a9y United States

Jain et al.

US 20170099365A1

a2y Patent Application Publication o) Pub. No.: US 2017/0099365 A1

43) Pub. Date: Apr. 6, 2017

(54)

(71)
(72)

@

(22)

(60)

CONTEXT ENRICHED DISTRIBUTED

LOGGING SERVICES FOR WORKLOADS IN

A DATACENTER

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Jayant Jain, Cupertino, CA (US);

Anirban Sengupta, Saratoga, CA (US);

Mayank Agarwal, Kirkland, WA (US);
Raju Koganty, San Jose, CA (US);
Chidambareswaran Raman,
Sunnyvale, CA (US); Nishant Jain,
Cupertino, CA (US); Jeremy
Olmsted-Thompson, New York, NY

(US); Srinivas Nimmagadda, San Jose,

CA (US)
Appl. No.: 14/996,172
Filed: Jan. 14, 2016

Related U.S. Application Data

Provisional application No. 62/235,622, filed on Oct.

1, 2015.

Publication Classification

(51) Int. CL
HO4L 29/08 (2006.01)
HO4L 12/24 (2006.01)
(52) US.CL
CPC ... HO4L 67/2804 (2013.01); HO4L 67/2852

(2013.01); HO4L 67/327 (2013.01); HO4L
67/1095 (2013.01); HO4L 41/069 (2013.01)

(57) ABSTRACT

A method of enhancing log packets with context metadata is
provided. The method at a redirecting filter on a host in a
datacenter, intercepts a packet from a data compute node
(DCN) of a datacenter tenant. The method determines that
the intercepted packet is a log packet. The method forwards
the log packet and a first set of associated context metadata
to a proxy logging server. The first set of context metadata
is associated with the log packet based on the DCN that
generated the packet. The method, at the proxy logging
server, associates a second set of context metadata with the
log packet. The second set of context metadata is received
from a compute manager of the datacenter. The method
sending the log packet and the first and second sets of
context metadata from the proxy logging server to a central
logging server associated with the tenant.

VM1
221

VNIC
231

VMn
222

VNIC
232

Redirecting Filter
21

Redirecting Filter
212

230
~

Service VM
(Proxy Logging
Server)

—L e |
233

250

Memory accessible

by Service VM and
Redirecting Filters

Managed Forwarding Element

Cached
Context
Mectadata

290

Uplink 1 ase Uplink m
241 242
Host 205
Tenant 1
Datacenter Compute . .
PNIC 1 ees PNIC p Manager Centralézeer(\:llel_roggmg
251 252 270
281
L]
L]
215 .
—_ Tenant n
Centralized Logging
Network Server
282

Apr. 6,2017 Sheet 1 of 10 US 2017/0099365 Al

Patent Application Publication

My 100
I 51

auljowI} pue
SS@Ippe YI0MISU UO
paseq eiep buie|ouoo
Ag peressuahb o

0¢I

yd

41!

sJanleg BuibBo [esua)

yd

uonedijdde
J1anI9s 8y Aq
poiesuab sbo| mey

L

IT1

yd

uoneondde
J1on1as syl Aq
paieJsaueb sbo| mey

L

u uonedlddy

10 Janag Bunelsusc) 6o

| uopedlddy

10 JaAIsg Bunelsuso) Ho7

7

0l

7

101

Apr. 6,2017 Sheet 2 of 10 US 2017/0099365 Al

Patent Application Publication

7 ‘81

T4
BEINETS JI0MIDN
Buibbo pezijenuad
ujueus] I
. ¥4
L]
L]
18e — — p—
0Z¢ 414 152
BEINETS XX
Beuely d OINd I DINd
Buibbo pazienuad 18
| Wweus) andwo) Jajuaoeleq
COC 1s0H
Zve (%74
w sjundn e L yundn
BIEPBIO
JXOIO))
poyoe) | 06C 757
— - juawelg Buipsemiod pabeuepy
sJel|ld Buioalipay =Tz =
pue WA 9o1n1es Aq Jay4 Buipainps
o1Q15S999E AIOWS 1814 Bunoauipay 1l buioalipay
N (44 1€7
£€T 0¢C
SN~ DINA DINA
(1anteg Zze e [%44
Buibbo Axold) U NA I A
NN 0Ineg N
0€C

Patent Application Publication Apr. 6,2017 Sheet 3 of 10 US 2017/0099365 A1
305
€ Metadata Added by the Redirecting Filter j
310
VM Name //315
VM Instance UUID A 320
Tenant ID // 325
L~
Process ID 1 330
User ID // 335
|~
VM IP Address 1 340
>
Timestamps rd
o
®
o
< I
Fig. 34
345
/ /
— Metadata Received from the Host)
350
VM Processor Usage A 355
VM Memory Usage //360
Host Processor Usage //365
Host Memory Usage P
L]
L}
L]
< —

Fig. 3B

Patent Application Publication Apr. 6,2017 Sheet 4 of 10 US 2017/0099365 A1

370
/
< Metadata Received from Compute Manager >
3735
L~
Host IP Address 1 330
Guest Operating System //385
Average Host Processor Usage // 390
Average Host Memory Usage //395
L~
Average VM Processor Usage 1 397
Average VM Memory Usage ,/
[
[J
[J
] i

Fig. 3C

Apr. 6,2017 Sheet S of 10 US 2017/0099365 Al

Patent Application Publication

p 81

29z
JETNETS JIOMIAN
BuibBbo pazienuard
u Jueusl \
[
. Sl
[]
T8¢
BUIGE 19SS _mmw.mm_\,_ awmlw 15¢
uib6o pazijesuan JINd I DINd
| Wweus| aindwo) Jajuadeieq
T07 150H
Zve (X7
06¢ w yudn oo L yulidn
BIEPRIOIA \
X0
payoe) 752
Jusws|3 Buipiemiod psbeuey
— _
0l [
[(ETNELS Zre [1¥4

Buibbo Axoid)
$59204d Buibbon

Jayi4 Bunoauipay

18Y)14 Bunoaipay

(4 %4
QOINA

1€C

Apr. 6,2017 Sheet 6 of 10 US 2017/0099365 Al

Patent Application Publication

28c
Janlag Buibbon
pazienuad
ujueusa]

