
(12) United States Patent

US007299269B2

(10) Patent No.: US 7,299,269 B2
Elving (45) Date of Patent: Nov. 20, 2007

(54) DYNAMICALLY ALLOCATING DATA 6,661431 B1* 12/2003 Stuartet al. 71.5/733
BUFFERS TO ADATASTRUCTURE BASED 6,665,704 B1* 12/2003 Singh TO9,203
ON BUFFER FULLNESS FREQUENCY 6,792.458 B1* 9/2004 Muret et al. 709,224

2002/0042821 A1* 4/2002 Muret et al. 709,223
75 2002/0056025 A1* 5/2002 Qiu et al. 711,133 (75) Inventor: Christopher H. Elving, Santa Clara, 2002/0073211 A1* 6/2002 Lin et al. TO9,224

CA (US)

(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 804 days.

(21) Appl. No.: 09/885,633

(22) Filed: Jun. 19, 2001

(65) Prior Publication Data

US 20O2/O194338 A1 Dec. 19, 2002

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. 709/218
(58) Field of Classification Search 709/214,

709/215, 226, 224, 223, 219; 718/704; 707/103
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,884,038 A * 3/1999 Kapoor TO9,226
6,047,356 A * 4/2000 Anderson et al. T11 129
6,182,086 B1 1/2001 Lomet et al.
6,205,489 B1* 3/2001 Kapoor 709/245
6,240,463 B1* 5/2001 Benmohamed et al. TO9,238
6,308.238 B1 * 10/2001 Smith et al. T10/310
6,493,837 B1 12/2002 Pang et al.

WRUAL
SERVERS

204

OG
ANAGSR
206

C

SERVER
THREAD

- ---

D
STEACOM SITEB.COM sts
OGLE LOGFFLE LOGI GFIE

C 240 242 244. 246

2002/0143575 A1 * 10, 2002 Hansen et al. 705/2
2002/0143932 A1* 10/2002 Quintero et al. 709,224
2002/0194338 A1* 12/2002 Elving TO9,226
2004/0133637 A1* 7/2004 Wesinger et al. 709,203
2006/0104.268 A1* 5/2006 Lee et al. 370,389

OTHER PUBLICATIONS

Java Network Programming, 2nd Edition. By Elliotte Rust Harold,
Aug. 2000, ISBN 1-56592-870-9.*
Pointers, by Adam Drozdek, Data Structures and Algorithms in
C++, 2001, pp. 9-20.*

(Continued)
Primary Examiner Jason Cardone
Assistant Examiner Ajay M Bhatia
(74) Attorney, Agent, or Firm—Hickman Palermo Truong &
Becker LLP, Christian A. Nicholas

(57) ABSTRACT

A method and apparatus for dynamically allocating data
buffers to a data structure is provided. According to one
aspect of the invention, the amount of log data that is being
stored within data buffers associated with a data structure is
monitored. Based on the amount of log data that is being
stored within the data buffers, a determination is made as to
whether additional data buffers need to be linked into the
data structure. If it is determined that additional data buffers
do need to be linked to the data structure, one or more free
buffers are identified and linked into the data structure.

23 Claims, 10 Drawing Sheets

C.COM SITEDCOM

US 7,299,269 B2
Page 2

OTHER PUBLICATIONS Discovery of Web frequent patterns and user characteristics from
Web access logs: a framework for dynamic Web personalization,

An analysis of the TUX web server, Chuck Lever, Sun-Netscape Dua, S.; Cho, E.; lyengar, S.S.; Application-Specific Systems and
Alliance, chucklanetscape.com, Marius Aamodt Eriksen, Linux. Software Engineering Technology, 2000. Proceedings. 3rd IEEE
com, marius(alinux.com, Stephen P. Molloy, University of Michi- Symposium on Mar. 24-25, 2000 pp. 3-8.*
gan, Smolloy(aengin.umich.ed, CITI Technical Report 00-8, Nov.
16, 2000.* * cited by examiner

U.S. Patent Nov. 20, 2007 Sheet 1 of 10 US 7,299,269 B2

100

CLENT
130

CLENT CLENT
132 134 136

SITEACOM
WEB

lsERVER
102

SITE A SITE A SITE. A SITE A
SERVER SERVER SERVER SERVER
THREAD THREAD THREAD THREAD
110

BUFFER
120

MEMORY
ADDRESS
SPACE
108

112 114

SITE A.COM
LOG FILE

FG. A
(PRIOR ART)

U.S. Patent Nov. 20, 2007 Sheet 2 of 10 US 7,299,269 B2

s
CLIENT CLIENT CLIENT CENT
130 132 134 36

STE A
SERVER
THREAD

SITE B
SERVER
THREAD
162

SITEC
SERVER
THREAD
164

SITED
SERVER
THREAD
166

MEMORY MEMORY MEMORY MEMORY
ADDRESS | ADDRESS ADDRESS ADDRESS

SPACE SPACE SPACE
58C 158d

18 - - - -
WEBSERVER

C
SITE A.COM STE B.COM SITE C.COM SITE D.COM
OG FILE LOG FILE LOG FILE LOG FILE

F.G. 1B
(PRIOR ART)

U.S. Patent Nov. 20, 2007 Sheet 3 of 10 US 7,299,269 B2

CLENT CLENT CLEN CLENT
232 234 236 238

CONNECTION
OUEUE
208

VIRTUAL
SERVERS

204

SERVER
THREAD

SERVER SERVER
HREAD

LOG
MANAGER

2O6

BUFFER
FILE

BUFFER
FILE

BUFFER
FILE

BUFFER
FILE

MEMORY
ADDRESS
SPACE
228

C
SITE A.COM SITE B.COM stoo SITE D.COM
LOGFILE LOG FILE LOG FILE LOGFIE

240 242 244 246

F.G. 2A

U.S. Patent Nov. 20, 2007 Sheet 4 of 10 US 7,299,269 B2

RECEIVEREQUEST FOR
ACCESS TO AWEBSITE

252

ASSIGN SERVER THREAD
TOSERVICE REGUEST

254

LOADAPPROPRIATE
CONFIGURATION FOR
WEBSITE 256

GENERATE LOG DATA
BASED ON RECUEST

258

DENTIFYA BUFFER FILE
ASSOCATED WITH THE
WEBSITE 260

WRITE LOG DATA ENTO
THE SELECTED BUFFER

WRITE LOG DATA TO THE
DENTIFIED PHYSICAL LOG

FG.2B FILE

US 7,299,269 B2 Sheet 5 of 10 Nov. 20, 2007 U.S. Patent

809

U.S. Patent Nov. 20, 2007 Sheet 6 of 10 US 7.299,269 B2

READ INTAL LAST BUFFER
INDEXVALUE 352

NCREMENT LAST
BUFFER INDEXVALUE

354

SFLAG
SETBUSY FOR

HEBUFFERARRAY ENTRY
ASSOCATED WITH THE LAST

BUFFER INDEX
WALUE

HAVE ALL
BUFFERENTRIES
INTHE BUFFER
ARRAY BESN
CHECKED?

