
(19) United States
US 2003O161309A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0161309 A1
Karuppiah (43) Pub. Date: Aug. 28, 2003

(54) NETWORKADDRESS ROUTING USING (52) U.S. Cl. .. 370/392; 370/401
MULTIPLE ROUTING IDENTIFIERS

(57) ABSTRACT
(76) Inventor: Ettikan K. Karuppiah, Klang Selangor

(MY)

Correspondence Address:
FISH & RICHARDSON, PC
4350 LA JOLLAVILLAGE DRIVE
SUTE 500
SAN DIEGO, CA 92122 (US)

(21) Appl. No.: 10/081,055

(22) Filed: Feb. 22, 2002

Publication Classification

(51) Int. Cl. .. H04L 12/56

CONFIRMMULTIPLE
ROUTING IDENTIFIERS
IN ROUTING ADDRESS

BUILD
ROUTING
MATRIX

DETERMINE A SET OF
ROUTE DENTIFICATION
OPERATIONS TO BE

PERFORMED BASED ON
THE ROUTING MATRIX

IDENTIFY ROUTE
USING THE SET OF

ROUTE IDENTIFICATION
OPERATIONS

Network address routing Systems and techniques enable
multiple lookup techniques and multiple data Structures to
be used in identifying a next-hop route for a single desti
nation address. Various Subparts of a destination address are
examined Separately to determine a set of route identifica
tion operations to be performed, and a routing matrix may be
built. The separate examination of the subparts of the
destination address may involve performing an EXCLU
SIVE OR operation on multiple routing identifiers from a
Source and a destination address in a packet. Parallel pro
cessing may be used, Such as by using multiple hardware
threads in multiple programming engines in a hardware
based multithreaded processor. The determined set of route
identification operations may include different lookup tech
niques and may employ different data structures.

200

220

230

240

CTI ‘ADJAH

US 2003/0161309 A1

09 I ?/

9ZIZZI
87 I 'ADIAH

Patent Application Publication Aug. 28, 2003 Sheet 1 of 9

Patent Application Publication Aug. 28, 2003 Sheet 2 of 9 US 2003/0161309 A1

RECEIVE 200
ROUTING
ADDRESS

210 CONFERM MULTIPLE
ROUTING IDENTIFIERS
IN ROUTING ADDRESS

220

DETERMINE A SET OF 230
ROUTEIDENTIFICATION
OPERATIONS TO BE

PERFORMED BASED ON
THE ROUTING MATRIX

IDENTIFY ROUTE 240
USING THE SET OF

ROUTEIDENTIFICATION
OPERATIONS

FIG. 2

US 2003/0161309 A1 Patent Application Publication Aug. 28, 2003 Sheet 3 of 9

Patent Application Publication Aug. 28, 2003 Sheet 4 of 9 US 2003/0161309 A1

405 400 /-
Host

level routing? SET HOST LEVEL
MATRIXELEMENT

Site SET SLA
level routing? MATRIX

ELEMENT

Next SET NLA
level routing? MATRIX

ELEMENT

Top SETTLA
level routing? MATRIX

ELEMENT

End

FIG. 4A

Patent Application Publication Aug. 28, 2003 Sheet 5 of 9 US 2003/0161309 A1

Host SET HOST LEVEL
level routing? MATRIXELEMENT

Site SET SLA
level routing? MATRIX

ELEMENT

Next
level routing?

Top SETTLA
level routing? MATRIX

ELEMENT

FIG. 4B

Patent Application Publication Aug. 28, 2003 Sheet 7 of 9 US 2003/0161309 A1

IDENTIFY ROUTE
Host USING INTERFACE ID

level routing? & FIRST
DATASTRUCTURE

IDENTIFY ROUTE
Site USING SLA ID

level routing? AND SECOND
DATASTRUCTURE

IDENTIFY ROUTE
Next USING NLA ID

level routing? AND THIRD
DATASTRUCTURE

IDENTIFY ROUTE
Top -- USING TLA ID

level routing? AND FOURTH
DATASTRUCTURE

FIG. 6

ARIJLNIH XINHALVIN {DNICINOd[S@HIRÐHOO JL£{S

US 2003/0161309 A1

{{Z (5) I. H

NOIJLVNIJLSEICI CINV SJLI8H FIORI[C]OS RIOX

Patent Application Publication Aug. 28, 2003 Sheet 8 of 9

[089] Sing+? 818

US 2003/0161309 A1

CO

Q5
S

WOHHS#7 0918

Patent Application Publication Aug. 28, 2003 Sheet 9 of 9

US 2003/O161309 A1

NETWORKADDRESS ROUTING USING
MULTIPLE ROUTING IDENTIFIERS

BACKGROUND

0001. The present application describes systems and
techniques relating to network address routing using mul
tiple routing identifiers.

0002. A machine network is a collection of nodes coupled
together with wired and/or wireleSS communication links,
Such as coaX cable, fiber optics and radio frequency bands.
A machine network may be a Single network or a collection
of networks, and may use multiple networking protocols,
including an inter-networking protocol (e.g., the Internet
Protocol (IP)). A node may be any machine capable of
communicating with other nodes over the communication
links using one or more of the networking protocols.

0003. Many machine networks use packet switching, in
which data to be sent over the network is first broken up into
Segments known as packets, and each packet is handled
Separately. Each packet typically includes a header with
routing information Such as a Source address and a destina
tion address. These addresses are frequently unicast
addresses, which identify a Specific destination node.
0004. As packets travel through a network, they may be
encapsulated within other packets one or more times. Encap
Sulation of packets enables data to travel from a Source node
to a final destination node through multiple networks, which
may use different protocols and addressing Schemes, without
the two end nodes knowing anything about the intermediate
addressing Schemes and protocols.