18¢
Janiag Buibbo
pazijesuad
L Jueual

SIoMIoU AU}
|A A ySnop pred

¢

S 81

067

erepe |
IXOIO))
payoe)

elEpRIaW
IX8juo)

0c¢

0ls
V v| NETSETS
Buibbo] Axold

—

BlEpERISW
IX8|u0n)

150y 2y} £q
pourejurEw BIRPRION
IX2U0))

1%
943

010 *YI0M)OU ABJISAO
A ‘Arowaw pareys
ysSnoxnp yred

-«

eyep 6o| me.
yum jaxoed

BlEpRISW

Xeon

(39

€0¢

1t

o) AQ uMOUy
BIEpPEION

IXOIO))

748

BlEpRISW
IX81U0)

14
Jey4 Bunoalipay

elep bo| me.
yum 1ex0ed

1€2
0zs SINA_ |

(%44
L IAA

Patent Application Publication Apr. 6,2017 Sheet 7 of 10 US 2017/0099365 A1

600
l 605 /

Intercept a packet at the redirecting filter |~
from the associated VM

Packet is a log packet?

615

Z Z

Identify metadata for the packet based on the
redirecting filter's knowledge of the VM

Ignore the packet

625

Timestamp the metadata and the log packet

\ 4 630

Redirect or send a copt of the packet and the |~
associated metadata to the proxy logging
server

-4

End

Fig. 6

Patent Application Publication Apr. 6,2017 Sheet 8 of 10 US 2017/0099365 A1

‘ Start ’ 700
Y 705 /

Receive a log packet and the associated |/
contcxt mctadata from the redirecting filter

l 710

Query the host for context metadata

l 715

Associate context metadata received from the /
host with the log packet

720

Context metadata from
¢ 725
/

datacenter compute manager
availabch
Query the datacenter compute

Yes manage for context metadata

!

Cache context metadata received

¢ from the datacenter compute
manageer
Y
/
Associate context metadata cached from the 735
datacenter compute manage with the log |/ 730
packet

Fig. 7

Patent Application Publication Apr. 6,2017 Sheet 9 of 10 US 2017/0099365 A1

300

= N
>l

805

Accumulate log packets and associated /
metadata for VMs of one or more tenant

810

Criteria for sending the logs
satisfied?

815

Optionally redact sensitive data in the log

l 820

Compress the log /
\ 825
Encrypt the log 4

l 830

Sent the log to the centralized log server of |/
the corresponding tenant

l
Cw

Fig. 8

US 2017/0099365 Al

Apr. 6,2017 Sheet 10 of 10

Patent Application Publication

6 S

Gv6

ov6
AN
576 _ oL6 0c6
AN _ AN AN
SERIICTgl (shiun
PHOMISN indu Buissaosoid NOH
AN
506
$921A8(AOWBN
indino wa)sAsg obeios
| < D
_ 026
AN 5e6

AN

006

US 2017/0099365 Al

CONTEXT ENRICHED DISTRIBUTED
LOGGING SERVICES FOR WORKLOADS IN
A DATACENTER

CLAIM OF BENEFIT TO PRIOR
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application 62/235,622, filed Oct. 1, 2015.
U.S. Provisional Patent Application 62/235,622 is incorpo-
rated herein by reference.

BACKGROUND

[0002] Administrating a software defined data center
(SDDC) requires increased visibility into the operations of
individual virtual machines. Log analysis has become a
critical tool in the monitoring of datacenter resources such as
servers and applications. System logs are an important
source of such information, but often do not contain enough
identifying information. For instance, clones of virtual
machines running on the same host output system log
information that contains the exact same machine name
identifiers, making it impossible to distinguish which virtual
machines the logs are coming from. Other important infor-
mation in the context of an SDDC is also missing from
system log messages. Additionally, managing and configur-
ing the logging preferences of individual virtual machines in
a large SDDC can be a difficult task.

[0003] Typically logs generated by servers and applica-
tions are sent to a central logging server, which has been
pre-configured to analyze logs received from these servers
and applications. The context encoded in the logs such as
facility, level, server application name and identification,
instance, etc., which play a significant part in analyzing and
classifying these logs, are typically attached by the appli-
cation or the server that generates the log. The logs are then
sent over a transport protocol such as UDP which is lossy,
or TCP which is fairly resource consuming but loss less, to
the pre-configured log server. As the datacenter operation
deploys multiple applications and servers, these applications
and servers could have varying configuration and logging
context metadata, and be programmed with different log
server destinations.

[0004] From a datacenter’s operation point of view, these
logs have only the context that the application or the server
has encoded. There is no other information attached to the
logs, apart from the network address on the log packets that
the datacenter operator can correlate. In the event of a
misconfiguration on the application or the server, all the logs
from that application or server could be lost.

[0005] The existing log services correlate data only after
the logs are received by the log servers in the raw format as
sent by the application or server that generated the logs.
There is currently no mechanism to embellish the log data
from the source itself in an agentless form so as to provide
more context to the log server. The existing log services
focus more on processing a large amount of data using large
data infrastructure and applying load balancers to consume
the received data, rather than making the data itself more
context rich so as to avoid a lot of the post processing for
data correlation.

BRIEF SUMMARY

[0006] Some embodiments provide a distributed logging
service that intercepts system log (syslog) packets from all

Apr. 6,2017

virtual machines running on a host in a datacenter. The
logging service augments the syslog packets with additional
metadata acquired from the host and the data center’s central
compute manager and reroutes the syslog packets to a
centralized syslog server. The distributed logging service
enables centralized management of logging preferences and
allows a new centralized syslog server to be easily config-
ured for all virtual machines running on a host, without
individually modifying the preferences of each virtual
machine.

[0007] Insome embodiments a redirecting filter intercepts
the log packets sent by each tenant virtual machine. For
instance, the redirecting filter intercepts the packets sent to
a logging port such as syslog port. The redirecting filter
identifies a set of context metadata for each log packet and
redirect or copies the log packet and the identified metadata
to a proxy logging server.

