polypeptide comprising amino acids 545 to 643 of SEQ ID NO: 2;
- d) a polypeptide comprising SEQ ID NO: 2;
- e) a polypeptide comprising SEQ ID NO: 4;
- f) a polypeptide comprising SEQ ID NO: 6;
- g) a mutein of any of (a) to (f), wherein the amino acid sequence has at least 50% or 60% or 70% or 80% or 90% $_{40}$ or 95% or 99% identity to at least one of the sequences in (a) to (f);
- h) a mutein of any of (a) to (f) which is encoded by a DNA sequence which hybridizes to the complement of the DNA sequence encoding any of (a) to (f) under moder- 45 ately stringent conditions or under highly stringent conditions; and
- i) a mutein of any of (a) to (f) wherein any changes in the amino acid sequence are conservative amino acid substitutions to the amino acid sequences in (a) to (f).

KCNQ2-15b polypeptides of the present invention all comprise an amino acid sequence of a span of at least 10 amino acids of SEQ ID NO: 2, wherein said span falls within amino acids 589 to 643 of SEQ ID NO: 2. Preferably, KCNQ2-15b polypeptides comprise amino acids 589 to 643 55 of SEQ ID NO: 2.

In an embodiment of the invention, KCNQ2-15b polypeptides comprise any of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6. Preferred KC NQ2-15b polypeptides consist of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6. As further 60 used herein, "KCNQ2-15bx" refers to a polypeptide of SEQ ID NO: 2, "KCNQ2-15by" refers to a polypeptide of SEQ ID NO: 4 and "KCNQ2-15bz" refers to a polypeptide of SEQ ID NO: 6.

In a preferred embodiment, KCNQ2-15b polypeptides are 65 capable of binding to the By subunit of the PP2A phosphatase (PP2A/By). In other words, said KCNQ2-15b polypeptides

bind to PP2A/By when the binding is tested by any suitable assay. Such assay s encompass, e.g., the yeast mating test described in example 9 and the solid phase overlay assay described in example 6. As further used herein, the term "KCNQ2-15b binding activity" or "binding activity" refers to the capacity of the KCNQ2-15b polypeptide to bind to PP2A/ Βγ.

In another preferred embodiment, KCNQ2-15b polypeptides correspond to a subunit of a potassium channel. In a more preferred embodiment, KCNQ2-15b polypeptides correspond to isoforms of the KCNQ2 polypeptide that are produced by alter native splicing events. Such KCNQ2-15b polypeptides may associate either with other KCNQ2-15b polypeptides or with other potassium channels subunits to form a potassium channel. As further used herein, the term "KCNQ2-15b biological activity" or "biological activity" refers to the activity of a potassium channel comprising the KCNQ2-15b polypeptide.

A preferred embodiment is directed to a potassium channel sium channel may be a homomeric potassium channel comprised of several KCNQ2-15b polypeptides. Alternatively, the potassium channel may be a heteromeric potassium channel comprised of a KCNQ2-15b polypeptide associated with other KCNQ polypeptides and/or other potassium channel subunits. The KCNQ2-15b biological activity can be measured by methods well known by those skilled in the art such as, e.g., measurement of the M current.

As further used herein, the terms "KCNQ2-15b biological properties", "biological properties" and "activity" encompass both the biological activity and the binding activity of the KCNQ2-15b polypeptide. KCNQ2-15b biological properties further include, but are not limited to, e.g., KCNQ2-15bspecific antibody binding, binding to KCNQ subunits and 35 modulation of potassium channel activity.

In further preferred embodiments, KCNQ2-15b polypeptides comprise the novel exon 15b. The term "exon 15b" refers to the amino acids at position 545 to 643 of SEQ ID NO: 2. Preferably, exon 15b is the most carboxyl-terminal exon of said KCNQ2-15b polypeptide. KCNQ2-15b polypeptides may further comprise any combination of exons 1 to 14 of the KCNQ2 gene.

The present invention is also directed to fragments of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600 or 610 amino acids of KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz.

Further embodiments are directed to muteins. As used herein the term "muteins" refers to analogs of KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz, in which one or more of the amino acid residues of a natural KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz are replaced by different amino acid residues, or are deleted, or one or more amino acid residues are added to the natural sequence of KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz, without lowering considerably the activity of the resulting products as compared with the wildtype KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz. These muteins are prepared by known synthesis and/or by sitedirected mutagenesis techniques, or any other known technique suitable therefore.

Muteins of KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz, which can be used in accordance with the present invention, or nucleic acid coding thereof, include a finite set of substantially corresponding sequences as substitution peptides or polynucleotides which can be routinely obtained by one of ordinary skill in the art, without undue experimentation, based on the teachings and guidance presented herein.

KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz in accordance with the present invention include proteins encoded by a nucleic acid, such as DNA or RNA, which hybridizes to 5 DNA or RNA, which encodes KCNQ2-15b, in accordance with the present invention, under moderately or highly stringent conditions. The term "stringent conditions" refers to hybridization and subsequent washing conditions, which those of ordinary skill in the art conventionally refer to as 10 "stringent". See Ausubel et al., Current Protocols in Molecular Biology, supra, Interscience, N.Y., §§6.3 and 6.4 (1987, 1992), and Sambrook et al. (Sambrook, J. C., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring 15 Harbor, N.Y.).

Without limitation, examples of stringent conditions include washing conditions $12-20^{\circ}$ C. below the calculated Tm of the hybrid under study in, e.g., 2×SSC and 0.5% SDS for 5 minutes, 2×SSC and 0.1% SDS for 15 minutes; 0.1×SSC 20 and 0.5% SDS at 37° C. for 30-60 minutes and then, a 0.1×SSC and 0.5% SDS at 68° C. for 30-60 minutes. Those of ordinary skill in this art understand that stringency conditions also depend on the length of the DNA sequences, oligonucleotide probes (such as 10-40 bases) or mixed oligonucleotide 25 probes. If mixed probes are used, it is preferable to use tetramethyl ammonium chloride (TMAC) instead of SSC.

The polypeptides of the present invention include muteins having an amino acid sequence at least 50% identical, more preferably at least 60% identical, and still more preferably 30 70%, 80%, 90%, 95%, 96%, 97%, 98% or 99% identical to a KCNQ2-15b polypeptide of the present invention. By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid 35 sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 40 95% identical to a query amino acid sequence, up to 5% (5 of 100) of the amino acid residues in the subject sequence may be inserted, deleted, or substituted with another amino acid.

For sequences where there is not an exact correspondence, a "% identity" may be determined. In general, the two 45 sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment. A % identity may be determined over the whole length of each of the sequences being compared (s 50 o-called global alignment), that is particularly suitable for sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.

Methods for comparing the identity and homology of two 55 or more sequences are well known in the art. Thus for instance, programs available in the Wisconsin Sequence Analysis Package, version 9.1 (Devereux J et al., 1984), for example the programs BESTFIT and GAP, may be used to determine the % identity between two polynucleotides and 60 the % identity and the % homology between two polypeptide sequences. BESTFIT uses the "local homology" algorithm of Smith and Waterman (1981) and finds the best single region of similarity between two sequences. Other programs for determining identity and/or similarity between sequences are 65 also known in the art, for instance the BLAST family of programs (Altschul S F et al, 1990, Altschul S F et al, 1997,

accessible through the home page of the NCBI at world wide web site ncbi.nim.nih.gov) and FASTA (Pearson W R, 1990; Pearson 1988).

Preferred changes for muteins in accordance with the present invention are what are known as "conservative" substitutions. Conservative amino acid substitutions of KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz polypeptides, may include synonymous amino acids within a group which have sufficiently similar physicochemical properties that substitution between members of the group will preserve the biological function of the molecule (Grantham, 1974). It is clear that insertions and deletions of amino acids may also be made in the above-defined sequences without altering their function, particularly if the insertions or deletions only involve a few amino acids, e.g. under thirty, and preferably under ten, and do not remove or displace amino acids which are critical to a functional conformation, e.g. cysteine residues. Proteins and muteins produced by such deletions and/or insertions come within the purview of the present invention.

Preferably, the synonymous amino acid groups are those defined in Table I. More preferably, the synonymous amino acid groups are those defined in Table II; and most preferably the synonymous amino acid groups are those defined in Table III.

TABLE I

Preferred Grou	ups of Synonymous Amino Acids
Amino Acid	Synonymous Group
Ser Arg	Ser, Thr, Gly, Asn Arg, Gln, Lys, Glu, His Ja Bho, Tur, Met Vel, Leu
Pro Thr	Gly, Ala, Thr, Pro Pro, Ser, Ala, Gly, His, Gln, Thr
Ala Val	Gly, Thr, Pro, Ala Met, Tyr, Phe, Ile, Leu, Val
Gly Ile Phe	Ala, Thr, Pro, Ser, Gly Met, Tyr, Phe, Val, Leu, Ile Trp. Met. Tyr, Ile, Val, Leu, Phe
Tyr Cys	Trp, Met, Phe, Ile, Val, Leu, Tyr Ser, Thr, Cys
His Gln Asp	Glu, Lys, Gln, Thr, Arg, His Glu, Lys, Asn, His, Thr, Arg, Gln Glu, Asp, Ser, Asp
Lys Asp	Glu, Gln, His, Arg, Lys Glu, Asn, Asp
Glu Met Trp	Asp, Lys, Asn, Gln, His, Arg, Glu Phe, Ile, Val, Leu, Met Trp

TABLE II

More Preferred Groups of Synonymous Amino Acids

Amino Acid	Synonymous Group
Ser	Ser
Arg	His, Lys, Arg
Leu	Leu, Ile, Phe, Met
Pro	Ala, Pro
Thr	Thr
Ala	Pro, Ala
Val	Val, Met, Ile
Gly	Gly
Ile	Ile, Met, Phe, Val, Leu
Phe	Met, Tyr, Ile, Leu, Phe
Tyr	Phe, Tyr
Cys	Cys, Ser
His	His, Gln, Arg
Gln	Glu, Gln, His
Asn	Asp, Asn

45

TABLE II-continued

o Acid	Synonymous Group	5
	2 2	
	Lys, Arg	
	Asp, Asn	
	Glu, Gln	
	Met, Phe, Ile, Val, Leu	
	Trp	10
		Lys, Arg Asp, Asn Glu, Gln Met, Phe, Ile, Val, Leu Trp

IADLE III	TA	BL	Æ	III
-----------	----	----	---	-----

Most Preferred Groups of Synonymous Amino Acids

Amino Acid	Synonymous Group	
Ser	Ser	
Arg	Arg	
Leu	Leu, Ile, Met	20
Pro	Pro	20
Thr	Thr	
Ala	Ala	
Val	Val	
Gly	Gly	
Ile	Ile, Met, Leu	
Phe	Phe	23
Tyr	Tyr	
Cys	Cys, Ser	
His	His	
Gln	Gln	
Asn	Asn	
Lys	Lys	30
Asp	Asp	
Glu	Glu	
Met	Met, Ile, Leu	
Trp	Met	

Examples of production of amino acid substitutions in proteins which can be used for obtaining muteins of KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz, polypeptides for use in the present invention include any known method steps, such as presented in U.S. Pat. Nos. 4,959,314, 4,588,585 and 40 nucleotides that hybridize under moderately stringent condi-4,737,462, to Mark et al; U.S. Pat. No. 5,116,943 to Koths et al., U.S. Pat. No. 4,965,195 to Namen et al; U.S. Pat. No. 4,879,111 to Chong et al; and U.S. Pat. No. 5,017,691 to Lee et al; and lysine substituted proteins presented in U.S. Pat. No. 4,904,584 (Shaw et al).

Preferably, the muteins of the present invention exhibit substancially the same biological properties as the KCNQ2-15b polypeptide to which it corresponds.

In some embodiments, KCNQ2-15b polypeptides and muteins or fragments thereof have biological activity or bind- 50 ing activity as defined above. In other embodiments, KCNQ2-15b polypeptides and muteins or fragments thereof do not have activity as defined above. Other uses of the polypeptides of the present invention include, inter alia, as epitope tags, in epitope mapping, and as molecular weight 55 markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods known to those of skill in the art. Such polypeptides can be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz expression, 60 or for purifying KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz. As a matter of example, a further specific use for KCNQ2-15b polypeptides is the use of such polypeptides the yeast two-hybrid system to capture KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz binding proteins, which are candidate 65 modulators according to the present invention, as further detailed below.

3. KCNQ2-15b Polynucleotides of the Present Invention

The present invention is further directed to KCNQ2-15b polynucleotides encoding any of the KCNQ2-15b polypeptides described above, and to sequence complementary thereto.

In a preferred embodiment, said polynucleotide is selected from the group consisting of:

- a) a polynucleotide comprising nucleotides 1776 to 1929 of SEQ ID NO: 2.
- b) a polynucleotide comprising nucleotides 1632 to 1929 of SEQ ID NO: 2.
- c) a polynucleotide comprising SEQ ID NO: 1,

d) a polynucleotide comprising SEQ ID NO: 3,

e) a polynucleotide comprising SEQ ID NO: 5,

f) a polynucleotide complementary to the polynucleotides of (a) to (e).

The invention encompasses a purified, isolated and/or recombinant nucleic acid comprising a nucleotide sequence selected from the group consisting of polynucleotides encoding a KCNQ2-15b polypeptides, including splice variants as well as allelic variants, and fragments of KCNQ2-15bx, KCNQ2-15by and KCNQ2-15bz polypeptides. Preferably, said fragments comprise nucleotides at position 1776 to 1929 of SEQ ID NO: 2. More preferably, said fragments comprise nucleotides at position 1632 to 1929 of SEQ ID NO: 2.

Preferred KCNQ2-15b polynucleotides of the invention include isolated and/or recombinant polynucleotides comprising a contiguous span of at least 8, 12, 15, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 nucleotides of SEQ ID NO: 1, SEQ ID NO: 2 or SEQ ID NO: 5.

In a further preferred embodiment, the purified KCNQ2-15b polynucleotide has at least 70, 80, 85, 90, 95, 96, 97, 98 35 or 99% nucleotide identity with a polynucleotide selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 5, sequences complementery thereto and fragments thereof.

Another object of the invention relates to purified polytions or under highly stringent conditions with a polynucleotide selected from the group consisting of sequences complementery thereto and fragments thereof.

Most preferred KCNQ2-15b polynucleotides of the invention include polynucleotides encoding a KCNQ2-15bx polypeptide, a KCNQ2-15by polypeptide or a KCNQ2-15bz polypeptide. A KCNQ2-15bx polynucleotide corresponds to a polynucleotide encoding a KCNQ2-15bx polypeptide. A KCNQ2-15by polynucleotide corresponds to a polynucleotides encoding a KCNQ2-15by polypeptide. A KCNQ2-15bz polynucleotide corresponds to a polynucleotide encoding a KCNQ2-15bz polypeptide.

In some embodiments, said KCNQ2-15b polynucleotide comprises or consists of the coding sequence (CDS) encoding the KCNQ2-15b polypeptide. In other embodiments, said KCNQ2-15b polynucleotide comprises or consists of the messenger RNA (mRNA) encoding the KCNQ2-15b polypeptide. In further embodiments, said KCNQ2-15b polynucleotide comprises or consists of the complementary DNA (cDNA) encoding the KCNQ2-15b polypeptide. Preferred KCNQ2-15b polynucleotides are polynucleotides comprising a CDS having the sequence of SEQ ID NO: 1, SEQ ID NO; 3 or SEQ ID NO: 5, mRNAs comprising these CDSs and cDNAs comprising these CDSs.

The present invention also encompasses fragments of KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz polynucleotides for use as primers and probes. Such primers are useful

in order to detect the presence of at least a copy of a KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz polynucleotide, complement, or variant thereof in a test sample. The probes of the present invention are useful for a number of purposes. They can notably be used in Southern hybridization to 5 genomic DNA. The probes can also be used to detect PCR amplification products. They may also be used to detect mismatches in the KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz mRNAs using other techniques. They may further be used for in situ hybridization.

Any of the polynucleotides, primers and probes of the present invention can be conveniently immobilized on a solid substrate, such as, e.g., a microarray. A substrate comprising a plurality of oligonucleotide primers or probes of the invention may be used either for detecting or amplifying targeted 15 sequences in the KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz gene, may be used for detecting mutations in the coding or in the non-coding sequences of the KCNQ2-15bx, KCNQ2-15by or KCNQ2-15bz mRNAs, and may also be used to determine expression of KCNQ2-15bx, KCNQ2- 20 15by or KCNQ2-15bz mRNAs in different contexts such as in different tissues, at different stages of a process (embryo development, disease treatment), and in patients versus healthy individuals.

Methods of cloning or constructing KCNQ2-15b poly- 25 nucleotides are well known by those of skill in the art. For example, the methods described in the examples may be used to clone or construct the KCNQ2-15b polynucleotides of the present invention.

30 4. Vectors, Host Cells and Host Organisms of the Present Invention

The present invention also relates to vectors including the KCNQ2-15b polynucleotides of the present invention. More particularly, the present invention relates to expression vectors which include a KCNQ2-15b polynucleotide. Preferably, such expression vectors comprise a polynucleotide encoding a KCNQ2-15bx, a KCNQ2-15by, a KCNQ2-15bz polypeptide, a mutein thereof or a fragment thereof.

The term "vector" is used herein to designate either a 40 circular or a linear DNA or RNA compound, which is either double-stranded or single-stranded, and which comprise at least one polynucleotide of the present invention to be transferred in a cell host or in a unicellular or multicellular host organism. An "expression vector" comprises appropriate sig- 45 nals in the vectors, said signals including various regulatory elements, such as enhancers/promoters from both viral and mammalian sources that drive expression of the inserted polynucleotide in host cells. Selectable markers for establishing permanent, stable cell clones expressing the products 50 such as, e.g., a dominant drug selection, are generally included in the expression vectors of the invention, as they are elements that link expression of the drug selection markers to expression of the polypeptide.

Additionally, the expression vector may be a fusion vector 55 driving the expression of a fusion polypeptide between a KCNQ2-15b polypeptide and a heterologous polypeptide. For example, the heterologous polypeptide may be a selectable marker such as, e.g., a luminescent protein, or a polypeptide allowing the purification of the fusion polypeptide.

The polynucleotides of the present invention may be used to, e.g., express the encoded polypeptide in a host cell for producing the encoded polypeptide. The polynucleotides of the present invention may further be used to express the encoded polypeptide in a host cell for screening assays. 65 Screenings assays are of particular interest for identifying modulators and/or binding partners of KCNQ2-15b polypep-

tides as further detailed below. The polynucleotides of the present invention may also be used to express the encoded polypeptide in a host organism for producing a beneficial effect. In such procedures, the encoded protein may be transiently expressed in the host organism or stably expressed in the host organism. The encoded polypeptide may have any of the properties described herein. The encoded polypeptide may be a protein which the host organism lacks or, alternatively, the encoded protein may augment the existing levels of the protein in the host organism.

In one embodiment, the expression vector is a gene therapy vector. Viral vector systems that have application in gene therapy have been derived from, e.g., herpes virus, vaccinia virus, and several RNA viruses. In particular, herpes virus vectors may provide a unique strategy for persistence of inserted gene expression in cells of the central nervous system and ocular tissue.

Another object of the invention comprises a host cell that has been transformed, transfected or transduced with a polynucleotide encoding a KCNQ2-15b polypeptide. Also included are host cells that are transformed, transfected or transduced with a recombinant vector such as one of those described above. The cell hosts of the present invention can comprise any of the polynucleotides of the present invention.

Any host cell known by one of skill in the art may be used. Preferred host cells used as recipients for the polynucleotides and expression vectors of the invention include:

- a) Prokaryotic host cells: Escherichia coli strains (I.E.DH5-a strain), Bacillus subtilis, Salmonella typhimurium, and strains from species like Pseudomonas, Streptomyces and Staphylococcus.
- b) Eukaryotic host cells: CHO (ATCC No. CCL-61), HeLa cells (ATCC No. CCL2; No. CCL2.1; No. CCL2.2), Cv 1 cells (ATCC No. CCL70), COS cells (ATCC No. CRL1650; No. CRL1651), Sf-9 cells (ATCC No. CRL1711), C127 cells (ATCC No. CRL-1804), 3T3 (ATCC No. CRL-6361), human kidney 293. (ATCC No. 45504; No. CRL-1573), BHK (ECACC No. 84100501; No. 84111301), Saccharomyces cerevisiae strains such as AH109 and Y184, and Aspergillus niger strains.

Another object of the invention comprises methods of making the above vectors and host cells by recombinant techniques. Any well-known technique for constructing an expression vector and for delivering it to a cell may be used for construction and delivering the vectors of the present invention. Such techniques include but are not limited to the techniques detailed in the examples.

Another object of the present invention is a transgenic animal which includes within a plurality of its cells a cloned recombinant KCNQ2-15b polynucleotide. The terms "transgenic animals" or "host animals" are used herein to designate animals that have their genome genetically and artificially manipulated so as to include one of the nucleic acids according to the invention. The cells affected may be somatic, germ cells, or both. Preferred animals are non-human mammals and include those belonging to a genus selected from Mus (e.g. mice), Rattus (e.g. rats) and Oryctogalus (e.g. rabbits) which have their genome artificially and genetically altered by the insertion of a nucleic acid according to the invention. In 60 one embodiment, the invention encompasses non-human host mammals and animals comprising a recombinant vector of the invention or a KCNQ2-15b polynucleotide disrupted by homologous recombination with a knock out vector.

In a preferred embodiment, these transgenic animals may be good experimental models in order to study diverse pathologies related to KCNQ2-15b function. In particular, a transgenic animal wherein (i) an antisense mRNA binding to

45

naturally occurring KC NQ2-15b mRNAs is transcribed; or (ii) an mRNA expressing a KCNQ2-15b polypeptide; may be a good animal model for bipolar disorders and/or other mooddisorders.

5. Methods of Making the Polypeptides of the Present Invention

The present invention also relates to methods of making a KCNQ2-15b polypeptide.

In one embodiment, the KCNQ2-15b polypeptides of the present invention are isolated from natural sources, including tissues and cells, whether directly isolated or cultured cells, of humans or non-human animals. Soluble forms of KCNQ2-15b may be isolated from body fluids. Methods for extracting and purifying natural membrane spanning proteins are known in the art, and include the use of detergents or chaotropic agents to disrupt particles followed by, e.g., differential extraction and separation of the polypeptides by ion exchange chromatography, affinity chromatography, sedimentation according to density, and gel electrophoresis. The method described in Example 4 may for example be used. Polypeptides of the invention also can be purified from natural sources using antibodies directed against the polypeptides of the invention, such as those described herein, in methods which are well known in the art of protein purification.

In a preferred embodiment, the KCNQ2-15b polypeptides of the invention are recombinantly produced using routine expression methods known in the art. The polynucleotide encoding the desired polypeptide is operably linked to a promoter into an expression vector suitable for any convenient host. Both eukaryotic and prokaryotic host systems may be used in forming recombinant polypeptides. The polypeptide is then isolated from lysed cells or, if a soluble form is produced, from the culture medium and purified to the extent needed for its intended use.

Consequently, a further embodiment of the present invention is a method of making a polypeptide of the present invention, said method comprising the steps of:

- a) obtaining a polynucleotide encoding a KCNQ2-15b polypeptide;
- b) inserting said polynucleotide in an expression vector such that the polynucleotide is operably linked to a promoter; and
- c) introducing said expression vector into a host cell whereby said host cell produces said polypeptide.

In a preferred embodiment, the method further comprises the step of isolating the polypeptide. The skilled person will appreciate that any step of this method may be carried out separately. The product of each step may be transferred to another step in order to carry out the subsequent step.

In further embodiments, said polynucleotide consists of a CDS. In another aspect of this embodiment, said polynucleotide is a polynucleotide consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or a fragment thereof.

A further aspect of the invention relates to a method of 55 making a polypeptide, said method comprising the steps of culturing a host cell comprising an expression vector comprising a KCNQ2-15b polynucleotide under conditions suitable for the production of a KCNQ2-15b polypeptide within said host cell. In a preferred embodiment, the method further 60 comprises the step of purifying said polypeptide from the culture.

In another embodiment, it is often advantageous to add to the recombinant polynucleotide encoding a KCNQ2-15b polypeptide additional nucleotide sequence which codes for 65 secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues

or GST tags, or an additional sequence for stability during recombinant production. Soluble portions of the KCNQ 2-15b polypeptide may be, e.g., linked to an Ig-Fc part in order to generate stable soluble variants.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including but not limited to differential extraction, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, high performance liquid chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, immunochromatography and lectin chromatography.

The expressed KCNQ2-15b polypeptide may be purified using any standard immunochromatography techniques. In such procedures, a solution containing the polypeptide of interest, such as the culture medium or a cell extract, is applied to a column having antibodies against the polypeptide attached to the chromatography matrix. The recombinant protein is allowed to bind the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound proteins. The specifically bound secreted protein is then released from the column and recovered using standard techniques.

6. Antibodies of the Present Invention

The present invention further relates to antibodies that specifically bind to the polypeptides of the present invention. More specifically, said antibodies bind to the epitopes of the polypeptides of the present invention. The antibodies of the present invention include IgG (including IgG1, IgG2, IgG3, and IgG4), IgA (including IgA1 and IgA2), IgD, IgE, or IgM, and IgY. The term "antibody" (Ab) refers to a polypeptide or group of polypeptides which are comprised of at least one binding domain, where a binding domain is formed from the folding of variable domains of an antibody compound to form three-dimensional binding spaces with an internal surface shape and charge distribution complementary to the features of an antigenic determinant of an antigen, which allows an immunological reaction with the antigen. As used herein, the term "antibody" is meant to include whole antibodies, including single-chain whole antibodies, and antigen binding fragments thereof. In a preferred embodiment the antibodies are human antigen binding antibody fragments of the present invention include, but are not limited to, Fab, Fab' F(ab)2 and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a V_L or V_H domain. The antibodies may be from any animal origin including birds and mammals. Preferably, the antibodies are from human, mouse, rabbit, goat, guinea pig, camel, horse or chicken. The present invention further includes chimeric, humanized, and human monoclonal and polyclonal antibodies, which specifically bind the polypeptides of the present invention.

Preferred antibodies of the present invention recognize an epitope within amino acids 589 to 643 of SEQ ID NO: 2, wherein said one or more amino-acids are required for binding of the antibody to a KCNQ2-15b polypeptide. Other preferred antibodies of the present invention recognize one or more of the amino acids at positions 545 to 643 of SEQ ID NO: 2, wherein said one or more amino-acids are required for binding of the antibody to a KCNQ2-15b polypeptide. Most preferably, the antibodies of the present invention bind to a KCNQ2 polypeptide comprising exon 15b but not to a KCNQ2 polypeptide lacking exon 15b.

A preferred embodiment of the invention is a method of specifically binding an antibody of the present invention to a

KCNQ2-15b polypeptide. This method comprises the step of contacting the antibody of the present invention with a KCNQ2-15b polypeptide under conditions in which said antibody can specifically bind to said polypeptide. Such conditions are well known to those skilled in the art. This method 5 may be used to, e.g., detect, purify, or activate or inhibit the activity of KCNQ2-15b polypeptides.

The invention further relates to antibodies that act as modulators of the polypeptides of the present invention. Preferred antibodies are modulators that enhance the binding activity or the biological activity of the KCNQ2-15b polypeptide to which they bind. These antibodies may act as modulators for either all or less than all of the biological properties of the KCNQ2-15b polypeptide.

7. Uses of the Polypeptides of the Present Invention

The present invention is also directed to the use of a KCNQ2 polypeptide as a target for screening candidate modulators. As used herein, the term "KCNQ2 polypeptide" refers to any polypeptide encoded by the KCNQ2 gene. Thus the term "KCNQ2 polypeptide" encompasses all alternative splice variants encoded by the KCNQ2 gene, such as, e.g., KCNQ2-15b polypeptides and all previously described isoforms (see, e.g., SwissProtAccession No. 043526). As further used herein, the term "KCNQ2-fl" refers to a polypeptide of 25 SEQ ID NO: 7.

As used herein, the term "modulator" refers to a compound that increases or decreases any of the properties of a KCNQ2 polypeptide. As used herein, a "KCNQ2 modulator" refers to a compound that increases or decreases the activity of a 30 KCNQ2 polypeptide and/or to a compound that increases or decreases the transcription level of the KCNQ2 mRNA encoding said polypeptide. The term "modulator" encompasses both agonists and antagonists.

As used herein, a "KCNQ2 antagonist" refers to a compound that decreases the activity of a KCNQ2 polypeptide and/or to a compound that decreases the expression level of the KCNQ2 mRNA encoding said polypeptide. The terms "antagonist" and "inhibitor" are considered to be synonymous and can be used interchangeably throughout the disclo- 40 tide in the presence of said compound in comparison to the sure

As used herein, a "KCNQ2 agonist" refers to a compound that increases the activity of a KCNQ2 polypeptide and/or to a compound that increases the expression level of the KCNQ2 mRNA encoding said polypeptide. The terms "agonist" and 45 "activator" are considered to be synonymous and can be used interchangeably throughout the disclosure.

Methods that can be used for testing modulators for their ability to increase or decrease the activity of a KCNQ2 polypeptide or to increase or decrease the expression of a 50 KCNQ2 mRNA are well known in the art and further detailed below. Preferred modulators of the present invention are modulators of KCNQ2-15bx, KCNQ2-15by, KCNQ2-15bz or KCNQ2-fl. The assays described herein and known in the art for measuring KCNQ2 activity can be performed either in 55 vitro or in vivo.

Candidate compounds according to the present invention include naturally occurring and synthetic compounds. Such compounds include, e.g., natural ligands, small molecules, antisense mRNAs, antibodies, aptamers and short interfering 60 RNAs. As used herein, the term "natural ligand" refers to any signaling molecule that binds to a phosphatase comprising PP2A/Bγ in vivo and includes molecules such as, e.g., lipids, nucleotides, polynucleotides, amino acids, peptides, polypeptides, proteins, carbohydrates and inorganic molecules. As used herein, the term "small molecule" refers to an organic compound. As used herein, the term "antibody" refers

to a protein produced by cells of the immune system or to a fragment thereof that binds to an antigen. As used herein, the term "antisense mRNA" refers an RNA molecule complementary to the strand normally processed into mRNA and translated, or complemantary to a region thereof. As used herein, the term "aptamer" refers to an artificial nucleic acid ligand (see, e.g., Ellington and Szostak (1990) Nature 346: 818-822). As used herein, the term "short interfering RNA" refers to a double-stranded RNA inducing sequence-specific posttranscriptional gene silencing (see, e.g., Elbashir et al. (2001) Genes Dev. 15:188-200).

Such candidate compounds can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including, e.g., biological libraries, spatially 15 addressable parallel solid phase or solution phase libraries, and synthetic library methods using affinity chromatography selection. The biological library approach is generally used with peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomers, aptamers or small molecule libraries of compounds.

One example of a method that may be used for screening candidate compounds for a modulator is a method comprising the steps of:

- a) contacting a KCNQ2 polypeptide with the candidate compound; and
- b) testing the activity of said KCNQ2 polypeptide in the presence of said candidate compound,

wherein a difference in the activity of said KCNQ2 polypeptide in the presence of said compound in comparison to the activity in the absence of said compound indicates that the compound is a modulator of said KCNQ2 polypeptide.

Alternatively, the assay may be a cell-based assay comprising the steps of:

- a) contacting a cell expressing a KCNQ2 polypeptide with the candidate compound; and
- b) testing the activity of said KCNQ2 polypeptide in the presence of said candidate compound,

wherein a difference in the activity of said KCNQ2 polypepactivity in the absence of said compound indicates that the compound is a modulator of said KCNQ2 polypeptide.

The modulator may modulate any activity of said KCNQ2 polypeptide. The modulator may for example modulate KCNQ2 mRNA expression within a cell, or modulate the M-current generated by a potassium channel comprising the KCNQ2 polypeptide. Further activities that may be measured include KCNQ2 binding to PP2A/By, and to KCNQ2 binding to other potassium channel subunits. The phosphorylation state of a KCNQ2 polypeptide is a further activity of KCNQ2 that may be assessed in order to screen compounds. Most preferably, the activity of the KCNQ2 polypeptide is assessed by measuring the M-current. Methods for testing the above mentioned activities are well known to those of skill in the art, and may for example be performed as further detailed below.

Preferred modulators of the invention are modulators that increase or decrease:

KCNQ2 mRNA expression within a cell;

- the M-current generated by a potassium channel comprising a KCNQ2 polypeptide;
- binding of the KCNQ2 polypeptide to PP2A/By; and/or
- binding of the KCNQ2 polypeptide to other potassium channel subunits.

In a preferred embodiment, the activity of a KCNQ2 65 polypeptide is assessed by measuring the M-current generated by a potassium channel comprising the KCNQ2 polypeptide. Assays for measuring the M-current generated by a potassium channel are known by those of skill the art. An electrophysiologic assay for measuring the activity of the M-current generated by a potassium channel is for example described by Pan et al. and by Schwake et al. (Pan et al. (2001), J. Physiol., 531:347-358; Schwake et al. (2000), J. 5 Biol. Chem., 275:13343-13348). High-throughput fluorescence assays using membrane potential sensitive dyes has also been described to screen compounds on potassium channels. For example, EVOTEC has developed assays for testing the activity of ion channels (see, e.g., the world wide website 10 evotecoai.com). In such assays, the activity both of ho momeric KCNQ2 channels and of heteromeric channels may be tested. Homomeric channels that may be tested include, e.g., homomeric KCNQ2-fl and homomeric KCNQ2-15b channels. Heteromeric channels that may be tested include, 15 e.g., heteromeric KCNQ2-15b/KCNQ2-fl, heteromeric KCNQ2-fl/KCNQ3 and heteromeric KCNQ2-15b/KCNQ3 channels.

In another preferred embodiment, the activity of a KCNQ2 polypeptide is assessed by measuring the binding of the 20 KCNQ2 polypeptide to PP2A/B γ . The binding of a KCNQ2 polypeptide to PP2A/B γ can for example be measured by the yeast mating test as described in example 3 or by the solid phase overlay assay as described in example 6.

In another preferred embodiment, the activity of a KCNQ2 25 polypeptide is assessed by measuring the binding of the KCNQ2 polypeptide to other potassium channels subunits. This assay may also be performed using the yeast mating test or the solid phase overlay assay described in examples 3 and 6. 30

In a further preferred embodiment, the activity of a KCNQ2 polypeptide is assessed by measuring the KCNQ2 mRNA levels within a cell. In this embodiment, the activity can for example be measured using Northern blots, RT-PCR, quantitative RT-PCR with primers and probes specific for 35 KCNQ2 mRNAs. The term "KCNQ2 mRNA" as used herein encompasses all alternative splice variants translated from the KCNQ2 gene such as, e.g., SEQ ID Nos 1, 3, 5 and EMBL Accession Nos. NM_172107, NM_172106, NM_004518, NM_172108 and NM_172109. The primers and probes may 40 detect one specific KCNQ2 splice variant or detect all alternative splice variants translated from the KCNQ2 gene. Alternatively, the expression of the KCNQ2 mRNA is measured at the polypeptide level, by using labeled antibodies that specifically bind to the KCNQ2 polypeptide in immunoassays 45 such as ELISA assays, or RIA assays, Western blots or immunohistochemical assays. The KCNQ2 antibody may detect one specific KCNQ2 splice variant or detect all alternative splice variants translated from the KCNQ2 gene.

In another embodiment, the activity of a KCNQ2 polypep- 50 tide is measured by determining the phosphorylation state of the KCNQ2 polypeptide as described in example 7. In the frame of the present invention, it has been found that (I) KCNQ2-15b polypeptides are dephosphorylated by a PP2A phosphatase comprising a PP2A/B γ subunit, the gene encod-55 ing the PP2A/B γ subunit being associated with bipolar disorder; and (ii) phosphorylated by GSK3 β , a kinase that is inhibited by mood stabilizing agents. Thus the phosphorylation state of a KCNQ2 polypeptide is believed to be correlated with the biological activity of the KCNQ2 polypeptide. The 60 phosphorylation state of a KCNQ2 polypeptide may for example be measured in an assay as described in example 7.

One preferred embodiment is directed to the use of a KCNQ2-15b polypeptide as a target for screening candidate modulators. Another preferred embodiment is directed to the 65 use of a KCNQ2-fl polypeptide as a target for screening candidate modulators.

Modulators of KCNQ2 polypeptides, which may be found, e.g., by any of the above screenings, are candidate drugs for the treatment of a mental disorder. Thus a preferred embodiment of the present invention is the use of a KCNQ2 polypeptide as a target for screening candidate compounds for candidate drugs for the treatment of a mental disorder.

As used herein, the term "Mental disorder" includes bipolar disorder, schizophrenia, depression as well as other mood disorders and psychotic disorders. Preferably, said mental disorder is bipolar disorder, schizophrenia or depression. Most preferably, said mental disorder is bipolar disorder.

A further aspect of the present invention is the use of a modulator of a KCNQ2 polypeptide for screening for drugs for the treatment of a mental disorder. One example of a method that can be used for screening for drugs for the treatment of a mental disorder and/or for assessing the efficiency of an modulator of a KCNQ2 polypeptide for the treatment of a mental disorder is a method comprising the step of administering said modulator to an animal model for said mental disorder, wherein a determination that said modulator ameliorates a representative characteristic of said mental disorder in said animal model indicates that said modulator is a drug for the treatment of said mental disorder.

Animal models for mental disorders and assays for determining whether a compound ameliorates a representative characteristic of said mental disorder in said animal model are described and used. For example, animal models that may be used in the above method include but are not limited to the conditioned avoidance behaviour model in rats, which is a standard behavioural test predictive of antipsychotic activity, the behavioral activity assessment of mice and rats in the Omnitech Digiscan animal activity monitors, the purpose of which is to evaluate compounds for antipsychotic-like CNS effects and a variety of other behavioral effects generally associated with CNS activity, the blockade of amphetaminestimulated locomotion in rat, the protocol for the prepulse inhibition of acoustic startle model in rats, the inhibition of apomorphine-induced climbing behaviour and the inhibition of DOI-induced head twitches and scratches. A preferred animal model is the STOP -/- mice with synaptic defects and severe behavioral disorders described by Andrieux et al. (2002, Genes Dev., 16:2350-2364).

A further aspect of the present invention is directed to the use of a modulator of a KCNQ2 polypeptide for preparing a medicament for the treatment of a mental disorder. Such a medicament comprises said modulator of a KCNQ2 polypeptide in combination with any physiologically acceptable carrier. Physiologically acceptable carriers can be prepared by any method known by those skilled in the art. Physiologically acceptable carriers include but are not limited to those described in Remington's Pharmaceutical Sciences (Mack Publishing Company, Easton, USA 1985). Pharmaceutical compositions comprising a modulator of a KCNQ2 polypeptide and a physiologically acceptable carrier can be for, e.g., intravenous, topical, rectal, local, inhalant, subcutaneous, intradermal, intramuscular, oral, intracerebral and intrathecal use. The compositions can be in liquid (e.g., solutions, suspensions), solid (e.g., pills, tablets, suppositories) or semisolid (e.g., creams, gels) form. Dosages to be administered depend on individual needs, on the desired effect and the chosen route of administration.

Such a medicament comprising a KCNQ2 modulator or a gene therapy vector of the invention may be used in combination with any known drug for the treatment of a mental disorder. The modulator may for example be administered in combination with a mood-stabilizing drug used for treating bipolar disorder such as, e.g., lithium, carbamazepine or

divalproex. The modulator may also be administered in combination with an antidepressant such as, e.g., a tricyclic antidepressant, a selective serotonin reuptake inhibitor, a monoamine oxidase inhibitor or a psychostimulant. When treating schizophrenia and other psychotic disorders, the 5 modulator may for example be administered in combination with an antipsychotic drugs such as, e.g., chlorpromazine, clozapine, risperidone or olanzapine.

In all the above embodiments, preferred modulators are modulators of KCNQ2-15b polypeptides or of KCNQ2-fl. 10 Preferred modulators of KCNQ2-15b polypeptides are modulators that specifically modulate a polypeptide comprising exon 15b shown at position 545 to 643 of SEQ ID NO: 2. Preferred KCNQ2-fl modulators are modulators that specifically modulate a polypeptide comprising exons 16 and 17 15 shown at position 588 to 872 of SEQ ID NO: 7.

The present invention further relates to methods for screening for natural binding partners of a KCNQ2 polypeptide. Such methods include the yeast two-hybrid screening that is described in example 1. Identifying natural biding partners of a KCNQ2 polypeptide may be preformed by replacing the CDS encoding PP2A/By with a polynucleotides encoding a KCNQ2 polypeptide. Using a KCNQ2 polypeptide as a target has a great utility for the identification of proteins involved in bipolar disorder and for providing new intervention points in 25 the treatment of bipolar disorder and other mood disorders.

8. Biallelic Markers of the Present Invention

The present invention is directed to the use of at least one KCNQ2-related biallelic marker for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder. As used herein, the term "KCNQ2-related biallelic marker" refers to a biallelic marker located in an exon of the KCNQ2 gene, in an intron of the KCNQ2 gene, or in the regulatory regions of the KCNQ2 gene. KCNQ2-related biallelic markers encompass the biallelic markers shown in table 3B in Example 12. In one embodiment, a single biallelic marker is used for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder by determining the genotype of an individual. In another embodiment, a combination of several biallelic markers may be used for diagnosing whether an individual suffers from or 40 is at risk of suffering from a mental disorder by determining the haplotype of an individual. For example, a two-markers haplotype, a three-markers haplotype or a four-markers haplotype may be determined.

As used herein, the term "biallelic marker" refers to a 45 polymorphism having two alleles at a fairly high frequency in the population, preferably a single nucleotide polymorphism. Typically the frequency of the less common allele of the biallelic markers of the present invention has been validated to be greater than 1%, preferably the frequency is greater than $_{50}$ 10%, more preferably the frequency is at least 20% (i.e. heterozygosity rate of at least 0.32), even more preferably the frequency is at least 30% (i.e. heterozygosity rate of at least 0.42). In the present specification, the term "biallelic marker" is used to refer both to the polymorphism and to the locus carrying the polymorphism.

As used herein, the term "genotype" refers to the identity of the alleles present in an individual or a sample. The term "genotype" preferably refers to the description of both copies of a single biallelic marker that are present in the genome of an individual. The individual is homozygous if the two alleles 60 of the biallelic marker present in the genome are identical. The individual is heterozygous if the two alleles of the biallelic marker present in the genome are different.

The term "genotyping" a sample or an individual for a biallelic marker involves determining the specific alleles or the specific nucleotides carried by an individual at a biallelic marker.

As used herein, the term "haplotype" refers to a set of alleles of closely linked biallelic markers present on one chromosome and which tend to be inherited together.

Methods for determining the alleles, genotypes or haplotypes carried by an individual are well known by those of skill in the art and further detailed below.

In all embodiments, preferred "mental disorders" include bipolar disorder, schizophrenia and depression. Most preferred mental disorder is bipolar disorder.

In the context of the present invention, the individual is generally understood to be human.

As shown in Example 15, biallelic markers 30-2/62 and 30-7/30 are bipolar disorder-associated markers. Preferred embodiments of the present invention are thus directed to the use of biallelic markers 30-2/62 and 30-7/30. The alternative alleles of biallelic markers 30-2/62 and 30-7/30 are indicated in table 3B in example 12. Positions of biallelic markers 30-2/62 and 30-7/30 on SEQ ID NO: 43 and SEQ ID NO: 45 respectively are also indicated in table 3B. Other preferred embodiments are directed to the use of biallelic markers complementary to 30-2/62 and 30-7/30, i.e., the corresponding alternative alleles that are located on the complementary strand of DNA.

Accordingly, a preferred embodiment of the present invention is directed to the use of biallelic markers 30-2/62 and 30-7/30 and the complements thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder. Preferably, the individual is a Caucasian individual. Most preferably, the individual is a Caucasian individual of British Isles origin.

The risk genotypes for biallelic markers 30-2/62 and 30-7/ 30 are indicated in table 6B. "Risk genotype" means that the probability of having bipolar disorder is higher for an individual carrying the risk genotype than for an individual carrying another genotype. The risk genotype for biallelic marker 30-2/62 is "AG". Thus a preferred embodiment of the present invention is the use of biallelic markers 30-2/62 or the complement thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder, wherein the presence of a genotype "AG" at biallelic marker 30-2/62 is indicative of said individual suffering from or being at risk of suffering from said mental disorder. The risk genotype for biallelic marker 30-7/30 is "CC". Thus a preferred embodiment of the present invention is the use of biallelic markers 30-2/62 or the complement thereof for diagnosing whether an individual suffers from or is at risk of suffering from a mental disorder, wherein the presence of a genotype "CC" at biallelic marker 30-7/30 is indicative of said individual suffering from or being at risk of suffering from said mental disorder.

The present invention is further directed to the use of at least one KCNQ2-related biallelic marker for determining whether there is a significant association between said marker and a mental disorder. Such determination can for example be performed using methods described in examples 10 to 15 below but using populations that are different from the UCL and the Labimo populations, such as populations having different ethnic origins. The KCNQ2-related biallelic marker may be selected from the group consisting of 30-2162 and 30-7/30 and the complements thereof. Alternatively, The KCNQ2-related biallelic marker may be selected from the group consisting of 30-4/58, 30-17/37, 30-84/37 and 30-15/ 54 and the complements thereof. The KCNQ2-related biallelic marker may also be a marker that is not specifically disclosed by the present specification. Preferably, the mental disorder is selected from the group consisting of bipolar disorder, schizophrenia and depression. Most preferably, the mental disorder is bipolar disorder.

The present invention is further directed to a method of genotyping comprising the step of determining the identity of

a nucleotide at a KCNQ2-related biallelic marker or the complement thereof in a biological sample. Preferably, said biological sample is derived from a single subject. It is preferred that the identity of the nucleotides at said biallelic marker is determined for both copies of said biallelic marker present in said individual's genome. In a preferred embodiment, the identity of the nucleotide at said biallelic marker is determined by a microsequencing assay. Preferably, a portion of a sequence comprising the biallelic marker is amplified prior to the determination of the identity of the nucleotide. The amplification may preferably be performed by PCR. Such a method of genotyping may for example be performed using any of the protocols described in examples 10 to 14 of the present specification. Further methods of genotyping are well known by those of skill in the art and any other known protocol may be used.

Methods well-known to those skilled in the art that may be used for genotyping in order to detect biallelic polymorphisms include methods such as, conventional dot blot analyzes, single strand conformational polymorphism analysis (SSCP) (Orita et al. (1989) Proc Natl Acad Sci USA 86:2766-20 2770), denaturing gradient gel electrophoresis (DGGE) (Borresen et al. (1988) Mutat Res. 202:77-83.), heteroduplex analysis (Lessa et al. (1993) Mol Ecol. 2:119-129), mismatch cleavage detection (Grompe et al. (1989) Proc Natl Acad Sci USA. 86:5888-5892). Another method for determining the 25 identity of the nucleotide present at a particular polymorphic site employs a specialized exonuclease-resistant nucleotide derivative as described in U.S. Pat. No. 4,656,127. Oligonucleotide microarrays or solid-phase capturable dideoxynucleotides and mass spectrometry may also be used (Wen et al. (2003) World J Gastroenterol. 9:1342-1346; Kim et al. (2003) Anal Biochem. 316:251-258). Preferred methods involve directly determining the identity of the nucleotide present at a biallelic marker site by sequencing assay, microsequencing assay, enzyme-based mismatch detection assay, or hybridization assay.

As used herein, the term "biological sample" refers to a sample comprising nucleic acids. Any source of nucleic acids, in purified or non-purified form, can be utilized as the starting nucleic acid, provided it contains or is suspected of containing the specific nucleic acid sequence desired. DNA 40 or RNA may be extracted from cells, tissues, body fluids and the like.

Methods of genotyping find use in, e.g., in genotyping case-control populations in association studies as well as in genotyping individuals in the context of detection of alleles of 45 biallelic markers which are known to be associated with a given trait. In the context of the present invention, a preferred trait is a mental disorder selected from the group of bipolar disorder, schizophrenia and depression, and most preferably bipolar disorder.

Accordingly, a preferred embodiment is directed to a method of diagnosing a mental disorder in an individual comprising the step of genotyping at least one KCNQ2-related biallelic marker using a method of genotyping comprising the step of determining the identity of a nucleotide at a KCNQ2-related biallelic marker or the complement thereof in a biological sample derived from said individual. Such a diagnosing method may further comprise the step of correlating the result of the genotyping step with a risk of suffering from said mental disorder. Typically, the presence of the risk 60 allele, risk genotype or risk haplotype of the genotyped KCNQ2-related biallelic marker(s) is correlated with a risk of suffering from the mental disorder. Preferably, said KCNQ2related biallelic marker is selected from the group consisting of 30-2/62 and 30-7/30 and the complements thereof. In one embodiment, the presence of a genotype "AG" at biallelic 65 marker 30-2/62218 is indicative of a risk of suffering from said mental disorder. In another embodiment, the presence of

a genotype "CC" at biallelic marker 30-7130 is indicative of a risk of suffering from said mental disorder. Preferably, the mental disorder is selected from the group consisting of bipolar disorder, schizophrenia and depression. Most preferably, the mental disorder is bipolar disorder.

The present invention is further directed to the use of at least one KCNQ2-2-related biallelic marker for determining the haplotype of an individual. When determining the haplotype of an individual, each single chromosome should be studied independently. Methods of determining the haplotype of an individual are well known in the art and include, e.g., asymmetric PCR amplification (Newton et al. (1989) Nucleic Acids Res. 17:2503-2516; Wu et al. (1989) Proc. Natl. Acad. Sci. USA. 86:2757-2760), isolation of single chromosome by limit dilution followed by PCR amplification (Ruano et al. (1990) Proc. Natl. Acad. Sci. USA. 87:6296-6300) and, for sufficiently close biallelic markers, double PCR amplification of specific alleles (Sarkar and Sommer, (1991) Biotechniques. 10:436-440)

Thus the present invention is further directed to the use of at least one KCNO2-related biallelic marker for determining the haplotype of an individual. For example, a method for determining a haplotype for a set of biallelic markers in an individual may comprise the steps of: a) genotyping said individual for at least one KCNQ2 related biallelic marker, b) genotyping said individual for a second biallelic marker by determining the identity of the nucleotides at said second biallelic marker. Preferably, both markers are KCNQ2-related biallelic markers. Methods of determining a haplotype for a combination of more than two biallelic markers comprising at least one KCNQ2-related biallelic marker in an individual are also encompassed by the present invention. In such methods, step (b) is repeated for each of the additional markers of the combination. Such a combination may comprise, e.g., 3, 4 or 5 biallelic markers. These biallelic markers may all be KCNQ2-related biallelic markers.

When estimating haplotype frequencies in a population, one may use methods without assigning haplotypes to each individual. Such methods use a statistical method of haplotype determination. Thus another aspect of the present invention encompasses methods of estimating the frequency of a haplotype for a set of biallelic markers in a population, comprising the steps of: a) genotyping each individual in said population for at least one KCNQ2-related biallelic marker, b) genotyping each individual in said population for a second biallelic marker by determining the identity of the nucleotides at said second biallelic marker; and c) applying a haplotype determination method to the identities of the nucleotides determined in steps a) and b) to obtain an estimate of said frequency. Such a method may also be performed for a combination of more than 2 biallelic markers. Step (c) may be performed using any method known in the art to determine or to estimate the frequency of a haplotype in a population. Preferably, a method based on an expectation-maximization (EM) algorithm (Dempster et al. (1977) JRSSB, 39:1-38; Excoffier and Slatkin, (1995) Mol Biol Evol. 12:921-7) leading to maximum-likelihood estimates of haplotype frequencies under the assumption of Hardy-Weinberg proportions (random mating) is used for performing step (c).

EXAMPLES

Example 1

Yeast Two-Hybrid Screening

1. Construction of pGBKT7-PPP2R2C

The full-length coding region of the PPP2R2C gene, which encodes the PP2A/By subunit, was first amplified from a Human fcetal brain cDNA library (Marathon-Ready cDNA,

45

Clontech) with the two gene-specific primers of SEQ ID NO: 8 and of SEQ ID NO: 9. This first PCR product was then amplified with a new combination of primers of SEQ ID NO: 10 and of SEQ ID NO: 11. The amplified fragment encompassed nucleotides 52-1540 of the full-length cDNA, genbank accession number AF086924 extended, respectively, with EcoRI and BamHI cloning sites. The resulting 1503-bp fragment was digested with EcoRI and BamHI, purified and inserted into EcoRI and BamHI cloning sites of the pGBKT7 vector (Clontech).

2. The Yeast Two-Hybrid Screening

A yeast two-hybrid screening was performed to find polypeptides interacting with the PP2A/By subunit. The Saccharomyces cerevisiae strain AH109 (MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1_{UAS}-GAL1_{TATA}-HIS3, GAL2_{UAS}-GAL2_{TATA}-ADE2, URA3:: MEL1_{UAS}-MEL1_{TATA}-lacZ) was transformed with the pGBKT7-PPP2R2C construction. A lithium acetate transformation procedure was done according to the manufacturer's instructions (Matchmaker Two-Hybrid system, Clontech). 20 The MATa transformed cells expressing the bait were then mixed with a pretransformed Matchmaker Human brain cDNA library in the Y187 strain (MAT α, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4 Δ , met⁻; gal80 Δ , URA3::GAL1_{UAS}-GAL1_{TATA}-lacZ). Three independent mat-25 ing were performed with respectively 5.10⁶, 5.10⁶ and 2.10⁵ clones of the Human brain cDNA library. The resulting diploid cells able to grow on SD/-Leu/-Trp medium containing plates were further selected onto the medium-stringency SD/-Leu/-Trp/-His selective medium for the identification of baitprey interactions. Positive colonies were then picked up and 30 plated onto the high-stringency SD/-Leu/-Trp/-His/-Ade selective medium. Only cDNA of colonies able to grow at the same time on SDI-Leu/-Trp and SDI-Leu/-Trp/-His/-Ade media was retained for sequencing and further studies.

3. Results of the He Yeast Two-Hybrid Screening

494 clones were obtained, sequenced and analyzed. Among these clones, the 2E11 and 1D3 clones comprised partial cDNAs encoding a novel splice variant of the KCNQ2 potassium channel. 2E11 comprised a cDNA encoding amino acids 433 to 643 of SEQ ID NO: 2, and 1D3 comprised a 40 cDNA encoding amino acids 454 to 643 of SEQ ID NO: 2. The full-length splice variants were cloned and sequenced as described in Example 2.

Example 2

Cloning of the Full-Length KCNQ2 Splice Variants

1. Cloning and Sequencing

Poly(A)+ mRNA from Human brain, thalamus (Clontech) 50 were reversed transcribed (RT) using the murine Moloney leukemia virus reverse transcriptase (RT-PCR Advantage kit,

Clontech) with a primer of SEQ ID NO: 12 hybridizing specifically with the novel splice variant cloned in 2E11. After a phenol-chloroform extraction and precipitation steps, the products obtained by the previous RT-PCR were directly PCR-amplified using the following gene-specific primers of SEQ ID NO: 13 and of SEQ ID NO: 14. The amplified fragment encompassed nucleotides 127-148 of the KCNQ2 full-length cDNA, genbank accession number AF033348. These primers were respectively extended with EcoRI and BgIII cloning sites. The PCR products were digested with EcoRI and BglII restriction enzymes (New England Biolabs), purified and then ligated into the EcoRI and BgIII cloning sites of the pCMV-Myc vector (Clontech). The two pCMV-Myc-3H9 and pCMV-Myc-3H2 clones were fully sequenced. The sequence of the insert in pCMV-Myc-3H2 comprises SEQ ID NO: 1, and the sequence of the insert in pCMV-Myc-3H9 comprises SEQ ID NO: 3.

Similarly, a cDNA was cloned from a poly(A)+ mRNA library from human foetal brain. One clone was obtained and fully sequenced. Its insert comprised SEQ ID NO: 5.

2. Description of the Novel Splice Variants

SEQ ID NO: 1 encodes the polypeptide of SEQ ID NO: 2 (KCNQ2-15bx). SEQ ID NO: 3 encodes the polypeptide of SEQ ID NO: 4 (KCNQ2-15by). SEQ ID NO: 5 encodes the polypeptide of SEQ ID NO: 6 (KCNQ2-15bz). SEQ ID NO: 7 corresponds to the full-length KCNQ2 polypeptide (KCNQ2-fl).

As shown on the alignment between SEQ ID NO: 7, SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6 (FIG. 1), the three splice variants display a novel carboxyl-terminal extremity compared to KCNQ2. The 55 carboxyl-terminal amino acids of SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6 are unique to these three splice variants. These 55 amino acids correspond to the amino acids at position 589 to 643 of SEQ ID NO: 2.

The genomic structure of the KCNQ2 gene is shown on FIG. 3 and in table 1. The KCNQ2 gene is comprised of 17 exons. None of the novel splice variants displays the exons corresponding to exons 15, 16 and 17 of the KCNQ2 gene. They all display a novel exon, exon 15b, which encodes the amino acids at position 545 to 643 of SEQ ID NO: 2. The 44 first amino acids encoded by exons 15 and 15b are identical (amino acids at position 545 to 588 of SEQ ID NO: 2). The 55 last amino acids encoded by exon 15b are unique to exon 15b (amino acids at position 589 to 643 of SEQ ID NO: 2). Furthermore, the novel splice variants do not display exons 16 and 17 of KCNQ2-fl. The most carboxyl-terminal exon of these splice variants is exon 15b. SEQ ID NO: 2 further comprises exon 1 to exon 14 of KCNQ2. Exon 12 of KCNQ2 is lacking in SEQ ID NO: 4. Exons 9 and 12 of KCNQ2 are lacking in SEQ ID NO: 6.

The insert of the 2E11 clone, which corresponds to a partial cDNA, comprises exons 13, 14 and 15b.

TABLE 1

Exon No.	SEQ ID NO: 1	Encodes AA of SEQ ID NO: 2	SEQ ID NO: 3	Encodes AA of SEQ ID NO: 4	SEQ ID NO: 5	Encodes AA of SEQ ID NO: 6	Encodes AA of SEQ ID NO: 7
1	1-296	1-98	1-296	1-98	1-296	1-98	1-98
2	297-387	100-129	297-387	100-129	297-387	100-129	100-129
3	388-514	130-171	388-514	130-171	388-514	130-171	130-171
4	515-690	173-230	515-690	173-230	515-690	173-230	173-230
5	691-816	231-272	691-816	231-272	691-816	231-272	231-272
6	817-927	273-309	817-927	273-309	817-927	273-309	273-309
7	928-1023	310-341	928-1023	310-341	928-1023	310-341	310-341
8	1024-1118	342-372	1024-1118	342-372	1024-1118	342-372	342-372
9	1119-1148	374-382	1119-1148	374-382	/	/	374-382

20

TABLE 1-continued

Exon No.	SEQ ID NO: 1	Encodes AA of SEQ ID NO: 2	SEQ ID NO: 3	Encodes AA of SEQ ID NO: 4	SEQ ID NO: 5	Encodes AA of SEQ ID NO: 6	Encodes AA of SEQ ID NO: 7
10	1149-1217	384-405	1149-1217	384-405	1119-1187	374-395	384-405
11	1218-1247	407-415	1218-1247	407-415	1188-1217	397-405	407-415
12	1248-1301	417-433	/	/	/	/	417-433
13	1302-1525	435-508	1248-1471	417-490	1218-1441	407-480	435-508
14	1526-1631	510-543	1472-1577	492-525	1442-1547	482-515	510-543
15	/	/	/	/	/	/	545-587
15b	1632-1929	545-643	1578-1875	527-625	1548-1845	517-615	/
16	/	/	/	/	/	/	588-629
17	/	/	/	/	/	/	630-872

Example 3

Yeast Mating Test

1. Construction of Vectors

1.1. EX13-17, which Comprises Exons 13, 14, 15, 16 and 17.

The pGADT7-EX13-17 plasmid was constructed as follows: a 1414-bp fragment was first PCR-amplified from a 25 Human total brain cDNA library (Marathon-Ready cDNA, Clontech) with two gene-specific primers of SEQ ID NO: 15 and of SEQ ID NO: 16. This first PCR product was then amplified with a second set of gene-specific primers of SEQ ID NO: 17 and 5' of SEQ ID NO: 18. These primers are 30 extended, respectively, with EcoRI and BamHI cloning sites. After digestion With EcoRI and BamHI restriction enzymes, the 1338-bp purified fragment was ligated to the same cloning sites of pGADT7 (Clontech).

1.2. EX13-15, which Comprises Exons 13, 14 and 15.

The pGADT7-EX13-15 plasmid was obtained as follows: a 484-bp fragment was PCR-amplified with primers of SEQ ID NO: 19 and of SEQ ID NO: 20, which are respectively extended with EcoRI and BamHI cloning sites, from the first PCR product of the pGADT7-EX13-17 construction. The 40 resulting fragment was then digested with EcoRI and BamHI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

1.3. EX16-17, which Comprises Exons 16 and 17.

The pGADT7-EX16,17 plasmid was obtained as follows: a 45 883-bp fragment was PCR-amplified with primers of SEQ ID NO: 21 and of SEQ ID NO: 22, which are respectively extended with EcoRI and BamHI cloning sites, from the first PCR product of the pGADT7-EX13-17 construction. The resulting fragment was then digested with EcoRI and BamHI, 50 purified, and ligated to the same cloning sites of pGADT7 (Clontech).

1.4. EXsp15b, which Comprises the Region Unique to Exon 15b.

The pGADT7-EXsp15b plasmid was constructed as fol-55 lows: a 400-bp fragment was PCR-amplified with a primer of SEQ ID NO: 23 extended with EcoRI cloning site, and with a primer of SEQ ID NO: 24 from the pACT2-2E11 plasmid (see example 1). The resulting fragment was then digested with EcoRI and XhoI, purified, and ligated to the same clon-60 ing sites of pGAD7 (Clontech).

1.5. EXco15, which Comprises the Region Common to Exon 15 and Exon 15b.

The pGADT7-EXco15 domain plasmid was constructed as follows: a 146-bp fragment was PCR-amplified with primers 65 of SEQ ID NO: 25 and of SEQ ID NO: 26, which are respectively extended with EcoRI and BamHI cloning sites, from

the pACT2-2E11 plasmid. The resulting fragment was then digested with EcoRI and BamHI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

1.6. EX13-14, which Comprises Exons 13 and 14.

The pGADT7-EX13-14 plasmid was constructed as follows: a 300-bp fragment was PCR-amplified with primers of SEQ ID NO: 27 and of SEQ ID NO: 28, which are respectively extended with EcoRI and BamHI cloning sites, from the pACT2-2E11 plasmid. The resulting fragment was then digested with EcoRI and BamHI, purified, and ligated to the same cloning sites of pGADT7 (Clontech).

2. Protocol of the Yeast Mating Test

Yeast mating tests were performed to map the interaction domains between the different partners. The chosen Saccharomyces cerevisiae mating partner strains (AH109 and Y184) were transformed separately with the plasmids to be tested in combination with the plasmid of interest. The lithium acetate 35 transformation procedure was done according to the manufacturer's instructions (Matchmaker Two-Hybrid system, Clontech). Transformants were selected on the appropriate SD dropout medium (Clontech). One fresh colony of each type to use was picked from the working stock plates and both placed in one 1.5 ml microcentrifuge tube containing 0.5 ml of YPD medium (Clontech). Cells were then incubated for 24 hr at 30° C. with shaking at 200 rpm. 10 µl of a 1:100 dilution of the mating culture were then spread on the appropriate SD medium: SD/-Leu/-Trp, and SDI-Leu/-Trp/-His/-Ade. After 7 to 15 days of growth on selective medium positive colonies were counted.