0005 Inter-networking addressing schemes typically are
based on a network identifier and a node identifier, which
together make up an address. For example, traditional IP
addressing includes a network number and a host (node)
number in each address. This allows routing of packets
through a network based upon a destination network as well
as a destination node.

0006 Typically, packets are routed through a network
using lookup tables Stored in random acceSS memory
(RAM), such as Static Random Access Memory (SRAM).
AS each packet is received, its destination address is pro
cessed using a lookup table to identify a next-hop route. In
IP, routing of packets also typically includes determining
whether a destination address is a non-forwarding address
and determining an address class for a destination address.
Address classes are used, for example in IP, to identify the
length of a network number within an address. The network
number may identify a group of nodes on one or more
networks that are administered together, typically with com
mon rules and procedures (i.e., a domain).
0007 Traditional IP routers route packets according to
network class and network number. Due to limits imposed
by IP network class routing, Classless Inter-Domain Routing
(CIDR) techniques have been developed to allow aggrega
tion of Class C IP addresses (i.e., Supernetting). In traditional
CIDR, routing is performed according to an address prefix
defined by a network mask, and a longest-match-is-best
approach is used. Effectively, variable portions of a network
number may be used in routing, thereby identifying variable
portions of one or more networks.

Aug. 28, 2003

0008) By assigning addresses (e.g., Class C addresses) to
follow network topology (e.g., provider-based aggregation
and geographical-based aggregation), CIDR enables effi
cient use of an address Space and may minimize routing
table entries. Moreover, techniques similar to CIDR also
may be used to break down a Class A or B address (i.e.,
Subnetting) to help preserve address space.

DRAWING DESCRIPTIONS

0009 FIG. 1A is a block diagram illustrating a tradi
tional address format for an inter-networking protocol.
0010 FIG. 1B is a block diagram illustrating an alterna
tive address format for an inter-networking protocol.
0011 FIG. 1C is a block diagram illustrating an example
global unicast address format for IP.
0012 FIG. 1D is a block diagram illustrating an example
aggregatable global unicast address format for IP.
0013 FIG. 2 is a flow chart illustrating a method of
routing data in a network using a routing matrix.
0014)
matrix.

FIG. 3A is a block diagram illustrating a routing

0015 FIG. 3B is a block diagram illustrating an example
IP routing matrix.
0016 FIG. 4A is a flow chart illustrating a method of
building a routing matrix in an IP router.
0017 FIG. 4B is a flow chart illustrating a parallel
processing example of the method of FIG. 4A for building
a routing matrix in an IP router.
0018 FIG. 5 is a flow chart illustrating a method of
determining a set of route identification operations to be
performed based on a routing matrix for an IP destination
address.

0019 FIG. 6 is a flow chart illustrating a parallel pro
cessing example of route identification.
0020 FIG. 7A is a block diagram illustrating portions of
example Source and destination aggregatable global unicast
addresses for an IP packet.
0021 FIG. 7B is a flow chart illustrating a method of
building a routing matrix using an EXCLUSIVE OR opera
tion.

0022 FIG. 8 is a block diagram of a communication
System employing a hardware-based multithreaded proces
SO.

0023 Details of one or more embodiments are set forth in
the accompanying drawings and the description below.
Other features and advantages may be apparent from the
description and drawings, and from the claims.

DETAILED DESCRIPTION

0024. The systems and techniques described here relate
to network address routing using multiple routing identifiers.
The description that follows discusses packet handling in the
context of IP, but may apply equally in other contexts, for
example to any networking protocol that allows routing of
databased upon one or more of two or more defined Subparts
of a destination address.

US 2003/O161309 A1

0025) In the next generation of IP (IP version 6), each
address will be 128 bits long, instead of the traditional 32
bits. This increase in address length will result in an increase
in processing required to resolve an address, and thus likely
will create a performance bottleneck for network address
routing. The present inventor recognized that a strictly
hardware-based Solution to this performance bottleneck
would tend to lack Versatility. Accordingly, the inventor
developed network address routing Systems and techniques
that, among other advantages, enable quick routing of pack
ets in a large address Space using a flexible Software imple
mentation. These Systems and techniques will remain useful
and advantageous as the next generation of IP changes and
matures over time and/or if other Software and/or hardware
portions of a router are changed.
0026. As a result of using these systems and techniques,
multiple lookup techniques and multiple data Structures may
be used in identifying a next-hop route for a single desti
nation address. Various Subparts of a destination address
may be examined separately to determine a Set of route
identification operations to be performed, and a routing
matrix may be built.
0027. The set of route identification operations may
include different lookup techniques and may employ differ
ent data Structures. By combining various lookup techniques
to identify a next-hop route, performance advantages may be
realized. Moreover, by using parallel processing with the
Systems and techniques of the present application, additional
performance advantages may be realized.
0028 FIG. 1A is a block diagram illustrating a tradi
tional address format for an inter-networking protocol. A
unicast address 100 includes a network identifier 102 and a
node identifier 104. The network identifier 102, which may
be assigned different lengths within the address 100 (i.e., in
bits, making the node identifier 104 address size-n bits),
represents a routing identifier for use in routing packets. By
using a Subset of an address for routing (e.g., routing based
on a destination network), routing speeds may be increased
and routing table sizes may be minimized.
0029 FIG. 1B is a block diagram illustrating an alterna
tive address format for an inter-networking protocol. In
contrast to traditional address formats, a unicast address 120
includes two or more routing identifierS 122 and an interface
identifier 126. The routing identifiers 122 may each be
assigned different lengths within the address 120 (i.e., n bits
and m bits, making the interface identifier 126 address size
n-m bits) and may correspond to networks or other network
topology aspects that may be used in routing data.
0.030. For each packet of data, one or more of the two or
more routing identifierS 122 may be used for routing data,
either Separately or together. By using two or more Subsets
of an address for routing, routing Speeds may be increased
and routing table sizes may be minimized in large address
Spaces. In addition, new flexibilities in data routing, address
assignments and network reconfigurations become poS
Sible-e.g., organizations may obtain addressing indepen
dence from long-haul network Service providers and may be
easily multihomed via an exchange to more than one long
haul provider.
0031. The interface identifier 126 identifies a particular
interface on a node, as opposed to the node itself. Thus, a
node may have multiple associated interface identifiers.