[0008] The proxy logging server in some embodiments is
a service virtual machine that is located either on the same
host as the filter or on a different host on the network. In
other embodiments, the proxy logging server is a process
that runs on the same host as the filter. The proxy logging
server identifies further context metadata for the log packets.
For instance, the proxy logging server in some embodiments
gets context metadata directly from the host where the
virtual machine that generated the log is hosted.

[0009] The proxy logging server also utilizes context
metadata received from the datacenter compute manager.
The proxy logging server in some embodiments caches the
context metadata received form the datacenter compute
manager to use for other log packets received from the
virtual machines. The proxy logging server associates the
metadata received form different sources to the log packets.
The proxy logging server compresses and encrypts the log
data and periodically sends the logs in the form of one or
more log messages to a central logging server.

[0010] Some embodiments redact the sensitive informa-
tion from the logs before the log messages leave the host. In
some embodiments, different types of context are added to
the log messages based on different log levels/types (e.g.,
error or debug) present in the log message. For instance, if
the a log message is related to an error condition, the log can
be verbose and provide critical context such as processor,
memory, disk space, etc. On the other hand, a log message
related to debugging may have different context that is
appropriate for debugging purposes.

[0011] The preceding Summary is intended to serve as a
brief introduction to some embodiments of the invention. It
is not meant to be an introduction or overview of all of the
inventive subject matter disclosed in this document. The
Detailed Description that follows and the Drawings that are
referred to in the Detailed Description will further describe
the embodiments described in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings is needed.
Moreover, the claimed subject matters are not to be limited
by the illustrative details in the Summary, Detailed Descrip-
tion and the Drawing, but rather are to be defined by the
appended claims, because the claimed subject matters can be
embodied in other specific forms without departing from the
spirit of the subject matters.

US 2017/0099365 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The novel features of the invention are set forth in
the appended claims. However, for purposes of explanation,
several embodiments of the invention are set forth in the
following figures.

[0013] FIG. 1 illustrates a logging service according to
prior art.
[0014] FIG. 2 conceptually illustrates a logging service

that uses a filter to intercept packets with log data and sends
the packets to a service VM in some embodiments.

[0015] FIG. 3A conceptually illustrates examples of dif-
ferent context metadata that the redirecting filter adds to log
packets in some embodiments.

[0016] FIG. 3B conceptually illustrates examples of dif-
ferent context metadata that are received from the host in
some embodiments.

[0017] FIG. 3C conceptually illustrates examples of dif-
ferent context metadata that are received from the datacenter
compute manager in some embodiments.

[0018] FIG. 4 conceptually illustrates a logging service
that uses a filter to intercept packets with log data and sends
the packets to a user controlled process in some embodi-
ments.

[0019] FIG. 5 conceptually illustrates enhancing a log
packet with context metadata by the redirecting filter and a
proxy logging server in some embodiments.

[0020] FIG. 6 conceptually illustrates a process for inter-
cepting a log packet and redirecting or sending the packet
along with a set of metadata to a proxy logging server in
some embodiments.

[0021] FIG. 7 conceptually illustrates a process for col-
lecting log packets and the associated metadata and further
enhancing the context metadata in some embodiments.
[0022] FIG. 8 conceptually illustrates a process for send-
ing log packets to a central logging server in some embodi-
ments.

[0023] FIG. 9 conceptually illustrates an electronic system
with which some embodiments of the invention are imple-
mented.

DETAILED DESCRIPTION OF THE
INVENTION

[0024] In the following detailed description of the inven-
tion, numerous details, examples, and embodiments of the
invention are set forth and described. However, it should be
understood that the invention is not limited to the embodi-
ments set forth and that the invention may be practiced
without some of the specific details and examples discussed.
[0025] Logging servers provided in prior art receive logs
in raw format. Any context metadata included in these logs
is attached by the servers or applications that generate the
logs. As the datacenter deploys multiple applications and
servers, these applications and servers could have varying
configuration, logging context metadata, and programmed
with different logging server destinations. As such there is
no uniform way of adding context and metadata to the logs.
[0026] FIG. 1 illustrates a logging service according to
prior art. As shown, several servers or applications 101-102
generate logs. FEach server or application 101-102 that
generates logs acts as an agent that adds metadata based on
the particular server or application configuration.

[0027] The logs 111-112 are sent to a set of central logging
servers 120. The central logging servers 120 typically apply

Apr. 6,2017

load balancing to process the large amount of data in the logs
111-112. Data correlation on the logs is done only after the
logs are received by the logging servers in raw format. There
is no other information attached to the logs, apart from the
network address on the log packets and the logs’ time-
stamps, which the logging servers (or a datacenter operator)
can co-relate to generate logs 125 by correlating data from
the raw logs 111-112.

[0028] There is no mechanism in the logging service in
FIG. 1 to include additional context metadata in an agentless
form (i.e., without having each individual server or appli-
cation that generates the logs to add context metadata to the
logs) to avoid post processing by the logging servers 120 for
correlating log data.

[0029] Another shortcoming in the logging service of FIG.
1 is that, in the event of a misconfiguration on a server or
application that generates logs (e.g., to specify a wrong
destination to receive the logs), all logs from that server or
application could be lost. Yet another shortcoming is that
when the system administrator wants to change one of the
central logging servers 120 to which many servers and
applications are sending their logs, the servers and applica-
tions have to be reconfigured to send the logs to the new
logging server.

[0030] 1. Agentless Context Enhanced Distributed Log-
ging Service
[0031] Some embodiments provide a filter that intercepts

log packets that virtual machines (VMs) send. The filter adds
context metadata to the packets and sends them to a proxy
log collection service (or proxy logging server) to add
further context metadata and send the logs and the associ-
ated metadata to an external logging server. As further
described below, the proxy logging server in some embodi-
ments is a service VM that is located either on the same host
as the filter or on a different host on the network. In other
embodiments, the proxy logging server is a process that runs
on the same host as the filter.

[0032] A. Using a Service VM to Collect Logs and Add
Context Metadata to the Logs

[0033] FIG. 2 conceptually illustrates a logging service
that uses a filter to intercept packets with log data and sends
the packets to a service VM in some embodiments. The host
205 is a physical machine that hosts virtual machines (VMs)
221-222 or other data compute nodes for one or more
tenants. A VM is a software implementation of a machine
such as a computer.

