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Network address routing Systems and techniques enable 
multiple lookup techniques and multiple data Structures to 
be used in identifying a next-hop route for a single desti 
nation address. Various Subparts of a destination address are 
examined Separately to determine a set of route identifica 
tion operations to be performed, and a routing matrix may be 
built. The separate examination of the subparts of the 
destination address may involve performing an EXCLU 
SIVE OR operation on multiple routing identifiers from a 
Source and a destination address in a packet. Parallel pro 
cessing may be used, Such as by using multiple hardware 
threads in multiple programming engines in a hardware 
based multithreaded processor. The determined set of route 
identification operations may include different lookup tech 
niques and may employ different data structures. 
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NETWORKADDRESS ROUTING USING 
MULTIPLE ROUTING IDENTIFIERS 

BACKGROUND 

0001. The present application describes systems and 
techniques relating to network address routing using mul 
tiple routing identifiers. 

0002. A machine network is a collection of nodes coupled 
together with wired and/or wireleSS communication links, 
Such as coaX cable, fiber optics and radio frequency bands. 
A machine network may be a Single network or a collection 
of networks, and may use multiple networking protocols, 
including an inter-networking protocol (e.g., the Internet 
Protocol (IP)). A node may be any machine capable of 
communicating with other nodes over the communication 
links using one or more of the networking protocols. 

0003. Many machine networks use packet switching, in 
which data to be sent over the network is first broken up into 
Segments known as packets, and each packet is handled 
Separately. Each packet typically includes a header with 
routing information Such as a Source address and a destina 
tion address. These addresses are frequently unicast 
addresses, which identify a Specific destination node. 
0004. As packets travel through a network, they may be 
encapsulated within other packets one or more times. Encap 
Sulation of packets enables data to travel from a Source node 
to a final destination node through multiple networks, which 
may use different protocols and addressing Schemes, without 
the two end nodes knowing anything about the intermediate 
addressing Schemes and protocols. 

0005 Inter-networking addressing schemes typically are 
based on a network identifier and a node identifier, which 
together make up an address. For example, traditional IP 
addressing includes a network number and a host (node) 
number in each address. This allows routing of packets 
through a network based upon a destination network as well 
as a destination node. 

0006 Typically, packets are routed through a network 
using lookup tables Stored in random acceSS memory 
(RAM), such as Static Random Access Memory (SRAM). 
AS each packet is received, its destination address is pro 
cessed using a lookup table to identify a next-hop route. In 
IP, routing of packets also typically includes determining 
whether a destination address is a non-forwarding address 
and determining an address class for a destination address. 
Address classes are used, for example in IP, to identify the 
length of a network number within an address. The network 
number may identify a group of nodes on one or more 
networks that are administered together, typically with com 
mon rules and procedures (i.e., a domain). 
0007 Traditional IP routers route packets according to 
network class and network number. Due to limits imposed 
by IP network class routing, Classless Inter-Domain Routing 
(CIDR) techniques have been developed to allow aggrega 
tion of Class C IP addresses (i.e., Supernetting). In traditional 
CIDR, routing is performed according to an address prefix 
defined by a network mask, and a longest-match-is-best 
approach is used. Effectively, variable portions of a network 
number may be used in routing, thereby identifying variable 
portions of one or more networks. 
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0008) By assigning addresses (e.g., Class C addresses) to 
follow network topology (e.g., provider-based aggregation 
and geographical-based aggregation), CIDR enables effi 
cient use of an address Space and may minimize routing 
table entries. Moreover, techniques similar to CIDR also 
may be used to break down a Class A or B address (i.e., 
Subnetting) to help preserve address space. 

DRAWING DESCRIPTIONS 

0009 FIG. 1A is a block diagram illustrating a tradi 
tional address format for an inter-networking protocol. 
0010 FIG. 1B is a block diagram illustrating an alterna 
tive address format for an inter-networking protocol. 
0011 FIG. 1C is a block diagram illustrating an example 
global unicast address format for IP. 
0012 FIG. 1D is a block diagram illustrating an example 
aggregatable global unicast address format for IP. 
0013 FIG. 2 is a flow chart illustrating a method of 
routing data in a network using a routing matrix. 
0014) 
matrix. 

FIG. 3A is a block diagram illustrating a routing 

0015 FIG. 3B is a block diagram illustrating an example 
IP routing matrix. 
0016 FIG. 4A is a flow chart illustrating a method of 
building a routing matrix in an IP router. 
0017 FIG. 4B is a flow chart illustrating a parallel 
processing example of the method of FIG. 4A for building 
a routing matrix in an IP router. 
0018 FIG. 5 is a flow chart illustrating a method of 
determining a set of route identification operations to be 
performed based on a routing matrix for an IP destination 
address. 

0019 FIG. 6 is a flow chart illustrating a parallel pro 
cessing example of route identification. 
0020 FIG. 7A is a block diagram illustrating portions of 
example Source and destination aggregatable global unicast 
addresses for an IP packet. 
0021 FIG. 7B is a flow chart illustrating a method of 
building a routing matrix using an EXCLUSIVE OR opera 
tion. 

0022 FIG. 8 is a block diagram of a communication 
System employing a hardware-based multithreaded proces 
SO. 

0023 Details of one or more embodiments are set forth in 
the accompanying drawings and the description below. 
Other features and advantages may be apparent from the 
description and drawings, and from the claims. 