Aug. 28, 2003

0032) The alternative address format of FIG. 1B may be
used with the next generation of IP (IPv6). IPv6 is being
defined by the IETF (Internet Engineering Task Force) and,
based on current definitions, will include 128 bit unicast
addresses in its addressing architecture. IPv6 unicast
addresses will be aggregatable with continuous bit-wise
masks Similar to the current generation IP addressing using
CIDR.

0033 FIG. 1C is a block diagram illustrating an example
global unicast address format for IP. Global unicast
addresses in IPv6 may include a format prefix (FP) 142 in an
address 140. The FP 142 identifies a format for a routing
prefix 144, a subnet identifier (ID) 146 and an interface ID
148. The routing prefix 144 and the subnet ID 146 represent
routing identifiers as described above. The FP 142, routing
prefix 144 and the subnet ID 146 may each be assigned
different lengths within the address 140 (i.e., n bits, m bits
and p bits, respectively, making the interface ID 148 128
n-m-p bits).
0034) The interface ID 148 may be a 64-bit field in
EUI-64TM format. The EUI-64TM format is an IEEE (Insti
tute of Electrical and Electronics Engineers) defined 64-bit
extended unique identifier, which is a concatenation of a
24-bit company ID (assigned by IEEE) and a 40-bit exten
Sion identifier (assigned by the organization with the par
ticular company ID).
0035 FIG. 1D is a block diagram illustrating an example
aggregatable global unicast address format for IP. The
aggregatable global unicast address format for an IPv6
address 160 may be identified by an FP162, which may be
3 bits long and set to the binary value 001. The IPv6 address
160 may include a top-level aggregation identifier (TLA ID)
164, a next-level aggregation identifier (NLA ID) 166, a
site-level aggregation identifier 168 (SLA ID) and an inter
face ID 170. The IPv6 address 160 also may include a
reserved field 172, which is reserved for future use.
0036) The IPv6 address 160 has three different routing
identifiers, the top-level aggregation ID 164, the next-level
aggregation ID 166 and the Site-level aggregation ID 168.
These routing identifiers may be used individually or
together when routing data through a network. This address
ing format may Support exchange-based aggregation as well
as provider-based aggregation, either Simultaneously or
Separately.
0037. The TLA ID 164 and the NLA ID 166 make up a
public topology portion of the IPv6 address 160. This public
topology portion may be used by providers and exchanges
who provide public Internet transit services. The TLA ID
164 may be 13 bits long and may be used by backbone
routers (i.e., the main routers or core routers in a network of
networks) to look up addresses for forwarding data through
a network backbone (e.g., long-haul providers). The NLAID
166 may be 24 bits long and may be used at intermediate
routers in a network.

0038. The SLA ID 168 makes up a site topology portion
of the IPv6 address 160. This site topology portion may be
used by Specific Sites or organizations that do not provide
public transit Service to nodes outside of the Site/organiza
tion. The SLA ID 168 may be 16 bits long and may be used
by all routerS regardless of their level in a network hierarchy.
0039. The interface ID 170 may be a 64-bit field in
EUI-64TM format and identifies an interface on a link. The

US 2003/O161309 A1

reserved field 172 may be an 8-bit field set to all Zeroes and
is reserved for future use, such as expansion of the TLA ID
164 and/or the NLA ID 166. For additional details on the
IPv6 addressing architecture, See Request for Comments
(RFC) 2373 and RFC 2374.
0040 FIG. 2 is a flow chart illustrating a method of
routing data in a network using a routing matrix. The method
begins when a routing address is received (200). For
example, a data packet may be received and a destination
address may be extracted. The routing address may include
the destination address, may be the destination address or
may be a portion of the destination address. The packet may
be an IP packet with an IP header.
0041) Next, the routing address is confirmed to include
multiple routing identifiers (210). For example, a format
prefix in a destination address may be checked to identify the
format of the routing address. In an IPv6 router, the initial 3
bits of the destination address may be checked for the
Sequence 001 to confirm that the destination address is a
global unicast address.
0042. Then, a routing matrix for the routing identifier is
built (220). The routing matrix has multiple entries that are
Set based upon two or more routing identifiers in the routing
address. These entries identify one or more routing features
for the routing address. For example, the routing address
may have two routing identifiers, either or both of which
may be used for routing the packet. If a routing identifier in
the routing address is to be used in routing the packet, a
corresponding entry is assigned an appropriate value in the
routing matrix.
0043. Once the routing matrix has been built, a set of
route identification operations to be performed may be
determined based on the routing matrix (230). For example,
in the two routing identifiers example discussed above, three
different types of routing are possible: (1) route the packet
based on the first routing identifier, (2) route the packet
based on the Second routing identifier, and (3) route the
packet based on both the first and the Second routing
identifiers.

0044) Thus, three or more sets of route identification
operations are possible. The route identification operations
may include direct route lookup, Such as in a single route
table, longest-prefix-match lookup, Such as in a set of route
tables, hash table lookup, N-tuple lookup methods (where
tuple refers to how many fields are being used to break up
a long address field and perform lookup for it, where N may
be 2, 3, 4, 5, etc.), other lookup techniques, or combinations
of these.