[0034] The host in some embodiments includes virtual-
ization software, which is a software abstraction layer that
operates on top of the hardware and below any operating
system in some embodiments. In some embodiments, the
host kernel performs virtualization functionalities (e.g., to
virtualize the hardware for the VMs operating on the host
machine). The kernel handles various management tasks,
such as memory management, processor scheduling, or any
other operations for controlling the execution of the VMs
operating on the host machine.

[0035] Insome embodiments, the kernel maintains context
metadata for the host and the VMs. For instance, the host in
some embodiments maintains processor and memory usage
data for each VM as well as processor and memory usage
data for the host. As described further below, some embodi-
ments query the metadata maintained by the host through the

US 2017/0099365 Al

host kernel and include them as a part of the context
metadata that is associated with packets that carry log
information.

[0036] The host also includes a managed forwarding ele-
ment (MFE) 260 that operates as a software forwarding
element. The MFE performs packet processing operations
such as receiving and forwarding packets for the VMs or
other data compute nodes that serve as the sources and
destinations for packets. For example, the host machine can
host VMs for several different logical networks, and the
MFE would implement the several logical networks for the
VMs residing on the host. As shown, each VM 221-222
communicates with the MFE 260 through an associated
virtual network interface card (VNIC) 231-232.

[0037] The MFE also sends packets to and receives pack-
ets from an external network 215 through uplinks 241-242
and physical network interface cards (PNICs) 251-252. An
uplink is a module that relays packets between the MFE 260
and a PNICs in order to perform various packet processing
functions on incoming and outgoing traffic.

[0038] In some embodiments the MFE implements an
overlay network. An overlay network is a network virtual-
ization technology that achieves multi-tenancy in a comput-
ing environment. Examples of overlay networks include
Virtual eXtensible LAN (VXL AN), Generic Network Vir-
tualization Encapsulation (GENEVE), and Network Virtu-
alization using Generic Routing Encapsulation (NVGRE).
For instance, VXILAN is a Layer 2 (L2) overlay scheme over
a Layer 3 (L3) network. VXL AN encapsulates an Ethernet
L2 frame in IP (MAC-in-UDP encapsulation) and allows
VMs to be a part of virtualized 1.2 subnets operating in
separate physical L3 networks. Similarly, NVGRE uses
Generic Routing Encapsulation (GRE) to tunnel [.2 packets
over L3 networks.

[0039] Some embodiments provide a redirecting filter that
intercepts log packets sent by a VM. For instance, the
redirecting filter intercepts packets that a VM sends to a
logging port (e.g., syslog port). The filter adds context
metadata to the packets and sends them to a proxy log
collection service (or proxy logging server). As shown, each
VM 221-222 has a redirecting filter 211-212 between the
VM’s VNIC 231-232 and the MFE 260.

[0040] The proxy logging server in the embodiment
shown in FIG. 2 is a service VM 230. Although the service
VM 230 is shown in the host 205, the service VM in some
embodiments is located on another host on the network.
Different embodiments forward the log packets and the
associated metadata from a redirecting filter to the service
VM differently. For instance, in some embodiments, the
service VM 230 and each of the redirecting filters have
access to a common memory. As shown, the redirecting filter
212 and service VM 230 have access to memory 250. In
these embodiments, the redirecting filter places the packets
that are redirected (or copied) to the service VM in memory
250 and the service VM accesses the packets from memory
250.

[0041] In other embodiments, the redirecting filter encap-
sulates the log packet with an overly network header and
includes the context metadata in the encapsulation header.
The redirecting filter then sends the encapsulated packet
through the MFE 260 to the service VM’s VNIC 233
through an overlay network. When the service VM is on the
same host as the redirecting filter (as shown), the packets do
not leave the host and are delivered to the service VM by the

Apr. 6,2017

MEFE through an overlay tunnel in the host. In the embodi-
ments that the service VM is on a different host, the packets
are sent through a tunnel in the network 215, which also
implements the overlay network.

[0042] The figure further shows several centralized log-
ging servers 281-282 for different tenants. The service VM
collects the log packets generated by the VMs of each tenant
and the log packets’ associated metadata and periodically
sends the log packets in bulk (e.g., after a predetermined
period of time and/or after a predetermined amount of log is
collected) to each tenant’s corresponding centralized log-
ging server.

[0043] The communication between the service VM 230
and the central logging servers 281-282 in some embodi-
ments is through the MFE 260, one of the uplinks 241-242,
one of the PNICs 251-252, and the network 215. In some
embodiments, the service VM uses a protocol such as user
datagram protocol (UDP) or transmission control protocol
(TCP) to send logs to the centralized logging servers.

[0044] B. Sources of Context Metadata to Enhance the
Logs
[0045] There are several sources of metadata that a redi-

recting filter and the service VM can utilize to add context
metadata to the log packets. As shown, each redirecting filter
211-212 is configured to intercept log packets for one of the
VMs 221-222. As such, the redirecting filter is aware of
certain properties of the corresponding VM and the process
that is generating the log. The redirecting filter in some
embodiments stores the VM’s context metadata as a part of
the configuration of the redirecting filter, e.g., in a profile
that the redirecting filter maintains.

[0046] FIG. 3A conceptually illustrates examples of dif-
ferent context metadata 305 that the redirecting filter asso-
ciates to log packets in some embodiments. As shown, the
metadata includes VM name 310, the VM instance’s uni-
versally unique identifier (UUID) 315, tenant identifier
(identification of the tenant that operates the VM that has
generated the log packet) 320, identifier of the process that
generated the log packet 325, user identifier 330, VM’s IP
address 335, Timestamp 340 (the time the log is received at
the redirecting filter), etc. In some embodiments, when the
logging service is configured for a VM, the metadata that
identifies these properties is programmed in the profile
instance of the logging service and is available to the
corresponding filter of the VM. It should be understood that
the individual context metadata shown in FIGS. 3A-3C are
examples of possible context metadata and the system can
be readily expanded to accept additional context metadata.
[0047] As described above, the host is also utilized as a
source of context metadata to enhance the logs. The host
maintains context metadata for the host and the VMs. For
instance, the host in some embodiments maintains processor
and memory usage data for each VM as well as processor
and memory usage for the host. The service VM (or the
redirecting filter) in some embodiments queries the metadata
maintained by the host through the host kernel. For instance,
in some embodiments, the service VM issues a shell com-
mand to the kernel to get the metadata directly from the host.
The service VM then parses the output of the shell command
to identify the metadata.