DETAILED DESCRIPTION 

0024. The systems and techniques described here relate 
to network address routing using multiple routing identifiers. 
The description that follows discusses packet handling in the 
context of IP, but may apply equally in other contexts, for 
example to any networking protocol that allows routing of 
databased upon one or more of two or more defined Subparts 
of a destination address. 
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0025) In the next generation of IP (IP version 6), each 
address will be 128 bits long, instead of the traditional 32 
bits. This increase in address length will result in an increase 
in processing required to resolve an address, and thus likely 
will create a performance bottleneck for network address 
routing. The present inventor recognized that a strictly 
hardware-based Solution to this performance bottleneck 
would tend to lack Versatility. Accordingly, the inventor 
developed network address routing Systems and techniques 
that, among other advantages, enable quick routing of pack 
ets in a large address Space using a flexible Software imple 
mentation. These Systems and techniques will remain useful 
and advantageous as the next generation of IP changes and 
matures over time and/or if other Software and/or hardware 
portions of a router are changed. 
0026. As a result of using these systems and techniques, 
multiple lookup techniques and multiple data Structures may 
be used in identifying a next-hop route for a single desti 
nation address. Various Subparts of a destination address 
may be examined separately to determine a Set of route 
identification operations to be performed, and a routing 
matrix may be built. 
0027. The set of route identification operations may 
include different lookup techniques and may employ differ 
ent data Structures. By combining various lookup techniques 
to identify a next-hop route, performance advantages may be 
realized. Moreover, by using parallel processing with the 
Systems and techniques of the present application, additional 
performance advantages may be realized. 
0028 FIG. 1A is a block diagram illustrating a tradi 
tional address format for an inter-networking protocol. A 
unicast address 100 includes a network identifier 102 and a 
node identifier 104. The network identifier 102, which may 
be assigned different lengths within the address 100 (i.e., in 
bits, making the node identifier 104 address size-n bits), 
represents a routing identifier for use in routing packets. By 
using a Subset of an address for routing (e.g., routing based 
on a destination network), routing speeds may be increased 
and routing table sizes may be minimized. 
0029 FIG. 1B is a block diagram illustrating an alterna 
tive address format for an inter-networking protocol. In 
contrast to traditional address formats, a unicast address 120 
includes two or more routing identifierS 122 and an interface 
identifier 126. The routing identifiers 122 may each be 
assigned different lengths within the address 120 (i.e., n bits 
and m bits, making the interface identifier 126 address size 
n-m bits) and may correspond to networks or other network 
topology aspects that may be used in routing data. 
0.030. For each packet of data, one or more of the two or 
more routing identifierS 122 may be used for routing data, 
either Separately or together. By using two or more Subsets 
of an address for routing, routing Speeds may be increased 
and routing table sizes may be minimized in large address 
Spaces. In addition, new flexibilities in data routing, address 
assignments and network reconfigurations become poS 
Sible-e.g., organizations may obtain addressing indepen 
dence from long-haul network Service providers and may be 
easily multihomed via an exchange to more than one long 
haul provider. 
0031. The interface identifier 126 identifies a particular 
interface on a node, as opposed to the node itself. Thus, a 
node may have multiple associated interface identifiers. 

Aug. 28, 2003 

0032) The alternative address format of FIG. 1B may be 
used with the next generation of IP (IPv6). IPv6 is being 
defined by the IETF (Internet Engineering Task Force) and, 
based on current definitions, will include 128 bit unicast 
addresses in its addressing architecture. IPv6 unicast 
addresses will be aggregatable with continuous bit-wise 
masks Similar to the current generation IP addressing using 
CIDR. 

0033 FIG. 1C is a block diagram illustrating an example 
global unicast address format for IP. Global unicast 
addresses in IPv6 may include a format prefix (FP) 142 in an 
address 140. The FP 142 identifies a format for a routing 
prefix 144, a subnet identifier (ID) 146 and an interface ID 
148. The routing prefix 144 and the subnet ID 146 represent 
routing identifiers as described above. The FP 142, routing 
prefix 144 and the subnet ID 146 may each be assigned 
different lengths within the address 140 (i.e., n bits, m bits 
and p bits, respectively, making the interface ID 148 128 
n-m-p bits). 
0034) The interface ID 148 may be a 64-bit field in 
EUI-64TM format. The EUI-64TM format is an IEEE (Insti 
tute of Electrical and Electronics Engineers) defined 64-bit 
extended unique identifier, which is a concatenation of a 
24-bit company ID (assigned by IEEE) and a 40-bit exten 
Sion identifier (assigned by the organization with the par 
ticular company ID). 
0035 FIG. 1D is a block diagram illustrating an example 
aggregatable global unicast address format for IP. The 
aggregatable global unicast address format for an IPv6 
address 160 may be identified by an FP162, which may be 
3 bits long and set to the binary value 001. The IPv6 address 
160 may include a top-level aggregation identifier (TLA ID) 
164, a next-level aggregation identifier (NLA ID) 166, a 
site-level aggregation identifier 168 (SLA ID) and an inter 
face ID 170. The IPv6 address 160 also may include a 
reserved field 172, which is reserved for future use. 
0036) The IPv6 address 160 has three different routing 
identifiers, the top-level aggregation ID 164, the next-level 
aggregation ID 166 and the Site-level aggregation ID 168. 
These routing identifiers may be used individually or 
together when routing data through a network. This address 
ing format may Support exchange-based aggregation as well 
as provider-based aggregation, either Simultaneously or 
Separately. 
0037. The TLA ID 164 and the NLA ID 166 make up a 
public topology portion of the IPv6 address 160. This public 
topology portion may be used by providers and exchanges 
who provide public Internet transit services. The TLA ID 
164 may be 13 bits long and may be used by backbone 
routers (i.e., the main routers or core routers in a network of 
networks) to look up addresses for forwarding data through 
a network backbone (e.g., long-haul providers). The NLAID 
166 may be 24 bits long and may be used at intermediate 
routers in a network. 