358

SELECT THE SUFFER ARRAY
ENTRY ASSOCATED WITH THE
CURRENT LAST BUFFER
INDEXVALUE 357 SELECT BUFFERARRAY ENTRY

ASSOCATED WITH INCREMENTED
INTIAL LAST BUFFER INDEXVALUE

360

S
THE BUFFER RETRIEVE ABUFFER FROM THE
ARRAY ENTRY FREE BUFFERPOOL
LINKED TO A 364
BUFFER

ATTEMPT TO LOCK THE BUFFER
366

U.S. Patent Nov. 20, 2007 Sheet 7 of 10 US 7,299,269 B2

S
THE BUFFER

WAIT FOR THE LOCKON LOCKED
BY ANOTHER THE BUFFER TO BE
THREAD? RELEASED 370

368

SET FLAGBUSY FOR THE
BUFFER ARRAY ENTRY

372

LOCKBUFFER FOR
WRITINGLOG DAA

374

WRITE LOG DATA INTO
BUFFER 376

SHOULD
THE SELECTED

BUFFER BE REMOVED
FROM THE BUFFER

ARRAY?
378

MOVE BUFFERTO
READY-TO-WRTE

YES BUFFER LIST 380

RELEASE LOCKON
NO BUFFER

382

BUFFER 384

CLEAR BUSY FLAG

FIG. 3C

U.S. Patent Nov. 20, 2007 Sheet 8 of 10 US 7,299,269 B2

WEB
SERVER LOGMANAGER

FREE BUFFER SITE. A
POOL SEFER
408 FE

BUFFER
FILE

BUFFER
FILE

BUFFER
FILE

LOCAL
LOGGING

GLOBAL.
LOGGING

LOCAL
LOGGING

MEMORY
ADDRESS
SPACE
228

C D

D.COM SITE A.COM SITE B.COM into SITE
LOG FILE LOG FILE OG FILE OG FILE

240 242 244 246

404

FG. 4A

U.S. Patent Nov. 20, 2007 Sheet 9 of 10 US 7,299,269 B2

DETERMINE THAT THE CONTENTS
OFA BUFFER ASSOCATED WITH
ABUFFER FILE NEEDS TO BE

WRITTENTO DISK 452

IDENTIFY ENTRY IN THE
BUFFER ARRAY FOR

INSERTING THE BUFFER
464

IDENTIFY THE PHYSICAL LOGFILE INSERT BUFFER INTO
THAT IS ASSOCATED WITH BUFFER ARRAY
THE BUFFER FILE 454 466

OBTAIN A LOCK ON A BUFFER WITHIN CLEAR BUSYFLAG FOR
THE READY-TO-WRITEBUFFER LIST OF BUFFERARRAY ENTRY
THE BUFFER FILE 456 468

WRITE THE LOG DATA IN THE LOCKED
BUFFER INTO THE CORRESPONDING
PHYSICAL LOG FILE 458

DOES
ANOTHER BUFFER

NEED TO BE
SD WRITTENTO

DISK
BUFFER BE YES

INSERTED BACKNTO ()
THE BUFFER ARRAY
OF THE BUFFER YES

FILE
460

ADD BUFFERTO FREE BUFFER
POOL

462 FIG. 4B

US 7,299,269 B2 Sheet 10 of 10 Nov. 20, 2007 U.S. Patent

839

OSG HE/\HBS XHONNIEN|
939

| | | | | | | | | | |

?IG
TOH] NOO HOSHT|0

US 7,299,269 B2
1.

DYNAMICALLY ALLOCATING DATA
BUFFERS TO ADATASTRUCTURE BASED
ON BUFFER FULLNESS FREQUENCY

FIELD OF THE INVENTION

The present invention relates generally to data manage
ment, and more specifically, to dynamically tuning the
allocation data buffers.

BACKGROUND OF THE INVENTION

The development of the Internet, and in particular the
development of the World Wide Web (“WWW), has cre
ated a mechanism whereby a tremendous amount of infor
mation has been made publicly available to anyone who has
access to a client computer. For example, by interacting with
a client computer, a user can connect to thousands, if not
millions of different web sites to access and/or retrieve
information that is contained within an electronic document
or web page.

To provide access to their web site, many businesses
contract with an Internet Service Provider ("ISP") to host the
company's web site. For many companies, there is a strong
desire to obtain statistical information regarding the traffic or
"hits” on the company's web site. Thus, as part of hosting a
company's web site, an ISP will typically collect a variety of
statistical information about each of the hosted web sites.
For example, an ISP may collect statistical information such
as, the number of access requests (“hits”) that are received
for a particular site, the volume of hits that are received by
a web site during any particular time of day, the frequency
that a certain page or image is accessed within the web site,
along with other statistical information that may be deemed
important for a particular web site.

Traditionally, an ISP will typically assign a single web site
domain to each web server. By assigning a single web site
domain to each web server, the ISP can easily monitor and
log statistical information about the activity that is associ
ated with the web site domain. For example, FIG. 1A
illustrates a system 100 in which a web server (SITE. A.
COMWEB SERVER 102) has been configured to host a
single web site domain (“SITE. A.COM). In this example,
multiple server threads (SITE. A server threads 110, 112,
114, 116), executing in a memory address space 108, service
requests for access to the single web site domain SITE. A.
COM. In addition, in order to monitor the activity that is
associated with the SITE. A.COM domain, as part of ser
vicing the requests from client devices (130, 132, 134, 136),
SITE A server threads 110, 112, 114, 116, repeatedly write
SITE Aaccess information into buffers 120, 122, 124, 126.
Thereafter, because each of the buffers 120, 122,124, 126,
are guaranteed to only contain access information for the
single web site domain (SITE. A.COM), if any of the buffers
120, 122, 124, 126 become full, the contents of the buffer
may be stored to a single file (for example, site.A.com log file
106 on physical disk 104), without having to determine
which web site domain was associated with the request.
Thereafter, statistical information may be later generated for
SITE. A.COM domain based on the access information that
was stored to physical disk 104.

However, while the practice of assigning a single web site
domain to a web server can significantly reduce the com
plexity of generating and logging statistical access informa
tion for a particular web site domain, the practice also
introduces a significant scalability problem. For example,
using the described configuration, for an ISP to be able to

10

15

25

30

35

40

45

50

55

60

65

2
host a hundred different web site domains, the ISP would
need to purchase and maintain a hundred different web
servers. For most ISPs, maintaining a one-to-one relation
ship between the number of web servers and the number of
web site domains that the ISP can support is both inefficient
and financially impracticable.

In an attempt to address the scalability problem, some
web servers have been configured to include multiple server
threads that execute within separate processes within their
own individual memory space. By executing multiple server
threads as separate processes within their own individual
memory space, certain complexities that are typically asso
ciated with generating and logging statistical access infor
mation for multiple web site domains may potentially be
reduced.

For example, FIG. 1B illustrates a system 150 that
includes a web server 152 that consists of multiple server
threads (160, 162, 164, 166) each of which execute in a
separate memory space 158a-d, respectively. In addition,
server threads 160, 162, 164, 164, are respectively associ
ated with buffers 170, 172,174 and 176, which are each used
to buffer access information for a distinct web site domain
(SITE. A.COM, SITE B.COM, SITE C.COM, SITE D.
COM), and to store the information to disk 154 within a
corresponding log file 156a-d. By servicing multiple web
sites in a single web server, certain inefficiencies that are
associated with the system 100 depicted in FIG. 1A can be
reduced. In addition, because each server thread (160, 162,
164, 166) executes in a separate memory address space and
services access requests for only a single web site domain,
the problem of ensuring that log data for one site is not
incorrectly stored in the physical log file of another can
generally be reduced.