[0048] FIG. 3B conceptually illustrates examples of dif-
ferent context metadata 345 that are received from the host
in some embodiments. As shown, the context metadata 345
that is maintained by the host and is used to enhance the logs

US 2017/0099365 Al

include VM processor usage 350, VM memory usage 355,
host processor usage 360, host memory usage 365, etc.
[0049] Another source of context metadata used by service
VM to enhance log packets is the datacenter compute
manager 270 (shown in FIG. 2), which configures and
manages hosts and VMs in the datacenter. The datacenter
compute manager maintains a set of context metadata such
as the host Internet protocol (IP) address or the guest
operating system used by each VM. The service VM 230 in
some embodiments queries the datacenter compute manager
for the context metadata and associates the context metadata
to log packets. The communication between the service VM
230 and the datacenter compute manager in some embodi-
ments is through the MFE 260, one of the uplinks 241-242,
one of the PNICs 251-252, and the network 215.

[0050] FIG. 3C conceptually illustrates examples of dif-
ferent context metadata 370 that are received from the
datacenter compute manager in some embodiments. As
shown, the metadata includes host IP address 375, guest
operating system 380, average host processor usage 385,
average host memory usage 390, average VM processor
usage 395, average VM memory usage 397, etc.

[0051] Since querying the datacenter compute manager
270 for each log packet is time consuming, the service VM
caches (e.g., in cache 290 shown in FIG. 2) the metadata for
individual virtual machines and reuses the cached metadata
in augmenting logs coming from the same virtual machine.
The service VM, therefore, does not have to re-query the
datacenter compute manager every time the service VM
receives a new log.

[0052] Instead, the service VM only queries datacenter
compute manager for static data (such as host IP address and
guest operating system) when a VM sends a log packet for
the first time. In alternative embodiments, the service VM
queries the datacenter compute manager for all configured
VMSs’ static metadata and caches them at once. In these
embodiments, the datacenter compute manager is queried
for VM metadata only when a new VM is configured on the
host. The changing metadata such as average processor and
memory usage is also periodically queried (e.g., at prede-
termined time intervals) from the datacenter compute man-
ger and is cached to enhance log packets that are received
during that time interval.

[0053] C. Using a Logging Process to Collect Logs and
Add Context Metadata to the Logs

[0054] FIG. 4 conceptually illustrates a logging service
that uses a filter to intercept packets with log data and send
the packets to a logging process in some embodiments. One
difference between the embodiment described by reference
to in FIG. 2 and the alternative embodiment in FIG. 4 is
using a logging process 410 instead of a service VM 230 as
the proxy logging server. The logging process 410 in some
embodiments is a process that runs on the host operating
system. This embodiment removes the overhead of using a
service VM, as the logging process can interact with other
processes in the host, e.g., through the control plane.
[0055] Similar to the embodiment of FIG. 2, the redirect-
ing filter intercepts log packets, adds metadata that is avail-
able to the redirecting filter (e.g., the metadata shown in FIG.
3A), and redirects (or copies) the packets and the metadata
to the logging process 410.

[0056] Similar to the service VM 230, the logging process
410 queries the host to get additional metadata (e.g., the
metadata shown in FIG. 3B). Similar to the service VM 230,

Apr. 6,2017

the logging service 410 also queries the compute manager
(either periodically or at the initialization) for context meta-
data. The logging process 410 caches the context metadata
in cache 290 and uses the metadata to enhance the log
packets.

[0057] In some embodiments, the logging process is con-
figured through a network manager service to support mul-
tiple logging server IP addresses for multiple tenants. The
logging process collects the log packets generated by the
VMs of each tenant and the log packets’ associated metadata
and periodically sends the log packets in bulk (e.g., after a
predetermined period of time and/or after a predetermined
amount of log is collected) to each tenant’s corresponding
centralized logging server 281-282.

[0058] D. Examples of Enhancing of Logs with Metadata
[0059] FIG. 5 conceptually illustrates enhancing a log
packet with context metadata by the redirecting filter and the
proxy logging server in some embodiments. The proxy
logging server 510 can be a service VM (such as service VM
230 in FIG. 2) or a logging process (such as logging process
410 in FIG. 4). For simplicity other components of FIGS. 2
and 4 such as the MFE, the network, etc., are not shown in
FIG. 5.

[0060] As shown, the redirecting filter 211 intercepts log
packets 520 that are sent by a VM 221 (e.g., packets that are
sent to a logging port such as the syslog port). The redirect-
ing filter identifies context metadata 525 for the packet from
the context metadata 305 that is known to the redirecting
filter (e.g., context metadata in FIG. 3A). The redirecting
filter 211 then redirects the packet (or sends a copy of the
packet) 530 and the associated context metadata 535 to the
proxy logging server 510.

[0061] The proxy logging server 510 also identifies addi-
tional context metadata for the log packets. As shown, the
proxy sever 510 gets context metadata 545 from the host
(e.g., metadata 370 shown in FIG. 3B) as described above by
reference to FIG. 2 to further enhance the metadata for the
log packets.

[0062] The proxy logging server also gets context meta-
data 550 (e.g., metadata 345 shown in FIG. 3C) from the
cached context metadata 290, which is received from data-
center compute manager 270 (shown in FIGS. 2 and 4)
either periodically or at initialization time of the VM to
further enhance the metadata for the log packets. The proxy
logging server collects the log packets for each tenant and
after a predetermined amount of time or after a predeter-
mined amount of log packets are collected, sends the log
packets in bulk to the tenants’ centralized logging servers
281-282.

[0063] The proxy logging server in some embodiments
redacts confidential data such as passwords for the logs
before the logs are sent out of the host. The proxy logging
server also compresses and encrypts the log packets to
provide speed and security for transmitting the logs to
centralized logging servers outside the host.