0038. The SLA ID 168 makes up a site topology portion 
of the IPv6 address 160. This site topology portion may be 
used by Specific Sites or organizations that do not provide 
public transit Service to nodes outside of the Site/organiza 
tion. The SLA ID 168 may be 16 bits long and may be used 
by all routerS regardless of their level in a network hierarchy. 
0039. The interface ID 170 may be a 64-bit field in 
EUI-64TM format and identifies an interface on a link. The 
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reserved field 172 may be an 8-bit field set to all Zeroes and 
is reserved for future use, such as expansion of the TLA ID 
164 and/or the NLA ID 166. For additional details on the 
IPv6 addressing architecture, See Request for Comments 
(RFC) 2373 and RFC 2374. 
0040 FIG. 2 is a flow chart illustrating a method of 
routing data in a network using a routing matrix. The method 
begins when a routing address is received (200). For 
example, a data packet may be received and a destination 
address may be extracted. The routing address may include 
the destination address, may be the destination address or 
may be a portion of the destination address. The packet may 
be an IP packet with an IP header. 
0041) Next, the routing address is confirmed to include 
multiple routing identifiers (210). For example, a format 
prefix in a destination address may be checked to identify the 
format of the routing address. In an IPv6 router, the initial 3 
bits of the destination address may be checked for the 
Sequence 001 to confirm that the destination address is a 
global unicast address. 
0042. Then, a routing matrix for the routing identifier is 
built (220). The routing matrix has multiple entries that are 
Set based upon two or more routing identifiers in the routing 
address. These entries identify one or more routing features 
for the routing address. For example, the routing address 
may have two routing identifiers, either or both of which 
may be used for routing the packet. If a routing identifier in 
the routing address is to be used in routing the packet, a 
corresponding entry is assigned an appropriate value in the 
routing matrix. 
0043. Once the routing matrix has been built, a set of 
route identification operations to be performed may be 
determined based on the routing matrix (230). For example, 
in the two routing identifiers example discussed above, three 
different types of routing are possible: (1) route the packet 
based on the first routing identifier, (2) route the packet 
based on the Second routing identifier, and (3) route the 
packet based on both the first and the Second routing 
identifiers. 

0044) Thus, three or more sets of route identification 
operations are possible. The route identification operations 
may include direct route lookup, Such as in a single route 
table, longest-prefix-match lookup, Such as in a set of route 
tables, hash table lookup, N-tuple lookup methods (where 
tuple refers to how many fields are being used to break up 
a long address field and perform lookup for it, where N may 
be 2, 3, 4, 5, etc.), other lookup techniques, or combinations 
of these. 

0.045 For example, if the routing address has two routing 
identifiers, and both are to be used in routing the packet, 
deciding the route may involve two different route lookup 
operations (e.g., a direct lookup and a longest-prefix-match 
lookup). By tailoring route lookup operations to respective 
route identifiers, performance may be enhanced. 
0046. After the set of route identification operations to be 
performed has been determined, a route is identified by 
performing the route identification operations in the Set 
(240). The route identified may be a next-hop for the packet. 
Moreover, when the set includes multiple route identifica 
tion operations (e.g., a direct lookup on a first routing 
identifier and a longest-prefix match on a Second routing 
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identifier), and these operations return different routes, both 
returned routes may be used Simultaneously, the two routes 
may be compared to identify which is better given current 
network conditions (e.g., routes may have associated 
weights or Selection levels that are used to determine a 
current optimum path given network condition), a route 
harmonization method may be employed, and/or the first 
route to be identified may be used. 
0047 FIG. 3A is a block diagram illustrating a routing 
matrix 300. The routing matrix 300 includes two columns 
305, 310 for routing identifiers, and may include additional 
columns 315 for additional routing identifiers. The routing 
matrix 300 includes a row 320 that identifies which routing 
identifiers are to be used for routing a packet. The row 320 
Stores Boolean TRUE/FALSE values. Additional rows 325 
also may be included in the routing matrix 300. These 
additional rows 325 may store additional information con 
cerning the routing identifiers and how they are to be used 
during routing a packet. This additional information also 
may be stored as Boolean TRUE/FALSE values. When all 
the elements of the routing matrix are Boolean TRUE/ 
FALSE values, the routing matrix may be stored as a bit 
map, for example, as a single binary number. 
0048 FIG. 3B is a block diagram illustrating an example 
IP routing matrix 350. The IP routing matrix 350 includes a 
single row 355 and may be used for global unicast address 
routing. The IP routing matrix 350 may be stored as a nibble 
(i.e., four bits of data), as larger binary numbers, and/or other 
number and/or character representations. 
0049 Host-level routing may or may not be implemented 
in a router depending upon the router's location in a network 
and the underlying router hardware. When host-level routing 
is implemented, if an interface ID for a destination address 
is to be used in routing, a Host column 360 is set to TRUE. 
For example, if there is a difference between the Source 
address and the destination address in bit positions 64-127, 
then the highest order bit of a routing matrix nibble is set to 
OC. 