0.045 For example, if the routing address has two routing
identifiers, and both are to be used in routing the packet,
deciding the route may involve two different route lookup
operations (e.g., a direct lookup and a longest-prefix-match
lookup). By tailoring route lookup operations to respective
route identifiers, performance may be enhanced.
0046. After the set of route identification operations to be
performed has been determined, a route is identified by
performing the route identification operations in the Set
(240). The route identified may be a next-hop for the packet.
Moreover, when the set includes multiple route identifica
tion operations (e.g., a direct lookup on a first routing
identifier and a longest-prefix match on a Second routing

Aug. 28, 2003

identifier), and these operations return different routes, both
returned routes may be used Simultaneously, the two routes
may be compared to identify which is better given current
network conditions (e.g., routes may have associated
weights or Selection levels that are used to determine a
current optimum path given network condition), a route
harmonization method may be employed, and/or the first
route to be identified may be used.
0047 FIG. 3A is a block diagram illustrating a routing
matrix 300. The routing matrix 300 includes two columns
305, 310 for routing identifiers, and may include additional
columns 315 for additional routing identifiers. The routing
matrix 300 includes a row 320 that identifies which routing
identifiers are to be used for routing a packet. The row 320
Stores Boolean TRUE/FALSE values. Additional rows 325
also may be included in the routing matrix 300. These
additional rows 325 may store additional information con
cerning the routing identifiers and how they are to be used
during routing a packet. This additional information also
may be stored as Boolean TRUE/FALSE values. When all
the elements of the routing matrix are Boolean TRUE/
FALSE values, the routing matrix may be stored as a bit
map, for example, as a single binary number.
0048 FIG. 3B is a block diagram illustrating an example
IP routing matrix 350. The IP routing matrix 350 includes a
single row 355 and may be used for global unicast address
routing. The IP routing matrix 350 may be stored as a nibble
(i.e., four bits of data), as larger binary numbers, and/or other
number and/or character representations.
0049 Host-level routing may or may not be implemented
in a router depending upon the router's location in a network
and the underlying router hardware. When host-level routing
is implemented, if an interface ID for a destination address
is to be used in routing, a Host column 360 is set to TRUE.
For example, if there is a difference between the Source
address and the destination address in bit positions 64-127,
then the highest order bit of a routing matrix nibble is set to
OC.

0050. If an SLA ID for the destination address is to be
used in routing, an SLA column 365 is set to TRUE. For
example, if a difference exists between the Source address
and the destination address in bit positions 48-63, then the
second highest order bit of the nibble is set to one.
0051) If an NLA ID for the destination address is to be
used in routing, an NLA column 370 is set to TRUE. For
example, if a difference exists between the Source address
and the destination address in bit positions 24-47, then the
third highest order bit of the nibble is set to one. If a TLA
ID for the destination address is to be used in routing, a TLA
column 375 is set to TRUE. For example, if there is a
difference between the Source address and the destination
address in bit positions 3-15, then the fourth highest order bit
of the nibble is set to one.

0.052 The IP routing matrix 350 described above also
may be used for global unicast address routing without
Supporting host-level routing. In this case, only the routing
identifiers (TLA, NLA and SLA) are used. This may provide
performance advantages for routers that need not Support
host-level routing.
0053. In addition, other bit positions and values may be
used in the routing matrix 350. For example, the bit positions

US 2003/O161309 A1

may be reversed So the highest order bit corresponds to the
TLAID and the lowest order bit corresponds to the interface
ID, and/or the values may be inverted so that a zero
represents TRUE and a one represents FALSE. Alternate bit
positions and values may be used to provide potential
performance advantages during checking of the routing
matrix in various routing environments, and as mentioned
above, larger binary numbers may be used. For example, the
NLA ID and/or the SLA ID may be broken into sub-fields,
each getting their own entry in the routing matrix, for better
address aggregation, delegation and management.
0054 FIG. 4A is a flow chart illustrating a method of
building a routing matrix in an IP router. The method builds
a matrix for global unicast address routing. The method
begins by checking whether host-level routing is to be used
with a packet (400). A source and destination address may
be compared to determine if a difference exists between
interface ID portions of the addresses. If host-level routing
is to be performed, then a host-level matrix element in the
routing matrix is set (405).
0055. After this, or if host-level routing is not to be used
for a current packet, then a check is made to determine
whether site-level routing is to be performed (410). A source
and destination address may be compared to determine if the
SLA ID portions of the addresses differ. If site-level routing
is to be performed, then an SLA matrix element in the
routing matrix is set (415).
0056. After this, or if site-level routing is not to be used,
then a check is made to determine whether next-level
routing is to be performed (420). For example, a Source and
destination address may be compared to determine if there
is a difference in NLA ID portions of the addresses. If
next-level routing is to be performed, then an NLA matrix
element in the routing matrix is set (425).
0057. After this, or if next-level routing is not to be used,
then a check is made to determine whether top-level routing
is to be performed (430). For example, a source and desti
nation address may be compared to determine if there is a
difference in TLA ID portions of the addresses. If top-level
routing is to be performed, then a TLA matrix element in the
routing matrix is set (435). After this, or if top-level routing
is not to be used, the process ends.
0.058. The comparisons between source and destination
addresses may be performed using an EXCLUSIVE OR
operation, as discussed further below in connection with
FIGS. 7A and 7B. Additionally, as mentioned above, host
level routing need not be Supported. Thus, an interface ID
portion of a destination address need not be checked, and the
host level matrix element need not be used.

