US 20170104732A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2017/0104732 Al

Mundra et al.

(43) Pub. Date:

Apr. 13,2017

(54)

(71)

(72)

@
(22)

(62)

(60)

(1)

SECURITY PROCESSING ENGINES, HO4L 9/06 (2006.01)
CIRCUITS AND SYSTEMS AND ADAPTIVE HO4L 12/851 (2006.01)
PROCESSES AND OTHER PROCESSES HO4L 9/30 (2006.01)
HO4L 9/32 (2006.01)
Applicant: TEXAS INSTRUMENTS HO4W 12/06 (2006.01)
INCORPORATED, Dallas, TX (US) GO6F 21/72 (2006.01)
HO4L 9/08 (2006.01)
Inventors: Amritpal Singh Mundra, Allen, TX (52) US.CL
(US); Denis Roland Beaudoin, CPC ... HO4L 63/0485 (2013.01); GOGF 21/72
Rowlett, TX (US) (2013.01); GOGF 7/588 (2013.01); HO4L
) 63/0428 (2013.01); HO4L 63/08 (2013.01);
Appl. No.: 15/387,030 HO4L 9/0625 (2013.01); HO4L 9/0631
o (2013.01); HO4L 9/0637 (2013.01); HO4L
Filed: — Dec. 21, 2016 9065 (2013.01); HO4L 9/0869 (2013.01);
Related U.S. Application Data HO04L 9/3013 (2013.01); HO4L 9/3239
(2013.01); HO4L 9/3242 (2013.01); HO4W
Division of application No. 15/205,487, filed on Jul. 12/06 (2013.01); HO4L 47/2441 (2013.01);
8, 2016, which is a division of application No. HO4L 2209/125 (2013.01); HO4L 2209/38
15/045,948, filed on Feb. 17, 2016, now Pat. No. (2013.01)
9,503,265, which is a division of application No.
14/712,396, filed on May 14, 2015, now Pat. No. (57) ABSTRACT
9,305,184, which is a division of application No. o)
13/165,190, filed on Jun. 21, 2011, now Pat. No. An electronic circuit (200) includes one or more program-
9,141,831. mable control-plane engines (410, 460) operable to process
o o packet header information and form at least one command,
Provisional apphcatlon No. §l/362,393, filed on Jul. one or more programmable data-plane engines (310, 320,
8,2010, provisional application No. 61/362,395, filed 370) selectively operable for at least one of a plurality of
on Jul. 8, 2010. cryptographic processes selectable in response to the at least
.. . . one command, and a programmable host processor (100)
Publication Classification coupled to such a data-plane engine (310) and such a
Int. CL control-plane engine (410). Other processors, circuits,
HO4L 29/06 (2006.01) devices and systems and processes for their operation and
GO6F 7/58 (2006.01) manufacture are disclosed.
120 100 380\— CP_ACE
HOST 310 610.1 200
250.3 { (
e])
LE_’ Crypto Data MCE J /300 270
210~ pa 2501 andyScheduIer P Encryption Module ¢ /
PASH Ingress [T} SCR (6-bits PAEgressCPPI | PASK
sbisF] L OFP! P Streaming IF [32-bits IF
Streaming 300 .
IfF 250.4]
\-@*,250.5 5 Authentication JC/
510 [Crmamome -+
h Securly [+— s 200 80 rlg| E
Cix Fetch s]
'« Context 410 RAM (2 Banks) Fla @
1\;%{];'; Cacre | 262 26\3 L’Ea’ PSecPHP - | a ‘_é
Module 2502 b Module Y
PDSP based 8l =
250 15— a00-~ L9 g g| g
c - F &«
250 é_' 1] ArCipher 460 | MMR (Registers) +—— ©
. PHP Module I~
COMA | 95011 | (0SP Based)]850
comasy | Mmoress 1T 400 COMA E
AL oppy b ; gress CDMA Str
32bits VF Streaming CPPI Streaming I/F 32-hits I/F
IF N
250.7 1-610.2
[n P o airci hnACEM dul ﬁc 280
220 ir Cipher Modula
N 1 C
265 370 570~] Contet | C | ContextRAM