However, a significant drawback with the configuration of
system 150 is that by requiring specific processes to be used
to service specific web site domains, a scalability problem is
again introduced in the system. For example, if SITE A and
SITE B receive heavy traffic while SITE C and SITE D
typically receive little or no traffic, up to fifty percent (50%)
of system 150 resources (e.g., server threads, buffers, etc.)
may sit idle and thus be wasted. In addition, system 150
requires that each web site domain be associated with its
own process, which in the case of multiple web site domains
can cause the system resources to quickly become depleted.
Still further, the overhead that is associated with swapping
between the different memory address spaces for each of the
server threads can itself be a significant drain on the system
SOUCS.

Based on the foregoing, there is a clear need for an
improved mechanism that allows multiple web site domains
to be efficiently serviced by a single web server.

SUMMARY OF THE INVENTION

A method and apparatus are provided for dynamically
allocating data buffers to a buffer array. According to one
aspect of the invention, the amount of log data that is being
stored within data buffers associated with a buffer array is
monitored. Based on the amount of log data that is being
stored within the data buffers, a determination is made as to
whether additional data buffers need to be linked into the
buffer array. If it is determined that additional data buffers do
need to be linked to the buffer array, one or more free buffers
are identified and linked into the buffer array.

According to another aspect, dynamic allocation of data
buffers in a web server is provided. In this aspect, a web
server in configured to service requests for multiple web site

US 7,299,269 B2
3

domains. A buffer file, that is assigned to a particular web
site domain within the multiple web site domains, includes
a buffer array that maintains links to data buffers that are
used to buffer log data. The buffer log data is based on
content requests that are directed to the particular web site 5
domain. Allocation of data buffers to the buffer array is
dynamically controlled based on the number of content
requests that are received by the web server for content that
is associated with the particular web site domain.
The invention also encompasses a computer-readable 10

medium, a computer data signal embodied in a carrier wave,
and an apparatus configured to carry out the foregoing steps.
Other features and aspects will become apparent from the
following description and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1A depicts a conventional system in which a web
server is configured to host a single web site domain;

FIG. 1B depicts another conventional system in which a
web server is configured to service multiple web site
domains by executing separate threads, each within its own 25
memory space;

FIG. 2A illustrates an example of a data buffering system
in which certain embodiments of the invention may be
utilized;

FIG. 2B is a flow diagram that illustrates an example of 30
a method for processing requests for content that is associ
ated with different web site domains;

FIG. 3A is a block diagram of a buffer file that depicts
certain internal details thereof.

FIG. 3B is a flow diagram that illustrates an example of
a method of selecting a data buffer within a buffer file for
writing log data;

FIG. 3C is a flow diagram that further illustrates an
example of a method of selecting a data buffer within a
buffer file for writing log data;

FIG. 4A is a block diagram that further illustrates certain
internal details that may be included in the web server
described in FIG. 2A;

FIG. 4B is a flow diagram that illustrates an example of
a method for identifying a log file in secondary memory and
for writing the log data into the identified log file in
secondary memory; and

FIG. 5 is a block diagram of a computer system with
which an embodiment may be carried out.

5

40

45

DETAILED DESCRIPTION OF THE
INVENTION

50

An efficient buffering mechanism is provided for buffer
ing information that is associated with requests for elec
tronic content. In the following description, for the purposes
of explanation, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the
art that the present invention may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in block diagram form in order to
avoid unnecessarily obscuring the present invention.

55

60

Operational Context

A tuning mechanism that dynamically allocates data buff- 65
ers is provided. In one embodiment, a web server is con
figured to service requests for content that is located in

4
different web site domains. To service the requests, the web
server employs a connection queue that receives requests,
from multiple clients over a network, for access to content
located in multiple web site domains. Upon receipt, the
requests are queued within a connection queue for service by
one of a plurality of server threads. The server threads are
configured as virtual servers that allow them to service
requests for different web site domains by removing the
requests from the connection queue and loading the con
figuration data that is associated with the specific web site
domain. As part of servicing a request, each server thread
generates log data based on the content that is being
requested by the particular client. The server thread then
interfaces with a log manager to identify a buffer file that is
configured for buffering log data that is associated with the

5 specific web site domain. To buffer the log data, an efficient
buffering scheme is used to select a buffer within the buffer
file and to write the log data into the selected buffer.
Thereafter, the log data is written into a log file in secondary
memory that is associated with the specific web site domain.

System Overview

FIG. 2A illustrates an example of a data buffering system
200 in which certain embodiments of the invention may be
used. In this example, system 200 includes a plurality of
client devices (232, 234, 236, 238), a network 248, a web
server 202 and a secondary memory, illustrated herein as
disk 230.
Network 248 may represent a private and/or public net

work, such as the Internet, and comprised of a one or more
LANs and/or WANs that are configured for communicating
between multiple computing devices. In addition, network
248 may be formed using a variety of different communi
cation mediums, including but not limited to electrical wire
or cable, optical, or wireless connection mediums. In one
embodiment, network 248 is configured as a packet
Switched network that can Support Such protocols as the
HyperText Transport Protocol (HTTP) or the Wireless
Access Protocol (WAP).

Client devices 232-238 represent computing devices that
are capable of requesting information or content that is
available on one or more web sites. For example, client
devices 232-238 may represent a personal computer (PC), a
workstation, a cellular phone, a PDA, or other device that is
capable of communicating with web server 202 over net
work 248. In certain embodiments, client devices 232-238
are configured to execute a browser type application, such as
Netscape Navigator R, or other similar type of WAP or
HTML browser application.
Web Server 202 is a computer, or a group of hardware

and/or software components or processes that cooperate or
execute in one or more computer systems. In one embodi
ment, web server 202 is configured to service requests for
multiple web site domains. For example, web server 202
may be configured to service requests for content that is
associated with the web site domains SITE. A.COM, SITE
B.COM, SITE C.COM, and SITE D.COM.
As depicted, web server 202 includes a connection queue

208, a plurality of server threads (210,212.214,216) that
execute as virtual servers 204, and a plurality of buffer files
(218.220.224.226) that form part of a log manager mecha
nism 206. In one embodiment, connection queue 208, server
threads (210,212.214,216), and buffer files (218.220.224,
226) execute within a single memory address space 228.

In this example, connection queue 208 is configured to
receive client requests for access to content that is located on
web site domains that are serviced by web server 202. Upon

US 7,299,269 B2
5

receiving a request, connection queue 208 queues the
request for service by one of the virtual servers 204. There
after, an available server thread (“servicing thread') “picks
up' the queued request and determines the location of the
content that is being requested by the client device. Based on 5
the location of the content that has been requested by the
client device, the servicing thread loads configuration data
for a particular web site domain and generates a set of log
data that provides information about the requested content.
The servicing thread then identifies, from among the plu- 10
rality of buffer files (218,220.224.226), a buffer file that has
been assigned to buffer log data for the particular web site
domain. A buffer within the identified buffer file is then
selected for writing the set of log data. As is explain in
greater detail below, log manager 206 employs an efficient 15
data buffering scheme for managing the number of available
buffers within a buffer file and for selecting the particular
buffer that is to be used for storing the set of log file.

Subsequent to writing the log data into a particular buffer
within a buffer file, the log data is stored within a log file that 20
is maintained on disk 230. Disk 230 represents a secondary
storage and/or memory that is distinct from the memory that
is used for buffering the log data. In one embodiment, disk
230 represents a nonvolatile storage device that is accessible
by web server 202 for storing log data associated with 25
different web site domains. For example, disk 230 may
represent a variety of different secondary storage devices
and/or units including, but is not limited to, internal or
external disk drives, writeable CD or DVD storage units, or
floppy disk or magnetic tape drive units. In addition, 30
although disk 230 is depicted as being separate from web
server 202, disk 230 may also be configured as part of web
Server 202.