[0064] The proxy logging server in some embodiments
associates different types of metadata context to a log packet
based on different log levels/types (such as error or debug)
present in the log packet. For instance, if a log packet is
related to an error condition, the associated metadata is made
verbose to provide critical context such as processor,
memory, disk space etc. On the other hand, the proxy
logging server may associate different metadata to a log
packet that is related to debugging to provide information

US 2017/0099365 Al

appropriate for debugging purposes. The proxy logging
server in some embodiments utilizes a set of client-config-
ured rules to parse the log packets in order to filter the
verbose log messages and/or to associate additional meta-
data for different log levels/types.

[0065] FIG. 6 conceptually illustrates a process 600 for
intercepting a log packet and redirecting or sending the log
packet along with a set of metadata to a proxy logging server
in some embodiments. The process in some embodiments is
performed by a redirecting server such as redirecting server
221 or 222 described above.

[0066] As shown, the process intercepts (at 605) a packet
at the redirecting filter from a VM associated with the
redirecting filter. For instance, the process receives packet
520 with raw log data from VM 221 as described above by
reference to FIG. 5. The packet in some embodiments is
intercepted when the packet is sent from the VM to an MFE.
[0067] The process then determines (at 610) whether the
packet is a log packet. For instance, the process determines
the packet is a log packet when the packet is sent to a logging
port such as syslog port. If the packet is not a log packet, the
process ignores (at 615) the packet. The process then ends.
[0068] Otherwise, the process identifies metadata for the
packet based on the redirecting filter’s knowledge of the
VM. For instance, the redirecting filter is configured to
intercept packets from a particular tenant or is configured to
listen to a particular logging port. The redirecting filter is
aware of context metadata such as VM name, VM UUID,
VM IP address (e.g., as described above by reference to FIG.
3A).

[0069] The process also timestamps (at 625) the metadata
and/or the log packet. The process then redirects or sends a
copy of the packet and the associated metadata to the proxy
logging server. For instance, the process sends packer 530
and context metadata 535 to proxy logging server 510 as
shown in FIG. 5. The process then ends.

[0070] FIG. 7 conceptually illustrates a process 700 for
collecting log packets and the associated metadata and
further enhancing the context metadata in some embodi-
ments. The process in some embodiments is performed by a
proxy logging server such as proxy logging servers 230,
410, or 510 shown in FIGS. 3-5.

[0071] As shown, the process receives (at 705) a log
packet and the associated context metadata from the redi-
recting filter. The process then queries (at 710) the host for
additional context metadata. For instance, the process que-
ries the host for context metadata 545 as described above by
reference to FIG. 5. The process then associates (at 715) the
context metadata received from the host with the log packet.

[0072] The process then determines (at 720) whether
context metadata from the datacenter compute manager is
available in cache. For instance, the process determines
whether static context metadata has already been received
from the compute sever and cached. The process also
determines whether dynamic metadata has already been
received from the compute sever and cached within a
predetermined amount of time.

[0073] If context metadata from the datacenter compute
manager is available in cache, the process proceeds to 735,
which is described below. Otherwise, the process queries (at
725) the datacenter compute manager for context metadata.
For instance, the process queries datacenter compute man-
ager 270 as described above by reference to FIGS. 2 and 5.

Apr. 6,2017

[0074] The process then caches (at 730) context metadata
received from the datacenter compute manager. For
instance, the process stores the context metadata in cache
290 shown in FIGS. 2, 4, and 5. The process then associates
(at 735) context metadata cached from the datacenter com-
pute manager with the log packet. The process in some
embodiments associates different types of metadata context
to a log packet based on different log levels/types (such as
error or debug) present in the log packet. For instance, if a
log packet is related to an error condition, the associated
metadata is made verbose to provide critical context such as
processor, memory, disk space etc. On the other hand, the
process may associate different metadata to a log packet that
is related to debugging to provide information appropriate
for debugging purposes. The process in some embodiments
utilizes a set of client-configured rules to parse the log
packets in order to filter the verbose log messages and/or to
associate additional metadata for different log levels/types.
The process then ends.

[0075] FIG. 8 conceptually illustrates a process 800 for
sending log packets to a central logging server in some
embodiments. The process is performed by a proxy logging
server such as proxy logging server 230, 410, or 510
described above.

[0076] As shown, the process accumulates (at 805) log
packets and associated metadata for VMs of one or more
tenants. The process in some embodiments stores the logs of
each tenant in separate storage locations. The process then
determines (at 810) whether a set of criteria for sending the
logs to a central logging server is satisfied. For instance, the
process determines whether a predetermined amount of time
is passed for the last time the logs are sent or a predeter-
mined amount of log has been accumulated. If not, the
process proceeds to 805, which was described above.
[0077] Otherwise, the process optionally redacts (at 815)
sensitive data such as passwords and other sensitive data in
the logs prior to sending the logs out of the host. The process
then compresses (at 820) the logs. The process then encrypts
(at 825) the logged packets. The process then sends (at 830)
the logs to the centralized log server of the corresponding
tenant. The process then ends.

[0078] In addition to providing a uniform way of identi-
fying and attaching metadata to the log packets, several
other benefits are provided by the disclosed embodiments.
For instance, parsing the log messages at the source by using
the spare capacity of the host machines reduces the need for
powerful dedicated log servers. Filtering verbose messages
at the source based on client-configured rules and providing
buffering and compression capabilities at the source reduces
the lossy characteristic of the packet traffic. Metadata infor-
mation (such as processor and memory usage) that are
critical to the functioning of the servers or applications that
generate the logs are immediately correlated at the source
with the generated logs rather than trying to match the
information received around the same timeline at a central
logging service from different logging sources as is typical
in the prior art.

[0079] II. Electronic System

[0080] Many of the above-described features and applica-
tions are implemented as software processes that are speci-
fied as a set of instructions recorded on a computer readable
storage medium (also referred to as computer readable
medium). When these instructions are executed by one or
more processing unit(s) (e.g., one or more processors, cores

US 2017/0099365 Al

of processors, or other processing units), they cause the
processing unit(s) to perform the actions indicated in the
instructions. Examples of computer readable media include,
but are not limited to, CD-ROMs, flash drives, RAM chips,
hard drives, EPROMs, etc. The computer readable media
does not include carrier waves and electronic signals passing
wirelessly or over wired connections.