3. Results of the Direct Mating Tests Between KCNQ2 Polypeptides and PP2A/By

Mating tests between each of the above constructions and the pGBKT7-PPP2R2C construction described in example 1 were performed. The results are shown on FIG. **2**. The sign "+" indicates that colonies grew, thus indicating that the tested polypeptide is capable of interacting with PP2A/By. The sign "-" indicates that no colony grew, thus indicating that the tested polypeptide does not interact with PP2A/By.

EX13-17, EX16-17, EX13-14 and EXsp15b do not interact with PP2A/Bγ. EX13-15b, EX13-15 and EXco15 interact with PP2A/Bγ. EX13-15b interacts with PP2A/Bγ, showing that KCNQ2-15b polypeptides are capable of interacting with PP2A/Bγ. Since EX13-15b, EX13-15 and EXco15 but not EXsp15b interact with PP2A/Bγ, the common region between exon 15 and exon 15b plays a role in this interaction. Furthermore, since EX13-17 does not interact with PP2A/Bγ, the fact that exon 15 or that exon 15b is located at the most carboxyl extremity of the KCNQ2 polypeptide is of importance for efficient interaction with PP2A/Bγ.

4. Results of the Direct Mating Tests Between Different KCNQ2 Polypeptides

Mating tests between the different above constructions were performed, and the results are shown on FIG. **4**. 4 mating tests were performed for each pair of constructs and the 5 results are shown on FIG. **3**. The sign "++" indicates that all 4 colonies grew. The sign "++" indicates that 3 colonies out of 4 grew. The sign "-/+" indicates that 1 colony out of 4 grew. The sign "-" indicates that no colony grew.

This experiment shows that KCNQ2-15b polypeptides can 10 associate and form homodimers. KCNQ2-15b polypeptides can also associate and form heterodimers with KCNQ2 polypeptides comprising exon 15 at their carboxyl-terminal extremity. KCNQ2-15b polypeptides associate with KCNQ2-fl polypeptides at a lesser extent.

Example 4

Expression and Purification of Glutathione S-Transferase Fusion Proteins

1. Construction of Plasmids

1.1. pGBKT7-2E11

The pACT2-2E11 plasmid rescued from yeast two-hybrid screening was digested with EcoRI and BgIII and the resulting 687-bp fragment inserted after purification into EcoRI and BamHI cloning sites of the pGBKT7 vector (Clontech).

2.2. pGEX-2TK-2E11

A partial cDNA of the KCNQ2 splice variants was PCRamplified from the pACT2-2E11 plasmid rescued from yeast two-hybrid screening using a gene-specific primer of SEQ ID NO: 29 and a primer in the pACT2 vector of SEQ ID NO: 30. These primers were respectively extended with BamHI and EcoRI cloning sites. The 892-bp PCR product was digested with BamHI and EcoRI, purified and inserted into BamHI and EcoRI sites of pGEX-2TK vector (Amersham Pharmacia 35 Biotech). The pACT2 plasmid used for this construction was recovered from diploid cells as follows: a fresh colony of diploid cells was inoculated into 5 ml of SD/-Leu/-Trp (Clontech) and let to grow overnight at 30° C. with shacking at 200-250 rpm. Cells corresponding to 2 ml of the overnight $_{40}$ culture were spun down by centrifuging at 4300 rpm for 10 min. The pellet was resuspended in 100 µl of zymolyase (1 U/µl) (Seikagaku Corporation) and incubated 1 hr at 30° C. Then 100 µl of a proteinase K mix (100 mM NaCl, 10 mM Tris-HCl pH [pH 8.0], 25 mM EDTA, 0.5% SDS, 0.1 mg/ml 15 proteinase K) were added for 2.5 hr at 40° C. DNA was extracted by two successive phenol:chloroform steps and precipitated with 0.3 M sodium acetate and 2.5 volumes of ethanol. DH10B ElectroMAX competent cells (Invitrogen) were transformed with DNA and selected on agar plates supplemented with 120 µg/ml Ampicillin. The protein 50 encoded by pGEX-2TK-2E11 was named GST-2E11.

1.3. pGEX-2TK-PPP2R2C

A 1485-bp fragment of PPP2R2C encompassing nucleotides 55-1540 of the full-length cDNA of PP2A/Bγ (genbank accession number AF086924) was PCR-amplified from ⁵⁵ the pGBKT7-PPP2R2C plasmid using gene-specific primers of SEQ ID NO: 31 and of SEQ ID NO: 32, which are respectively extended with BamHI and EcoRI cloning sites. The fragment was digested by BamHI and EcoRI, purified and ligated to the same cloning sites of pGEX-2TK vector (Amersham Pharmacia Biotech). The protein encoded by pGEX-2TK-2E11 is named GST-PPP2R2C.

1.4. pGEX-2TK-KCNQ2-Cter

A 1393-bp fragment of a KCNQ2-fl encompassing nucleotides 1544-2924 of the full-length cDNA (genbank accession number AF033348) was PCR-amplified from the pCMV-HA-KCNQ2-isol construction using gene-specific

primers: of SEQ ID NO: 33 and of SEQ ID NO: 34, which are respectively extended with XhoI and EcoRI cloning sites. This PCR product was digested with XhoI and EcoRI, purified and substituted at the same sites for a 767-bp XhoI-EcoRI fragment of the pGEX-2TK-2E11 plasmid. The pCMV-HA-KCNQ2-isol plasmid used for the construction of pGEX-2TK-KCNQ2-Cter was obtained as follows: the full-length coding region for KCNQ2-fl (encompassing nucleotides 126-2924 of the full-length cDNA, genbank accession number AF033348) was first amplified from a Human brain cDNA library (Marathon-Ready cDNA, Clontech) using gene specific primers of SEQ ID NO: 35 and of SEQ ID NO: 36, which are respectively extended with EcoRI and BgIII cloning sites. The PCR product was digested with EcoRI and BglII, purified 15 and ligated to the same cloning sites of the pCMV-HA vector (Clontech). The protein encoded by pGEX-2TK-2E11 is named GST-KCNQ2-Cter.

2. Expression and Purification

Glutathione S-transferase fusion protein expression and purification by adapting the method described by Kaelin et al. (1991, Cell, 64:521-532). Overnight cultures of MAX Efficiency DH5aF'IQ competents cells (Invitrogen) transformed with either the pGEX2TK plasmid or the pGEX2TK-2E11, pGEX2TK-KCNQ2-Cter, and pGEX2TK-PPP2R2C recombinants were diluted 1:10 in LB medium containing ampicillin (100 μg/ml) and incubated for 1 hr at 37° C. Isopropyl-β-D-thiogalactopyranoside (IPTG, Promega) was then added to a final concentration of 0.1 mM and bacteria let to grow for 3 additional hours at 37° C. For fusion proteins recovery using the glutathione-Sepharose 4B beads (Amersham Biosciences), bacterial cultures were pelleted by centrifugation at 5000×g for 15 min at 4° C. and resuspended in 1/10 vol NETN (20 mM Tris-HCl [pH 8.0], 120 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40) supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma) and one tablet of protease inhibitors cocktail (Complete[™] mini, Roche) for 7 ml of buffer. The bacteria were then lysed on ice by mild sonication and centrifuged at 10,000×g for 10 min at 4° C. Aliquots (1 ml) of bacterial clear lysates were then rocked for 1 hr at 4° C. with 50 µl of glutathione-Sepharose 4B beads, which had been previously washed four times in NETN containing 1% Albumin Bovine (BSA fraction V, Sigma) and resuspended (final concentration 1:1 [v/v]) in NETN. The glutathione-Sepharose 4B beads were then washed three times with NETN. For recovery of the bound recombinants proteins, beads were washed two more times with 100 mM Tris-HCl [pH 8.0], 120 mM NaCl and elution was performed in the same buffer containing 20 mM glutathione (Sigma). Quantification of the eluted fusion proteins w performed by the standard Bradford's method (Biorad Protein Assay).

Example 5

In Vitro Labeling of the GST Fusion Proteins

Beads with bound GST fusion proteins corresponding to 1 ml of bacterial clear lysate were washed three times in NETN and one time with HMK buffer without DTT (20 mM Tris-HCl [pH 7.5], 120 mM NaCl, 12 mM MgCl₂). Beads were then resuspended in 30 μ l of reaction mix (3 μ l of 10×HMK Buffer with 20 mM DTT, 10 units of Protein Kinase A Catalytic Subunit [PKA from bovine heart, 250 units/vial, Sigma] in 40 mM DTT, 2 μ l of [³²P]- γ ATP 6000 Ci/mMole and 24 μ l of distilled water) and incubated at 4° C. for 30 min. During incubation beads were resuspended time to time by flicking. Reaction was stopped by adding 1 ml of HMK stop buffer (10

mM Sodium Phosphate [pH 8.0], 10 mM Sodium Pyrophosphate, 10 mM EDTA, 1 mg/ml BSA) and beads washed five times with NETN buffer. Elution of radiolabeled fusion proteins was carried out with 1 ml of freshly prepared 20 mM glutathione in 100 mM Tris-HCl [pH 8.0], 120 mM NaCl as 5 previously described.

Example 6

Solid Phase Overlay assay

1. Protocol of the Solid Phase Overlay Assay

Solid phase overlay assays were performed by adapting the method described by Kaelin and collaborators (Kaelin et al., 1992, Cell, 70:351-364). 100 ng, 10 ng and 0.1 ng of GST and GST-2E11 recombinant proteins were resolved by 9% SDS-PAGE and were transferred by electroblotting onto nitrocellulose membrane (nitrocellulose transfer membrane Protran BA 83, Schleicher and Schuell). The membrane were then blocked in HBB buffer (25 mM Hepes-KOH [pH 7.7], 25 mM 20 NaCl, 5 mM MgCl₂) with 5% (w/v) non-fat dry milk, 1 mM DTT, 0.05% Nonidet P-40 for 1 hr at room temperature. The binding reaction was carried out at room temperature in Hyb75 buffer (20 mM Hepes [pH 7.7], 75 mM KCl, 2.5 mM MgCl₂, 0.1 mM EDTA, 0.05% Nonidet P-40) with 1% (w/v) 25 non-fat dry milk, 1 mM DTT, 1 mM PMSF and 3.5 10⁵ dpm of a [³²P]-yATP GST-PPP2R2C radiolabeled recombinant protein used as a probe. After 4.5 hr of incubation, the membrane was washed with Hyb75 buffer, 1 mM DTT, 1% (w/v) non-fat dry milk three times for 15 min at room temperature. The $_{30}$ blots were analyzed by autoradiography.

2. Results

This experiment was performed to validate the interaction between KCNQ2-15b polypeptides and PP2A/By. In this experiment, the PP2A/By subunit was radiolabeled but not 35 the proteins present on the nitrocellulose membrane. Thus, a signal appears when visualized by autoradiography only if the loaded protein interacts with PP2A/By. GST-2E11 corresponds to a fusion protein between a KCNQ2-15b polypeptide comprising exons 13, 14 and 15b and GST. GST corre- $_{40}$ sponds to the negative control. In the three lines loaded with the GST-2E11 recombinant protein, bands located at a position corresponding to a protein of a size of about 45 kD appeared. This corresponds to the protein size expected for the GST-2E11 protein. Furthermore, the intensity of the bands was proportional to the quantity of loaded GST-2E11. Thus GST-2E11 interacts with PP2A/By. In the three lines loaded with the GST protein, no band appeared, showing that PP2A/By does not interact with the GST protein. Thus the interaction between PP2A/By and the GST-2E11 fusion protein is due to the part of the protein encoding 2E11 and not to 50 the part of the protein encoding GST. This experiment indicates that KCNQ2-15b polypeptides can interact with PP2A/ By in vitro. Furthermore, this shows that KCNQ2-15b polypeptides can interact with PP2A/By without a third binding partner, a hypothesis that can not be excluded by a yeast- 55 two hybrid assay.

Example 7

In Vitro Phosphorylation Assay With Recombinant GSK-3β Kinase and In Vitro Dephosphorylation with HTB-14 Whole Cell Extracts

1. Phosphorylation Assays

Phosphorylation assays were performed to determine 65 whether the phsophorylation state of KCNQ2-15b is modulated by GSK3 β , a kinase that plays an important role in the

central nervous system by regulating various cytoskeletal processes through its effects on MAP1B, tau and synapsin 1. GSK3 β is known to be inhibited by two mood stabilizing agents used in treatment of bipolar disorder, lithium and valporate.

1.1. Protocol

Expression and purification of the GST-2E11 fusion protein were performed as described above. Beads with bound fusion protein corresponding to 1 ml of bacterial clear lysate 10 were washed three times in NETN and one time with HMK buffer without DTT (20 mM Tris-HCl [pH 7.5], 120 mM NaCl, 12 mM MgCl₂). Beads were resuspended in 240 µl of reaction mix (24 µl of 10×HMK Buffer with 20 mM DTT, 40 units of Protein Kinase A Catalytic Subunit [PKA from bovine heart, 250 units/vial, Sigma] in 40 mM DTT, 5 µl of 24 mM ATP and 207 µl of distilled water) and incubated for 30 min at room temperature. Beads were then washed three times in NETN buffer and one time in GSK-3 β reaction buffer (20 mM Tris-HCl [pH 7.5], 10 mM MgCl₂, 5 mM DTT) (New England Biolabs). Beads were then resuspended in 50 μ l of reaction mix (5 μ l of 10×GSK-3 β reaction buffer, 1 μ l of [³²P]γATP 10 mCi/ml, 50 U of recombinant GSK-3β[New England Biolabs], and distilled water for a final volume of 50 µl) and incubated at room temperature for 30 min. After three washes in NETN buffer, phosphorylated proteins were boiled in 2×Sample Buffer (125 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 1.4 M β -Mercapto ethanol), resolved by 10% SDS-PAGE, and visualized by autoradiography.

1.2. Results

60

In this phosphorylation assay, non-radiolabeled polypeptides to be tested are incubated in the presence of GSK- 3β , PKA and radioactive ATP. The proteins are then resolved by a 10% SDS-PAGE migration and visualized by autoradiography. A signal is visualized by autography only if the protein to be tested is phosphorylated by GSK-3ß and PKA during incubation. In the line loaded with the GST-2E11 protein, which corresponds to the fusion protein between a KCNQ2-15b polypeptide comprising exons 13, 14 and 15b and the GST polypeptide, a band located at a position corresponding to a protein of a size of about 45 kD did appear. This is the size expected for the GST-2E11 protein. Thus the GST-2E11 protein is phosphorylated by GSK-3 β and PKA in vitro. Three experiments corresponding to negative controls were performed in parallel. One experiment was performed without adding the GSK-3 β kinase during incubation, one was performed without adding the PKA kinase during incubation, and one was performed with a GST protein instead of a GST-2E11 protein. No bands appeared in the three lines corresponding to the negative controls.

Accordingly, this experiment shows that KCNQ2-15b polypeptides are synergistically phosphorylated by the GSK- 3β and PKA kinases in vitro.

This result was confirmed by a competition experiment in which CREB phosphopeptides, which are known to be phosphorylated by GSK-3 β and PKA, were added during incubation. In this competition experiment, 5 μ g of CREB phosphopeptides (New England Biolabs) was added to the kination mix. A band did still appear at a position corresponding to the size of GST-2E11, but the intensity of the band was very significantly lower.

The influence of LiCl on the phosphorylation state of GST-2E11 was further studied by adding LiCl to the kination mix at a final concentration of 0, 8.3, 25, 75 and 225 mM respectively. The intensity of the band appearing at a position of about 45 kD decreased in the presence of LiCl, and the intensity of the signal was negatively correlated with the concentration of LiCl added to the kination mix. In the presence of about 50 mM LiCl, the phosphorylation state of GST-2E11 was reduced by 50%.

This shows that LiCl, a well-known mood-stabilizing agent used in the treatment of bipolar disorder, inhibits phos- 5 phorylation of KCNQ2-15b polypeptides in vitro.

2. Dephosphorylation Assays

Dephosphorylation assays were performed to determine whether the phophorylation state of KCNQ2-15b polypeptides is modulated by PP2A.

2.1. Protocol

In vitro phosphorylated GST-2E11 fusion protein was incubated at room temperature for 30 min with 500 µg of whole cell extracts of Human glioblastoma, astrocytoma cell line (ATCC number: HTB-14) with or without 400 µM of the PP2A phosphatase inhibitor okadaic acid (Sigma). HTB-14 whole cell extracts were prepared as follow: cells were washed three times with ice-cold TBS buffer (10 mM Tris-HCl [pH 8.0], 120 mM NaCl) and lysed at 4° C. for 30 min in EBC buffer (50 mM Tris-HCl [pH 8.0], 120 mM NaCl, 0.5% Nonidet P-40). Then the lysate was centrifugated for 10 min at 13.000×g at 4° C. to pellet cell debris. Proteins present in the supernatant were quantified by the standard Bradford's method (Bio-Rad Protein Assay). The proteins were then 25 resolved by 10% SDS-PAGE, and visualized by autoradiography.

2.2. Results

The phosphorylated radiolabeled GST-2E11 proteins obtained from the previous assay were incubated in the presence of HTB-14 cell extracts containing the PP2A phosphatase to determine whether PP2A is capable of dephosphorylating G ST-2E11 proteins. In this experiment, a protein that is dephosphorylated by PP2A is not radioactive after incubation in the presence of HTB-14 cell extracts any more. Thus dephosphorylation of the GST-2E11 protein is monitored by disappearance of the signal visualized by autoradiography. One line of the 10% SDS-PAGE gel was loaded with phosphorylated GST-2E11 fusion proteins incubated in the absence of HTB-14 cell extracts, as reference for the intensity of the band appearing for phosphorylated GST-2E11 proteins. In the line loaded with GST-2E11 fusion proteins incubated in the presence of HTB-14 cell extracts, the band had an extremely weaker intensity. Thus GST-2E11 fusion proteins are dephosphorylated when incubated in the presence of HTB-14 cell extracts. When the GST-2E11 fusion protein was incubated in the presence of HTB-14 cell extracts and okadaic acid, a known PP2A phosphatase inhibitor, the intensity of the band was only slightly weaker than the intensity of the band corresponding to phosphorylated GST-2E11. 50

Thus the PP2A phosphatase is responsible of the dephosphorylation observed for GST-2E11 fusion proteins incubated in the presence of HTB-14 cell extracts. Accordingly, this experiment shows that KCNQ2-15b polypeptides are dephosphorylated by the PP2A phosphatase in vitro.

Example 8

Cell Culture, Transfection, Immunoprecipitation and Western Blot Analysis

1. Cell Cultures

HEK293-H cells (Gibco Invitrogen Corporation) were grown in DMEM medium (Gibco Invitrogen Corporation) supplemented with 0.1 mM Non-Essential Amino Acids and 65 10% Fetal Bovine Serum (Gibco Invitrogen Corporation), and transiently transfected with 20 µg of the pCMV-Myc-3H9

or pCMV-Myc-3H2 plasmids per 60 mm dish using the Invitrogen calcium phosphate transfection kit and protocols. 48 hr after transfection cells were washed three times with ice-cold phosphate buffer (PBS, Gibco Invitrogen Corporation), scraped and solubilized for 2 hr at 4° C. in solubilization buffer containing 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 10 mM Tris-HC1[pH 8.0] and supplemented with protease inhibitors (1 mM phenylmethylsulfonyl fluoride, one tablet of Complete™ mini protease inhibitors cocktail [Roche]) and phosphatase inhibitors (1 mM Na ₃VO₄ and 1 mM NaF). The lysate was then centrifugated for 10 min at 13.000×g at 4° C. to pellet cell debris. Proteins present in the supernatant were quantified by the standard Bradford's method (Bio-Rad Protein Assay).

2. Immunoprecipitation

500 μ g (final volume: 500 μ l) of the clear cell lysate were incubated for 2 hr at 4° C. with 1 µd of rabbit preimmune serum and 50 µl of protein A Sepharose CL4B beads (Amersham Pharmacia Biotech) saturated with 1% Albumin Bovine (BSA fraction V, Sigma). Depleted supernatants were then incubated overnight at 4° C. with 1 µg of anti-Myc monoclonal antibody (Myc-Tag 9B11 monoclonal antibody, Cell Signaling). Protein A Sepharose CL4B beads saturated with 1% Albumin Bovine were then added and the mixture incubated at 4° C. for 2 additonal hours. After five washes with ice-cold solubilization buffer immuno-complexes were boiled in 2×Sample Buffer (125 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 1.4 M β-Mercapto ethanol), resolved by 8% SDS-PAGE and subjected to

3. Western Blot

35

45

55

Proteins were transferred onto nitrocellulose membrane (nitrocellulose transfer membrane Protran BA 83, Schleicher and Schuell) using Towbin buffer (Towbin et al., 1979, PNAS, 76:4350-4354) and an electrotransfer device. After transfer, membranes were blocked, in 5% non-fat dried milk in TBST (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.05% Tween 20) supplemented with sodium azide (0.1%) for 2 hr, and then incubated for 16 hr at room temperature with the anti-Myc monoclonal antibody (Myc-Tag 9B11 monoclonal antibody, Cell Signaling) diluted 1:1000 in the same buffer. After several washes with TBST, the blot was incubated with a horseradish peroxidase-conjugated secondary antibody (Antimouse IgG, Fab specific, peroxidase conjugate, Sigma) diluted 1:5000 and developed using ECL Western blotting detection reagents (Amersham Biosciences).

Example 9

Electrophysiological Analysis

1. Protocols

1.1. cDNA injection in Xenopus laevis oocytes

The animal was anesthetized and pieces of the ovary were surgically removed and individual oocytes were dissected away in a saline solution (ND96) containing 96 mM NaCl, 2 mM KCl, 2 mM CaCl2, 2 mM MgCl2 and 5 mM HEPES at pH 7.4. Stage V and VI oocytes were treated at room temper-60 anre for 2 h with collagenase type 1A (1 mg/ml) in the presence of 0.2 mg/ml trypsin inhibitor in saline solution to discard follicular cells. The concentrations were determined by measuring the absorbance at 260 nm. DNA corresponding to KCNQ2, 3H2 and 3H9 K+ channels were subcloned in PEKO vector in order to generate the respective cRNAS. cRNA concentrations were measured by absorbance at 260 nM. cRNA solutions were injected (about 50 nL/oocyte) using a pressure microinjector (Inject+matic, Geneve). Oocytes were then kept for 2-6 days in ND96 solution supplemented wirn 50 U/mL penicillin and 50 U/mL streptomycin.

1.2. Electrophysiological Measurements

In a 0.3 mL perfusion chamber, a single oocyte was 5 impaled with two standard glass microelectrode (0.5-2 Mohm resistance) filled with 3M KCl and maintained under voltage clamp using a Dagan TEV200 amplifier system, USA. Electrical stimulations, data acquisition and analyses were performed using pClamp software (Axon Instruments, USA). Current to voltage relationships were obtained applying incremental depolarizing voltage steps (10 mV increment) from a holding potential of -80 mV (equilibrium potential for K+ ions) Repolarizations to -60 mV allowed K⁺ channel deactivation measurements from the "tail currents".

2. Results

The activity of KCNQ2-15bx and of KCNQ2-15by homotetrameric potassium channels was tested and compared to the activity of KCNQ2-fl homotetrameric potassium channels. 0.2 ng or 0.4 ng of DNA were injected to the $_{20}$ oocytes. The results are shown on FIG. 5, on which the intensity of the M-current generated by the potassium channels is indicated. An intensity of about 1 µA is found for the current generated by a of KCNQ2-fl homotetrameric potassium channel when 0.4 ng of DNA is injected. This value is 25 similar to the value reported by scientific literature. A KCNQ2-15bx homotetrameric potassium channel yields a current of about 800 nA when 0.4 ng of DNA is injected, and a KCNQ2-15by homotetrameric potassium channel yields a courant of about 700 nA when 0.4 ng of DNA is injected. Thus the KCNQ2-15bx and KCNQ2-15by splice variants can 30 associate as functional homomeric potassium channels in vivo

FIG. **6**A and FIG. **6**B show the voltage clamp traces corresponding to the currents generated at different voltages by KCNQ2-15bx (FIG. **6**A) and by KCNQ2-15by (FIG. **6**B) 35 homotetrameric potassium channels. The slow activation that is observed on the traces is a characteristic feature of members of the KCNQ potassium channel family.

Example 10

Collection Of DNA Samples From Affected And Non-Affected Individuals

Donors were unrelated and healthy. The DNA from 100 individuals was extracted and tested for the detection of the ⁴⁵ biallelic markers.

30 ml of peripheral venous blood were taken from each donor in the presence of EDTA. Cells (pellet) were collected after centrifugation for 10 minutes at 2000 rpm. Red cells were lysed by a lysis solution (50 ml final volume: 10 mM Tris pH7.6; 5 mM MgCl 2; 10 mM NaCl). The solution was centrifuged (10 minutes, 2000 rpm) as many times as necessary to eliminate the residual red cells present in the supernatant, after resuspension of the pellet in the lysis solution.

The pellet of white cells was lysed overnight at 42° C. with ⁵⁵ 3.7 ml of lysis solution composed of:

3 ml TE 10-2 (Tris-HCl 10 mM, EDTA 2 mM)/NaCl 0.4 M 200 µl SDS 10%

500 µl K-proteinase (2 mg K-proteinase in TE 10-2/NaCl 0.4 M).

60

For the extraction of proteins, 1 ml saturated NaCl (6M) (1/3.5 v/v) was added. After vigorous agitation, the solution was centrifuged for 20 minutes at 10000 rpm.

For the precipitation of DNA, 2 to 3 volumes of 100% ethanol were added to the previous supernatant, and the solu- ⁶⁵ tion was centrifuged for 30 minutes at 2000 rpm. The DNA solution was rinsed three times with 70% ethanol to eliminate

salts, and centrifuged for 20 minutes at 2000 rpm. The pellet was dried at 37° C., and resuspended in 1 ml TE 10-1 or 1 ml water. The DNA concentration was evaluated by measuring the OD at 260 nm (1 unit OD=50 μ g/ml DNA). To determine the presence of proteins in the DNA solution, the OD 260/OD 280 ratio was determined. Only DNA preparations having a OD 260/OD 280 ratio between 1.8 and 2 were used in the subsequent examples described below.

The pool was constituted by mixing equivalent quantities of DNA from each individual.

Example 11

Amplification of Genomic DNA by PCR

The amplification of specific genomic sequences of the DNA samples of Example 10 was carried out on the pool of DNA obtained previously. In addition, 50 individual samples were similarly amplified.

PCR assays were performed using the following protocol:

Final volume	25 μl
DNA	2 ng/µl
MgCl ₂	2 mM
dNTP (each)	200 μM
primer (each)	2.9 ng/µl
Ampli Taq Gold DNA polymerase	0.05 unit/µl
PCR buffer $(10x = 0.1 \text{ M})$	1x
TrisHCl pH 8.3 0.5M KCl)	

Each pair of first primers was designed using the sequence information of genomic DNA sequences and the OSP software (Hillier & Green, 1991).

Primers Biallelic Markers Located in PPP2R2C

³⁵ The genomic sequence of PPP2R2C that is shown as SEQ ID NO: 37 was constructed upon bioinformatic analysis based on (i) BAC clones constructed at Genset S. A.; (ii) BAC clones corresponding to EMBL Accession Nos. AC114815.5, AC004599.6, AC122939.3 and AC004689.5; and (iii) Ref⁴⁰ seqN Accession No. NT_006051. The polymorphisms were identified as described in examples 12 and 13, and validated as described in example 14.

Biallelic Markers Located in the KCNQ2 Gene

The biallelic markers located in the KCNQ2 gene were found using data provided by Celera. Each of these markers were further validated as described in example 14.

Table 2A indicates the position on SEQ ID NO: 37 of pairs of primers that were used to amplify specific regions of PPP2R2C. Table 2B indicates the position of the primers on SEQ ID Nos 42 to 47, which were used to amplify specific regions of KCNQ2. The orientation of the primer is indicated in the third column. The sign (+1) indicates that the sequence of the primer is identical to the corresponding region of SEQ ID Nos. 37 and 42 to 47. The sign (-1) indicates that the sequence of the primer is complementary to the corresponding region of SEQ ID Nos. 37 and 42 to 47.

TABLE 2A

Prin	ner location in PPP2R2C	
Name of the amplified region	Position on SEQ ID NO: 37	Orientation
24-257	109495 to 109512	(+1)
	109963 to 109982	(-1)
99-24169	83709 to 83729	(+1)
	84146 to 84164	(-1)

50

55

TABLE 2A-continued					
Prin					
Name of the amplified region	Position on SEQ ID NO: 37	Orientation			
99-24175	117228 to 117248 117659 to 117677	(+1) (-1)			
24-247	99290 to 99309 99719 to 99738	(+1) (-1)			

TA	BI	E.	$2\mathbf{B}$
- 1.0	JUL	L.	20

Primer location in the KCNQ2 gene				
Name of the amplified region	SEQ ID No.	Position	Orientation	_
30-4	SEQ ID NO: 42	244 to 263	(+1)	-
		324 to 343	(-1)	20
30-2	SEQ ID NO: 43	240 to 258	(+1)	20
	-	319 to 338	(-1)	
30-17	SEQ ID NO: 44	265 to 284	(+1)	
		345 to 364	(-1)	
30-7	SEQ ID NO: 45	272 to 291	(+1)	
	-	315 to 333	(-1)	
30-84	SEQ ID NO: 46	265 to 284	(+1)	25
	-	334 to 353	(-1)	
30-15	SEQ ID NO: 47	248 to 267	(+1)	
	-	312 to 331	(-1)	

30 Preferably, the primers contained a common oligonucleotide tail upstream of the specific bases targeted for amplification which was useful for sequencing.

The synthesis of these primers was performed following the phosphoramidite method, on a GENSET UFPS 24.1 synthesizer.

DNA amplification was performed on a Genius II thermocycler. After heating at 95° C. for 10 min, 40 cycles were performed. Each cycle comprised: 30 sec at 95° C., 54° C. for 1 min, and 30 sec at 72° C. For final elongation, 10 min at 72° C. ended the amplification. The quantities of the amplification products obtained were determined on 96-well microtiter plates, using a fluorometer and Picogreen as intercalant agent (Molecular Probes).

Example 12

Identification of Biallelic Markers from Amplified Genomic DNA

The sequencing of the amplified DNA obtained in Example 11 was carried out on ABI 377 sequencers. The sequences of the amplification products were determined using automated dideoxy terminator sequencing reactions with a dye terminator cycle sequencing protocol. The products of the sequencing reactions were run on sequencing gels and the sequences were determined using gel image analysis (ABI Prism DNA Sequencing Analysis software (2.1.2 version)).

The sequence data were further evaluated to detect the presence of biallelic markers within the amplified fragments. $_{60}$ The polymorphism search was based on the presence of superimposed peaks in the electrophoresis pattern resulting from different bases occurring at the same position as described previously.

The locations of the biallelic markers detected in the frag- 65 ments of amplification are as shown below in Tables 3A and 3B.

TAF	RT F	13	A

		Biallelic Ma	rkers in the	PPP2R2C	gene	
5						BM position on
	amplified			polymo	orphism	SEQ ID
Ω	region	BM name	Strand	All 1	All 2	NO: 37
v	24-257 99-24169	24-257/320 99-24169/139	(-) (-)	A A	G G	109663 84026 117460

TABLE 3B

	Biallelic Markers in the KCNQ2 gene							
)	ampli- fied			poly- morphism		SEQ ID	BM position on indi- cated SEQ	
5	region	BM name	Strand	All 1	All 2	No.	ID No.	
)	30-4 30-2 30-17 30-7 30-84 30-15	30-4/58 30-2/62 30-17/37 30-7/30 30-84/37 30-15/54	(+) (+) (+) (+) (+) (+)	A A C A A	G G T G C	SEQ ID NO: 42 SEQ ID NO: 43 SEQ ID NO: 44 SEQ ID NO: 45 SEQ ID NO: 46 SEQ ID NO: 47	301 301 301 301 301 301	

BM refers to "biallelic marker". All 1 and All 2 refer respectively to allele 1 and allele 2 of the biallelic marker. The (+) or (-) sign in the column "strand of BM" indicates the strand on which the indicated alternative alleles are found. SEQ ID Nos. 37 and 42 to 47 correspond to strands (+). As a matter of example, the biallelic marker 24-257/320 corresponds to a polymorphism "a or g" at position 109663 on strand (-). Thus the nucleotide at position 109663 of SEQ ID NO: 37 will be "y", which corresponds to "t or c" according to the standard PCT nomenclature. The biallelic marker 24-247/216 corresponds to a polymorphism "a or g" at position 99505 on strand (+). Thus the nucleotide at position 99505 of SEQ ID NO: 37 will be "r", which corresponds to "a 45 or g" according to the standard PCT nomenclature.

Example 13

Identification of Polymorphisms by Comparison of Genomic DNA from Overlapping BACs

Genomic DNA from multiple BAC clones derived from the same DNA donor sample and overlapping in regions of genomic DNA of SEQ ID NO: 37 was sequenced. Sequencing was carried out on ABI 377 sequencers. The sequences of the amplification products were determined using automated dideoxy terminator sequencing reactions with a dye terminator cycle sequencing protocol. The products of the sequencing reactions were run on sequencing gels and the sequences were determined using gel image analysis (ABI Prism DNA Sequencing Analysis software (2.1.2 version)).

Example 14

Validation of the Polymorphisms Through Microsequencing

The biallelic markers identified in Examples 12 and 13 were further confirmed and their respective frequencies were

determined through microsequencing. Microsequencing was carried out for each individual DNA sample described in Example 11.

Amplification from genomic DNA of individuals was performed by PCR as described above for the detection of the biallelic markers with the same set of PCR primers described in tables 1A and 1 B.

The preferred primers used in microsequencing were about 19 nucleotides in length and hybridized just upstream of the 10 considered polymorphic base. According to the invention, the primers used for microsequencing are detailed in tables 4A and 4B.

Primers in the PPP2R2C gene					
amplified region	Marker name	Orientation of the primer	Position of the primer on SEQ ID NO: 37	SEQ ID No. of the primer	20
24-257	24-257/320	(+1)	109644 to 109662	SEQ ID	•
99-24169	99-24169/139	(+1)	84007 to 84025	NO: 40 SEQ ID NO: 39	25
99-24175	99-24175/218	(+1)	117441 to 117459	SEQ ID	25
24-247	24-247/216	(+1)	99486 to 99504	NO: 41	

TABLE 4B				
Primers in the KCNQ2	gene			

amplified region	Marker name	Orientation of the primer	SEQ ID No.	Position of the primer on indicated SEQ ID No.
30-4	30-4/58	(-1)	SEQ ID NO: 42	302 to 319
				(primer B18)
30-4	30-4/58	(+1)	SEQ ID NO: 42	282 to 300
				(primer A19)
30-2	30-2/62	(-1)	SEQ ID NO: 43	302 to 320
30-17	30-17/37	(-1)	SEQ ID NO: 44	302 to 324
30-7	30-7/30	(+1)	SEQ ID NO: 45	280 to 300
30-84	30-84/37	(-1)	SEO ID NO: 46	302 to 318
30-15	30-15/54	(-1)	SEQ ID NO: 47	302 to 323

As for the primers in tables 2A and 2B, the sign (+1) in the column "orientation" indicates that the sequence of the primer is identical to the corresponding region of SEQ ID Nos. 37 and 42 to 47, and the sign (-1) indicates that the sequence of the primer is complementary to the corresponding region of SEQ ID Nos. 37 and 42 to 47.

The microsequencing reaction performed as follows. After purification of the amplification products, the microsequenc-55 ing reaction mixture was prepared by adding, in a 20 µl final volume: 10 µmol microsequencing oligonucleotide, 1 U Thermosequenase (Amersham E79000G), 1.25 µl Thermosequenase buffer (260 mM Tris HCl pH 9.5, 65 mM MgCl ₂), and the two appropriate fluorescent ddNTPs (Perkin Elmer, Dye Terminator Set 401095) complementary to the nucleotides at the polymorphic site of each biallelic marker tested, following the manufacturer's recommendations. After 4 minutes at 94° C., 20 PCR cycles of 15 sec at 55° C., 5 sec at 72° C., and 10 sec at 94° C. were carried out in a Tetrad PTC-225 thermocycler (MJ Research). The unincorporated dye termi46

nators were then removed by ethanol precipitation. Samples were finally resuspended in formamide-EDTA loading buffer and heated for 2 min at 95° C. before being loaded on a polyacrylamide sequencing gel. The data were collected by an ABI PRISM 377 DNA sequencer and processed using the GENESCAN software (Perkin Elmer).

Following gel analysis, data were automatically processed with software that allows the determination of the alleles of biallelic markers present in each amplified fragment.

The software evaluates such factors as whether the intensities of the signals resulting from the above microsequencing procedures are weak, normal, or saturated, or whether the signals are ambiguous. In addition, the software identifies significant peaks (according to shape and height criteria). Among the significant peaks, peaks corresponding to the targeted site are identified based on their position. When two significant peaks are detected for the same position, each sample is categorized dassification as homozygous or heterozygous type based on the height ratio.

Example 15

Association Study Between Bipolar Disorder and the Biallelic Markers of the Invention

5.1. Collection of DNA Samples from Affected and Non-³⁰ Affected Individuals

The association studies were performed on two different populations. One collection of samples was provided by Hospital Pinero, Buenos-Aires, Argentina (the "Labimo" collec-35 tion). The other collection of samples was provided by the University College of London (the "UCL" collection). Both collections are constituted by individuals that are affected or not by bipolar disorder.

40 A) The Labimo Collection

a) Affected Population

206 DNA samples from patients suffering from bipolar disorder (cases) were collected for genotyping analysis.

All patients fulfilled DSM-IV and ICD-10 criteria for bipolar type I (ICD-10: F30.x, F31.x) or bipolar type II (ICD-10: F31.8). All patients were of Caucasian ethnic origin up to the 2^{nd} generation.

All potential patients suffering from a medical disorder or 50 from a drug abuse were excluded.

According to DSM-IV criteria, 115 cases were classified as bipolar type I, 69 were bipolar type II, 22 were unclassified, and information concerning the type of bipolar disorder was lacking in 20 cases (8.5%)

The main phenotypic data of the cases were as follows:

- Mean age at first symptoms: 25.6 years (SD, 11; range, 8-58)
- Mean age at inclusion: 43.3 years (SD, 13.8; range, 17-76) Gender: 142 females and 84 males (ratio, 1.7)
- Ethnic origin: 213 were European Caucasian, 7 were non-European Caucasians, and information was lacking in 6 cases (2.5%)
- Family history of bipolar disorder was found in 18.5%, whereas schizophrenia was found in 0.9%.

60

b) Unaffected Population

201 DNA samples from individuals not suffering from bipolar disorder (controls) were collected for genotyping analysis.

All controls were individuals lacking personal or familial history of psychiatric disease.

The main phenotypic data of the controls were as follows:

Mean age: 43.8 years (SD, 12; range, 21-72) Gender: 118 females and 83 males (ratio, 1.4)

180 controls were European Caucasian, and 21 had mixed ethnic origin

c) Cases and Control Populations Selected for the Associa- $\frac{15}{15}$ tion Study

The case control populations were matched for ethnicity and sex which resulted in 159 cases and 159 control individuals. Among the cases, 96 cases suffered from type I bipolar disorder, 56 cases suffered from type II bipolar disorder, and $^{-20}$ 7 cases suffered from an undetermined type of bipolar disorder. 33.8% of the cases were males. The mean age of the cases was of 43 and the median age was of 44. 41.4% of the controls were males. The mean age of the controls was of 44 and the $_{25}$ median age was of 46.

The presence of population structure can result in spurious association, which is an association between phenotypes and markers that is not linked to any causative loci but due to a 30 different ethnic origin. The Fst test is a general statistical tool for analyzing variances and that can be used to verify that a collection is homogeneous, i.e., that found associations are not linked to the structure of the population. The Fst value is calculated using random markers that are (i) unlinked and (ii) 35 not associated with the trait to be studied. An Fst value close to 0 indicates that the collection is homogeneous and that any significant associations that are found are due to the trait under investigation (see, e.g., Bruce S. Weir, Genetic Data Analysis II, Edition Sinauer, San Francisco and Hartl and 40 Clark, Populations genetics, Edition Sinauer, San Francisco). 66 random markers that were (i) unlinked and (ii) not associated with bipolar disorder were used to calculate the Fst value. An Fst value of 1.68e-01 was found for the found in the 45 Labimo collection, indicating that this collection is homogeneous.

B) The UCL Collection

a) Affected Population

All patients fulfilled DSM-IV criteria for bipolar type I (ICD-10: F30.x, F31.x) or bipolar type II (ICD-10: F31.8). All patients were unrelated individuals of Caucasian origins from the British Isles (including English, Welsh, Scottish and Irish) up to the 2^{nd} generation.

b) Unaffected Population

300 samples from unaffected control individuals (not suffering from bipolar disorder) were collected for genotyping analysis.

All control individuals showed (i) absence of personal history of psychiatric disease; and (ii) absence of familial history of psychiatric disease in first-degree relatives. All controls individuals of Caucasian origins from the British 65 Isles (including English, Welsh, Scottish and Irish) up to the 2nd generation.

c) Cases and Control Populations Selected for the Association Study

The population retained for the study was composed of 315 cases and 295 controls. Among the cases, 256 cases suffered from type I bipolar disorder, 26 cases suffered from type II bipolar disorder, and 33 cases suffered from an undetermined type of bipolar disorder. About 36% of the cases were males. The mean age of the cases was of 46 and the median age was $_{10}$ of 46. 48% of the controls were males. The mean age of the controls was of 37 and the median age was of 32.

59 random markers that were (i) unlinked; and (ii) not associated with bipolar disorder were used to calculate the Fst value. A Fst value of 3.41e-01 was found for the UCL collection, indicating that this collection is homogeneous.

5.2. Association Studies

A) Genotyping of Affected and Control Individuals

The general strategy to perform the association studies was to individually scan the DNA samples from all individuals in each of the populations described above in order to establish the allele frequencies of biallelic markers, and among them the biallelic markers of the invention, in the diploid genome of the tested individuals belonging to each of these populations.

Frequencies of every biallelic marker in each population (cases and controls) were determined by performing microsequencing reactions on amplified fragments obtained by genomic PCR performed on the DNA samples from each individual. Genomic PCR and microsequencing were performed as detailed above in Examples 11 to 13 using the described PCR primers and microsequencing primers.

B) Single Biallelic Marker Frequency Analysis

The difference between the allelic frequencies in the unaffected population and in the population affected by bipolar disorder was calculated for all five markers located in the KCNQ2 gene, and for all four markers located in the PPP2R2C gene. The allelic frequency of markers between cases and controls were investigated using the Pearson Chi squared test for allelic frequency and genotypic frequency distributions. A significant difference between observed and expected alleles/genotypes of a specific marker between case and control populations implies an association between the gene harboring this particular biallelic marker and bipolar disease. Both allelic and genotypic p-values were calculated for all markers. The p-values in tables 5A and 5B indicate the probability of no association between a biallelic marker and bipolar disorder considering the frequency. A p-value under 5e-02 indicates a significant association between the biallelic 55 marker and bipolar disorder.

Odds ratio determination is a way of comparing the probability of having the disease when carrying a given allele versus when not carrying the said allele. An odds ratio higher than 1 indicates that the probability of having bipolar disorder is higher when carrying one of the alternative alleles, haplotypes or genotypes than when carrying the other ones. The genotypic odds ratio allows the identification of the "risk" allele, haplotype or genotype for an associated biallelic marker. The genotypic odds ratio was calculated for one biallelic marker located in PPP2R2C and for two markers located in the KCNQ2 gene (tables 6A and 6B).

40

45

50

55

60

TABLE 5A
_p-values for biallelic markers located in PPP2R2C

Location Marker Chosen All. Freq All. Odds Allelic Genotypic Name PPP2R2C Collection allele Ratio p-value p-value Diff. 99-UCL 0.095 1.733 2.19e-04 3.61e-04 Intron 1d Α 24169/139 0.002 1.012 9.46e-01 5.98e-01 Labimo Α G 24intron 4 UCL 0.047 1.2757.75e-02 2.29e-02247/216 Labime G 0.024 1.125 4.86e - 017.65e-01 24-Intron 5 UCL А 0.018 1.0795.52e-01 8.22e-01 257/320 1 5 5 7 Labime A G 0.102 4.04e-031.19e - 0299-Intron 5 UCL 0.035 1.162 2.62e-01 3.99e-03 24175/218 Labimo А 0.096 1.546 6.69e-03 2.34e-02

ΤA	BI	E.	5B
173		<i></i>	\mathcal{D}

Marker Name	<u>p-value</u> Location in the KCNQ2 gene	es for biallelic Collection	<u>markers in</u> Chosen allele	<u>n the Ko</u> All. Freq Diff.	<u>CNQ2 g</u> All. Odds Ratio	<u>ene</u> Allelic p-value	Genotypic p-value
30-4/58	5' of the	UCL	_				
	gene	Labimo	G	0.03	1.24	3.03e-01	5.85e-01
30-2/62	intron 1	UCL	Α	0.05	1.23	7.76e-02	5.20e-03
		Labimo	Α	0.03	1.13	4.42e-01	1.15e-01
30-17/37	intron 4	UCL	Α	0.01	1.03	7.77e-01	9.12e-01
		Labimo	G	0.03	1.13	4.70e-01	7.10e-01
30-7/30	intron 12	UCL	С	0.05	1.21	1.05e-01	3.02e-02
		Labimo	С	0.02	1.06	7.03e-01	5.32e-01
30-84/37	3' of	UCL	Α	0.02	1.20	3.06e-01	3.69e-01
	gene	Labimo					
30-15/54	3' of	UCL	Α	0.01	1.06	6.92e-01	7.68e-01
	gene	Labimo		_	—		

TABLE 6A

genotypic odds ratios for a biallelic marker located in PPP2R2C												
Biallelic marker	collection	genotype	odds ratio	p-value								
99-24169/139	UCL	AA vs GG AA vs AG AA vs (AG + GG)	1.9 2.06 2.04	8.50e-02 7.20e-05 4.60e-05								

|--|

genotypic odds ratios for biallelic markers located in the KCNQ2 gene											
Biallelic marker	collection	genotype	odds ratio	p-value							
30-2/62	UCL	(AG + GG) vs AA	1.05	4.60E-01							
		AG vs AA	1.28	1.70E-01							
		AA vs GG	1.51	8.00E-02							
		AG vs (GG + AA)	1.62	3.00e-03							
		(AG + AA) vs GG	1.82	1.50e-03							
30-7/30	UCL	(CC + CT) vs TT	1.04	4.40E-01							
		TT vs CT	1.14	2.90E-01							
		(CC + TT) vs CT	1.37	3.80e-02							
		CC vs TT	1.58	3.80e-02							
		CC vs (TT + CT)	1.71	7.00e-03							

Biallelic Markers in PPP2R2C

Thus the four biallelic markers located in the PPP2R2C ₆₅ gene are found to be associated with bipolar disorder. More specifically, 99-24169/139 is found to be highly associated

with bipolar disorder in the UCL collection (significant allelic and genotypic p-values). 24-257/320 and 99-24175/218 are highly associated with bipolar disorder in the Labimo collection (significant allelic p-values). In addition, 99-24175/218 is also associated with bipolar disorder in the UCL collection (significant genotypic p-value). 24-247/216 is associated with bipolar disorder in the UCL collection (significant genotypic p-value).

The risk allele for the 99-24169/139 biallelic marker is "A". The risk alleles for the 24-257/320 biallelic marker and for the 99-24175/218 biallelic marker are also "A". The risk genotype for the 99-24169/139 biallelic marker is "AA". Thus an individual carrying the genotype "AA" at biallelic marker 99-24169/13 is at risk of developing bipolar disorder.

Biallelic Markers in the KCNQ2 Gene

Two biallelic markers located in the KCNQ2 gene, 30-2/62 and 30-7/30, are associated with bipolar disorder. More specifically, 30-2/62 is found to be highly associated with bipolar disorder in the UCL collection (significant allelic and genotypic p-values). 30-7/30 is associated with bipolar disorder in the UCL collection (significant genotypic p-value).

The risk genotype for 30-2/62 is "AG". The risk genotype for 30-7130 is "CC". Thus individuals carrying the genotype "AG" at biallelic marker 30-2/62 and individuals carrying the genotype "CC" at biallelic marker 30-7/30 are at risk of developing bipolar disorder.

The association results of the single biallelic marker frequency analysis show that both the PPP2R2C gene and the KCNQ2 gene are associated with bipolar disorder. Accordingly, deregulation and/or dysfunction of KCNQ2 polypeptides and PP2A phosphatases comprising the PP2A/B γ regulatory subunit contribute to the onset and to the development of bipolar disorder.

C) Haplotype Frequency Analysis

The analysis of haplotype frequencies cannot readily be derived from observed genotypic data. The EM (Expectation-Maximization) algorithm (Excoffier L & Slatkin M, 1995) allows the estimation of haplotypes for the population under investigation. Haplotype frequency estimations were performed by applying the OMNIBUS likelihood ratio test (PCT publication WO 01/091026)

The haplotype analysis was performed for two sets of markers located in PPP2R2C. The haplotype analysis for 24-257/320 and 99-24175/218 was performed in the Labimo collection. The haplotype analysis for 99-24169/139 and 24-247/216 was performed in the UCL collection. The results are shown in tables 7 (p-values) and 7B (odds ratios).

52

REFERENCES

- 1. Altschul et al. (1990) J Mol Biol, 215:403-410
- 2. Altschul et al., (1997) Nucleic Acids Res., 25:389-402
- 3. Andrieux et al. (2002) Genes Dev., 16:2350-2364
- 4. Biervert et al. (1998) Science, 279:403-406
- 5. Biervert et al. (1999) Genet., 104:234-240
- 6. Borresen et al. (1988) Mutat Res. 202:77-83
- 10 7. Dempster et al. (1977) JRSSB, 39:1-38
 - Detera-Wadleigh et al. (1999) Proc Natl Acad Sci USA, A96(10):5604-5609
 - 9. Devereux et al. (1984) Nucleic Acids Res., 12:387-395
 - 10. Elbashir et al. (2001) Genes Dev. 15:188-200
 - 11. Ellington and Szostak (1990) Nature 346:818-822.
 - 12. Excoffier and Slatkin, (1995) Mol Biol Evol. 12:921-7
 - 13. Gamper et al. J. Neurosci. (2003) 23:84-95
 - 14. Grantham (1974) Science, 185:862-864
- 20 15. Grompe et al. (1989) Proc Natl Acad Sci USA. 86:5888-5892
 - 16. Hu et al. (2000) Genomics., 67:83-86
 - 17. Kaelin et al. (1991) Cell, 64:521-532
 - 18. Kaelin et al. (1992) Cell, 70:351-364
- ²⁵ 18. Kaenn et al. (1992) Cen, 70:551-564
 19. Kim et al. (2003) Anal Biochem. 316:251-258
 - 20. Lessa et al. (1993) Mol Ecol. 2:119-129

TABLE 7A

Samples	Haplotype	Chi-S	Ave Chi-S	SD Chi-S	Max Chi-S	p-value
Labimo	AA AG	7.78	0.96	1.34	14.02	3.9e-03
	GA	0.14	0.96	1.35	11.62	6.77e-01
UCL	AA	1.49641	1.03501	1.46687	14.67815	2.28e-01
	GA GC	13.91081	1.29859	1.32330	14.42832	2.73e=02 5e=04
	Samples Labimo UCL	Samples Haplotype Labimo AA AG GA GG UCL AA AG GG GG	Samples Haplotype Chi-S Labimo AA 7.78 AG 0.02 GA 0.14 GG 7.35 UCL AA 1.49641 AG 5.19606 GA 13.91081	Samples Haplotype Chi-S Ave Chi-S Labimo AA 7.78 0.96 AG 0.02 1.02 GA 0.14 0.96 GG 7.35 0.98 UCL AA 1.49641 1.03501 AG 5.19606 1.0854 GA 1.391081 1.29859	Samples Haplotype Chi-S Ave Chi-S SD Chi-S Labimo AA 7.78 0.96 1.34 AG 0.02 1.02 1.40 GA 0.14 0.96 1.35 GG 7.35 0.98 1.35 UCL AA 1.49641 1.03501 1.46687 AG 5.19606 1.0854 1.52336 GA 13.91081 1.29859 1.81182 GG 0.40209 1.571480 2.10565	Samples Haplotype Chi-S Ave Chi-S SD Chi-S Max Chi-S Labimo AA 7.78 0.96 1.34 14.02 AG 0.02 1.02 1.40 11.19 GA 0.14 0.96 1.35 11.62 GG 7.35 0.98 1.35 14.31 UCL AA 1.49641 1.03501 1.46687 14.67815 AG 5.19606 1.0854 1.52336 14.42852 GA 13.91081 1.29859 1.81182 16.01507 GG 0.40202 1.57482 2.19562 23.4454

TABLE 7B

markers	haplotype	overall	cases	controls	odds ratio	45
24-257/320	AA	60.9%	65.9%	55.5%	1.55	
and	AG	2.8%	2.7%	2.9%	0.93	
99-24175/218	GA	5.9%	5.5%	6.2%	0.88	50
	GG	30.4%	25.8%	35.4%	0.64	
99-24169/139 and	AA	60.0%	62.0%	58.2%	1.17	
24-247/216	AG	17.4%	20.0%	14.5%	1.47	
	GA	13.6%	9.5%	17.6%	0.49	55
	GG	8.9%	8.5%	9.7%	0.86	00

The risk haplotype for 24-257/320 and 99-24175/218 is $_{60}$ "AA". The risk haplotype for 99-24169/139 and 24-247/216 is "AG". Thus an individual carrying the haplotype "AA" at biallelic markers 24-257/320 and 99-24175/218 is at risk of developing bipolar disorder, and an individual carrying the haplotype "AG" at biallelic markers 99-24169/139 and 24-247/216 is also at risk of developing bipolar disorder.

- 21. Main et al. (2000) Mol Pharmacol, 58:253-262
- 22. Newton et al. (1989) Nucleic Acids Res. 17:2503-2516
- 45 23. Orita et al. (1989) Proc Natl Acad Sci USA 86:2766-2770
 - 24. Pan et al. (2001) J. Physiol., 531:347-358
 - 25. Pearson (1990) Methods in Enzymology, 183:63-99
 - 26. Pearson and Lipman (1988) Proc Nat Acad Sci USA, 85:2444-2448
 - 27. Ruano et al. (1990) Proc. Natl. Acad. Sci. USA. 87:6296-6300
 - 28. Sarkar and Sommer, (1991) Biotechniques. 10-436-440
 - 29. Schroeder et al., Epilepsia (2000) 41:1068-1069
 - 30. Schwake et al. (2000) J. Biol. Chem., 275:13343-13348
 - 31. Singh et al. (1998) Nat Genet, 18:25-29
 - Smith and Waterman (1981) Advances in Applied Mathematics, 2:482-489
 - Towbin et al. (1979) Proc Nat Acad Sci USA, 76:4350-4354
 - 34. Wang et al. (1998) Science, 282:1890-1893
 - 35. Wen et al. (2003) World J Gastroenterol. 9:1342-1346
 - 36. Wu et al. (1989) Proc. Natl. Acad. Sci. USA. 86:2757-2760

SEQUENCE LISTING

<160> NUMBER OF SEO ID NOS: 47 <210> SEQ ID NO 1 <211> LENGTH: 1932 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)..(1932) <400> SEQUENCE: 1 atg gtg cag aag tcg cgc aac ggc ggc gta tac ccc ggc ccg agc ggg Met Val Gln Lys Ser Arg Asn Gly Gly Val Tyr Pro Gly Pro Ser Gly gag aag aag ctg aag gtg ggc ttc gtg ggg ctg gac ccc ggc gcg ccc Glu Lys Lys Leu Lys Val Gly Phe Val Gly Leu Asp Pro Gly Ala Pro gac tee ace egg gae ggg geg etg etg ate gee gge tee gag gee eee Asp Ser Thr Arg Asp Gly Ala Leu Leu Ile Ala Gly Ser Glu Ala Pro aag cgc ggc agc atc ctc agc aaa cct cgc gcg ggc ggc ggc ggc gcc Lys Arg Gly Ser Ile Leu Ser Lys Pro Arg Ala Gly Gly Ala Gly Ala ggg aag ccc ccc aag cgc aac gcc ttc tac cgc aag ctg cag aat ttc Gly Lys Pro Pro Lys Arg Asn Ala Phe Tyr Arg Lys Leu Gln Asn Phe ctc tac aac gtg ctg gag cgg ccg cgc ggc tgg gcg ttc atc tac cac Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His gcc tac gtg ttc ctc ctg gtt ttc tcc tgc ctc gtg ctg tct gtg ttt Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe tcc acc atc aag gag tat gag aag agc tcg gag ggg gcc ctc tac atc Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile ctg gaa atc gtg act atc gtg gtg gt
g ttt ggc gtg gag tac ttc gtg cgg Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg atc tgg gcc gca ggc tgc tgc tgc cgg tac cgt ggc tgg agg ggg cgg Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg ctc aag ttt gcc cgg aaa ccg ttc tgt gtg att gac atc atg gtg ctc Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu atc gcc tcc att gcg gtg ctg gcc gcc ggc tcc cag ggc aac gtc ttt Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe gcc aca tct gcg ctc cgg agc ctg cgc ttc ctg cag att ctg cgg atg Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met atc cgc atg gac cgg cgg gga ggc acc tgg aag ctg ctg ggc tct gtg Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val gtc tat gcc cac agc aag gag ctg gtc act gcc tgg tac atc ggc ttc Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe ctt tgt ctc atc ctg gcc tcg ttc ctg gtg tac ttg gca gag aag ggg Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly

-continued

gag Glu	aac Asn	gac Asp	cac His 260	ttt Phe	gac Asp	acc Thr	tac Tyr	gcg Ala 265	gat Asp	gca Ala	ctc Leu	tgg Trp	tgg Trp 270	ggc Gly	ctg Leu	816
atc Ile	acg Thr	ctg Leu 275	acc Thr	acc Thr	att Ile	ggc Gly	tac Tyr 280	с1 ааа	gac Asp	aag Lys	tac Tyr	ccc Pro 285	cag Gln	acc Thr	tgg Trp	864
aac Asn	ggc Gly 290	agg Arg	ctc Leu	ctt Leu	gcg Ala	gca Ala 295	acc Thr	ttc Phe	acc Thr	ctc Leu	atc Ile 300	ggt Gly	gtc Val	tcc Ser	ttc Phe	912
ttc Phe 305	gcg Ala	ctg Leu	cct Pro	gca Ala	ggc Gly 310	atc Ile	ttg Leu	ggg ggg	tct Ser	999 Gly 315	ttt Phe	gcc Ala	ctg Leu	aag Lys	gtt Val 320	960
cag Gln	gag Glu	cag Gln	cac His	agg Arg 325	cag Gln	aag Lys	cac His	ttt Phe	gag Glu 330	aag Lys	agg Arg	cgg Arg	aac Asn	ccg Pro 335	gca Ala	1008
gca Ala	ggc Gly	ctg Leu	atc Ile 340	cag Gln	tcg Ser	gcc Ala	tgg Trp	aga Arg 345	ttc Phe	tac Tyr	gcc Ala	acc Thr	aac Asn 350	ctc Leu	tcg Ser	1056
cgc Arg	aca Thr	gac Asp 355	ctg Leu	cac His	tcc Ser	acg Thr	tgg Trp 360	cag Gln	tac Tyr	tac Tyr	gag Glu	cga Arg 365	acg Thr	gtc Val	acc Thr	1104
gtg Val	ccc Pro 370	atg Met	tac Tyr	agt Ser	tcg Ser	caa Gln 375	act Thr	caa Gln	acc Thr	tac Tyr	999 Gly 380	gcc Ala	tcc Ser	aga Arg	ctt Leu	1152
atc Ile 385	ccc Pro	ccg Pro	ctg Leu	aac Asn	cag Gln 390	ctg Leu	gag Glu	ctg Leu	ctg Leu	agg Arg 395	aac Asn	ctc Leu	aag Lys	agt Ser	aaa Lys 400	1200
tct Ser	gga Gly	ctc Leu	gct Ala	ttc Phe 405	agg Arg	aag Lys	gac Asp	ccc Pro	ccg Pro 410	ccg Pro	gag Glu	ccg Pro	tct Ser	cca Pro 415	agt Ser	1248
aaa Lys	ggc Gly	agc Ser	ccg Pro 420	tgc Cys	aga Arg	ggg ggg	ccc Pro	ctg Leu 425	tgt Cys	gga Gly	tgc Cys	tgc Cys	ccc Pro 430	gga Gly	cgc Arg	1296
tct Ser	agc Ser	cag Gln 435	aag Lys	gtc Val	agt Ser	ttg Leu	aaa Lys 440	gat Asp	cgt Arg	gtc Val	ttc Phe	tcc Ser 445	agc Ser	ccc Pro	cga Arg	1344
ggc Gly	gtg Val 450	gct Ala	gcc Ala	aag Lys	ggg Gly	aag Lys 455	ggg ggg	tcc Ser	ccg Pro	cag Gln	gcc Ala 460	cag Gln	act Thr	gtg Val	agg Arg	1392
cgg Arg 465	tca Ser	ccc Pro	agc Ser	gcc Ala	gac Asp 470	cag Gln	agc Ser	ctc Leu	gag Glu	gac Asp 475	agc Ser	ccc Pro	agc Ser	aag Lys	gtg Val 480	1440
ccc Pro	aag Lys	agc Ser	tgg Trp	agc Ser 485	ttc Phe	ggg Gly	gac Asp	cgc Arg	agc Ser 490	cgg Arg	gca Ala	cgc Arg	cag Gln	gct Ala 495	ttc Phe	1488
cgc Arg	atc Ile	aag Lys	ggt Gly 500	gcc Ala	gcg Ala	tca Ser	cgg Arg	cag Gln 505	aac Asn	tca Ser	gaa Glu	gaa Glu	gca Ala 510	agc Ser	ctc Leu	1536
ccc Pro	gga Gly	gag Glu 515	gac Asp	att Ile	gtg Val	gat Asp	gac Asp 520	aag Lys	agc Ser	tgc Cys	ccc Pro	tgc Cys 525	gag Glu	ttt Phe	gtg Val	1584
acc Thr	gag Glu 530	gac Asp	ctg Leu	acc Thr	ccg Pro	ggc Gly 535	ctc Leu	aaa Lys	gtc Val	agc Ser	atc Ile 540	aga Arg	gcc Ala	gtg Val	tgt Cys	1632
gtc Val 545	atg Met	cgg Arg	ttc Phe	ctg Leu	gtg Val 550	tcc Ser	aag Lys	cgg Arg	aag Lys	ttc Phe 555	aag Lys	gag Glu	agc Ser	ctg Leu	cgg Arg 560	1680
ccc Pro	tac Tyr	gac Asp	gtg Val	atg Met 565	gac Asp	gtc Val	atc Ile	gag Glu	cag Gln 570	tac Tyr	tca Ser	gcc Ala	ggc Gly	cac His 575	ctg Leu	1728