0050. If an SLA ID for the destination address is to be 
used in routing, an SLA column 365 is set to TRUE. For 
example, if a difference exists between the Source address 
and the destination address in bit positions 48-63, then the 
second highest order bit of the nibble is set to one. 
0051) If an NLA ID for the destination address is to be 
used in routing, an NLA column 370 is set to TRUE. For 
example, if a difference exists between the Source address 
and the destination address in bit positions 24-47, then the 
third highest order bit of the nibble is set to one. If a TLA 
ID for the destination address is to be used in routing, a TLA 
column 375 is set to TRUE. For example, if there is a 
difference between the Source address and the destination 
address in bit positions 3-15, then the fourth highest order bit 
of the nibble is set to one. 

0.052 The IP routing matrix 350 described above also 
may be used for global unicast address routing without 
Supporting host-level routing. In this case, only the routing 
identifiers (TLA, NLA and SLA) are used. This may provide 
performance advantages for routers that need not Support 
host-level routing. 
0053. In addition, other bit positions and values may be 
used in the routing matrix 350. For example, the bit positions 
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may be reversed So the highest order bit corresponds to the 
TLAID and the lowest order bit corresponds to the interface 
ID, and/or the values may be inverted so that a zero 
represents TRUE and a one represents FALSE. Alternate bit 
positions and values may be used to provide potential 
performance advantages during checking of the routing 
matrix in various routing environments, and as mentioned 
above, larger binary numbers may be used. For example, the 
NLA ID and/or the SLA ID may be broken into sub-fields, 
each getting their own entry in the routing matrix, for better 
address aggregation, delegation and management. 
0054 FIG. 4A is a flow chart illustrating a method of 
building a routing matrix in an IP router. The method builds 
a matrix for global unicast address routing. The method 
begins by checking whether host-level routing is to be used 
with a packet (400). A source and destination address may 
be compared to determine if a difference exists between 
interface ID portions of the addresses. If host-level routing 
is to be performed, then a host-level matrix element in the 
routing matrix is set (405). 
0055. After this, or if host-level routing is not to be used 
for a current packet, then a check is made to determine 
whether site-level routing is to be performed (410). A source 
and destination address may be compared to determine if the 
SLA ID portions of the addresses differ. If site-level routing 
is to be performed, then an SLA matrix element in the 
routing matrix is set (415). 
0056. After this, or if site-level routing is not to be used, 
then a check is made to determine whether next-level 
routing is to be performed (420). For example, a Source and 
destination address may be compared to determine if there 
is a difference in NLA ID portions of the addresses. If 
next-level routing is to be performed, then an NLA matrix 
element in the routing matrix is set (425). 
0057. After this, or if next-level routing is not to be used, 
then a check is made to determine whether top-level routing 
is to be performed (430). For example, a source and desti 
nation address may be compared to determine if there is a 
difference in TLA ID portions of the addresses. If top-level 
routing is to be performed, then a TLA matrix element in the 
routing matrix is set (435). After this, or if top-level routing 
is not to be used, the process ends. 
0.058. The comparisons between source and destination 
addresses may be performed using an EXCLUSIVE OR 
operation, as discussed further below in connection with 
FIGS. 7A and 7B. Additionally, as mentioned above, host 
level routing need not be Supported. Thus, an interface ID 
portion of a destination address need not be checked, and the 
host level matrix element need not be used. 

0059 Performance advantages may be obtained when the 
method of FIG. 4A is performed using parallel processing. 
For example, FIG. 4B is a flow chart illustrating a parallel 
processing example of the method of FIG. 4A for building 
a routing matrix in an IP router. The method 400-435 in FIG. 
4B is essentially the same as the method in FIG. 4A, except 
that each level of routing is checked in parallel. 
0060. The parallel processing shown in FIG. 4B may be 
implemented in a communication System employing a hard 
ware-based multithreaded processor, Such as that discussed 
further below in connection with FIG. 8. Additionally, the 
parallel processing shown in FIG. 4B may be combined 
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with parallel processing of the route identification opera 
tions, Such as those discussed further below in connection 
with FIGS. 6, 7A and 7B. 

0061 FIG. 5 is a flow chart illustrating a method of 
determining a set of route identification operations to be 
performed based on a routing matrix for an IP destination 
address. The method begins by Switching process flow based 
on the contents of the routing matrix (500). This switching 
of process flow may represent a Series of if-then-else instruc 
tions, and may involve checking of individual bit positions 
in the routing matrix and/or checking of values represented 
by the routing matrix. When the routing matrix is a binary 
number, the following cases may result. 

0062) If the routing matrix is (0.001), a next-hop route is 
identified using the TLA ID (510). For example, the 13 bits 
of the TLA ID may be used to perform a single direct lookup 
into a table of next-hop routes. This may result in a total time 
for identifying the next-hop route governed by the time 
needed to perform two RAM read accesses. 

0063) If the routing matrix is (0010), a next-hop route is 
identified using the NLA ID (520). For example, the 24 bits 
of the NLA ID may be used to access a set of tables using 
a longest-prefix-match method (e.g., each table in the set of 
tables may have Sixteen entries, and the lookup may be 
performed four bits at a time, resulting in a maximum of Six 
tables to match a full NLA ID). This may result in a total 
time for identifying the next-hop route governed by the time 
needed to perform Seven RAM read accesses. 