In one embodiment, disk 230 maintains a plurality of log
files (240.242.244.246) that are used to store log data that is 35
associated with a particular web site domain. For example,
SITE. A.COM log file 240 is used to store log data that is
associated with requests for content that is located on the
web site domain SITE. A.COM.

40

Processing Content Requests

FIG. 2B is a flow diagram that illustrates an example of
a method for processing requests for content that is associ
ated with different web site domains. For explanation pur- 45
poses, FIG. 2B is described in reference to the components
of FIG. 2A.
At block 252, a request is received for access to content

that is associated with a particular web site domain. For
explanation purposes, it is assumed that the received request 50
is from client 232, that the request is for access to content
that is associated with the web site domain "SITE. A.COM,
and that the request has been queued within connection
queue 208.
At block 254, a server thread is assigned and/or scheduled 55

to service the request. For example, although any available
server thread (210,212.214,216) may be assigned to service
the request, for this example it is assumed that server thread
214 has been assigned the task of servicing the particular
request (i.e., designated as the servicing thread). 60
At block 256, the servicing thread loads the appropriate

configuration data for the web site domain that is associated
with the request. For example, upon detecting that the
request is associated with the web site domain SITE. A.
COM, server thread 214 loads the corresponding configu- 65
ration data for the web site domain SITE. A.COM. In one
embodiment, by loading the SITE. A.COM configuration

6
data, server thread 214 is temporarily configured as a server
thread dedicated to servicing requests for content that is
available within the SITE. A.COM domain.
At block 258, log data is generated based on the content

that was requested by client 232. For example, the generated
log data may include, among other things, information that
identifies a particular web page that was requested within the
SITE. A.COM domain.
At block 260, a buffer file that is associated with the

SITE. A.COM domain is identified. In this example,
SITE. A buffer file 218 is identified by server thread 214 as
containing buffers that are to be used for buffering log data
that is associated with the SITE. A.COM domain.
At block 262, which is described in further detail below

with respect to FIGS. 3A-3C, an efficient buffering scheme
is used to select a particular buffer within the identified
buffer file (block 264) and to write the log data into the
selected data buffer (block 266).
At block 268, which is described in further detail below

with respect to FIG. 3A and FIGS. 4A-4B, a physical log file
that is associated with the buffer file is subsequently iden
tified (block 270) and the information contained within the
selected data buffer is stored into the identified physical file
(block 272). For this example, the SITE. A.com log file 240
on disk 230 is identified as the appropriate physical log file
and thus used as the physical log file for storing the log data
contain within the data buffer of SITE. A buffer file 218.

Selecting a Buffer for Buffering Log Data

FIG. 3A is a block diagram of SITE A buffer file 218
showing certain internal details thereof. As depicted in the
example of FIG.3A, SITE A buffer file 218 includes a name
identifier 302, a file descriptor (FD) 304, a last buffer index
306, a buffer array 308 and a ready-to-write buffer list 310.
Name identifier 302 identifies the domain site that has

been assigned to the particular buffer file. In this example,
name identifier 302 indicates that buffer file 218 has been
assigned to buffer log data for the web site domain SITE. A.
COM.

File descriptor 304 identifies the physical log file that is to
be used to store the buffered log data. In this example, file
descriptor 304 identifies the SITE .com log file 240 on disk
230 as the physical log file that has been designated to the
buffered log data that is associated with SITE A buffer file
218.

Buffer array 308 includes an array of buffers (312,314,
316,318,320) that can be used for storing log data. For
explanation purposes, a set of array index values 330 is used
to help identify the different indices within buffer array 308.
In one embodiment, each index is associated with either Zero
or one buffer, which may or may not be available for
buffering log data. For example, the entry in buffer array 308
that is associated with index “5” is currently linked to buffer
318. Alternatively, the entry in buffer array 308 that is
associated with index “4” is not currently linked to any
buffer.
A variety of techniques and/or algorithms may be used to

determine the size of buffer array 308. For example, the
number of array entries in buffer array 308 may be depen
dent on, including possibly a combination thereof, the
number of CPUs that exist within the system, the number of
server threads that can potentially write into buffers that are
associated with buffer array 308, the number of server
threads that can be simultaneously active at any point in
time, etc. In certain embodiments, the length of buffer array

US 7,299,269 B2
7

308 may be dynamically adjusted to increase or decrease the
number of buffer array entries.
As further depicted in this example, each entry in buffer

array 308 is associated with a flag that indicates whether a
particular index in buffer array 308 is likely to contain a
buffer that is currently available for writing log data. For
example, the flag value of “1” of index 2 of buffer array
308 indicates that buffer 314 is not likely to be currently
available for storing log data (“busy'), while the flag value
of “0” of index “3” of buffer array 308 indicates that buffer
316 is likely to be currently available for storing log data
(“not busy”).

In one embodiment, last buffer index 306 identifies the
index associated with the last buffer that was selected to
store log data. For example, the current value (2) of last
buffer index 306 indicates that the buffer associated with
index “2” in buffer array 308 (buffer 314) was last selected
to log data. Alternatively, last buffer index 306 may be used
to identify the index that was first tried last time a thread
attempted to write into a buffer with the buffer array. For
example, if the last buffer index 306 currently has a value of
“2, when a thread first attempts to write a particular set of
data into a buffer in buffer array 308, the value of last buffer
index 306 is incremented to equal “3. The thread then
determines whether there is a buffer associated with index
“3’ that is available for writing data. If the thread determines
that index '3' is not associated with an available buffer, then
the thread next determines whether there is a buffer associ
ated with index “4” that is available for writing data.
However, in this case, last buffer index 306 is not incre
mented to the value “4” but instead retains the value of the
index that was first used in attempting to write the particular
set of data to a buffer.

Finally, ready-to-write buffer list 310 represents a list of
buffers that have been removed from buffer array 308 and
which contain log data that is ready to be written out to disk.
An example is provided below that describes how the
components of SITE A buffer file 218 may be used to
provide an efficient data buffering scheme.

Although this example illustrates the use of a buffer array
308, this is done merely for illustrative purposes as a variety
of different data structures may be used for implementing the
desired functions. For example, the buffers associated with
a buffer file could be placed in a list instead of an array with
the list position being used to index the most-recently
accessed buffer within the list. Additionally, buffer file 218
is used as merely an example of a type of buffer management
structure that may be used to implement the described
functions. Thus, embodiments of the invention are not
limited to any particular type of buffer management struc
ture.

Selecting a Data Buffer for Writing Log Data

FIG. 3B and FIG. 3C is a flow diagram that illustrates an
example of a method for selecting a data buffer within a
buffer file for writing log data (see block 262 of FIGS. 2B).
For explanation purposes, FIG. 3B and FIG. 3C are
described in reference to the components of FIG. 3A.
Further to this example, it is assumed that SITE. A buffer file
218 was identified as the buffer file for selecting the par
ticular data buffer that is to be used to store the log data.