-continued

gac Asp	atg Met	ctg Leu	tcc Ser 580	cga Arg	att Ile	aag Lys	agc Ser	ctg Leu 585	cag Gln	tcc Ser	agg Arg	caa Gln	gag Glu 590	ccc Pro	cgc Arg	1776	
ctg Leu	cct Pro	gtc Val 595	cag Gln	cag Gln	glà dâð	aca Thr	aga Arg 600	acg Thr	д1у ддд	tgg Trp	gct Ala	tct Ser 605	glà aaa	aca Thr	aag Lys	1824	
ccc Pro	act Thr 610	gtg Val	gcc Ala	cat His	ggt Gly	999 Gly 615	agt Ser	gca Ala	999 999	ggt Gly	gtg Val 620	tgg Trp	gcg Ala	д1У ддд	cct Pro	1872	
cct Pro 625	ccc Pro	cac His	cca Pro	cgt Arg	cgg Arg 630	cct Pro	ctg Leu	tca Ser	gct Ala	tct Ser 635	gtt Val	gtg Val	tct Ser	tca Ser	caa Gln 640	1920	
agt Ser	ctg Leu	ttt Phe	taa													1932	
<210> SEQ ID NO 2 <211> LENGTH: 643 <212> TYPE: PRT <213> ORGANISM: Homo sapiens																	
<400)> SE	QUEN	ICE :	2													
Met 1	Val	Gln	Lys	Ser 5	Arg	Asn	Gly	Gly	Val 10	Tyr	Pro	Gly	Pro	Ser 15	Gly		
Glu	Lys	Lys	Leu 20	Lys	Val	Gly	Phe	Val 25	Gly	Leu	Asp	Pro	Gly 30	Ala	Pro		
Asp	Ser	Thr 35	Arg	Asp	Gly	Ala	Leu 40	Leu	Ile	Ala	Gly	Ser 45	Glu	Ala	Pro		
Lys	Arg 50	Gly	Ser	Ile	Leu	Ser 55	Lys	Pro	Arg	Ala	Gly 60	Gly	Ala	Gly	Ala		
Gly 65	ГÀа	Pro	Pro	ГЛа	Arg 70	Asn	Ala	Phe	Tyr	Arg 75	ГЛа	Leu	Gln	Asn	Phe 80		
Leu	Tyr	Asn	Val	Leu 85	Glu	Arg	Pro	Arg	Gly 90	Trp	Ala	Phe	Ile	Tyr 95	His		
Ala	Tyr	Val	Phe 100	Leu	Leu	Val	Phe	Ser 105	Сув	Leu	Val	Leu	Ser 110	Val	Phe		
Ser	Thr	Ile 115	ГЛЗ	Glu	Tyr	Glu	Lys 120	Ser	Ser	Glu	Gly	Ala 125	Leu	Tyr	Ile		
Leu	Glu 130	Ile	Val	Thr	Ile	Val 135	Val	Phe	Gly	Val	Glu 140	Tyr	Phe	Val	Arg		
Ile 145	Trp	Ala	Ala	Gly	Cys 150	Суз	Суз	Arg	Tyr	Arg 155	Gly	Trp	Arg	Gly	Arg 160		
Leu	Lys	Phe	Ala	Arg 165	Lys	Pro	Phe	Суз	Val 170	Ile	Asp	Ile	Met	Val 175	Leu		
Ile	Ala	Ser	Ile 180	Ala	Val	Leu	Ala	Ala 185	Gly	Ser	Gln	Gly	Asn 190	Val	Phe		
Ala	Thr	Ser 195	Ala	Leu	Arg	Ser	Leu 200	Arg	Phe	Leu	Gln	Ile 205	Leu	Arg	Met		
Ile	Arg 210	Met	Asp	Arg	Arg	Gly 215	Gly	Thr	Trp	ГÀа	Leu 220	Leu	Gly	Ser	Val		
Val 225	Tyr	Ala	His	Ser	Lys 230	Glu	Leu	Val	Thr	Ala 235	Trp	Tyr	Ile	Gly	Phe 240		
Leu	Cys	Leu	Ile	Leu 245	Ala	Ser	Phe	Leu	Val 250	Tyr	Leu	Ala	Glu	Lys 255	Gly		
Glu	Asn	Asp	His 260	Phe	Asp	Thr	Tyr	Ala 265	Asp	Ala	Leu	Trp	Trp 270	Gly	Leu		

-continued

Ile	Thr	Leu 275	Thr	Thr	Ile	Gly	Tyr 280	Gly	Asp	Гла	Tyr	Pro 285	Gln	Thr	Trp
Asn	Gly 290	Arg	Leu	Leu	Ala	Ala 295	Thr	Phe	Thr	Leu	Ile 300	Gly	Val	Ser	Phe
Phe 305	Ala	Leu	Pro	Ala	Gly 310	Ile	Leu	Gly	Ser	Gly 315	Phe	Ala	Leu	Lys	Val 320
Gln	Glu	Gln	His	Arg 325	Gln	Lys	His	Phe	Glu 330	Lys	Arg	Arg	Asn	Pro 335	Ala
Ala	Gly	Leu	Ile 340	Gln	Ser	Ala	Trp	Arg 345	Phe	Tyr	Ala	Thr	Asn 350	Leu	Ser
Arg	Thr	Asp 355	Leu	His	Ser	Thr	Trp 360	Gln	Tyr	Tyr	Glu	Arg 365	Thr	Val	Thr
Val	Pro 370	Met	Tyr	Ser	Ser	Gln 375	Thr	Gln	Thr	Tyr	Gly 380	Ala	Ser	Arg	Leu
Ile 385	Pro	Pro	Leu	Asn	Gln 390	Leu	Glu	Leu	Leu	Arg 395	Asn	Leu	Lys	Ser	Lys 400
Ser	Gly	Leu	Ala	Phe 405	Arg	Lys	Asp	Pro	Pro 410	Pro	Glu	Pro	Ser	Pro 415	Ser
Lys	Gly	Ser	Pro 420	Cya	Arg	Gly	Pro	Leu 425	Cys	Gly	Сүз	Сүз	Pro 430	Gly	Arg
Ser	Ser	Gln 435	Lys	Val	Ser	Leu	Lys 440	Asp	Arg	Val	Phe	Ser 445	Ser	Pro	Arg
Gly	Val 450	Ala	Ala	Lys	Gly	Lys 455	Gly	Ser	Pro	Gln	Ala 460	Gln	Thr	Val	Arg
Arg 465	Ser	Pro	Ser	Ala	Asp 470	Gln	Ser	Leu	Glu	Asp 475	Ser	Pro	Ser	Lys	Val 480
Pro	Lys	Ser	Trp	Ser 485	Phe	Gly	Asp	Arg	Ser 490	Arg	Ala	Arg	Gln	Ala 495	Phe
Arg	Ile	Lys	Gly 500	Ala	Ala	Ser	Arg	Gln 505	Asn	Ser	Glu	Glu	Ala 510	Ser	Leu
Pro	Gly	Glu 515	Asp	Ile	Val	Asp	Asp 520	Lys	Ser	Суз	Pro	Cys 525	Glu	Phe	Val
Thr	Glu 530	Asp	Leu	Thr	Pro	Gly 535	Leu	Lys	Val	Ser	Ile 540	Arg	Ala	Val	Сув
Val 545	Met	Arg	Phe	Leu	Val 550	Ser	Lys	Arg	Lys	Phe 555	Lys	Glu	Ser	Leu	Arg 560
Pro	Tyr	Asp	Val	Met 565	Asp	Val	Ile	Glu	Gln 570	Tyr	Ser	Ala	Gly	His 575	Leu
Asp	Met	Leu	Ser 580	Arg	Ile	Lys	Ser	Leu 585	Gln	Ser	Arg	Gln	Glu 590	Pro	Arg
Leu	Pro	Val 595	Gln	Gln	Gly	Thr	Arg 600	Thr	Gly	Trp	Ala	Ser 605	Gly	Thr	Lys
Pro	Thr 610	Val	Ala	His	Gly	Gly 615	Ser	Ala	Gly	Gly	Val 620	Trp	Ala	Gly	Pro
Pro 625	Pro	His	Pro	Arg	Arg 630	Pro	Leu	Ser	Ala	Ser 635	Val	Val	Ser	Ser	Gln 640
Ser	Leu	Phe													

<210> SEQ ID NO 3
<211> LENGTH: 1878
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(1878)
<400)> SE	QUEN	ICE :	3												
atg Met 1	gtg Val	cag Gln	aag Lys	tcg Ser 5	cgc Arg	aac Asn	ggc Gly	ggc Gly	gta Val 10	tac Tyr	ccc Pro	ggc Gly	ccg Pro	agc Ser 15	glà aaa	48
gag Glu	aag Lys	aag Lys	ctg Leu 20	aag Lys	gtg Val	ggc Gly	ttc Phe	gtg Val 25	д1À даа	ctg Leu	gac Asp	ccc Pro	ggc Gly 30	gcg Ala	ccc Pro	96
gac Asp	tcc Ser	acc Thr 35	cgg Arg	gac Asp	999 Gly	gcg Ala	ctg Leu 40	ctg Leu	atc Ile	gcc Ala	ggc Gly	tcc Ser 45	gag Glu	gcc Ala	ccc Pro	144
aag Lys	cgc Arg 50	ggc Gly	agc Ser	atc Ile	ctc Leu	agc Ser 55	aaa Lys	cct Pro	cgc Arg	gcg Ala	ggc Gly 60	ggc Gly	gcg Ala	ggc Gly	gcc Ala	192
999 Gly 65	aag Lys	ccc Pro	ccc Pro	aag Lys	cgc Arg 70	aac Asn	gcc Ala	ttc Phe	tac Tyr	cgc Arg 75	aag Lys	ctg Leu	cag Gln	aat Asn	ttc Phe 80	240
ctc Leu	tac Tyr	aac Asn	gtg Val	ctg Leu 85	gag Glu	cgg Arg	ccg Pro	cgc Arg	ggc Gly 90	tgg Trp	gcg Ala	ttc Phe	atc Ile	tac Tyr 95	cac His	288
gcc Ala	tac Tyr	gtg Val	ttc Phe 100	ctc Leu	ctg Leu	gtt Val	ttc Phe	tcc Ser 105	tgc Cys	ctc Leu	gtg Val	ctg Leu	tct Ser 110	gtg Val	ttt Phe	336
tcc Ser	acc Thr	atc Ile 115	aag Lys	gag Glu	tat Tyr	gag Glu	aag Lys 120	agc Ser	tcg Ser	gag Glu	gga gga	gcc Ala 125	ctc Leu	tac Tyr	atc Ile	384
ctg Leu	gaa Glu 130	atc Ile	gtg Val	act Thr	atc Ile	gtg Val 135	gtg Val	ttt Phe	ggc Gly	gtg Val	gag Glu 140	tac Tyr	ttc Phe	gtg Val	cgg Arg	432
atc Ile 145	tgg Trp	gcc Ala	gca Ala	ggc Gly	tgc Cys 150	tgc Cys	tgc Cys	cgg Arg	tac Tyr	cgt Arg 155	ggc Gly	tgg Trp	agg Arg	glà aaa	cgg Arg 160	480
ctc Leu	aag Lys	ttt Phe	gcc Ala	cgg Arg 165	aaa Lys	ccg Pro	ttc Phe	tgt Cys	gtg Val 170	att Ile	gac Asp	atc Ile	atg Met	gtg Val 175	ctc Leu	528
atc Ile	gcc Ala	tcc Ser	att Ile 180	gcg Ala	gtg Val	ctg Leu	gcc Ala	gcc Ala 185	ggc Gly	tcc Ser	cag Gln	ggc Gly	aac Asn 190	gtc Val	ttt Phe	576
gcc Ala	aca Thr	tct Ser 195	gcg Ala	ctc Leu	cgg Arg	agc Ser	ctg Leu 200	cgc Arg	ttc Phe	ctg Leu	cag Gln	att Ile 205	ctg Leu	cgg Arg	atg Met	624
atc Ile	cgc Arg 210	atg Met	gac Asp	cgg Arg	cgg Arg	gga Gly 215	ggc Gly	acc Thr	tgg Trp	aag Lys	ctg Leu 220	ctg Leu	ggc Gly	tct Ser	gtg Val	672
gtc Val 225	tat Tyr	gcc Ala	cac His	agc Ser	aag Lys 230	gag Glu	ctg Leu	gtc Val	act Thr	gcc Ala 235	tgg Trp	tac Tyr	atc Ile	ggc Gly	ttc Phe 240	720
ctt Leu	tgt Cys	ctc Leu	atc Ile	ctg Leu 245	gcc Ala	tcg Ser	ttc Phe	ctg Leu	gtg Val 250	tac Tyr	ttg Leu	gca Ala	gag Glu	aag Lys 255	glà aaa	768
gag Glu	aac Asn	gac Asp	cac His 260	ttt Phe	gac Asp	acc Thr	tac Tyr	gcg Ala 265	gat Asp	gca Ala	ctc Leu	tgg Trp	tgg Trp 270	ggc Gly	ctg Leu	816
atc Ile	acg Thr	ctg Leu 275	acc Thr	acc Thr	att Ile	ggc Gly	tac Tyr 280	ggg ggg	gac Asp	aag Lys	tac Tyr	ccc Pro 285	cag Gln	acc Thr	tgg Trp	864
aac Asn	ggc Gly 290	agg Arg	ctc Leu	ctt Leu	gcg Ala	gca Ala 295	acc Thr	ttc Phe	acc Thr	ctc Leu	atc Ile 300	ggt Gly	gtc Val	tcc Ser	ttc Phe	912

ttc Phe 305	gcg Ala	ctg Leu	cct Pro	gca Ala	ggc Gly 310	atc Ile	ttg Leu	ggg ggg	tct Ser	999 Gly 315	ttt Phe	gcc Ala	ctg Leu	aag Lys	gtt Val 320	960
cag Gln	gag Glu	cag Gln	cac His	agg Arg 325	cag Gln	aag Lys	cac His	ttt Phe	gag Glu 330	aag Lys	agg Arg	cgg Arg	aac Asn	ccg Pro 335	gca Ala	1008
gca Ala	ggc Gly	ctg Leu	atc Ile 340	cag Gln	tcg Ser	gcc Ala	tgg Trp	aga Arg 345	ttc Phe	tac Tyr	gcc Ala	acc Thr	aac Asn 350	ctc Leu	tcg Ser	1056
cgc Arg	aca Thr	gac Asp 355	ctg Leu	cac His	tcc Ser	acg Thr	tgg Trp 360	cag Gln	tac Tyr	tac Tyr	gag Glu	cga Arg 365	acg Thr	gtc Val	acc Thr	1104
gtg Val	ccc Pro 370	atg Met	tac Tyr	agt Ser	tcg Ser	caa Gln 375	act Thr	caa Gln	acc Thr	tac Tyr	999 Gly 380	gcc Ala	tcc Ser	aga Arg	ctt Leu	1152
atc Ile 385	ccc Pro	ccg Pro	ctg Leu	aac Asn	cag Gln 390	ctg Leu	gag Glu	ctg Leu	ctg Leu	agg Arg 395	aac Asn	ctc Leu	aag Lys	agt Ser	aaa Lys 400	1200
tct Ser	gga Gly	ctc Leu	gct Ala	ttc Phe 405	agg Arg	aag Lys	gac Asp	ccc Pro	ccg Pro 410	ccg Pro	gag Glu	ccg Pro	tct Ser	cca Pro 415	agc Ser	1248
cag Gln	aag Lys	gtc Val	agt Ser 420	ttg Leu	aaa Lys	gat Asp	cgt Arg	gtc Val 425	ttc Phe	tcc Ser	agc Ser	ccc Pro	cga Arg 430	ggc Gly	gtg Val	1296
gct Ala	gcc Ala	aag Lys 435	999 999	aag Lys	999 999	tcc Ser	ccg Pro 440	cag Gln	gcc Ala	cag Gln	act Thr	gtg Val 445	agg Arg	cgg Arg	tca Ser	1344
ccc Pro	agc Ser 450	gcc Ala	gac Asp	cag Gln	agc Ser	ctc Leu 455	gag Glu	gac Asp	agc Ser	ccc Pro	agc Ser 460	aag Lys	gtg Val	ccc Pro	aag Lys	1392
agc Ser 465	tgg Trp	agc Ser	ttc Phe	glÀ aàa	gac Asp 470	cgc Arg	agc Ser	cgg Arg	gca Ala	cgc Arg 475	cag Gln	gct Ala	ttc Phe	cgc Arg	atc Ile 480	1440
aag Lys	ggt Gly	gcc Ala	gcg Ala	tca Ser 485	cgg Arg	cag Gln	aac Asn	tca Ser	gaa Glu 490	gaa Glu	gca Ala	agc Ser	ctc Leu	ccc Pro 495	gga Gly	1488
gag Glu	gac Asp	att Ile	gtg Val 500	gat Asp	gac Asp	aag Lys	agc Ser	tgc Cys 505	ccc Pro	tgc Cys	gag Glu	ttt Phe	gtg Val 510	acc Thr	gag Glu	1536
gac Asp	ctg Leu	acc Thr 515	ccg Pro	ggc Gly	ctc Leu	aaa Lys	gtc Val 520	agc Ser	atc Ile	aga Arg	gcc Ala	gtg Val 525	tgt Cys	gtc Val	atg Met	1584
cgg Arg	ttc Phe 530	ctg Leu	gtg Val	tcc Ser	aag Lys	cgg Arg 535	aag Lys	ttc Phe	aag Lys	gag Glu	agc Ser 540	ctg Leu	cgg Arg	ccc Pro	tac Tyr	1632
gac Asp 545	gtg Val	atg Met	gac Asp	gtc Val	atc Ile 550	gag Glu	cag Gln	tac Tyr	tca Ser	gcc Ala 555	ggc Gly	cac His	ctg Leu	gac Asp	atg Met 560	1680
ctg Leu	tcc Ser	cga Arg	att Ile	aag Lys 565	agc Ser	ctg Leu	cag Gln	tcc Ser	agg Arg 570	caa Gln	gag Glu	ccc Pro	cgc Arg	ctg Leu 575	cct Pro	1728
gtc Val	cag Gln	cag Gln	999 Gly 580	aca Thr	aga Arg	acg Thr	д1 ^д ааа	tgg Trp 585	gct Ala	tct Ser	д1 <u>у</u> ддд	aca Thr	aag Lys 590	ccc Pro	act Thr	1776
gtg Val	gcc Ala	cat His 595	ggt Gly	ggg Gly	agt Ser	gca Ala	600 817 888	ggt Gly	gtg Val	tgg Trp	gcg Ala	999 Gly 605	cct Pro	cct Pro	ccc Pro	1824

65

cac His	cca Pro 610	cgt Arg	cgg Arg	cct Pro	ctg Leu	tca Ser 615	gct Ala	tct Ser	gtt Val	gtg Val	tct Ser 620	tca Ser	caa Gln	agt Ser	ctg Leu	1872	
ttt Phe 625	taa															1878	
<210 <211)> SE L> LE >> TY	EQ II ENGTH) NO H: 62 PRT	4 25													
<213	3> OF	GANI	SM:	Homo	o sar	piens	3										
<400)> SE	EQUEN	ICE :	4													
Met 1	Val	Gln	Lys	Ser 5	Arg	Asn	Gly	Gly	Val 10	Tyr	Pro	Gly	Pro	Ser 15	Gly		
Glu	Lys	Lys	Leu 20	Lys	Val	Gly	Phe	Val 25	Gly	Leu	Aap	Pro	Gly 30	Ala	Pro		
Asp	Ser	Thr 35	Arg	Asp	Gly	Ala	Leu 40	Leu	Ile	Ala	Gly	Ser 45	Glu	Ala	Pro		
ГЛЗ	Arg 50	Gly	Ser	Ile	Leu	Ser 55	Lys	Pro	Arg	Ala	Gly 60	Gly	Ala	Gly	Ala		
Gly 65	Lys	Pro	Pro	Lys	Arg 70	Asn	Ala	Phe	Tyr	Arg 75	Lys	Leu	Gln	Asn	Phe 80		
Leu	Tyr	Asn	Val	Leu 85	Glu	Arg	Pro	Arg	Gly 90	Trp	Ala	Phe	Ile	Tyr 95	His		
Ala	Tyr	Val	Phe 100	Leu	Leu	Val	Phe	Ser 105	Сүз	Leu	Val	Leu	Ser 110	Val	Phe		
Ser	Thr	Ile 115	Lys	Glu	Tyr	Glu	Lys 120	Ser	Ser	Glu	Gly	Ala 125	Leu	Tyr	Ile		
Leu	Glu 130	Ile	Val	Thr	Ile	Val 135	Val	Phe	Gly	Val	Glu 140	Tyr	Phe	Val	Arg		
Ile 145	Trp	Ala	Ala	Gly	Cys 150	Сүз	Сүз	Arg	Tyr	Arg 155	Gly	Trp	Arg	Gly	Arg 160		
Leu	Lys	Phe	Ala	Arg 165	Lys	Pro	Phe	Cys	Val 170	Ile	Asp	Ile	Met	Val 175	Leu		
Ile	Ala	Ser	Ile 180	Ala	Val	Leu	Ala	Ala 185	Gly	Ser	Gln	Gly	Asn 190	Val	Phe		
Ala	Thr	Ser 195	Ala	Leu	Arg	Ser	Leu 200	Arg	Phe	Leu	Gln	Ile 205	Leu	Arg	Met		
Ile	Arg 210	Met	Asp	Arg	Arg	Gly 215	Gly	Thr	Trp	Lys	Leu 220	Leu	Gly	Ser	Val		
Val 225	Tyr	Ala	His	Ser	Lys 230	Glu	Leu	Val	Thr	Ala 235	Trp	Tyr	Ile	Gly	Phe 240		
Leu	Cys	Leu	Ile	Leu 245	Ala	Ser	Phe	Leu	Val 250	Tyr	Leu	Ala	Glu	Lys 255	Gly		
Glu	Asn	Asp	His 260	Phe	Asp	Thr	Tyr	Ala 265	Asp	Ala	Leu	Trp	Trp 270	Gly	Leu		
Ile	Thr	Leu 275	Thr	Thr	Ile	Gly	Tyr 280	Gly	Asp	Lys	Tyr	Pro 285	Gln	Thr	Trp		
Asn	Gly 290	Arg	Leu	Leu	Ala	Ala 295	Thr	Phe	Thr	Leu	Ile 300	Gly	Val	Ser	Phe		
Phe	Ala	Leu	Pro	Ala	Gly	Ile	Leu	Gly	Ser	Gly	Phe	Ala	Leu	Гла	Val		
305 Gln	Glu	Gln	His	Ara	310 Gln	Lvs	His	Phe	Glu	315 Lvs	Ara	Ara	Asn	Pro	320 Ala		
				325		- ·			330	4	5	5		335			

-continued

_															
Ala	Gly	Leu	Ile 340	Gln	Ser	Ala	Trp	Arg 345	Phe	Tyr	Ala	Thr	Asn 350	Leu	Ser
Arg	Thr	Asp 355	Leu	His	Ser	Thr	Trp 360	Gln	Tyr	Tyr	Glu	Arg 365	Thr	Val	Thr
Val	Pro 370	Met	Tyr	Ser	Ser	Gln 375	Thr	Gln	Thr	Tyr	Gly 380	Ala	Ser	Arg	Leu
Ile 385	Pro	Pro	Leu	Asn	Gln 390	Leu	Glu	Leu	Leu	Arg 395	Asn	Leu	Lys	Ser	Lys 400
Ser	Gly	Leu	Ala	Phe 405	Arg	Гла	Asp	Pro	Pro 410	Pro	Glu	Pro	Ser	Pro 415	Ser
Gln	Lys	Val	Ser 420	Leu	Lys	Asp	Arg	Val 425	Phe	Ser	Ser	Pro	Arg 430	Gly	Val
Ala	Ala	Lys 435	Gly	Lys	Gly	Ser	Pro 440	Gln	Ala	Gln	Thr	Val 445	Arg	Arg	Ser
Pro	Ser 450	Ala	Asp	Gln	Ser	Leu 455	Glu	Asp	Ser	Pro	Ser 460	Гла	Val	Pro	Lys
Ser 465	Trp	Ser	Phe	Gly	Asp 470	Arg	Ser	Arg	Ala	Arg 475	Gln	Ala	Phe	Arg	Ile 480
Lys	Gly	Ala	Ala	Ser 485	Arg	Gln	Asn	Ser	Glu 490	Glu	Ala	Ser	Leu	Pro 495	Gly
Glu	Asp	Ile	Val 500	Asp	Asp	Lys	Ser	Cys 505	Pro	Суз	Glu	Phe	Val 510	Thr	Glu
Asp	Leu	Thr 515	Pro	Gly	Leu	Lys	Val 520	Ser	Ile	Arg	Ala	Val 525	Суз	Val	Met
Arg	Phe 530	Leu	Val	Ser	Lys	Arg 535	Lys	Phe	Lys	Glu	Ser 540	Leu	Arg	Pro	Tyr
Asp 545	Val	Met	Asp	Val	Ile 550	Glu	Gln	Tyr	Ser	Ala 555	Gly	His	Leu	Asp	Met 560
Leu	Ser	Arg	Ile	Lys 565	Ser	Leu	Gln	Ser	Arg 570	Gln	Glu	Pro	Arg	Leu 575	Pro
Val	Gln	Gln	Gly 580	Thr	Arg	Thr	Gly	Trp 585	Ala	Ser	Gly	Thr	Lys 590	Pro	Thr
Val	Ala	His 595	Gly	Gly	Ser	Ala	Gly 600	Gly	Val	Trp	Ala	Gly 605	Pro	Pro	Pro
His	Pro 610	Arg	Arg	Pro	Leu	Ser 615	Ala	Ser	Val	Val	Ser 620	Ser	Gln	Ser	Leu
Phe 625															
<210 <211)> SE L> LE	IQ II INGTH) NO I: 18	5 348											
<212	2> TY	PE :	DNA	Home		done									
<213)> FE	ATUR	E:	HOIIIC	, sar	JIEIIs	5								
<221 <222	L> NA 2> LC	ME/K CATI	EY : ON :	CDS (1).	. (18	848)									
<400)> SE	QUEN	ICE :	5											
atg Met 1	gtg Val	cag Gln	aag Lys	tcg Ser 5	cgc Arg	aac Asn	ggc Gly	ggc Gly	gta Val 10	tac Tyr	ccc Pro	ggc Gly	ccg Pro	agc Ser 15	glÅ aaa
gag Glu	aag Lys	aag Lys	ctg Leu 20	aag Lys	gtg Val	ggc Gly	ttc Phe	gtg Val 25	ggg ggg	ctg Leu	gac Asp	ccc Pro	ggc Gly 30	gcg Ala	ccc Pro
gac Asp	tcc Ser	acc Thr 35	cgg Arg	gac Asp	999 Gly	gcg Ala	ctg Leu 40	ctg Leu	atc Ile	gcc Ala	ggc Gly	tcc Ser 45	gag Glu	gcc Ala	ccc Pro

aag Lys	cgc Arg 50	ggc Gly	agc Ser	atc Ile	ctc Leu	agc Ser 55	aaa Lys	cct Pro	cgc Arg	gcg Ala	ggc Gly 60	ggc Gly	gcg Ala	ggc Gly	gcc Ala	192
999 Gly 65	aag Lys	ccc Pro	ccc Pro	aag Lys	cgc Arg 70	aac Asn	gcc Ala	ttc Phe	tac Tyr	cgc Arg 75	aag Lys	ctg Leu	cag Gln	aat Asn	ttc Phe 80	240
ctc Leu	tac Tyr	aac Asn	gtg Val	ctg Leu 85	gag Glu	cgg Arg	ccg Pro	cgc Arg	ggc Gly 90	tgg Trp	gcg Ala	ttc Phe	atc Ile	tac Tyr 95	cac His	288
gcc Ala	tac Tyr	gtg Val	ttc Phe 100	ctc Leu	ctg Leu	gtt Val	ttc Phe	tcc Ser 105	tgc Cys	ctc Leu	gtg Val	ctg Leu	tct Ser 110	gtg Val	ttt Phe	336
tcc Ser	acc Thr	atc Ile 115	aag Lys	gag Glu	tat Tyr	gag Glu	aag Lys 120	agc Ser	tcg Ser	gag Glu	д1У ада	gcc Ala 125	ctc Leu	tac Tyr	atc Ile	384
ctg Leu	gaa Glu 130	atc Ile	gtg Val	act Thr	atc Ile	gtg Val 135	gtg Val	ttt Phe	ggc Gly	gtg Val	gag Glu 140	tac Tyr	ttc Phe	gtg Val	cgg Arg	432
atc Ile 145	tgg Trp	gcc Ala	gca Ala	ggc Gly	tgc Cys 150	tgc Cys	tgc Cys	cgg Arg	tac Tyr	cgt Arg 155	ggc Gly	tgg Trp	agg Arg	glÀ aaa	cgg Arg 160	480
ctc Leu	aag Lys	ttt Phe	gcc Ala	cgg Arg 165	aaa Lys	ccg Pro	ttc Phe	tgt Cys	gtg Val 170	att Ile	gac Asp	atc Ile	atg Met	gtg Val 175	ctc Leu	528
atc Ile	gcc Ala	tcc Ser	att Ile 180	gcg Ala	gtg Val	ctg Leu	gcc Ala	gcc Ala 185	ggc Gly	tcc Ser	cag Gln	ggc Gly	aac Asn 190	gtc Val	ttt Phe	576
gcc Ala	aca Thr	tct Ser 195	gcg Ala	ctc Leu	cgg Arg	agc Ser	ctg Leu 200	cgc Arg	ttc Phe	ctg Leu	cag Gln	att Ile 205	ctg Leu	cgg Arg	atg Met	624
atc Ile	cgc Arg 210	atg Met	gac Asp	cgg Arg	cgg Arg	gga Gly 215	ggc Gly	acc Thr	tgg Trp	aag Lys	ctg Leu 220	ctg Leu	ggc Gly	tct Ser	gtg Val	672
gtc Val 225	tat Tyr	gcc Ala	cac His	agc Ser	aag Lys 230	gag Glu	ctg Leu	gtc Val	act Thr	gcc Ala 235	tgg Trp	tac Tyr	atc Ile	ggc Gly	ttc Phe 240	720
ctt Leu	tgt Cys	ctc Leu	atc Ile	ctg Leu 245	gcc Ala	tcg Ser	ttc Phe	ctg Leu	gtg Val 250	tac Tyr	ttg Leu	gca Ala	gag Glu	aag Lys 255	G1Å aaa	768
gag Glu	aac Asn	gac Asp	cac His 260	ttt Phe	gac Asp	acc Thr	tac Tyr	gcg Ala 265	gat Asp	gca Ala	ctc Leu	tgg Trp	tgg Trp 270	ggc Gly	ctg Leu	816
atc Ile	acg Thr	ctg Leu 275	acc Thr	acc Thr	att Ile	ggc Gly	tac Tyr 280	ggg Gly	gac Asp	aag Lys	tac Tyr	ccc Pro 285	cag Gln	acc Thr	tgg Trp	864
aac Asn	ggc Gly 290	agg Arg	ctc Leu	ctt Leu	gcg Ala	gca Ala 295	acc Thr	ttc Phe	acc Thr	ctc Leu	atc Ile 300	ggt Gly	gtc Val	tcc Ser	ttc Phe	912
ttc Phe 305	gcg Ala	ctg Leu	cct Pro	gca Ala	ggc Gly 310	atc Ile	ttg Leu	glà dâð	tct Ser	999 Gly 315	ttt Phe	gcc Ala	ctg Leu	aag Lys	gtt Val 320	960
cag Gln	gag Glu	cag Gln	cac His	agg Arg 325	cag Gln	aag Lys	cac His	ttt Phe	gag Glu 330	aag Lys	agg Arg	cgg Arg	aac Asn	ccg Pro 335	gca Ala	1008
gca Ala	ggc Gly	ctg Leu	atc Ile 340	cag Gln	tcg Ser	gcc Ala	tgg Trp	aga Arg 345	ttc Phe	tac Tyr	gcc Ala	acc Thr	aac Asn 350	ctc Leu	tcg Ser	1056
cgc Arg	aca Thr	gac Asp 355	ctg Leu	cac His	tcc Ser	acg Thr	tgg Trp 360	cag Gln	tac Tyr	tac Tyr	gag Glu	cga Arg 365	acg Thr	gtc Val	acc Thr	1104

		•	-
	aont		$\sim a$
_	COIL		eu

gtg Val	ccc Pro 370	atg Met	tac Tyr	aga Arg	ctt Leu	atc Ile 375	ccc Pro	ccg Pro	ctg Leu	aac Asn	cag Gln 380	ctg Leu	gag Glu	ctg Leu	ctg Leu	119	52
agg Arg 385	aac Asn	ctc Leu	aag Lys	agt Ser	aaa Lys 390	tct Ser	gga Gly	ctc Leu	gct Ala	ttc Phe 395	agg Arg	aag Lys	gac Asp	ccc Pro	ccg Pro 400	120	00
ccg Pro	gag Glu	ccg Pro	tct Ser	cca Pro 405	agc Ser	cag Gln	aag Lys	gtc Val	agt Ser 410	ttg Leu	aaa Lys	gat Asp	cgt Arg	gtc Val 415	ttc Phe	124	18
tcc Ser	agc Ser	ccc Pro	cga Arg 420	ggc Gly	gtg Val	gct Ala	gcc Ala	aag Lys 425	glà aaa	aag Lys	д1у 999	tcc Ser	ccg Pro 430	cag Gln	gcc Ala	129	96
cag Gln	act Thr	gtg Val 435	agg Arg	cgg Arg	tca Ser	ccc Pro	agc Ser 440	gcc Ala	gac Asp	cag Gln	agc Ser	ctc Leu 445	gag Glu	gac Asp	agc Ser	134	14
ccc Pro	agc Ser 450	aag Lys	gtg Val	ccc Pro	aag Lys	agc Ser 455	tgg Trp	agc Ser	ttc Phe	glà dâð	gac Asp 460	cgc Arg	agc Ser	cgg Arg	gca Ala	139	92
cgc Arg 465	cag Gln	gct Ala	ttc Phe	cgc Arg	atc Ile 470	aag Lys	ggt Gly	gcc Ala	gcg Ala	tca Ser 475	cgg Arg	cag Gln	aac Asn	tca Ser	gaa Glu 480	144	10
gaa Glu	gca Ala	agc Ser	ctc Leu	ccc Pro 485	gga Gly	gag Glu	gac Asp	att Ile	gtg Val 490	gat Asp	gac Asp	aag Lys	agc Ser	tgc Cys 495	ccc Pro	148	38
tgc Cys	gag Glu	ttt Phe	gtg Val 500	acc Thr	gag Glu	gac Asp	ctg Leu	acc Thr 505	ccg Pro	ggc Gly	ctc Leu	aaa Lys	gtc Val 510	agc Ser	atc Ile	153	36
aga Arg	gcc Ala	gtg Val 515	tgt Cys	gtc Val	atg Met	cgg Arg	ttc Phe 520	ctg Leu	gtg Val	tcc Ser	aag Lys	cgg Arg 525	aag Lys	ttc Phe	aag Lys	158	34
gag Glu	agc Ser 530	ctg Leu	cgg Arg	ccc Pro	tac Tyr	gac Asp 535	gtg Val	atg Met	gac Asp	gtc Val	atc Ile 540	gag Glu	cag Gln	tac Tyr	tca Ser	163	32
gcc Ala 545	ggc Gly	cac His	ctg Leu	gac Asp	atg Met 550	ctg Leu	tcc Ser	cga Arg	att Ile	aag Lys 555	agc Ser	ctg Leu	cag Gln	tcc Ser	agg Arg 560	168	30
caa Gln	gag Glu	ccc Pro	cgc Arg	ctg Leu 565	cct Pro	gtc Val	cag Gln	cag Gln	999 Gly 570	aca Thr	aga Arg	acg Thr	д1А даа	tgg Trp 575	gct Ala	172	28
tct Ser	ggg ggg	aca Thr	aag Lys 580	ccc Pro	act Thr	gtg Val	gcc Ala	cat His 585	ggt Gly	glà aaa	agt Ser	gca Ala	999 Gly 590	ggt Gly	gtg Val	177	76
tgg Trp	gcg Ala	999 Gly 595	cct Pro	cct Pro	ccc Pro	cac His	cca Pro 600	cgt Arg	cgg Arg	cct Pro	ctg Leu	tca Ser 605	gct Ala	tct Ser	gtt Val	182	24
gtg Val	tct Ser 610	tca Ser	caa Gln	agt Ser	ctg Leu	ttt Phe 615	taa									184	18
<210 <211 <212 <212)> SE L> LE 2> TY 3> OF	EQ IE ENGTH PE: RGANI) NO H: 61 PRT SM:	6 L5 Homo	sar	biens	3										
<400)> SE	EQUEN	ICE :	6	1												
Met 1	Val	Gln	Lys	Ser 5	Arg	Asn	Gly	Gly	Val 10	Tyr	Pro	Gly	Pro	Ser 15	Gly		
Glu	Lys	Lys	Leu 20	Lys	Val	Gly	Phe	Val 25	Gly	Leu	Asp	Pro	Gly 30	Ala	Pro		

Asp	Ser	Thr 35	Arg	Asp	Gly	Ala	Leu 40	Leu	Ile	Ala	Gly	Ser 45	Glu	Ala	Pro
Lys	Arg 50	Gly	Ser	Ile	Leu	Ser 55	Lys	Pro	Arg	Ala	Gly 60	Gly	Ala	Gly	Ala
Gly 65	Lys	Pro	Pro	Lys	Arg 70	Asn	Ala	Phe	Tyr	Arg 75	Lys	Leu	Gln	Asn	Phe 80
Leu	Tyr	Asn	Val	Leu 85	Glu	Arg	Pro	Arg	Gly 90	Trp	Ala	Phe	Ile	Tyr 95	His
Ala	Tyr	Val	Phe 100	Leu	Leu	Val	Phe	Ser 105	Cys	Leu	Val	Leu	Ser 110	Val	Phe
Ser	Thr	Ile 115	Lys	Glu	Tyr	Glu	Lys 120	Ser	Ser	Glu	Gly	Ala 125	Leu	Tyr	Ile
Leu	Glu 130	Ile	Val	Thr	Ile	Val 135	Val	Phe	Gly	Val	Glu 140	Tyr	Phe	Val	Arg
Ile 145	Trp	Ala	Ala	Gly	Cys 150	Суз	Суз	Arg	Tyr	Arg 155	Gly	Trp	Arg	Gly	Arg 160
Leu	Lys	Phe	Ala	Arg 165	Lys	Pro	Phe	Суз	Val 170	Ile	Asp	Ile	Met	Val 175	Leu
Ile	Ala	Ser	Ile 180	Ala	Val	Leu	Ala	Ala 185	Gly	Ser	Gln	Gly	Asn 190	Val	Phe
Ala	Thr	Ser 195	Ala	Leu	Arg	Ser	Leu 200	Arg	Phe	Leu	Gln	Ile 205	Leu	Arg	Met
Ile	Arg 210	Met	Asp	Arg	Arg	Gly 215	Gly	Thr	Trp	ГÀа	Leu 220	Leu	Gly	Ser	Val
Val 225	Tyr	Ala	His	Ser	Lys 230	Glu	Leu	Val	Thr	Ala 235	Trp	Tyr	Ile	Gly	Phe 240
Leu	Cys	Leu	Ile	Leu 245	Ala	Ser	Phe	Leu	Val 250	Tyr	Leu	Ala	Glu	Lys 255	Gly
Glu	Asn	Asp	His 260	Phe	Asp	Thr	Tyr	Ala 265	Asp	Ala	Leu	Trp	Trp 270	Gly	Leu
Ile	Thr	Leu 275	Thr	Thr	Ile	Gly	Tyr 280	Gly	Asp	Lys	Tyr	Pro 285	Gln	Thr	Trp
Asn	Gly 290	Arg	Leu	Leu	Ala	Ala 295	Thr	Phe	Thr	Leu	Ile 300	Gly	Val	Ser	Phe
Phe 305	Ala	Leu	Pro	Ala	Gly 310	Ile	Leu	Gly	Ser	Gly 315	Phe	Ala	Leu	Гла	Val 320
Gln	Glu	Gln	His	Arg 325	Gln	Lys	His	Phe	Glu 330	Lys	Arg	Arg	Asn	Pro 335	Ala
Ala	Gly	Leu	Ile 340	Gln	Ser	Ala	Trp	Arg 345	Phe	Tyr	Ala	Thr	Asn 350	Leu	Ser
Arg	Thr	Asp 355	Leu	His	Ser	Thr	Trp 360	Gln	Tyr	Tyr	Glu	Arg 365	Thr	Val	Thr
Val	Pro 370	Met	Tyr	Arg	Leu	Ile 375	Pro	Pro	Leu	Asn	Gln 380	Leu	Glu	Leu	Leu
Arg 385	Asn	Leu	Lys	Ser	Lys 390	Ser	Gly	Leu	Ala	Phe 395	Arg	Lys	Asp	Pro	Pro 400
Pro	Glu	Pro	Ser	Pro 405	Ser	Gln	Lys	Val	Ser 410	Leu	Гла	Asp	Arg	Val 415	Phe
Ser	Ser	Pro	Arg 420	Gly	Val	Ala	Ala	Lys 425	Gly	Lys	Gly	Ser	Pro 430	Gln	Ala
Gln	Thr	Val 435	Arg	Arg	Ser	Pro	Ser 440	Ala	Asp	Gln	Ser	Leu 445	Glu	Asp	Ser

Pro	Ser 450	Lys	Val	Pro	Lys	Ser 455	Trp	Ser	Phe	Gly	Asp 460	Arg	Ser	Arg	Ala
Arg 465	Gln	Ala	Phe	Arg	Ile 470	Lys	Gly	Ala	Ala	Ser 475	Arg	Gln	Asn	Ser	Glu 480
Glu	Ala	Ser	Leu	Pro 485	Gly	Glu	Aap	Ile	Val 490	Aap	Aap	Lys	Ser	Сув 495	Pro
Cys	Glu	Phe	Val 500	Thr	Glu	Asp	Leu	Thr 505	Pro	Gly	Leu	Lys	Val 510	Ser	Ile
Arg	Ala	Val 515	Cys	Val	Met	Arg	Phe 520	Leu	Val	Ser	Lys	Arg 525	Lys	Phe	Lys
Glu	Ser 530	Leu	Arg	Pro	Tyr	Asp 535	Val	Met	Aab	Val	Ile 540	Glu	Gln	Tyr	Ser
Ala 545	Gly	His	Leu	Asp	Met 550	Leu	Ser	Arg	Ile	Lys 555	Ser	Leu	Gln	Ser	Arg 560
Gln	Glu	Pro	Arg	Leu 565	Pro	Val	Gln	Gln	Gly 570	Thr	Arg	Thr	Gly	Trp 575	Ala
Ser	Gly	Thr	Lys 580	Pro	Thr	Val	Ala	His 585	Gly	Gly	Ser	Ala	Gly 590	Gly	Val
Trp	Ala	Gly 595	Pro	Pro	Pro	His	Pro 600	Arg	Arg	Pro	Leu	Ser 605	Ala	Ser	Val
Val	Ser 610	Ser	Gln	Ser	Leu	Phe 615									
<210 <211 <212 <213)> SE L> LE 2> TY 3> OR	Q II NGTH PE : GANI) NO [: 87 PRT [SM:	7 72 Homo	sar	iens	3								
-400				-											
<400)> SE	QUEN	ICE :	7											
<400 Met 1)> SE Val	QUEN Gln	ICE : Lys	7 Ser 5	Arg	Asn	Gly	Gly	Val 10	Tyr	Pro	Gly	Pro	Ser 15	Gly
<400 Met 1 Glu)> SE Val Lys	QUEN Gln Lys	ICE: Lys Leu 20	7 Ser 5 Lys	Arg Val	Asn Gly	Gly Phe	Gly Val 25	Val 10 Gly	Tyr Leu	Pro Asp	Gly Pro	Pro Gly 30	Ser 15 Ala	Gly Pro
<400 Met 1 Glu Asp)> SE Val Lys Ser	QUEN Gln Lys Thr 35	ICE: Lys Leu 20 Arg	7 Ser 5 Lys Asp	Arg Val Gly	Asn Gly Ala	Gly Phe Leu 40	Gly Val 25 Leu	Val 10 Gly Ile	Tyr Leu Ala	Pro Asp Gly	Gly Pro Ser 45	Pro Gly 30 Glu	Ser 15 Ala Ala	Gly Pro Pro
<400 Met 1 Glu Asp Lys)> SE Val Lys Ser Arg 50	Gln Lys Thr 35 Gly	CE: Lys Leu 20 Arg Ser	7 Ser 5 Lys Asp Ile	Arg Val Gly Leu	Asn Gly Ala Ser 55	Gly Phe Leu 40 Lys	Gly Val 25 Leu Pro	Val 10 Gly Ile Arg	Tyr Leu Ala Ala	Pro Asp Gly 60	Gly Pro Ser 45 Gly	Pro Gly 30 Glu Ala	Ser 15 Ala Ala Gly	Gly Pro Pro Ala
<400 Met Glu Asp Lys Gly 65)> SE Val Lys Ser Arg 50 Lys	Gln Lys Thr 35 Gly Pro	CE: Lys Leu 20 Arg Ser Pro	7 Ser Lys Asp Ile Lys	Arg Val Gly Leu Arg 70	Asn Gly Ala Ser 55 Asn	Gly Phe Leu 40 Lys Ala	Gly Val 25 Leu Pro Phe	Val 10 Gly Ile Arg Tyr	Tyr Leu Ala Ala Arg 75	Pro Asp Gly 60 Lys	Gly Pro Ser 45 Gly Leu	Pro Gly 30 Glu Ala Gln	Ser 15 Ala Ala Gly Asn	Gly Pro Pro Ala Phe 80
<400 Met 1 Glu Asp Lys Gly 65 Leu)> SE Val Lys Ser Arg 50 Lys Tyr	QUEN Gln Lys Thr 35 Gly Pro Asn	CE: Lys Leu 20 Arg Ser Pro Val	7 Ser Lys Asp Ile Lys Leu 85	Arg Val Gly Leu Arg 70 Glu	Asn Gly Ala Ser 55 Asn Arg	Gly Phe Leu 40 Lys Ala Pro	Gly Val 25 Leu Pro Phe Arg	Val 10 Gly Ile Arg Tyr Gly 90	Tyr Leu Ala Ala Arg 75 Trp	Pro Asp Gly 60 Lys Ala	Gly Pro Ser 45 Gly Leu Phe	Pro Gly 30 Glu Ala Gln Ile	Ser 15 Ala Ala Gly Asn Tyr 95	Gly Pro Pro Ala Phe 80 His
<400 Met 1 Glu Asp Lys Gly 65 Leu Ala	>> SE Val Lys Ser Arg 50 Lys Tyr Tyr	QUEN Gln Lys Thr 35 Gly Pro Asn Val	CCE: Lys Leu 20 Arg Ser Pro Val Phe 100	7 Ser 5 Lys Asp Ile Lys Leu 85 Leu	Arg Val Gly Leu Arg 70 Glu Leu	Asn Gly Ala Ser 55 Asn Arg Val	Gly Phe Leu 40 Lys Ala Pro Phe	Gly Val 25 Leu Pro Phe Arg Ser 105	Val 10 Gly Ile Arg Tyr Gly 90 Cys	Tyr Leu Ala Ala Arg 75 Trp Leu	Pro Asp Gly Gly 60 Lys Ala Val	Gly Pro Ser 45 Gly Leu Phe Leu	Pro Gly 30 Glu Ala Gln Ile Ser 110	Ser 15 Ala Ala Gly Asn Tyr 95 Val	Gly Pro Pro Ala Phe 80 His Phe
<400 Met 1 Glu Asp Lys Gly 65 Leu Ala Ser	> SE Val Lys Ser Arg 50 Lys Tyr Tyr Thr	QUEN Gln Lys Thr 35 Gly Pro Asn Val Ile 115	CE: Lys Leu 20 Arg Ser Pro Val Phe 100 Lys	7 Ser Lys Asp Ile Lys Leu Slueu Glu	Arg Val Gly Leu Arg 70 Glu Leu Tyr	Asn Gly Ala Ser 55 Asn Arg Val Glu	Gly Phe Leu 40 Lys Ala Pro Phe Lys 120	Gly Val 25 Leu Pro Phe Arg Ser 105 Ser	Val 10 Gly Ile Arg Tyr Gly 90 Cys Ser	Tyr Leu Ala Ala Arg 75 Trp Leu Glu	Pro Asp Gly 60 Lys Ala Val Gly	Gly Pro Ser 45 Gly Leu Phe Leu Ala	Pro Gly 30 Glu Ala Gln Ile Ser 110 Leu	Ser 15 Ala Ala Gly Asn Tyr 95 Val Tyr	Gly Pro Pro Ala Phe 80 His Phe Ile
<400 Met 1 Glu Asp Lys Gly 65 Leu Ala Ser Leu	> SE Val Lys Ser Arg 50 Lys Tyr Tyr Thr Glu 130	QUEN Gln Lys Thr 35 Gly Pro Asn Val Ile 115 Ile	CE: Lys Leu 20 Arg Ser Pro Val Phe 100 Lys Val	7 Ser 5 Lys Asp Ile Lys Leu Glu Thr	Arg Val Gly Leu Arg 70 Glu Leu Tyr Ile	Asn Gly Ala Ser 55 Asn Arg Val Glu Val 135	Gly Phe Leu 40 Lys Ala Pro Phe Lys 120 Val	Gly Val 25 Leu Pro Phe Arg Ser 105 Ser Phe	Val 10 Gly Ile Arg Tyr Gly 90 Cys Ser Gly	Tyr Leu Ala Ala Arg 75 Trp Leu Glu Val	Pro Asp Gly Gly 60 Lys Ala Val Gly Glu	Gly Pro Ser 45 Gly Leu Phe Leu Ala 125 Tyr	Pro Gly 30 Glu Ala Gln Ile Ser 110 Leu Phe	Ser 15 Ala Ala Gly Asn Tyr 95 Val Tyr Val	Gly Pro Pro Ala Phe 80 His Phe Ile Arg
<400 Met 1 Glu Asp Lys Gly 65 Leu Ala Ser Leu Ile 145	> SE Val Lys Ser Arg 50 Lys Tyr Tyr Thr Glu 130 Trp	QUEN Gln Lys Thr 35 Gly Pro Asn Val Ile 115 Ile Ala	CE: Lys Leu 20 Arg Ser Pro Val Phe 100 Lys Val Ala	7 Ser Lys Asp Ile Lys Leu Glu Thr Gly	Arg Val Gly Leu Arg 70 Glu Leu Tyr Ile Cys 150	Asn Gly Ala Ser 55 Asn Arg Val Glu Val 135 Cys	Gly Phe Leu 40 Lys Ala Pro Phe Lys 120 Val Cys	Gly Val 25 Leu Pro Phe Arg Ser Ser Phe Arg	Val 10 Gly Ile Arg Tyr Gly 90 Cys Ser Gly Tyr	Tyr Leu Ala Ala Arg 75 Leu Glu Val Arg 155	Pro Asp Gly Gly Clys Ala Val Gly Glu Glu Glu Gly	Gly Pro Ser 45 Gly Leu Phe Leu Ala 125 Tyr Trp	Pro Gly 30 Glu Ala Gln Ile Ser 110 Leu Phe Arg	Ser 15 Ala Ala Gly Asn Tyr 95 Val Tyr Val Gly	Gly Pro Pro Ala Phe 80 His Phe Ile Arg Arg 160
<400 Met 1 Glu Asp Lys Gly 65 Leu Ala Ser Leu Ile 145 Leu	> SE Val Lys Ser Arg 50 Lys Tyr Tyr Thr Glu 130 Trp Lys	QUEN Gln Lys Thr 35 Gly Pro Asn Val Ile 115 Ile Ala Phe	CE: Lys Leu 20 Arg Ser Pro Val Phe 100 Lys Val Ala Ala	7 Ser Lys Asp Lys Lys Leu Glu Thr Gly Arg 165	Arg Val Gly Leu Arg 70 Glu Leu Tyr Ile Cys 150 Lys	Asn Gly Ala Ser 55 Asn Arg Val Glu Val 135 Cys Pro	Gly Phe Leu 40 Lys Ala Pro Phe Lys 120 Val Cys Phe	Gly Val 25 Leu Pro Phe Arg Ser Ser Phe Arg Cys	Val 10 Gly Ile Arg Tyr Gly Ser Gly Tyr Tyr Val 170	Tyr Leu Ala Arg 75 Leu Glu Val Arg 155 Ile	Pro Asp Gly 60 Lys Ala Val Gly Gly Asp	Gly Pro Ser 45 Gly Leu Phe Leu Ala 125 Tyr Trp Ile	Pro Gly 30 Glu Ala Gln Ile Ser 110 Leu Phe Arg Met	Ser 15 Ala Ala Gly Asn Tyr 795 Val Tyr Val Gly Val 175	Gly Pro Pro Ala Phe 80 His Phe Ile Arg 160 Leu
<400 Met 1 Glu Asp Lys Gly 65 Leu Ala Ser Leu Ile 145 Leu Ile	> SE Val Lys Ser Arg 50 Lys Tyr Tyr Thr Glu 130 Trp Lys Ala	QUEN Gln Lys Thr 35 Gly Pro Asn Val Ile 115 Ile Ala Phe Ser	CE: Lys Leu 20 Arg Ser Pro Val Phe 100 Lys Val Ala Ala Ile 180	7 Ser Lys Lys Lys Leu Glu Thr Gly Arg 165 Ala	Arg Val Gly Leu Arg 70 Glu Leu Tyr Ile Cys 150 Lys Val	Asn Gly Ala Ser 55 Asn Arg Val Glu Val 135 Cys Pro Leu	Gly Phe Leu 40 Lys Ala Pro Phe Lys 120 Val Cys Phe Ala	Gly Val 25 Leu Pro Phe Arg Ser Ser Phe Arg Cys Ala	Val 10 Gly Ile Arg Tyr Gly Ser Gly Tyr Tyr Val 170 Gly	Tyr Leu Ala Ala Arg 75 Trp Leu Glu Val Arg 155 Ile Ser	Pro Asp Gly 60 Lys Ala Val Gly Glu 140 Gly Asp Gln	Gly Pro Ser 45 Gly Leu Phe Leu Ala 125 Tyr Trp Ile Gly	Pro Gly 30 Glu Ala Gln Ile Ser 110 Leu Phe Arg Met Asn 190	Ser 15 Ala Gly Asn Tyr Val Tyr Val Gly Val Ur 5 Val	Gly Pro Ala Phe 80 His Phe Ile Arg 160 Leu Phe

Ile	Arg 210	Met	Asp	Arg	Arg	Gly 215	Gly	Thr	Trp	Lys	Leu 220	Leu	Gly	Ser	Val
Val 225	Tyr	Ala	His	Ser	Lys 230	Glu	Leu	Val	Thr	Ala 235	Trp	Tyr	Ile	Gly	Phe 240
Leu	Сув	Leu	Ile	Leu 245	Ala	Ser	Phe	Leu	Val 250	Tyr	Leu	Ala	Glu	Lys 255	Gly
Glu	Asn	Asp	His 260	Phe	Asp	Thr	Tyr	Ala 265	Asp	Ala	Leu	Trp	Trp 270	Gly	Leu
Ile	Thr	Leu 275	Thr	Thr	Ile	Gly	Tyr 280	Gly	Asp	Lys	Tyr	Pro 285	Gln	Thr	Trp
Asn	Gly 290	Arg	Leu	Leu	Ala	Ala 295	Thr	Phe	Thr	Leu	Ile 300	Gly	Val	Ser	Phe
Phe 305	Ala	Leu	Pro	Ala	Gly 310	Ile	Leu	Gly	Ser	Gly 315	Phe	Ala	Leu	Lys	Val 320
Gln	Glu	Gln	His	Arg 325	Gln	Lys	His	Phe	Glu 330	Lys	Arg	Arg	Asn	Pro 335	Ala
Ala	Gly	Leu	Ile 340	Gln	Ser	Ala	Trp	Arg 345	Phe	Tyr	Ala	Thr	Asn 350	Leu	Ser
Arg	Thr	Asp 355	Leu	His	Ser	Thr	Trp 360	Gln	Tyr	Tyr	Glu	Arg 365	Thr	Val	Thr
Val	Pro 370	Met	Tyr	Ser	Ser	Gln 375	Thr	Gln	Thr	Tyr	Gly 380	Ala	Ser	Arg	Leu
Ile 385	Pro	Pro	Leu	Asn	Gln 390	Leu	Glu	Leu	Leu	Arg 395	Asn	Leu	Lys	Ser	Lys 400
Ser	Gly	Leu	Ala	Phe 405	Arg	ГЛа	Asp	Pro	Pro 410	Pro	Glu	Pro	Ser	Pro 415	Ser
ГЛа	Gly	Ser	Pro 420	Суа	Arg	Gly	Pro	Leu 425	Суз	Gly	Суа	Суз	Pro 430	Gly	Arg
Ser	Ser	Gln 435	Lys	Val	Ser	Leu	Lys 440	Asp	Arg	Val	Phe	Ser 445	Ser	Pro	Arg
Gly	Val 450	Ala	Ala	ГЛа	Gly	Lys 455	Gly	Ser	Pro	Gln	Ala 460	Gln	Thr	Val	Arg
Arg 465	Ser	Pro	Ser	Ala	Asp 470	Gln	Ser	Leu	Glu	Asp 475	Ser	Pro	Ser	ГЛа	Val 480
Pro	Lys	Ser	Trp	Ser 485	Phe	Gly	Asp	Arg	Ser 490	Arg	Ala	Arg	Gln	Ala 495	Phe
Arg	Ile	Lys	Gly 500	Ala	Ala	Ser	Arg	Gln 505	Asn	Ser	Glu	Glu	Ala 510	Ser	Leu
Pro	Gly	Glu 515	Asp	Ile	Val	Asp	Asp 520	Lys	Ser	Суз	Pro	Cys 525	Glu	Phe	Val
Thr	Glu 530	Asp	Leu	Thr	Pro	Gly 535	Leu	Lys	Val	Ser	Ile 540	Arg	Ala	Val	Сув
Val 545	Met	Arg	Phe	Leu	Val 550	Ser	Lys	Arg	Lys	Phe 555	Lys	Glu	Ser	Leu	Arg 560
Pro	Tyr	Aap	Val	Met 565	Asp	Val	Ile	Glu	Gln 570	Tyr	Ser	Ala	Gly	His 575	Leu
Asp	Met	Leu	Ser 580	Arg	Ile	Lys	Ser	Leu 585	Gln	Ser	Arg	Val	Asp 590	Gln	Ile
Val	Gly	Arg 595	Gly	Pro	Ala	Ile	Thr 600	Asp	Lys	Asp	Arg	Thr 605	Гла	Gly	Pro
Ala	Glu 610	Ala	Glu	Leu	Pro	Glu 615	Asp	Pro	Ser	Met	Met 620	Gly	Arg	Leu	Gly

-continued

Lys 625	Val	Glu	Lys	Gln	Val 630	Leu	Ser	Met	Glu	Lys 635	Lys	Leu	Asp	Phe	Leu 640
Val	Asn	Ile	Tyr	Met 645	Gln	Arg	Met	Gly	Ile 650	Pro	Pro	Thr	Glu	Thr 655	Glu
Ala	Tyr	Phe	Gly 660	Ala	Lys	Glu	Pro	Glu 665	Pro	Ala	Pro	Pro	Tyr 670	His	Ser
Pro	Glu	Asp 675	Ser	Arg	Glu	His	Val 680	Asp	Arg	His	Gly	Сув 685	Ile	Val	Lys
Ile	Val 690	Arg	Ser	Ser	Ser	Ser 695	Thr	Gly	Gln	ГÀа	Asn 700	Phe	Ser	Ala	Pro
Pro 705	Ala	Ala	Pro	Pro	Val 710	Gln	Суз	Pro	Pro	Ser 715	Thr	Ser	Trp	Gln	Pro 720
Gln	Ser	His	Pro	Arg 725	Gln	Gly	His	Gly	Thr 730	Ser	Pro	Val	Gly	Asp 735	His
Gly	Ser	Leu	Val 740	Arg	Ile	Pro	Pro	Pro 745	Pro	Ala	His	Glu	Arg 750	Ser	Leu
Ser	Ala	Tyr 755	Gly	Gly	Gly	Asn	Arg 760	Ala	Ser	Met	Glu	Phe 765	Leu	Arg	Gln
Glu	Asp 770	Thr	Pro	Gly	Суз	Arg 775	Pro	Pro	Glu	Gly	Asn 780	Leu	Arg	Asp	Ser
Asp 785	Thr	Ser	Ile	Ser	Ile 790	Pro	Ser	Val	Asp	His 795	Glu	Glu	Leu	Glu	Arg 800
Ser	Phe	Ser	Gly	Phe 805	Ser	Ile	Ser	Gln	Ser 810	Lys	Glu	Asn	Leu	Asp 815	Ala
Leu	Asn	Ser	Cys 820	Tyr	Ala	Ala	Val	Ala 825	Pro	Cys	Ala	Lys	Val 830	Arg	Pro
Tyr	Ile	Ala 835	Glu	Gly	Glu	Ser	Asp 840	Thr	Asp	Ser	Asp	Leu 845	Cys	Thr	Pro
Суз	Gly 850	Pro	Pro	Pro	Arg	Ser 855	Ala	Thr	Gly	Glu	Gly 860	Pro	Phe	Gly	Asp
Val 865	Gly	Trp	Ala	Gly	Pro 870	Arg	Lys								
<210 <211 <212 <213 <220 <223	0> SE L> LE 2> TY 3> OF 0> FE 3> OT	EQ II ENGTH PE: RGANI EATUF THER	D NO H: 27 DNA SM: SM: RE: INFO	8 7 Arti DRMAJ	fici	al. oli	.gonu	ucleo	otide	4					
<400)> SE	EQUEN	ICE :	8											
acct	ctgo	cgg a	attgo	catco	gg tạ	gtgto	9g								
<210 <211 <212 <213 <220 <223	0> SE L> LE 2> TY 3> OF 0> FE 3> OT	EQ II ENGTH PE: GANJ EATUF THER	D NO H: 25 DNA SM: RE: INFO	9 S Arti DRMAJ	fici	al oli	.gonu	iclec	tide	2					
<400)> SE	EQUEN	ICE :	9											
ggat	cgact	tg d	catga	agget	a dé	gtgg									
<210)> SE	EQ II	NO NO	10											
<211	L> LE	ENGTH	I: 35	5											
<213	3> 0F	. f f : RGANI	SM:	Arti	fici	al									
<220)> FE	CATUR	ξE:												
<223	3> 01	HER	INFO	ORMAI	ION:	oli	gonu	iclec	tide	è					

-continued	
<400> SEQUENCE: 10	
agcgaattet caatgggega ggacaeggae aegeg	35
<210> SEQ ID NO 11 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 11	
teeggateet eetgtgteea cacaetgeea eete	34
<210> SEQ ID NO 12 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 12	
aatattaaaa cagactttgt gaagacacaa cagaa	35
<pre><210> SEQ ID NO 13 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 13</pre>	
atcagaatto acatontoca gaagtogogo aag	23
<pre><210> SEQ ID NO 14 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 14</pre>	
tgacagatct taaaacagac tttgtgaaga cacaacagaa gc	42
<pre><210> SEQ ID NO 15 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 15</pre>	
<400> SEQUENCE: 15	17
<pre>gtgtggatgc tgccccg <210> SEQ ID NO 16 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide</pre>	17
<400> SEQUENCE: 16	10
LUCUGULUA AAAUULUG	10

			-	
-con	t.	i	nued	

	concinaca
<210> SEO ID NO 17	
<211> LENGTH: 35	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 17	
	25
actagaatte ageeagaagg teagtitgaa agate	35
<210> SEO ID NO 18	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 18	
atcaggated gegeggete acticet	27
accayyatee gegeegeete actiett	27
<210> SEQ ID NO 19	
<211> LENGTH: 35	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
ADD SECTIENCE, 10	
4005 SEQUENCE: 15	
actagaatto agocagaagg toagtttgaa agato	35
5 5 5 5 5 5	
<210> SEQ ID NO 20	
<211> LENGTH: 36	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
<4005 SECUENCE: 20	
(100) BEQUENCE. 20	
actaggatee ctactggaet geaggetett aatteg	36
<210> SEQ ID NO 21	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEALURE:	
2232 STREEK INFORMATION: STIGORACTEOUTDE	
<400> SEQUENCE: 21	
~	
aactagaatt cgtggaccag atcgtggggc g	31
<210> SEQ ID NO 22	
<zii> LENGTH: 27</zii>	
<212> TIME: UNA 2010: ODCINICM, Intificial	
<2132 ORGANISM: AIUILICIAL	
<223> OTHER INFORMATION, aligopusleatida	
2232 STHER INFORMATION: STIGOROTEOUTDE	
<400> SEQUENCE: 22	
atcaggatec gegeegeete actteet	27
	— ·
<210> SEQ ID NO 23	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
2205 FRATIDE.	