Packet RAM (6 Banks)

(3 Banks) [™-575

——»
RAMSCR | €

Yo
<«
-
e~ W <
s GLG~] (owegg) | 0| HOSAWH |
S - yUe 1%0Rd
= Wydpeog | 9 | PeEU0) - ™-0/G Efm 5971 ;,m:@;v,_\,_ﬁ, ¥ _ 052
= J IYY Y YYY VVYY
M Iv ainpoy Jaydin iy e e ___ o\mm
[99] - .
z waN Z'01.9— JON 106¢ 1
— buieans !
151026 __| 44 Buweais 1ad ddp fe—dL
= IS YINAD §S6IVNQD |« 00 ssaib|
= o (pesegdsad) [T, VINGD
—_ 0Se~] o 8INPON dHd | d
) wydigny [
g = | (s5sibo) wn | 09y 7
7 S |z G106z
7 = |2 7 <007 11
2 > ase - -

= E]] 1 ° m_uu%,_@ M 2007 < o L .

g s - ayaen y
N m|v & R _ oy dHd 9935d| A/I.‘Hll_ €97 292 o0 —» dSNGA
= o | 2[4 Gueda) nw /o fumsg | 400
5 s [3]? 028~ 092" N
M.. 8 aINPOIN YMd . 31PN — . 1l 0LS

: J UOIBINUALITY | G'08¢ M

n |v_“_ 9INPOAl ONY _ ocm\\ _| Al@ﬁ/v.omm . iy .
=) ujwean :
= - 4/ SNq-z¢
= Slg- Buiwean > d dd) e
B m__aﬁ.@n_mm? _MM_Q $59163 ,Wl - (SNg-9) ¥IS | ssalbu IS vd
= | 1ainpayog pue 1'0SZ Vd
= / 9Npojy uondAiouy | > ~0LZ
a 4] d eleq 01dA1n
= 02 e TN ?__I_‘_ﬂf_ A
2 00¢g (| : - .
3 A =) 2 £05¢ A y
.W 002 . 1019 0LE ! A 1S0H | AW <
= 1V 40 I OIA [ampow 16w 0019 ~—ge 00} 0k
<
~—
=
e
«
[~™

/. 5ST13HM » LANHIINI

-
“
o .
& DIA _
3 _
= V1YQ Q3LdAYONT H344ng » ¥344n8 v1va OL YILNIOd- (MO H3d INO 00¢
- v1v0d 403 'd0S }+ 134Ivd 14vd 914193dS 1090104d NI 0LdM) DAINGD /
& 1XJLNOO ALIYNDIS OL TTANYH- ALHNO3S
2 1XAINOD ALIMND3S FHL 40 1SFH JHL- (@31vadn DXALINOD ALKNI3S | ZHLHLIA G380
013 N4H ‘00d 4aLvadn- | IHL SYM "0°8) NOILYIWHOANI 19D LINSNVAL

‘DNINIVINOD 1X3INOD ALIMNIIAS B 1349vd 03ANA1X3 SNIVINOD- Sy344ng ANy
° ‘43448 v1va + 1310Vd HO1dIHOS3A 13%Vd 1SOH A3n3Ino SHOLdIM0SId
= 13¥9Vd HOL3
~ 03LdAHONT 38 01 VLYQ 40 %9079 ow VINQO ONY
g "4344N8 V1V d03 ‘d0S + 1IHOVd 044 535N
= 30V d9
@ H344N8 V1va OL HALNIOJ- HOLVY431300V
= - 1HVd 014193dS-1000104d NI | ALIHND3S JHL HOA
K 135440 v1va- 1X3INOD ALIYNDIS OL ITANYH- [~ ENEVERERER!
o NOILYJ0T ANV HLONIT HVL NOILVIILNIHLNY- HOLdINASIA LIV 1SOH X 3N3N0
— STIVL3A SSI00Hd ALIHNIIS-
= JQOW NOILJAHONT-
< HOL1D3A NOILVZIVILINI-