At block 352, the “initial value of the last buffer index
variable is read from the buffer file. As used herein, the
“initial value represents the value of the last buffer index at
the time a server thread initiates the process of selecting a
buffer for the particular set of log data. In addition, as used

10

15

25

30

35

40

45

50

55

60

65

8
herein, the “incremented initial value is equal to the initial
value after it has been incremented once during the particu
lar selection process. For this example, the “initial value for
the last buffer index 306 is equal to '2' and the “incremented
initial value for the last buffer index 306 is equal to
At block 354 the last buffer index value is incremented to

point to the next index within the buffer array. For example,
the value of last buffer index 306 is incremented so as to
equal the value '3”. By incrementing the last buffer index
value to point to a next index within the buffer file, a
mechanism is provided that can increase the chance that the
buffer associated with the current index value is likely
available for storing log data. In certain embodiments, the
MOD function may be used to cause the incrementing of the
last buffer index 306 to have a value that wraps around the
length of the buffer array 308. For example, if the last buffer
index 306 has a value of “6, incrementing the last buffer
index 306 will cause the last buffer index 306 to have a value
of “O'”.
At block 356, a test is made to determine whether the flag

for the buffer array entry that is associated with the current
value of the last buffer index value is set to busy. For
example, the flag for the buffer array entry that is associated
with the current value of the last buffer index value (“3) is
tested to determine if it is set to busy. If it is determined that
the flag is not set to busy (for example, the flag equals “0”),
control proceeds to block 357.

Alternatively, if at block 356 it is determined that the flag
is set to busy, at block 358 a test is made to determine
whether all of the buffer entries in the buffer array have been
checked for locating an available data buffer. If it is deter
mined that the buffer array includes additional entries that
have not yet been checked, control proceeds to block 354 to
again increment the last buffer index value. Conversely, if it
is determined that the buffer array does not include any
additional entries that have not yet been checked, at block
360, the buffer array entry that is associated with the
incremented initial value of the last buffer index value is
selected as the “selected buffer array entry. Control then
proceeds to block 362. For example, if it is determined that
no entry in buffer array 308 is associated with a flag that is
not set to busy, the buffer array entry that is associated with
the incremented initial value (“3) is selected and control
then proceeds to block 362.
At block 357, the buffer array entry that is associated with

the current value of the last buffer index variable is selected
as the “selected buffer array entry. For explanation pur
poses, it shall be assumed that in this example, last buffer
index 306 has a current value equal to 3’ and that the buffer
array entry associated with the array index of '3” has been
selected as the selected buffer array entry.
At block 362, a test is made to determine whether the

selected buffer array entry is currently linked to a buffer. As
is explained in further detail below, buffers that contain log
data that is to be written to disk may be removed from the
buffer array 308 and inserted into the ready-to-write buffer
list 310. In this example, the buffer array entry that is
associated with the array index value '3' is currently linked
to buffer 316. On the other hand, the buffer array entry that
is associated with the array index value “4” is not currently
linked to any buffer.

If at block 362 it is determined that the selected buffer
array entry is currently linked to a buffer, then the buffer is
selected as the “selected buffer and control proceeds to
block 366. Conversely, if it is determined that the selected
buffer array entry is not currently linked to a buffer, then at
block 364 a buffer is retrieved from a free buffer pool (for

US 7,299,269 B2
9

example, free buffer pool 408 in FIG. 4A) and linked into the
buffer array entry, thus becoming the “selected buffer. In
this example, because the selected buffer array entry (entry
“3') is currently linked to buffer 316, buffer 316 is selected
as the selected buffer within buffer array 308.

At block 366, an attempt is made to obtain a mutually
exclusive lock on the selected buffer.

At block 368, it is determined whether the selected buffer
is currently locked by another server thread. For example, if
the attempt to obtain the mutually exclusive lock on the
selected buffer fails, the selected buffer is likely to be locked
by another server thread that is attempting to write its log
data into the same selected buffer. If at block 368 it is
determined that the buffer is not currently locked by another
server thread, control proceeds to block 372 in FIG. 3C.

Alternatively, if at block 368 it is determined that the
buffer is currently locked by another server thread, then at
block 370 a wait process is initiated to wait for the current
lock on the buffer to be released. Thereafter, controls pro
ceeds to block 372.
At block 372, the flag associated with the selected buffer

array entry is set to busy. For example, the flag associated
with the selected buffer array entry is set equal to “1” in
order to inform other server threads that the buffer associated
with the selected buffer array entry (buffer 316) is currently
not available for storing log data.

At block 374, the selected data buffer is locked for writing
log data into the data buffer. For example, a mutually
exclusive lock is executed on buffer 316.
At block 376, the log data is written into the selected

buffer. For example, the log data generated by server thread
214 is written into buffer 316 in SITE A buffer file 218.

At block 378, a check is made to determine whether the
selected buffer should be removed from the buffer array. For
example, in one embodiment, the determination of whether
the selected buffer should be removed from the buffer array
is made based on the amount of free space that is left within
the selected buffer. In another embodiment, the determina
tion of whether the selected buffer should be removed from
the buffer array may be based on the amount of time that the
selected buffer has remained linked within the buffer array
3O8.

If at block 378 it is determined that the selected buffer
should be removed from the buffer array, the selected data
buffer is moved to the ready-to-write buffer list (block 380)
and the lock on the selected data buffer is released (block
382). Alternatively, if at block 378 it is determined that the
selected buffer should not be removed from the buffer array,
the lock on the selected data buffer is released (block 384)
and the flag associated with the selected buffer array entry is
cleared (block 386).

For example, if it is determined that selected data buffer
316 should be removed from the buffer array 308, selected
data buffer 316 is moved to the ready-to-write buffer list 310
and the mutually exclusive lock on selected data buffer 316
is released. Alternatively, if at block 378 it is determined that
Selected buffer 316 should not be removed from the buffer
array 308, the mutually exclusive lock on selected data
buffer 316 is released and the flag associated with the
selected buffer array entry (buffer array entry for array index
“3') is set equal to “0”.

Although this example, as with certain other examples
within the specification, illustrate a specific sequence of
steps for performing a particular process and/or function.
However, unless specifically stated in the disclosure,
embodiments of the invention are not limited to any par
ticular order of carrying out Such steps. For example, the

10

15

25

30

35

40

45

50

55

60

65

10
step of setting the flag associated with the selected buffer
array entry to busy (block 372), may in certain embodi
ments, be performed just prior to determining whether the
selected buffer array entry is currently linked to a buffer
(block 362). Thus, the examples described herein are used
for illustrative and/or explanation purposes only and should
not be viewed in anyway as limiting the scope of embodi
ments of the invention.

Global and Local Logging Threads

In certain embodiments, a group of one or more logging
threads are used to write log data to a secondary storage. As
described in further detail below, the logging threads provide
a tuning mechanism for dynamically adjusting the number
of buffers that are associated with each buffer file (218.220,
224.226). In certain embodiments, by dynamically tuning
the number of buffers that are associated with each buffer
file, an efficient buffering system is provided that can
dynamically adjust the available resources based on the
bandwidth needs of web site domains that are being serviced
by the web server.

For example, FIG. 4A is a block diagram that further
illustrates certain internal details that may be included in
web server 202 as previously described in FIG. 2A. As
depicted in the example, web server 202 includes a group of
one or more logging threads (local logging threads 402, 404
and global logging thread 406) that are used to write log data
from data buffers in log manager 206 to logs files (240.242,
244,246) in disk 230. In addition, in certain embodiments,
the logging threads (local logging threads 402, 404 and
global logging thread 406) are responsible for either re
linking emptied data buffers into the buffer array of their
assigned buffer file, or for inserting emptied data buffers into
the free buffer pool 408.