<220> FEATURE: <223> OTHER INFORMATION: oligonucleotide

<pre><400> SEQUENCE: 23 aatcagaatt ccaagagccc cgcctgcc 28 <210> SEQ ID NO 24 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial</pre>
aatcagaatt ccaagagccc cgcctgcc 28 <210> SEQ ID NO 24 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial
<210> SEQ ID NO 24 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial
<220> FEATURE: <223> OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 24
gcacgatgca cagttgaagt ga 22
<pre><210> SEQ ID NO 25 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 25</pre>
tactgaatte tteetggtgt eeaagegga 29
<pre><210> SEQ ID NO 26 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 26</pre>
<pre><210> SEQ ID NO 27 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 27</pre>
acatgaatte cagaaggtea gtttgaaaga tegtgte 37
<pre><210> SEQ ID NO 28 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide</pre>
<400> SEQUENCE: 28
tgatggatcc tcaccgcatg acacacacgg c 31
<pre><210> SEQ ID NO 29 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQUENCE: 29</pre>
cacggatcca gcagccagaa ggtcagtttg 30

			-	
-con	t.	i	nued	

	concinaca
<2105 SEO ID NO 20	
<2102 SEQ ID NO 30 22115 LENGTU, 21	
-212- TUDE: DNA	
<212> IIFE: DNA <213> OPGANISM, Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
-3	
<400> SEQUENCE: 30	
cacgaattct ggacggacca aactgcgtat a	31
<210> SEQ ID NO 31	
<zii> LENGTH: 32</zii>	
<212> TIPE: DNA <213> OPGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
J	
<400> SEQUENCE: 31	
ageggateca tgggegagga caeggaeaeg eg	32
<210> SEO ID NO 32	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 32	
	24
	51
<210> SEQ ID NO 33	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
<4005 SECUENCE: 33	
(100) blgomell. 00	
gageetegag gacageeeca geaag	25
<210> SEQ ID NO 34	
<211> LENGTH: 35	
<212> TYPE: DNA	
<2215> ORGANISM: AICHICIAL	
<223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 34	
aagaattetg taaaaggtea etgeeaggag eeeee	35
<2105 SEO ID NO 35	
<211> LENGTH · 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 35	
cggaatteee atggtgeaga agtegegeaa e	31
<210> SEQ ID NO 36	
<211> LENGTH: 32	
<212> TYPE: DNA	
<213> ORGANISM: ATTIIICIAL	
<220> FEATURE:	
<pre><223> OINER INFORMATION: OIIGONUCLEOUIDE</pre>	

-continued

<400> SEQUENCE: 36 ccagatettg taaaaggtea etgeeaggag ee <210> SEO ID NO 37 <211> LENGTH: 151830 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (10)..(10) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (60402)..(60402) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (61110) .. (61110) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (98207)..(98207) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (98208)..(98208) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (98209)..(98209) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (98210) .. (98210) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (98211)..(98211) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (99743)..(99743) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (108055)..(108055) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (109094)..(109094) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (109125)..(109125) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (118900)..(118900) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (119024)..(119052) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (119053)..(119112) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (119115)..(119121) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (119123)..(119123) <223> OTHER INFORMATION: n = a or c or g or t

-continued

<220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (141674)..(141674) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (142063)..(142063) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (142137)..(142137) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (142967)..(142967) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (143077)..(143077) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (143506)..(143506) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (143587)..(143587) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (143629)..(143629) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (149079)..(149079) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (5363)..(5363) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (8080)..(8080) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (10296)..(10296) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (14528)..(14528) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15336)..(15336) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (15457)..(15457) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (16288)..(16288) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (16306)..(16307) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (16316)..(16316) <223> OTHER INFORMATION: n = a or c or q or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (16397)..(16397) <223> OTHER INFORMATION: n = a or c or g or t

-continued

<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (56012)..(56012) <223> OTHER INFORMATION: n = a or c or g or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (57662)..(57662) <223> OTHER INFORMATION: n = a or c or g or t<220> FEATURE: <221> NAME/KEY: 5'UTR <222> LOCATION: (1)..(54) <223> OTHER INFORMATION: exon 1 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (55)..(124) <223> OTHER INFORMATION: exon 1 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (91147)..(91244) <223> OTHER INFORMATION: exon 2 <220> FEATURE <221> NAME/KEY: exon <222> LOCATION: (93669)..(93834) <223> OTHER INFORMATION: exon 3 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (96310) .. (96422) <223> OTHER INFORMATION: exon 4 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (99546)..(99723) <223> OTHER INFORMATION: exon 5 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (125441)..(125605) <223> OTHER INFORMATION: exon 6 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (141176)..(141345) <223> OTHER INFORMATION: exon 7 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (145556)..(145647) <223> OTHER INFORMATION: exon 8 <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (151316)..(151608) <223> OTHER INFORMATION: exon 9 <220> FEATURE: <221> NAME/KEY: 3'UTR <222> LOCATION: (151609)..(151829) <223> OTHER INFORMATION: exon 9 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (84026)..(84026) <223> OTHER INFORMATION: complement of biallelic marker 99-24169/139 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (109663)..(109663) <223> OTHER INFORMATION: complement of biallelic marker 24-257/320 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (117460)..(117460) <223> OTHER INFORMATION: complement of biallelic marker 99-24175/218 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (99505)..(99505) <223> OTHER INFORMATION: biallelic marker 24-247/216 <400> SEQUENCE: 37 attgcatcgn tgtgtggcgg cgggggcatgc ccagagcacc gggcacggcc ttca atg 57 Met 1 ggc gag gac acg gac acg cgg aaa att aac cac agc ttc ctg cgg gac 105 Gly Glu Asp Thr Asp Thr Arg Lys Ile Asn His Ser Phe Leu Arg Asp 5 10 15

cac agc tat His Ser Tyr 20	t gtg act ga r Val Thr G	aa g gtaacgt lu	acg tgttgto	etga gaeceet	leeg	154
gccggccgcg	gcgtggggat	gccgtcgcac	cgaatgccct	ccgaaggttt	ggaccgcgcg	214
atgtgtgtcg	tgtccccccg	ccccacccca	ccccacccca	tcccacccca	ccccacccca	274
tcccatccca	ccctgcccgg	ggcccaggag	ggagggagcc	cgagggtacc	ggcctccgct	334
gcccagcgcc	ggcacagggc	agcgccctcc	tccgcgccgc	cctccgggag	gcagctttcc	394
tctcccaagc	caggtggcat	cctgattcgg	ccctgaccat	aattttttaa	aaggccacgg	454
ctgtggctaa	tctggtgaag	aaatctcggg	gaaatttaat	ggtttaaatc	ctggatttgc	514
catttcagcc	ctgcccaaag	cccgcagaat	tttctaggct	gccctctccc	tggagaagaa	574
gagggacccg	gggggaaaaa	aacataatcc	attgccagat	cctcctggga	ggeeegeetg	634
cccgggcccc	tccctgtcct	ccagaggcag	ggtccctgag	tgggagggag	aaggcggctg	694
gtttgggggct	ggccttttta	ttcctggtga	gttatattga	gacaggagca	gctgggctaa	754
ctgtcgggat	tttccaaaaa	agtgggacat	gccatcccaa	acaggccctg	tttaaaatcc	814
cctaagttgg	ccctacaagc	ccaaccccca	cccccaccct	acccccgagg	ctggtgggtc	874
agcgcccctc	tcttacaggc	ctggaacttc	cggggggcccc	ctggtctgcc	tcgctagggg	934
aacagtgggg	acagcttccg	tgcgcaggca	gggcccgcgg	agtgaccccg	atggaggatg	994
gggaccggga	ggtctgggct	cgggggccgcc	tgtgctggag	ccctgcccga	gtgcggggac	1054
tgtcagccgc	taacccacgg	gctggcggcc	cggccgcaga	agtgtgcgcg	gattccccgg	1114
gtgggtgeee	cagtgggagg	ggccctgggc	acgggtcccg	cgggggcaggt	gcgcgtgggt	1174
gcctgtgtca	gggagaccga	gtgggccagg	cggcggagac	cgggctcctg	cggctgggtc	1234
cgcctcctcg	aagcctggct	ctgccggaaa	tgaggccgag	cggagccgga	gccccgcgga	1294
ggcccggggga	gcgcagcgcg	agcgcggggcg	cgggcgggct	cgggggcgccc	tggcccggga	1354
ggcagaggct	gggcgtggga	cctgggcgga	gggaggctgc	gggggccgcg	cccgctcccg	1414
gcgggagaac	cgctgagtca	cgcacgcttc	gccgccgggt	gtgtgcgaga	gaggggcagg	1474
gctgcccggg	cctccgggcc	ggtgggggtc	tgacccggcc	gcggctttgg	gaggcccggg	1534
gagetgagag	cggtcctttg	tcgcctgctt	cggcgaggct	gagtcgggat	cagcgtgggt	1594
ccgggatgtg	gtttctgctc	gcagcctgca	gcgacagagg	gttggaggaa	gccgccgggt	1654
tgetggeeeg	tgcctcggtg	gcctggctcg	ggccgagagc	ggatcttggc	aggttgcccc	1714
gctgctccca	ggctcgctgt	ggtctggctt	cctggagcaa	gcctctgttt	gctcatctct	1774
acgttgggga	tgacggtggg	atggggcgca	gggctcgttg	tgggaccagg	cgtaaaaagc	1834
gccatggtgg	acattttcaa	acattaattc	cctctgcacc	ctgcccgtcc	ccttttcttt	1894
cataaattca	ccagccctca	gcagggcaca	ggaacggggga	cggcacagtt	ctggaggtca	1954
gagcagtgct	atccaatcct	tcatccagac	acgagatatt	taccgagcac	ctgctgcatg	2014
ccgggcactg	ttttatccct	ggggactgga	caaagactcc	ctgcccttgt	gcggcctgaa	2074
ttctatcagg	gagctatatg	accttgaggt	ctgtcttctc	accagggctc	agteteccea	2134
tctgtaaaat	gggagtgaat	cctgcctaca	gggtctggag	gtttctgtga	ggagcaggtg	2194
caacggtgtt	gaaggagccg	ttcagagcta	tgcattgcta	acgtgcagcc	aaaggatgct	2254
gagcacctgc	tgtgtgctgg	gacctcatac	gaaggeteae	ctacgcctta	tccccacctt	2314
gagatgaaca	aaccaaggcc	tggccttgtg	cctggtccag	accgagtgcc	agtgtgtgca	2374
gggcataggg	ctcaggtgct	gcggatgcag	agagcaggat	cggaacaaga	aacaataata	2434

atcattataa	taggtagaat	tctggcctcc	ctaatgaaaa	acacactttc	acactgttgc	2494
atcctgacta	tatttcatgc	tcagagcaca	gggaaggtca	cagatttgaa	tgtcagaatg	2554
tcagacttga	atcatgttaa	agtcctgcct	ctgactcctg	actgctgtgc	agccttggac	2614
aagttactac	accttcctga	gcttcacttt	ccctttgtaa	agggagaaat	aataacgacc	2674
tttcatacag	ggttgctggg	atgatcagtg	attttgctaa	tatcaaaagt	gcccagcaca	2734
gtgcttgggt	tgttggaggc	attgaacaca	cggcattgtt	attatttata	tgccttgtaa	2794
ctggaagagc	ctgtgggcaa	acagtggatg	ctaaaattca	gtttgtggaa	gaaccaggtg	2854
cacaaactcc	tgttctacct	gtggttgagt	ctacactccc	ccaccacacc	ccagctgctc	2914
tgatctacct	cctgttcctt	gagcaggcca	ttttctttct	tgcttcaggg	catttgcaat	2974
ggctgttccc	tggaataccc	acctcctgcc	tttctcacca	ctgactcttt	ctcatccttt	3034
gggccccatg	tccaatgtca	tctttgcccg	tgggagccct	gcttgggttc	ctgagtctct	3094
tgtaaaatct	caaacatctt	aggaagagtt	taggttttgt	tagtcattca	catcttggtg	3154
tgaattcgtc	agagcaggtt	ggatttttt	tttttttt	tttttttg	gtggcagggc	3214
tgggtggctt	actcttggct	gggctcaact	gcattgaggg	ttatggtgat	gattaggtgt	3274
acctgcaggc	cacctggggg	cacagagaac	tttgcatgaa	tggggtcagg	gtgtggggag	3334
agcagtgtag	ctgatagggc	actgggccct	ggaccctgga	ccctggaggg	tgctaggaag	3394
tctccatcta	gttagacatt	tctcaagagc	tggatatggt	tccaggaagg	actcttcctg	3454
gctctgttct	ttctctttt	gcggcaggcc	tcagtactta	gctttagagt	gagttgaata	3514
agcacttcca	gactagactg	aacttacaaa	acccatccat	ccttcctttg	cttagcacca	3574
tttgccaagc	acatcctgcc	ctgggcagca	gtgatgacca	agacacagga	gctcagccaa	3634
ggggaggtag	ttcaggctga	ccaggtagat	cctggcagtg	actgggtctt	tctggggagc	3694
aacagtcact	ctcatgtgcc	tgacaggtaa	ggcacttccg	gagcacactt	ttcagctgag	3754
gccagaggca	cagetteece	ttgtttgagc	atctcagcca	tcacacactg	ttggacactc	3814
atgctttttg	catctgcata	aaggatgtac	ccatgttttc	ctaactccca	tccctggatg	3874
tcctgtgtga	tttcagagta	gtctgtttat	tcccacagag	ttgtcctgat	tttatagttg	3934
aggaagtgaa	gggtgcttgg	gaattgctaa	ggtcatcatg	gggtcctgag	gctgtctgaa	3994
cgcagcaggc	aggcaggttt	tcctgcatgg	aattgtctgc	aggttttgaa	ctggttgtgc	4054
cctggatacc	atctactttc	tgcccaggaa	accacactga	agaggggatg	ctgcttgtgg	4114
gagactcagc	attcagtgaa	atctgcaccc	ttatggtgga	cgttgcagct	gatctccaca	4174
acagttagtc	tctcttcttc	caaggagaac	acatatggtt	cctagtaaga	gatctcaggc	4234
catagctgga	tgtgatcagt	gcaaggatga	tctcattccc	cttgcagtga	ctggttccag	4294
aatggatgtg	ggagtcagtt	ctggaggttg	agtggaaagt	agggagaacc	acaggtagtt	4354
ggtccctctc	ttgtgatggg	aacagggaaa	ccttgtggtg	gctggcagcc	atctgacacc	4414
atgaggggag	caagtcttag	gccaccaccg	ttgatggcag	ggcagagagt	gagtgagatc	4474
caggacatag	aggcctgatg	tccaggccgc	ctctgaactt	ccagttacat	gagctgttac	4534
ttttcctttt	cgttgtgcac	tttcaagtct	ccgttacttg	cagcccatag	caccccaact	4594
cgtacageee	tgactgctta	tcaagaaaac	caggaggctg	atctgtaacc	cacagctaag	4654
actcgagata	cataaaaccc	agagggattt	ttgtttgctt	tctgttttga	gaaccctctt	4714
tcatttcact	caagtcaagg	ttgccaattt	ctggttttcc	ctcctcagtc	ctattgagga	4774
ggtattttg	gtcagataag	agagcctgag	atctggcatc	gggagatctg	ggttcctggt	4834

ggggtctgac	cctgggtctg	taatattggg	caggtcacac	ggtctctctg	agceteagtt	4894
tattcttaat	agatcagtaa	gtgatgatgt	ctattcttta	ggggccagag	ttagactagc	4954
ccttagaact	gtcatcagac	tggctagcct	aacttccacc	ccaacctatg	gggaaactga	5014
ggctaagagg	ggggacatta	gtggtggcac	agagggagat	tagggagagt	cagcctttga	5074
cttttgaaaa	tcaagatgtg	gactgttcag	attctgtgtt	cctttcgctt	ctgtttggaa	5134
acgccactta	cataagcttc	ccttgggctt	cacagcgagt	gtgggctcca	tttcagtgct	5194
ggggtgccct	ccatcaaatc	acatcacttt	ctgagcctca	gtttccctgc	actgcctggt	5254
gccctgggtt	gtcatgaggc	tgtaaggagc	caagggcatg	tggactctga	agttctacac	5314
gtgtaaaagg	cgactgctgt	caatttcccc	aaattgtagt	gtaggccanc	tcccacgccc	5374
ctgctgtaag	caatgtgctc	ctttctttt	aatcaacccg	aacttaaagc	ttggcgcagt	5434
cacagagcac	ggtttttgtc	attttctttc	tggaagatga	aaatcaaatt	ctaataaaat	5494
ttttccactc	catctcctga	ctgttgtcat	ttgctacact	ttttagtgtt	tatccttaaa	5554
gcttgcagag	ctaagggatg	tttggtaaga	agtgtttagg	ccttgagact	ggaagagccg	5614
ctgtatgaag	cgctaggctc	catggagagt	gtgatgggga	gtaagagaag	gagagtgaac	5674
tcctgtgagt	ccaccaagca	gagggacata	ctctcagcaa	ctggggtatt	tccttccagt	5734
cttttttaa	tgcccatgtc	tgtttttaat	gaaaactgta	atctgtctgt	atcaacaatt	5794
ttgaaggcta	cttttctagt	ttggcatgag	attataggaa	ttttccaggg	ctttgctcca	5854
gggctggctt	catggatatg	caacctgtgt	ggtcatctag	gtccccacac	tcagaaggac	5914
ctgtgcttgg	gttcatgttc	tgctgttact	atcttgaaat	ttttaagaat	ttcactttgg	5974
atcctgtgtt	ttgtaagcga	aatctgatgg	gacggggggag	cctgggaatg	agcagagggg	6034
tacgtgcggc	aggcgagtct	gtggttacac	acattggctc	ccacagcacg	ctaccctgtg	6094
ttcacttgag	cgtctgagcc	ccacgcacag	tggacagctc	atgcaccttc	tcagtgcgtc	6154
tgtagtttca	caggcagggg	ccatgctttc	aactgatgct	ccaaggcatt	gatgttctca	6214
tgcagtgact	tctaagaaac	atgaatgacg	caggaaccct	atggtgtcct	ttettaaegt	6274
gtgttacgtg	cccatatttg	ccaatcgctg	acactgaaaa	tgattacaca	gaagggaagg	6334
gaaaaagagg	gcacctatag	ttccttttcc	tcctagtcct	tccttgttta	ttattgaacc	6394
aagggtagag	ggtgttggaa	gaatgtacac	atatccagaa	atgaaataag	aacagttaag	6454
ttagtttcct	ctgctctggt	aagaacaaaa	tccatatgcg	aaatataact	tgtgcatttt	6514
ggtgagtcta	cattccagtt	acgtgctctt	atgtttgcat	ttaaaattgg	aggtgcacac	6574
tagaatggtg	agtgataaaa	tgcacgctga	gagtttaagc	tttttttt	ttaaatttga	6634
attgacatta	aatagcaaat	aacaccatga	caaaatatgg	aaggcatgaa	aaggetttgt	6694
atcttagcac	ctttaatgat	gcttttcctt	tgctttttga	ataagaggct	ctgcattttc	6754
atttttccct	gtgccccacg	aattataggg	ttggccctgc	tttgctggaa	ctctgggtag	6814
ggtgaactcc	ttggccctgc	cttctacctc	cttggctttc	gtgattggtg	gaaatggtga	6874
gagcctgcca	tccattgggc	agctcttccc	tatggggagg	ggttacaata	ttaaatgtcc	6934
gtgctcctct	ctcacccatt	gggtccatgg	gcctctgact	tccaggttgc	tctacagggg	6994
agaggccaac	agttatctta	ttttacaagc	tagaagttag	acctacctct	ccccgcagga	7054
ccaaggggtg	gggaggtgaa	gtaggggtcc	atagctcttt	tttttcctac	aggtttacca	7114
ttaataaagc	agatttttt	attcctgtct	tgcggccagt	cttttctgtg	taatcccaag	7174
tcccagcaag	gaagaggggt	gactggttac	cttggccccg	cccccaagtc	acacagtaca	7234

cgtattgaca	accatcattt	cattggctgc	atactattcc	tgtgatacat	gtgtcatcat	7294
tcagtagttc	aattaatcat	ttccttatgg	ctggatattt	agttccctcc	cttccctccc	7354
tecetecett	cctcccttcc	ttccttctct	ctctctctgt	ctctccccca	cacactttct	7414
tattttcata	actaacactg	caggaatgaa	caccatttgt	gtgtgtgaag	accccctact	7474
cccatcgttc	ccccttaacc	ttggaatgat	gctcttcaga	aggaattcca	cacgtgctat	7534
ttcatataaa	gatcactagc	atttttaatg	ttgttgacac	acattggcag	attattctcc	7594
agaaagtttt	tctctttaac	cacatgctga	tcaacattag	gtagtctaat	ttgtttgacc	7654
tttgcaaata	tcaaagatga	aaaatatttg	ttgtaattca	cgtctgcata	ccaatgaggt	7714
tgaacatttt	ttccttttgt	tcagcgggta	ttggctgatc	cctgttatgt	gccagggtga	7774
cattagattc	tagacataca	aagttgaaga	gcaaggctgt	gtctgccttg	aaatgtggac	7834
tctcctctcc	cagtgtcttg	ggtgccactg	cgggacctag	ctacttctca	ggagagagtc	7894
tgaagctgct	ggaggagtct	gtacatccct	cagcaccctg	gggagtcctg	ttagttacac	7954
agggccttgc	aaagacaggc	atctcaccat	taagcccttg	agcagaatga	tccaagtgga	8014
ctttaggatg	aaataattac	aaaacaaaca	caatagccat	tattatgatt	caccatttat	8074
tggctntgta	ctataatact	atatgctgga	catgaggctg	cgtgcatctc	attggtgatg	8134
ccccagacct	gatgttgtgt	atattatttc	cccattttac	agaggagaaa	actgaggctg	8194
aggtgcttgt	tcaatgtcac	atggtttgta	agggacagag	ctgagttttg	aatgcagcct	8254
gccaaaccca	cgctcctgac	tgctacatta	attggctggg	acccacaggg	cagggttagg	8314
tggcctgttc	agttctgatt	atgcaccaca	cttaggaggt	tttgggattt	gaactagact	8374
acctggcttg	gtgctcttgc	tatctgtgtt	gcgatgaaag	gcaatcgaga	ggggtcagca	8434
ggaggagaga	cccccttcac	ggcacaggta	gatggcagtg	gcagaggcca	caagtggaca	8494
cgtggtccag	ggactgaagg	gcaggtggca	tttccaggtt	gggggggtgat	gatgtgctgg	8554
gacatggtat	tctagcgcat	tctgggcagg	aggaacggtg	tgtgcaaagt	ggcataacac	8614
ttgtcccctg	acagtgtccg	gctcctctgc	ttgagaccag	gaggcagtta	gttagttgcc	8674
agccggcccg	ggagcaggac	acacctgggg	gcccctgtgc	tgcccaggac	aggcactgcc	8734
ctccttgcac	agtgggggcc	attgtcctcc	agaacccagg	gctgaatgtc	ccattgaggc	8794
agaacaaagg	ctgctcagag	gttcccagct	ggggtgtggg	ctgccccaag	cagggatggg	8854
atctccaact	gcaggccaag	ggcctcctcc	aggctggcct	ggcctcctgc	agccccaccc	8914
ccacccctcc	tcaggaccag	gactgttgct	gctggaggct	ggacctgggc	ttgggctccc	8974
aggcctgtgc	tctgggtctg	gcacagctgc	cgtgcccttg	gcagcttctt	catcccctgg	9034
gcaatttccc	catctatgaa	gcagagagag	agcgagctcc	caaccagcaa	ggctttcagg	9094
cagaattgaa	tgaaatagtg	cacactctgt	aggttaatct	caataaaagg	gagetette	9154
atgatcatga	ttagcttctg	aatgttttt	tacaatttca	aaaaagtttt	gatgcaaact	9214
ttcaaatttg	tgccacttct	gggccaaagt	gtttaagaag	ggagtgcacc	ttccccctc	9274
cctctgtccc	agagaaggga	gagatgccgc	tccctggagc	ccctcatcac	tctgtggaag	9334
ggactgctgg	ccaactgtta	caagaggaga	aacttctttg	catttgtgag	aaaatagtct	9394
attgaactgc	ttccaatcta	tcaagatctt	gctgtacttc	cttcatttac	tctcccctgc	9454
ttttggctga	agaattttta	ggcaaatcca	agactcctgt	cgtttccccg	ttccatctgc	9514
aggcatctct	gagtgttgag	ggcatttctt	gtagcccagt	gctgttatcc	cacctcacaa	9574
aacatatcct	gattctttgt	tacctaaatt	ctggtccatt	ttatgaacgt	ccccagttgt	9634

ctgagaaatg	tctcttatgg	ttgggtggtt	tggcccagga	tccaaagtcc	tgcacctgcg	9694
tttggctgtt	ctgtctcttg	tcttttctga	cctagactca	gcctccatcc	ccttttcagg	9754
ctaccaactt	gttgaagaca	tttgttatta	ttttattta	ttttttaa	gacggagttt	9814
cactctgtcg	cccaggctgg	agtgcaatgg	cgtgatcttg	gctcactgaa	acccccgcct	9874
cccgggttca	agtgattctc	ctgcctcagc	atcctgagca	gctgggacta	catacaggtg	9934
cccaccacca	cgcccgacta	atttttgtat	ttttagtaga	gacggggttt	caccatgttg	9994
gtcaggctgg	tcttgaactc	ctgacctcag	ataatctgcc	ttcattatta	ttttagagat	10054
tacagtgtca	ctcccactgt	ccctaatttg	tgcctggatt	ccatttgccc	tgtgggtctg	10114
gaaggctgag	aggtggttgc	tgggacctgg	gcatcggcct	tggggctgcc	cctctctcct	10174
ccaggacccc	tttctgcaga	gtggtgccct	cgccactccc	tggctgagtg	atcttgggca	10234
agttgtccag	ccaggccgtg	cctgggtgac	cacatctgag	ctgggggtga	gcgtggctgc	10294
ancatcctct	ctgggatgtg	gtgggtgttg	aatgagatgg	tgcatgccac	gtgctccgtg	10354
ggcctggtgc	ctgtgggtcc	ctgtcttacc	cccatgatgg	ggatgtggca	ggaactgggg	10414
tagccaccgc	ctgcccacac	agtgctcact	ttctgtaggg	gagacacccc	tcagctggtc	10474
actacataca	gcaggaccag	cactttctga	gggaagaggg	atgttctctt	gggaagtctg	10534
gatgctgaag	acagtttgtt	actctgatta	ataccagtta	caaagaaatc	cccacattcc	10594
aggggttgat	gtcatagaag	tttatccctt	tgtaacagtt	cattgtggat	gatcccagtt	10654
ggcccaggag	tctcttccac	agagtgatgc	ggggctccag	acccttctca	tctgtcagct	10714
cccatgtcct	ctccattctc	cggggaagag	ggtatgggga	aggtgcactc	cctccttaaa	10774
cactttggcc	cagacatggc	acttgtgact	tccctcacat	tccattggcc	agagctagtc	10834
acatggcccc	acctaatgca	aggggctcta	ggaaatgtag	tccctggctg	ggcagcccag	10894
tggctactct	gcagtgggaa	gaacctgcat	cttggtggat	gtcttgccat	ctttgccaca	10954
tgaccccaca	aaacaaacct	ttacattctc	agtccaaaaa	accctactaa	gaatcctgtg	11014
ctggagacac	cctcactcaa	cccctgaccc	tcccctctcc	ctgcttcagt	gtccacacgt	11074
gcacggtgct	gtgagatgca	gagtccagag	tcatgcggtg	gctaggaggt	cagggacgcc	11134
ttcctgggag	aggcgatgtc	tgagctgagt	ctgcaaagcc	aaataggtgg	tgcccaggtg	11194
gatcaggtag	gagagggatt	ccgggcttcg	gctgcagcag	gggtaaaggc	tggtgtcttg	11254
ggagagggca	tcctgtgtag	agaggggtct	gtgggccact	gagatttaga	ggatgtgtgt	11314
ggggtggggt	ggagtgggag	aggagctgga	gcgggatggg	aagtgggagg	caggactgtt	11374
tgtgaaaggc	ttcaaatgcc	gagataagga	gtttggattg	tatcctattg	acattgtgga	11434
accagatgga	gatggggcat	ttccctttgt	ttgaaagtat	tttgatttct	attggctgtc	11494
ttactacaaa	aaacatatgt	agtcatagca	aaaagttcag	aaaatttaga	aagagaaaag	11554
gaggaaaaga	aaatcctacc	actgaaaata	ttttggtata	tgtgttttg	cctatgggta	11614
tacatactat	ctaggtatat	atatattcct	acatttttt	attcactgaa	agatggtttt	11674
tgagcatcta	ctgtgtgcgt	atcctattt	gtaatcttta	aaattttctc	ttaatgatat	11734
gggagctttc	tagcttagaa	aataacacag	cccattttct	tagcttgctg	ggacttctat	11794
aacacagtgc	cacataccgg	gcagttgaaa	caacagagac	ttaccgcctc	acagtgctag	11854
agcttgggag	tccaagatca	aggtgttggc	agggttgatt	ccttctgagg	cccctctcct	11914
tggcttatag	atgaacatct	ccctactgtg	tcttcacatg	gtettteetg	tgtgtgtctg	11974
tgtccttaga	qqqacaccaq	gcatattgag	ttaggggtca	tccatatgac	tgcattttag	12034

cttcgtcacc	ttgttaaagg	tcctttttgt	caaacacagt	cacattttga	ggttctaggg	12094
gttaggactt	caacaaagga	atcttgggga	ggggggcacat	ttcagcccaa	agcacccgtc	12154
atcattggta	atatcagtca	catgcttctt	ctatgtattt	taaagagttc	catgctggtg	12214
ggtatcagaa	gttatggttg	gtttaggatc	atgagcagtg	ttgtgagggc	atctttgcac	12274
ctttttgcgt	gcatatttgg	ttatttccct	agggtgtgga	atggctgctt	ctgagagttt	12334
ggtctttctg	aagtatcttc	atctaatgtc	aacttttcct	gatgaccaaa	cttggtacta	12394
acaactccct	ttccccagag	cattgctagt	ggcgactaga	tccaacatat	ttaatatttg	12454
ccaatattat	ggtaaaaatt	gctgttttt	tttgtgtgtg	tgacagaggc	ttgctctgtt	12514
gctcaggctg	gagtgcagtg	tcgtgatctt	ggctcactgc	aacctctgcc	tcccaggctc	12574
aagcaattct	tgtctctcag	tctcccaaga	agctggcatt	ataggctgtg	ttcttttaaa	12634
gcatttttca	gtgagattga	acttccttta	ttatatttat	tgaccatggc	atatattcaa	12694
ttgtaagttt	ttttgtgcac	cgttcttggc	ctgtttctct	actgtaattg	tcatctctct	12754
tgcaaacact	gacccttggt	ttgttgtttc	tggtagcatt	gattttatgt	ggttagatgt	12814
catgactctt	gtcctgctga	gcatggatct	cccattccac	aatcatgaga	agaaccaaca	12874
atatggagga	ggtgacaccg	tgtagctttg	gaggctaagt	aaaaaatagg	tcatgtgctt	12934
ctgccttgga	gccagccacc	atattgtgag	gaagcccaag	cagtttgtgg	agaggcacat	12994
gcagagagga	accaaggtcc	tggttgagct	gcctgcctaa	tatccagcac	caccttgcca	13054
gcaggtgagt	gagccatctt	acaggtagag	cctccagccc	tcaggcaagc	catccatatg	13114
gaacagagat	gagccattcc	caccaagatc	tacccaaact	gcagattcat	gaaccaaata	13174
aatggtttct	gettgaagee	attaagtttt	gaagtgettt	gttacacagc	agtgggtaac	13234
tggaagagtc	atggattcct	gacattgaat	tcctggtcct	cctccttctc	aggctacttg	13294
tctagatgtt	ctgttctctc	catgattctg	tggatccctc	agagcettee	ggtaacttcc	13354
ttetttgett	gtgttagcct	gggtcaatct	ctgttgctta	taactgacag	acatgggaaa	13414
ccagccccag	caatgagagg	tgacccagct	cagatcatga	gacaggacag	gaatccaggc	13474
ctttctgaaa	catagcccag	ggtcccatcc	cacaacgtgt	cagtagacac	catgcctgct	13534
gggtcatgcc	tgetteeget	gcaccctgca	cccagctcag	cacctgctat	cttccaaagg	13594
ccattgctga	ttgcttgtac	acacctgtta	gttcatgcac	agacagcaaa	gcacgtagtt	13654
gtgctgcctc	cttgccttcc	tgctatgatc	tgaatgttta	agtaccccct	ccaaattcac	13714
aggttgaaat	ccagaccccc	aatgtgaggg	tatttaaaag	gtggggactt	tgggagtgat	13774
gaggttgtga	gggtggagcc	ctcatgggtg	ggattagtgc	ccttataaaa	gaccttagag	13834
agctcccttg	cccttctgtc	acgtgaggac	gcagcgagaa	ggcactgttt	gtgagtcagg	13894
aagttggacc	tcagtggaca	ccaaatctgc	tgtgccttga	tcttggactt	ccagceteca	13954
gaattgtgag	gaataaatgc	ttgttgttta	taagccaccc	ggtctatgat	attttgttat	14014
agcagcctga	acagactaag	ccactcccag	tgatgagcct	gcatgatgtt	ttacacaaac	14074
agatcactga	aagaaggaat	tggccagcaa	agatgatgct	cagcagagat	gtgaaagatg	14134
ttaatgctgg	aagtgaaatt	taaattggag	gtaaatggag	tcatagaaga	aatccatgat	14194
cttgggaagc	tgaagctacc	cttcaagaag	ctcttatatg	cagccagagg	agttgagtga	14254
aggtgaacac	actgatgtaa	accaggaaag	gagttgtgcc	ccaaagcatg	gagatgtccc	14314
agaggaagcg	aggctgggaa	aaacgttaaa	ggaactcttg	aagatatttc	acagtgttga	14374
aagtgcaaag	gataaaatct	tggaagctgg	tctggagaaa	gataattctg	caaagcatag	14434

aaagggtgct	tttttggtat	cgtaaggtat	acaataacag	tagcgagcac	tgtgcaaact	14494
ctctccatat	gtcttttaca	aagaaataaa	gcanttgaca	tctcaatgtt	tctaatgctt	14554
taaattacat	tgtaccaaat	aaatattagt	tgtactattt	taaaaaaact	ttcccggttg	14614
ggcattgtgg	ctcacacctg	taatccaagc	actttgggag	gctgaggtgg	gaggateget	14674
tgagcccagg	agttcgagac	cagcetggge	aatatagtga	gaccctgtct	cttcaaaaaa	14734
taaaaaaaaa	ttagccaagg	atggtggcat	gtacctgcag	tcccagctac	tcaggaggct	14794
gaggetggag	gatcacttga	acccaggagg	ttgaggctgc	agtgagctat	gattgcacca	14854
ctgtactcca	gcctgggtga	cagagccaga	ccctgtctca	aaaagaaaaa	aaaattccct	14914
gtgcattccc	tatggacatt	tgtaactgtc	cataaaagac	tttttaatgt	cttgacaaaa	14974
aattttaaag	gccacagaag	aattgtaatt	tcctcattga	ttattaggat	ggctttaaat	15034
ggttttagct	ttcatgctct	atttttttt	tttttttt	gagatggagt	ctcgctctgt	15094
cgcccaggtc	ggggtacagt	ggtgtcatgt	cageteactg	caacttctgt	ctcctggttc	15154
aagcaattct	cctgcctcag	cctcctgagt	agctgggatt	acaggtgcct	gccacggcat	15214
ctggctaatt	tttgtatttt	tagtagagac	ggaatttcaa	ccatgttggt	caagctgatc	15274
ttgaactcct	gacctcaggt	gatetgeeeg	ccttagcctc	ccaaagtgct	ggaattatag	15334
gngcaagcca	ccgcacctgg	ctcatgctca	ttttatgga	tccacaccac	ccgtacagca	15394
aggactgcct	gcactcattc	caagtggtca	gagtggtcac	cgcatgggcc	ctccacgtgg	15454
ccnggccaca	gtgatgtttc	aaaccctggc	tgggggattg	cattcaatat	ccccttatta	15514
aaggcggcag	ctcaagaata	ttaaatcatg	ggaatteete	actgtggaag	tgggaaggca	15574
gcccgtggtt	caccgtgagg	ggcacccaga	geteccete	cactgcgttc	agtgtgcagc	15634
cctccagcca	gcctgtctgc	ttcgggagca	atccatcatg	gaatgaactg	accgaaggag	15694
cgaggggctg	aatgatgtgg	tteetaegee	gactttcaat	gtgaaaggtg	ataaaaacag	15754
ccctgaatat	tttatggccc	caaggagagg	taaggetett	tattgaagct	gtgaaaatat	15814
aatccatcat	gataatgtgt	cccatatcgt	cagactctgc	gagctaagtt	gtgtgtatgt	15874
taaggtgctc	tttttgagaa	gatcttaatt	ttatttctct	attttatttc	attacagaaa	15934
cgtttgaacg	tgtagacagt	agaataaagg	ggggggggga	aataacatcc	ttcatttcac	15994
tactccagaa	acactgctca	cattttgttg	catttccttc	taactacccc	ctgcagattg	16054
tactatgttt	tgtgtctttt	aaaatattaa	atgcactgtc	aacattttcc	cagatcatcc	16114
tgcactctga	gttaacaatt	tttattggct	gcataatact	tcacgatgta	ggtattatta	16174
ttcattcaat	aactatttat	ggattcattg	atccgattag	tgttgattgt	ctataacagg	16234
tgtgtgggtg	gggtaggggg	attcaggaag	aaggaatagg	gcgcagctcc	cccnccccag	16294
gatttctgga	annagggaga	cntaacagat	ggctgtgatc	cggtgtgagg	ggcagggatg	16354
cagtgggccc	ggttgcagcc	tgggagcagg	tggtcagaga	tgnaaggctg	tgggcagcag	16414
tggttggtgg	tccacagcag	taggcagcag	ggggaggggg	cgacattcat	ggcaggaggg	16474
acattatggg	cacagcacgg	cgtggtgtgt	tcagggttgg	tggagcgttc	acttacagtc	16534
ttgcagatcc	tggcaggtgt	ggtggtgatc	tgtccaggca	ggggagggag	agggaactga	16594
gagtcatcaa	aagtetetgg	gagtttggaa	aggagagtag	ggggctcaga	gggagtgtga	16654
gcacttccag	cagaggtgag	aaagccccca	gtcagttgcc	cagggtgggc	agtggaaggg	16714
aagtggaggt	gaacgttgtg	gggtggagag	ggttttcagg	caggctggga	gctgcccagt	16774
gtgctggagg	aaggctgggt	ctccttgaat	ggtgtttggt	caatgcaaga	ccacaggagt	16834

gtgactagaa	ggctgggggt	gcagatggtg	gcaggtggag	gatggagaga	gctgctccca	16894
ctgctgaaca	acgactgccc	caactttatg	ggatgagcat	tcttatgaat	gcccattgtc	16954
ctgtattcca	gattattctt	gtgtctgtcc	aggtagggat	gcaatttctt	gatgtaaggc	17014
tataggtgtt	tttaagggct	tgcataaaga	tttgaatatg	atgttgtcta	gtagagtaaa	17074
aatcaaattg	ggcaaaacat	ttttgtttgg	gtgatttttg	gaagagtaag	tccacgaatg	17134
caacgcagct	ctggagtcat	ctgtagatta	cagcaagccc	atcagtetet	atgtctcttg	17194
cttacaacaa	aggattgatt	tcagetecag	cactaggtga	cttgtgctgt	gttcattatc	17254
tcttgatagg	tgtctgacag	gagatggggc	ttgggctgtg	ccagggagga	gccgtgtggt	17314
gcaccaccta	tctccgcagg	cataactatt	ttgtcttcat	ggcaaaataa	tagcgatgat	17374
ggtgatgagg	agggaagcta	ccatttcttg	actgctcctg	tgtaatgaca	tgttggtgat	17434
cacattaggg	ctttatgtcc	actctgggag	gtggtgagaa	tgacatcgcg	tttgcacatc	17494
aggacgctga	gcctcagaga	ggttgagtcc	caggacgaag	gccacacagt	gagtgccaca	17554
ggtaccatta	ccacctaaca	aatgactctg	gageteagtg	atgtgatgag	aaccatttta	17614
ttctgtctcc	tggattctgt	gagtcaggaa	tttgggcaga	gettggetgg	gcaaaccttc	17674
tgctctaaat	ggccacccat	gagtetteca	agctggtggg	tggactgatc	tggagggact	17734
gagatggtct	cactcacaca	ttttctgcgg	ggtggggaga	gttggaaggc	ggggctcccc	17794
tccccagcgt	gcagtctcag	ggcagttgga	ctcctttgat	ggcagctggc	tttcccgaat	17854
caagtatccc	cagataccca	ggtggaagct	gettggeeet	teetgaeeee	tgggacatct	17914
cagtgtcaat	tgtgtcatct	tcatttagtt	caagcaagtc	acaggccggc	ccaggttgaa	17974
gggcagttgg	actcaacctt	tgcatgtggg	aagggccagg	ttacatggta	gaaaagcaga	18034
tgggatagga	gaccgtgctc	tggccctccc	tgggaaacac	ggtgtgccac	agacgccctg	18094
ggcagagcca	agacccccac	tgggctctgt	ctgaccttgg	agccactgcc	ccgctcctga	18154
gcaacaccct	cttgtccccc	tgaacagtca	caggaagaac	gggtccctct	ctccatgcca	18214
ttttcctgtt	aaaaatgca	aaaacatccc	atacttttgc	tcatttaaac	acagaggaaa	18274
ggaggtgagt	gaaagctttc	tttaggggta	gattagatgt	gaggcagacc	ggtggccctg	18334
ggtgtgcacc	gggtggaaat	tattcttaca	aacagggccg	ggtgggggtg	cagcctgcca	18394
ccgcccctct	ggccgtctgc	ctccacagga	ggcttgcagg	tgcccacatc	agccaacgtg	18454
gccctcggtg	gggctgtgct	tgccttcttg	ccagggccac	tgcagtaggg	aggagtgcag	18514
agcagaaaca	ggtgagctgg	gctgaatttt	ctgcttggct	aattcagtgt	ggcttgactc	18574
caagaaggac	acaccgacct	ccccatcatc	ttgtttgttc	agccttgcag	aagcagtttt	18634
atgagaaacc	attacagccc	cggtggtctg	ggcccagacc	cggtgcacac	cacgtgcccg	18694
cactggtgcg	gggggaccat	tctcggtgaa	tatgatggat	gcacaggaag	ccgccctgcc	18754
attcagtgag	agctcaccat	gtgtctgccc	ctggggtggg	gtggggtggg	cagtttccag	18814
cctttgccca	tgggatagag	ctgctggaag	tctccccgag	ctgaggaggc	agagctgggg	18874
tggctggggc	tgggggttgc	catggatact	tcctgcaagt	cctgacgccg	ctccttcctc	18934
tttggggatc	tgtctcccat	actgtccctg	ctgcctttac	atcttcaggg	tggagaggga	18994
ctctggccat	cctggggcca	accatcctgt	gtcactgctg	gtgtttgtga	cctgcggtgg	19054
gccctccctc	aactccgtat	ctccagctct	aagccagaga	caagaatatc	ctctgtgggg	19114
gggtcccttc	aagggtggat	ggagatgagg	cgttaggtgt	atccgatgct	caggaacggc	19174
cccqcacctq	ctcatcttta	tqatqaqcaq	tqqqactqcq	qqcaqaqqqa	qccacacqca	19234

tccatcctgg	ctctcagcat	cccagggaaa	gatgttctgc	tctatcctga	tcageetege	19294
cctttaacca	accacaggct	gcctgcagtg	tggccgtggg	gagctggagt	caggcatggt	19354
ggcagccctt	ctagacagta	ggcagtaggt	aagcetgetg	atcacggagc	cgagattete	19414
tgtgggacag	agctggtccc	cagcatccct	gtggcctttg	ggccaagaac	tcagtcggct	19474
actttgcttc	caggettggg	aacactcagg	gtaggctggg	agtcccctgg	tctcaccctg	19534
tgagccccac	ataagcctgt	ggatagcacc	agctcagcag	gtgaccccct	catcaaaacc	19594
ccaaactggg	atgettetet	ggctacatag	gcatggccac	atggggacag	tgggaggaca	19654
tgtgataatt	tggggcagcg	gctgaaagcc	taggggttag	ggctactgtg	tccttctaag	19714
gtggtgcagg	gcgcacagcc	ctctgggcct	cagtttcctc	ttctgtgaaa	tggggactct	19774
atcttggggc	cgcaaatgcc	agtgtcttct	ctggaagaaa	gggcgactgc	tgagggaagc	19834
agcacacagg	tgtgagggtc	caggccccag	acgggatccc	acaaagacct	aggacagtga	19894
gccaagagtg	gagagagggg	acgagggtgg	actggggtgg	gccccaggag	ctggaaagtg	19954
aggaaaatcc	agctgtgtcc	tgagggttag	actccactgc	cagtgttcac	aggatctgga	20014
gctgatgggg	acctgcggtg	tcaccctgaa	gggacagatg	gcccccaggc	tagcaggagg	20074
tggcagtgtc	cgtttggcag	caacatttga	caagcagaag	gcagttggtc	cctcctgctt	20134
cctgtccagg	ctcttggggc	tgggacccca	ctcccagccc	tgtcctcccc	aacctcccca	20194
cacttacaca	ggccactctg	gggcagagga	ggggtgctgt	gatttgtggg	tttgggagaa	20254
gttggaagca	taatgggtca	ggcctgcagc	tcggtccaca	ctgcctgtgc	caggtggagc	20314
aggtgagggc	atccctggct	ctggggtggt	gtcactgttc	acactttgtc	ctatagccag	20374
gecettettg	ggggtgaggg	ttccgtggag	ccctccatct	gcctggctct	gccgatccaa	20434
ctcttttctc	tctcttgggg	gtttcaaact	tagacaggaa	taggggtgtc	atttattggg	20494
ccccagacaa	cctgaccagg	tccctcagag	cactgaggcc	gggaggagga	gggtggaagg	20554
agatgggaag	agtttccttt	gtcctctctc	cctggccatc	cccaaacctc	cacacaaacc	20614
tggggtggct	gagcattcat	tatgctttgt	ctttgtaaat	aggcagctat	aaaaacctat	20674
cagettgeag	caccttctcc	ataacacagg	ctggatggat	ttataaccca	ggtcccctcc	20734
ccgagagaag	ctggcaaagc	agaccccagc	ccgcgctggc	tgccatcacc	ctccctgccc	20794
ctgccccacc	tcatgcaaga	aacagaaggg	aaagcacatt	gagttgtaat	atgttttcga	20854
tggaatttgt	cacaataaga	aactggattt	tgttgggggct	catgggatgt	ttaggaaaga	20914
gccagagagt	ggtgcaagct	gtgggccctg	ccgagaagcc	tgggctacag	gagggcaggg	20974
gctggagtgt	tggcagggtc	gcacagtggc	tcatctggac	agtccacagc	ggatccagcc	21034
cacactgtgt	caggcacttt	gctgggactg	ggggatgtgg	ctgtgggtac	gattgacaag	21094
gtctgtgtcc	tgaggagccc	gcagagcaga	tgagatggac	atgtggtcag	tgatggtacc	21154
gtgtcgggtg	gaagagacaa	taggctgagc	tgcccagagc	atcgcctgac	cagettgggt	21214
ggtggcacgt	ccaggagggc	ttcctggaag	aagtgaattt	attcaacaca	tgttcactag	21274
agccagtgat	gcttaggcac	tgagagtgtt	gccagggata	caggagagaa	tgggagagtc	21334
cctgagtcat	tccagactgt	ggggctgaag	tgtccgccga	tggaggtgtg	ggaagggcac	21394
ageggettee	cacgtgagca	aggagctatg	caatgtggca	ggtggcaggg	ccaggcggag	21454
gtgcctccac	ctgtctccag	accccacccc	ctacccaggt	atggaattgt	tgtctccagt	21514
tggcagagaa	ggaaactgaa	atgggggttt	cacctctcag	gaatgggtag	gccaggattt	21574
taacccaggc	ctgcagacac	caaatctatc	cctcgctcag	gcctgcactg	acctccgtgc	21634

acctctgggg	ctccaggcag	ctgcctgggt	gggtgctgtg	tctggggtct	ctcctggcgt	21694
tccttaggcc	cctcccctat	caccgtcctt	cattattcac	ttggatgcct	tgatggtcgg	21754
ggctggaacc	ccccgagctg	acccaccatg	cggctcatct	tccttctcct	tccagtgctt	21814
ggtgatcttg	agagtgaggc	tgaaccgttg	cttgattttt	ctgtgaccca	gatgaagagc	21874
tgggtaacca	tttgctcaat	aaagtgagag	accccatgtt	ctggttaaag	tggaggcact	21934
gaggaccagc	gaggggaagg	cagtacttgt	atttgtcagc	ctggaggaga	cgccagatac	21994
cagccagagc	accccagcct	gtatctcgac	caccacctgc	agttggtgct	gaacccccca	22054
ctccacccca	tagatgagac	aattgaagcc	cagagaggcc	aggettettg	ccgagggctg	22114
cacageegge	agggatgctg	gaattgggat	ttggccccag	ccttgtctga	ctccaaagcc	22174
aatgctattt	ccaccatacc	cagtgtctcc	cagagctaat	tttgcggctg	gaactgcaac	22234
ccgcaaagct	atctaggaca	ggcaactcga	tgaaagagaa	ttaggaggga	atcctagaaa	22294
aatgggggctc	ggcagctccc	ggggaagcct	ggagaggagg	tggcgccgaa	gcctctgcca	22354
gcagattggg	gtggggctgt	tttcagtcct	ctctggcgag	gtgttttgaa	gcctcctctg	22414
ggaaccgtgt	gcctctgtcc	aggactggct	gtctctctgg	aaatcatacc	ctggcagcat	22474
ttggctttgg	gtgaaaggag	aagagaagat	tctggccatt	cagagcaggc	ccttgtgcgg	22534
gatggaaccc	attttccaga	actcttggga	cagggaccag	ggtggcaggc	aggggcccgt	22594
ggactgcctg	ggggacctgg	tgcttgggga	cttagagatt	tgttttcctg	ctgaatatat	22654
tgctttctcg	tgcctgcttt	gtgcaaccac	gtgaggatgt	gggggtgagg	atggccgaca	22714
ggacacggga	gtccctcccg	acagggggcca	ggcggcggcg	ggggtccgca	tgtctcacgt	22774
cagcatggct	ctgtgttttc	actcctctcc	agcacatatt	tagtggaaat	gaactcattt	22834
tattattaaa	aattaaagtc	atgcattcat	agggtaaaca	agattgagag	catgtggagg	22894
tgcactgtga	aagtgcagtt	ctctcggaat	gggcacttag	agacgcgcct	gttctctgca	22954
gctgccgcag	gggtctcatc	ttgttgggac	agaacacggt	tgattcatgc	aattggctgt	23014
tgatcaacat	caggttgtgt	ctagttttgt	tttttcccg	tttcgcacgg	tgctgcgaat	23074
tcacagctgt	gccagtgtat	ctgaaggtaa	atcccacgag	tgggccttgg	agagtcagag	23134
gatggggcct	tctacgtgga	cttggtgtgg	ttgggtgtgt	gatgcctgca	tggggctatg	23194
tgtttttagc	ccttccttct	gacaggttct	ggaggcctcc	tctgtgcctg	ccagccatgc	23254
agccgctgag	ccgagcatca	cccaaggctt	gcctgaacct	ggcctgggtc	ccaaaggaac	23314
actgctctgg	ggcatggagg	ttggctggtt	gagaactaaa	gccacatcag	cagggggcact	23374
gcccccacct	gctggggtca	gcccccgccc	ggagttcagc	aggacctccg	tgagccttcg	23434
tgcaggtggc	tcattgcagc	acgtcccctt	ggggtggtgg	ccattggctt	gtggttcctt	23494
tgctcactgc	ggggaggagg	acagccaggc	acaggtgaaa	ggggcttgcg	ggtgacgatt	23554
ctagtccttg	gcccggggaa	tgtccctggg	cttctgaggc	ctcacctccc	tgggtagtca	23614
ggagggttac	gagggtgggg	cctggccctg	gggactccag	ggtgtggcag	cggtgggagt	23674
gaggaaacag	ccctgagacg	gagggagaga	agggcgatcc	agatggcggt	ggcctcctca	23734
cccctcggcc	agtgatgcat	ggtagtggtt	ttgacgggct	gacctcgagg	gtctgcctgg	23794
gagccgcttg	gaactctctg	gaggtggggc	cggccctggt	ggggggcagga	aggtcccaga	23854
gcagcttgtt	aagtgggctg	aggacaagtg	tcaggagacc	tgggtctgga	tcccgctcca	23914
atacccctct	ccgtgtgacc	tccaagggat	ccacctgcct	tggcctctca	aagtgctggg	23974
attacaggtg	tgagccactg	tgcccagcct	gtgcccagtg	tacccatcag	taaagcaggg	24034

atcaaacagt	tcttaaatcc	tgcagcggtg	gtgagagcca	cctgaggaaa	cgatgcaaag	24094
ggctttgacg	gagtctggca	cagagaacgc	acccaataaa	tgactgccgt	gacgatcttt	24154
cttctcgccc	tcaggtggtc	tctggaagct	cctctgtgcg	gggttttctc	atttgccagc	24214
tgtgcatccc	ccggtcgtag	tgcggctccc	acggggggtgt	accaggagcc	tctgctcctc	24274
ctatgcttcc	tgaaaaaggg	cccagagaat	atttccatca	ggaataactg	agtgaatccc	24334
agaaacttcc	tatcacattt	agggtgatta	ggcagatgca	tacgattctc	actgtgggaa	24394
aggagctggc	gacctcgatg	ggttgtggtt	cccgcaggga	tgtgcttgcg	ctgctgttac	24454
tccagccgta	gctgaggcac	gggagaaaac	ggagacccca	agaagttcag	aggettgtge	24514
aggtcacgct	gttcctacga	ggtagaccct	gactttgacc	ccaggctgtg	tccctgccaa	24574
gcttggagcc	tctttctcaa	aagggcgacg	gaaggatgtt	gttacagatg	tggttgccag	24634
tttcctcctt	ttcattaaat	caccagggaa	atggtctctt	gcaacccccc	taaagcaggg	24694
ggaaggagga	ggacaaaggt	caggtcacca	tctttgctgg	catgtgagtg	gggtgggggt	24754
aaaaataaaa	agctaggaga	cctggcgctg	ggcccttgaa	atatccacat	ttccacaaca	24814
ttctgggtgt	cagtgagccc	ctgccttcct	ccctcacatt	tatccggagc	tcttcctccg	24874
cagggaagaa	caacagcccg	agatggggtt	atttcaaggg	gatttccatg	gaaacgggag	24934
ggtgggaggt	tcctcccagc	acttgtataa	tgggagttgg	ctgaggtggc	agcgtgtccc	24994
cacggaaggg	tgcgagggac	cttctctgca	ccgcaggcct	cctcagagtg	ggaggcaccg	25054
acccgagagt	ggctggctcc	cctttcatgc	tcccaccctc	tctacccagc	tcaagacccc	25114
ggggctcctt	ggtgtgagtg	agagccaggc	cageteccea	gggaccccca	aggcctggtc	25174
cttcccatgg	tctctttct	ctagcaggtc	tttgtcttgg	gctgctgcca	gccacagctt	25234
cctggcagga	cctcctggca	ggacctctgt	gctttgagcc	gctgttgctc	tgccaagacc	25294
ttgccccgca	ccgtggtctg	aatcagccca	gcaccccttc	gcctctgttg	cagtgctcac	25354
atttatccct	cactcctcca	tccagcatgt	tttgttttt	tttttttac	aagcagacac	25414
tttgctttat	aaaagaattc	tgctgtgagc	tgccgtatcc	tctctgagcc	tcccttttgt	25474
catctgctga	atggtaacag	cagegeetge	catgcctgct	tggtgaggat	tccatcaagc	25534
agggagacag	tgggccgttg	gcggggagtc	tgagcaggtg	taccagtatt	tccagtcagc	25594
tgatggctga	tggacatgtt	cttggaggca	gggaactcgg	aggcctgcag	acgtgcccca	25654
ggatgacaag	attcatcagt	tcctacaagc	cctgcctggg	cctcatgctt	ttcagtgtgt	25714
cctgggcttt	cccgtgtgaa	atcttacctg	atttttatgc	caccttgaga	agagtgatat	25774
tcatctccgt	tgtacagatg	aggaaactga	ggctcaggga	ggcaacgtga	tctttgcaag	25834
gatccgtctg	ttccccccgt	ggcctggctg	cccctcctgg	cagtgcaggt	ggagttaaaa	25894
ccatacagga	gttaaaatga	gcctcgatgg	gggtgggaag	ctacgactgg	aaaacgtccg	25954
atgeteteee	aagtcaaatt	gtgcttggtg	tctgtgggtg	tgtcggtgtg	ggggagggaa	26014
gctcagccct	tttgaaaagt	gggggggtggt	ttgacgacgc	tgcaggggca	gctccgagtt	26074
ctagagtctc	agaacgtggt	tctaggcggt	tcatgtggat	caagtgctgt	tctgagcact	26134
ttaatatcca	gcgtgaccat	aaggataagt	gccactgtta	ctggcttttt	cacagatgag	26194
gaaactgagg	cacagaggga	ttaggtaaag	tgactggagt	cactcagcca	ggatgtgaat	26254
cacageceac	acccatgtgc	accaggaagc	cttggctttc	agggtccttg	gagggtgtgc	26314
cgggcagtcg	cctaagctgg	gaaaccttgg	gcttgtctcc	aggccatgtg	gccatgtgag	26374
ataqqaqtcc	tcctqtqtta	tqttctqcqa	cactqtqqqc	aqaqqqctqa	qqaccccaqc	26434

cctcccttag	aacatcatgt	tggtgtgaga	catttagagc	caggcctccc	tgcttagaaa	26494
gcacctcttg	ggtcgcttgc	attagtgaag	ttatacattt	gaaactccat	ttatttattt	26554
atttatttag	agacagggtc	tctccttgtc	acccagacta	gagtaccgtg	gtgccatcat	26614
agctcactgc	agcctcaaac	tcctagactc	aagtgatccc	cctgccgggg	cctcccagag	26674
tgctggcatt	acaggcatgg	gccacagcac	ctggctgaaa	ctcccttttc	atgaaaagaa	26734
acagcttcaa	ctttgcaatc	tcatctgtct	gtctatgagg	ctgtgccttt	gtgtgagatg	26794
agagcagtca	ctgtcacttg	ctctttgaat	atttgattaa	caggtaaaca	gcctgaaatc	26854
catttgacat	cttatccttt	tgcaaacttg	gctaaattct	cttaaattgg	ttccagttgg	26914
attaattaaa	tgcatggttg	cttatacatg	tgtgtggaaa	tgattctggc	aggtcatgtc	26974
ttagctagat	agtgaacata	agcgtctaga	atattctcag	ctgttgcaga	gactgccagg	27034
aatgaccttg	aaaaagtttg	ggagagggtt	tttttttg	ttttattt	gcttttgttg	27094
agacagggtc	tcactctgtc	acctaggctg	gagtgcagtg	atgtgatctc	agctcactgt	27154
aacctctgcc	tcccaggctc	aagcggtcct	cctgcctcag	cctcccgagt	agctgggact	27214
acaggcaggc	accaacatac	ccggctaatt	tttgtatttt	tttttgtag	agttggggtc	27274
tcaccatgtt	gcccagactg	atctggaacc	cctaggctga	agggatccac	ctgccttggc	27334
ctctcaaagt	gctgggatta	taggcgtgag	ccactgtgcc	caggctggag	aggtttttgg	27394
atgcactggg	ccatggatgt	gaaggtgaac	acatggaaac	gatccctgcc	acctgcttgt	27454
gtgtccagtg	gacatgtctc	tgatctatcc	agattgttac	actgtcaaag	tgaaaactgc	27514
tgagagtaga	gccatctgcc	tggccaggca	tcgcttggaa	gcgtgaagac	actttgcctt	27574
tttgtctcat	gattctctct	ccatgtgcag	cttcgttggc	ttaaaagaaa	ttaagaaact	27634
gggcccccgc	ttaggacctg	ctgaagtgca	gagttactgt	ctttgaagtg	gtggggtagg	27694
gaaaaatagg	aaataagggg	tctgatcatt	ttgagaaacc	tcagggagat	ttacacctgg	27754
gctgtgcgag	gaccccggag	agtggcagag	tgtatttgga	atttccagta	gtcctcattc	27814
ctcccttaat	atccagggga	tctggggcct	cagtcttctt	atctgttaaa	tgggacaagt	27874
aacgactagg	ctttggggtt	gtcaggaaga	ctgaataaga	aaatgggtat	gaaaacagtg	27934
gtcacggtgc	ctggccctcc	atccctgtct	ccaccaggcc	tacctgtctg	gcccaggcct	27994
ccctgatctc	cgcgggagca	gacctcctgt	aatggtgtca	aaggaccctt	gttctattta	28054
tccatctgat	ttccattttc	ggggccactg	cctctagcca	tgttaggcac	atggtgagtg	28114
tctgtcccat	caatccttgt	cgattctgtg	gtcctgggtg	ggccatagcg	tttctaacct	28174
gtccactctc	tcctaatcag	gcatttggac	ctgtttgggt	tcccaaactc	tgtcacgggc	28234
agagggctgc	aggaggctac	tcacgggcca	gggttgtttg	gacctggttg	ggtttccaag	28294
ctctctcgca	gtcaggggggc	tgcaagaggc	tacacatggg	ccagggttgg	gctgctgggc	28354
tgctgggctg	ctgctgtgtt	ggagctgcct	agcacttgct	tcgttgctgc	acctgagagg	28414
ctgtgtgggc	tgagacagcc	agaaaagatg	caccgggagc	catctgtttg	cagcccttgg	28474
accagatgct	ctgcaaggac	tccggggggg	cggtggggtg	gggagggaat	acatttgctg	28534
agcacccagc	atctttcaga	gcctcagcac	agccctacaa	gctgggcatt	gccatcatgt	28594
ttatacggac	caggaacacg	aggctcagag	tgactgagtc	actggtgaca	gtcacccagc	28654
caggaagtgg	cataggtggg	gcttgaaccc	agggetteet	gagtcccagg	ctagtgttct	28714
ttgcctcagg	ctgctgaggt	tccagctgaa	tgttgcggca	gagtgacttc	tgagaagtac	28774
cacggaaggg	ggtgactcac	gccggggtgg	tctggcttct	ctgcccagtg	cctgaggaca	28834