0064. If the routing matrix is (0100), a next-hop route is 
identified using the SLA ID (530). For example, the 16 bits 
of the SLA ID may be used to access another set of tables 
using the longest-prefix-match method as described above 
(e.g., a maximum of four tables). This may result in a total 
time for identifying the next-hop route governed by the time 
needed to perform five RAM read accesses. 

0065. If the routing matrix is (0011), a next-hop route is 
identified using the TLA ID and the NLA ID (540). For 
example, the 13 bits of the TLA ID may be used to perform 
a single direct lookup into a table of next-hop routes. The 24 
bits of the NLA ID may be used to access a set of tables 
using a longest-prefix-match method as described above. 
This may result in a total time for identifying the next-hop 
route governed by the time needed to perform eight RAM 
read accesses. 

0066. If the routing matrix is (0111), a next-hop route is 
identified using the SLA ID, the NLA ID and the TLA ID 
(550). For example, the 13 bits of the TLA ID may be used 
to perform a Single direct lookup into a table of next-hop 
routes. The 24 bits of the NLA ID may be used to access a 
Set of tables using a longest-prefix-match method as 
described above. The 16 bits of the SLA ID may be used to 
access another Set of tables using the longest-prefix-match 
method as described above. This may result in a total time 
for identifying the next-hop route governed by the time 
needed to perform twelve RAM read accesses. 

0067. If the routing matrix is (0110), a next-hop route is 
identified using the SLA ID and the NLA ID (560). For 
example, the 24 bits of the NLA ID and the 16 bits of the 
SLA ID may be used to access a set of tables using a 
longest-prefix-match method as described above. This may 
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result in a total time for identifying the next-hop route 
governed by the time needed to perform eleven RAM read 
CCCSSCS. 

0068 If the routing matrix is (1111), a next-hop route is 
identified using the interface ID, the SLA ID, the NLA ID 
and the TLA ID (570). For example, the NLA ID, the SLA 
ID and the TLA ID may be used to perform separate lookup 
operations as described above. The 64 bits of an interface ID 
may be hashed together, and resulting 18 bits of hashed data 
may be taken as an indeX into a table of next-hop routes. 
This may result in a total time for identifying the next-hop 
route governed by the time needed to perform one hash 
64 1 instruction, resolve a possible collision, and perform 
fourteen RAM read accesses. 

0069. If the routing matrix is (1100), a next-hop route is 
identified using the interface ID and the SLA ID (580). For 
example, the SLA ID and the interface ID may be used to 
perform Separate lookup operations as described above. This 
may result in a total time for identifying the next-hop route 
governed by the time needed to perform one hash 64 1. 
instruction, resolve a possible collision, and perform thirteen 
RAM read accesses. 

0070 If the routing matrix is (1110), a next-hop route is 
identified using the interface ID, the SLA ID and the NLA 
ID (585). For example, the SLA ID, the NLA ID and the 
interface ID may be used to perform Separate lookup opera 
tions as described above. This may result in a total time for 
identifying the next-hop route governed by the time needed 
to perform one hash 64. 1 instruction, resolve a possible 
collision, and perform Seven RAM read accesses. 

0.071) If the routing matrix is (1000), a next-hop route is 
identified using the interface ID (590). For example, the 
interface ID may be used to perform lookup operations as 
described above. This may result in a total time for identi 
fying the next-hop route governed by the time needed to 
perform one hash 64. 1 instruction, resolve a possible 
collision, and perform two RAM read accesses. 

0.072 Given the nature of the routing matrix, there are six 
additional potential combinations that may be considered, 
but in typical implementations these combinations may not 
be needed. In general, if an upper level router is involved 
then routing at lower levels will be performed. Given these 
potentially unused matrix combinations, checks may be 
included to ensure these combinations do not occur, or these 
combinations may be assumed not to occur, and correspond 
ing optimizations in matrix checking may be achieved. Also, 
alternative implementations may use these additional matrix 
combinations and/or not use Some of the matrix combina 
tions shown in FIG. 5. 

0073. The route identification operations discussed above 
also may be performed using parallel processing, may be 
combined with the routing matrix production of FIG. 4A, 
and may be implemented in a communication System 
employing a hardware-based multithreaded processor, Such 
as that discussed further below in connection with FIG. 8. 

0.074 FIG. 6 is a flow chart illustrating a parallel pro 
cessing example of route identification. The method begins 
by Splitting into Separate processing threads that check for 
each type of routing. For example, four Separate proceSS 
threads may be initiated. A first thread checks for host-level 
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routing (600). If host-level is to be performed, a route is 
identified using the interface ID and a first data structure 
(605). 
0075) A second process thread checks for site-level rout 
ing (610). If site-level routing is to be performed, a route is 
identified using the SLA ID and a Second data structure 
(615). A third process thread checks for next-level routing 
(620). If next-level routing is to be performed, a route is 
identified using the NLA ID and a third data structure (625). 
A fourth process thread checks for top-level routing (630). 
If top-level routing is to be performed, a route is identified 
using the TLA ID and a fourth data structure (635). 
0076. These data structures may be completely separate 
data Structures, and host-level routing need not be imple 
mented. For example, if a received packet is to routed based 
on both a TLA ID and an NLA ID, three sets of operations 
may be performed in parallel. The first Set of operations may 
include checking the SLA ID and determining that site-level 
routing is not to be performed. The Second Set of operations 
may include checking the NLA ID, determining that next 
level routing is to be performed and performing a longest 
prefix-match lookup using the NLA ID and a data Structure. 
The third Set of operations may include checking the TLA 
ID, determining that top-level routing is to be performed and 
performing a direct lookup using the TLA ID and a Separate 
data Structure. Moreover, two or more of the first, Second, 
third and fourth data Structures may be similar in Structure 
and/or may be part of a larger data Structure. 
0077 Generally, when initiating parallel processing, the 
first level to be initiated will depend on the type of router and 
its network context. For example, in most routers on the 
Internet, the site-level routing check would be initiated first 
because in the total population of routers, Site-level routing 
will be used most frequently. However, if host-level routing 
is Supported, initiating the host-level routing check first may 
be desirable. 