0059 Performance advantages may be obtained when the
method of FIG. 4A is performed using parallel processing.
For example, FIG. 4B is a flow chart illustrating a parallel
processing example of the method of FIG. 4A for building
a routing matrix in an IP router. The method 400-435 in FIG.
4B is essentially the same as the method in FIG. 4A, except
that each level of routing is checked in parallel.
0060. The parallel processing shown in FIG. 4B may be
implemented in a communication System employing a hard
ware-based multithreaded processor, Such as that discussed
further below in connection with FIG. 8. Additionally, the
parallel processing shown in FIG. 4B may be combined

Aug. 28, 2003

with parallel processing of the route identification opera
tions, Such as those discussed further below in connection
with FIGS. 6, 7A and 7B.

0061 FIG. 5 is a flow chart illustrating a method of
determining a set of route identification operations to be
performed based on a routing matrix for an IP destination
address. The method begins by Switching process flow based
on the contents of the routing matrix (500). This switching
of process flow may represent a Series of if-then-else instruc
tions, and may involve checking of individual bit positions
in the routing matrix and/or checking of values represented
by the routing matrix. When the routing matrix is a binary
number, the following cases may result.

0062) If the routing matrix is (0.001), a next-hop route is
identified using the TLA ID (510). For example, the 13 bits
of the TLA ID may be used to perform a single direct lookup
into a table of next-hop routes. This may result in a total time
for identifying the next-hop route governed by the time
needed to perform two RAM read accesses.

0063) If the routing matrix is (0010), a next-hop route is
identified using the NLA ID (520). For example, the 24 bits
of the NLA ID may be used to access a set of tables using
a longest-prefix-match method (e.g., each table in the set of
tables may have Sixteen entries, and the lookup may be
performed four bits at a time, resulting in a maximum of Six
tables to match a full NLA ID). This may result in a total
time for identifying the next-hop route governed by the time
needed to perform Seven RAM read accesses.

0064. If the routing matrix is (0100), a next-hop route is
identified using the SLA ID (530). For example, the 16 bits
of the SLA ID may be used to access another set of tables
using the longest-prefix-match method as described above
(e.g., a maximum of four tables). This may result in a total
time for identifying the next-hop route governed by the time
needed to perform five RAM read accesses.

0065. If the routing matrix is (0011), a next-hop route is
identified using the TLA ID and the NLA ID (540). For
example, the 13 bits of the TLA ID may be used to perform
a single direct lookup into a table of next-hop routes. The 24
bits of the NLA ID may be used to access a set of tables
using a longest-prefix-match method as described above.
This may result in a total time for identifying the next-hop
route governed by the time needed to perform eight RAM
read accesses.

0066. If the routing matrix is (0111), a next-hop route is
identified using the SLA ID, the NLA ID and the TLA ID
(550). For example, the 13 bits of the TLA ID may be used
to perform a Single direct lookup into a table of next-hop
routes. The 24 bits of the NLA ID may be used to access a
Set of tables using a longest-prefix-match method as
described above. The 16 bits of the SLA ID may be used to
access another Set of tables using the longest-prefix-match
method as described above. This may result in a total time
for identifying the next-hop route governed by the time
needed to perform twelve RAM read accesses.

0067. If the routing matrix is (0110), a next-hop route is
identified using the SLA ID and the NLA ID (560). For
example, the 24 bits of the NLA ID and the 16 bits of the
SLA ID may be used to access a set of tables using a
longest-prefix-match method as described above. This may

US 2003/O161309 A1

result in a total time for identifying the next-hop route
governed by the time needed to perform eleven RAM read
CCCSSCS.

0068 If the routing matrix is (1111), a next-hop route is
identified using the interface ID, the SLA ID, the NLA ID
and the TLA ID (570). For example, the NLA ID, the SLA
ID and the TLA ID may be used to perform separate lookup
operations as described above. The 64 bits of an interface ID
may be hashed together, and resulting 18 bits of hashed data
may be taken as an indeX into a table of next-hop routes.
This may result in a total time for identifying the next-hop
route governed by the time needed to perform one hash
64 1 instruction, resolve a possible collision, and perform
fourteen RAM read accesses.

0069. If the routing matrix is (1100), a next-hop route is
identified using the interface ID and the SLA ID (580). For
example, the SLA ID and the interface ID may be used to
perform Separate lookup operations as described above. This
may result in a total time for identifying the next-hop route
governed by the time needed to perform one hash 64 1.
instruction, resolve a possible collision, and perform thirteen
RAM read accesses.

0070 If the routing matrix is (1110), a next-hop route is
identified using the interface ID, the SLA ID and the NLA
ID (585). For example, the SLA ID, the NLA ID and the
interface ID may be used to perform Separate lookup opera
tions as described above. This may result in a total time for
identifying the next-hop route governed by the time needed
to perform one hash 64. 1 instruction, resolve a possible
collision, and perform Seven RAM read accesses.

0.071) If the routing matrix is (1000), a next-hop route is
identified using the interface ID (590). For example, the
interface ID may be used to perform lookup operations as
described above. This may result in a total time for identi
fying the next-hop route governed by the time needed to
perform one hash 64. 1 instruction, resolve a possible
collision, and perform two RAM read accesses.

0.072 Given the nature of the routing matrix, there are six
additional potential combinations that may be considered,
but in typical implementations these combinations may not
be needed. In general, if an upper level router is involved
then routing at lower levels will be performed. Given these
potentially unused matrix combinations, checks may be
included to ensure these combinations do not occur, or these
combinations may be assumed not to occur, and correspond
ing optimizations in matrix checking may be achieved. Also,
alternative implementations may use these additional matrix
combinations and/or not use Some of the matrix combina
tions shown in FIG. 5.