cccaggtccc	tctgcggcct	tggggcttta	cccagcgtct	gcatggcatc	ccgcagcacc	28894
ctgcctctgg	agcgcaccct	gtgtgtatcc	taaagtgcgc	tttgcctaga	aaacctttct	28954
aatgaaactg	gtggaagatg	gagaagccaa	attcagtttt	cagagatgac	actaatccta	29014
ttaaggttga	tggggccaga	gcatgtgtgg	aattagtcct	gccaggcggc	ggccgggcac	29074
ctgcctggaa	ggctggaggg	gatcctaaca	agagtggtgc	cgaggagaga	gagggaaggg	29134
gcctcatctc	tcccagaggt	ttaaaaaaac	tgaggccact	gtagagcttg	gttctcccag	29194
gtteetgggg	tggaaaacag	ggcttcccac	agcagacgga	aatgggaggt	gggcagtagt	29254
caccgagcag	ggaggctgtg	aagtagtcat	ttaggtcggg	aaagtcacgc	aagatctcca	29314
agetteagte	tccttagctg	tgatgggggg	aatgggtgcc	ccccttgggc	gacttgtggg	29374
acccagaact	catcacgcag	agcgtcccac	tgctgtgcag	ccactagctg	ctcggtgctg	29434
gggctgtggt	atgagcatgg	actctggagt	cagaattcct	gccttcaaag	ccccactcct	29494
caccttgcta	gctgtgtggc	ctggggtgag	ttgcgtaacc	tctccatgcc	tcagttcctt	29554
catctatgaa	atggggagac	tgaaactgta	ccccacaccc	taggggtgtt	ggaacttaag	29614
tgagttaatt	catataaaac	acggagtgag	tgcctggtac	gcaggaagtg	ctcagttcct	29674
cttggtgcct	gtgattattc	ccataatcat	cactggtgtc	accttgtcgc	ctctcccagc	29734
ccttggggcc	atgctatttg	tggtaggaaa	tggggcctga	aaccatcaaa	ctaaactgga	29794
ctgaatgatc	agtccaccga	ccaccacagt	cacggcttgg	tggccccacg	gactgaagca	29854
cgtggccaag	ggcagttttc	ccttctctgt	gtgggttcca	ctgggtccaa	gtacattgtt	29914
cctaagccca	ggcctctggc	cactcaccca	cctcctgctg	agagcgggca	gagetgatge	29974
ccctctctgg	gcagaatcag	cccacggctg	ggaggggagg	ccaggcctgc	tgctgggggt	30034
gcagatagtg	gggagctgca	ggccagccac	tggaaacctg	gcctgtgtgc	tgagacagca	30094
cattggacac	agtctggtgg	ccttcccata	gatcaggcca	cagagtcctc	atcctgggtc	30154
cacccaaggc	actggccatt	tccagatcaa	agagcaggtg	gattccaggg	tgagacggtc	30214
ctctctgctg	gctgccttcc	cccacccacg	gacaccgttt	ggctttgatg	gggctgtgtc	30274
ctaggcttga	cccaggtggt	caggagcctt	ccactatgca	gtgggatatg	ctgcaggagt	30334
agggcggaga	aggaagggaa	tggccggtgg	tgaacagctg	ccatgcccca	ggcatttaat	30394
tttgaccgca	gtgctggggg	gccataccca	gtaatacaga	tgaaggactg	agactcaagg	30454
gtcagtgctt	gctcagagac	ccacagtgaa	gagtggggcc	atcgtgttgc	atgtgtgtgg	30514
ctgggcccca	tcccctcctt	tctacagcac	cacccctcta	ttccttatca	agttcacctt	30574
taaggctcct	ttgcccctca	ctggggcagt	catgagggga	gcagaggcct	cggatctggg	30634
catggatgag	ggtagagccc	tggctgtgtc	ctgcaggtga	cacgtacaga	gcagaaggtg	30694
atgctggaac	catccgccag	ggaagggctg	tccaggaaga	ggtcacagcc	tgaacagagg	30754
cgaggtggag	agagagtgct	cgtgtgtggg	gactggtggc	agctcaggag	ggcaagactg	30814
tgacttgcag	gctgggaacc	agggaggctg	caggtgatgg	aggccccatg	ggtctcatgg	30874
ggcgggctga	ggagcgtggc	tcctcccctg	cagctggagg	ggccaggaag	ggctttaagc	30934
catggagtga	gggaccagag	ttgggtttac	aagggtcact	gtggtgtcgg	tgtggagggg	30994
cttgaaggga	ggagtttgga	gggagggggt	gtagcaatgt	tgagattccc	taatcacttt	31054
agtgttttca	tgcatgaggg	ccccgaggtg	ctttttcca	gagcetgeae	tgaggttccc	31114
tgttggcggc	ttccctcagg	ctgctggaac	ccccttttcc	tgtgcacctg	cagagctgga	31174
ggttactgga	aactcatgtc	ctctgccaga	gtcagccctc	acccagtcac	tgacaggtgc	31234

agtggtataa	ataccccagc	tccctccctc	ctgatcagga	cactttgaga	tgggacctac	31294
actgtcccca	gagctcccat	gggactgagc	tcaagtcgca	ctccttgaga	tttttcctgt	31354
tatcacaccc	cacttggcct	ccttcatgtc	ctggccccac	ttccctacac	ccttcctggc	31414
tttcccagca	acacttccta	atcacttcca	gaaaaatgtt	ggcctcaggg	tctgcttctg	31474
gagaacccag	cctagcagag	ggcagcaaag	gtgttgaggc	actaggagaa	acatggtgag	31534
atacagactc	aggcggcgtc	catcagctat	gccaggaggc	tctgagacgt	gccagtcagg	31594
gagggaggtg	ctgaggccac	agcaaactgg	gggccagaag	taagcaccac	agacagcacc	31654
aaggctgcca	gggtccatca	tcttgggtct	cccaattggt	tgggtccaga	gaccagcctg	31714
ctggggttta	cagagccagc	atgttacatc	tctctgtgtc	cccactgctg	aaagcctctg	31774
gtcagtgcca	tggtgctgag	ggagettggg	cctcccttag	aggttgctaa	gagcccccca	31834
cacctgccct	gtgagttgtt	ggccccaggg	gactctgagt	ttccctgttt	ctggttttcc	31894
tgctcatggg	attgggagtc	tgacctgagc	ttgctgagac	agataactga	tcattcagat	31954
acaaaactct	aaaggttaga	actcttttct	gataacttaa	atagaaaatg	aattcatgca	32014
acatgtactc	atctgtccat	ctgcgcatgc	atccaacatg	tatgtatctc	agttgatggt	32074
tgtttccatg	ccaggccttg	gggatctaga	gatggettgg	tccctatggt	catacccatg	32134
tgaagggaga	tagaggtgga	cagaaagaca	accataatgt	cattttgaca	aattctggga	32194
aaagatgggc	cacccagcct	gtgagacctg	tatgtagtga	tggagggatg	gggaacggtg	32254
gaggtgtcag	ggaageteee	caggggagct	gttccttgag	gtggttttaa	gagettagea	32314
agagttttct	acgcagtgaa	gtgaagacgt	agggcaggtg	gagtggaggg	ttggcaccta	32374
aaggteetga	aaaggaatgg	tgttgcaaga	ggcagcaaat	agcatggggt	gggctaagct	32434
ccagctggtt	gagtttgggt	cagaagtgtg	gacttggttg	gtaaggactc	ctgagagtgt	32494
catgtccagg	cacttggact	tgatgctgaa	aatacagcca	ttcaacagag	aagtatgtat	32554
gtctgagtgt	gatgtggtta	gatctttagt	ttaggaagat	ctctctgttc	atggtgggga	32614
gagtggatga	gatgggggtg	gactggaggc	agaagagcag	aggagaagag	cagactttct	32674
aggagacgaa	gcgggagggg	ctgctcccag	ggcctggctg	tgagtggtac	tgaccagagc	32734
catccatcag	cccagatcat	gtctccctaa	tttagaagaa	aatgagagga	aagagccttt	32794
tcatctctgc	ctcttctggg	atggaaatga	gctattttga	atcacgctaa	agttagattt	32854
ctagttttcc	ttttaatccg	tgtctcattt	agagcattag	aaactggaaa	agcacccccg	32914
tatgaatgta	gtgtcataaa	tcagtgcacg	tcacaaactg	cagaaggagt	catttctaca	32974
agagtgtgca	gccttgcatt	tatgataaat	ctaatgcttt	atctttttgg	gcttcagact	33034
agagtaatta	gtcatttctg	ctgatactgg	caaaccattg	catgtgcagt	gttaatggag	33094
agcaaatgta	tttgaactgc	ttttgcaatt	gcttgtgagc	attgctgtgt	atctcttcta	33154
cctgtttcta	gaggggaaac	atcctatata	tttcattctt	gcctattcta	ggaataggtg	33214
tggtaatagt	atcaggtaac	acttactggg	tttcttccac	atctctggca	ctgttcagag	33274
attcaataag	aaaggatcct	ttgtccaaat	ggaagctgcc	gtgtgtgtgt	tgaggtcctt	33334
gggtcaatct	gatcatgctc	tgtctcctgc	tctgtgcccg	cactgtgtca	gggaccacct	33394
ggataccact	catgtattat	tcacctaata	ggtttcttta	aatgttggcc	ctctaccata	33454
aatggaaaac	cagcaaatca	ggccaaaaat	agaagtaacc	aaagacaagc	acaggtgttt	33514
ctgctctaat	gaaatagaga	catcctgaga	aacttctcat	tctgcaaaat	cccaaacaaa	33574
tgacatcaga	gctgatggac	agaatggggt	tgggacagat	gactggaagt	ctatgcagtg	33634

tgtcaccaga	cacccataaa	aatattaagt	tttagaaaaa	tctggcacaa	tgaaagaaaa	33694
acatattaat	tcctgttaaa	gaaacattcc	aaccattata	caatcttatc	ttgaaggaaa	33754
aagtgaaggt	catttaatgg	aagggggctga	aagggaggga	gctgaattat	ggctgggaca	33814
tggcctgggt	acagagggag	acccgtccac	caaactcttc	caaactgagc	taagaggtag	33874
gtgcgcaggg	aatgagtcta	ttctcttggg	ccacattcct	ttgaggcttg	atgttcagcc	33934
attagtgtat	tttgcattca	gttgcttcct	ctggctggca	caaaacatta	acacactgag	33994
aaaggctgcg	tttgaaccaa	cctaactttt	acattatact	gacatcattc	ccctatgtac	34054
aaattgcata	cgacctactt	tgcaaaggca	atggtcatag	taactgtacg	atggtgagtg	34114
gggttgttaa	atgcagacca	gatactgctg	taatagggct	gtgactcagg	actatcattc	34174
cagttgcctg	atatgaaaaa	ggacatgaag	gagaaggttt	tatgagaact	ctggcaaaga	34234
cccatgaaac	cactcttctt	tgccctccag	aaaacctggt	aaaactgaaa	gtaagccagc	34294
agccccacgg	gtttgggatt	gatccagaag	actgaaggaa	taaaaacaag	ctaatatatt	34354
tctatcccct	cccttctaag	gcctgtagtt	ggttccatta	tgatgagaca	gcagccgatg	34414
cacgtaaaaa	cagaggccat	gcatctacac	aggggtgttg	aggattgaat	gagattaggt	34474
ctgaaagaac	acacagtgga	gacagtgttg	tcattgtggg	gacaaagatt	tcttttcaca	34534
atttgagtga	cacttgtcat	ttctataggc	agttaagaga	caataactgc	atactgttgg	34594
ccgctgtacc	tttcctgtgc	actgagtccc	tgagcatatt	cgtgagtctt	taaaagtaca	34654
ttctagtcaa	tgtagaaaac	agatagtaag	ggacatgact	ctacctagat	taagctcagt	34714
tttgaagcag	ggcctagagg	atttagaagt	gacagagtcc	tggattaggt	gacatttgat	34774
aagagctcta	tccctaactt	cctcttaatt	ctggacaagc	cactccccgc	tctggctgta	34834
gttcccccat	ctttaaaatg	aaacagttga	atcagacaac	tacaaaagga	cttgccaggc	34894
cttctgtctc	agatcctgtg	ttgttgaagg	gatgtctgag	gccagagatg	cagtttactt	34954
ctgagcaatt	acagttgtat	ttcttgtgtt	cagcctagcc	ctttaccaag	ctttgttgaa	35014
gaaatggagc	aagatccttg	tcctttgctt	cggtggtttt	taaaacttgg	atgcctaaag	35074
aaaccaggaa	ggtcatatca	gtgagcaaag	tacaaaatgt	ataagcaaga	cacagtgcac	35134
catgacgctg	agagtggcaa	agtaacagtc	caaccatgca	tcagggagtg	gtggggactg	35194
tggcgtgctg	gcaagcatag	ccttgtggga	ttctgcattg	gacagctctt	acaatttctg	35254
gagagaaatc	agaaattcag	gtctacatgt	tgaatctttt	aatattgaaa	tgttcacttg	35314
gcaatgtgta	aacatcattt	gggtcaaagc	ccatctgtga	accaagttag	tcaaagacaa	35374
cttgggcatt	tggacctcag	ctttatagtc	tatataaggg	ttggtaaact	atggcccaca	35434
tgctaatctg	acccacctcc	tgtttttgtg	aataaagttt	aaatgaagat	gcagtcacac	35494
ctatgtgttt	aggtattgcc	tgtggctact	ttcacactac	aacagcaggg	ttgagtagtt	35554
gtgacggtag	ttgagacagt	gtggccctgt	atttattctc	tggaccttta	tggaaaaagg	35614
ttgctgaccc	ttggttcatg	tcaatgactc	atatggagca	gcaggaaaca	ttctgaattt	35674
ggagctgaat	gaccagggtt	tgacgcctgg	ctcagggaac	tctagtaaca	gagtagagag	35734
tgtttctctt	tteteettt	ggaaatgatc	ctgaagcaac	aaatggaaca	aatggaaatg	35794
caaatgccat	ctttgatgga	accatagctt	ctggaacctc	atatgtgggg	aagtgcagta	35854
aaggtcaaaa	atgggtgcag	gatgtctcca	aagggaaata	aaatgcccat	ggctgtaaag	35914
ctcagacaga	gcaaacaaag	cagaattttc	tacaccttct	gtggtgggct	cagatggcaa	35974
gacctatagt	tcctctcatq	qaqcaataaq	aacaaqtqca	ttgactgata	tcttaqtctq	36034

ttcatgctgc	tatagcagaa	taccatagat	tgggtggctt	gtaagcagca	tacttttatc	36094
tctcacagtt	ctggaggctg	ggaagtetga	tacccaggtg	taacagattt	ggtgtctgct	36154
gaggacctgt	tttcttgttc	atagatggtg	ccttcttgct	gtgtgcttgc	gtggcagaag	36214
gggctaggga	gctctctgag	atctcttta	taagggtact	aatcccattc	atgagcactc	36274
caccctctaa	gacctaatca	gttctgaaag	acgttacttc	ctaagaccat	cacattgggg	36334
gctaagattt	ctatatatga	atttcggggg	gacacacatt	cagaccataa	caactggtgt	36394
gggagcette	ccagatctag	ttttgcacaa	agtgaaatca	gggaagtctg	gggtgaacaa	36454
ggtctcacat	ggacaagcta	tattttcaaa	aagcagtcta	ctagagaggc	aaagtggaga	36514
aaagggggctg	tgttatgtgc	cagcctgtgg	catctgatct	taacaagaaa	gaagtaaagg	36574
ccaaaagaac	tgactctcac	tcacaagcct	gttttctaag	aactagatta	ctcttttgga	36634
cactctggtg	cacgaatctt	gtataaatag	atggttcagg	aagaactcat	cacattcaga	36694
gatgagtaat	aattagtaag	gaccagtgca	agctctatct	caagatcctc	caaaaatgaa	36754
gaaagtaaca	gatgaaaaat	atgcgcaaga	aaacatttgc	cataaatcag	atgaaaatgt	36814
caacagtaca	taatgccttg	gactaaggaa	aaaaataatt	gagcaatcac	acctctaaac	36874
aagagtataa	agttgagata	caagaactca	ggagaggtgg	taacatgaca	gaagagagtg	36934
aaacctgata	tgatgagete	cacaaagtag	atagattaac	aaataaaccc	atctaaaaag	36994
tgaagtatgc	aatggaatga	ttatgacagg	gaacacagaa	aacacagtaa	gagatatgga	37054
agatgagatt	gggaaaagca	agataaatta	atgtaaagag	agagagagaa	atattagaac	37114
atgatacaga	ggacagataa	ggggatccaa	catacacata	attggtgtcc	ctggagataa	37174
gaatgaaaat	aattaaataa	aaaaattta	aggcacaatt	ccagaacttt	ctaaaaataa	37234
gatttgaatt	tatggactga	aaggaagtac	agtgagtggc	tgagaaaata	ttgatatggt	37294
gaggtcaaca	gaaagacata	gagaagtact	aatttcctca	taaatcaaga	acccccaaaa	37354
aaattcaata	gaagaatgga	taaaggatgt	gatgaggaga	tggtttacat	aaaaggaaat	37414
agaaatatct	tttaaacaca	taaaaactca	acctcactca	taataagaaa	actccaagtt	37474
aagatactgt	tttttatcta	tcgtataggc	aaggactaaa	atagctgata	ttaccatgat	37534
ggtgcaggta	tgagggaaac	aagaactctc	agaaacatgg	ctatggattt	cacttctaat	37594
ccttgtctga	tggaagtaca	caagtaagag	gccaggtgtg	gtggctcatg	cctgtaatcc	37654
cagcactttg	ggaggccgag	attggcagat	cacttgaggt	gaggagtttg	acaccagact	37714
ggccaacatc	acgaaacccc	atctctacta	aaactacaaa	aattagccag	gcgtggtggt	37774
gcatgcctgt	aattttaggt	acttgggagg	ctgaggcacg	agaatcgctt	gaacccagga	37834
ggtggaagtt	gcagtgagcc	gagatcacgc	cactgcactc	tagcctgggt	gacagtgtga	37894
gactctgtct	Caaaaaaaaa	aaaaaaaaaa	agaaaagaaa	aaagaaatac	gcaggtgaga	37954
aatgacattt	atccacattt	gtcatagcat	tgttggtaat	gggaaagaat	ggaaatatct	38014
gtaatggcca	tcacagggga	ctgtttacat	aaattattcc	agagcgtgat	agtggatagc	38074
aatgaaaaga	atgtgacagc	tcagggtgcg	ctgatgtaga	atgatgttta	agattcttta	38134
ggtgaaatga	gcaaggtgca	aaatagtgga	tgatccatga	catgctttat	gattaaaaca	38194
tggtatctta	tgactgcttg	tgtgtagact	ccttctggta	ggatgatgca	cctgaaagtg	38254
ctcatagtgg	ttgccactag	acaggagagc	tgagtgagtg	ggagaagggc	ctaagggaga	38314
cttattttca	ctgttagctt	ttttgtgccc	tttgcatttt	atactcattt	cttaaccaaa	38374
qqctqcacaq	cttaqqttqt	qaccataaqc	tctaqaqtca	qctqttcqaq	ttcqaaccct	38434

gactgggctg	cctactcgct	gtgtgacctt	ggacaagtta	cttcacctct	gtgggtctca	38494
gagttgtcag	atggatgtaa	caatggtgcc	tatttcataa	gttgttgagg	atgaactgag	38554
tcaattcaag	ggaaagaatg	aggacagaac	ctggcacaaa	aaaatacagt	caaattagct	38614
attatagtga	ctgcatgtat	agttgaaccc	agggtctgga	tttggaaccc	gtatgcttat	38674
tggcccaatg	gggggggatga	cttggccaca	gaacagccac	agccaggcag	taaagggcac	38734
agggaggggg	ccttagcctg	gggcttcagg	gaagctgccc	aggggaagtg	atgctgctgg	38794
gtcttacaga	atgatgggaa	aacttggcgg	caccgtttca	ggcgacgcta	cttagatctg	38854
caaaactgtt	gatgtcttac	aataccaagt	gtagggcggg	gctggagaaa	tggaaactca	38914
tgccaccact	ggaaatggat	atgaaagcaa	accatttgca	aagtcatttg	ccaatatcca	38974
gatatgtcca	agcagcccct	ctgttcccct	tctaggtaaa	tagcagggaa	gccttcagct	39034
gtgcacagag	agccattcag	caacagagca	gaccctcgaa	caacacgggg	ttggggggagc	39094
caaccccctg	cacagtcaaa	aacccacata	caacttttga	ctccccaaaa	acttaactaa	39154
tagceteete	ttgattggac	ttccaaaaac	atgaacagtt	gataaacata	cattttgtat	39214
gttatatgta	ttatatactg	tattctaata	aagtaagcta	gaggaaagaa	aacatcatta	39274
agaaaatcat	aaggaagagg	aaatatattt	tctgttcatt	aagtggaagg	ggatcactat	39334
aatctttatc	ctcgttgtct	tcatgttgag	taggctgagg	agaaggaaga	ggacgggttg	39394
gtcttgcagt	ctcaggggta	gcagaggcga	aagaaaatca	tgtataagtg	acceteacag	39454
ctcagctcat	gtttgagggt	caactgtgtt	ctaaaatcca	agaggetetg	aaagcctaaa	39514
gattttttcc	taacttattt	ggcagtgaaa	cccaacctaa	attgatgtga	aaccatttat	39574
agccettete	tatccctgta	gtgtgaagtt	tcatatgtta	tgtacagaaa	tagaaatgcg	39634
tatgcgtgtt	gtcccagaag	cccttggggg	tgacagatgt	cctaggtgac	ctgtgcacca	39694
tattactgta	cagtccaaat	cctctatcct	gaaatactgg	gcccaccctt	tgggatttgg	39754
gagatgacag	tgaagctggt	gtgtgttcag	ggaattccag	gttgttgaag	gtgctggagt	39814
agaggggaga	gggggaaacg	aggcagcagg	cgctgggtcc	cgacggtcct	tggacaccta	39874
ctgaggatgt	gggtacaaca	cttctttcat	ccctggggct	cagagatgtc	tgctgaatca	39934
gtcgaggggc	cttcagtcca	ctgtgagccc	cagaaggcag	agctgtggcc	tcctccgact	39994
tgtttctcag	aaaggtcact	tgggcagcag	gtgaacatgg	ctcaggagag	gcaagggagg	40054
gtggggacag	gtaggaagca	gaagccactt	actgggcaaa	gaccatagcc	atgaggatgg	40114
ggagggactg	agtagccaga	gaggcgctca	tcaaagccta	ctgctgtcgt	ctgaaggtct	40174
ggtttctccc	aaattcgtat	attgaaatta	agccttaaga	tgatgtgtta	agaggtgggg	40234
cctttgggag	gtggtcaggt	catgaagatg	gagccctcat	ttatgggatc	agtggcttta	40294
taaagggacc	ccacagtgag	aagatggcca	tctatgaact	atgaagaggc	cctccccaga	40354
cactgaagct	tctacacctc	gatcttggac	ttcccagcct	ctagaactgt	gagatgtaaa	40414
tggctgttgt	tataagcccc	ccgagtctgt	agtattctgt	gggagcagcc	ccaaatgact	40474
aagtccacgg	cccatcctcc	acccactgag	gccataccac	tgggaagggt	atcagaggca	40534
gggttggggt	cttagaggtc	cagggtctct	tgtccaggct	ccccagaggc	aggccccgag	40594
gtgtggacta	gagtataagt	ggtttatcaa	ggaagtgtac	ccaggggagg	tccagataca	40654
agtaggaggg	gctcaagcac	agaggagcca	gggaaggggg	ggctctggac	cgaaaccatg	40714
teccetceac	ggctttggac	ttagcccctt	ggggacacag	acgtggctgg	ggatgggtca	40774
caaagtaacc	agggtgactg	ccagcctgaa	ctctgggctc	tccagacttc	tggggaccgt	40834

agteteagee	tgagcagctt	tctccaagga	gggtcctgga	aacctggggc	ctgcccctga	40894
ttttgtcctg	ggagcagggc	ccctccatgg	tgttctggag	cccctcatat	tagcttttga	40954
ggttgattgc	ttaattttca	gtttggagag	ccagcagaca	tcttgttggt	agtttgaaat	41014
tggccagggc	aggggtattt	ataccatgga	agctggcagg	ggctgccttc	cagaacctct	41074
ctccctccag	gtgcagggaa	acacggacct	gcacaccctg	gtggctttca	caccttcccc	41134
tcctcaggcg	gctcgtcccc	ttgctcagtt	atactgatcc	ttgggcttgc	aggcagaacc	41194
atctctgtca	tccagaatct	ccctagtaac	cccaacccca	aaagtgggct	gccggaagag	41254
gcagatggca	gtgtcccagg	gctatggaag	ccactgataa	acatcttcca	acaaacagga	41314
tcagggatct	gcaaagtttt	tttttttgt	tgttgttgtt	tttttgagac	agagtcttgc	41374
tctgtcgccc	aggctggagt	gcagtggtgc	gatcttggct	cactgcaacc	tctgcctcct	41434
gggttcaagt	gattctcctg	cctcagcctc	acaagtagct	gggattacag	gtgcctacca	41494
ccacaactgg	ctaatttttg	tgtttttagt	ggaggcggtg	tttcaccatg	ttggccaggc	41554
tggtctggaa	ctcctgacct	catgtgatcc	acccgccttg	gccccccaaa	gtgctaggat	41614
tacaggtgtg	agccaccgtg	cccggctgga	tctgcaaagc	tgttgaaagg	aggagtggat	41674
aggattacaa	agttggcctg	attctgctaa	atgaacattt	caacatgttt	cccctcgtgc	41734
accgaggagg	catgcactct	cctctgaggg	tctgaggctt	tcttcacgga	gactttgtaa	41794
accacttctc	cccagcactc	tggagtgggg	gagtcacgta	gggaagtcat	ttctctcctc	41854
ttggacctct	cagtcccctt	tggcttctcg	ctgataccag	gcagtcaggt	ggatcagaga	41914
agacatggac	tctggagctg	gatgtctggt	gcaggcagtg	tggcttcagg	caacttgctt	41974
tgcctctctg	ggcctcagct	tcctcctgga	aaatcatgat	gctcatacct	agggtttcat	42034
gggggtcagg	caggacagtg	caggtgcagg	tatgagcacc	atcccatcaa	ggacatagtc	42094
ctggctgctt	tcagtgatct	tggtgctggg	gaaaatgggg	ctgattctca	tggaagagga	42154
aatggattca	tgtgcccact	tcttaaatgg	aaattcaagg	ccttgatcgt	ggcccactta	42214
tgaggtgggg	actagtgagg	cttcaggtgg	tgtcctaaga	ttagaaaact	ggagcattca	42274
gttgggagtc	agacctctgc	tgatgtgctg	tgtgacgttg	ggcaaggtgt	gtgacttctc	42334
tgggccttgt	gttcagtaga	agcaggtcat	ctttcaatag	acctccttcc	cagaccctct	42394
cggatgctgt	gggcatccag	ctggccccca	tgccacacct	ggcttctcgg	ggactggcct	42454
gcattctcac	acccgttctt	tctggcaacg	atgggcattt	gtttctcccc	tgccagcaaa	42514
ctcctttgga	ccaagaattg	atgccatggt	gttagcatac	aataaagctt	caaggagctg	42574
gtgaaacact	ctgagacggt	cataaaattg	gcttttcatc	cctgtcggag	ctttcttatt	42634
acagacaaca	agcagtgtca	gggagcagca	cggtagatgc	tgettaacee	agcagcaggc	42694
gagactgagg	gggtctcgtg	ctgtttgtca	ccaccgcctc	tctgagatca	tccccaaccc	42754
atactgttga	cattcactgg	gatacctggc	tacctgtttt	gggtttcctt	acaatttttt	42814
catttgttta	atagttttta	tttttcaaag	tcttaaaaaa	cacaagtcag	tgaaagtttt	42874
ggtctttgtt	actgtcttcc	taccaggtac	gagggcctga	aagtcactgt	taattgatta	42934
ttgattatct	gattagaacc	gtacatttac	tttttaagga	aatgtgaaaa	ataagcctag	42994
aaatgaaatc	aaaagtgcgg	tgttgaagtt	agaaatggca	gcgtcacggt	caggaattaa	43054
agctgctgct	tctctgtcac	atggtatacc	acaggggggtg	gtagctacag	cccatgggca	43114
aaacttggcc	cagtgcctgt	ctttgtaaat	aaagtttgat	tggaacagag	tcatgcccat	43174
gtatctacac	attgtctgtg	gatgcctttc	tgctataatg	gcagagttgc	agagttgcca	43234

aagaggacat	atgtcccacg	aagcctaaaa	tattggctat	ctggcccttt	gcagaaagaa	43294
tttgctgacc	cttggtatag	aggaaagtta	gtggcacaag	tttagatcgc	ctatagtgaa	43354
agaccttgca	ggaccaggag	tcaggcagac	ctgggttcga	aacccgctct	gccacttcct	43414
ggttgtgact	tcaagctgct	tgccttttcc	tctcagggtt	ctgtttctgt	ctctgtcaaa	43474
tgcagccaaa	tactgcccag	tttgcacagc	tgtttttgga	gacagagaca	ctcagcaagg	43534
ggtccagccc	ctggtgggtg	gtatcccaat	gtcactgttg	gcatttgcag	tgtcagtgat	43594
gtctggctta	ttcatcaggc	cctcttgagt	ttgccccaaa	cgagtcaacc	ctccagggct	43654
gtgaaacttc	tgctgccttg	atacgatgtg	atttccgaac	cagaaaaatg	gaggaggccc	43714
tggcccctaa	tgcttaagtc	acaggtgact	ctgtgcaatt	ggtttcttcc	ctgtctcctg	43774
tccctctaaa	aagaaccacc	tgageteeeg	gactgtgcta	tatccaggcc	taaaggctgg	43834
tggaccagga	cacagtcacc	agcaatcagc	tttcatcgac	ttggctggac	cttggaaact	43894
taaggettge	cctgccctgg	cttcttgcgg	tgagcaggtc	ttatggagtt	gctctaacca	43954
ctgtccatcc	aggccggggt	tagaggatcc	aaacacagcc	atgttgatgg	gaacctggag	44014
gcaaatagag	ggcatgagac	cctcctctcc	tgaaaccttt	ctggccttct	tattggatac	44074
ccaccaaaca	gtcttgatct	taaaactttg	tgcaaagcaa	taggatgaac	ttgtaggaca	44134
tgcataaaga	ggaaggtatg	gattgtgaca	tgaggctctt	agggatgctc	ctcctacagt	44194
gctgagtgac	cctcctcaga	ggcacaggtg	tgggcacagc	ttgttctttc	aaatcctggc	44254
accccagctg	ttctgctgtc	tagetegtte	cctcattgac	aaaacaggaa	taacagtgcc	44314
cacctccttg	ggctgttagg	ggatcaactg	agatgctaag	tcatccagga	gggggagcct	44374
ctttcccaga	gtcctgcctg	tgcccggtgg	ctgtgcagac	ctgatacccg	cagccatcta	44434
cctctacacc	tcatgtgtgt	tagagaacac	cactctgatt	tcagcctctc	agactggggg	44494
ttcagtcact	ggctgctaaa	agetteetaa	agccaaggcc	tctccttgcc	tccagggggct	44554
ccgtgtctgt	tagatgtgta	aacagatcca	tcaccgagca	tactgatgag	tcctggccta	44614
gggacaagca	tggccacaaa	tgaggtgtct	ggaaagggct	cacaggggaa	ggagccactg	44674
aggagggcaa	gaagaaggct	tggccaggaa	gatggggtag	ggctcattcc	tggcaggtcc	44734
agcctatgtg	aagcccagag	acccagtgag	gggettgeee	atcctttggc	cttgctggag	44794
ccaagggtgt	gaaatgggag	ctgagagtag	gatgttagta	gcagtggctt	cctgggaagg	44854
gcccccacat	gggagcctct	ggcctggttg	caaatggcag	gaccaaggag	gtggttgttg	44914
agttagttgg	aaggcactgt	cctgccagga	tttcccacgt	cctcgtttga	gcattgagat	44974
gctgaacgtt	aaactgtcct	tcattctcca	gctcagttct	tttattcatc	caacaaacac	45034
agagtagcta	ctgtgtacca	gatactattc	taggcactgg	gcatacagtg	gggcccccag	45094
ctcgtcctgg	cctcccagcc	cagtgggtgt	ggagcagtga	gcaggaggac	ctcgagtgtc	45154
acacttgctc	cccttggtac	acattggcac	atggcgttgc	caggtcagat	attctcttct	45214
tggggttcac	cagcatcccc	cttggatgtg	ccctccgtgg	tatgtggccg	cttccatctc	45274
agtctcaggc	cgatggaaga	tattttcaaa	attaacttag	cttttggaat	tggttcctcc	45334
ccatgttggt	gctcaaagac	tccccagtga	gacagctgcc	tccttgagct	ctgtgtgcaa	45394
aacttgggga	gcaagacttg	cttgagccag	tgtttggcct	ggcccaagct	gttgggcctg	45454
cagagcctca	cctgcccctg	tggctcaggg	cttggtgtct	gaagtggatg	gaggcagctg	45514
aactggtttc	tccagggccc	catccagcct	gcgtttccca	ggctgctgtc	ccagctctgc	45574
tccacccaad	tctactctoc	catcccctaa	tactgacact	qaqtqtqttt	ctgaacactg	45634
caggggggtga	ggaataaggt	gggcatattg	tagetteagg	aggtgatgct	tgtgtctgaa	45694
-------------	------------	------------	------------	-------------	------------	-------
atataaggac	cacaattgcc	atgcaggtgt	aaatatctcc	agtgattaca	catttccctg	45754
caccgaccga	gtggctgcac	ccagtctggg	gctctgtctc	tcctggtcag	tctgttcttc	45814
ctgaagccag	gaacacagga	gggcaagttt	ctctccatcc	ctagtcccac	cctggagcca	45874
gcacacagta	ggctgcagga	agtgctcgtg	gaacaaacac	aggcagcaat	ggaagaatcc	45934
ccaccactgg	gattttcagc	agctgatcgt	agaagggagc	tggactgcaa	ggccgtctcc	45994
gaccgcctcc	ctctcactgc	ccagctggct	agggtgatga	gtatggacga	ggatggaggc	46054
aggctgtggc	tgctgtctca	tccaagtagc	cttttcctga	caccccaagg	ctgggcagag	46114
ggactgagtt	ggtcccaggg	cggagcctgc	tgggaaggaa	ggctgttagc	cgctgccttg	46174
caggtgccat	agcaatgcca	ggcagcccac	ctgctccttg	gattagatgg	gggatcagag	46234
ccgtgaggga	agcaggcctg	tacccaggaa	caggctcatc	ccgcccctgc	cctggcccgg	46294
tactgatgga	cctggagcca	tagagtgcct	ctccccgcaa	cacacatgca	catgcatgca	46354
cgtgtgcatg	cacacacata	caccacatac	acaccacaca	cacacacccc	acacatacac	46414
acataacaca	cacaccacac	acacacacac	acacacacag	ccaagcatcg	attctgggcc	46474
ctgttctgta	tgcacaccaa	ttttcctgaa	cagactctcc	ttgtcttcta	gcacccggga	46534
ggattcagaa	gtgtcctggc	tgccctgtgg	tgatggggat	ggcagggacc	tgcatttttg	46594
tgagttcctg	cacgtgatga	aggggaaatt	gcaactgccc	aggcagcctg	tgcaaaaagg	46654
cagtgggttt	caagtgtggt	cataaaccaa	aagcctcagg	ttcacacgtc	atgggggagg	46714
ctgaggggaa	cacacageet	ctgagctgtg	ctctcgggct	gattetgage	tcgtgctggt	46774
ggggacaccc	ccagacttcc	agcagcactg	gatgtccctg	gatcctcaca	tgactcatga	46834
ggaggggctg	gcatgttcct	gaacttcagg	tgttgactct	gcagtgaggc	gatttggatc	46894
agagagactg	tgcaggtgcc	caggacacat	agcaggtgag	gtgcacagcc	aggettgget	46954
agcaattggg	ctcttaatga	tgctcacact	ggacgtgtca	gagtgcctgc	tcctgggcgt	47014
gcacagcctt	gtgggagggg	ccgacaggtg	gacagggaat	tatagggtgg	ggggacaggg	47074
agctgtgctg	gctgttgtgg	ggacaccaca	gggaaggccc	cctgactctc	atgttccagc	47134
attgccactt	cctgtcatcc	tctcggcaac	cctatatgaa	tgggaatagg	agtaagtgct	47194
ctgtaaagac	teetetgget	gccaggcacg	tgctaagctc	tttgcccaca	ccactcaggc	47254
attetteatg	atggccctaa	aagtagagac	tcttgtgtcc	ccattttaca	gagtaggaaa	47314
gtgaacccta	aagaggctgc	ctgctgttct	gcggccacgc	agctgggcag	tggcggcatc	47374
gggatttgaa	cccagaaact	ctggctgtac	ggtcttagcc	ttggctcact	ctcacctcca	47434
agaaatagac	tctgagcagt	gaggtgacgt	gtcccaggtc	tcatggggggc	tgagggatct	47494
gggaagggtg	atttgccccc	acccctgcat	ctcccacacg	gtcccatccc	tgaacccttg	47554
cacacacggc	ccctctgcct	ccatgccctt	cccctcactt	tgtcaaaccc	cagcagctgt	47614
tcagcaggca	caccacagcc	gcctctggag	gaggcattgg	ctggtctcct	gtgtcaatgt	47674
atcgacactg	cctggcgagg	tctggctctc	cggcctccct	gtgtatccac	aggtctcccc	47734
agctctgcaa	teeetttagg	gcaggeteag	gtcagtcatg	ctatggtcac	ccctcagtgc	47794
cccgacatgg	ctcagcagtg	tccggtggct	tgaatggagg	accacaaact	gtcctctctc	47854
tgcagagggg	ccccaggtca	tatctgctga	cttagcaccg	cctataagat	ttaaagacca	47914
ctctgttttc	acctggagga	accgtcagct	cacgcaggat	ggcaggtggt	tttccagggc	47974
tccacagtga	ggtctccagt	tcatcttttg	atgagggtga	tgatgggaca	gtggccctga	48034

aagcacatgg	ctctagagtg	cttaggagcc	tggtgacctg	ctgctgtgac	ttcctctcca	48094
gagctggagc	tccagggggct	gaggttcccc	ttccctgggc	agccccttcc	tcctaatccg	48154
gctttccctg	tgaggaagag	cctcctggcc	ttaagccaca	tccttagcag	cttctgccgt	48214
ggcccttcct	ccagccgggg	accctggcag	aatgcatggg	caggaggagg	tgccttggcc	48274
ccaggacagc	caggtgggca	gtgaatggac	gaaatcagtc	tgtgcaggag	ggaaacacta	48334
acactaaccc	taaccctaac	cctaacccta	acacattctc	aaaacatttg	attctaactt	48394
aaaacacaca	agggcactcc	tttccatggc	cctactacat	gatctggcct	gacctgcctt	48454
tctggcctct	gctcatacca	ctacctccct	gatctttcag	ttcctcaaac	acaccaagct	48514
ggttcctacc	ctctagctcc	ctcccactga	ctcctcctca	ccctgagatc	ctcctcagct	48574
tatcaaaaaa	agattccccc	attttctcac	ttcaaccctt	tgttcatttc	ctccaaagta	48634
ctgtattaca	gttaatgatt	atttttggg	tctgtttacc	tgtttgggct	tcgcctcccc	48694
agtggtatgt	aagatcttta	agggcagggt	gcatgtgtgt	ttcttgcttt	ccaaaatatc	48754
cctagtgggg	gccgggtgtg	gtggctaatg	cctataatcc	cagcactttg	ggaggctgag	48814
gtgggtggat	cacttgaggt	caggggttcg	agaccagcct	ggccaatgtg	gtgaaacctc	48874
gtctctacta	aaaacacaaa	aattagctgg	gcgtggtggt	gtgcacctgt	agtcccagct	48934
acttgggagg	ctgaggcagg	agaactgctt	gaatccggga	ggcagaggtt	gcagtgagcc	48994
gagattgcac	cactgcactc	cagcctgggt	gacagagtga	gactgtcttg	aaacaaacaa	49054
acaaaaaact	aaaacaagaa	aacccccaaa	atatctccag	tgggtagcac	agagcctgac	49114
acacagtagg	tctgcatgaa	tatttgttga	aggaatgaaa	cagtgcctgg	atgagtgtat	49174
tgcagcccct	tccaggtagg	gcacagccat	cgggggagcca	gcgtgacaga	tgtgagtgct	49234
gtggccctgg	gatgcgatga	caaccccttc	tcactggggt	gtaccctgga	ttggggtggt	49294
gcatgtagaa	tatatggcat	gctgctggca	cttggcaggt	gctctgtcaa	ggttagttgt	49354
tgttacttaa	aaactctaat	caagtaagca	tgacatatac	tgaggtccta	ctgtgttact	49414
gttatgggct	gaattgtgtc	tgctccaaaa	ctcacatgtt	gaagtcctaa	cccccagcac	49474
ctcagaatgt	gactgtgttt	tgagacaggg	ttttcacaga	ggtacctaag	gttaaactgg	49534
atcattaagg	tgggccctga	tccaatatga	ctgtgtcctt	ataagaagag	gagattagga	49594
cagagacaca	cacagaagga	caactgtgtg	aagacacagg	gagaagacag	ccatctgcaa	49654
gccaggagag	aggcttcaga	agaaaccatc	ctgctgacac	cttgatcttg	gacttccagc	49714
tccagaactg	tgaggaaata	gatttcttt	gtttaagtgg	cacagtctgg	ggcactttgt	49774
tatggtggca	ctagaaatga	atacagttac	caaatttaat	ttttcaagct	ctctctagca	49834
gcaaagtatt	tcccccatat	aaaaaatga	ggacgctgag	gctcagagag	gtgaactcgt	49894
ttgccggagc	cacagggctt	gctggcgggc	gttggcactg	atagttgaac	cctggtccac	49954
tagtgtgcct	ccagagatgg	tgcaggccac	gccgtctgcc	ttggtctcac	gcaagtggcg	50014
gctaagccca	gaggcacttg	tctccatttc	agtgccctgc	tattggctgg	ttagaaagtc	50074
aatattttat	ggagcctcat	caacctccca	agtcttgggt	ctcaattccc	ccttttggtg	50134
tgagcctctg	aagactggtt	gagcatttgt	gagaaacaaa	gttttgacta	ctcaagactc	50194
tagttaaaaa	aaaaaaaaaa	ttgcaccaat	gtgccatccg	gctgcagcgt	ctcaggggca	50254
tgattcggtt	tttgcaacag	ggagtagete	ttcttgaaac	attatgggat	ttctttccta	50314
agttgacttc	acttacattc	tgctcagcac	atgcaaagca	tttggttatc	gggaggcaga	50374
qtaaqatqac	aaccctatta	ttqaaqqtaa	qcaqacctqq	cctqttcaca	aaqccctttt	50434

tacatcttgt	ttcattctgt	taccaacagg	gtaactgtga	agtgggtggg	caggaactgt	50494
gacttcttt	caagtctcag	aagatgtcag	tcccccaggg	aggctggcct	ccgagtgcca	50554
gtgcaggtgg	ctccccctcg	gccgtcctat	gccacgtgcc	ctctcctcgt	cattctcagc	50614
cccctcgcgt	ctggagtcac	ctcgctggtt	tatcgtcttg	tggtccatct	gcccgtgagc	50674
attccagcca	ggtctgtggg	cttcgttttc	acggccgcca	ttttggctgc	ccgcagagtg	50734
cctggtgcaa	agcggatgac	actcagtatc	tagagcggca	cttccgggta	atccacaaac	50794
atttatcaaa	cacttaggtg	tcacttgggg	tgctcggaat	tgcaaacatg	aggacaaacc	50854
ctcactccat	ttggggcctg	cagattcagc	aagagtggaa	aaaccagctt	tttaaaatgg	50914
cagcctggga	atcccagaat	taggaagcac	aagcttgtct	ttggcaggcc	aggccagctg	50974
ctgacccgca	cggccttcag	gggccagcca	gtgcgaccat	gattgaatgc	acagccctga	51034
ctcctttgtg	gcattggctc	ctgggtccag	gtgggagcat	ctgattggcc	cccactggtc	51094
atgtgctaac	caggaagtgg	tgtgtgatgg	gctgagccta	gggctcatac	ctgcatgtgt	51154
tttggggggaa	acagagagaa	aggtgtgggcc	tctccacttc	tgtggacacc	ccaaatagga	51214
agaagggtgc	acacaaagca	ccgcttcctc	cacgaagccc	tcctcaggca	catcgaggag	51274
aaccagctgc	ccaagctctt	ggctgctgcc	cttctgaggc	ctgcctggta	ggtggcgtag	51334
gaggaggctt	ggtaagcaga	tgatgggaca	tcatctacca	catcccatca	gtaacatcca	51394
acaagtgtgt	gtgccagcac	agacctgggc	actggcatgt	cccagccgtc	attccatgtc	51454
aaatacttat	ctgtgccgtc	atcgtcgagg	tctggtttcc	aactctatgg	ctccattgtc	51514
tcaggtttaa	ccagtcctct	tattgggcat	cagettttee	atttttgctc	tgtgagaggt	51574
tgttgagtta	gttggaggac	caagcccata	atttcctgga	tgacagttcg	tgtcccgcag	51634
atagagetta	accaacagtg	gttccctttc	cagacctaag	caggtgggag	tcagagatga	51694
gcatagagaa	agggtgaagg	ggtgcctctg	gattcccaag	gcagggacat	agctggggga	51754
gctgcctccg	gactcgcaag	gcggggggtgt	ggcagacact	ttgcagaaaa	agtacatctg	51814
teettgggge	gagaggccgc	acatgcagcc	ccaagtccct	ggacctgtga	gatcctggct	51874
gcctgctgtt	gatagaacgg	gacaggtggg	gggatgcttt	tgattcatgt	acggtgaatg	51934
atcttattct	cacctttatc	actggtggca	cattctgatg	gaaggagaca	ttggcagtgg	51994
gactgggcaa	gaaacaggtc	atttgtcatg	gctgtgtgcc	agcctcctgt	cgttgcacag	52054
cctgtccttg	ggaagtcttg	ctcacctgtc	atgtggagta	gttgtatgtg	tgtgagtgtg	52114
tgtgtgactg	agagagacat	acacatatgc	acacacacgc	agaagtgtct	gtacctctga	52174
gaatatagtt	ctccagagga	tgcagaaaaa	ttggggattg	cagactgtcg	tgcgtttaaa	52234
tgtgtccttc	tctcaagaat	aatgtccact	tggaacctca	gaatgtgacc	ttatttggaa	52294
atagggttct	tgtgtatgtc	actagttaag	ttgaggtcat	attggattcg	agtgggcctc	52354
aagtccaatg	gctggtgtcc	ttctaaggag	aggacacaca	gagacacagg	gagaggaagg	52414
ccgtgtgatg	acagaggcag	agattggggt	gatttatcta	cacaccagaa	gccaggaggg	52474
agtcagggag	cggctcctcc	ctcagagctt	ccagagggag	ccaggcctgc	ccacgctgtg	52534
atgtcacatt	cctggcctcc	agaactagga	gaggataaag	ttcgattgtt	ttccagctgt	52594
ctgtgtgtag	taatatgtta	cagcagccac	aggacactga	tacccagaca	catcccaggc	52654
cctaacatcc	cagaagagga	gtccctgata	ctcctcttt	gcaaaatgag	gtgtgggctc	52714
agagcaagtt	cgattttctg	tgaagggcct	gatagtagat	attttagact	ttgcaggctg	52774
tgtaaatctc	tgttgcatat	ttttctttc	ttttctcttc	ttttctttc	ttttctttct	52834

tttttagac	agagteteae	tctgtcgcct	aggagtgcag	tggcagtggc	accatctcag	52894
ctcactgcaa	ccactgcctc	ccgggttcaa	gcgattctcc	tgccttagcc	tcccgagtag	52954
ctgggattac	aggcacatgc	caccacgctt	gcctaatttt	tgtgtgtgtg	tgtttttagt	53014
agagatgggg	tttcaccacg	ttggccaggc	tggtctcgaa	ctccctacct	caggtgatcc	53074
gcctgcctca	gcctcccaaa	gtgctaggat	ctgttgcaca	tttttctttg	tttgttttgt	53134
tgtcatttgt	ttgttgtttg	tttcacaacc	ctttgaaaat	gcagaaaaca	ttcttagctc	53194
ttgggctggg	tgtcactgag	tttgccctag	gggaaccete	accgcatgcg	aagctgagtg	53254
ggcacggttt	cctccgctgt	caacgggaat	attgatggtt	tccctgagtg	aggacccagg	53314
ggaagcactg	ggctggtgcc	cgcctcctgt	ctctgtgccc	aggcctactg	tctgcttcac	53374
actttactcc	ccagaaccag	gcatggcact	tagtacaggg	caggccgagc	tcgggggaga	53434
tttgcttgaa	gaatgaggaa	cgtttctgga	agcetetetg	accacccagc	aggcaggggc	53494
aggtetteet	ctgagaccca	agtcctctat	getteeetee	atcctagcag	tgacttccat	53554
gacacaccat	tgtccctttg	ggagcacagg	actctggctg	agtcatctct	gaagtgaggt	53614
gaacccagca	cagggactga	tggcttggga	agagcagctc	agcctatgtg	gggggtgttg	53674
agggtgccca	ggcccagggg	cgatttgatc	ccaccctacc	ctagcgcagc	cagaatgctg	53734
gggccgaggt	tcacctggga	gatgcaggag	tttagagaag	aggaggagga	tgtttaagcg	53794
tgcgagctgg	tgataggagc	gtggagttgg	agctagaccc	agacttgaat	tctggctttg	53854
ctgcgtggca	gcagctgtgt	ggcccttgat	gagtgtctta	accttgctgg	gctttggctt	53914
cctctccagg	agggcatagc	aagtcctgcc	tgttagggcc	atcctgagga	tggggtgacc	53974
agagcatgag	cagccgggtg	cccagggcac	ctgggcaaca	gccctgtggg	taggtgggtc	54034
tgaatggttg	agccccacgt	tttagtcaag	accactctcc	ttgcagagca	gttcatgtcc	54094
acttgcccac	atccttcctg	tcccagcacc	gtctgtaggt	tgctatgatc	accccatttt	54154
acagatgagg	aagcacatgc	ccaaagaagc	aagtgacttc	ccaaggcggc	aaggcaaggt	54214
gaggggcaga	atgaggaccc	caacccagtt	ctccccaccc	cctccttccc	ttccagagcc	54274
cctgcctgct	ggaggcattg	tcccagcggc	agagggtcag	gccacatctg	ccagagctaa	54334
ggggagtete	cgtcatctca	aatcattggg	tcaaatgaca	gaaatctgct	ggcatgctgc	54394
cttttgaggc	tcggcgactt	ctctgaggct	ttcctgatgg	ctgctctggg	tgtctggaat	54454
gagctgtgga	cgagggccgt	cctctgagtg	accatgcccc	ccacgcagcc	gaggttcccc	54514
tctgcctggc	tcagtgcggg	ttctgagaaa	gcctgcctgc	cctcactgga	ggcacctctg	54574
actcactgct	gcaaggatgt	ggccatggac	tggggtcccc	gggggccccc	gaaagcctca	54634
gcaggagaac	atgtttatcc	agaagcctgg	gcaacaccca	gagggtcctg	gcatgggtgt	54694
gccaggcaga	ctgggcatgg	aaacatgccc	cgtgatgtct	ttgggatcct	gggagcctga	54754
ggcttgttct	cagtgtgtag	ggcagggggct	gggtgccacc	caagggggggc	aaactgaggt	54814
cacagagagg	gaggcagtac	ccccagaaaa	ggtgattctt	ctcattggaa	gattcccaag	54874
gcccaaggcc	tgggtcagca	gacagtggaa	caagggtaat	ggtcatgtcc	ttaattcacg	54934
taaccccgag	gtgggtccct	gtgaaaatcc	cgtggatggg	gcctggtgat	ggctacactt	54994
atattctcag	aagcagcatt	accacctgga	ccettecett	ttctcttact	ccctcctcct	55054
cgtggggtct	gcaaggggggt	ctggtaaatg	gcateccect	ccccgcccag	gggctggacc	55114
cgtggagcat	aagccaaaag	gggcggcaaa	gagagacacg	gaacctcact	gccactgccc	55174
agctgccggt	gctgcaggac	ctggcttagg	ttcagggggcc	cggtgggctt	ccccagtgct	55234

ggaccccagc	aggcaggtgt	ggagggagca	gggggtagtg	gagcagagta	cagtggcccc	55294
tggctgttct	cccccaggaa	gagaggagag	gcgggggctgg	actctttccc	atctccctcc	55354
ccaatactcc	agcgtcagtc	agtctccccc	cgacaggggg	aagggagaga	ggccaggagc	55414
cttcccctgg	ggcacacaca	gagagcccag	caggcttgga	agaagtgtct	ccctcctcct	55474
ccagccctgc	cagatggtcc	cagccctcct	gcagggttcc	cgaagtggaa	ggatctggac	55534
tcagagccca	gtgctgctgc	ttggcatctg	tggtcccggg	ctggagggcg	tgttggcagc	55594
tcatgcctgg	ccagcgcatc	ggggtggctg	cagcagagga	tgggggaggg	gagcagggac	55654
aagaggagcc	tgcaggctgc	tgggtgcagc	cagggcttct	gcttcacccc	gggggtcaca	55714
gctgctttct	gttgggaaag	ctcccactgg	aggtatgggg	taggcagtgc	tggagaccct	55774
ggtggcaagt	gctgagctgg	ggcacaggtg	aggatcagga	ggagctggga	gggacatccg	55834
caggttgtgc	tgatggactg	cctctgagta	ttttcacggg	atggtggaaa	gaggctttga	55894
gtcagacctg	ggttcgaatc	ctggctccta	ctcttggtag	cagtgtgact	ttatgtgacc	55954
tttctgaacc	tcagttttct	ctgttgtaaa	atggggaaaa	ccacacatcg	tgggggcngt	56014
tgtgtgcacc	taaggaagcc	accccagggc	tgggcacacg	ggtagccgat	tgtcatatcc	56074
ttgttatgga	aggttgttat	ccttgttagg	ctggtgggca	ggggtggtag	aggagtaggt	56134
tgtttttgga	aaatggtgga	cttagtctta	gacatgttgt	gtttaaattg	ctcatgagaa	56194
atccaaatag	aaagacccag	ggtgacagca	gggactgcta	ggaacttggg	ataaaaatt	56254
ggtcctgggg	tgctggtcac	tgatcctgtg	gataaaggag	ttggggtgct	ctgtttgggt	56314
ccagctggca	gagttggacc	agttgagaga	aacttctagg	aggaaggttt	agaagaagaa	56374
tgctttcacc	atcagagcta	tcttaatagc	tgtgtaatgt	ggtagtgagc	tccccatcgt	56434
aggaggtatg	tgagtcatgg	ctggaggact	acttggaggt	ctgttgtaga	aggattcaga	56494
caccagagag	ggttagactg	gatgaccttc	agttcccctc	ctgggtgacc	acagetette	56554
aaagcccctc	actgctgccc	gcttctgcag	gattcagggt	tgaatgtcag	aagtctgctg	56614
gaatgetgte	gattgaggca	cggtgacttg	gccaagcctt	tcctggtggc	tgctctggta	56674
tctggaatga	gctatgggtg	agggccgtcc	tctgagtgac	cgtgcccccc	tcacagctga	56734
ggtteecete	ggcctggatc	agcgtgggtt	ctgagaaagc	ctgcttgccc	tgactggagg	56794
cacctggagg	tggttttcaa	agtgtcactg	tcaccgtgac	ccagacatgc	ttgagcccca	56854
ggctgggaaa	gcttttttc	tttgctttaa	aaaagcagaa	acagtgaagc	aagcataaat	56914
ttgcctttga	aataagaggc	tgaatgtctg	ccaaatgcaa	atggattgaa	atggccggtg	56974
gtctgacctt	gggatgttcc	attggtagtt	tcagaggggc	tctgagcccc	caggccggct	57034
gtaacagtgg	acatgctggc	gctggccagt	ttgatccctt	tgaaagcccc	ccgatattca	57094
cctccaagag	agaaggccct	ggcaggtcct	ccagcatgcg	gacgaggcgc	atgcactgtg	57154
aggcagcggc	tctgtgggag	gacgggggcct	tttgtccact	gtcctggcat	tccatggccc	57214
tgtgtcccca	gatatccgca	cctgttcctg	acaccatccc	tteetgtegt	gtgagcgaga	57274
tgctcttctg	tggaacctgg	gttcctatgg	tcactgggag	ggtgaccctg	agttcacaga	57334
gaaagggggag	caggetgtte	aggaaaacta	agcacatgtg	gtgagcatcc	acaggcggct	57394
agggatggaa	ggcttttcat	ccgggctttc	agatgaggcc	cctgaagctc	agaggggtta	57454
ggcaattggc	ctgaggttgc	acagccagga	aggagtgatg	gcgtagtgat	tcccattggg	57514
ctctcccacc	ccctgttcct	ccctccatcc	agcccagggc	ctcgtggata	cattaggagc	57574
ccaacaagag	ttcccctccc	ttctcccttg	cttctctgag	cctcggtttc	cccatccata	57634

taccaggagg	aaccccctgc	ccatctcnta	gggctctttg	acatggtgaa	atgagatcca	57694
gatactggct	gtctgtgtca	actgtaaagt	gctgtcctga	gtgaccagtt	gttgttggtg	57754
cctgtagcca	tccttgaggc	taaaagagac	tgctgcttgc	ctgatgctcc	tcccgccagc	57814
ctcctgcttt	ctgcgtgact	tccctcgccc	cagcaatgaa	ccctggagcc	acctgcaaat	57874
gggaaagctc	ttttgttagt	ttccacagaa	tgcccaccgt	gcacatgatc	agagagtttg	57934
cgagcctagc	tcaggtcagt	ggaactggtt	cttttcgtac	atgtaggaag	taatgcaggg	57994
tgctgccgaa	taaatccact	gcctgcctgg	cctctgatga	acttaccagc	tcacgccagt	58054
tctagctcca	gccaggagga	ggaaaaaggc	atactaggcc	gtattttgtt	tctttcaatg	58114
tttatttacc	tgtacacaca	cacacacaca	cacacacaca	cacacacaca	cacatacaca	58174
ggcaaaactt	atgttactgt	cccatgcata	attctctaga	tttgggccac	atagatctgg	58234
ttttggccat	tgactggcaa	catggcagta	gccaactgca	gagccaccag	ggagcagcct	58294
cattctgatt	gagtataacg	aagacgctga	tgggaaagag	agacacgggt	gagcagggggc	58354
tgtggggcat	catgagagtt	gggagggtcc	ccatcgtgga	gctggccagc	cctgagtggg	58414
agccccggca	cagtcctctg	ctagctgtgg	cctttggcca	gtctccactt	ctcagagtct	58474
cagtgacccc	agetgecace	accaggattg	ttggggtgtc	caagaatgaa	aataggggtc	58534
atccctggcc	ctcaggggat	atgtgggctt	tcccctcatc	atgaatggaa	caggtgagtg	58594
ctgtggtgca	ggctgagagg	cggcagggtg	ttctctcaca	gcagggtcgg	gtettgetet	58654
gataactgca	ccaggacaaa	catccccagc	ctctgggatg	cacacccacc	agcatctgcc	58714
cggcaggttt	aattaccggc	tgagatgggt	tgtgttgggc	tcactaagta	tgctccataa	58774
gtgatgaaat	tgggcaagtt	ctcacctctg	gaggctctga	ccccgagtag	ctttgaccct	58834
gagtagctga	aggaacaggc	agttcagcct	ctgcttatgg	gctgtgtgtg	cacacatgca	58894
cgagtatgag	agtgtgtcag	tgtgtatcgt	gtgaatatgt	gtgcaggtaa	gtgtccatgc	58954
atatgtgtaa	gtacatgaca	atgtgtgtgc	gagtacatga	ctgtgtgttt	gtatgtacaa	59014
ctgtgtgtgc	acatgtatgt	ccgagcacat	tggcgtgtgt	gtgaatgtga	gtgtgagagc	59074
gtgtgatttc	atgactgtac	atgttcactc	tgtttattct	cgggggaaat	agcaggcaat	59134
ctgtaagaaa	atgactgtgt	aagtttcatg	ggtggaggct	tatgatactg	ttagagtcta	59194
tcttagtctg	ttggtgctgc	cataacaaag	ataccataga	ctgggtgatt	cataaacaac	59254
agaaacattt	ctaacagttc	tagagctggg	aagtccaaga	tgaaggtgcc	agcagtttcg	59314
gtgtctgttg	aaggccctat	gcctggttca	caggtggcga	cttcctgttg	tgtcctcaca	59374
tgggggaagg	ggcaagggag	cttttgtagg	cccttcttct	aagggcacta	atcccattca	59434
tgggggctcc	accctcatga	cctcatgacc	tcccaaaggc	cccacctcct	aacaccatta	59494
tettggggtt	agggtttcaa	catatgaatt	tgaggggaca	cagccattcc	atctgtgacc	59554
gtcctcaatc	agccttctcc	ctgcagggct	gcaaatgagg	gtgctgccgg	attcataaga	59614
gaagatacat	tgtaacatcc	acagcacaca	ggcactaggt	tgggagcctt	ttccagcact	59674
cagatcaggg	ttcaaaccct	aactgtgccc	ttcaggagct	gtgtgacttg	ggcattcctt	59734
cattttttat	tcaagcacac	agctggcatc	tacatgcctg	ctgtgtgtca	gggagataga	59794
aatagagggg	tgagcccctg	tgatattagg	caggcagctt	tcccttccag	ggtctcattt	59854
ttctcactgg	tgaaatgagg	gcagggggtc	ctcccctggg	gttactttga	ggggtcagta	59914
aggtgaacag	ttacagtctc	ttgcacagcc	cctgaacgtt	gtttagaagt	caatactctg	59974
ttccatccca	tcagetteet	cttcccttgt	tttgactggc	aaatagtcat	caccttctga	60034