AZY NOLLYOILNIHLANY ANV NOILJAHON3-
g ‘DNINIVINOD IXILNOJ ALIMND3S
S '4344n9 08 | 1340Vd y .
>
2 INVd / x\ VI DIA
A v1lva ,
g S U S,
g IV / . /
= TOHINOD L
« / /
=
2
«
[~™

US 2017/0104732 Al

Apr. 13,2017 Sheet 3 of 16

Patent Application Publication

& DIA

(31dAHINI/AQ
39 01 V1vd 40 3014
‘4344N9 v1vd | 13IMIVd

A

H0L1dI43S3d
1943vd LSOH

== —————y

.0

S S |

Q31dAHONI/Ad
39 01 V1vd 40 X304
‘H344n9 V1va |+ 13MOVd

A

H0.1dI43S3d
13X0Vd LSOH

Q31dAHONI/Ad
39 01 vV1vd 40 ¥3014
‘H344nd v1vad | 1INIVd

//

H01dI43S3d
1340vd LSOH

(d01dIH0s3a
3HL NI SA1314 J14193dS

-1000.104d A9 0L Q3LNIOd)

DX3JINOO ALIINO3S

/

V1vd d343HdID

H430V3H Ndd XALNIVd

0S¥1L

V1vQd Q343HdIO

<

SHO1dI43S3d

430v3IH NAd DXALNIVId

d4344N9 ANV

13MIvd SY
Slig 0¢ce

V1vd d343HdID

H3AV3IH NAd LX3LINIVId

V1vQd d343HdIO

Sl mF_

H3AV3IH NAd DXALNIVId

US 2017/0104732 Al

Apr. 13,2017 Sheet 4 of 16

Patent Application Publication

v DIA
ANNOANI 23SdI
(¢ ssvd (1 ssvd
- HOSS3AI0Hd SS NO SS NO H0SSI00Hd -
””_\u._”_ H3dv3aH _”_”_\.u_”_ NOILdAHIONI E NOILVIILNIHLNY E H3AdvY3aH EA‘
205z | 98dd80d | enge 052 20z | O8ddSAd 1'062
/ N \
oLe 02e oLy
ANNOYLNO J38Ssd|
(2 ssvd (1 sSvd
- HOSS3AI0Hd SSNO SS NO HOSSID0Hd -
””_\.u_”_ H3av3aH _”_”_\.u_”— NOILVOILNIHLINY E NOILdAHONA E H3av3aH EA‘
205z | 08dd80d | pagg €052 20z | 08ddSad 1'052
/ N \
02s 0le oLy

US 2017/0104732 Al

H3HdIO AV3IHLS

Apr. 13,2017 Sheet 5 of 16

A

H3HdIO HIV

Patent Application Publication

L10G¢

§ DIA
(¢ SSVd (1 SSVd
H40SS300Hd |, SS HaHdIO .| H0ss3004d |,
H3AVIH INV3HLS N H3AVIH
0Hd dS0d . OHd dSad
9'06¢
/ N
0/€ 09Y
(¢ SSVd (1 SSVd
.| Hoss3ooud |, .| ss¥aHdio | . | Hoss3o0ud |
H3AVIH HIv N H3aVIH
0Hd dS0d . OHd dSad
9'06¢
N
09%

Patent Application Publication

HOST
POINTER

Apr. 13,2017 Sheet 6 of 16

SCPTR
POINTER

SOFTWARE ONLY SECTION
(NOT FETCHED BY ¢p_ace}
(64-BYTES)

SCCTL (8-BYTES)