In one embodiment, logging threads (402,404.406) are
responsible for actively monitoring the number of requests
that are directed to web site domains that are being serviced
by the web server (“domain traffic'). Based on the domain
traffic for a particular web site domain, the logging threads
(402.404.406) can dynamically adjust the number of data
buffers that are associated with the buffer file for that
particular web site domain. For example, by monitoring the
number of buffers that are moved into the buffer full list 310,
local logging thread 402 can determine the throughput
demands that are currently required for the web site domain
SITE. A.COM. Based on the throughput demands, local
logging thread 402 can dynamically adjust the certain vari
ables that can affect the number of resources that are
available for servicing requests that are directed to the web
site domain SITE. A.COM. For example, based on the
throughput demands for web site domain SITE. A.COM,
local logging thread 402 can dynamically adjust the
resources (bandwidth) that is allocated to SITE. A.COM by
tuning such factors as: (1) the number of entries in buffer
array 308; (2) the minimum or maximum number of data
buffers that are to be consistently linked to buffer array 308:
(3) whether a buffer is to be re-linked into buffer array after
its contents are written to secondary memory; along with
other factors that may influence the resources that are
allocated to SITE. A.COM.

In certain embodiments, web site domains that are expe
riencing a large amount of traffic may be assigned a local
logging thread to reduce the contention that can exist in a
global logging thread that is configured to service multiple
web site domains. For example, as depicted in FIG. 4A, local
logging threads 402 and 404 have respectively been

US 7,299,269 B2
11

assigned to service SITE A buffer file 218 (web site domain
SITE. A.COM) and SITE D buffer file 226 (web site
domain SITE D.COM). Alternatively, global logging thread
406 is assigned to service both SITE B buffer file 220 (web
site domain SITE B.COM) and SITE C buffer file 224 (web
site domain SITE. C.COM). Thus, resources associated with
the SITE B.COM and SITE C.COM domains will be
required to compete with each other for certain data logging
SOUCS.

Moving Buffer to a Ready-to-Write Buffer List

As previously described, buffers that contain log data that
are ready to be written to secondary storage (“ripe buffers')
are removed from their associated buffer array and inserted
into a ready-to-write buffer list within the buffer log file. In
one embodiment, the logging thread that has been assigned
to the particular buffer file is configured to identify and
remove ripe buffers from the buffer array and to insert the
buffers into the ready-to-write buffer list for subsequent
storing to secondary memory.
A variety of methods and/or techniques may be used for

identifying ripe buffers. For example, a buffer that is com
pletely full, or a buffer that has only a limited amount of free
space, (for example a certain number of free blocks or bytes,
or a certain percentage of total free space), may be identified
as a ripe buffer and thus removed and inserted into a
ready-to-write buffer list.

Additionally, in certain embodiments, buffers that are
considered “stale” (i.e., buffers that contain data but that
have not been removed from the buffer array for a particular
amount of time), may be marked as ripe buffers and thus
removed and inserted into the ready-to-write buffer list. For
example, logging thread 402 may be configured to periodi
cally identify and remove buffers that contain log data and
that have remained attached to the buffer array 308 for a
particular period of time. Alternatively, or in addition to,
logging thread 402 may be configured to reduce the amount
of time that log data remains within a buffer by removing
and inserting into the ready-to-write buffer list 310 all
buffers that contain log data as of a particular time of day
(for example, 2:00 am).

Sequence for Storing Log Data to Secondary
Memory

FIG. 4B is a flow diagram 450 that illustrates an example
of a method for identifying a log file in secondary memory
and for writing the log data into the identified log file in
secondary memory (see block 268 of FIG. 2B). For expla
nation purposes, FIG. 4B is described in reference to the
components of FIGS. 2A, 3A and 4A.

At block 452, a logging thread determines that the con
tents of a data buffer that is associated with a buffer file
should be written to secondary memory. For example, for
explanation purposes it shall be assumed that local logging
thread 402 determines that buffer 322 in ready-to-write
buffer list 310 of SITE. A buffer file 218 should be written
out to disk 230.
At block 454, the log file in secondary memory that is

associated with the buffer file is identified. For example,
based on the value of file descriptor 304 (SITE. A.COM
LOG FILE) in SITE A buffer file 218, local logging thread
402 determines that SITE. A.com log file 240 on disk 230 is
assigned to store log data that is associated with SITE. A
buffer file 218.

10

15

25

30

35

40

45

50

55

60

65

12
At block 456, the logging thread obtains a lock on the data

buffer within the ready-to-write buffer list of the buffer file.
For example, a local logging thread 402 obtains a mutually
exclusive lock on buffer 322 in ready-to-write buffer list 310
of SITE. A buffer file 218.
At block 458, the logging thread writes the contents of the

locked data buffer into the previously identified log file in
secondary memory. For example, local logging thread 402
writes the log data that is contained in buffer 322 into
SITE. A.com log file 240 on disk 230.
At block 460, a decision is made as to whether the data

buffer should be inserted back into the buffer array within
the buffer file. For example, after logging the data to
secondary storage, local logging thread 402 determines
whether or not buffer 322 should be re-inserted back into
buffer array 308. As previously indicated, a variety of
factors, which may include the amount of traffic that is
currently being received for the particular web site domain
(SITE. A.COM), can be used in determining whether a
buffer should be inserted back into the buffer array. If at
block 460 it is determined that the buffer should be inserted
back into the buffer array, control proceeds to block 464.

Alternatively, if at block 460 it is determined that the
buffer should not be inserted back into the buffer array, at
block 462 the buffer is added into the free buffer pool.
Control then proceeds to block 470. For example, if local
logging thread 402 determines that buffer 322 should not be
inserted back into buffer array 308, local logging thread 402
causes buffer 322 to be placed into free buffer pool 408.
At block 464, an entry in the buffer array is identified for

inserting the data buffer. For explanation purposes, it is
assumed that the entry within buffer array 308 that is
associated with an array index of “1” is selected for re
inserting buffer 322.
At block 466, the data buffer is inserted back into the

buffer array. For example, buffer 332 is linked back into the
entry associated with an array index of “1” in buffer array
3O8.

At block 468, the flag associated with the entry in which
the data buffer was reinserted in the buffer array is cleared
to indicate that the entry is likely available for buffering log
data. For example, the flag for the entry within buffer array
308 that is associated with an array index of “1” is set to “O'”
to indicate to the server threads (210.212.214.216) that the
entry includes a buffer (buffer 322) that is likely available for
buffering log data.
At block 470, it is determined whether the contents of

another buffer should be written out to secondary memory.
If it is determined that the contents of another buffer should
be written out to secondary memory, control proceeds to
block 454. In certain embodiments, if the next identified
buffer is located within the same ready-to-write buffer list,
control may instead proceed to block 456 to obtain a lock on
the next identified buffer. For example, because local log
ging thread 402 is assigned to a single buffer file (SITE. A
buffer file 218), by default the log file will generally remain
the same between multiple buffers unless multiple log files
are used for a single web site domain.

In addition, although the example illustrates separate
locks for each buffer that is being written to disk, in certain
embodiments, the ready-to-write buffer list is itself locked
by the logging thread, thus potentially reducing the overhead
that is associated with locking and unlocking multiple
buffers within a ready-to-write buffer list.