agtcattaag	agaaggtett	tttaaactat	tatgatgcca	tcaaaactga	cttttgatcc	60094
aaaatatctt	ttaaacaagc	tgaccattca	gtgaggattt	gccaggctcc	tttgtgatcc	60154
atccttttgg	ggccagggtc	tgtggggccc	agagctggac	atcatggaac	tagctctgag	60214
gageteatgt	tcaggtggga	cacagtctcc	tggaatcaca	gttctaagca	ctttccaact	60274
attaactcat	ttaatcgtta	attactacca	tttcccagat	gatgcaccag	ggatgttaag	60334
taaccaagga	atatggcagg	gccactggga	tagtgggctg	ttagaaaagt	cagggtggag	60394
gccgggcncg	gtggctcatg	cctataatcc	cagcactttg	ggaggccgag	gtgggcggat	60454
cacgaggtca	ggagattgag	accatcctgg	ctaacacagt	gaaaccccgt	ctctactaaa	60514
aatacaaaaa	attagccagg	tgtggtggcg	ggcgcctgta	gtcccagcta	ctcaggaggc	60574
tgaggcagga	gaatggcgtg	agcccaggag	gcggagcttg	cagtgagctg	agattgcgcc	60634
actgcactcc	agcctgggcc	atagagcaag	actccctctc	aaaaaaaaaa	aaaaaagaaa	60694
tgaaaagtca	gggtggagta	cagacacaaa	ttagagaact	taagaggcac	caacaagagt	60754
atgggcagta	tagggagaaa	tggaattagc	acggagcagg	ggcttcctag	ggaggaatga	60814
tgggaggaga	cacctccttc	ctgctgctcc	tgctgtgtgc	cagcctgggc	tgggagcgtc	60874
acgccatcag	ctccagtatt	cattccagcc	ctgtgaggct	ggcagcaggg	tcctcctagt	60934
ggggctgaaa	ggtgcaatgg	tgaggaggag	gattgcaggg	gctggagtcc	tggccccacc	60994
acttcctggc	tgtgtgactg	tgggcacgtt	actcaccctc	tctggccctc	catttattca	61054
tcattaaaat	gggattaggg	gccaggtact	ggtggctcac	acctgtaatc	caagcncttt	61114
gggaggctga	ggtgggtaga	tcacttgagc	tcaggagttc	aagaccagcc	tgggcaacat	61174
ggtgaaactc	catctctaca	aaaaatacac	aaattagcca	ggtgtggtgg	catgcgcctg	61234
tagtcccagc	tacttggtgg	ggctgaggtg	ggaggattgc	ttgaacctgg	gagggttgaa	61294
gctgcagtga	gcagagatcg	caccaccgca	cttcatcctg	ggtgacagag	tgagactctg	61354
tctaataaat	aaataaataa	ataaataaat	aaataaataa	ataaaacagg	gggaatagta	61414
gtccctactc	catagggctg	ttgtgaagat	ctagtgagat	caatgttcat	gaaggacttt	61474
ggcgctgcac	acgtttctga	gaaagggtga	cctggccagg	ctcactgggg	tggtaagtgg	61534
cagggatggg	cttctccacg	tctcccctgt	gatattaggc	aggtgtatgc	agttgcttca	61594
cgtccagcca	caccccctca	cacacctgca	gaccagccag	catggcacac	cagacacatt	61654
tctgctgcac	ctttccccac	acagtaccta	ccacctggcg	tgcctctctg	cccatcccca	61714
tctttttgat	attttacctt	ccacctaaat	ccgaactgaa	atcccagacc	tcactagctg	61774
gtgggtgcat	ggggtctctg	ctctgccact	tctggagctg	ctcctagtgc	atgccccagt	61834
tactcactcg	tggccaccac	cccccgagtc	aggggtcgag	agtccccttt	gtccatgatg	61894
ggtgacgagg	gcatacccgg	aacagagggc	taattaaatc	acacgctgag	gtttgtagaa	61954
catgggacgc	ttcattaggc	tctgtgtgaa	caagtgcgcc	cagcctgctc	ccactactcc	62014
agcagactcg	agcctggtat	aatcacagct	cacactctgc	ttcatcagct	cgctgaggct	62074
gtggggaggg	ctcacacctt	tgggctctaa	agagagtggg	cctgaggtgt	gggatcctgc	62134
ttctgagcag	gggtgtctgc	cccgagccag	cttgcccagt	ggtgtggagc	tggagccccc	62194
tctgcttaag	taaaggcctc	tgagggacac	atgtcatgca	gatgatgaca	ccagactggc	62254
tcctcacttt	aaactctact	tcctgagagc	agaaggcagg	gaaggcctca	gttggaggtg	62314
aaaatggaac	tttcatccac	cagatgttag	ataaaagata	ggaagggtgt	tccaggcaga	62374
ggggaaagtc	tgggcaaagg	cttggaggat	aaaagggcac	cgcatgtttg	gggagcgggg	62434

catgttccct	ggggccagag	acctgagttc	teetettgge	tctatcccca	getecaceca	62494
tgacttgggg	tgagtcctga	accccgacca	accttagtgt	ctccagggct	gggatatggg	62554
ggggtggcag	cctctgatct	gtggtcacag	ggagtctcag	ctgtggtgct	cctgtgcctc	62614
cctcttgcta	ctctctggcc	agtgacgatg	gcactttact	ctcctgcaga	gacctgtccc	62674
cagtgcctgc	ctcctccagt	cctcttcctc	atgggctggc	tgctctgggc	acatctcagg	62734
gcagccccag	aaggtgggct	gagctgttat	ttggggcgtg	gggttctcgg	tteeteeget	62794
ccatgctggt	gggcctggtg	cctggcacca	ctggcccgtc	ttccaggaag	ctcactgaca	62854
ccatcctgga	tgggccttgt	tttctctctg	gcctgggagt	cagctgcact	ctcgcaggtc	62914
ctaggccaag	gtgacctgct	tgtttcattc	ttgtctttct	cctttgcttt	atggtatatt	62974
tttaagcata	agatatattt	atttgtaaaa	taaaagttca	ttataaaatg	atgccttaat	63034
taccttcctg	caatataaca	attatttggt	tgtatagttc	ctgttctccg	tattttgtgt	63094
aataaaatgg	acccaatggg	tgctgcacaa	tgctgggtgc	cacagggaac	acacactgct	63154
gttttctcct	ggatttttaa	aattttaatt	ccagcatggt	ccttttatat	gtgctttcac	63214
tctagctgtt	tgcctacatc	tccacagttt	tgattgtcca	gggtggtgaa	taaaatgcaa	63274
cacttggcat	cttttaatgt	ttaaaaaaat	caacaagtat	tttatttaaa	ataaaatgtg	63334
aatatctgta	atcctaaaaa	aaaaaaaaaa	aaagccacag	gatccttgag	aggccctctg	63394
agacagtgac	acccctgacc	agetgeagee	ccctgtccac	tccccaggct	ccattctctc	63454
tacccactgc	ctctgcatcc	teegecettg	gagtttctca	gggtgccccg	cagatcacct	63514
gtggcccaag	tgctcaggga	cttgtttaaa	attcagattc	ccaggccccg	cccaggettg	63574
caggcagcca	gggccaagga	atccaaatac	taatcaagcc	cactgtaatt	gccctgcatc	63634
tgaggtctga	aatcactcgc	ctgctctgga	ttatctgtgc	tccagggtgg	cctcagttta	63694
caccatccta	cctccccatt	gaaaccttac	tgctcacgat	ggcccaggtt	cccacccatc	63754
ctgggagaga	aagatgattg	gctcagttct	ctgggaggcc	tggtgattgg	ctgcctctag	63814
gagggtgtgg	ctacctcttg	atccaatcag	tggagggcag	catggggatg	tgatcatgca	63874
gtgaagaacc	tgtaccgggg	gtagttaggc	gccagggaag	gggaggagga	gaaaccagtt	63934
ctactgttag	tatcagctca	tctaacattt	ggcccctggt	gggggttttt	gcatcctttt	63994
gggggtctag	gtctcttctg	ccattttgtt	ggcactttaa	tttcttgtta	acaaacccaa	64054
gagcacatac	aacttaattt	ttaaattccc	aataatttcc	agcatcctct	aagttagtgc	64114
tgagcgatag	aaatgtaacg	gaagctgtac	gtgtagtttt	aaaacttctg	atagccaggt	64174
tatgcacgta	aaaagaaaca	ggtgaaatta	attgtaataa	tttgtatatc	caaaatagta	64234
taaactgtaa	tcaatctaaa	gtaattgaga	cattttacat	tctgtttttc	atattaaatc	64294
tttaaaattc	ggtgtgtgtt	ttatgcttac	catacatccc	agctcagact	agccacattt	64354
caagggttca	ttagccaccc	atggctggtg	gtccctgtac	tggatagcgc	agcactaaat	64414
gatggettta	ctttgtatcc	ttggggaagt	atgtatttt	gaatccattt	tcctcacttt	64474
tgaatagttt	aagaacttcc	cagtccattt	gtctaagggt	atttgacttc	taaatgttgg	64534
gtttettgge	cgggctcagt	ggettacace	tgtaatccca	gcctttggga	ggccgaggta	64594
tgcggatcac	ttgaggtcag	gagtttgaga	ccagcctggc	caacatggtg	aaaccccgtc	64654
tctactaaaa	atacaaaaaa	aataattagc	cgggtgtggt	ggcgggtgcc	tgttgtccca	64714
gctacttggg	aggctgaagc	tggagaatcg	cttgaaccca	gcaggcgagg	ttgcagtgag	64774
ctgagatcgt	qccaccqcac	tccaqcctqq	qcaqcaqaqt	qaqactccat	ctqaaaaaca	64834

aacaaacaaa	aaaaccagtt	gggtttctag	caataaatgc	tcataaaatc	tgctggagtt	64894
ttggaggatt	agtccattca	tcctgacttg	tgtcctgttt	ctgctgggtc	attgttgact	64954
tcccccactt	gcctcacact	tgtaaggcca	tgtggcacac	catcaacatt	catctctgat	65014
taaggagctt	gtttcttgta	gtggctgcca	taacatatta	tcacacgttt	ggttgtttaa	65074
acagcagaaa	cttacactct	tcctgttcta	cagtccagaa	gtccaaaatc	atggtgtccg	65134
taggcctacg	ttccctctgt	agcctgcagg	ggtggatcct	tccttctcta	gaggctgcca	65194
gcatctcttg	gctttatggc	cacattactc	taagttctgc	ttcggttttt	acatcacctc	65254
ctcctctttc	ccccatgtct	tctcctctgt	gtgtctctta	taaagccact	tgccactgca	65314
tttagggctt	actcagataa	ttcagaatga	tcttctcatc	tcagaatcct	taattatgtc	65374
ttcaaagacc	ctttttccaa	ataaggtcac	attcacaagt	tccagggatt	agagtgtgga	65434
catacctttt	gttttttatt	ttattttatt	taatgtattt	atttatttt	gagacagagt	65494
ttttccctgt	tteeetgget	ggagtgcagt	ggtgcgatct	cggctcactg	cagceteege	65554
ctcccaggtt	caatggattc	tcctgcctca	gcctcccgag	tagctgagat	tacaggtgcg	65614
tgccaccata	cccagctatt	ttttttgg	cttttcttt	agtagagaca	gggttttcat	65674
ccaacagatg	ttagataaaa	tgttgcccag	gctggtctcg	aactcctggg	ctcaagcgat	65734
ctacccgcat	tgggctccca	aagtgctggg	attacaggcg	tgagccctgc	accctgccaa	65794
gagtgtgtac	atatcttttg	tggggcacca	ttcaacccat	tgcagtgagg	tgtcagtgtt	65854
ttgacaggaa	gaagcagcaa	agaagacaaa	tcagcacttt	atttttctaa	gctttgaaat	65914
tcttaaaatg	atagtgggtt	aagaaagacc	aacttcccca	tggaaggtgc	tggtccacac	65974
tggctgggtt	tagatccctt	tggctgaggt	ttagatccct	ttggagggga	gtcaatttga	66034
agaagaagca	catcagacac	attcaggaag	gcaaacccaa	agacagcaga	aaggcaagaa	66094
tgtctcaaat	tgttcaaaaa	taaatacgtt	agttcttgta	acgtgctccg	aatagggtga	66154
ggctcaacat	gagcacttaa	taaatgctca	gtttaattgt	ggtaattgta	attctcattg	66214
gtatatattt	atgtcctgat	cctatacctc	tgttattaat	gagactgata	ataggtaagt	66274
gaagggaaaa	agagaccccc	ctgctgccag	gaaacaaaac	aaagtatcga	gccaaatgcc	66334
aaatccataa	gtcaccaaga	tgggttttga	tgacaaaacc	tttctttctg	gactccccct	66394
gecceteege	gaagccgttc	cccatggcca	cgcttgtccg	tggctggctt	tataggccca	66454
teettettt	atatgatcat	caagatggca	ctaatttggg	tttgcaaatg	aggttttcgt	66514
gatgttgtca	tgtcagcatc	tggattcaag	agggggctgct	tcccagaccc	tgaccctccc	66574
ctgtggcctg	ggagcaggcc	cagcccctcc	ctccatctaa	tcactcccca	ggaacctggg	66634
ggatttgcta	atgggcccag	gaagccataa	agagtaatga	aagtgctgtg	tgactgctct	66694
gcacgggggtt	gcccttgggg	tcccttcctc	ataattaaat	tcggaatcct	ccttctgcct	66754
ttgagctgga	agagagggtt	ttatcctccc	tgtggtctgt	tcatcccttc	ttccccccat	66814
tcatttgttc	agcacttatt	atccagttat	ttgtttatca	agccacagtt	gaatgcctgc	66874
tgagagccgg	tttagggcac	tgagcttcct	gttctcaaca	ggcagaggtg	ggagcagcca	66934
ggctgctgtg	ggaagagcag	agtggctatg	gageegeeet	gagccagctc	tgctgtgcgg	66994
gagttctgcg	acctggggaa	cccgctcgct	tggcttcctc	atctgtaaaa	cggggagact	67054
aatataatag	cagctacctt	ccagggggggc	tgtgagaatt	aaaggggacg	atggatataa	67114
acteccacae	actgtcgggc	acagggcgtt	aatagcagcc	ctcagtctca	tgtcccactt	67174
attttgtgcc	cgacacactt	ctgagcatct	tatgtctatt	cactcattta	atttgcccag	67234

taactctagg	aaggaggtca	cgtccatggt	tcttattttg	ctgatgaggc	agttgaggta	67294
ggcagaggtg	cggtgccttg	ctcaagatgg	cacagtggaa	ggacacgggg	cagggcggac	67354
ctgaccgcag	ttggccctcc	cttgcctgcc	tcttagcacg	catgcagccc	cctcgcctgc	67414
tctgcccgtt	gtgtctcaga	atctccactg	ccatttgcgg	gtgccctgaa	tccacctcgc	67474
ttttccgtgc	ctccctgctt	ttgtgcttgg	tgcagacccc	tgcttcctca	tgggcacctg	67534
cctccttaga	accccccttg	gaatctgtta	actacagctt	cctgggccca	caccagcatc	67594
cctctgcaac	tcagaatttc	cagggcccat	aatttcctac	aggcccctcg	ggtgattgct	67654
ttctcagtag	gcaacttagg	gccgtccctc	caaaccttta	gagtgagaag	cgtgctacct	67714
gggtgcttca	taactgatgt	tgcaaatgtt	caaccaagtg	taggaagtga	acacactttg	67774
tatctgcaaa	gtgctgtgca	tacaagcgag	gtcaggagca	gctggcaccc	gtccccaagg	67834
gtttccatgc	ctctggcgag	atagggtagg	agtatctgca	agtagctgcc	ttcttggcca	67894
tggaagaaca	agttcaacag	ggcgcctctg	tgtgcctgcc	ccttgctgtg	tacaaggacc	67954
ttgcacttca	gggacatcaa	ggcaccttca	gccgggcttt	ggggaacttg	tgtatgggag	68014
ggggggacct	ctaaggacct	ttcctgtccc	aaggagctcc	ccagaagcct	gttgcagtgc	68074
ccagcacccc	agcctcatgg	ttaaggtagg	cagtccccag	gagtcccctt	cctgggacat	68134
caactctcct	ggtgggaaca	aatgctgagc	acctcagcat	gagatgggta	cagtcaggga	68194
ctccacaggc	aggtcatgtc	acagacaagg	tcacacagct	aggtggtggc	aggttggaga	68254
gagagggcag	tcccctgact	cccatcccag	tgctcttttc	tcccatgaca	gtgacgggtg	68314
aaatggcaca	gtgtatccct	gtcaggcagg	aggggatttg	ttgtactttt	tttttttt	68374
ttctgaggcg	gagtttcact	ctgtcaccca	ggctggagtg	cagcggcgca	atctctgcac	68434
actgcaacct	ccgcctccca	ggttcaagcg	attctcctgc	ctcagcctcc	tgagtagctg	68494
ggattacagg	cacccaccac	cacgcccagc	taacttttgt	attttagta	gaggcggggt	68554
ttcaccatgt	tggccaggct	ggtcttgaac	tcctgacctc	aaatgatccc	cctgcctcgt	68614
cctcccaggt	tgtatttta	atcctccaca	actaaatact	catgtcagtg	gaaaggttcc	68674
aagctcttta	aagacagcct	ctgccagcgt	gctcccaggg	gaggccaggg	aaggctttgg	68734
gaagceteeg	tgggggtggg	gacctcctgc	aacccctggc	gcacagcctc	accccgctgt	68794
aaacagagct	gggattgaag	tgcgatttcg	gtttctttt	cttttttct	aatcaaataa	68854
aaacacctag	ggggcaggaa	gcgaggagga	agaggccagg	gagtaattct	tgttgccaaa	68914
ccagtttcta	agggggctccg	ctccgctccc	agcatttctg	tctctgaggc	tccgacctct	68974
gagatgatca	atcctcccat	ttcagccaga	tgagaattgc	tgtgggccct	gccttttctt	69034
aatattttgc	atgagagcga	cagcccggcc	agcggcagta	atctcccacc	cacgtgggga	69094
ggcacccact	gtcctgccat	gtgcataatt	gaagtcttca	gactgctcag	tggttctaat	69154
tagcccaaag	tggccccttc	tggcctcagt	ggaaattact	gccctcctgc	cgcctggtct	69214
tactagctga	tctttgaagg	tgtgagtgag	ccgggagacg	tgcagagcct	agcactccct	69274
ctgctgcatt	ggtctttctt	ggcaggcctt	catggctttg	cagagggcgg	gcagttgagg	69334
cctctgtctg	ccgttgaggt	cctgcctccc	tcctctctgc	caccactctc	catgggacag	69394
gtgctccagc	tgggcgcatg	catgcccctc	tcacctgaat	gcctcccact	agcagtgtct	69454
ctgctctttc	tgaccettca	ggttatgcag	tgcctcctcc	tccaggaagt	catccctgat	69514
ccccaggctg	ggccctcaga	atccccatgt	ctccctccat	cgcagccctg	gccatgccat	69574
gtggtgcttg	tttacatcca	tgactgcccc	atgagactgg	gagcccctag	ggggcagaag	69634

ccgctccatg	teccacetae	teetggeeta	gegeggteee	ataggacatg	tctacggaaa	69694
tggagggcgt	gagggtggga	ggaaggaagg	aaggcaagaa	ggaaagaagg	aaggagaagg	69754
aaaaaggaga	agagagaaaa	gagggagggt	gggcaggtag	caccatgccc	attttgcagg	69814
tgagaacact	gaggagacat	aaccgggaag	tggcagggcc	aagcacaccc	ttggcagctc	69874
attatacttt	cccttcagcc	tagcaaagct	actgttcgat	ttggggaaat	ggggccgctt	69934
gtatgaagag	ccgcaggcaa	agtggaaagt	gccgagggct	ggaagtcaga	tgggtgtggg	69994
tgcgcagcct	tcctgtgtac	ctgtgggcac	cacttacctg	ctctgtgacc	ctgagcaggg	70054
cacctttgcc	ttcgaaactt	gaagatcaca	gtcgtccagg	tggattcaag	gcgatgaaca	70114
gcaacagcgc	atgctcttcc	caaacagtat	tcttcttatc	ctcactgaag	ccccagaagg	70174
tagttgatcc	ttaccacatc	attaacctca	atgcgcagat	gaggatgcca	aagcacagag	70234
aggttgagca	actggcccaa	agtcacacag	tgcgtgagtg	acagagccag	gatttgcgcc	70294
tgggttcttg	gctctgatat	tagtgccatt	gactccactc	tgttgtgtga	ggtatgaagg	70354
catccagtac	agtgtctggc	atcggcaggt	agetteeatg	gcagataccc	cccctctccc	70414
accagattct	gccctttgag	cgacaggaag	ataaatagcg	ctgttctcca	gtgtcacttg	70474
tgactttcct	ctgtgagttc	attgtcaggg	tgctcctgag	ctgagctgtg	gccaccactc	70534
attggtgtgg	tccctggaga	cacttggata	aaattgtgat	gacagagggc	tctcaggctc	70594
atgagatcac	acagaggagg	gtggagctca	aagggctatc	tcagaccggg	atgctccaga	70654
ggttaggtct	tggtgctgtg	tttggccccc	agctgctctt	tcaggccttg	gtettgeeet	70714
tgcccttggt	ctctggaagg	ctgaatagct	gcatcttgtt	catctggaaa	ctctctggga	70774
tgagtgactt	tagcatctcg	gatgttgcca	tcgtagccca	tgtgcataac	aacttattgt	70834
gcaagcatgt	acagtcatat	tgaaaataaa	tgtagaagtg	aaggaggcag	tccaaagacg	70894
gttcctgaca	atactcggaa	acagcttcat	taggtattgg	ccagagette	tatttgtggg	70954
ttgctttggc	gaaactgctt	ccttaccatt	aaccatatcc	aggagatgga	ggggaaagtc	71014
ttcacctggg	ttggtttttc	tcagagggggc	aggcaagctg	aataacggga	gtactaacat	71074
ttccaagaag	attaatgatt	aaaatgttga	atacaatttg	agacttgttt	tcatgttcat	71134
attttatagt	ccagaagttc	tttctataat	gtcctcataa	atattttatt	tggccttagg	71194
ttaaatgtca	gtttccatgt	cctgccacgt	gccacttgac	caacgtgtgt	gggaacgtct	71254
ctactttgga	cacactgtct	atatgaatgg	aggcccttct	accccttgaa	atgttcctca	71314
actcccagct	cagtttccct	tccgcatccc	tttgactgca	tgagcggaag	cgaggcatta	71374
cagagaggtt	tgaggagcca	gccagcaagc	tagcaacggc	ttcagttcat	ttctgagatg	71434
tttgcattca	ggggtcccat	tggccaacct	taacttctcc	tttgagctct	aggcatcttg	71494
tgatgaatgg	cataagcctt	agaacatggg	agaggettgg	atgggccagg	agctccaaac	71554
actaaggaat	gttgcttaca	tcaatagacg	ccttagttac	ttaggtcaat	agatacctta	71614
gttgcttaga	tcaatagatg	ccttagtaga	tcaaacaccc	aaatcaccca	atgtactttt	71674
agggcaatgg	ttgccaaact	ttttggtctt	aggacccctt	tttacactct	taaaaattat	71734
tgtggctccc	aaagaggttt	tgtgtatgtg	ggctatatcc	ttcaatattt	gccaactttg	71794
aaattaaaac	tcagacagtt	aaaaagattt	atatgaattc	attgaaaaat	aaaaagtgta	71854
aacccattac	atgttaacgt	aaataatatt	tttttggaa	aataactgtg	ttttgtttta	71914
aaaagtgaga	agagtggcgt	gtgtatcaat	ctctttaatc	tctagcttaa	tagatgatgg	71974
ttggattctc	acatcagete	ctgcattcag	tctgttgtga	tacattgttt	ggttgaggta	72034

ttgtcgaaca	tctatcctca	aacagatatg	tagttggaaa	agggagaacc	ccacaatccc	72094
ctgaaaacgt	cttggggtcc	cctggaggta	cttagaccac	agtcttagaa	ctgctgattt	72154
aggtgatggg	tgaaactcaa	gatgaagaca	aaagagaaaa	catttcaacc	ccaagagact	72214
tcaatgcatt	cacatgcatt	gactcaggat	cattaaagct	ctaactgaac	ccaacatgga	72274
gacagagcag	gaaacacagc	catggctggc	ttgacttcag	cctcccatca	aagaccccca	72334
tctttggctc	aactgccccc	agtggtttca	atcagccaca	gacttccctt	gtccagctgg	72394
actggacgtt	ctgcatttga	ctgtctgtcg	gctgcccact	gattttcagg	ctgctgaatt	72454
acccattagc	tcacctgaac	ccctaatgcc	acatctaaac	ggtcctcact	ctgcctttct	72514
cagcatccga	gaatgtccta	taaaaggctt	cttccatgga	ggtgggcagc	cttgggcctc	72574
tcctagggtc	agctcaggct	gcccacgctg	gctatggctt	cctgctggcc	cctggaagct	72634
gtgtacacct	gggagagtga	ggtgaatgtt	aatttattca	gcatgcaatt	aatgaattct	72694
accctgtgcc	tggcacgact	catttctcat	gccaaagcta	gggtggatca	gaccaccttg	72754
gacaaatctg	gatgggtgaa	cttgtggatt	gatcaatgat	cttagttgat	gaaaaatgca	72814
ccaaatgact	gtttccttta	atgcgattgc	ttgggtggtg	gactcgatta	cgttgagggg	72874
attaaattag	cagcttgctg	ggtttcagat	gagtgcaggt	ggctgctggc	acttcctctc	72934
ccctcttttc	tttctttccc	ttttactgca	aacgaagact	tttcaaagct	ttactaagta	72994
caataaatgc	catcccctta	aagtgtagac	ttccatattc	ttagaattgg	caagctatgt	73054
atatgtttgt	gaaatcaccc	ccataattaa	gatttggagc	atggccttca	cccacaaaac	73114
gtttcctgtt	ctctgtgtgg	tccattccta	tctctgccct	gcaccctggg	tagccagtga	73174
tttgcctttg	gtcactgtag	gatagtctgc	actttcaaga	atttcatatg	aatagagtca	73234
tagatgcatg	cattttttgg	tctggcttct	ttcactcagt	gtgggtattt	tgaacttccc	73294
cctggttgct	gtgtgtgtca	atgatttgtt	cctttttctt	tgaggagaat	tctgttctgt	73354
gaatatgcca	tgatttattt	atteetteee	ctgctgatga	atatttgagt	tttttctaat	73414
tctgagctac	tgtgcagaaa	gctgctatga	acacgtacgt	atgcaccttt	gtgagtttgt	73474
gagetttegt	gactcttggt	tacaaggatg	gttggttcgc	atggtagacc	cgtgcttatt	73534
ttcacgcttt	aagaaactgc	cttgctgttt	cccacggggc	tctatcgttt	ttcattcccc	73594
cagcagtgtg	tgaggggctg	tttgctccac	ctcttcacca	actccatatt	attagtcttt	73654
ttaatgttcg	ccactctgat	gggtgtacac	tggtatctcg	ttgtgatttg	catctgcgtc	73714
ttgtgatgac	tgatgatgtt	aagccccttg	ccatgtgctt	cctgaccatt	cttgtatttt	73774
ggtttgggaa	gtgtctgccc	aaatcttttg	cctattttaa	atcaggttgc	ttgtgtttat	73834
attattgagc	tgtaagaggt	ctttatacat	ccgggctaca	agaggtttac	tagatacatg	73894
tactacgaat	attttctctc	attccatgcc	ttgccatttt	cttttcataa	cagtttcttt	73954
cacatagcaa	aggtttaagc	tttgataaag	ttcagtttgt	ccattttttg	ttgtttttca	74014
tgctttttgt	gtcttgagaa	atcgaagttg	caaggagttt	cttctataat	gtctcctaga	74074
aggctcatgg	ttttagcttt	tatgtttagg	tagatgatgc	atttcaatgt	cagtttgtca	74134
gatggtgtaa	gagttgatat	tcattttgcc	cccagtcatt	tattggaaag	actgtgcttt	74194
cctcgtggaa	tcacctgagt	gcctttgatg	acaatctgag	ttcaccacag	acttgtgggt	74254
ctagttctgg	attctctgtt	tagttgtatt	gatccacatg	tctgtccttt	taccaggacc	74314
acactgtctg	tatcactgta	tctttatatc	agctggggta	aatcctccaa	ctgtgttcct	74374
ttatttattt	atttattgca	aagtcatttt	ggctattcta	ggtcttgttc	taacaggaac	74434

atattttcgc	ttatttaatc	cttaggaccc	tctgaagcag	gtgtgaatat	taagcccatt	74494
ttatggataa	ggaaactgag	gttcggagag	gatgagtaac	tttcccaggt	aactgaggag	74554
gaagtgagcc	ttgcccctgg	taggtctggc	agctgcactt	gcccttagcc	tctaggcagg	74614
ctgcactgcc	ctctctgtgg	gttccaacca	ttcctggtac	acacccctag	ccaagaactt	74674
gtgaggttct	tggaacctca	tgcaagaggc	tcttgcatga	ggcctctttt	ccaacttctg	74734
tttatcctgt	cccaaagagg	tcagtgaggg	acccccaggg	ccgcctctgt	tccctcaccc	74794
tgcaccttgg	ccgggagacc	cccgcagcgc	agggagcatc	cctccggatg	tttcttccca	74854
ggcaacaata	ttctgtttat	caagccaggc	cccgaggctg	aggcctcccc	ctggcctggg	74914
gtgatttttg	gttggtggtg	agaagcagca	ggggtgcctg	ggggcctggc	tgtcatcgga	74974
gccagctccc	tgtcctggtc	tctgctgtgc	gggatggcat	gggtaggggc	tttgtgcagg	75034
atgagggtcc	tgccgactgg	gacgtgggct	ttggaagggc	cacgcttctc	ttacaggggt	75094
gcccttgtgg	ctgtatgagg	agtccaagct	ctgaggttga	acactgggat	tgaaggattc	75154
ctgccagggt	gcacttaggt	ggctcacttg	gcccagagtg	agccagagct	ggctcgcatc	75214
agtgcgcggg	agtcaatagt	tacattttta	ggaattttt	gagccagttg	ttaaactgtg	75274
ggtagcatgg	aaatcagccc	tggcttgagt	aggctcgcat	cagtgcgcgg	gagtcaatag	75334
ttacattttt	aggaatgttt	tgagccagtt	gttaaactgt	gggtagcatg	gaaatcagcc	75394
ctggcttgag	tattcatgcc	acggacttgg	caaatgccgc	aaatcagggc	cttctctcta	75454
ccccctccca	gccccaaccc	gaagacctga	ttgttaactg	cactggcaaa	cccctggctc	75514
tgcctcctgg	agcctcaggt	tccttatctg	gaagcgggga	gaataatgcc	cacaccttaa	75574
ggcatcatca	acacccttaa	atgagatcat	gggtatgaaa	tgcttgtgaa	tagttttgag	75634
tgtgatacgc	aagtgtgagg	ggtgctcacc	accctggcca	ttgccattgt	cctcctcatg	75694
gcagcagctg	gacaatgtgc	ccaggctggg	agttggtgtc	tccaggaaaa	actggaggaa	75754
aggagcccga	taacccatgg	gcagcagctg	ggttagggag	ggctccagac	ctgcctatct	75814
ccgtcagccc	tgctgaatgt	gcctctgttt	gctcatcttt	ataatgggtg	cactgatccc	75874
agctgagagg	ggtgtggtgg	gctttggggt	acaggccaca	aggtacaagg	catggcctga	75934
ctgcagctcc	gtcactctca	tggctcaggt	gcatggctgt	cccacagtgg	aaggaccagg	75994
ggctggcctg	atctgcactt	catggcatca	agagcacagg	ccctggagtc	caccaggcac	76054
agagaagcag	cctgctcctg	ggtggagtac	aagttcaacc	ctcgggagtt	gtggtttccc	76114
catgtggaag	ctggcagcat	gccacgcacc	tgccagggct	gccgcgaggg	ttcgcacaca	76174
ctgtgtgtaa	tgctcctgtg	tgagttcccc	ggtgacccag	gtcccactgg	ggtggccggc	76234
gtgtaaccag	gacaggaaca	tctccaaagc	cactccttgt	ttgctgcctg	gtggctcaag	76294
cagaacatct	gtgcctgcag	ggggcccata	agccttaatg	ccctgcagag	aggggggcctg	76354
ggggaggctg	ggactcacac	cagctgggga	acaaggcctg	cagctggggg	gctaccagga	76414
tgctccttgc	cagtaaagag	ggtcctcagg	agatcagcca	cagctcaatc	aggagggtct	76474
gcccatttca	caggggagga	aagcgagcct	ctggaggctg	agctgccagc	agtcacgggg	76534
ccagcgcaca	gccagagctg	accactctgt	atgactggcg	ggtctgcgcc	cttggcatac	76594
cacagcagct	ctcacaccaa	cagaggctgg	acctgctgat	cagcccccgc	tgtggggggt	76654
cccgcctctg	cccacaccct	accccacacc	ttcacagggg	tggactgtca	ccctctagca	76714
gactgtcctc	cagagaccga	gacacggagc	ctctccacaa	ggagggagga	aagggaggtg	76774
gaaaccagcc	ttaccctgga	caccgggtgg	tccttgctgc	atacccaacc	ctcattggtc	76834

agactggtct	gggagggcct	ggacatgccc	gcggggtccg	tttctgaatt	cccgttgcct	76894
ggcataagct	ctggcactta	gtaggtcctc	agttaatact	tgtcagataa	ataaatggcc	76954
teetttgggg	aaatgaagaa	tgtccaggct	ggccacgggg	aagggggcagt	gttaggagtg	77014
gagagcgaga	gggtgagcca	ggcagatggg	acctttattc	aaagggcagt	ggggagccat	77074
ggaaggtttt	agggagggcc	atcggatgag	gttttcattt	tagaaaagtc	cttctggctg	77134
ctgggtggat	ggggtcaaga	tgaagacagg	aaatccagag	aggaggcggc	tgcaggctcg	77194
cgggtgagag	gtgaccatgg	ccaggccagg	gcggaggcag	ggaggtgggc	ggaggggggg	77254
tgctggctct	gccaactgtg	accccagcac	ccagctcagg	gaattatggc	cagagacaaa	77314
gcagcttaga	gcctgacccc	tgccctggag	cagataggcc	tgggaagggg	gctgatggac	77374
acgctgatgt	gatgggacct	gagaggtgtt	cttgtcacca	ggccagtttg	gcccccatcg	77434
cccgcctgcc	ggctggggtc	taaaaggctg	gctgtagccc	cagcagagag	gacagggcct	77494
gtgggacccc	aggtgctggg	agcacagaag	ccagccaggc	catctggccc	ggctgagact	77554
caagtgatag	gtccgcatca	gtgtcaggcc	tccatgcccc	ccatcctggg	atgggaacag	77614
cacatcacag	tttgcagagc	cctgcggcag	gggtgactct	tattgccatt	ttgcaaatgg	77674
gaaaactgag	acttagagtc	tctctgactc	acataagcag	gacaggagac	agtcgaacca	77734
ggtcccccag	ctgcaattta	ccacatctca	aacccttttc	ctctctctgt	cattgattaa	77794
tctttgcttc	aatgtccaca	tagttctgtg	atttgctttg	ggtacatagt	agcaataatt	77854
atagcaacaa	tttctagcag	tttcttggtg	ccagacactt	ctgtctttgt	tgcctcgttg	77914
aatcttcacc	atcaaccttg	aatatgaaac	ccattttaga	gattaggaaa	ctgaggctca	77974
gagactgttt	ataacttact	gagaatcagg	cagccccact	gaggtgcttt	accagtctcc	78034
cctttaccag	tggttctcaa	accttggcac	accacaggaa	aacctgtcag	aatgcagatt	78094
ctaggcccca	gcaattctgg	tcctgtccgt	ctgggcagag	ccttggcaag	cttcgtcttt	78154
aggagagaag	cccaggtgac	tgggggtggg	gctttccgga	gcctgtgttg	caagaaggaa	78214
ggcagggagc	atgtgatctt	ctctcggtct	ccctcacctt	gaccctgtcc	caaggccagc	78274
tgctggcctc	aggctgcctg	gttgcctttg	aaggtccatg	gggatccgat	ggagggttgg	78334
tcgtgctgaa	gccaggctgg	gtgtcatcct	ggctctgagc	acagtccagc	ctggctagag	78394
tcaaacccag	cagcttgacc	ggatcctgct	gaccacagac	aaatccacaa	ctaccccgtc	78454
cacctccccc	aggcccatct	gcctctgtgc	cagccaggct	ggcagacact	ccatcgggcg	78514
ggccccacct	ggcttggcca	gggagaaact	ggcagccaca	gcccctggcc	tccccgatcc	78574
ctgtcccttg	tgcactgccc	atgggagggg	cagtggcctt	ccacgctggg	tctggctcct	78634
gcagtagcag	agctgggtgc	agacacgggt	tggaggccgg	ggccatgggg	gcattcgtag	78694
gctcatgagt	cccttctcac	tctcttctgg	ggactgggtt	tctgctggaa	gagaaaggga	78754
ccagcettaa	aagacatcgt	gattaaaatg	gaattattat	ttcagcctgg	aaaaggaatg	78814
atgtactgat	ctgtgtcaca	acatggatga	accttgaaaa	cattctgcga	agtggaagaa	78874
gccaggcaga	ccccaaaggc	cacgtgctgc	tgtatgattc	tatttatgca	aaatatccag	78934
agtaggcaaa	atccatagaa	acaggaagta	gatcagtgat	tteegggggge	tggggagagg	78994
aggggatagg	gaatggctgc	cgacggatgt	ggggtttctt	tttggggtgg	tgggaatgtt	79054
ctgagtttct	ttttggggcg	gtgggaatgt	tctggcatta	gactgtggtg	atggttctag	79114
aattetgtga	atctgttaaa	atccaatcaa	gtgtacattt	aaaagtggtg	aatttcatgt	79174
tatgtatatt	gtacctcaac	tttagaaatg	ctaaaataga	aacaacaaaa	tcatcatgat	79234

gcaacgcctt	tcctcataga	cctggagcga	ggcctgagag	agaagccata	taaggcagat	79294
gaggggtggg	atggagagct	tcctttcatt	cgctgcctgc	ccagtgaggg	tctgcttcct	79354
ctggcactta	cttaacaaac	ccgagagtca	cccatgtgtg	aggcatgggc	tgggcacaga	79414
agggtccacg	cccacccctg	aaagtgctcg	tccatgctag	aaagacagaa	ggatggggtg	79474
gtcattgaac	ctaagtcaga	ccgtggcttc	ccagctcatg	cagaataaaa	tgctcaggcc	79534
tctcccggcc	tgctgggtgc	aggaccccgg	cccagcccac	ctctctgagc	tctgagctca	79594
tgtcctgccc	catccctctc	acacgcacac	tggcctcctt	gctggcctgc	aacagatcaa	79654
actcacccta	cctcagggcc	tttgctcgtg	ctggtcacct	gatatctgtg	aggetecete	79714
tctcacatcc	ttcaggtctc	tgctcaaatg	cgtctccccc	aggaagtctt	ccctggcctc	79774
cccagctaaa	acageceete	ccacccctcc	catgccattt	accatactat	agttttcatc	79834
ttagccctta	tatctccctc	caagagctat	ttattgacat	gaaaatttgc	ttattggctg	79894
tctctcccat	tcgagagtgg	gctttctctg	gggagtgtgc	actgctgaat	ttccagtgta	79954
tgcaacagtg	ctgaggagag	ggtaggtgct	cagttaatgc	tttttaatta	aattttctat	80014
tgtggtagaa	tatacatgac	atagaattta	ccatctgaac	catttttaaa	tgtacaatca	80074
atgtcattaa	gtatattcac	gttgctgtgc	acctgtcacc	accatccatt	tctgggactt	80134
tctcatcatc	ccagacagag	actctgtacc	tgttaaacaa	gaactcgcca	ttcattaata	80194
ttcttttgaa	tgactaattg	aatgactaag	tgtatttcct	gtgtgtcggt	cacaagctag	80254
gtgatgagcc	agtaaacctg	gcgcctcgga	gggtgtgtgt	tcccgtatct	gtctcggaga	80314
tggacagatc	gactcagaga	ggtgtgaagg	gctttgccca	aggtcacaca	gctggtcagg	80374
gtgggattca	aacgcaggtc	tttccccctt	tccacacagt	ggcagttctg	ggggatcact	80434
gcatgcaaag	ggcatagcca	tggcacctcc	aggcetecag	ccccacccag	ggetteeeet	80494
gctgccgctc	ccccaagggt	cactgtgtcg	gccacatgtt	cctggtgtcc	tcggctctgg	80554
caggetgace	accagtcaca	ggcacgtctt	gggaccacac	ttggaggttt	cagetteeca	80614
tttcacctgg	tgctcttggg	gtggaggccg	ggatcatgga	atcctttttc	catggccttt	80674
aacacaaatc	aatactgtgc	ccagtttaaa	tgtttatgta	actcatcatc	tgccggctct	80734
gctattacgg	tgtgcttttc	tttttataaa	ccaagctcag	gggaggtgat	attaagtcca	80794
ggacttgcct	ggcgaggccc	agcgcgtgtg	cagaggattc	aatgtggcaa	taagggcgag	80854
ttccctgcac	agcgcctgcc	atggctcgtc	ccagcctcct	ccctcatctg	cttgtgtcct	80914
ctacacggta	gggaggaggg	agaggtccag	agaggggagg	tggcttgccc	agggtcacag	80974
ccacaatgag	gtggaacagg	gattgtttcc	aaggtgtgtg	tgggggtggg	acccaggete	81034
ctgccagagg	ccagggcggc	agagccctga	caggcagatc	ctgggttcct	gggtgtccag	81094
gttacgtggg	tgggcaggtg	gcagctggca	cccaccccat	acagacactc	tctgacaccc	81154
cccaaaaata	ctcccaccag	ccccttcaca	ttttcctcca	gccaagtgac	caaagcacag	81214
ctcagggccc	atttgccctg	gccacactgt	ccccactctc	cccacccaac	ctctgaccac	81274
aggcctggga	gctgccccat	ctccaccaag	ttcaggctgc	aggaggaaac	gtctcaccag	81334
gcccgctgga	aggtggggtg	gtgatgaaat	gtgggggttc	ttcagcgaga	gtggaattca	81394
gtaataaggt	gatcatcact	gccgggcggt	gcctggactc	atgatgagcc	aggactaggt	81454
gagtgcagag	ggctggtgag	caggcctgat	ctgtgacccc	ggtggccctg	cggctctcag	81514
acccctcaca	taaaatccca	tcagggatat	tccgttccct	ggcccggaat	gaggtcttcg	81574
tctttctgat	cacccttaaa	qaqcccaacq	accttccatc	actcactcag	tgctgatgtc	81634

cagtcccggc	aacagtctga	ctccgcccag	acttggcgct	tcccctccca	tgcgcccgcc	81694
gcccggcgtg	ctccctgctg	gagggtgaca	tggggagggg	cctggctgca	gcccttttca	81754
ggcagctctt	gttggctggg	aagggagcct	ggggatgggc	cgccttctac	ctgccggtgg	81814
ctgtgcccac	tctgagtgtg	cttggtgggt	gattacagct	gctcacagct	gtcaggagtc	81874
cttcacaggg	cagtctggaa	gtttcctgta	gagctgtctc	ctgcagagtc	cttacctagg	81934
gagaccccgc	tgtatgtcct	gtggccagta	gcatcctgtg	gctttgctca	atcccccagg	81994
cacagtgtgt	gcacccccag	cctccctctg	ctgtgttctc	cacgcccctc	tgggcagccg	82054
gcactcagga	cctaaggtgg	tcctaagcag	ctctcccctg	tcccctggaa	gtacgtggag	82114
gtaaaagctg	catccctggc	agaatcagac	cccaaactcc	agaccctttt	gctgtgagtc	82174
tcaggctagg	gtctcccacc	tgcaggaatc	attttgggcc	ttttgagggt	ctctttcata	82234
gacgtgggtg	gggcgtctgc	tcagcacctg	ctttctcctt	caccaactcc	tcagcctccc	82294
atctctgacc	ccataaacgc	tgagaggaga	accaggcctg	ggggggcaagt	tcaaggactc	82354
aggaggcaga	ccgctggaat	ccaatctctc	ccctgccctt	actagctgag	cggctgttgg	82414
caagttgtct	tctctgtgct	tcagtttctt	catctgtgca	atgggggtga	taacagcaca	82474
caagaacatc	ttggagttgt	taagaagatt	cagtaatagg	tgtaaaatgc	taaagctggg	82534
gcctggctcc	caggaagtgc	ccagaaggtg	tactgtgata	accacagacg	ccacgtcacc	82594
ccgctggacc	tggactccgt	gaggaggggg	ctccccatct	ccttatccca	gtgtcagccc	82654
gctgctgggt	aaattcgctc	gccaagccca	taccaggtgc	taatggctgc	aggagcetet	82714
tcctctccct	gacatttccc	ttcggcagca	ggcggacccc	tccttcctcg	cccacctcca	82774
tccttagcag	ccctgatacc	tctgacaatg	ctaattaaat	gcaacaacct	catcagaagg	82834
ctcgagctgg	gcttgcctaa	ggccccctct	ctgccctgag	ccctgatgga	tcattaatgg	82894
tgtcagcagc	acttatggtg	atggacgagg	ggagcaagtc	ccccgacgtg	ctggggagga	82954
agtccgtgac	gagcatcttc	atctcctgtc	tgcaggcctc	ggccagagtt	tccagggaac	83014
gtcctagtcc	acagaatcgt	ttgaatttca	catttaccct	gggagaacca	tggccaggca	83074
gggatgtcaa	ttcccattgt	atccatgagg	cagtcagggc	tcagagaggg	caagagattt	83134
gggtgagggc	acacagctgg	taagtagtgg	ggctgggact	ggattaccac	ggctttgatg	83194
aaagctgcag	ggggcatctg	taagatccaa	gggcgatgtc	tcccccaggt	ggcacgtgga	83254
gaagaaagcc	agcaagtgcc	accggcttgg	gggtagccca	gttctcgggg	gctggagcct	83314
gcacactctc	atctcagctc	tgtgtcagtt	tcctagggaa	gctgtgacaa	agtgctacaa	83374
actgcgtggc	ttaaaacaac	cgaaatttgt	tctctcacag	ttctggaggc	cagaagtctg	83434
caatcacgat	gctggcaggg	ctgggctccc	tctgacggct	ccagggagga	ctctgttcca	83494
ggcctcccca	ccagcttcta	gtggtggctg	gcaatccttg	gcatttccgg	gcatttccag	83554
gcattgggag	gcccggctcg	gccccccaaa	gtgctgggat	tacaggtgtg	agccaccatg	83614
cccgtcctgc	ccttcattct	tgatgcctcc	cttcagcctc	tgcctctgtc	tccccatggc	83674
ctcctccctg	tatctgtgtg	tgctgtgtct	tcatatggac	ttcttatcag	gataccagtc	83734
cttagatcta	gggcccacca	taatccagta	tgaccgcacc	ttaacttgat	catctgcaaa	83794
gactctattt	ccaaataagt	tcccattcat	aggtaccagg	ggttaggatt	ttaacatctt	83854
tttgtgggat	gcagttcaac	ccacgatacc	atctttgccc	atctctggct	ctggcgtgca	83914
gggacctgtt	actgggcggg	tcactaggga	taccacctct	cacctctctg	ggcacccatt	83974
ggtaggcctg	tgctgtgccc	agcaccaggg	ggctggctga	ggcctccttg	tycagtggct	84034

cctgtgtgcc	tctccacttg	ggggttgccc	tagagetgee	caggaaggga	ggaggcacct	84094
cagggggggga	aggacagcat	gagtttccat	gggcttctcg	tcacccacac	agagtgactt	84154
ggaataatgc	acccagtggc	tgatctgggg	ccctgagctc	gaggctgcag	ccagtggcag	84214
ctccaggccc	tgcagtgtgg	ggacagcgat	ggccaaaaag	agcacatgcc	aaaggccctg	84274
ccacttaggg	gactttggga	aagtttgacc	aagtttcctt	gtctctaagt	aaggaatgat	84334
aattggtcga	tgggattgtt	ctgagatgaa	agtgctggtc	cttgggaaag	cttcagctga	84394
aatgtctttt	tattttgccc	ttcactcttt	tttttttc	ttcactgttg	tcgcccaggc	84454
tggagtgcaa	tggtgcaatc	tcggctcatt	gcaacctcca	ccacctctca	ggttcaagca	84514
attctcctgc	ctcagcctcc	cagatagctg	ggattacagg	cgcccgccac	catgcccgga	84574
taatttttt	gtattttag	tagagacagg	gtttcatcat	gttggctagg	ctggtctcga	84634
tctcctgagc	tcaggtgatc	cacccggctt	ggactcccaa	agtgctggga	ttacaggtgt	84694
gagccactgt	gcccggcctg	cccttcattc	ttgacgaata	tttcgactga	attcagaatt	84754
ctgggtttcc	aggttttaac	attttctttc	ggcacattaa	aagagtcttc	tgggtgccat	84814
tatttctgct	gacaagtcag	cagtctctga	gtcctggtgt	ctctgaatgt	aatatgttgt	84874
ttttattcta	gctgctttaa	cattttctca	ttatttcagt	ttccagtagt	ttgcagtttg	84934
accaggatgt	acctgggtat	aattttcctt	gtgcttatcc	tgcttggagt	tagctaagct	84994
tcttaaattt	gtaaattgat	gtcttttacc	aaattgagga	atttttcggt	cattatttt	85054
ttatgtgttc	tttttagtat	atcttctctc	tcccctccct	ctacaactcc	aatcacatgt	85114
gtgttgaacc	ttttgatatg	caacaggtct	ttgaggatct	ttttctttt	aaaaaattt	85174
tttttctctc	tattcttcag	actgggtaat	ttctattgaa	atcatcttca	agttcactaa	85234
ctcttctatt	ttctcagact	ttctgttaag	caatttctgt	taaggtgtga	tttttttt	85294
gtctcagaca	tggtatttt	aagttataga	attttcattt	agttctttt	taaattgttt	85354
atatttctct	gctgagattt	attctttcat	gaagtatgag	ccaattttct	ttacgtcttt	85414
taacacagtt	atcatagcaa	gtttaaaaat	ctctatttgc	taattgcagc	ggccagcaca	85474
tttcaggtga	gtttccactg	actgtctttt	atattaagta	tggctggttt	tcctatttct	85534
ttgtatatct	tcatataatt	ttggatgata	tcctgggtgt	tgtgaatgat	agcataagag	85594
cgactctaga	tttttgttac	ttctccccaa	agagcatttt	tgttttgctt	tgtatttgca	85654
agcagttaac	ttggctgaaa	gcaactgtaa	accatctgca	gtcgtgagtg	gtgggcagtg	85714
gcaggagcct	ctgttcactt	cttctagccc	tggctgggtt	gcagctgctg	gaagtctgtc	85774
ctgtgtgtgt	gtggtttggg	gtcagcccaa	gacatgggca	gagtttattt	gccccctctg	85834
gggatctgtc	ttggtggctc	tcttcattcc	agaatttact	cccacatttt	tccagctgct	85894
gcgagtgtct	cagactctgt	ttgctgctct	atcaagccag	tgagactctg	gctttccgtc	85954
tgagttetgg	cagccctatg	acacaggctg	ggacttgtcc	tcaggctgtg	aaagccatga	86014
gaccaggaaa	gccaacgccg	gctgttcctc	ccaattgctg	accgcctgca	gcatctgctg	86074
cggcctcacc	ctccgatgcc	ttcagagtgt	cattttgttg	ttgtttttc	aagggtttat	86134
agtctatagt	tatctgtgag	agagttgctg	cactaggagc	tactaggcta	ttaccggaag	86194
catttagagc	agggcctggc	agacagtaat	cacttaagaa	atgtgagtta	atgtggtcaa	86254
ccatagtgcg	gcgctgtttc	ctctggtcaa	ggctagagac	aacgtggaca	cagacagcac	86314
catgcaggaa	gtgtcagtac	ctagtgaaga	gcacacaatg	gccttaagac	tgcacttgta	86374
ggccgggcgc	ggtggctcac	acctgtaatc	ccagcacttt	gggaggtcga	ggtgggcaga	86434

tcacttgagg	tcaggagttt	accaacctga	ccaatatggt	gaaaccccat	ctctactaaa	86494
aatacaaaaa	ttagctgggt	gtggtggcag	gtgcctgtaa	tcccaactac	tcgggaggct	86554
gaggcacgag	aatcacttga	acctaggagg	tacaggttgc	agtgggccaa	gattgcaccg	86614
ctgcactcca	tcctgggtga	caaagtgaga	ctctgtctca	aaaaaataaa	taaataaaat	86674
aaaagcctgc	agttgtagga	gagaccactt	aactggggga	gggggaaagg	ggactatcca	86734
ggaaggcttc	ctggaggagg	tggtattgga	gctggaaatg	tcagataatc	caagatgaga	86794
agatggactt	tcttcacaga	ggtggctgcc	aaaacaacca	attttatggc	cttactgatg	86854
agaatttctg	gcactcaaga	gaggcaactt	ttcctaaggc	aaatcctgaa	gacatttacc	86914
tataaaaatg	agtagacatt	aaacatccac	tageteette	atgggccaga	ggaagcagtg	86974
ctcaggcaag	aggggatctg	aggtetggtg	gtggttctgt	agatgtttgc	agggagcgac	87034
tggcgggact	ggtaggcggg	accatccaca	gtgaggttgg	gcgcccagat	ccatcgccac	87094
attgcagagc	ttgtggctgt	caattctgtg	gcagccagga	gcacaggtga	ccgggagctt	87154
tagtttctgt	ccagtacatt	ttggtgattc	attattcctg	gagteetegt	cttctcttcc	87214
tccctcccag	accctctcac	ctccttgtct	cacttgaacc	tctaatcctg	ggaaggctcc	87274
accataagca	cactacagat	aatgaaacca	aggeteagag	aagttgtgtg	gcttacccaa	87334
gaccacacag	ctgaagcact	ggagccaaga	ctccaaccag	cacttctgtc	tgcaaagagc	87394
tcatggcgta	gtctctcatg	gagggagcct	ccatctcctc	tgctgccaaa	tggaaatcac	87454
agtagtgtct	cccgcagggg	ctggcgtgag	gttaaaggag	gtagcagata	tgaaaatgac	87514
atataaattg	taaattgccc	acagacatta	gtgtgtgttg	cctggtaacc	acccagcatt	87574
tgtggactgc	atttacttgg	gatagcaata	gttatattgg	cattttaatt	taatagcatt	87634
gttatgttcc	catcataaaa	ataatataca	ctgtgtgtat	gcccaccctc	atcaaattat	87694
atacattaag	tatgtgcagc	gttttatata	ttgattgtac	ctcaatacag	ctattaaaaa	87754
atgatgtaac	ttcattatag	aaaatctaga	aaatatggac	aagttgaaag	aggaggaaat	87814
attattttgt	tccagctacc	ctaaagctac	ctccgttcac	attttggaga	attctcttcc	87874
agcttttttc	cccactgccc	agtttctttg	cttatttcac	atggctataa	tcactgatgt	87934
agatcattac	aagcatttta	tacccaattt	tatatcccgt	tccttcaccc	tcagggggtt	87994
ttaatatgaa	atagcaagaa	ccagegeeee	atcgggggacc	ctagcacagc	tgggctgggt	88054
ggttctggct	tctgcccaga	tgtgtctggg	tgtccctggg	ccagggcagg	ctgccccacg	88114
gagggacaat	gtcaggacag	ctgggacctg	accctgttct	gactccatgc	ccggtgggcg	88174
tttccgtgtt	cccacagagc	tgcttttctt	atcttgtctt	tttaagttca	gtgacatgtg	88234
catctgtctt	gatggatgga	tggatacgtc	cagcccgtca	tcccacttct	aaccaccctc	88294
tctcaatctt	ttctgttgcc	tcaaagctgg	cattgactca	tggctcagaa	ggccagggca	88354
ggccaggagc	tgtcctaaaa	ggcccagact	ggaaaaagaa	aaggcatttc	ttggatagat	88414
atctctggcc	tggctactgc	atacaggcac	catttgaagc	cgtgaattaa	gcctgaggct	88474
cctgccctca	tgaagtttac	gttctggcca	ggaagagagc	ctacagatga	taaaagcctt	88534
tacagaaaga	aaaacatcag	attaggttgg	ggcagggatg	gtcagggtgt	cctgtatgag	88594
ggtgctgggg	tgcagacagc	agtttcagca	aggtgatcca	agctgtgctc	acgggaaggc	88654
agcagtgggg	cagaattgga	agaataggaa	ggagccatgc	tggtacccag	ggaaagccac	88714
tgcaggccga	gagagcaggt	cttgggacag	caggtggcca	ggacttttgg	gaaagggcaa	88774
ggagcctggt	gtttggaggg	gaataagcag	gtggagagca	gtagatgagg	ctggggaagg	88834

ggaggaggta	ccttttgctg	agttaaaaac	acgagacccc	gtgcatacaa	cagtaaatgt	88894
tttcatcatc	ttgcatctgc	gattctgtgg	tctgggcttg	gctgggcttg	ccctgctctg	88954
tgggtcagtg	gggccctgct	ggaggctggg	cttggccggg	ggttgggggg	gttcttctgc	89014
acccactctt	cctcctcccc	ctcagggggcc	agtgggccag	cctgcgcagg	tcctgctcct	89074
ggtaccgcca	gaggcgttga	tggcaacccc	cagtacctaa	gcccctttgc	atctctgttt	89134
gcggcttgtc	gaattgccgt	tctgcaggcc	aaagcaaaac	acagggacaa	gcccagaatc	89194
aaggtggggg	gcagagaaca	ggtcacctgg	cccaccatgg	gaggggtgaa	ggtttggctc	89254
cagatgcggc	ccacctgggc	ctcggcaggt	ggggggctgcc	tttagaacac	tctgtgcttt	89314
tctctgagta	cacaatggga	gccgctggag	ggttttgagc	aggggagtgc	caggatcagt	89374
cctgggtgtt	accagcctct	ctgctgccag	tctgttgagg	ctacgtcata	gccagggaga	89434
aagagctgtg	gcagtcatcc	agtgagaggt	gggagagtgg	ctggcatccc	gatatgctgt	89494
gaaggetgag	caggcaggat	tggatgtggg	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	89554
gtgtgtgtgt	gagagagaga	gagagagaga	gagagagaga	gagagagaga	gagagagaga	89614
gagaacgaga	aactccaagg	cttgggcctg	agcaagtgaa	caatagagct	gtcatcacct	89674
gagactgggg	aagctgcaga	ggatgaggct	gaggagggat	cagaattcag	ttatggtgac	89734
caatgaaggg	ttttgaatag	agggacacag	ggatgcactg	gctcaggagt	ttggtcatca	89794
cgttggccgc	cagagggaga	acagaggctg	ggacagggaa	ccctgtggag	tgtcctctct	89854
gtggctacag	ggagcaacgg	tcagatctgt	ggctggtttg	aaagtagatc	cattttgcta	89914
aaggtggtat	cacagatttt	ggagactaca	gaatccaggc	caggagagca	aagaacgaca	89974
gaggtcccat	tcacagcagc	gggccatccc	gggctcctac	tagcttttgc	tgettgggee	90034
tatggggatg	gtattctaga	actttccatc	ttccaagaca	tactggaaat	gtggatttt	90094
ataggaaatc	ttctactttt	caaatattaa	gaatgacttc	aaattaaaag	taataatcat	90154
tttgggggdtg	cagtaaaact	tgttggtgga	gcaggcctca	ggcttcaggt	tggtgagctg	90214
tcctccagtg	ggggtttctc	ttccaggcta	gggccttgtc	ctcccctgct	ctcccccact	90274
cccagggctg	gccacccaga	atgtgcaggc	cactcatctc	tgtgactcgt	agaacctgag	90334
aatgttggtg	atggaagggg	tgttccccta	gttcccacat	gcaaaaagtg	gggcctggag	90394
atggggctgt	ctttttctc	caaacacttg	cccatccagg	aaggccagcc	ctgggcattg	90454
aagactccag	gtatgggggt	gactccataa	ggagaggttc	ctgagtgacc	tgaagaaaca	90514
tggttgggat	gaagtgcagg	gagggtcagg	gcaggcaggg	ctgagcttcg	cttctgcgag	90574
cagagattag	agagcgatcc	cagaggcctg	cctggaggtg	gggccacaga	gcaggagtct	90634
gaaggagagg	gggtaattca	cctctgtcct	actgtgtggg	aagccctgag	tgggccccta	90694
gcagagggtt	gccttgcgct	tatctatgga	gatattggga	agggcttccc	tgacccaggt	90754
tgctggagca	tgggggcctg	ggtggcaggg	gtaggtgtgg	gagattcaag	acaggaggat	90814
gaggccacat	ccaggtggct	tcagatacca	ccgtgagtcc	catagagtgt	ccagttacta	90874
taaagtctgc	cagccactgt	ggtcgcccca	ggcctgtgcc	aagtcccgag	atctctgccc	90934
tgcagccagt	gcagagggaa	gaggagggca	ggaggggaca	ggttggtggc	ccctcgccga	90994
tgctcctgac	ccctcaggct	ccctgctgcc	tcctgcccag	ggctgtgggg	cctcggggag	91054
cggggagctc	gccattgctg	tggcactgtt	gagcacccgg	gagaggcggg	ttctgacagc	91114
caccccttcc	cgtcttgctg	tteccetece	a gct gac Ala Asp 25	atc atc tct Ile Ile Ser	acc gtt Thr Val 30	91166

gag ttc aad Glu Phe Asr	c cac acg ge n His Thr G 35	ga gag ctg ly Glu Leu	ctg gcc aca Leu Ala Thr 40	ggt gac aag ggc ggc Gly Asp Lys Gly Gly 45	91214
cgg gtc gtc Arg Val Val	c atc ttc ca l Ile Phe G 50	ag cgg gaa ln Arg Glu	cca gag gtgo Pro Glu 55	cgaagcc ctgggtctgg	91264
tgggaggtgg	gaggggtggg	gagcagagto	aggtgggagg	cgggcatggt gggaggggat	91324
aaggataagg	gggataaggg	gtgatgcggt	gagaggtggg	aggggactat actccaaccc	91384
acaagagggc	ttttaactga	caggaggtgt	ggggtgtctt	gcctggatca catctcccag	91444
gggcatggat	tccaggggtg	ggaatgggat	gctttggaat	gccgaggtgg gagtggcggg	91504
cggtggtagg	gggagtgcac	tgggtgggct	ggcaaagcca	ggttetgage eccetgeeet	91564
cagccgatgt	ttgcggagag	ctgcctgcat	cccatgctct	gtcctagacc ctggatgaat	91624
ggtcaggatg	tggcacaggc	agetgetgee	ccagcttgtg	ccttcagtga aaccttcctc	91684
tgcctgggtg	acctgcgttg	tcctggccag	actggggagc	gggaggactc cactcttgcc	91744
cagctgtcac	agccctcaga	ctgagctagg	ı tggtttttgc	tcaggcctgg gcccttgtcc	91804
tcacccctgt	cctcaccccc	acccccgggg	gcttgttgtc	cagcagaact ctgggtaaga	91864
cagcagtggc	ctggacaacc	tgcccaggac	cacgtttctg	gaacactgaa agagcctcgg	91924
gacaaaagcc	catttactga	gaacacttgo	taagtattct	ggagttgctt ctggtttact	91984
ctgcactgct	cacctccgag	ggccagatco	acacccctgt	gacagatgcg gaaactcaga	92044
gaagccaccc	agctagtgaa	cagcagacct	ggctgcccga	cgccaggaca gtggccagca	92104
acgtcacaca	ccacccggcc	tcagagaggg	cgtctccccc	cgcaaacacg gactgtgcct	92164
ggaattagat	gcagaagaca	tccaggaaac	caaggaggag	ggaggagggg atggagcagg	92224
agaggcaggg	gaggggaggg	gaggaggaga	agagaaggtg	gagaagggga ggtaggaggg	92284
aggggaggaa	gccggggggtg	aagagaggac	ctgcggaatc	atctttcccc cgattcactc	92344
ctgagcatgg	cccacgaact	gaggatcctt	gagtetgaet	ttatcttggt ggctcacata	92404
accctcctca	cggtgaccct	gtgggtgtag	l tgcagtgcgg	ctactcccct cattttacag	92464
aggaggagcc	cagagtgcag	agggttaaaa	tagttgacaa	ggggcacatc ctagctgcca	92524
atcagttcct	caaacacagc	actcggccag	cacctgtggg	cttcaccaga tgcacctgtg	92584
gggtgtccca	ccaggcactg	cgaageteag	ccttctttt	gccaagctgc agaaagagat	92644
cggattggtt	gatgcgattt	tcttcatttt	gaatttttct	cctttagtgt tttcttcctt	92704
ctagtcccac	tgacctttgt	catagcgagt	gctcatggga	agtgaagtga attagaggca	92764
aaaatattgg	agaacttcta	agcttttcaa	aagcaagaca	gggatagaaa tatagatact	92824
taaaaaaatt	accaggaaat	cttgaaattg	ı ttetgggttg	aatgteteeg ttteteeetg	92884
gttggggttt	cgtgttgtcg	tatgagttga	actctctcct	gggaacgtgg teeetggege	92944
acacagtgga	ctcaccacct	gactatgetg	ggagetecae	ggtcaagggt ctttattaga	93004
aggagctctg	ctgcctaaac	caggccaago	actgctgagg	aaagccgggg acagattcca	93064
atccaggtct	gacattgcca	gacattctgt	cccaatgtta	aagtctgctc ccaaattcat	93124
ttattcctca	agtcaggcct	gagttggaca	cgtggaatcc	aggagcaagt cagggcccaa	93184
gacacgaggg	tggccagagc	ctcaagcctt	ggcgtcaggc	aggcctcggc agaggggtgc	93244
tcgccggaga	gtgacctcac	ggctctggga	agtcacttcc	cctctgagtc tctgtttgct	93304
ggtctgtgaa	atggggagag	tcgtggtgct	caagcagagg	aggcctggag ggtagaatgc	93364
gatggtgcgg	ggaggactta	gtggggtgtc	cagettgtag	caggcgctgg ggaacattcg	93424