0078. In addition, performance advantages may be 
obtained by using more processing threads than routing 
identifiers and/or by comparing the Source and destination 
addresses in parallel in blockS Smaller than a length of a 
Shortest of the routing identifiers. For example, in a com 
munication System employing a hardware-based multi 
threaded processor, a routing matrix may be built by com 
paring a Source address and a destination address in blockS 
of four bits as follows. 

007.9 FIG. 7A is a block diagram illustrating portions of 
example Source and destination aggregatable global unicast 
addresses for an IP packet. A destination address 710 
includes an FP712, a TLA ID 714, an NLA ID 716, an SLA 
ID 718, and a reserved field 720. A source address 700 
includes corresponding Sections (the interface ID portions of 
the addresses 700,710 are not shown). 
0080. The destination address 710 may be processed in 
parallel using eight hardware threads (or contexts) to per 
form EXCLUSIVE OR operations to build a routing matrix. 
The routing matrix includes three bits, initialized to Zero, 
representing SLA, NLA and TLA routing. Each hardware 
thread is assigned a nibble from each of the Source and 
destination addresses 700, 710 to process. The first eight 
assignments make up a first set 730, which includes all of the 
SLA ID 718, a portion of the NLA ID 716 and a portion of 
the TLA ID 714. 
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0081. Each hardware thread processes its assignment as 
shown in FIG. 7B, which is a flow chart illustrating a 
method for building a routing matrix using an EXCLUSIVE 
OR operation. The method begins by performing an 
EXCLUSIVE OR operation on Source bits and destination 
bits to produce an address comparison result (750). 
0082 Then, a check is made for any non-zero values in 
relevant bit position(s) of the address comparison result 
(752). Each bit may be checked individually, or groups of 
bits may be checked together. For example, in the first Set 
730, each thread will only examine bits from a particular 
routing identifier (either SLA, NLA or TLA), and thus each 
thread may check its complete address comparison result at 
once. If a non-Zero value is identified, the corresponding 
matrix entry is Set to indicate that routing is to be performed 
based on that routing identifier (754). 
0.083. As each thread completes its assignment from the 

first set 730, the thread may be assigned a new nibble 
processing task from a second set 732. The second set 732 
includes the remaining portions of the NLA ID 716 and the 
TLA ID 714. The results of processing the first set 730 may 
be used in later assignments. 

0084. For example, for the source and destination 
addresses shown, TLA ID routing is to be used. This is 
identified as soon as the first set 730 has been fully pro 
cessed, and thus a portion 734 of the second set 732 need not 
be processed. In this case, one of the threads may be 
assigned the task of looking up a next-hop route using the 
TLA ID while other threads are still checking the remainder 
of the NLA ID to determine if NLA routing is to be used. 
This processing shortcut may result in additional perfor 
mance improvements. 

0085 FIG. 8 is a block diagram of a communication 
System employing a hardware-based multithreaded proces 
Sor. A communication System 810 includes a parallel, hard 
ware-based multithreaded processor 812. The hardware 
based multithreaded processor 812 may be coupled with a 
bus 814 (e.g., a Peripheral Component Interconnect (PCI) 
bus), a memory system 816 and a second bus 818. The 
system 810 may be especially useful for tasks that can be 
broken into parallel Subtasks or functions (e.g., tasks that are 
bandwidth oriented rather than latency oriented). 
0.086 The hardware-based multithreaded processor 812 
has multiple microengines or programming engineS 822, 
each with multiple hardware controlled threads that are 
Simultaneously active and independently work on a task. 
The hardware-based multithreaded processor 812 also 
includes a processor core 820 for loading microcode for 
controlling other resources of the hardware-based multi 
threaded processor 812. The processor core 820 may per 
form other general purpose computer type functions Such as 
handling protocols, exceptions, and extra Support for packet 
processing where the programming engineS 822 pass the 
packets off for more detailed processing, Such as in bound 
ary conditions. 
0087. The processor core 820 may be a Strong ArmTM 
(Arm is a trademark of ARM Limited, United Kingdom) 
based architecture. The general-purpose microprocessor 820 
has an operating System through which the processor core 
820 can call functions to operate on programming engines 
822. The processor core 820 may use any supported oper 
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ating System, but preferably a real time operating System. 
For the core processor implemented as a Strong ArmTM 
architecture, operating Systems. Such as MicroSoft NT real 
time, VXWorks and uCUS, a freeware operating system 
available over the Internet, may be used. 
0088. The hardware-based multithreaded processor 812 
also includes functional programming engines 822. Func 
tional programming engines (programming engines) 822 
each maintain program counters in hardware and States 
asSociated with the program counters. Effectively, corre 
sponding Sets of context or threads can be simultaneously 
active on each of the programming engineS 822 while only 
one is actually operating at any one time. 
0089. There may be six programming engines 822a-822f. 
Each programming engine 822a-822fmay have capabilities 
for processing eight hardware threads or contexts. The Six 
programming engines 822a-822f operate with shared 
resources including memory System 816 and bus interfaces 
824 and 828. The memory system 816 may include a 
Synchronous Dynamic Random Access Memory (SDRAM) 
816a, a Static Random Access Memory (SRAM) 816b, a 
FLASH Read Only Memory (ROM) 816c, an SDRAM 
controller 826a and an SRAM controller 826b. SDRAM 
memory 816a and SDRAM controller 826a are typically 
used for processing large Volumes of data, e.g., processing 
of network payloads from network packets. The SRAM 
controller 826b and SRAM memory 816b are used in a 
networking implementation for low latency, fast access 
tasks, e.g., accessing look-up tables, memory for the core 
processor 820, and so forth. 
0090 The six programming engines 822a-822f access 
either the SDRAM 816a or SRAM 816b based on charac 
teristics of the data. Thus, low latency, low bandwidth data 
is stored in and fetched from SRAM 816a, whereas higher 
bandwidth data for which latency is not as important, is 
stored in and fetched from SDRAM 816b. The programming 
engineS 822a-822f can execute memory reference instruc 
tions to either the SDRAM controller 826a or SRAM 
controller 816b. 