0073. The route identification operations discussed above
also may be performed using parallel processing, may be
combined with the routing matrix production of FIG. 4A,
and may be implemented in a communication System
employing a hardware-based multithreaded processor, Such
as that discussed further below in connection with FIG. 8.

0.074 FIG. 6 is a flow chart illustrating a parallel pro
cessing example of route identification. The method begins
by Splitting into Separate processing threads that check for
each type of routing. For example, four Separate proceSS
threads may be initiated. A first thread checks for host-level

Aug. 28, 2003

routing (600). If host-level is to be performed, a route is
identified using the interface ID and a first data structure
(605).
0075) A second process thread checks for site-level rout
ing (610). If site-level routing is to be performed, a route is
identified using the SLA ID and a Second data structure
(615). A third process thread checks for next-level routing
(620). If next-level routing is to be performed, a route is
identified using the NLA ID and a third data structure (625).
A fourth process thread checks for top-level routing (630).
If top-level routing is to be performed, a route is identified
using the TLA ID and a fourth data structure (635).
0076. These data structures may be completely separate
data Structures, and host-level routing need not be imple
mented. For example, if a received packet is to routed based
on both a TLA ID and an NLA ID, three sets of operations
may be performed in parallel. The first Set of operations may
include checking the SLA ID and determining that site-level
routing is not to be performed. The Second Set of operations
may include checking the NLA ID, determining that next
level routing is to be performed and performing a longest
prefix-match lookup using the NLA ID and a data Structure.
The third Set of operations may include checking the TLA
ID, determining that top-level routing is to be performed and
performing a direct lookup using the TLA ID and a Separate
data Structure. Moreover, two or more of the first, Second,
third and fourth data Structures may be similar in Structure
and/or may be part of a larger data Structure.
0077 Generally, when initiating parallel processing, the
first level to be initiated will depend on the type of router and
its network context. For example, in most routers on the
Internet, the site-level routing check would be initiated first
because in the total population of routers, Site-level routing
will be used most frequently. However, if host-level routing
is Supported, initiating the host-level routing check first may
be desirable.

0078. In addition, performance advantages may be
obtained by using more processing threads than routing
identifiers and/or by comparing the Source and destination
addresses in parallel in blockS Smaller than a length of a
Shortest of the routing identifiers. For example, in a com
munication System employing a hardware-based multi
threaded processor, a routing matrix may be built by com
paring a Source address and a destination address in blockS
of four bits as follows.

007.9 FIG. 7A is a block diagram illustrating portions of
example Source and destination aggregatable global unicast
addresses for an IP packet. A destination address 710
includes an FP712, a TLA ID 714, an NLA ID 716, an SLA
ID 718, and a reserved field 720. A source address 700
includes corresponding Sections (the interface ID portions of
the addresses 700,710 are not shown).
0080. The destination address 710 may be processed in
parallel using eight hardware threads (or contexts) to per
form EXCLUSIVE OR operations to build a routing matrix.
The routing matrix includes three bits, initialized to Zero,
representing SLA, NLA and TLA routing. Each hardware
thread is assigned a nibble from each of the Source and
destination addresses 700, 710 to process. The first eight
assignments make up a first set 730, which includes all of the
SLA ID 718, a portion of the NLA ID 716 and a portion of
the TLA ID 714.

US 2003/O161309 A1

0081. Each hardware thread processes its assignment as
shown in FIG. 7B, which is a flow chart illustrating a
method for building a routing matrix using an EXCLUSIVE
OR operation. The method begins by performing an
EXCLUSIVE OR operation on Source bits and destination
bits to produce an address comparison result (750).
0082 Then, a check is made for any non-zero values in
relevant bit position(s) of the address comparison result
(752). Each bit may be checked individually, or groups of
bits may be checked together. For example, in the first Set
730, each thread will only examine bits from a particular
routing identifier (either SLA, NLA or TLA), and thus each
thread may check its complete address comparison result at
once. If a non-Zero value is identified, the corresponding
matrix entry is Set to indicate that routing is to be performed
based on that routing identifier (754).
0.083. As each thread completes its assignment from the

first set 730, the thread may be assigned a new nibble
processing task from a second set 732. The second set 732
includes the remaining portions of the NLA ID 716 and the
TLA ID 714. The results of processing the first set 730 may
be used in later assignments.

0084. For example, for the source and destination
addresses shown, TLA ID routing is to be used. This is
identified as soon as the first set 730 has been fully pro
cessed, and thus a portion 734 of the second set 732 need not
be processed. In this case, one of the threads may be
assigned the task of looking up a next-hop route using the
TLA ID while other threads are still checking the remainder
of the NLA ID to determine if NLA routing is to be used.
This processing shortcut may result in additional perfor
mance improvements.

0085 FIG. 8 is a block diagram of a communication
System employing a hardware-based multithreaded proces
Sor. A communication System 810 includes a parallel, hard
ware-based multithreaded processor 812. The hardware
based multithreaded processor 812 may be coupled with a
bus 814 (e.g., a Peripheral Component Interconnect (PCI)
bus), a memory system 816 and a second bus 818. The
system 810 may be especially useful for tasks that can be
broken into parallel Subtasks or functions (e.g., tasks that are
bandwidth oriented rather than latency oriented).
0.086 The hardware-based multithreaded processor 812
has multiple microengines or programming engineS 822,
each with multiple hardware controlled threads that are
Simultaneously active and independently work on a task.
The hardware-based multithreaded processor 812 also
includes a processor core 820 for loading microcode for
controlling other resources of the hardware-based multi
threaded processor 812. The processor core 820 may per
form other general purpose computer type functions Such as
handling protocols, exceptions, and extra Support for packet
processing where the programming engineS 822 pass the
packets off for more detailed processing, Such as in bound
ary conditions.
0087. The processor core 820 may be a Strong ArmTM
(Arm is a trademark of ARM Limited, United Kingdom)
based architecture. The general-purpose microprocessor 820
has an operating System through which the processor core
820 can call functions to operate on programming engines
822. The processor core 820 may use any supported oper