[0081] In this specification, the term “software” is meant
to include firmware residing in read-only memory or appli-
cations stored in magnetic storage, which can be read into
memory for processing by a processor. Also, in some
embodiments, multiple software inventions can be imple-
mented as sub-parts of a larger program while remaining
distinct software inventions. In some embodiments, multiple
software inventions can also be implemented as separate
programs. Finally, any combination of separate programs
that together implement a software invention described here
is within the scope of the invention. In some embodiments,
the software programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the
operations of the software programs.

[0082] FIG.9 conceptually illustrates an electronic system
900 with which some embodiments of the invention are
implemented. The electronic system 900 can be used to
execute any of the control, virtualization, or operating
system applications described above. The electronic system
900 may be a computer (e.g., a desktop computer, personal
computer, tablet computer, server computer, mainframe, a
blade computer etc.), phone, PDA, or any other sort of
electronic device. Such an electronic system includes vari-
ous types of computer readable media and interfaces for
various other types of computer readable media. Electronic
system 900 includes a bus 905, processing unit(s) 910, a
system memory 920, a read-only memory (ROM) 930, a
permanent storage device 935, input devices 940, and output
devices 945.

[0083] The bus 905 collectively represents all system,
peripheral, and chipset buses that communicatively connect
the numerous internal devices of the electronic system 900.
For instance, the bus 905 communicatively connects the
processing unit(s) 910 with the read-only memory 930, the
system memory 920, and the permanent storage device 935.
[0084] From these various memory units, the processing
unit(s) 910 retrieve instructions to execute and data to
process in order to execute the processes of the invention.
The processing unit(s) may be a single processor or a
multi-core processor in different embodiments.

[0085] The read-only-memory 930 stores static data and
instructions that are needed by the processing unit(s) 910
and other modules of the electronic system. The permanent
storage device 935, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 900 is off. Some embodiments of the invention use
a mass-storage device (such as a magnetic or optical disk
and its corresponding disk drive) as the permanent storage
device 935.

[0086] Other embodiments use a removable storage
device (such as a floppy disk, flash drive, etc.) as the
permanent storage device. Like the permanent storage
device 935, the system memory 920 is a read-and-write
memory device. However, unlike storage device 935, the
system memory is a volatile read-and-write memory, such as

Apr. 6,2017

random access memory. The system memory stores some of
the instructions and data that the processor needs at runtime.
In some embodiments, the invention’s processes are stored
in the system memory 920, the permanent storage device
935, and/or the read-only memory 930. From these various
memory units, the processing unit(s) 910 retrieve instruc-
tions to execute and data to process in order to execute the
processes of some embodiments.

[0087] The bus 905 also connects to the input and output
devices 940 and 945. The input devices enable the user to
communicate information and select commands to the elec-
tronic system. The input devices 940 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 945 display images generated
by the electronic system. The output devices include printers
and display devices, such as cathode ray tubes (CRT) or
liquid crystal displays (LCD). Some embodiments include
devices such as a touchscreen that function as both input and
output devices.

[0088] Finally, as shown in FIG. 9, bus 905 also couples
electronic system 900 to a network 925 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or
a network of networks, such as the Internet. Any or all
components of electronic system 900 may be used in con-
junction with the invention.

[0089] Some embodiments include electronic compo-
nents, such as microprocessors, storage and memory that
store computer program instructions in a machine-readable
or computer-readable medium (alternatively referred to as
computer-readable storage media, machine-readable media,
or machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and floppy disks. The computer-readable media may
store a computer program that is executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as is
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a microprocessor using an interpreter.

[0090] While the above discussion primarily refers to
microprocessor or multi-core processors that execute soft-
ware, some embodiments are performed by one or more
integrated circuits, such as application specific integrated
circuits (ASICs) or field programmable gate arrays (FP-
GAs). In some embodiments, such integrated circuits
execute instructions that are stored on the circuit itself.

[0091] As used in this specification, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic
or other technological devices. These terms exclude people
or groups of people. For the purposes of the specification,
the terms display or displaying means displaying on an
electronic device. As used in this specification, the terms
“computer readable medium,” “computer readable media,”

US 2017/0099365 Al

and “machine readable medium” are entirely restricted to
tangible, physical objects that store information in a form
that is readable by a computer. These terms exclude any
wireless signals, wired download signals, and any other
ephemeral or transitory signals.

[0092] While the invention has been described with ref-
erence to numerous specific details, one of ordinary skill in
the art will recognize that the invention can be embodied in
other specific forms without departing from the spirit of the
invention. In addition, a number of the figures (including
FIGS. 6-8) conceptually illustrate processes. The specific
operations of these processes may not be performed in the
exact order shown and described. The specific operations
may not be performed in one continuous series of opera-
tions, and different specific operations may be performed in
different embodiments. Furthermore, the process could be
implemented using several sub-processes, or as part of a
larger macro process.

[0093] This specification refers throughout to computa-
tional and network environments that include virtual
machines (VMs). However, virtual machines are merely one
example of data compute nodes (DCNs) or data compute
end nodes, also referred to as addressable nodes. DCNs may
include non-virtualized physical hosts, virtual machines,
containers that run on top of a host operating system without
the need for a hypervisor or separate operating system, and
hypervisor kernel network interface modules.

[0094] VMs, in some embodiments, operate with their
own guest operating systems on a host using resources of the
host virtualized by virtualization software (e.g., a hypervi-
sor, virtual machine monitor, etc.). The tenant (i.e., the
owner of the VM) can choose which applications to operate
on top of the guest operating system. Some containers, on
the other hand, are constructs that run on top of a host
operating system without the need for a hypervisor or
separate guest operating system. In some embodiments, the
host operating system uses name spaces to isolate the
containers from each other and therefore provides operating-
system level segregation of the different groups of applica-
tions that operate within different containers. This segrega-
tion is akin to the VM segregation that is offered in
hypervisor-virtualized environments that virtualize system
hardware, and thus can be viewed as a form of virtualization
that isolates different groups of applications that operate in
different containers. Such containers are more lightweight
than VMs.

[0095] Hypervisor kernel network interface module, in
some embodiments, is a non-VM DCN that includes a
network stack with a hypervisor kernel network interface
and receive/transmit threads. One example of a hypervisor
kernel network interface module is the vimknic module that
is part of the ESXi™ hypervisor of VMware, Inc.