0091 Advantages of hardware multithreading can be 
explained by SRAM or SDRAM memory accesses. As an 
example, an SRAM access requested by a Thread 0, from 
a programming engine will cause the SRAM controller 826b 
to initiate an access to the SRAM memory 816b. The SRAM 
controller 826b controls arbitration for the SRAM bus, 
accesses the SRAM 816b, fetches the data from the SRAM 
816b, and returns data to a requesting programming engine. 
During an SRAM access, if the programming engine, e.g., 
822a had only a single thread that could operate, that 
programming engine would be dormant until data was 
returned from the SRAM. 

0092. By employing hardware context swapping within 
each of the programming engineS 822a-822f the hardware 
context Swapping enables other contexts with unique pro 
gram counters to execute in that same programming engine. 
Thus, another thread e.g., Thread 1 can function while the 
first thread, e.g., Thread 0, is awaiting the read data to 
return. During execution, Thread 1 may access the 
SDRAM memory 816a. While Thread 1 operates on the 
SDRAM unit, and Thread 0 is operating on the SRAM unit, 
a new thread, e.g., Thread 2 can now operate in the 
programming engine 822a. Thread 2 can operate for a 
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certain amount of time until it needs to acceSS memory or 
perform Some other long latency operation, Such as making 
an access to a bus interface. Therefore, Simultaneously, the 
processor 812 can have a bus operation, SRAM operation 
and SDRAM operation all being completed or operated 
upon by one programming engine 822a and have one more 
thread available to process more work in the data path. 
0093. The hardware context swapping also synchronizes 
completion of tasks. For example, two threads could hit the 
Same Shared resource e.g., SRAM. Each one of these Sepa 
rate functional units, e.g., the FBUS interface 828, the 
SRAM controller 826a, and the SDRAM controller 826b, 
when they complete a requested task from one of the 
programming engine thread contexts reports back a flag 
Signaling completion of an operation. When the program 
ming engine receives the flag, the programming engine can 
determine which thread to turn on. 

0094. One example of an application for the hardware 
based multithreaded processor 812 is as a network proces 
Sor. As a network processor, the hardware-based multi 
threaded processor 812 interfaces to network devices Such as 
a Media Access Controller (MAC) device e.g., a 
10/100BaseTOctal MAC 813a or a Gigabit Ethernet device 
813b. In general, as a network processor, the hardware 
based multithreaded processor 812 can interface to any type 
of communication device or interface that receives/sends 
large amounts of data. Communication System 810 func 
tioning in a networking application could receive network 
packets from the devices 813a, 813b and process those 
packets in a parallel manner. With the hardware-based 
multithreaded processor 812, each network packet can be 
independently processed. 

0.095 The processor 812 includes a bus interface 828 that 
couples the processor to the second bus 818. Bus interface 
828 may couple the processor 812 to an FBUS 818 (FIFO 
(first-in-first-out) bus). The FBUS interface 828 is respon 
sible for controlling and interfacing the processor 812 to the 
FBUS 818. The FBUS 818 may be a 64-bit wide, a 128-bit 
wide or a 256-bit wide FIFO bus, used to interface to MAC 
devices. 

0096. The processor 812 includes a second interface e.g., 
a PCI bus interface 824 that couples other system compo 
nents that reside on the PCI bus 814 to the processor 812. 
The PCI bus interface 824 provides a high-speed data path 
824a to memory 816, e.g., the SDRAM memory 816a. 
Through that path data can be moved quickly from the 
SDRAM 816a through the PCI bus 814, via Direct Memory 
Access (DMA) transfers. 
0097. Each of the programming engines 822a-822fmay 
include an arbiter that examines flags to determine the 
available threads to be operated upon. Any thread from any 
of the programming engineS 822a-822f can access the 
SDRAM controller 826a, SDRAM controller 826b or FBUS 
interface 828. 