Aug. 28, 2003

ating System, but preferably a real time operating System.
For the core processor implemented as a Strong ArmTM
architecture, operating Systems. Such as MicroSoft NT real
time, VXWorks and uCUS, a freeware operating system
available over the Internet, may be used.
0088. The hardware-based multithreaded processor 812
also includes functional programming engines 822. Func
tional programming engines (programming engines) 822
each maintain program counters in hardware and States
asSociated with the program counters. Effectively, corre
sponding Sets of context or threads can be simultaneously
active on each of the programming engineS 822 while only
one is actually operating at any one time.
0089. There may be six programming engines 822a-822f.
Each programming engine 822a-822fmay have capabilities
for processing eight hardware threads or contexts. The Six
programming engines 822a-822f operate with shared
resources including memory System 816 and bus interfaces
824 and 828. The memory system 816 may include a
Synchronous Dynamic Random Access Memory (SDRAM)
816a, a Static Random Access Memory (SRAM) 816b, a
FLASH Read Only Memory (ROM) 816c, an SDRAM
controller 826a and an SRAM controller 826b. SDRAM
memory 816a and SDRAM controller 826a are typically
used for processing large Volumes of data, e.g., processing
of network payloads from network packets. The SRAM
controller 826b and SRAM memory 816b are used in a
networking implementation for low latency, fast access
tasks, e.g., accessing look-up tables, memory for the core
processor 820, and so forth.
0090 The six programming engines 822a-822f access
either the SDRAM 816a or SRAM 816b based on charac
teristics of the data. Thus, low latency, low bandwidth data
is stored in and fetched from SRAM 816a, whereas higher
bandwidth data for which latency is not as important, is
stored in and fetched from SDRAM 816b. The programming
engineS 822a-822f can execute memory reference instruc
tions to either the SDRAM controller 826a or SRAM
controller 816b.

0091 Advantages of hardware multithreading can be
explained by SRAM or SDRAM memory accesses. As an
example, an SRAM access requested by a Thread 0, from
a programming engine will cause the SRAM controller 826b
to initiate an access to the SRAM memory 816b. The SRAM
controller 826b controls arbitration for the SRAM bus,
accesses the SRAM 816b, fetches the data from the SRAM
816b, and returns data to a requesting programming engine.
During an SRAM access, if the programming engine, e.g.,
822a had only a single thread that could operate, that
programming engine would be dormant until data was
returned from the SRAM.

0092. By employing hardware context swapping within
each of the programming engineS 822a-822f the hardware
context Swapping enables other contexts with unique pro
gram counters to execute in that same programming engine.
Thus, another thread e.g., Thread 1 can function while the
first thread, e.g., Thread 0, is awaiting the read data to
return. During execution, Thread 1 may access the
SDRAM memory 816a. While Thread 1 operates on the
SDRAM unit, and Thread 0 is operating on the SRAM unit,
a new thread, e.g., Thread 2 can now operate in the
programming engine 822a. Thread 2 can operate for a

US 2003/O161309 A1

certain amount of time until it needs to acceSS memory or
perform Some other long latency operation, Such as making
an access to a bus interface. Therefore, Simultaneously, the
processor 812 can have a bus operation, SRAM operation
and SDRAM operation all being completed or operated
upon by one programming engine 822a and have one more
thread available to process more work in the data path.
0093. The hardware context swapping also synchronizes
completion of tasks. For example, two threads could hit the
Same Shared resource e.g., SRAM. Each one of these Sepa
rate functional units, e.g., the FBUS interface 828, the
SRAM controller 826a, and the SDRAM controller 826b,
when they complete a requested task from one of the
programming engine thread contexts reports back a flag
Signaling completion of an operation. When the program
ming engine receives the flag, the programming engine can
determine which thread to turn on.

0094. One example of an application for the hardware
based multithreaded processor 812 is as a network proces
Sor. As a network processor, the hardware-based multi
threaded processor 812 interfaces to network devices Such as
a Media Access Controller (MAC) device e.g., a
10/100BaseTOctal MAC 813a or a Gigabit Ethernet device
813b. In general, as a network processor, the hardware
based multithreaded processor 812 can interface to any type
of communication device or interface that receives/sends
large amounts of data. Communication System 810 func
tioning in a networking application could receive network
packets from the devices 813a, 813b and process those
packets in a parallel manner. With the hardware-based
multithreaded processor 812, each network packet can be
independently processed.

0.095 The processor 812 includes a bus interface 828 that
couples the processor to the second bus 818. Bus interface
828 may couple the processor 812 to an FBUS 818 (FIFO
(first-in-first-out) bus). The FBUS interface 828 is respon
sible for controlling and interfacing the processor 812 to the
FBUS 818. The FBUS 818 may be a 64-bit wide, a 128-bit
wide or a 256-bit wide FIFO bus, used to interface to MAC
devices.

0096. The processor 812 includes a second interface e.g.,
a PCI bus interface 824 that couples other system compo
nents that reside on the PCI bus 814 to the processor 812.
The PCI bus interface 824 provides a high-speed data path
824a to memory 816, e.g., the SDRAM memory 816a.
Through that path data can be moved quickly from the
SDRAM 816a through the PCI bus 814, via Direct Memory
Access (DMA) transfers.
0097. Each of the programming engines 822a-822fmay
include an arbiter that examines flags to determine the
available threads to be operated upon. Any thread from any
of the programming engineS 822a-822f can access the
SDRAM controller 826a, SDRAM controller 826b or FBUS
interface 828.