US 7,299,269 B2
13

Hardware Example

FIG. 5 is a block diagram that illustrates a computer
system 500 upon which an embodiment of the invention
may be implemented. Computer system 500 includes a bus
502 or other communication mechanism for communicating
information, and a processor 504 coupled with bus 502 for
processing information. Computer system 500 also includes
a main memory 506, Such as a random access memory
(RAM) or other dynamic storage device, coupled to bus 502
for storing information and instructions to be executed by
processor 504. Main memory 506 also may be used for
storing temporary variables or other intermediate informa
tion during execution of instructions to be executed by
processor 504. Computer system 500 further includes a read
only memory (ROM) 508 or other static storage device
coupled to bus 502 for storing static information and instruc
tions for processor 504. A storage device 510, such as a
magnetic disk or optical disk, is provided and coupled to bus
502 for storing information and instructions.

Computer system 500 may be coupled via bus 502 to a
display 512, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 514, includ
ing alphanumeric and other keys, is coupled to bus 502 for
communicating information and command selections to
processor 504. Another type of user input device is cursor
control 516. Such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com
mand selections to processor 504 and for controlling cursor
movement on display 512. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.
The invention is related to the use of computer system 500

for dynamically tuning the allocation data buffers. Accord
ing to one embodiment of the invention, dynamically tuning
of the allocation of data buffers is provided by computer
system 500 in response to processor 504 executing one or
more sequences of one or more instructions contained in
main memory 506. Such instructions may be read into main
memory 506 from another computer-readable medium, such
as storage device 510. Execution of the sequences of instruc
tions contained in main memory 506 causes processor 504
to perform the process steps described herein. One or more
processors in a multi-processing arrangement may also be
employed to execute the sequences of instructions contained
in main memory 506. In alternative embodiments, hard
wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.
The term “computer-readable medium' as used herein

refers to any medium that participates in providing instruc
tions to processor 504 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media and volatile media. Non-volatile media includes, for
example, optical or magnetic disks, such as storage device
510. Volatile media includes dynamic memory, such as main
memory 506.
Common forms of computer-readable media include, for

example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, or any other medium from which a computer can
read.

10

15

25

30

35

40

45

50

55

60

65

14
Various forms of computer readable media may be

involved in carrying one or more sequences of one or more
instructions to processor 504 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line. Bus
502 carries the data to main memory 506, from which
processor 504 retrieves and executes the instructions. The
instructions received by main memory 506 may optionally
be stored on storage device 510 either before or after
execution by processor 504.
Computer system 500 also includes a communication

interface 518 coupled to bus 502. Communication interface
518 provides a two-way data communication coupling to a
network link 520 that is connected to a local network 522.
For example, communication interface 518 may be an
integrated services digital network (ISDN) card or a modem
to provide a data communication connection to a corre
sponding type of telephone line. As another example, com
munication interface 518 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any Such implementation, communication interface 518
sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various
types of information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet 528. Local
network 522 and Internet 528 both use electrical, electro
magnetic or optical signals that carry digital data streams.
Computer system 500 can send messages and receive

data, including program code, through the network(s), net
work link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518. In
accordance with the invention, one such downloaded appli
cation provides for dynamically tuning the allocation data
buffers as described herein.
The received code may be executed by processor 504 as

it is received, and/or stored in storage device 510, or other
non-volatile storage for later execution.

Alternatives, Extensions
In describing certain embodiments of the invention, sev

eral drawing figures have been used for explanation pur
poses. However, the invention is not limited to any particular
context that is shown in the drawing figures, as the scope of
the invention includes other contexts and applications in
which the mechanisms and processes described herein are
available to other mechanisms, methods, programs, and
processes. Thus, the specification and drawings are, accord
ingly, to be regarded in an illustrative rather than a restrictive
SS.

For example, although embodiments of the invention
have been described in reference to logging log data in a web
server system, embodiments of the invention may be applied
to various other forms or types of shared data sink systems
where different threads of execution may be utilized for
buffering data. For example, embodiments of the invention

US 7,299,269 B2
15

may be used for managing the buffering data in a variety of
different systems and/or configuration Such as in network
connection and/or router systems, printer system, copier
systems, fax systems, etc. Thus, embodiments of the inven
tion should not be construed as limited to either log data or
web server applications as the specification and drawings
are, accordingly, to be regarded in an illustrative rather than
a restrictive sense.
As a further example, although FIG. 2A illustrates a

system executing in a single memory address space 228.
embodiments of the invention may be practiced using a
variety of different software and/or hardware configurations.
For example, in certain embodiments, web server 202 may
include multiple address spaces that each include the com
ponents depicted in memory address space 228. In addition,
certain embodiments of the invention may include the use of
multiple processes, multiple processors or even multiple
computers executing as part of web server 202.

In addition, in this disclosure, certain process steps are set
forth in a particular order, and alphabetic and alphanumeric
labels are used to identify certain steps. Unless specifically
stated in the disclosure, embodiments of the invention are
not limited to any particular order of carrying out such steps.
In particular, the labels are used merely for convenient
identification of steps, and are not intended to imply, specify
or require a particular order of carrying out such steps.
What is claimed is:
1. A method for dynamically allocating data buffers to a

data structure, comprising the computer-implemented steps
of:

assigning a logging thread to said data structure, wherein
said logging thread is configured to insert free data
buffers into said data structure;

monitoring a number of buffers that are moved into a full
buffer list from the data structure;

determining, based on the number of buffers, throughput
demands that are currently required for a web site
domain that is associated with the data structure;

based on the throughput demands that are currently
required for the web site domain, changing a minimum
number of data buffers that are to be consistently linked
to the data structure; and

if a number of data buffers that are currently linked to the
data structure is less than the minimum number, then
performing steps comprising:
identifying one or more free buffers that are within a

free buffer pool; and
linking said one or more free data buffers into said data

Structure:
wherein said one or more free data buffers are stored

within a memory of a computer system.
2. The method of claim 1, further comprising the steps of:
receiving requests for content that is associated with a
web site domain;

generating log databased on the requests; and
writing said log data in one or more data buffers associ

ated with said data structure.
3. The method of claim 1, wherein the step of linking said

one or more free data buffers into said data structure includes
linking said one or more free data buffers into said data
structure into which one or more other data buffers already
are linked.

4. The method of claim 1, further comprising the steps of:
determining that a particular data buffer should be
removed from said data structure;

unlinking said particular data buffer from said data struc
ture; and

5

10

15

25

30

35

40

45

50

55

60

65

16
inserting said particular data buffer into a ready-to-write

buffer list.
5. The method of claim 4, wherein the step of determining

that a particular data buffer should be removed comprises the
step of detecting that said particular data buffer is full.

6. The method of claim 4, wherein the step of determining
that a particular data buffer should be removed comprises the
step of detecting that said particular data buffer has not been
removed from said data structure for a particular period of
time.

7. The method of claim 4, further comprising the steps of:
removing said particular data buffer from said ready-to

write buffer list, wherein said ready-to-write buffer list
is located within a first memory area;

storing log data information in said particular data buffer
to a second memory area, wherein said second memory
area is distinct from said first memory area; and

inserting said particular data buffer into said free buffer
pool, wherein said free buffer pool maintains free data
buffers that may be inserted into any one of a plurality
of data structures that are each associated with a
particular web site domain.

8. The method of claim 7, wherein:
the step of identifying one or more free buffers comprises

the step of selecting one or more free buffers from said
free buffer pool; and

the step of linking said one or more free data buffers into
said data structure comprises the steps of
identifying one or more entries in said data structure;
and

linking said one or more free data buffers into said one
or more entries in said data structure.