0.098 Data functions are distributed amongst the pro 
gramming engines. Connectivity to the SRAM 26a, 
SDRAM 826b and FBUS 828 is via command requests. A 
command request can be a memory request or a FBUS 
request. For example, a command request can move data 
from a register located in a programming engine 822a to a 
shared resource, e.g., an SDRAM location, SRAM location, 
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flash memory or some MAC address. The commands are 
Sent out to each of the functional units and the shared 
resources. However, the shared resources do not need to 
maintain local buffering of the data. Rather, the shared 
resources acceSS distributed data located inside of the pro 
gramming engines 822a-822f. This enables programming 
engineS 822a-822f, to have local access to data rather than 
arbitrating for access on a bus and risk contention for the 
bus. With this feature, there is a 0 cycle stall for waiting for 
data internal to the programming engineS 822a-822f 
0099 Various implementations of the systems and tech 
niques described here may be realized in digital electronic 
circuitry, in computer hardware, firmware, Software, or 
combinations thereof. For example, the Systems and tech 
niques may be implemented in IXP 1200 network processor, 
provided by Intel Corporation of San Clara, Calif. 
0100. The logic flows depicted in the figures do not 
require the particular order shown and described. AS dis 
cussed above, in certain implementations, multi-tasking and 
parallel processing may be preferable. 

0101. Other embodiments may be within the scope of the 
following claims. 

What is claimed is: 
1. A machine-implemented method comprising: 

receiving a routing address comprising at least two rout 
ing identifiers, and 

building a routing matrix to use in determining route 
identification operations to be performed, the routing 
matrix identifying one or more of the at least two 
routing identifiers that are to be used in routing. 

2. The method of claim 1, wherein the routing address 
comprises a destination address, and wherein building the 
routing matrix comprises comparing the destination address 
with a Source address to identify a difference. 

3. The method of claim 2, wherein comparing the desti 
nation address comprises: 

performing an EXCLUSIVE OR operation of the desti 
nation address and the Source address to produce an 
address comparison result, and 

checking whether the address comparison result includes 
one or more non-Zero values. 

4. The method of claim 3, wherein comparing the desti 
nation address comprises using parallel processing to com 
pare the destination address with the Source address. 

5. The method of claim 4, wherein comparing the desti 
nation address comprises using blockS Smaller than a length 
of a shortest of the two or more routing identifiers. 

6. The method of claim 5, wherein the blocks comprise 
four-bit blocks. 

7. The method of claim 1, wherein building the routing 
matrix comprises using parallel processing to build the 
routing matrix. 

8. The method of claim 7, further comprising determining 
a set of route identification operations to perform based on 
the routing matrix. 

9. The method of claim 8, wherein the routing matrix 
consists of a binary number. 
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10. The method of claim 8, wherein route identification 
operations include a direct lookup operation, a longest 
prefix-match lookup operation, and a hash table lookup 
operation. 

11. The method of claim 10, wherein the at least two 
routing identifiers conform to an addressing architecture 
defined by an Internet Engineering Task Force. 

12. A machine-readable medium embodying information 
indicative of instructions for causing a machine to perform 
operations comprising: 

receiving a Source address and a destination address, each 
comprising at least two routing identifiers, 

performing an EXCLUSIVE OR operation of the source 
address routing identifiers with the destination address 
routing identifiers to produce an address comparison 
result, 

determining a set of route identification operations to 
perform based upon one or more non-Zero values in the 
address comparison result, wherein a different route 
identification operation is to be used for each of the one 
or more non-Zero values. 

13. The machine-readable medium of claim 12, wherein 
the Set of route identification operations comprise one or 
more of a direct lookup operation and a longest-prefix-match 
lookup operation. 

14. The machine-readable medium of claim 13, wherein 
performing the EXCLUSIVE OR operation comprises per 
forming an EXCLUSIVE OR operation using blocks Smaller 
than a length of a shortest of the destination address routing 
identifiers and the Source address routing identifiers. 

15. The machine-readable medium of claim 14, wherein 
the blocks comprise four-bit blocks. 

16. The machine-readable medium of claim 15, wherein 
the destination address routing identifiers and the Source 
address routing identifiers conform to an addressing archi 
tecture defined by an Internet Engineering Task Force. 

17. A System comprising: 
a proceSSOr, 

a network device; 
a first bus coupled with the network device and with the 

proceSSOr, 

a memory System embodying information indicative of 
instructions to cause the processor to perform opera 
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tions comprising receiving a Source address and a 
destination address, each comprising at least two rout 
ing identifiers, and determining a Set of route identifi 
cation operations to perform based upon one or more 
differences between the Source address routing identi 
fiers and the destination address routing identifiers, and 

a Second bus coupled with the memory System and with 
the processor. 

18. The system of claim 17, wherein the processor com 
prises a parallel, hardware-based multithreaded processor. 

19. The system of claim 18, wherein the network device 
comprises a media access controller device. 

20. The system of claim 19, wherein the first bus com 
prises a 128-bit wide first-in-first-out bus. 

21. The system of claim 18, wherein the set of route 
identification operations comprise one or more of a longest 
prefix-match lookup operation and one or more direct 
lookup operations. 

22. The system of claim 21, wherein the memory system 
comprises a dynamic random acceSS memory and a Static 
random acceSS memory. 

23. The system of claim 22, wherein the second bus 
comprises a peripheral component interconnect bus. 

24. A communication System comprising: 
a proceSSOr, 

means for receiving a Source address and a destination 
address, each comprising at least two routing identifi 
erS, 

means for using the processor to identify one or more 
differences between the Source address routing identi 
fiers and the destination address routing identifiers, 

means for determining a set of route identification opera 
tions based upon the one or more differences, wherein 
a different route identification operation is determined 
for each of the one or more differences, and 

means for routing data based upon the Set of route 
identification operations. 

25. The system of claim 24, wherein the processor com 
prises a parallel, hardware-based multithreaded processor. 