			•		-
_	ann	tter.	7 7	n 11	00
	COI.	- U	T 1	шu	eu

cattagcaag ttagccggct	cgggtgtgag	tgtttcatgg	gaccgcacgg	gagcgggggct	93484
tgtccctggc acactgcaag	tcatgggccg	gttaagctgc	agagagtttc	atttgaccct	93544
cgaattggat ccctggcacg	gctcggcact	tggtcccacg	gccggccctg	ctgggtcccc	93604
ggaggtccta gccgtcgccc	tgcaggtcac	ggtgctcagg	ccccttctcc	gggtttccct	93664
gcag agt aaa aat gcg o Ser Lys Asn Ala 1 60	ccc cac agc Pro His Ser	cag ggc gaa Gln Gly Glu 65	a tac gac gt 1 Tyr Asp Va	g tac agc al Tyr Ser 70	93713
act ttc cag agc cac ga Thr Phe Gln Ser His G 75	ag ccg gag t lu Pro Glu I 8	ttt gac tat Phe Asp Tyr 30	ctc aag ago Leu Lys Sei 85	c ctg gag c Leu Glu	93761
ata gag gag aag atc aa Ile Glu Glu Lys Ile Aa 90	ac aag atc a 3n Lys Ile I 95	aag tgg ctc Lys Trp Leu	cca cag cag Pro Gln Glr 100	g aac gcc 1 Asn Ala	93809
gcc cac tca ctc ctg to Ala His Ser Leu Leu So 105	cc acc aac q ar Thr Asn 110	g gtgaggeget	geeeggeete	e	93854
gcttgcatgg gcacaggccg	tagatgtttc	taccaaatgc	tggtttgtat	ttcacttata	93914
ttgtgagcat ttttctatgt	cttcagaacg	cctagaaaat	aatatccttt	ttgagcagca	93974
tataaatccc atgagtgagt	atgccagacc	ccctcagacg	ctccctgtgt	ctggacacag	94034
ggctgccccc ctttttgagc	agcatgtaaa	tcccatgagt	gagtatgcca	gaccctctca	94094
gaageteece atggeeagae	acagggctgc	cccctgctgt	gaatagagcc	atccgagcca	94154
tetttgtagg eetttgettt	ggggtgaggg	agtgtgatgg	acaaggatgc	aggtcgcaga	94214
cacggggggat atttgacaca	aagtgaaccc	ctcctcccca	cgccgaatcc	agacccctag	94274
actggggctg tcaccgcggc	cttgcggggc	agtgggagga	gccttggttt	aggaccccgg	94334
ccggcctctt aatcctcttg	cctcagggag	gagcatgtac	ccctcaggca	ccggaggctc	94394
teggeetgae geetgettee	caggctccac	tctgagggag	tggctggggc	tgtcctgctt	94454
ggctcaccat gggcctgggt	cccccactca	cgccccctgc	ccatcctcct	tcacctgggc	94514
cccctgcgga cccaggcagc	ctggggtcgg	gtaggacaca	cctggattct	ttttttttt	94574
tttttgagag acaagagtct	tgctctgtca	cccaggctgg	ggtagagtgg	cgcgatctct	94634
gctcacggca acctccgcct	cccgggttca	agcaatttt	ctgcctcagc	ctcccgagta	94694
gctggaatta caggcgtcca	acaccatgcc	cagctaattt	ttgtatttt	tagtagagac	94754
ggggtttcac tacatgttgg	ccaggttgat	ctcgaactcc	tgacctcggg	tgatccgcct	94814
gcctcagcct cccaaagtgc	tgggattaca	ggcatgagcc	actgtgccca	gccaggacac	94874
acctggattc tgtccctgcc	ctgcctccct	tgggcagtga	ccttgctttc	ctgagcccca	94934
gcagggtgga cacatctccc	ttctggggtc	cgtgaaatgg	tgcccactca	accccctgag	94994
aacagtaacc gctgcacaag	caccagccag	gcttcgaggt	gctgtcccca	cgccttcccc	95054
gaggacgtcc acgctcctca	gcggggcctc	caaggctctc	ccgaacatgg	ctaggcgcag	95114
cttctgccag cccgcctgtg	cctgaaggct	atcctcgccc	tgtacctggc	caactccctc	95174
ctcatcccat aagccttgct	gggtgcccgc	cttttctgac	ctctccactg	agccaggcat	95234
ccctcctgtg acaccctggc	tcctcttaac	tccggttcac	cccctctctg	ggcacctgct	95294
gttctgatgg tgttctcccg	ccatgcacct	caaaggcagg	atctgtgtcc	cctaaggggc	95354
cctgcccagc aaatctgtca	cctgagccag	cagagcatga	gagatcctcc	cgaagggcag	95414
gccctggggg acaggagcct	cgtcctgtcc	ccatgcacct	gctccttttg	aaaatattta	95474
agaaggacgt gtcagccaca	tgcggtggct	catgcctgta	atctcagcac	tttgggaggc	95534

tgagatggat gg	jattacttg	agcccagaag	tttgagacca	gcctgggcaa	cgtggtgaga	95594
ctctatctct ac	aaaaaaat	aaaatattag	ccaggtgtgg	tggtgagagc	ctgtagtccc	95654
agctactcag ga	iggctgaga	ttgaaggatc	atctgagacc	ggtaaagtca	aggctgtagt	95714
gagetgagat ge	jtgccactg	cactccagcc	tgggtgatgt	gagtgagacc	ctgtctcaaa	95774
agaaaaaaaa aa	aaagacat	gtcactttct	tcctgcctct	ctacagaaaa	ggtcatcttt	95834
cagcactece ta	acactccgc	tcccctcaaa	gcttcccacc	tgggtttgaa	teetggette	95894
actctttcct aa	atggcaggg	ccttgggtac	ctttcagatg	ctccactgac	cccagttctc	95954
agttetette ee	agtteett	ctcatcaaca	tggtgctatt	tgttttgact	cctgtagtag	96014
tcagggttct co	agagaaaa	agaatcagta	gggtatgaga	gtgagaaaga	gaaagggggga	96074
tttattttaa go	jaagtggct	cacctgactg	cggaggctgg	ccgttccgaa	atctgcaggg	96134
aggeegaagg et	ggaggeet	cgagacagag	ctgcagttct	ggtccaaagc	cgtctgttgg	96194
cagaaccccc to	cttcccca	ggaggtgcct	catgatttca	ccttctaaag	tggatcttct	96254
cttccatccg go	tgcttaat:	tatgtgactc	gctttatttt Asp	gttctgtttt	taaag at	96311
aaa act atc a Lys Thr Ile I 115	aa tta tg ys Leu Tr	g aag att a p Lys Ile T 120	acc gaa cga Thr Glu Arg	gat aaa agg Asp Lys Arg 125	ccc gaa Pro Glu	96359
gga tac aac c Gly Tyr Asn I 130	stg aag ga Jeu Lys As	t gaa gag g p Glu Glu G 135	ggg aaa ctt Sly Lys Leu	aag gac ctg Lys Asp Leu 140	tcc acg Ser Thr	96407
gtg acg tca c Val Thr Ser I 145	stg cag gt Jeu Gln	gagctccg gt	gaggggga ag	gcaggcaca cg	cctcttta	96462
ttacacctga gg	jattttagg	gctggaaaag	cctttgagat	ttgagccaga	gtcaggtgca	96522
gaccctggtt ge	jgctgctgg	ctgctgggcg	gccacgggcg	tcttcctgcc	ccttgcctca	96582
gtttcctcac ca	igcagcata	cagatgacca	cgtttcttct	aggcttcttg	tgagcatgca	96642
ggggtggtgt at	ggctgtaa	agtgcttttc	acctatagct	gagggtggag	agcaaggcag	96702
ataatccctt gt	tataagaa	gggggaaact	gaggcccaga	gagagacagc	aactcaccta	96762
aaactgctca go	tgagtgag	taggcagagg	cagaaagaga	atgggtcagc	agagctttgt	96822
ggctcctgag to	ctttactg	agggcagaag	gaagcctgga	ccgtgtgagg	ccttcagcat	96882
ctacaaaggc ct	:gaaacaga	cataccctga	aacagacaca	cacgtgccca	gcatccagtg	96942
agccgccata aa	atataaagc	agtagtcagt	gctcttcctg	agaagaagaa	ataaatgttt	97002
aaatacattg go	ctaaatga	ctggcaaatt	gcacaaataa	attctgagga	agtgggcagc	97062
cgattagctt co	jatgttgag	taatgagggt	gctggtgccc	cctgccccac	cccccgtccc	97122
aagaaagttt at	gagggttt	catctagagg	gaaggataca	gcgatcacat	cttgatcacc	97182
ctggtgtttg gg	jgcagagcc	agtggccttc	ataaaaatcc	tgtttatgtc	cctcccagcg	97242
ttggagattt tt	ctctgtaa	gtcacacaca	tcccaagaca	cttaactgtc	actgagaacc	97302
tgggtgccct gg	jtctgtcct	catcctgcct	ctcaccttgt	ttgcttccga	tttcacccac	97362
gccacgccaa co	ctgcacag	cattctaccc	accctgcgca	gttcacactg	gaggcagctg	97422
tttactgagg ag	jctgctcca	cgctaggccc	cgggctagcc	cttggggccc	tagaggtgag	97482
caaggttcaa ct	cagtacct	gtccccaaag	tgtccccagc	ccccaaggaa	acagacatgg	97542
aatcgccatc ac	actggcgc	tcagtgcggt	gacagaggaa	cacagagagg	ccgtgggcac	97602
cccaggaggc ct	ttctctac:	tttgtcaatt	tggtgaactc	ccatacatcc	cataaaaccc	97662

tactggcctt	cacctctgta	aagcetttet	gcgcaggcca	gatgacaatt	gtgatctttc	97722
ctgtgtcccc	tcttgccttt	tggatccgac	actgtctgtc	cttagtgtct	gtatcttcct	97782
tgcccctcat	cttgactaga	ctgtggcttc	tgcggaggca	gcatgttta	ctcatgaaac	97842
ccccaaacct	tcagggaagg	tttcctttct	ctcttcttct	ctttactaaa	aaactggttt	97902
tgagctctgg	tttggtggat	ggcagcaaat	ggctggagca	ctggatgaac	tgggtcccaa	97962
ggccgcctgg	agaaaacaga	aagcaatgtt	gccggaagga	agcaggaggt	ggactgagat	98022
gccaagactt	tgctgggcca	gtgatgctct	gcccttctcc	agagcagctg	ggetecetet	98082
ctctcctgag	agtccaggga	tccccagggt	gggcagtggc	tgcaccccga	aggaagggaa	98142
ggttagcagc	atagctaaaa	tatctgacac	aggaatacgt	gcagggagga	tgccttggag	98202
gagtnnnnnc	acactaacac	caactcccag	gcacacaacc	tagaagcaaa	gacacagagg	98262
caacaatgca	agaaccaccc	agagccaggc	tgtcactcac	accggtgctg	cgtgcacaca	98322
cacacacaca	cacacacaca	catgcatgca	catacacgta	tactcagtca	tgcatgcaca	98382
ctcacatgca	cactcatatg	cacacactca	tacatgaact	ctcagccatg	cacactecca	98442
cacacacagg	ctgggtgccc	tggtgtgtgg	gaaaatttaa	cgtgggctgc	agagctgcct	98502
ctgctccaaa	ggagctcagt	gcttgtcact	ccgactgcag	caccgaggct	gtcacctccc	98562
atctcagctg	ttccctgaga	gctcagggac	acagcccatt	cattcattct	ctcacacatt	98622
cactcattca	ctggagagtc	tctctgctag	gccttggact	gagcgctaga	gagatggaga	98682
gataaacaag	aggtgacgcc	ttgeteeegt	agetgateee	tagtccactg	ggaaagctga	98742
tgggaccagt	tgacagcctc	agggttggtc	agggctgtgc	aagggacctt	cagggctgtg	98802
aaagctcagt	gtctgatgcc	atggcaagga	ctcctcgcac	caactgtctg	agatgaaagt	98862
tcgtatgagt	caggctaact	ccaccgctgt	aacaaaacaa	caccagcagt	ccagggccga	98922
gcacggaaat	gcatttctca	ctatgggaag	gttcgatgtg	gatgtgctgg	ttgggacaca	98982
gctctcctgc	aggateette	catccccatc	ccatgagtct	cagtccctaa	ggcttgggtc	99042
ctcaccttcc	aggtggggaa	ggtgctcccg	ctgcttagct	gcatcagggc	caggtatcac	99102
tttgctcaca	tcccattggt	cagaactagt	catgtggcca	tgtctgggca	caaaggctgc	99162
tgggaaatgt	agtccacatg	tagacagctg	tttcccagtg	acagcactgc	attgcaggag	99222
gaggtgagga	ggcctggcag	acaattggct	ggetetgeea	cagtatcttt	ttgtttcatt	99282
ttagagttga	ggaaattggg	gtataggagg	gttcagccac	ttattcacag	acccacagca	99342
ggtaagcatc	catgcctctc	ttgcagggct	ggtgggcggc	gggcatttgc	catctgtcac	99402
tgcctatttc	agaccacgga	ggatcaggat	ggacgcccac	ccctgtgttc	cagcctccgg	99462
ttgggatcac	atgctcacgg	catgctatgt	cctgatgcca	ccrcctggcc	ttcacctctt	99522
ccctgcctcc	tcatcctctg	cag gtg cca Val Pro 150	a gtg ctg aa o Val Leu Ly	ag ccc atg o /s Pro Met A 155	gat ctg atg Asp Leu Met	99575
gtg gag gtg Val Glu Va 160	g age eet eg L Ser Pro An 16	gg agg atc 1 rg Arg Ile 1 55	ttt gcc aat Phe Ala Asn 170	ggc cac acc Gly His Thi	c tac cac r Tyr His 175	99623
atc aac tco Ile Asn Sei	c atc tcc gt r Ile Ser Va 180	to aac agt o al Asn Ser i	gac tgc gag Asp Cys Glu 185	acc tac ato Thr Tyr Met	g tcg gcg 5 Ser Ala 190	99671
gat gac cto Asp Asp Lev	g cgc atc aa 1 Arg Ile As 195	ac ctc tgg o sn Leu Trp I :	cac ctg gcc His Leu Ala 200	atc acc gao Ile Thr Asy 205	c agg agc p Arg Ser 5	99719

¹⁷⁸

US 7,442,519 B2

179

ttc a gtato Phe	cettea etgio	ggeetn ggeea	agtgee teeca	acgggc agagt	tagett	99773
ccgttgggtg	gtgggtttgg	tttgattggc	agacagctgg	tttggggatg	gctgcattgt	99833
ttaacttctt	cagtgaggca	cctctggctc	ctagtatgcg	tgtgaggccc	agatacaaaa	99893
tcatgtcacg	tctgtttctg	aaaaccgcaa	agtcgtggtt	gctgagcatt	gcacccatcg	99953
cctcctccag	catggccatg	atcccctcat	cctagggcct	cacaagggggc	caggaaggag	100013
acagagttca	gggttcagct	gctctggacg	agggactgct	ggccttgctc	agcgtccact	100073
gaaggcgcct	cggggccctc	cccactggga	cccaaggcag	gctgtgttag	cataggagga	100133
ccagcactgg	ggccccggcc	agggcttcgg	gtgacaacca	gggtgtcaga	agcccagctg	100193
ggttggggtc	ctgagggccc	cctgctcggt	gttctcctgt	gtcagggcaa	gctaggggaa	100253
gcagcagcat	tgacgattcc	cgccgactgc	tgggaagaga	gctggtgatg	acatgagcac	100313
cagcctgcag	gcagggcgag	gcttggcctg	ccgggggggct	ggtgggcggg	caggcaggtt	100373
gctgtgatgt	cactattctg	catacaacca	atgataataa	taattataat	aacacacagt	100433
gagactctgt	gtgccaggct	ctgtgactaa	catcaacaag	cattcatttt	aactcatttc	100493
accttcacaa	caaccctatg	aggtaggtac	tattctaagt	ctcctttaca	gatgaggaaa	100553
ctgagtcaca	gagcactcaa	gttaacttgc	tcaaagctca	cagccagcaa	gtgtcaaagc	100613
tgggcctgaa	acccaggccc	tcaggcccca	gagtccccgc	ttctaacctc	cataccacac	100673
tgccctttgt	ggaggatgcc	acccaggtgt	gtcttggaag	gggtgggaag	accctcctga	100733
gagcetecat	gcaactggat	ggcctcccga	ctccaggcag	cctgggcacc	cagcagtggt	100793
caggagtggg	ctgtgtccct	cggagcagta	gaagccggga	tagctgtggg	gagcagggga	100853
ggcagggagc	attccaggaa	gggtgaaaga	gagtaacaaa	tggcttttgt	ggtctgagat	100913
ccaggcacag	ccagagaccc	ctgggcaggg	agacccttgg	aaaacagcgg	gaagggaaca	100973
gagcaaagcg	ttggatgtcc	cctgagccag	ccagagggtg	cggggcacat	gtgtgggctt	101033
cggaggcaga	aagtctgttt	gggtctgact	gccaccttca	agctttgtga	ccctgggtga	101093
gtacactcac	ctccctctcc	gagactccgt	cttttcaatc	atgcctcctc	atagacctgt	101153
ggggtgccgt	cagtgagccc	ctatgtgtga	tgtgccgaac	cctaagtcag	cacttggtgg	101213
gtatcaggaa	gcatcagcat	ctctctccct	tctcttgtcc	caaaggcatg	gagtgcccag	101273
agctgggagg	ctggattggg	ccagccagga	aggttccagg	aaggattggg	acctgagctg	101333
ctttgaaggc	ttgaagctca	gatttctctg	gacatagagg	gctgggctgg	acatctgtct	101393
gaccetecae	tgaagccgaa	aggacatcgg	gccccaccag	tccacagtgc	tcatagcagc	101453
agttggttag	actctttctg	ctgcacgagc	atgtttgatg	tggataactg	taagagagct	101513
gcgggccagg	tggcttcagg	ggctggagca	tcgtgggtga	tggctctctg	ggctgattgc	101573
ctctgctgtc	ttctgtgttt	caatctcagg	tgccagtagt	tggggcccca	ccctcccaga	101633
ataaagtcca	ggagaaacga	gaccagttct	ctctgaactg	tcccactagg	accctaaatg	101693
gcatcttgtg	ggctctaatt	gggggtgaat	gccttgttgt	gattggccag	gccggactcc	101753
tgtacctctc	cctggtgctg	gagggagtca	geteegeeee	caacccctgg	atgtggggga	101813
ggggcggtct	cctagcagga	gctccaggtc	tgcaaatggg	gagggtgtgg	ggctcactga	101873
gcggcctgga	ccgtaccgta	cagtttacaa	atcagcctgc	cgttcgttgt	ctcacttggt	101933
gctcagagac	agtggtaatt	tgatgatcac	cccatttcac	agatgaggaa	acggaggctg	101993
ggggagatga	gggactggcc	cagagtcccc	agttggcagg	ggcagagcca	gageteatge	102053

-continued

togggootec atgootggto cagggotttt goootggoot oggootgcoo cotgoagcoo 102113 tgggacagtg gcagccaccc ttctcgagca cctgcttcct tcctgccgga cttgggtggg 102173 gatggtaatt getgeteggt ttteetgtet gggetgetgt gaggatteeg tgacactatg 102233 gatgccgaaa ccctttctaa agaaccataa agccctagag tatggaaggg atgctgcttc 102293 atttcattta ttcaaccatt cattccccac gcctttctac tcccaggccc acactgagcc 102353 ctagggacat ggggatgaat gggagaaact caaccettee etggaggget caggggetge 102413 tggggggacac agccccgcca tggcagtgga agtgaggggag tcatccttgc tgtagcccag 102473 ggtctggaca agctgctgtg ggggccgcca aggaagccag agaaggaatt tcggtaggaa 102533 gctccctggg ctcgaggagg ctgcctgagg gcatgggtgt gcaggaggcg gatgcatgag 102593 gaggcagaag gtgccggagc tgtggcactg tggatggtgc aggcaggggg ctttctcttg 102653 gggtaggggc cccgaatgcc agtcattcac aaaacccccc acagctgtgc ctgcctccac 102713 atgccacgtg tgcttccctt tacttttccc atttaaaaaa aattgttttc tttaagtcaa 102773 gttgctttat ttttgccgaa gtaattttct tttgaaaggg aattgaattt caccatgata 102833 agttaaagta tcacatacca taaataggag gtagcctcaa ccataacggc tgtgcacaca 102893 aaatggtggg aataaaatac aggctcagcc ctgtctgttg gaactttctg tggtagtaga 102953 ctgcttcgtc tgcactcatg gggcggcagc caccagcccc atgtgcctgc tgagtgccta 103013 aaacgtggct tggtgactga ggagcgacat cgttaatttg atttagttcc agttaatcat 103073 acttcaaacg aaatagccac atgtgggccag tggctactga acaaggacgc tgcagcctct 103133 ctccaggttg cccttagacc ctgaagctgg ttctctctga aaagatggag gtaaacatgt 103193 getteaatgt taaggggggag agtgeaaaae agagaeatee ceetteatte ateagaagga 103253 ttgaateetg teteeeegte tgeatetata ttaeattaet ggaggetgtg eegaetteee 103313 acctgcctgc ttccagggaa cgggaaacta tgaagctatt gatgtactgt aaacaggggc 103373 gtgtcactag ccagctttgg aggtgtgtat gtcgtgggtg tgtgtcgtgg gtggattgga 103433 ttccagcaga caaggctggc ggcttgggaa ccagcaagga gacccgggga gagagagtga 103493 gaggcagggc cagagcgtgg ccacgggtgg gaggcggtgg aggaatgaga ttgtaaggat 103553 ggaggtgtca tagatttgga ttgtatcata accagttttg gatcggggtg gccacaagac 103613 attcagacag gttggctgta aagaagaaaa gggggttggt tcatcccagg actgcaaagt 103673 cctccctggc cgttaccgtg agecttgect cctgtcccgt cccgaacaca cagattgtgc 103733 cctgtccgca tgttgcagag cacaccattt accagcaggt atttattaag cacctactgt $103\,793$ gtgccagccc tcttgggtga tgctggaact agataaagat tctgcctcca ggagtggaca 103853 cgtgataaac cattggtaaa atacccggca ttggagcagg tggtccgtgg gtgctacagg 103913 gagteggtgg eccagecage geageegtgt acatteett ecagecaege etgetgetgg 103973 ctgcaggcct caggtcggtg gagggtaagc caggggtgtg gtttttgcca agtgaggatg 104033 tagacacgga gctgatggtg tgtgcaagag agtgaaaata atgattattg accaaagaat 104093 ctgagccagg tgagggacag tgacaaggga ggagtgtcag cagatcgggg gcccctgtgg 104153 atcctgggaa catccctggc cgcacaccct gccgtgtaac tcagtgtcag atctctgtgt 104213 aactteecat tetgtgaaaa tgattattaa tteateaaaa cataaageae eetggeetta 104273 gtgatagagg agtgtgtgtc tatagcatga acaagattct gagctgggct tgaggcagcc 104333 ctgatagggc aacttaggca tttggcagga gttgagtgga gtctcccaggg gcacatggtg 104393 gccatggaaa cctccccgat tggatctatt cattggggaa cctcagtgca cctggtgctc 104453

-continued

cccatggcct gttgccgctt ggctccccat ggggtgctgc tgcagtgaca agacacagat 104513 ccagggetca caccacagag agaageetta ettggeagag aaagtgtgag gaetgtggge 104573 tgcaggtgct gcgatgagga ctgatagcag ccgagtaatg agaggaggcg tttcatttct 104633 gacatgggag gaggccagaa aggcagctga gaccccatgc ggagctggga attgctctga 104693 atgtttgaga taccttctaa gcaagtctca gtggggtgga ttctggctgt cagagggtga 104753 cagttetgat gagteetgae aagaaaaace cagggteagg aggeetgtgt eegegeagag 104813 ccaggggaag gcttgggctg gacttggggt ttgcatcctt ctgacccctg ctctctgggg 104873 teeteacteg geoegatgae actgtteagt eeteegtgee eactggaggt ttteeaceat 104933 gtcgcatctc ctaagtccaa tcactaacac ttcccgtctc agcaaaatgg acttttagta 104993 accatatcaa gagaaaggaa aatgtttctt agtaaaggag aaaaagaggg cattgctttg 105053 actattggac aatgagaaag gtgactcaga ggacatctct gctggaggga gggagcctgg 105113 tgatactgag gctctgtgac ctgtctcggt gtagtcacca aggttcaagg aagaggagcc 105173 ctcccagect cctccctctc tctcacectc agaatggaaa gaggtgeeca geecteteta 105233 ctctcccccag acacttgcct gaatcccgcc ctgtcctgcc cagagccttc tgcacagctg 105293 tgaaattggc tcatcggaac ctctggtctg accatgtcag ccccccttaa aactctcacg 105353 ggttcccctc tggcttctgg aggaagcctg agcccctcca cagtgccctg tgcctttggt 105413 gaccagecee tgeceacete tegggteaca etggeteact cetteagetg etgggteeet 105473 ggcatggggc agggtggggt ggagcactgc catccgccat cccttctcct gaccatgcca 105533 tetgeetett tggeetgget gaeteetgtt tgeeeaettg eageatetea eageeeatta 105593 tetgggacag cetetgacet gtecetgeea cacceteet aggetggtea gageceetet 105653 aageetgegg eteettgget geeeeeggte acaetgagtg ttttgttact gtgacageet 105713 cctccatttt atggtggaag ccctgagatt aggaacccag ggtgaggcct ctctgcatcc 105773 cctgctccac ataggacttg gcgataggag gtacttatga acggttgtag gtggagtggg 105833 ctggaagttc accacttcca tgtggtctta ggatacagac acctcctttt tgatctgggc 105893 gcctggggaa tcagagaccc cagaccctaa agtgcaggag aaggagcccg ggctttgggc 105953 cctggcgggc ctgggctgag acccattgct cagcctgctg ggccatcagc ttccctgaat 106013 ataaaatcag aaaattccct tttataagga tatttgtaag gaataaagaa atctttcaca 106073 taaagageet ggtgeetaat tggageeeag caagaggatg gtttattttg tetettaaac 106133 aacageeett caaacattta agattggtte teataaaate eetgeatete tgatggttaa 106193 aactccgttt tccacggtgc agtttcaacg tctgtttaag caacctctcg cgtcctttaa 106253 taccaacatt ttgagactgt taacacagca ctgggtgatt tttcttgagt ctgatgcatc 106313 ttaaaggtaa caaattgcac aggaggtctc agcggatgga cctctgcttt attttagca 106373 cccagagaat ttaaaagacg gttcgattga tttttctctc ccttagtgat ttctcacggt 106433 gggaactggc atcacaccaa gcctcggcct ggagaatttc taattcccat ttacagagca 106493 ggtccgcacg gccaggtggg ctggaggggg gtgcagccat tcaccgcagg aggctcagaa 106553 ccttcatcag cccatgcctg cctgaagact cagcttgtct tctgtgcaga gaacaaagga 106613 gggagcagac acagteette tgeatgeaga etetgtgetg ggeeaaggga eeetgageee 106673 aggetetace cetgeetetg ceaetgacee tgateagtea eteagtettt etgeaceeee 106733 tttatcccat gggagtgtgt ctcctttacc aggagctgta aaggtggaat ggccgatgag 106793 tatggggcct ggtgccgtgt agacaagcaa ccctcaccag cacatgaccc actgtcgggt 106853

-continued

accttacagg ccacctcttc ttcctgccct tggtgctaat ttacagagaa ggaaactggg 106913 atgccctgct cagaaatgct ctgttcacgg catgtcagat acataccact gatggctggg 106973 agtetggace cetgggttet tactccaget etgecactae etgeceaegg ttetgtgeat 107033 tcattggttg attcagcagc attggccgag agtcttctct gtgttgagca ttggacttgg 107093 tgctagggaa gcagacaggg tctctgccag ggcctgcgag tacagttgta tgggttgtct 107153 gctgcccaaa agaggtgatg atccaagcca agcaccttgg gaagaaggga cttttttgtt 107213 tttcagttct gcaaggaaga gctgtctttt cataattggc acaaaggcac tttctgagtg 107273 aatggggatc ctgatgctat ccaggtgaac tttctaggtg agcaaaaaga tagtcttctt 107333 cttgctcaag cctcgatgag tcctgtgatc ccatcgtcca aatgcaccca gagcccacct 107393 gcctgtctgc ccccagcatg tgtttaggcc actgtctcac tctgatcatg atggtgacct 107453 gactggcctc ccttcttagg tctaggagcc agactgccag ggctcagacc ttggccccaa 107513 gacataggga ctccgcggcc tcgggcagct cacttgggtt ctctgtgcct cagctcctca 107573 cctgtaaagc gaggaaaagc ccctgctgac accatacggc tgcttgagga ctgggtgcta 107633 cgatgacatc tgggaagcct ttagggcagt gcctggcaaa tcaccgagct gcagcatcat 107693 tgetteatta getgtgttte eecaggtgte teettacagt etgtteteet acaacatgag 107753 aaaaaaaaaa acgacaagat catgtcactc cttgctcaga acccttcagc aacttctccc 107813 aactggaagt aactccgccc ctttctctgg cctccaaggc cctgcaggag ctggccctgg 107873 cccctccctg gcccacttcc tcctctcc ctttgctccc tgggctcagc gttcccggcc 107933 ccctgctctt caccatattt ccagccatct cctgcagcag agccattttg cactggctgt 107993 tecetecace tataaagagttt etceateete ateeacteag tagacaeett ettaaagagg 108053 cnttccttga ccagtctgtc ggaactagtc catcccctcc atgactccct cgagcccctt 108113 ccctagaggc ttggcctcta cctcgttccc tgttcatttc ccgcctctcc ctcctggact 108173 ggcagettet tgagageagg gacettgttt gatetaeetg gaataatgee tggteeagag 108233 tagatgctca aataatggaa ctagtgtaat acagtgagat gggtgttagg ataaggtggg 108293 gaggaccccg gcctccttag aaagtccttg atggaaaggc attgacactg aggcttctgt 108353 totggacotg coacgtggtc coctggcagt ttgcttcacc ttoctggaca coagtttccc 108413 cttctcttgg ctggactggt gtcctgaaac tggctttcat ttagacagtt gggctatcct 108473 tgccgggtct cccttgatct ggctatgtgt gaccttgtgt cttgccagct gctagcatga 108533 cacaaggtca cacacagctt gtaacagcca ggtgtgcaca tetetteeca aatecatgtt 108593 catggacatc tctttggcag cttgaatttg gccatggtgg tagtatttct ttctttttct 108653 tttcttttt tttttgagat ggagactcac tgtgtcgccc aggctgaagt gcagtggctc 108713 aatctcggct cactgcaatc tctgcctccc aggttcacgc cattctcctg cctcagcctc 108773 ctgagtagct ggggctacag gtgcccgcca ccacgcccgg ctaatttttt gtattttta 108833 gtagagacgg ggtttcaccg tgttagccag gatggtctcg atctcctgac ctcgtgatcc 108893 tggtagtatt tctacagata tctacaaaaca ctacaaaatc aatctctccc ctccccagaa 109013 gagagggtat tgttcaagtt accagcacac aactgctctg gggccttcac aaggccaggc 109073 agttggtcag tcagecteca neatgactga gggetteetg egtgecatgg enetgteeat 109133 ggtgctgacc ccgttgtgag ccattgcgtc gaggtcagca tctccacctc ccacccact 109193 gtcactactt gctgtgtcac acggtgttct gagcacgctg ccgatgttaa ctggttgaat 109253

186

-continued

cctcccaaca acactatgtg gtaggcgtta ttaatatccc ccttttacag atgaggaaac 109313 aaagccacag taagtttcag taatctaccc aaagtcaaag gggaaagggg gtgcagggga 109373 aagggggggg cagggctggg attcagattt aagctgtctg gatgcagaac catgcactta 109433 actgtcatgc tacaccgcct ctcagtcatg atggtaacaa ccccagttgc agcctgcctg 109493 gtgctggggt gaacaaatgc aagatgccgc tgttgcattt cagtctcatg accactcgcc 109553 aggtgggggc tgtcactgtc ccaactcagc agaagtggag atgggcactg agaggtgggc 109613 tecettgeee aaggeeeete tgageeaagt gteettetga tggeetgeey agetttgttg 109673 agacageegt atttettggt tettgettta ggteetgtgg aaagacagge ceaattgeag 109733 gatagatggg aggttgtttt gctatgagca tggctgtcag tagctgtatg gcagtcctca 109793 cgtttgccct gcaggtggca tggtagaggt gtgcgaccct ggcctgcctc ctgtcccttc 109853 ttgacagacc tccctggcat ttctagaact cgctccctgt taaaatcctc ttgaccccag 109913 gcctgagccc cagacetttg gcctgettee etetteagga tgggteetge caeteeeage 109973 cttatgtcag gacccctcca ccctcatagc tcatactcca tcaccctgga gcctctccct 110033 ccctcttaga actcctctcc ttttggacag agcctatgct ccctctgagt tctgctggcg 110093 ccgcatcete tecageetgg eteteaceet etetgeetee eteceteatg eteageeace 110153 cageetetea caeetetgag eettgeacte eeeetettea aceeetetae eeetteaa 110213 acacacacac cocaaacatt ttoccaccca ctagetetge egggataatt cetaeteace 110273 atgggetteg gagggeeett ecetgaetet geaceatete agggeetegt tataaatete 110333 tgacatgage acctgtgtet etettaggee ategategat catggageta aatetgette 110393 cctgccaggc tgggagcccc agcagtcagg gcggggtctg gtctgctcct tctcagtgct 110453 gtgggggtac agctgcctgg gtgcacatcc cagctctgtc caaccttgga ttccccctct 110513 cagttettgg aaaccaagge atgecattea ceacagaeee teetagteet eecagggggt 110573 gacaagcact gtaccttttg catcctgctt agctgtatgc ttttttccca gagggagaga 110633 aagactctgg gagttctaat ttaactaaat tcaatttaac tgtagccatg tgctgggtct 110693 tttgacatat gtcatctggt gaaateetea ttacageeet geaaageaga agttateaae 110753 ccattctaca gataagaaaa gcagagcaca gaaaggctga gttttcaaga gatcacacag 110813 atgttaggca gtggggctgg actttcaagc tctgggtttt gtgattcaga agtcaggact 110873 ttetteettt tteatagett ggttgattee tttetaagea ettatgaate acetgaggtg 110933 ggctatggca gagctgtgaa gatggactca ccacacagag agcgtgcagg gctcagtggc 110993 ttgtgcagtg agcggtgaaa tagaacagca cettteetae ggtteeagca agetgggtte 111053 tgctccctga gaggaattgc ataatcatta aggtgttccg agtggagaag gaaaggaggc 111113 tgttacagge tagattgtgt etcetecate eccatteata tgttgaaace etaacteeca 111173 gaacctcaga atgagactat atttggagac agggccttaa aggggtaatt aagttaaaat 111233 aaggctggca gggtagaccc taatccaatc tgactggtgt tcttataaga agaggtgatt 111293 agaaccccaca gagagatgtt aagatgcagg aataagaatg tgaggacaca aggagaaggc 111353 agtcaccttc aagccgagga gacggggctc agaaggagcc agccctgcta acaccgtgtt 111413 attggacttc ggacctccat agctatgaga aacacatact gtttaagcca ctcggtctgt 111473 agcattttgc tatggcagcc aggaatcctc ctgtaggatc tgacatgcct tggtctgagt 111533 gcttgcagct catgtttgta gtcaggtcat cttttggaga tttgctgaaa aagcagtttt 111593 tcaagatgaa ctccatgtgt gggaggcett ctagggcace teegeateeg gegteeetgg 111653

-continued

tgagetcatg cgtgagteet tttgtggete ttggeaggge tgeetecate ectaacteeg 111713 gtggetgett ggttgecatg gegacagett eetceateet gagageagge teetgeegag 111773 acatetggat gageeteact gtgeteggtg aaateggtgg ageeeaagge tgeageeete 111833 tttctcatqq atccctqctc tqcacccagc atcccccttq ctqaqqacac aaqccagtcc 111893 agecageetg geateagggt eettggggtg eccaeceeat ggggaaaget geagatggtg 111953 tggaaatgcg tttactccag aacagtggga ggaacgctga ctggaagtta gggagccagg 112013 atttcagtcc ttactctgcc agggctctgc atgtgggccct gggcaaatca ctgcccaccc 112073 tgggcetece tetecteetg ggtggggttg geacatggge agtteetgee tgeaggggtg 112133 gactatttga ctggtctgtg ctaggcatgg ctctctgggg ttattaccat gtctcaaagt 112193 tcaattactt gctgtggttt ttagattagc ttgtcgtggg atctccactg gggcccatca 112253 tgaggtgaac cagtatttgc acactgcttt tggcgtttgt ggagtgcttt gcatacttgc 112313 ttetetettg ageteettge cagaaceaae cagtgatget tetteattte acataeetgg 112373 ctatatttcc agtcagcaga gatttgccct gtagaggagc gagcagccct tggttcctgt 112433 gcccacctta caggagagga cgaccggggg gcagactggt gcagcttagc tgccatggct 112493 cctggaggtg cagecacete etccageete acgtgggget ggtgtggetg agetegegtg 112553 gctgggctcc aggagagcag gctgtgcctc tggtagcagg agatgaagga gtttctttt 112613 ttttttttta caggtgaaat aaattttaat gataaaatta ttttagtaat aaaaatctta 112673 ataataaaat gtatttaact aaatataccc gaaatattat catttcaaca ttggcactag 112733 ctacatttca agtgcttttt ttgttattta agttctaggg tacatgtgca caatgtgcat 112793 gtttgttaca taggtataca tgtgccatgt tggtgtgctg cacccatcaa ctcgtcattt 112853 acattaggta tttctcctaa tgctatccct cctccattcc cccactccat gacaggtcct 112913 ggtgtgtgat gttccccgcc ctgtgtccga gtgttctcat tgttcacttc ccacctatga 112973 gtgagaacat gtggagtttg attttctgtc cttggaatag tttgctcaga attatggttt 113033 ccagetteat ceatgteett acaaaggaca tgaacteate etttttatg getgeatagt 113093 attcaatggt gtatatgtgc cacattttct taatccagtc tatcattgat ggacatttgg 113153 gttggttcca agtctttgct attgtgaata gcgccgcaat aaacatacat gtgcatgtgt 113213 ctttatagta gcatgattta taatcctttg ggtatatacc cagtaatggg attgctgggt 113273 caaatggtat ttctagttct agatccttga ggaatcacca cactgttttc cacaatggtt 113333 gaactagttt atagteecae caacagtgta aaagegttee tattteteea cateetetee 113393 agcacctgtt gtttcctgac tttttaatga tcgccattgt agctggtttg agatggtatc 113453 tcattgtggt tttgatttgc atttctctga tgaccagtga tgatagcatc ttttcatgtg 113513 tetgttgget geataaatgt ettettttga aaagtatete tteatateet ttgeeceactt 113573 tttgatggtg ttgtttgatt tttttttgt aaatttgttt aagttetttg tagattetgg 113633 atattageee ttteteagat gagtagattg caaaaatttt eteecattee gtaggttgee 113693 tgtttgctct gatggccatt ttttttttt ttttgctgtg cagaagctct ttagtttaat 113753 tagateceat ttgtetattt tggettttgt tgeeattget tttggtgttt tagteatgaa 113813 gtccttgccc atgcctatgt cctgaatggt attgtctgga tttttttcta tggtttttct 113873 ggttttaggt ctaacattta agtctttact ccatcttgaa ttaatttttg tataaggtgt 113933 aagggaggga tecagtttea getttetaea tatggetage tggtttteee ageaceattt 113993 attaaatagg gaatcotttc cocatttott gtttttgtca ggtttgtcaa agatcagatg 114053

-continued

gttgtagata tgtggtgtta tttctgaggc ctctgttctg ttccattggt ctatatctct 114113 gttttggtac cagtaccatg ctgttttggt tactgtagct ttgtagcata gtttgaagtc 114173 aggtagcgtg atgcctccag ctttgttctt ttgcttagga ttgtcttggg aatgcggggct 114233 cttttttggt tccatatgaa ttttaaagta gttttttcca gttctgtgaa gaaagtcatt 114293 agtagettga tgggggagatg aaggagttte tataaaaaece tetgeatgee egaggaetat 114353 acgggaggee tgtgtggate acaceteetg tgteetegga agggatgget geagaettea 114413 ctcttgggtg gaagaaaccc cgctttgctg actcccccag gtgcaggttc tgagctcaca 114473 ggggtggtct gaacagctgg gggcacccag caccectace cecacecaec agggtgagga 114533 geteettgta etgtggatgg gggaeeggga taggeeeaee tgteeeteea gggetgeaet 114593 tgctccatct gacattgaac ctgggcctgt gtgcagtaaa gaagggaggc tgtgtgaccc 114653 aagcaagact gcatcgcctc ctgtaggcct ggggctgtgg gcggcagggc aaatccactg 114713 tgcgtggggc tttctgtgca catagccatc ctttgtttag ctagcacctc tggctggttt 114773 tetgttacaa cagcagagtt gagteettge agtttegata gaaateetae gtetggetag 114833 gcctgaaata ttgactctct gactctttgc agaaaacact tgccaacacc tgtgaatgtt 114893 ggcactggaa ggaaaagggg gtccatttca agacatgggg ggctgaagcc agacaactgc 114953 caggtecceg ggecceteca gggacetgac ageceeteet tgeccageac etegetgtee 115013 ctgtctcatg cccatgactg cagctgtgac tttctcctcc tgctccctga gcctcagatg 115073 acacagagtc cagagaggct gagactgacc cgaggtgcca cagcagatga aagggggatt 115133 tgaggetggg acccagggte ceaectgaea geettteeet geecageaee tegetgteee 115193 tgtctcatgc ccatgactgc agctgtgact ttctcctcct gctccctgag cctcagaaga 115253 cacagagtcc agagaggctg agactggccc gaggtgccac agcagatgaa agggggattt 115313 gaggetggga cccagggtcc cacetgacag cccetecetg cccageacet cacetgtecet 115373 gteteatgee ggtggetgea getgtgaett teteeteetg eteeetgage eteagatgae 115433 gcagagtcca gagaggctga gaggctagcc cgaggctcca cagcagatga aaggtggatt 115493 tgaggetgga acceagggte eetggeagee aggeagaaca ggeegeagae etteteagea 115553 getcacetae agagegeeca etetgageet ggteetgtte teagegette acgtggaeta 115613 ccttacccca tcctcatctg ggagctgcag agtgcaattg cccttctgaa gttggggaaa 115673 ccgaggcaca gagaggttca gaaacttgcc caaagacaca tagctagcaa gcggcagagc 115733 tggagccacc cccagatggt cagggggcaa ggattgcact ctggagccac ggagggggta 115793 tggaagactc tggagcccaa ctgagtccca ggcctggtct gaccettetc teettgteec 115853 tgagcaattg gcttctcctc gccgagcctc tgtttccaat gtagaagggg cacacctcac 115913 tcatggaagg cagaggggat tggatgagct acagatgcga agctagtccc acccagccag 115973 ccggccgcac gtgttagctg cgacaggtac taggtgcttg gctggggttt gggggatata 116033 aacagtagaa caactttgcc tagtcaggtg aatgacacaa gcaggtcagc cagtatttgc 116093 aacctaaaaa gatctcgctc atgggccttg gagcaggtgc agtggagacc agaggaagca 116153 gtgtaggaac aagttettee tgatggaett eactggaeee geageaegtg tgaegtgett 116213 cccagaccac agtgctcttt ttttttttt ttttttttc caggcagagt ctcactctgt 116273 cacccaggee ggaataegtg geaegatete ageteaetge aacetetgee teecaggtte 116333 aagtgattet cetgeeteag eeteetgagt agetgggatt acaggtgeee actaecaege 116393 ccagctaatt tttttgtat ttttagtaga gtcagggttt catcatgttg gctaggctgg 116453

-continued

teteaaaete etgaeeteaa gtgateetee tgeeteagee teeeaaagtg etgggattae 116513 aggcgtgaac caccatgeec ggeeageaca geactettge gtttgtaceg cageageaat 116573 actttcaaca cgctgcaggg ggacggctcc tttgaatggc ctttgtcagt gacgatccac 116633 teetaaaaaa eeeetaacae eetggggeet eettgaceat geetetttt tttttttt 116693 tgtgctttct gtggctttct tttttctttt ttttattata ctttaagttt tagggtacat 116753 gtgcacattg tacaggttag ttacatatgt atacatgtgc catgctggtg tgctgcaccc 116813 actaactcgt catctagcat taggtctatc tcccaatgct atccctcccc gggagttgaa 116873 caatgagatc acatggacac aggaagggga atatcacact ctggggactg ttgtgaccat 116933 geetettate teaactttaa eagetgette eeettgagat ggtttgeaac eteetgeeee 116993 ctgagccctg atcagagggg accacaatgg gctgattcat tcattcagtc agcaactact 117053 tactaaacac ctactgtgtg ccaggcactg aaggtgcagc agcaatcctg acaggcaggt 117113 ccctgccctc gctggggaca gatagcaaca aacaggccaa taatgtaata agcagtgatt 117173 aatgettgea aaaagagaaa geagaaaate tataattaaa caaggtaaaa taaatgttta 117233 ttttgagggg cagaggagat ttacaggagg ttactttgtt aaggagcatt gaggcaggga 117293 tetgaaggge atgagtgtga gggeeetgea gtgggaatgt geeeaacaeg acetgggttg 117353 attggacacc tcctccgtgc gcacaacctg cagcttcttc taaggggcaa tggggcctgg 117413 ctgtgggggg ctgtgggcgg aggaacccaa gctggattcg caatcaygca cccgggctca 117473 ggtatcaget etgetgetca etgactgtgg aaccetetga geetgtetet ggacetaagg 117533 aaagcaaagt ggagcaccag ctgccttctg caccctgtta gtgtgtgttg gggtgggggt 117593 gggggggcaaa tgaccgtgaa cagagtttct aaattggaag ggctgttccc agggaaaggt 117653 tcagagtcgt ctccccatct aatatttgcc cacggatcag tcatgcagcg aacatgtccc 117713 aggcaccagc tctgggcagg tcgtgtgtga ggggtgtggg ggcacggagg tgaatcagga 117773 ggtggagetg geeetggage egaetgeagg gegggaeaga tggteacata cacageacaa 117833 tggtcctgag gatgagcaga cgggtaaggc cttgccttgg tgttcaggca gagactagga 117893 atgctccggc aacttcgaac tgctggatat ggctggcggg tatggaggga gaagcggcca 117953 aggtgagact gaggaagagc aggcaggggc agcacgctgg gcaagtccga cctcctcggt 118013 ggggtgggag aggccaacac gcagggtggt ggggagtccc gcagctgttt gaggaagttc 118073 actctagetg agettgggea eggaceeea tggggaeaga gatgetgatg geetgggetg 118133 aggggcatag cgcaaggggt tcagatggag gaaccccagg acctgaaggc tggctggaca 118193 agggaagggc ttataatgag gaataagccc cctgatgcct ggcttggtgc cccaaggctg 118253 gggatgagga aatgggagtt ctagagaagg agcggtgtgg gggctgttgg tgtgggggggc 118313 tgtcggtgtg gggggggctgt cggtgttggg ggctgtcggt gttggggggct gtcggtgtgg 118373 ggggggctgtc ggtgtggggc ggctgtcggt gttggggggct gtcggtgttg gggggctctcg 118433 gcgtggaggc gctgttgtct taacgccctt tcgttctaac cgcccttctg ttttcaccgc 118493 cctgggctct aacaccccta tctctccaac cccctctgga tcccccccc cactcttttc 118553 ctcgcccccc taggcaacgc cttcttaatg tgcccaaagc ccccggcccc cctgcttggt 118613 tececaecte tttttatgag teatatetta ttetettete tecaaecete tetttetttt 118673 ttttetetge eteceteeet eetecteet tetettette teteteett 118733 ctcctttttt ttcccttccc ctttctccct ctatctcttt tttttccttc tttctttttc 118853

-continued

tetteeetet teettette ttettttet eettttteee etettinttt etatetett 118913 etetetet tattattet teteteett eeteeteet teettett eeteeatete 118973 teetteteet ateeetetet etetteteea tettettete attettgget nnnnnnnnn 119033 nnnnnnnnn nnnnnnnna cnnnnnncn ggcgtaggtg gtagatagtt cttaggtcag 119153 tcgcatgtac tagcggtggt gtctagctgg tcgtggttgt gtcggaggga ggcgtcgtag 119213 atagtgttat gtatacgagg tcgaggtcgt cggtgctggt aggtgcgatg ttcgtgctcg 119273 ttgtgctagg gatcaagatg tattagtggt ctactggtgg gcggtagtac tagaggtgtc 119333 gcacggatgt gggttcgtgg tggatttgtg agaatgagac tggtgtgtgg cgggagttgg 119393 ttaagttgtg gggtgtgtaa tggataaggc gtctggctgt aggagtttgt gtgtcggttg 119453 cgtggggggg tgtctggttg aggggggggg ctgtgcgtgt gtcagggggta gctgtggttt 119513 gtgtgggggt cagttetgtg tggggtgggt tgtettgttt tgtgggtgat etgtgeggta 119573 atagggggtg tgttgggttt tggtggactg ttggagtgga ggggcgtggt tggtgtgtgt 119633 ggggggcttga gtgtatgggg gggcgtttgc tgttggggat ctgtcggttt gtgggactgt 119693 tgatgctgtg gagtgtacgg tgtgttggtg cacttggtgt tgggggggtg cctgtatggg 119753 ggggttgttg ggtttttggg gtctgatgcg tgttgggggc tgttggtgtg gggggtcggt 119813 cggtgtgaag ggctgtcagt ttggggggtc tgtcggtgtg gggcggctgt cggtttgggg 119873 qqqccqtcqq tqtqqqqqqc tqtcactqtq qqqqqqctqt tqqtqtqq qqctqtcqqt 119933 gtggggggct gtcggtgtgg ggggttgttg gtgtgggggg gctgttgggt gttgggggct 119993 gtcgggtgtt gggggctgtt ggtgtggggg ggctgtcggt gtggagggct gtcggtgtgg 120053 ggggggctgtc agtgtggggg ctgttggttg gggggctgtc agtgttgggg ggctgtcggt 120113 gttggggtgc tgtcagtatg ggaaggctgt tgggtgttgg gggctgtcgg tgtgggggga 120173 ctgtcggtgt tggggggctg tcggtggctg cccatagcac tggcattgcg tctgctctta 120233 tttcccaact cccaggaagc accttgggtg ggttagtgtc ctgtggctgc tgtggcaaat 120293 tgccataacc ttcatggctt caaaatacag atatattctc accgtcctgg gggccacaag 120353 ttctcaatcc aggtgttggc agggccgtgc tctctctgaa ggttctaggg gaggaggctt 120413 cettgtetee tecageteeg gggeteeaga tgtteetgta gecategete ceatetetge 120473 ctttgtctcc acatggcctt ctcctctggt gtctcctctt ctgtctctta gaatgtcact 120533 $\,$ ctacatetge aaagaeeett tteeeaaatg agateaeaet eeacagtete tggggateag 120653 gatgttatgg acacatgcta tgctgatgta tttgtggggg ccattattca acccactgca 120713 gtggagaaaa atagtctgtg ctcagttgag gcatatggga ttgaagagcg attttacctt 120773 ctctcctttt catcctctct gcataacttg ctcctctctc tggaattcct acctgtgtct 120833 gacaaacttt tcttgcaggg aaaatgactc ttagatgcta gagtgtgatt ggaagggaaa 120893 caaatccccac cagacagttg gagtggaatt agatgggaaa acagaagatg aataattcaa 120953 gcagctttgc caggggaaag gggactctta aatgagccta attatgcttg ttccccaaggg 121013 aggccagtcc tgaaatgaac cttgtgaagc agtttttcaa gcaggattta ggcgggtatc 121073 atgaagetgg ggtggggeea eetgeggtta gteetggaaa ggaaagggee caggeeetea 121133 ttttgcagat ggggaaagca aggcttgcag aatggaaatg atgttccagt aacagccaag 121193 accagacgcc cagcoggggg ccccgagtga cagccaagac cagacgccca gccggggggcc 121253

196

-continued

ctcagettet gacetggtge tggteetgee taagttaaag ceaeegagtg tggteaetgg 121313 gccaaatgct tcaaagtcta cacacggggg agggcatggt gtggggcaga aagctgtgtt 121373 cacqgtaget gagtttgggc ataatteteg tgeteeggag getteteeea cagetaette 121433 ccttgtcagg agtccatctt cagggccctg tgttatgatg gattgaggga gcaccaacag 121493 gggccacccc acttggtaat taatteettt tgtaaaggge tgggetgeag geeegggtag 121553 gtectatgge cacetgagee aaggtettgg agaggeggte geaeggaeea ggtgaeeatg 121613 gacccagece ggtgeceaea eegtgaaggg tgetgtgetg eeeagaggtt etgggeaegg 121673 ctctgggccc tgggattcag aggctcggga ctgcttgcct ccccacggag atcttaccgt 121733 ggggaccetg ttgtggaggg eetgeegeat tggeegtgae agtgattttt eteettetge 121793 agggtgatgt ggatgcaggg cctctgtgtc tcacatggtt gtttcacagc agccaccgta 121853 tccgaagaca gagagaaaga gcaggagaga ttcccctgtg atggctcccc catgggtcct 121913 gacccaggtt tgggagactt tatctcccca aagccaggcc ctcgatccct ttgcctttgg 121973 ggactetgtg tecceageet atacatgggg tgetegattg agtgteegtg ecceteagee 122033 ggccctgggt tgccgtggct cgggtgtgtt tgccacaggg ctacagacct aatggagccc 122093 tetgtcacce agtetggagt geagtggege gateteaget caetgeaace tetgeeteee 122213 cagtcaageg atteteetge etcageetee caagtagetg ggattteagg catgtgeeae 122273 cacgcctggc taatttttt ttattttta tttttagtag agacggggtt ttggtatgtt 122333 ggtcaggetg gtctcgaact cctgagetca ggtgacetge tegeettgae etceeaaagt 122393 getgggatta caggtgtgag etetggtgee tggeeteeta cataetttga aaagttetga 122453 aacatccccca ggtggggaaag gaaagagcgt ttgggtggac actgaacctg tcaggggggt 122513 cacgttttgc agtggtagca aacaacctga aggtctccaa ggcctcaaac acccacttca 122573 cacctcccac tcacgetgca agtgtggeeg tcacaggetg getttggtge gateteattg 122633 cggagggaac agtgtcacag cagaccacgt gctggctctc aaaacttcag cctggaggtg 122693 acatgeetea ettgtetatt eattggeaga ageaaceage etetggeeae tetgggttet 122753 gaaaggccga aggagaggtc tccccttggg agagaacctg gaatgttcag agaaccccct 122813 gggtgtcagc atttgacttc atcccaccga gtcctcctgc acccactgcg ccccatgagt 122873 tataacccca ggaaatacaa cgagaatgag tgtcctgatg acgcaaacag aactcctgtg 122933 ggactcacgt teetgggege ttetgttgee accaageete etgtggettt tgtgtgtete 122993 agggtgtgca gagagaatgt agcccctctc tgccctgcct ctctactgca cattatccat 123053 gggccgtcgc actaatgtgc gtgacatttc atcagtggcc gcactttttc tctggatccc 123113 actttagtga agttcagtaa ggacctgaga gctgctccga gcgggcagcg tgtcctggaa 123173 agccatggga ggcattcggc ctgggagggc tgggctgcca ggtggacgct ggagaaatca 123233 gcatggcagg aggagggctc ttttcttgct tggccttcag tatcattttt cattatttaa 123293 tegetgette ttttcatact ggaaaactgt agttteetgg gaaaceagee aggeagtgat 123353 gccttaactc atttttccct ctctttctat ttttatgtga ttctcagttt gtggttaatg 123413 acgtgcttcc gggaagcaag atttgagcac gagcacagag acccttttag gtgctttctg 123473 actgcacaga tcagccattt ttttccctgg cattttataa accctcgggt ttagagaggt 123533 cagaaaatac tgcttgcttg ctttttttt gacagagtct tgccctgtca ccaggctgga 123593 atataatggt gcgatctcgg ctaactgcaa catccacctc ccaggttcac gtgattcccc 123653

-continued

tgeeteagee teetgattag etgggaetae aggeataege cactaetaat tttttttag 123713 tagagatggg gttttgcaat gttggtcagg cttgtctcca actaatttct ttttgtattt 123773 tagtagagac ggggttttac tgtgttggcc agaatggtct cgatctcctg acctcgtgat 123833 ccgcccgcct cggcctccca aagtgctggg attacaaata ctgctttctt actgagagag 123893 gcagcagctt gggtggagga agagggaggg cagatggatt tcagagtttc agtcagtatt 123953 ttccagatag aaaataataa aaatggaaac tgacattcat tgagctctgc aacgcatcag 124013 gcagtgtgtg aagggctttg cctctgatga tcttcacagc gaagtgataa ggctatactg 124073 ctgactcatt ttacagatga ggaagctgag gcatggatag ctgggaactc actcagggtc 124133 acacagecag gaggtgacag agetgggatt caaacececag acettecaae tecagggete 124193 acatgcacct gaagagtcag agggaacaga ccgtgcaaag ccccatgcag ggccggggag 124253 accggagcct gaggtcattg ctgtgagagg ggagagggcc tttctgtcag ggtgatgggt 124313 gggatetgaa getggaaage eggagagaag etegggggtg eeagteettg eatgeteeaa 124373 gagattetga tetgetgetg ggeageaggg aagggatagg aaaagageag gtgetgggge 124433 cggggaggtt gtgaggctga atccagcctt accaatcaca cctgggccac cccggacgag 124493 ttgctcatct tctctgtgct ctagtgtaac agtcagggat actgcctttg caagcagcaa 124553 agttettgae tetaaacaaa aaatggaeat ttattggete ceacatttag cagtetgggg 124613 ggaatggett caggtgcage ttgatecagg attecaatgg cateaceaga tetttetetg 124673 cactetttee actqtetqee ceaceeteaa qetecaqqqt tteteettqt eetqqeaqea 124733 gatagaaget cettettet acaceaceca geacageagg ggtgaeceaag etgeatecea 124793 gccttttcag tattccaagt cctggggtct ggagagcaca gatcagagcc gaggtggggc 124853 cgacccagaa acccagaaga acctttgccc aaaggagaat ctccatactg tggtcagaag 124913 aaggggagca ggtgccgggg gcaggaaggg gagctcccag atgcccacac actcaattcc 124973 agacacaatt tgaaaaggga ccgggaagac ttgaaatcat tcaccaatag catccactgc 125033 ccagcatgca gtcggcacaa tataaatgct ctttttcttc tgcttggcaa ccaacagggg 125093 aaggaaggca gaggagaggg gctccacagg tcagtgctat gtgtggctgg aactgatgca 125153 ccctcactgg ggtggggtgc aggtgagggg ggccgcaggt caggagggaa gtggtgggtc 125213 cagetteatg ggaacagggg acaggeaeet agaaggggta geeageagge agtteaceat 125273 gcaggtetge ageteagggg gaegeatttt gagggtetea ggaacagaga ggeageteag 125333 acgcgagggt ggacggtttt gcctcgggag aggtgtcaga aacctccggg aaggcggagc 125393 attgagggeg ceettcactg cecetteett gacegeactg ceeecag ac ate gtg 125448 Asn Ile Val 210 gac atc aag ccg gcc aac atg gag gac ctt acg gag gtg atc aca gca 125496 Asp Ile Lys Pro Ala Asn Met Glu Asp Leu Thr Glu Val Ile Thr Ala 215 220 225 tet gag tte cat eeg cae cae tge aac ete tte gte tae age age age 125544 Ser Glu Phe His Pro His His Cys Asn Leu Phe Val Tyr Ser Ser Ser 230 235 240 aag ggc tcc ctg cgg ctc tgc gac atg cgg gca gct gcc ctg tgt gac 125592 Lys Gly Ser Leu Arg Leu Cys Asp Met Arg Ala Ala Ala Leu Cys Asp 245 250 255 aag cat tcc aag c gtaagtgccg gtgcctgggg gtgggggggt gtgcattggg 125645 Lys His Ser Lys 260