9. The method of claim 4, wherein:
said log data is generated based on request that are

received for content associated with a particular web
site domain; and

said step of inserting said particular data buffer comprises
the step of linking said particular data buffer into a
queue that maintains only data buffers that contain log
data associated with requests for said particular web
site domain.

10. A computer-readable medium carrying one or more
sequences of instructions for dynamically allocating data
buffers to a data structure, wherein execution of the one or
more sequences of instructions by one or more processors
causes the one or more processors to perform the steps of

assigning a logging thread to said data structure, wherein
said logging thread is configured to insert free data
buffers into said data structure;

monitoring a number of buffers that are moved into a full
buffer list from the data structure;

determining, based on the number of buffers, throughput
demands that are currently required for a web site
domain that is associated with the data structure;

based on the throughput demands that are currently
required for the web site domain, changing a minimum
number of data buffers that are to be consistently linked
to the data structure; and

if a number of data buffers that are currently linked to the
data structure is less than the minimum number, then
performing steps comprising:
identifying one or more free buffers that are within a

free buffer pool; and
linking said one or more free data buffers into said data

Structure.

11. The computer-readable medium of claim 10, further
comprising instructions for performing the steps of

US 7,299,269 B2
17

receiving requests for content that is associated with a
web site domain;

generating log databased on the requests; and
writing said log data in one or more data buffers associ

ated with said data structure.
12. The computer-readable medium of claim 10, wherein

the step of linking said one or more free data buffers into said
data structure includes linking said one or more free data
buffers into said data structure into which one or more other
data buffers already are linked.

13. The computer-readable medium of claim 10, further
comprising instructions for performing the steps of

determining that a particular data buffer should be
removed from said data structure;

unlinking said particular data buffer from said data struc
ture; and

inserting said particular data buffer into a ready-to-write
buffer list.

14. The computer-readable medium of claim 13, wherein
the step of determining that a particular data buffer should be
removed comprises the step of detecting that said particular
data buffer is full.

15. The computer-readable medium of claim 13, wherein
the step of determining that a particular data buffer should be
removed comprises the step of detecting that said particular
data buffer has not been removed from said data structure for
a particular period of time.

16. The computer-readable medium of claim 13, further
comprising instructions for performing the steps of

removing said particular data buffer from said ready-to
write buffer list, wherein said ready-to-write buffer list
is located within a first memory area;

storing log data information in said particular data buffer
to a second memory area, wherein said second memory
area is distinct from said first memory area; and

inserting said particular data buffer into said free buffer
pool, wherein said free buffer pool maintains free data
buffers that may be inserted into any one of a plurality
of data structures that are each associated with a
particular web site domain.

17. The computer-readable medium of claim 16, wherein:
the step of identifying one or more free buffers comprises

the step of selecting one or more free buffers from said
free buffer pool; and

the step of linking said one or more free data buffers into
said data structure comprises the steps of
identifying one or more entries in said data structure;
and

linking said one or more free data buffers into said one
or more entries in said data structure.

18. The computer-readable medium of claim 13, wherein:
said log data is generated based on request that are

received for content associated with a particular web
site domain; and

said step of inserting said particular data buffer comprises
the step of linking said particular data buffer into a
queue that maintains only data buffers that contain log
data associated with requests for said particular web
site domain.

19. A method for processing requests for content that is
associated with different web site domains, the method
comprising:

receiving, at a web server, a first request for access to first
content that is associated with a first web site domain
of a plurality of web site domains;

10

15

25

30

35

40

45

50

55

60

65

18
queueing the first request within a connection queue;
assigning a first server thread of a plurality of server

threads to service the first request;
in response to being assigned a task of servicing the first

request, the first server thread determining to which
web site domain of the plurality of web site domains the
first request is related;

the first server thread loading first configuration data for
the first web site domain in response to determining
that the first request is related to the first web site
domain, wherein, by loading the first configuration
data, the first server thread is temporarily configured as
a server thread that is dedicated to servicing requests
for content that is available within the first web site
domain;

the first server thread generating first log databased on the
first content, wherein the first log data includes infor
mation that identifies a first web page that was
requested within the first web site domain;

the first server thread selecting, from among a plurality of
buffer files, a first buffer file that is associated with the
first web site domain, wherein the first buffer file
contains buffers that are to be used for buffering log
data that is associated with the first web site domain;

the first server thread selecting a first buffer from among
a plurality of buffers within the first buffer file;

the first server thread writing the first log data into the first
buffer;

a logging thread selecting, from among a plurality of
physical log files, a first physical log file that is asso
ciated with the first buffer file, wherein each physical
log file of the plurality of physical log files is associated
with a separate buffer file of the plurality of buffer files:

a logging thread storing, into the first physical log file,
information contained within the first buffer;

receiving, at the web server, a second request for access
to second content that is associated with a second web
site domain of a plurality of web site domains, wherein
the second web site domain is separate from the first
web site domain;

queueing the second request within the connection queue;
assigning a second server thread of the plurality of server

threads to service the second request, wherein the
second server thread is separate from and executes
concurrently with the first server thread:

in response to being assigned a task of servicing the
second request, the second server thread determining to
which web site domain of the plurality of web site
domains the second request is related;

the second server thread loading second configuration
data for the second web site domain in response to
determining that the second request is related to the
second web site domain, wherein, by loading the sec
ond configuration data, the second server thread is
temporarily configured as a server thread that is dedi
cated to servicing requests for content that is available
within the second web site domain, wherein the second
configuration data differs from the first configuration
data;

the second server thread generating second log databased
on the second content, wherein the second log data
includes information that identifies a second web page
that was requested within the second web site domain;

the second server thread selecting, from among the plu
rality of buffer files, a second buffer file that is asso
ciated with the second web site domain, wherein the
second buffer file contains buffers that are to be used for

US 7,299,269 B2
19

buffering log data that is associated with the second
web site domain, wherein the second buffer file differs
from the first buffer file;

the second server thread selecting a second buffer from
among a plurality of buffers within the second buffer
file;

the second server thread writing the second log data into
the second buffer;

a logging thread selecting, from among the plurality of
physical log files, a second physical log file that is
associated with the second buffer file, wherein the
second physical log file is separate from the first
physical log file; and

a logging thread storing, into the second physical log file,
information contained within the second buffer;

wherein the first buffer is stored within a memory of a
computer system.

20. The method of claim 19, further comprising:
a logging thread determining whether to remove the first

buffer from a buffer array that is contained in the first
buffer file, wherein determining whether to remove the
first buffer is based on at least one of (a) an amount of
free space that is left within the first buffer and (b) an
amount of time that the first buffer has been linked
within the buffer array:

in response to a logging thread determining that the first
buffer should be removed from the buffer array, a

10

15

25

20
logging thread moving the first buffer from the buffer
array to a ready-to-write buffer list that is contained in
the first buffer file.

21. The method of claim 19, further comprising:
a logging thread determining whether a current time of

day is a specified time of day;
in response to a logging thread determining that the

current time of day is the specified time of day, a
logging thread determining whether the first buffer
contains log data; and

in response to a logging thread determining that the first
buffer contains log data as of the specified time of day,
a logging thread moving the first buffer from a buffer
array, which is contained in the first buffer file, to a
ready-to-write buffer list that is contained in the first
buffer file.

22. The method of claim 1, wherein linking said one or
more free data buffers into said data structure comprises
linking multiple data buffers into said data structure.

23. The computer-readable medium of claim 10, wherein
linking said one or more free data buffers into said data
structure comprises linking multiple data buffers into said
data structure.