[0096] One of ordinary skill in the art will recognize that
while the specification refers to VMs, the examples given
could be any type of DCNs, including physical hosts, VMs,
non-VM containers, and hypervisor kernel network interface
modules. In fact, the example networks could include com-
binations of different types of DCNs in some embodiments.

[0097] In view of the foregoing, one of ordinary skill in
the art would understand that the invention is not to be
limited by the foregoing illustrative details, but rather is to
be defined by the appended claims.

Apr. 6,2017

What is claimed is:

1. A method of enhancing log packets with context
metadata, the method comprising:

at a redirecting filter on a host in a datacenter, intercepting

a packet from a data compute node (DCN) of a data-
center tenant;

determining that the intercepted packet is a log packet;

forwarding the log packet and a first set of associated

context metadata to a proxy logging server, the first set
of context metadata associated with the log packet
based on the DCN that generated the packet;

at the proxy logging server, associating a second set of

context metadata with the log packet, the second set of
context metadata received from a compute manager of
the datacenter; and

sending the log packet and the first and second sets of

context metadata from the proxy logging server to a
central logging server associated with the tenant.

2. The method of claim 1 further comprising:

at the proxy logging server, associating a third set of

context metadata with the log packet, the third set of
context metadata received by the proxy logging server
from the host; and

sending the third set of context metadata with the log

packet from the proxy logging server to the central
logging server associated with the tenant.

3. The method of claim 1, wherein the second set of
context metadata received from the compute manager is
cached in the host, wherein associating the second set of
context metadata with the log packet comprises associating
the cached context metadata with the log packet.

4. The method of claim 1 further comprising redacting a
set of confidential information in the log packet at the proxy
logging server prior to sending the packet to the central
logging server.

5. The method of claim 1 further comprising:

accumulating a plurality of log packets by the proxy

logging server;

compressing the plurality of log packets; and

encrypting the compressed of log packets.

6. The method of claim 5, wherein sending the packet
from the proxy logging server to the central logging server
comprises sending the encrypted and compressed plurality
of log packets to the central logging server in bulk.

7. The method of claim 1, wherein the DCN is a virtual
machine.

8. A non-transitory machine readable medium storing a
program for enhancing log packets with context metadata,
the program executable by a processing unit, the program
comprising sets of instructions for:

intercepting, at a redirecting filter on a host in a datacen-

ter, a packet from a data compute node (DCN) of a
datacenter tenant;
determining that the intercepted packet is a log packet;
forwarding the log packet and a first set of associated
context metadata to a proxy logging server, the first set
of context metadata associated with the log packet
based on the DCN that generated the packet;

associating, at the proxy logging server, a second set of
context metadata with the log packet, the second set of
context metadata received from a compute manager of
the datacenter; and

sending the log packet and the first and second sets of

context metadata from the proxy logging server to a
central logging server associated with the tenant.

US 2017/0099365 Al

9. The non-transitory machine readable medium of claim
8, the program further comprising sets of instructions for:

associating, at the proxy logging server, a third set of

context metadata with the log packet, the third set of
context metadata received by the proxy logging server
from the host; and

sending the third set of context metadata with the log

packet from the proxy logging server to the central
logging server associated with the tenant.

10. The non-transitory machine readable medium of claim
8, wherein the second set of context metadata received from
the compute manager is cached in the host, wherein the set
of instructions for associating the second set of context
metadata with the log packet comprises a set of instructions
for associating the cached context metadata with the log
packet.

11. The non-transitory machine readable medium of claim
8, the program further comprising a set of instructions for
redacting a set of confidential information in the log packet
at the proxy logging server prior to sending the packet to the
central logging server.

12. The non-transitory machine readable medium of claim
8, the program further comprising sets of instructions for:

accumulating a plurality of log packets by the proxy

logging server;

compressing the plurality of log packets; and

encrypting the compressed of log packets.

13. The non-transitory machine readable medium of claim
12, wherein the set of instructions for sending the packet
from the proxy logging server to the central logging server
comprises a set of instructions for sending the encrypted and
compressed plurality of log packets to the central logging
server in bulk.

14. The non-transitory machine readable medium of claim
8, wherein the DCN is a virtual machine.

15. A system comprising:

a set of processing units; and

a non-transitory machine readable medium storing a pro-

gram for enhancing log packets with context metadata,

the program executable by a processing unit in the set

of processing units, the program comprising sets of

instructions for:

intercepting, at a redirecting filter on a host in a
datacenter, a packet from a data compute node
(DCN) of a datacenter tenant;

Apr. 6,2017

determining that the intercepted packet is a log packet;

forwarding the log packet and a first set of associated
context metadata to a proxy logging server, the first
set of context metadata associated with the log
packet based on the DCN that generated the packet;

associating, at the proxy logging server, a second set of
context metadata with the log packet, the second set
of context metadata received from a compute man-
ager of the datacenter; and

sending the log packet and the first and second sets of
context metadata from the proxy logging server to a
central logging server associated with the tenant.

16. The system of claim 15, the program further com-
prising sets of instructions for:

associating, at the proxy logging server, a third set of

context metadata with the log packet, the third set of
context metadata received by the proxy logging server
from the host; and

sending the third set of context metadata with the log

packet from the proxy logging server to the central
logging server associated with the tenant.

17. The system of claim 15, wherein the second set of
context metadata received from the compute manager is
cached in the host, wherein the set of instructions for
associating the second set of context metadata with the log
packet comprises a set of instructions for associating the
cached context metadata with the log packet.

18. The system of claim 15, the program further com-
prising a set of instructions for redacting a set of confidential
information in the log packet at the proxy logging server
prior to sending the packet to the central logging server.

19. The system of claim 15, the program further com-
prising sets of instructions for:

accumulating a plurality of log packets by the proxy

logging server;

compressing the plurality of log packets; and

encrypting the compressed of log packets.

20. The system of claim 19, wherein the set of instructions
for sending the packet from the proxy logging server to the
central logging server comprises a set of instructions for
sending the encrypted and compressed plurality of log
packets to the central logging server in bulk.

21. The system of claim 8, wherein the DCN is a virtual
machine.