0.098 Data functions are distributed amongst the pro
gramming engines. Connectivity to the SRAM 26a,
SDRAM 826b and FBUS 828 is via command requests. A
command request can be a memory request or a FBUS
request. For example, a command request can move data
from a register located in a programming engine 822a to a
shared resource, e.g., an SDRAM location, SRAM location,

Aug. 28, 2003

flash memory or some MAC address. The commands are
Sent out to each of the functional units and the shared
resources. However, the shared resources do not need to
maintain local buffering of the data. Rather, the shared
resources acceSS distributed data located inside of the pro
gramming engines 822a-822f. This enables programming
engineS 822a-822f, to have local access to data rather than
arbitrating for access on a bus and risk contention for the
bus. With this feature, there is a 0 cycle stall for waiting for
data internal to the programming engineS 822a-822f
0099 Various implementations of the systems and tech
niques described here may be realized in digital electronic
circuitry, in computer hardware, firmware, Software, or
combinations thereof. For example, the Systems and tech
niques may be implemented in IXP 1200 network processor,
provided by Intel Corporation of San Clara, Calif.
0100. The logic flows depicted in the figures do not
require the particular order shown and described. AS dis
cussed above, in certain implementations, multi-tasking and
parallel processing may be preferable.

0101. Other embodiments may be within the scope of the
following claims.

What is claimed is:
1. A machine-implemented method comprising:

receiving a routing address comprising at least two rout
ing identifiers, and

building a routing matrix to use in determining route
identification operations to be performed, the routing
matrix identifying one or more of the at least two
routing identifiers that are to be used in routing.

2. The method of claim 1, wherein the routing address
comprises a destination address, and wherein building the
routing matrix comprises comparing the destination address
with a Source address to identify a difference.

3. The method of claim 2, wherein comparing the desti
nation address comprises:

performing an EXCLUSIVE OR operation of the desti
nation address and the Source address to produce an
address comparison result, and

checking whether the address comparison result includes
one or more non-Zero values.

4. The method of claim 3, wherein comparing the desti
nation address comprises using parallel processing to com
pare the destination address with the Source address.

5. The method of claim 4, wherein comparing the desti
nation address comprises using blockS Smaller than a length
of a shortest of the two or more routing identifiers.

6. The method of claim 5, wherein the blocks comprise
four-bit blocks.

7. The method of claim 1, wherein building the routing
matrix comprises using parallel processing to build the
routing matrix.

8. The method of claim 7, further comprising determining
a set of route identification operations to perform based on
the routing matrix.

9. The method of claim 8, wherein the routing matrix
consists of a binary number.

US 2003/O161309 A1

10. The method of claim 8, wherein route identification
operations include a direct lookup operation, a longest
prefix-match lookup operation, and a hash table lookup
operation.

11. The method of claim 10, wherein the at least two
routing identifiers conform to an addressing architecture
defined by an Internet Engineering Task Force.

12. A machine-readable medium embodying information
indicative of instructions for causing a machine to perform
operations comprising:

receiving a Source address and a destination address, each
comprising at least two routing identifiers,

performing an EXCLUSIVE OR operation of the source
address routing identifiers with the destination address
routing identifiers to produce an address comparison
result,

determining a set of route identification operations to
perform based upon one or more non-Zero values in the
address comparison result, wherein a different route
identification operation is to be used for each of the one
or more non-Zero values.

13. The machine-readable medium of claim 12, wherein
the Set of route identification operations comprise one or
more of a direct lookup operation and a longest-prefix-match
lookup operation.

14. The machine-readable medium of claim 13, wherein
performing the EXCLUSIVE OR operation comprises per
forming an EXCLUSIVE OR operation using blocks Smaller
than a length of a shortest of the destination address routing
identifiers and the Source address routing identifiers.

15. The machine-readable medium of claim 14, wherein
the blocks comprise four-bit blocks.

16. The machine-readable medium of claim 15, wherein
the destination address routing identifiers and the Source
address routing identifiers conform to an addressing archi
tecture defined by an Internet Engineering Task Force.

17. A System comprising:
a proceSSOr,

a network device;
a first bus coupled with the network device and with the

proceSSOr,

a memory System embodying information indicative of
instructions to cause the processor to perform opera

Aug. 28, 2003

tions comprising receiving a Source address and a
destination address, each comprising at least two rout
ing identifiers, and determining a Set of route identifi
cation operations to perform based upon one or more
differences between the Source address routing identi
fiers and the destination address routing identifiers, and

a Second bus coupled with the memory System and with
the processor.

18. The system of claim 17, wherein the processor com
prises a parallel, hardware-based multithreaded processor.

19. The system of claim 18, wherein the network device
comprises a media access controller device.

20. The system of claim 19, wherein the first bus com
prises a 128-bit wide first-in-first-out bus.

21. The system of claim 18, wherein the set of route
identification operations comprise one or more of a longest
prefix-match lookup operation and one or more direct
lookup operations.

22. The system of claim 21, wherein the memory system
comprises a dynamic random acceSS memory and a Static
random acceSS memory.

23. The system of claim 22, wherein the second bus
comprises a peripheral component interconnect bus.

24. A communication System comprising:
a proceSSOr,

means for receiving a Source address and a destination
address, each comprising at least two routing identifi
erS,

means for using the processor to identify one or more
differences between the Source address routing identi
fiers and the destination address routing identifiers,

means for determining a set of route identification opera
tions based upon the one or more differences, wherein
a different route identification operation is determined
for each of the one or more differences, and

means for routing data based upon the Set of route
identification operations.

25. The system of claim 24, wherein the processor com
prises a parallel, hardware-based multithreaded processor.