200

-continued

caggcgggcg ggtgggatgt cctgtcctgg tgcagctgct gcagggggtgg tgggtgtggg 125705 atgagcatgt cctggactgg ccaaggtggg tgggcccatt gctgcttcag cgctggctgg 125765 tcggggagcc tggtcttgcc acctgctgcc ccccagagtc cctgcacagc caggaacagc 125825 ccagctttta gggttcaggg ctctagggcg agggtcaggg catccagaag gtaaggaggc 125885 accaaactta aatgtcacct cctgtaggaa agcttcccgg cctcctactt tagatctgga 125945 teeteetetg tggeeetgea geeeecaaag etteetett eeaaaactag eeacaeceag 126005 caaacttget gtgggetgee catettetee ggeteettgg ageagggtet gtaacatgte 126065 ccctcatcct agaacccacc acaggectge tgtgggggte ccacaggggt atccgtggag 126125 gtctggggct gaacgagttc caggggacat tttgtgacac agcagccccc agcataacag 126185 ctcacactga acactcactc tgagcccagc ccttaccaag ggctttacct gtgaactcat 126245 cgaatettea cacaageeee aggagatget gtteagaaga ggaaaeagaa geteeagtta 126305 ttggcccaag gtcacccaaa ttcaatcgtg gcagagctgg gctgcctggc actgggttgt 126365 ggccatgggc tgcacactgc cacagccatc ccagaggccc ctgaaggcga gggatcaggc 126425 cacggcatcc tccttcccag acagccctgc agggctagca aggggccagg caggaggtgg 126485 ggtgtccccc aggcagaggg cagggacttt gcttatctgg ttcccctcac tgtctgtccc 126545 cagcacctac cacagtgtct ggaaataaac acttgttgaa taaaccccag aggaccctga 126605 ctgaageetg ggtgeeggeg geagaggget gtttgggage gatggggeea caetgtteee 126665 ttagggtgtc tggttttgct gggcagtcag agacagggtg cacaccagcc ccaggactca 126725 ggetcaggge ccaccaaaac etccagette tgeeteette ettggecaag ttetggeece 126785 cacatecace cecteatete etetgqqttt qtecacqete eqtqtqteac qeteaqecat 126845 ccaggcattc agtaggcgcc tattcctggc atgggtgtgc agcagaggcc caccgtcggg 126905 agetggegte tgeggggggg acagacagtg aacacacace tgaegeatgt cagggeatgg 126965 tgagcaatgg caccaacacc cacaaagtca ggtacaggga cagagggggt caggggggg 127025 ctccctgaag agaccacagt ggaacggaca ccctgagggg gtgggtggtg ccgatctctg 127085 gggaagaatg ttcgagaagg agggcactgc agtggccgtg actccacaca ttgcctgtag 127145 gtcaagggag ggactgggtt ttgttctggc tgagctgaga atgagaagct gtgggttgtc 127205 acgagattgg gacttgagga ggaagaggag acgccgcaga gggtcccccgg gggagcaggc 127265 gtcagaggtc gctgcagggt ctgcaggaag aaatggtgac cccactgagg gggttgttgg 127325 gaggtgggge agggetcace tggetgeece etetggatgt tgettggagg tegagetttg 127385 ccttgtgggg cgtgactctg tggttggttt gagctgtggg tgaaggtggg gccgtggcct 127445 ggaacaacag ggggtgccag ggaccagcag gcaggtttca gacccgcgag cctgaggccc 127505 gtattgggtt ccaaggaaat gggtcgagta ggcagccaga tatccaggca gtaatgccac 127565 ctggagataa gtgtggagtt agtggccgtg gactgatggg aggctggaga ccagctgaga 127625 ttcccggggt gcaggggggt cggggctgcg tcctgtgcgc cacaacaaag gaccacacac 127685 ttggtggetg aaaacaggge atatgtatag teteagteeg cagteecaca gecageteae 127745 tggccataat gaaggtgcca cgggctggta ccttcgggag gctctgggga gcaccgtttt 127805 ccctgcctct tctggcttct agaggcgctg cgttccctgg cacgtggccc ctcccccatc 127865 ctcccagece acageggeea ageetetete aegtetetga ceeteetgte tgtetttege 127925 gtataaaggc ccttgtgatc gccttgttcc tgccacccct aatgatccag gatgacttcc 127985 tcatctcaag gttggctgag ttgcgtcctt gatttcatct ttggccttat tttgactttg 128045

-continued

ccgtgtagca taacatagtc acaggtgcta gggatcagga cgcagccgtc tctggggggcc 128105 gttccaccgc ctactacagg acactgcccc cccacctacg cctcccgccc attcactcag 128165 gccacatgtg cctccagctg tgcctgtgta cagccaggtc tgggtccgaa tggaatggga 128225 gaatattggg gaagagaggg ggttetteet geteetggte egetgetgae eeegtgtgag 128285 ccctgtggga aggaggatgg ggcttcattg gcaccctgtt gtttataggg gtggaaatcc 128345 agaaacatcc tcaatatccc aatcttaaat gctaagatta ttcaactctt ctgaaatgag 128405 tgaggcaget ttttgtttet ttttetggaa eeg
ttggtgt aatatatetg eteettgaag $128465\,$ tattaggaaa acttgtgtgc aaatctattc ggcgtccttt tgagggagag aaggaaaatt 128525 ttaagcaacc agtttaaaat gccgagaaaa tgatgtcgac agtgatgaca tccatgtact 128585 agaatattgt tcggtcatgt cagctattgt tttagaagaa tttttaatgc cacagggaag 128645 tgattatgtt gaaagattta ggggataaca aaataaggct atgaccacca gaaaagtgga 128705 aacagagaaa actctggaaa gaaatacact aagttgtccc tgagtggtga gctataagaa 128765 actgatggaa tattttcttt ttatttttct gtgtattttt actttcatga tggatttgaa 128825 ctttgaatca gaaaacacat gtgtgtgcag gaagggtgga atttagagag cacagagacg 128885 ggcataggac agttttgtgc acccctcaat gtttgtgtga catttttcag tgggctagag 128945 ggggcagtca gacccccttt ggctcccgaa gcctgtgcta tccggtttcc cagggcagaa 129005 gcagcggtca catatacctt gcacatttcg tgagtccaag cacagacaca tccatttcag 129065 ccacgtaatt tcatatgcct gatgatgtat gagccttgtg tgaatcagcc aatgaactca 129125 acagtgcgag aaatatgagt gttttcgatg actcaattca atttcattct tcacccccag 129185 ctcccagggc tgcagtgaac gttaactttt agggcctcgg cagattccac tcctctccgg 129245 attgcactga ggttccagaa ggctctggca ggccgaggtg cggagagagg gacatggtgt 129305 cttccaggcc actgaggact tttgattgtg cctgggcgac cttggggcca ggtccttgct 129365 gacaaatccc caagggcctg ttggctgtgc tcagtgactc acctgggagg ttggcaacat 129425 getgacetet ggeggetett geeggacea gtgateceaa gtetgtagae agggtgggge 129485 tgcctgtgat gtactaaggt tttatgtatg ctttttgcac acacagtcat aggtgaagtt 129545 ggtttataat tttcttttct tatactctct ttgcccaatt ttaagattat tcaactctcc 129605 taaaatgaac tgggcagctt tttctttctt tttctggagc agttgatgta atatatctgc 129665 tccttgaaat cttaggaaaa cttgtgtgca aatctatttg gtgtcctttt gagggagaga 129725 agaatttttt tettttttt tagacagaat ttggeteeat caecetgaca egatettgge 129785 tcactgcage ctccacetee tgggttcaag ggattetete aceteageet etggagtage 129845 tgggattaca ggtgtgtgcc accatgcctg gctaattttt tttgtatttt tagtagagac 129905 agggttttgc tgtgttggcc aggctggtct cgaactcctg gcctccagtg ctgggattat 129965 aggcatgagc caccatacca ggccaagaga agaaaaattt taaacaacca gcttaatttc 130025 ttttttgatt attgatttat gcaaatttta tttaaaattt ttctagaata tttttcatta 130085 tcaaactcaa tatcctgtac ggaaactttc tctttcgtgc cagcaaaaag attgcgcagc 130145 agtttttagc atgcttttac agcttccatt tctcctcatt taatttgccg cacattgggg 130205 cgagtggctg aagtgtctgt ccttctgcat gccttgtccg ggctgtgttt ttgctctgtg 130265 gctctcatgg gaaatcaagc acgcagccgc tttccaatta gcaggtggcg gctgttttta 130325 atctgaacac aaatggctgt tatttgagct aattttttaa aagggatttg gggattagga 130385 ttagttette accteecaet tecatecatg tatecaatta etgeteaaaa eteagggagt 130445
-continued

ggctgatagt gacaccccag agatgtgctc acagcatcat tttcctaaca gaatcagacc 130505 gcgaatgaag agcgtcctgg atgcaggaag gtgagcattt ctgccattgg acagatgagg 130565 agaccgaggg tccgagaagc tctgtgactt ccctggaccc ctcctctatc agggcagagc 130625 tqqqqqcaca caqqccactc tqttccctct qcaqcttccc acctttctcc gaaqcactqq 130685 aaatccgcgt cttgtgactg cttggcagtg tgacagggta accgtggaaa caaccgtaca 130745 tgagtcctca aaatagacag ttacttctgc ttatgacagc acagagcctg cggaaagaaa 130805 gggccgtgcc cggaacactg ggatttetta gaattggggg tgatgatgge tgagaceetg 130865 att
tcttaga atcggggccg atgatggcca agaccettea taggececca acga
cgtgcc 130925tggcccggtg ttgggtgaaa taataaccgc agctcattct ttgcacacct agtgcaaaca 130985 catgctgttt tcagtttata tctcattaaa tactcagcac ctatgatggg tgtgttatag 131045 tattcatcct acagatgagg aagttgaata cacttgaccc tggaatgatg tgggagttag 131105 gggttcagac agtgcctgaa tgcagttgaa agtacatgct taacttttga ctccctcaaa 131165 acttcactcc taatagtcgg ctgttggtgg ggagcattac cagtaacatc aacagctgat 131225 gaacatttga agagactgat gtctacgtgg attttatgca tttgtgacat acctaacttt 131285 gtgtgtgtgt gtgtgtgtgt gtgtatcgtg gcagatetee aaaatgtttt cagtatattt 131405 actgggaaaa tcgcacatca ggggacctgc aggttcaagc ctgtgttgtg tgagggtcaa 131465 ggggcaactg tatacgcact tctcattgct gcgggaacaa ttgccatgag cttagtggct 131525 caaaacaaca caaaagactg ttgtacattc tggaactcgg gctaaaatga aggcgtcagc 131585 tggcctgtgt tatctctgga ggctgcaggg tggggctgtt ttctgatctt ttccagctac 131645 tagaggette tagaggetge etgeacteet cageteatea ttecaacete tgettecate 131705 atcccatctc tttcttccat ctttgacctt ccttcttcct cctatacaga cccttgtgat 131765 gacattgggc ccatccagat tatccagggt cacctccgta cctcaaggtc cttcacttaa 131825 tgacatctgc aaagcccctt ttgccatgtg agataacagg tgcacagatt ctagggtgga 131885 ggatgtagat agacgeettt aggggteatt gttetetget acattgaage acagagagat 131945 taagacattt gcccaaggtc acacagctaa gtagagccaa gatagagcct cagagagtct 132005 catgeettea acctgeacte ttttteeett teteateaea gaageettga gaactaaaae 132065 tettacagga attg
tgggtt agetgggtt ttttttttt ttttttgaa atggagtet
c132125attetattge ceaggetgga gtgeaatgge atgatettgg eteactgeaa eeteeacete 132185 ctgggttcaa gcaattetee tgeeteagee teeteagtag atgggattge aggtgeegge 132245 caccacaccc gactttttgt atttttagta gagacaaggt tttgccatgt tggccaggct 132305 ggtctcaaac tcctgacgtc aggtgatctg tccacttcgg cctcccaaag tgctgggatt 132365 acaggegtga gecaeegeee eccaeetgag tgggtteatt taaaaggget gtgtgggete 132425 aacteecagg geteacteta gtaatggate tgetgeagaa agaceageet cageecagae 132485 cctgcagctc tccaggtgca ggaccagggc aaagctcccc aacagtggga acagcccatg 132545 tgagggccct gtggctggat acagaggctg gagagaggag gtgaggtcag agaggtgtgt 132605 ggctggagga ggcctcacag gccagagcaa gagcttcggg tttcctctga aagggacagg 132665 aaccacaagg ccgtctgagt agggagtggg ccagcctggc catgtgttca caggatccct 132725 ctggctgccc agtggggaat aagctgaggg gtgaggtaga agtgggggct ggctgggggc 132785 tagcgtgttc acgcaggtga gagacgctgg tgcgcagagt gagtggccgg tgcaggtggg 132845

-continued

gaaggtggtg ggccctgccc cccatggcag gtggggcctg ctggatttgc tgctggattg 132905 gatggagagg gagggagggt cgggggatggc ttcaggctct gtacagagac caggctcccg 132965 tctgtgtgga gctttgtgga gggaccacag gaaggggact agtaaataag taggtgcatt 133025 ggagtgggaa ggtttccatg aagggcatca ggagccctct gatgcattgc acctcagggg 133085 tcaggagagg tgtccctgga tgagaaagag cctgggaatg ggggcggggg tgccccaccc 133145 cacagtagtg tetgagagga acctggetga egteaggace egtgtggetg gaacaggtgg 133205 aggggtggge tettgtgtge aaagatgggt taaggggaga gegtgeeggg eetgggggee 133265 acagetggge ttgagttttt tgtttgatgg ggetegatea catggtgetg ggeagggagt 133325 gacaactgtc atctcttcat cagtgagcat tcattgtgcc cacctgtgcc attgtaggaa 133385 ctccctgctc cctccccact gtgtacagcc tcagggatag ggaaagaggc cgaacaggag 133445 gcccctcccc aaacagtggc atcacctgga acccaggagc aagccagtgt ccaggggtgc 133505 toggggated ataaceeeca togteettet totgettete ggaceeteea ageteeteet 133565 ggagcgcggc ctgaggtgag gccagctggc ccaggccact ccaccctcgt ggatggcctt 133625 gtatcccatc agatcacagg agggacccgt ggccagggta gccaggggcg atcactgccc 133685 aggaccccat aggecectec cectecagge caceteetee catgttteee acetecaeee 133745 acctgcaggt ccctcccacc ctcatctgtt tctctggagg cctcactgaa ctgcacttgt 133805 ccctgaatgc atggctcaag cccatgcatt tctactgtgt gaacccaatc ggcctccacc 133865 ccaqccccaq aqqaqtqtcq tccacacact qacaacqatq qqqqtqqqqc acaqcaqqtq 133925 ctaccaagag ggccacagag caagtgccac gggcacacag gggccacccc caggctggct 133985 gaggettete tgecaggeet ggaaactgea gtggaaceae ateaggttgg ggaagaaaga 134045 tgtcagtgag gggctggagc agaaacggca ggcagctgca caagcttctc tctgctcagg 134105 gagcagggcg gggccatgag gcagggtctg tgctaggcag gggcgccaag atgatcagtg 134165 actaatqacc aaqqcaqqac ccctqqccca aqqqaqctta caqccccatq aqqqqaccct 134225 gccctcctgc cagtgccaca ggagaaggta cccagcggct tggggggcagc agagggtaag 134285 cacaggattt ctttagagag catgtgaaca atatgcacag aaagcagggt gtgagcctgg 134345ggttctagag gatgtatagg agttggtaag aaagaccagc taaaaatggg aaagggatct 134405 cagggagaga aaatgatgtg aaaaataact ccaggaatcc ctccgtagtt ttattgagca 134465 getactgeaa gececeaeat gggeeatege etceaggeat gacetetgaa gateceateg 134525tgeteettet eeagatgagg gaagetggge teagagagga eeaggeeett geetgaggte 134585 acacagagca cgatgcattc tgctctctgc ccagcacatg gcggggcagg ggctacggga 134645 ggcagggggga gatgcctagg gctcaacatt gaggagacac ccacccccag agcctttgag 134705 tggatgcagt gccctagggg cccagcagga aggggggtgg agtgtgcggc agaggggaac 134765 ttgcgtgtgt gaggcagcag cagcaggctg gttgggaccc attgagaagg agctggtcag 134825 ctacaggtag gagcctaaac cttgatcctg tgggcactgg ggagccaagg agggcttcaa 134885 gcagaaggag gtgccgtcgg ctctgtgtga ggctggaaag gaaggtgggc acctgctctc 134945 aggetteace teetgtttee tttgatteac aggteegtea gageegeeee acaeettggt 135005 tgggctcccc aggtcccctc caccttggcc tgagccaggg atgggggtgg ggaaggctct 135065 ctgtggccac aacaccgtgc aacacccagg gaggaagagg atgtggttgt cagggaaccg 135125 gctcgagcca tgagagccct aattatgcaa aatcattaaa aagaaacagg atggagattt 135185 cggctgattg agagctctcc aacttttaaa taattagggt gtggggggagt gggtggagat 135245

-continued

gggactgggc ccatcacaag tgatgggggc tttgagacat gtttctttaa acccatggca 135305 ggaataatta ctgtgaaatg teettagega tteagteaat tagaggggag acceettate 135365 tettgttage getetgaagg tggtgcageg gggtgtgtgt gtgtgtatgt gtgtgtgttt 135425 gcgtgcgtac tcgggggcag cgattgatat ggaatagtag attccactat cttttggaaa 135485 aaaatctatt gtatcaaaaa tttcatagaa acgtctaaaa agaaaaagag gaacttttag 135545 gaatggtttt tcaggcttat taatateeet teegatetat egtttgeatt eetgtteett 135605 gtgtccttaa aaaccctcag aaatgcccga gtacagccag cagtggggcg acaagggcca 135665 gegeegtttg getttgttte caetategat teaattgtte teteageett tgatetttge 135725ggtttttcct gctggaggct ggtaggatac ttggccactc gttctgccct gtgacaccca 135785 gcaccggtgc cccctgtgat tctggctgaa tccacccgca agtcctgctg ggaacctaga 135845 ccagccctca aggtctgggg gagtctggtc tgagagaccc ctgagcaggc gagggggtac 135905 taaggccact ccggaagtca gcctgtgaga ggccgccctg gctcagtttt ggactcacct 135965 ccgcctcacc tccaagtgac agaaagccta gttcaggcca gacagggttc ccgccactca 136025 cctgggcagg tgctgggggc caccaggtcc cgctgagatt ctcttccttg tttccatcca 136085 tttagccacc gggggtccct cttctctcaa gccctctccc tgcttctccc aaatatgagt 136145 ctctacccac tgctaatgga aaggcagcac aacatcaccc ctttagggaa tcaagcgttc 136205 gaagtgattt tetttaeggt aggeateaga gagaaaaggg aactgtggtt gateettett 136265 atatatatat atacacacac acatacagaa acaaagatgc caatttaatt attattatcg 136385 gggcacaaaa cattatcatg tgagatgacc aattagaact cagaggttca gaagctcaag 136445 gtgactccca gggagatttt actaccccta ccgtacccat cctcctccac aggcagggag 136505 gggttggagg gctcacagga gggagcatta gggccagggc ctcctccatt tttatggttc 136565 ggaaatcaca tcgtatcaag gcagcataag tttgcacagc cctggagggt tgactcgttt 136625 ggggcaaact caagagggcc tgatgaataa gccagacatc actgactctg tgaatgccaa 136685 cagtgacatt gggataccac ccaccagggg ctggacccct tgctgagtgt ctctgtctcc 136745 aaaaacagct gcgcaaactg ggcagtattt ggctgcattt gacagagaca gaaacagaac 136805 cctgacagga aaaggcaagc atcttgaagt cacaaccagg aagtggcata gcgggtttcg 136865 aacccaagte tgeetgacte etggteetge aaggtettte actataageg atetaaactt 136925 $% \mathcal{G}_{\mathrm{s}}$ gagccactta cttttctata taccaagggt catcaaattc tttctgcaaa gggccagata 136985 gcccattttt tatggtttcg tgggaacata tgttctcttt gggcaaagtt tgccaacttt 137045 gccattttta tccaaaaagg gttttcacat aacaatgtgt tggattcctt gggggatgac 137105 ttcttttccc aatcaatact tttttttaca aaaacctggc tcttgggcca aatttttgtc 137165 ccatggggcc tgttatctta ccctccccct tgtgggtttt accttgttgg aacaaaaaaa 137225 accatecate tttgttattt ttttgeeeeg ttgaeaeett ttetatttat ttaaatttta 137285 acaaaccgat ccttttggga attcatattt ttggggcttt ttgttttaac gattgtcgct 137345 ttaaaaattt aaattggtgc cggtggcttc catcctattt atatcaatca tattaatttt 137405 aagcaagetg atetttegga ggeeettetg gteeettggt tgtggaaata aetgttttet 137465 actataccaa agtatctttt acttgggcgg gttggggttt tttaaaatgt tttgggaaaa 137525

-continued

aagaagggag aggagagaaa agaagaggg agagcgagga agaggagaaa gagaaagaga 137705 agaagaggg aagaggagga gaaaggggaaa gggaaaagga agagagagag aaaagaaaga 137825 ggaagaagga aagggggagag agaagatggg aggaggggga aaaaggaaga ggatagaaaa 138005 aaaaaaaaa aagggggggg gagaggaagg gagtgtgtga agagggagag gagaagaagg 138065 gggaagagga aaggaaatga ggaaggggaag aagaagagaa aagaggggag gagagagggg 138125 gttcgttaag aagggaggga gggagggaag taagtcagta gggctgcagc actcatcgtg 138305 cactgggctc actctgtaca gcatctttgc tgcctgcggc cctgcctgta cccagggtgg 138365 tgccaggeet ggetgcaace cecteeteet geeeetteet gaaaagegee ettggeteet 138425 gttgtaggga ggagcaaggc cagggctcag ggaggtgaag gcgttcaagg ccacacgagg 138485 ggctcgggga ttgagaccct ggcagcctgt tctctcccag ctccctctgc gagcggcctc 138545 accetteett eccatggtge tgattteett tetggteete eetteaatgt geeettgtgg 138605 aaagaggaaa gctcgggcca ctgagaaggg cgcccctgtg aacgatggag ggagattgag 138665 gtcgcaggca ggcctgggga ctggggggcgt gtggaggggt gggttgggct cctggaaagg 138725 gaggcgccta ctgtcagttt tgagtttcgt taaacacctg ccagcctgat agcattctaa 138785 ttcccaaaata tgacaccact tattagtgga taaactagge teeeteete etteetgate 138845 ttgacgccag gactggaagg agcgaccacc tgccctcagg atacccggtg cagtgccatg 138905 gctttgaggg cagaggtgtg gggttgaagg ctgccactgc tcaccagagg ctgtggagag 138965 gctaaggaca gggatataga tctcctgagc ttcaggggtc tgcttcagag acaggtgttt 139025 ggaggcettg eteteaagag aggtgggggg gaeetteete etgetgeetg etetgatttg 139085 ggggggatacc agaggcatga acataaacgt gggagccttt tcctgccctg taagcagctt 139145 ccctccccct cctctcacct cccctcacct ccctgcatgc agtggcctgg gatcaggatg 139205 gtgacacetg ggetetgeag ecetggeeea eegggtgetg gaaetteett eeteegtegg 139265 gagggggacte cagectectg cetgeceete ectaceteet tgacteagat tteateetee 139325 ctgtctctga accctcagtg gctcccgttt ccctaatggt gacttcctca cccctctccg 139385 tggcccatga gatcctgcgt gggtggcccc ttgcgtccct gttccccctg ctcactcctt 139445 tetetgeetg caeggeeett ggegtgteee tgeeteaggg eeettgegtg tgeegteeet 139505 tetgeccage acaeceetet ecaggeateg ceaceaatet eteeceaaet teaeteagae 139565 cttggtcaaa cagcacctcc cacggaggcc ctgttcacct aaactaccag cccccagcac 139625 ctatctgcct gctggctctt cctccccagc acttgctgct ccctggcggt ggagggcgcc 139685 acttagtttt attgtctgta tctgcaagga gaatgttggc tgcacaggaa cagtggcttt 139745 atgctggtca ctgcatcatc ccagggcctg gcacagagta ggtgctgttt gcattggttg 139805 actgagtgaa taaatgaatg aatgaatgaa tgagtccatc agggcatcca gtgggccctg 139865 cagagggggag ctggacagga gttgtatttc tggagaggca gtggccaggt acagtgtcca 139925 ccttggacag gagggagaat ggggtgctgc catttcccat gaggggataa ggggctggga 139985 cagacctggg aggcaggaca cgagcccttg tggctgagag gggccagcag ggaggggcct 140045

-continued

ctcgggagee tcagggtget gtgatcaget etgetteeet gtttetgggg tagagaecag 140105 agcaqqccaq caqqcaaqqc tqccactcaq ccqqtttcca tqqqqacaqc tqqacaqqtt 140165 gtcataggtt taggtatttc cagattggct ggtgaatggc tgtcaactcc accaccctgt 140225 tetetteeca tegtteeetg ggtetetetg tggeecaggt eetagggagt tagtgeetgg 140285 cccaacaqqq qtcctaqtcc ccacqctact tcaqccccaq qqtcactqct accaqtqaqa 140345 cagataccag cagaaatgag cttagagacc ttgtcccact ttgggaactt ctgcagctca 140405 ggaaggccag gttatggggg cagtggggag gggacactgt ctggggagtc ctcattgccc 140465 actetyteec agtetataat tyteeaggty ggeageaaac cyttycettt agggaeeaga 140525 taagcaactt cctgtgcaga gcaggtgctc caagaaaaaa ggagatggtc agtggatggc 140585 atacaggaga ctgtaccaac tctgtggcag tcagatttga ttttgttaca aaccccatgg 140645 caatgaaaca aaacccacct ataagtaggg ctcagccatg cctgcccagg acaccatgaa 140705 cagagataac tactggccca aggtcccagg gccagttagt gccagagcca caagcagtgc 140765 ccagtctggt agaggacatt gtccagcaca tttgagaatg tcaggacacc tttgcaatct 140825 ggcattcagc atcaccagta gggggcagta gagggcagca catcaagtat agctttggct 140885 tcaaatcccg actctaccac cttcttccag cactgactcc ccaggcatgg gttttagcca 140945 gctgctcctc cattttcttg gctatgaatg gggatagtaa tggctatttc tgcacagcac 141005 agaatcttac caggcttgtt ccctggtaag tgtttagttc taggtttgag gaatgaatga 141065 atqactqaat aaacaqaqca tqqqcccaqq tqcaaaacaq aqtcatccqt cqtqccaacc 141125 ccatgggcgg gagcagcgca gtgacggcca ttgcttctct gtctccacag to ttt 141180 Leu Phe 265 141228 gaa gag cct gag gac ccc agt aac cgc tca ttc ttc tcg gaa atc atc Glu Glu Pro Glu Asp Pro Ser Asn Arg Ser Phe Phe Ser Glu Ile Ile 275 280 270 tcc tcc gtg tcc gac gtg aag ttc agc cac agc ggc cgc tac atg ctc Ser Ser Val Ser Asp Val Lys Phe Ser His Ser Gly Arg Tyr Met Leu 141276 290 285 acc cgg gac tac ctt aca gtc aag gtc tgg gac ctg aac atg gag gca Thr Arg Asp Tyr Leu Thr Val Lys Val Trp Asp Leu Asn Met Glu Ala 141324 300 305 310 aga ccc ata gag acc tac cag gtggggcacca cagcaggaga cccccaatcc 141375 Arg Pro Ile Glu Thr Tyr Gln 315 320 cgggtetttt ttee
ectatge tgagateece atggaggggg cetteetage caggegtgge
 141435tttcatatgc ccggtatgta ggtgaagaca cggaggctga agaaatccag caactcatcc 141495 ccacacgtag cttggcagag ggcaggagtg ctcagtcttg cctcacaggg agctttggat 141555 gtccctgagc aaggcctgca gtccagggcc cagggggcctc aattccaggg aggaaagaga 141615 tgtgggaaca gagatgagcg tcaggctggg ccccagtgga gcatgtagac gatggcttnc 141675 cctccccact ccctgggagc ctgcatcgga gctgtaccat taaagagggt taagcgttgc 141735 cctcccaggg tgcatccgta agcagtgcac gcagaggtga actgagcaca tgtttccttt 141795 ccagateete ageacaggee tataageetg gagtetaggt gaageetggg eeettettgg 141855 acagtattat ttattatctt gctattatca tccattcaga tatgttaggg ggtagacaac 141915 aaaactcatg tgatgttaaa ataaaatgtg gacttgaaag aaatgtggga tggcttcaaa 141975 gctqqttcca qttaqqtqqq qaqatcaqqq aqqcttcttq qaqqaqqtqq catttqtqct 142035 qqqccttqaa qqatqqqtaa qatctqqncc qtqcaaacat qqqtqqqaaa acaccccacc 142095

-continued

agaaacccca gccggttcct caccgtgtca ctcctcacac anggggtgcc acgtgcttga 142155 catctgtcac ctccattctt tactgtccgg tgacaaggag ccatcatcct atttggtgga 142215 aagggaactc gggcactgag aggtagggag atgagggagg tgtctctccgg ctgggcggtg 142275 acagattcag ageccagget cagageeeta egettteett teeteegtge gaagaeetag 142335 taggaaageg teetgggtgg egeaggeete getgggaaet ggtgeagage teagagggtg 142395 ggctgctctg atctgacctg ggccccagag gaacagctca cgctcctgga agccacacac 142455 ccacaaggac cgctatgggg accgcctgtt tgtcagccac gtgtgtttac ttgagttctt 142515 $\!$ gegactgeec cageteetee etcaggeece etceteacae tgeacaecee aggeaggaet 142575cageceteet etgteeetgt gggaatggea gagaeeeeag aetaggagag ggaeaggata 142635 agcccggctc aagcctgcag gagcaactct ctggctccct ctggaggcag ctcagggaaa 142695 tgaacattte caaceceete eggeeeettg teeggteaet taeeteeate eetgaggtea 142755 gcaaaggccc atgaacccct gaaactacgt ggaatgtgtt ctatgagcat tttcaggggg 142815 aggggggacac agctttctga aattctcatg aaggacccca cgaaggaggg gaatgactgt 142875 totggagogt gaggoogtaa gotgggoact tggcatotgg cocagotgac ctattgatgc 142935 taaaataata gcaataacta cataaaagca gnacaacaac caacattttt tggtggcttg 142995 tgatgtgcta gaaattgtgt gtagcaggac tgcgttcggc tggtgtgcgg tgcttaacaa 143055 atcggggcta tttttctccc anaacaggga gtctggagag ggcagtccag gaaggtgggg 143115 gggctccatg accccggcag cgccacagtg gttccttctg tgatccagtc caccatcatt 143175 tgggcgttgg ttttccacct tcacatgtgg tacctcatgg tggcaaagtg gctgccacac 143235 ctccaagcac tttgcctaca ttccaggcag gaaataggaa atgcactaga tctcacccct 143295 ggggtctgtt gcgtgtttca ctgtgattgt aaaatcttcc ccagaatgct tctcagaaga 143355 cttcttacac ctcattgtct agaatgggtc cctggcagcc accatagtgg ctgggaagat 143415 taatggttta acageetetg tggttgaaga aggeaagggt gaaggggetg gggaeggttg 143475 ttgaatgage cacactgagg taagteeata ntatgetttg eeteatetaa geeteeeage 143535 tgtcctggga ggtggggccg gtattctccc catcccattt tattggaaga cnattgagtt 143595 aaatggcaaa tctgtgacag agccagcaag cagnggacct tagattgaca gtctttctcc 143655 agagetette etcaecetge caetagaggg caggagatge ttagtgeacg geagagagaa 143715 cagcatgcgc atttggacgc gtgcatcacc aaggctgctg ggagctgagt aaggaggaca $143\,775$ cacaaaaaatg cagageeggg ggtgggacae gaacaetaaa acetgetgee atteateeee $143\,835$ cttgatttta gttgttacac atactgagcc agtaccctgt gcccaacaca gtgctagacc 143895 ctggacccag agagaaggaa gaacctcggc ctcaccctcg agggtcccag acagacagga 143955 acacagtgac cctcagcttg gtgggggctgc agcccagggg cccaagggga aggcaagggt 144015 caccaggagg acacggggggc tgggggaggga tgagcagggc cccaggcggg agtcaggtag 144075 ccttgtctaa ccatcctgtg tgcagtgaat agcaggccct tcctcccaat cctgcttccc 144135 ctagtgccac tctgttttcc tgtgtagtcc ttgccaccat attagtcaga tggctcagag 144195 aaacagaacc aacaggatgg ggatagagac tgagaaagaa gggagatttg aaggaattag 144255 ctcacgtggc atgttctaaa tctgcagagc aggcgggcag gctggtgacc caggggagag 144315 tgactatgcg agcccacacg catctgttag cggaatcccc cggtcctcag ggaggtctgt 144375 ctttgttcta tcagggcctt cgactgattg gacaaggccc cccacatgat ggagggcagc 144435 ctgctttact cagtatatca gcttaaatgt taacctcccc tacaaaatgt cttcacagaa 144495

-continued

acaccaagta totgggtaco ttggcocago caagotgaca caogaaattg acgttcacac 144555 caccetteae attteetqtq tteqttqqaq ttqttaattt caacteetqq qaqttqaaae 144615 caggeteeat ggcacccagt tacetteeet teegeaccca gagggcagag eeegtgeeet 144675 gttgtcctqg cagctccagc ctcagcagag ggctggcact catgcggccc tccgggtaca 144735 gggettgtag gaceggetge agteaggtgg atgeaggtee tggggtgtea cectetetee 144795 tgtggggtac gggaateetg gggaagggte etggteagee tettagagge tgtgtgaeee 144855 tgtgageete agtgeetegt getgtggatg gatgagaaac etetgtgggt tecetettee 144915 cetteettga tggeegeeae eetgtgttet eggagateat taeeeteaaa aggeetgeee 144975 tgcacttaat gccagaacca ctgtgaggtt cgccctctta tcactttaag tttgaagaaa 145035 ctgaggctca gagagatgaa atcacttgtc caagatcaca cagctgggag ggcagagcca 145095 ggatetggae eecaggtggt eetggeeeet gtgetgtgag egttetgttt gteacagtgg 145155 actetgetee etggtgetae teeegtetet ggeeaeaget eagaggteag eegtgtgeet 145215 ggtcgtgggc ccccgataag atgagcaggg ctgtattggg ctgtgtcacg gtggaggtca 145275 gccgtgtgcc tggtcgtggg ccccccgata agatgagcag ggctgtattg ggctgtgtca 145335 cggtcggggt cagccgtgtg cctggtcatg ggcctcccga tgagatgagc agggctgtgt 145395 cgggctgtgt cagagcattc agaccctcgc tgagatgagc aggtctgcgc tgggccatgt 145455 cagggcatgc agaccetege tgetetttga gaccettett gtggaaggge caggatggte 145515 145570 qqqacqcccc qtccactcac ctcatccctt atcccaccaq qtc cat qac tac ctt Val His Asp Tyr Leu cgg agc aag ctc tgt tcc ctg tac gag aac gac tgc att ttc gac aag Arg Ser Lys Leu Cys Ser Leu Tyr Glu Asn Asp Cys Ile Phe Asp Lys 145618 335 330 340 ttt gaa tgt goc tgg aac ggg agc gac ag gtaagcoctg acctcagcoc Phe Glu Cys Ala Trp Asn Gly Ser Asp Ser 145667 345 350 gcacctcacc tcaccgtagg gagggtttct gccctgcagg ggtctgggct gggattccgg 145727

tgacccgcag catggggcta ctcagcctca atgggtccag gtgtctgggt gaagcccacg 145787 ctttccagag caggtccaac tctcagcgct cagattcaag gggcaggaca tgaaattctt 145847 catcttctgt cactgaacct cacagecacg ttggegectg ccctatggge agtagtggga 145907 acatgtttag ttaattcagg gtccccggtg atgtgctccc ctctcccagc ttgtcggggg 145967 cgagggetat ageccageae ceggteacea teatecatee acaeetgtat gteetgagae 146027 agccctgcac ccctgtggct ttgaccatcg gtctactcac ccctcctccc atcaccacta 146087 ctgtctccct ctcttcctgg tgacacccca ctcgggcccg ctgaggctca ggggcacctt 146147 ggageteeta cacceteeag ggettgteac aateeacaag teeageegte teteaaceee 146207 acctgcctgg aaagtggcgc cccagtgcca gaagtgagtt cctgtgtctc cctagcctgg 146267 gctcagccca gggcgggcat ggacaagggg gctgtggcag gggctcctga cctgacctct 146327 acceptgggt cettacetet gtgtetette tetgggatte tteetecatt etggaggtgg 146387 gaaaatccct cttctgccct cccaaatcac atcagctttg tgctcagggt cctgccaggc 146447 gtaagattet gaaatggaca ageetaetet eeatetgtga gtttegatet eagaagetga 146507 gaggtggcct ctcagtgtct cctacagctg cttcctcaag gacaggatgc ctctttgtcc 146567 agccgcccag attcagaagt gggtctccag atgatacaca gtgtggagat aaagactaca 146627 ctqqctqcta qatcaqaata ccacctqtca qqaqcccatq tactqtcacc tcctccccqc 146687

-continued

agtcctgtcc agtgtggtgg gcaaggaggg tggagtgaga gccagcagcc ctgacttggg 146747 catcacctgg tgggggggtg tccaccctgt ggatggcatc agtcaacatg acaggtctgg 146807 gctctccccag acctctgagg gtggctggca ctgtggtggt catgtgagag ctgccgcact 146867 atgactetet gtggetetgg geataggget gggaceatea gggttggtgt gtgggatgag 146927 gggaggggtg gacatggcag agacaggacc aggagggagc cccctggaag cagggctgga 146987 tccaagtggg gggccaagtc attgtgtcca gggaaggaga tttctgagag agttgccaac 147047 atcctggage tececeagee egeaggggte teteageaga geeegagete aggeaagggg 147107 ctggcatggt gatcacaggg ggccactaaa ggatgcttag aaaaccagga tggaggcccg 147167 accogggget gggetggeae agetgggtea geaggaeaea ggaeettete tetaggeeet 147227 gcccccagat agatcccaga cacccccagc agacagggct cctcccatgc tgctgagctg 147287 catttggggt tccctggtgc agtgggtccc aagagggtct atccaaatcg gacgagaggg 147347 acctgcagct gtaacaagct gattccagct tttatgtgcg ttttgcggggg taggtccccg 147407 ctggctgcga cccactgccc gtccttcctt caagetgcca ccagggggca cccgeggcca 147467 ggtgatgeet geteecagga etggagaage egecaageat eeccaggetg acagtggtgt 147527 ctaggeetgg geteteetgt eetgeeteee accegeeaet teetgegtge actttaeaeg 147587 ccagecaege cetyteetag tggteeceea ceegeeteae tgtetetege tecaeagetg 147647 getetgetet geeeggetgg aacetetgte ettgtttgee teeegeaatg ggtggggtge 147707 cctggggggc tactatgact caacctgttc tgagcccttc actgggggacc tcaggtgtgt 147767 ccagtggctg tgggtgtttc tagaaggcat agaggtgtgc cacctcccag ttcactttga 147827 gcactgttct gagaacaaca tgccccatgg tcaggggtcc caagataaac agaccctggg 147887 tcctgccttc cagggcctca gaggctcagg agagaagcaa ggattccccc caggttccca 147947 catcettqca qaccaaaqca aacteqaate etqqcaqqet eccaqttqet qecetettat 148007 tectqqtqac cecetetqac aqttqqtecq qeceqcaqaq eqeeqtqct qecqeqtqqt 148067 ggctgcccga tggcccctgc cgtgggggtt cctagcaccg gcagaacgca gatgggcagc 148127 gtgetgtgga gaggeageag eteteetget ggaetetete agtetetggt eeacatteta 148187 ccctcgccac cgtgtgcttg aggaagcccc taagtcagct cggctggaaa gtggttctag 148247 gaaactggcc ttcgtggccg ctttggggat gagaccatgt gtgatgcctt cagcaagatc 148307 ccagttegta tgegeagggg tgeegeagtg atcetgegtg gactateeta ttggeaggee 148367tgcccttccc caggttacct acceggagga atccegcagg ccctcccaca acaggettca 148427 acgccccctc ctccatgaag ttctccttga tctgtcctgc ctgggggggg agatttgtgc 148487 cageegageg tgetegggtg egggagteaa acaeaeetae aettgetetg aggagteetg 148547 ggcaaggete ecceagggge ceatgetgta teeetaggge tgtttttte teteeggeeg 148607 ttttcttctc tccatgcttc cccatctccg ctcctccctg cttcttctta cacactggcc 148667 tcatcctctc cctcttcaga gatgaccccc aaatcattcc cctttccatt atcctcagcc 148727 agccaacccc tcccagggac tgtgtaaaac tctcatggaa ggatctgatt ggctctgtgt 148787 gggtcacttg cccacttttt gcaccaatca gcatggacag ggatatcaca tgcccaagtt 148847 ggccaggcca aggggcgagg agagcactgt gattgaccgc tcacagggat agggagtgca 148907 gtggcgccat ctcggctcgc tgcaacetec gcctcctgga gtcaaacact tetectgecg 148967 caqceteeca aqtaqetqqq attacaqqeq ceacqqqtqq eqaqqqeaqq aqeetttett 149027 tcccccaaagg aaagaggagc ggagcactgg ggctgaaagc agccggcgtt gnggtcccac 149087

-continued

atgcagatga ggctaggaga ggtgaagcag ctcccctgcc cttttcccctg ttaagggaac 149147 cttctggaat ttaagaaacc tgcctgaatg tgaggaatgg ctctcatggt ggtgcggcct 149207 ggtgctctag gatgagaggg gcccctccct ctcccccaga gcacgtgtca gctgaattcc 149267 acaccegaac aggggggggg teaggaactg tgtgggttge aaatgaettt aattatgteg 149327 ctctccttcc actaaatgga tcagaagaac cagcattgtg tgaaatcacc caggttcatt 149387 ctgtgaactg ttccctgaag aacaaagggg gctgcctccc cactgtgctg gcgcggggag 149447 ggtgtggcet eccecagtea geetgtggeg eetgggeagg geeettetgt gggaetegtt 149507 cacceggeee cectegeatg etgetteeet t
gteeeagge tetgagteae atataaageg 149567 $\ensuremath{\mathsf{r}}$ ggtgcggctt tggtcacatg gacgattagg atcgaggagt acctggtaaa taacaagaag 149627 caaagtgcct caagcccagc actgtgcggg gtgttcagcc tatgtcccct gattcacgct 149687 caccaggggc tgcgttccct tgttgatccc agttcttata gaaaactaag agagtgcgca 149747 tgtcagggta gggcagagct gggatccgga cccaggcgga ctggccagag cccaagcccc 149807 tgactgcagt gccggagete acgtgtgage ttttgteete tgtgcataac eeetggagae 149867 tccaaaagga aacaggattt cctccctgaa gagccttcag caggacaact tctttatggt 149987 cgcttttcgt aacateetet teeteeccag ttaeettgea eeteacaget getecaggge 150047 cctgcagagg ccaaaccccca aaaccctccc tctgggcgca ggcccacaga actgtgcttt 150107 ctctcctgcc tcttactatg tggatgaact taccetteet eccaeeggea ggaaceeett 150167 ctccttagga gcagggagag cagagaaatg gtgtggaatt ctctttagcg ggacggtgag 150227 ggcagcgagc ccctgcacgt cagcactgct cgccccgacc ctcatggcga tgcatgtttg 150287 tttattcgcc cgagtcctcg ggacaggcgg gcccctggag ggaagcaggg cctggtggtt 150347 ttctgtccca gctgcttcca tgtctacctc ctgctgtggt tgcacagtct gtttggaagg 150407 ccaqaqcttt ctctcctqqa ctaacaqaaa ttacaqqaqq qtcttttctt ttctttctt 150467 ttcttttttc gagacggagt tttgctctta ttgcccaggc tggagtgcag tggcgcgatc 150527 ttggetcact acaacettge eteetgatt caageaacte teetgeetca geeteetgag 150587 tagetgggat taeaggtgee caccaccatg teeagetaat ttttgtattt ttagtagaga 150647 cagggtttca tcatgttggc caggctggtc tcaaactcct aacctcaggt gatctgcccg 150707 ccttggcttc ccaaagtgct gggattacag gtgtgagcca ccacgcctgg ccaggagggt 150767 attttcatga tgattggggc agaggataaa aaggatctta gctcctggcc ccaaagtctg 150827 catgttggtg gcagctgaca tgtgaggggg tataagagac cccaagatac aggggaatag 150887 aggcaggtgt ggtttccctt tccagggagt gatggctctg taggctctgg gattgctttt 150947 tcatttqttt gttqttttqq qacaqaqttt tactctqtca cccaqqctag actqcaqtqq 151007 taaatcacag ctcactgcag tctctgcctc cccaggctca ggtgatcctc ctgcctcccc 151067 aggetcaggt gatecteetg ecteaacete etgaataget gggaetaegg teatttttaa 151127 tttttttttg tagaggtgga gtctcgctat gttgtccagg ctggtcttga actcctaggc 151187 tgaagcaatc ctcccaccgg ggcctcccaa agtcctggga ttatgggcgt gagcccccac 151247 acctgggett atttetegag aaggggettg tgeteeteet cacctgatge eteteettet 151307 cccaccag c gtc atc atg acc ggg gcc tac aac aac ttc ttc cgc atg 151355 Val Ile Met Thr Gly Ala Tyr Asn Asn Phe Phe Arg Met 355 360

ttc Phe 365	gat Asp	cgg Arg	aac Asn	acc Thr	aag Lys 370	cgg Arg	gac Asp	gtg Val	acc Thr	ctg Leu 375	gag Glu	gcc Ala	tcg Ser	agg Arg	gaa Glu 380	151403
agc Ser	agc Ser	aag Lys	ccc Pro	cgg Arg 385	gct Ala	gtg Val	ctc Leu	aag Lys	cca Pro 390	cgg Arg	cgc Arg	gtg Val	tgc Cys	gtg Val 395	glà ààà	151451
ggc Gly	aag Lys	cgc Arg	cgg Arg 400	cgt Arg	gat Asp	gac Asp	atc Ile	agt Ser 405	gtg Val	gac Asp	agc Ser	ttg Leu	gac Asp 410	ttc Phe	acc Thr	151499
aag Lys	aag Lys	atc Ile 415	ctg Leu	cac His	acg Thr	gcc Ala	tgg Trp 420	cac His	ccg Pro	gct Ala	gag Glu	aac Asn 425	atc Ile	att Ile	gcc Ala	151547
atc Ile	gcc Ala 430	gcc Ala	acc Thr	aac Asn	aac Asn	ctg Leu 435	tac Tyr	atc Ile	ttc Phe	cag Gln	gac Asp 440	aag Lys	gta Val	aac Asn	tct Ser	151595
gac Asp 445	atg Met	cac His	tag	g ta	atgtę	gcagi	t teo	ccgg	ccc	tgc	cacco	cag (cetea	atgca	aa	151648
gtca	atcco	ccg a	acato	gacci	tt ca	acga	ccgca	a atç	gcaaq	ggag	ggga	aagaa	aag 1	tcaca	agcact	151708
gate	gagga	aca 🤉	gctg	caga	gg tạ	ggca	gtgt	g tg	gacad	cagg	aagt	ttg	ggc (cccct	ccctg	151768
CCC	caget	ttt (ccta	ggcca	ag aa	attgi	tgtti	c ggo	cagta	aatt	gtci	gtti	taa a	aaaaa	ataaaa	151828
ag																151830
<210 <211 <212 <213	0> SE L> LE 2> TY 3> OF	EQ II ENGTH (PE : RGANI) NO 1: 44 PRT [SM:	38 17 Homo	o sař	piens	3									
<400)> SE	EQUEI	ICE :	38												
Met 1	Gly	Glu	Asp	Thr 5	Asp	Thr	Arg	Lys	Ile 10	Asn	His	Ser	Phe	Leu 15	Arg	
Asp	His	Ser	Tyr 20	Val	Thr	Glu	Ala	Asp 25	Ile	Ile	Ser	Thr	Val 30	Glu	Phe	
Asn	His	Thr 35	Gly	Glu	Leu	Leu	Ala 40	Thr	Gly	Asp	Lys	Gly 45	Gly	Arg	Val	
Val	Ile 50	Phe	Gln	Arg	Glu	Pro 55	Glu	Ser	Lys	Asn	Ala 60	Pro	His	Ser	Gln	
Gly 65	Asp	Tyr	Asp	Val	Tyr 70	Ser	Thr	Phe	Gln	Ser 75	His	Glu	Pro	Glu	Phe 80	
Asp	Tyr	Leu	Lys	Ser 85	Leu	Glu	Ile	Glu	Glu 90	Lys	Ile	Asn	Lys	Ile 95	Lys	
Trp	Leu	Pro	Gln 100	Gln	Asn	Ala	Ala	His 105	Ser	Leu	Leu	Ser	Thr 110	Asn	Asp	
Lys	Thr	Ile 115	Гла	Leu	Trp	ГЛЗ	Ile 120	Thr	Glu	Arg	Asp	Lys 125	Arg	Pro	Glu	
Gly	Tyr 130	Asn	Leu	Lys	Asp	Glu 135	Glu	Gly	Lys	Leu	Lys 140	Asp	Leu	Ser	Thr	
Val 145	Thr	Ser	Leu	Gln	Val 150	Pro	Val	Leu	Lys	Pro 155	Met	Asp	Leu	Met	Val 160	
Glu	Val	Ser	Pro	Arg 165	Arg	Ile	Phe	Ala	Asn 170	Gly	His	Thr	Tyr	His 175	Ile	
Asn	Ser	Ile	Ser 180	Val	Asn	Ser	Asp	Cys 185	Glu	Thr	Tyr	Met	Ser 190	Ala	Asp	
Asp	Leu	Arg 195	Ile	Asn	Leu	Trp	His 200	Leu	Ala	Ile	Thr	Asp 205	Arg	Ser	Phe	

-continued

Asn	Ile 210	Val	Asp	Ile	ГЛа	Pro 215	Ala	Asn	Met	Glu	Asp 220	Leu	Thr	Glu	Val
Ile 225	Thr	Ala	Ser	Glu	Phe 230	His	Pro	His	His	Cys 235	Asn	Leu	Phe	Val	Tyr 240
Ser	Ser	Ser	Lys	Gly 245	Ser	Leu	Arg	Leu	Cys 250	Asp	Met	Pro	Ala	Ala 255	Ala
Leu	Cys	Aap	Lys 260	His	Ser	ГÀа	Leu	Phe 265	Glu	Glu	Pro	Glu	Asp 270	Pro	Ser
Asn	Arg	Ser 275	Phe	Phe	Ser	Glu	Ile 280	Ile	Ser	Ser	Val	Ser 285	Aab	Val	Lys
Phe	Ser 290	His	Ser	Asp	Arg	Tyr 295	Met	Leu	Thr	Arg	Asp 300	Tyr	Leu	Thr	Val
Lys 305	Val	Trp	Asp	Leu	Asn 310	Met	Glu	Ala	Arg	Pro 315	Ile	Glu	Thr	Tyr	Gln 320
Val	His	Asp	Tyr	Leu 325	Arg	Ser	Lys	Leu	Суз 330	Ser	Leu	Tyr	Glu	Asn 335	Asp
Суз	Ile	Phe	Asp 340	Lys	Phe	Glu	Cys	Ala 345	Trp	Asn	Gly	Ser	Asp 350	Ser	Val
Ile	Met	Thr 355	Gly	Ala	Tyr	Asn	Asn 360	Phe	Phe	Arg	Met	Phe 365	Asp	Arg	Asn
Thr	Lys 370	Arg	Asp	Val	Thr	Leu 375	Glu	Ala	Ser	Arg	Glu 380	Ser	Ser	Lys	Pro
Arg 385	Ala	Val	Leu	Lys	Pro 390	Arg	Arg	Val	Суз	Val 395	Gly	Gly	Lys	Arg	Arg 400
Arg	Asp	Asp	Ile	Ser 405	Val	Asp	Ser	Leu	Asp 410	Phe	Thr	Lys	Lys	Ile 415	Leu
His	Thr	Ala	Trp 420	His	Pro	Ala	Glu	Asn 425	Ile	Ile	Ala	Ile	Ala 430	Ala	Thr
Asn	Asn	Leu 435	Tyr	Ile	Phe	Gln	Asp 440	Lys	Val	Asn	Ser	Asp 445	Met	His	
<210 <211 <212 <213 <220 <223	<210> SEQ ID NO 39 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer 99-24169/139														
<400)> SE	QUEN	ICE :	39											
ctgg	lctga	agg d	ctco	cttgt	5										
<210 <211 <212 <213 <220 <223)> SE .> LE :> TY :> OR :> OR :> FE :> OI	Q II NGTH PE: GANI ATUR HER) NO I: 19 DNA SM: E: INFC	40 Arti	fici.	.al pri	.mer	24-2	:57/3	320					
<400> SEQUENCE: 40															
gteettetga tggeetgee															
<210	।> Sम	:0 TT	NO NO	41											
<211	.> LE	NGTH	I: 19	,											
<212	> TY	PE:	DNA CM-	∆r+ -{	fiai	<u> </u>									
<220	> 0R	ATUR	. эн : ?Е :	ALUI		.aı									
<223	> 0T	HER	INFO	RMAI	ION:	pri	.mer	99-2	4175	5/218	3				

<400> SEQUENCE: 41 caagetggat tegeaatea 228

19

60

120

180

240

300

360

420

480

540

600

601

-continued

<210> SEQ ID NO 42 <211> LENGTH: 601 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: amplicon 30-4 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (301)..(301) <223> OTHER INFORMATION: polymorphism 30-4/58 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (301)..(301) <223> OTHER INFORMATION: biallelic marker 30-4/58 <400> SEOUENCE: 42 tgaageegae gttgtegeeg ggeagagett egeteagage etegtggtge ateteeaetg acttcacctc agtggtgatg ttcactggcg caaaggtcac caccatgccc ggccgcagga tgccggtctc cacccggccc acgggcaccg tgccaatgcc tgcagagggg agggggtgtg aggggaaggt ggggcccgag gggatgctgg ggcaggatat tcgggggacag agcctggaaa ccaacaaagc ctgggactgg atccccccga caggcctggg ggttgggggcc acatgggcgg rgtgcagggg aagggaggcc agggacaagg gcagacacag agattccaag ggaagtgggg gctctcccac ccagctgggg aaataagagg ctgagcagca gagctcccag gaacccacgg aaaagccaca gggacagaga agcgggagga tgggcagaga ggggctgtct gaacctgggg teccateett geeeeeggag ageaetttee etcaaaggag geactatggg acceeteett tgtctgagga ctcctccctg tgagtgtggg cggggcgact gactgcttct gcctggggcc t <210> SEQ ID NO 43 <211> LENGTH: 601 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: amplicon 30-2 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (301)..(301) <223> OTHER INFORMATION: biallelic marker 30-2/62

<400> SEQUENCE: 43

gctaacagga gaaagcacct gcacactagc tccccgacgc tggaacaggg ccatggccct 60 gegeeecaca etceagetee acteteeaca ggaaaagget eecagaatee ageeaeteag 120 tgtgtggggg caggggccct gctgacttag aaacaagtgg cacattgatc cgcattcaaa 180 cttgccagcc aatcaaccac agccccgcgc acagactete ccaggtggga etgagggggt 240 ctcccctgtc cttggcaggg gcgtctcccc cacgcacccc cagtcccgtc ctctccacag 300 rctccagatg cccacatccc cagaacactc aatgggacaa ctcagagcag gttacagaga 360 aagaaaagcc acacaagctc accaagggca cgctatttca gaagtgcctt ctcctcctgg 420 aaatgtcgac cccaaagctc tcactgggaa acctctggcc tggccccggg aagcgacagg 480 cgcaggtttg gggctgaggc cgtcccagca gctctgtggc ctgccagacc tcagagcact 540

-continued	
cccatcaggg gccacaagag cagagagctc ttcagcccca tgttctcctg gacgaattaa	600
a	601
<pre><210> SEQ ID NO 44 <211> LENGTH: 601 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: amplicon 30-17 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (301)(301) <223> OTHER INFORMATION: biallelic marker 30-17/37</pre>	
<400> SEQUENCE: 44	
caccaccege cacetgeete caggageaet geageetege cagteageee aetttggget	60
ctgtctccag ggatataggg gctggatgga cccgtctcct gaggccagca gaggctccac	120
gccagggtcg gtggcagggc tggcacaggg gaaccaggag gcgccgctgg cttcaccatc	180
ttagetaegg cageceatte eeetgageet eetggeetgg geaacagtgg etegeatgge	240
cageceaceg tgeeeteeag ggteagtage gtetattetg geggeeagea gggetggaga	300
rtettgggae tgttgagaee eteceecaae etecetgage eteegggeae agatgtgaaa	360
agggtgccca ctgcagtcag cactcaaccc ccacagcgtc cagggaggga gaggggccac	420
cgggggctga cccctgccca ttctgcagac aaagccacca ccctgccagg gctcaagagg	480
gaagaaaatg gggaggggggc catttgagca aatgagccca cccgtgagca aggtggaggg	540
acagcacagt ctggcaggat ggggtctcgg tcactggggg gcctggggcc cctggaactc	600
a	601
<pre><210> SEQ ID NO 45 <211> LENGTH: 601 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: amplicon 30-7 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (301)(301) <223> OTHER INFORMATION: biallelic marker 30-7/30</pre>	
<400> SEQUENCE: 45	
gccgagatcc cccgagtccc gaggcgtcgc gtgcttgggg acgtcaggag ccgatggtac	60
aggetegete aggaceeeag teetgagtee acaeeeetge actgeetgag gecaacaeae	120
cgtgcccatg ggggccaggg gtgctcagag tcctggtgct gtgggtgcct ctgtcccaac	180
ggcetetggt ecceateeea acaacaaaag cacaggtggt eggggagaae eggaeggggg	240
ccagggggagc acatgggcac aggctcagcg ggacteetgg aatgttetet ettteteeae	300
ygcacgagcc atttcaaagg caagaatagg cccctcctga ccccgctcag gcaggcctca	360
gggcaagtgg gagtcactgg aagactcaat teetetet gegttteeae eegaggeagg	420
tccagtcacc agagagagaa gcagccacct cctttctcac ggcagctggc aaagcaccgg	480
gtggaggaca gageeggteg geeeaactgt agettegggg etgeeettgg etggtetetg	540
ggcagagccc ggtgctgagg gcttgcagtg ggaaaggcac agcttgagga atgggcatca	600
g	601

g

-continued

<210> SEQ ID NO 46	
<211> LENGTH: 601	
<212> TIPE: DNA <212> OPCANISM. Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: amplicon 30-84	
<220> FEATURE:	
<221> NAME/KEY: allele	
<222> LOCATION: (301) (301)	
<223> OTHER INFORMATION: biallelic marker 30-84/37	
<400> SEQUENCE: 46	
tgtgctaaaa catagtggct taaaaataat gataaccatt tatcgtctca gtttctgcag	60
ctcaggagtc ggacggcacg cagccgatct ccactcccaa cgtgcagggc ctctgccata	120
ageettgaag geacteatte acteaegeat egggggetag taeaggetgt gaeagaggee	180
tgagctggaa ctgttgacca ggacacacac atggccatgt ggcctctggg cttcctcaca	240
gcatggtgtc tggattccag gagttggcat cctgagaaac aaccatgcag aagcagccct	300
rtggateetg geetggeett ggagteagge agtgteaete etgtgeette taaeetggge	360
ccccgggccc aaggggagga aatggagacc ccacctccca gtggagggaa ggcaaggtcc	420
cactgtgggg gtagcacatg ggatacaccc atgtggctgc cgctggagac gttagtttgc	480
cacaccegtt tettetaegt gaacatttge etgeatetea eettetaaet eetgggtget	540
gtttgtccat tttcactaca ccaggggccc ccacagtata tgcagaccag gtttcctggc	600
c	601
<pre><211> LENGTH: 601 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: amplicon 30-15 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: (301)(301) <223> OTHER INFORMATION: biallelic marker 30-15/54</pre>	
ALON CROHENCE, AT	
CAOON DEGOENCE: 47	
gatgetgaat aageeaggaa gaagateegg etaaatgttg geacatteta aagtetaegt	60
gaggccagtc tgaccctggg aacctccatg aagacatggg cgtggagggt ctgccttttg	120
cagggcccac caggggctca caggaaaggt cgtggaaaat tacaagaaat cttccctctg	180
gcactagogg gtgaggggaa tggaagccac ogocagacag caccatotoo toaccotoot	240
gtgaagcaca agactcactt gcagagggaa gagcgcagaa accgtcaccc caggacgctg	300
mggttgaacg agaggaagcg agaatggaga agccctggcc ctggggaaca ggatggaaaa	360
cgettggete ageteegtgg etgegaagga aceggegege tegeggagge cacaeeeega	420
gacccgagga cacagtgcct gcctgagatg gagccagaaa catteteeac cettteacge	480
aagactaaca agggctccat gaaaataaaa ctggaagagc tgaaagagaa gcattctccc	540
tgggtgtgaa accaagaaaa gacacaaagc caaggaaaag ccattgagaa aacacctggc	600
	601

The invention claimed is:

1. An isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 2.

2. A purified polynucleotide encoding the polypeptide of SEQ ID NO: 2, or a polynucleotide fully complementary ⁵ thereto.

3. The polynucleotide according to claim 2, wherein said polynucleotide comprises the polynucleotide sequence of SEQ ID NO: 1 or a polynucleotide fully complementary thereto. 10

4. A vector comprising a polynucleotide encoding the polypeptide of SEQ ID NO: 2.

5. A host cell comprising a vector that comprises a polynucleotide encoding the polypeptide of SEQ ID NO: 2.

6. A method of making a polypeptide, said method comprising the steps of culturing a host cell comprising a vector that comprises a polynucleotide encoding the polypeptide of SEQ ID NO: 2 under conditions suitable for the production of a polypeptide comprising SEQ ID NO: 2.

7. The method according to claim **6**, further comprising the step of purifying said polypeptide comprising SEQ ID NO: 2 from the culture.

8. A composition comprising at least one polypeptide comprising the amino acid sequence of SEQ ID NO: 2 and a physiologically acceptable carrier.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 7,442,519 B2 Page 1 of 3 APPLICATION NO. : 10/519335 : October 28, 2008 DATED INVENTOR(S) : Laurent Cavarec et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: Column 12, Line 62, ""Phenotype"" should read -- "phenotype"--. Column 14, Line 2, "such assay s" should read --such assays--. Line 12, "alter native" should read --alternative--. Column 16, Line 2, "ncbi.nim.nih.gov)" should read --ncbi.nlm.nih.gov)--. Column 17, Line 47, "substancially the same" should read --substantially the same--. Column 18, Line 37, "complementery thereto" should read --complementary thereto--. Line 43, "complementery thereto" should read --complementary thereto--. Lines 49-50, "to a polynucleotides" should read --to a polynucleotide--. Line 63, "NO; 3" should read --NO: 3--. Column 23. Line 23, "Accession No. 043526" should read -- Accession No. 043526--. Column 25, Lines 11-12, "ho momeric" should read --homomeric--. Line 53, "that (I)" should read --that (i)--. Column 28, Line 56, "consisting of 30-2162" should read --consisting of 30-2/62--. Column 30, Line 1, "marker 30-7130" should read --marker 30-7/30--. Line 67, "Human fcetal" should read --Human foetal--.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 7,442,519 B2 Pa APPLICATION NO. : 10/519335 Pa DATED : October 28, 2008 INVENTOR(S) INVENTOR(S) : Laurent Cavarec et al.	ge 2 of 3
It is certified that error appears in the above-identified patent and that said Letters Pa hereby corrected as shown below:	atent is
<u>Column 31,</u> Line 33, "SDI-Leu/-Trp and SDI-Leu/-Trp/-His/-Ade" should read SD/-Leu/-Trp and SD/-Leu/-Trp/-His/-Ade Line 35, "the He Yeast" should readthe Yeast	
<u>Column 33,</u> Line 32, "digestion With EcoRi" should readdigestion with EcoRi Line 61, "pGAD7" should readpGADT7	
<u>Column 34,</u> Line 42, "10 μl" should read100 μl Line 44, "SDI-Leu/-Trp/-His/-Ade" should readSD/-Leu/-Trp/-His/-Ade	
<u>Column 36,</u> Line 50, "w performed" should readwas performed	
<u>Column 37,</u> Lines 19-20, "membrane were then blocked" should read membrane was then blocked Line 66, "phsophorylation" should readphosphorylation	
<u>Column 39,</u> Line 9, "phophorylation" should readphosphorylation	
<u>Column 40,</u> Line 17, "1 μd" should read1 μl	
<u>Column 45,</u> Line 57, "10 μmol" should read10 pmol	
<u>Column 46,</u> Line 20, "dassification" should readclassification	

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

 PATENT NO.
 : 7,442,519 B2

 APPLICATION NO.
 : 10/519335

 DATED
 : October 28, 2008

 INVENTOR(S)
 : Laurent Cavarec et al.

Page 3 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

<u>Column 50,</u> Line 64, "for 30-7130" should read --for 30-7/30--.

Signed and Sealed this

Twenty-eighth Day of April, 2009

John Odl

JOHN DOLL Acting Director of the United States Patent and Trademark Office