PACKET HEADER PROCESSOR (PHP)
MODULE SPECIFIC SECTION
(FETCHED BY cp_ace)
(56-BYTES)-IPSEC, 120-BYTES-SRTP

ENCRYPTION MODULE SPECIFIC
SECTION (FETCHED BY cp_ace)
(96-BYTES)-IPSEC, 64-BYTES-SRTP

AUTHENTICATION MODULE

SPECIFIC SECTION (FETCHED

BY cp_ace) (96-BYTES)-IPSEC,
64-BYTES-SRTP

FIG. 6

HOST

POINTER

SCPTR

SOFTWARE ONLY SECTION
(NOT FETCHED BY cp_ace)
(64-BYTES)

POINTER

SCCTL (8-BYTES)

PACKET HEADER PROCESSOR
MODULE SPECIFIC SECTION
(FETCHED BY cp_ace) (56-BYTES)

AIR CIPHER CCM MODULE
SPECIFIC SECTION
(FETCHED BY cp_ace) (64-BYTES)
USED FOR AIR CIPHER ENCRYPTION
ON OUTBOUND, AND FOR AIR
CIPHER INTEGRITY ON INBOUND

AIR CIPHER CCM MODULE
SPECIFIC SECTION
(FETCHED BY cp_ace) (64-BYTES)
USED FOR AIR CIPHER INTEGRITY
ON OUTBOUND, AND FOR AR
CIPHER ENCRYPTION ON INBOUND

FIG. 7

US 2017/0104732 Al

US 2017/0104732 Al

Apr. 13,2017 Sheet 7 of 16

Patent Application Publication

§ ODIA

0¢s 069
N\ /
4/ HALSYIN dSNEA Lig-gzL<—] 3 1NAON awy
(vwa) |, .
«—| NN [
HOL34 o L
4/l Nvd DEINOD <*—1 /193 -
HOVD
1XAINOD
ALIEND3S
gy [
/1 VY dNY00T <— wﬁ%& «—{ IINAON [
007 |«
(N
0€G 08G
019

096
/
— 034 QHOS HAIN
H3T104LNOD
1HOd HAN <— D34 403 HAIN
<— D34 dNXMO00T HNIN
— 034 QHIS VINAD
H4T104LNOD
1HOd YINGD <— 034 403 VIAQD
<— D34 dNX00T VINAD
N
0G4S
— 034 dHIS Vd
H43T104INOD
1H0d Vd <— 034 403 Vd
<+— D3 4007 vd
N
ovS

Patent Application Publication Apr. 13,2017 Sheet 8 of 16 US 2017/0104732 A1

Bfr_Pir —»
DESCRIPTOR AREA
(24-BYTES, FIXED, ALWAYS PRESENT)
SW WORD
(8-BYTES, FIXED, ALWAYS PRESENT)
Bfr_Ptr + 32 —»
TRAILER INFO (PS WORD)
(32-BYTES, FIXED, ALWAYS PRESENT)
Bfr_Pir + 64 —»
CPPI PRE-DATA CONTROL WORDS
(UP-TO MAX 128-BYTES, VARIABLE
LENGTH, MAY BE ABSENT) 8-BYTES
ALIGNED, COMMAND LABEL (ctl_length)
Bfr_Ptr +64
+ ctl length
- FRONT PACKET GROW REGION
(32 BYTES, FIXED, ALWAYS PRESENT)
Bfr Ptr + 64 + (block data_offset)
ctl_length + BLOCK—f ———————-————————————+
DATA OFFSET
PACKET DATA
(UP-TO MAX 256 BYTES,
VARIABLE LENGTH, ALWAYS PRESENT)
(block data length)
Bfr_Ptr + 64 +
ctl_length +
block data offset+ | T T T
block data_length REAR PACKET GROW REGION
(32 BYTES, FIXED, ALWAYS PRESENT)

FIG. 9

Patent Application Publication Apr. 13,2017 Sheet 9 of 16 US 2017/0104732 A1
'3/1 0
Encr_in_packer Encr_core_top Encr_out packer
IN PACKER SOFT QUT PACKER
] | CONTROLLER . OPERATIONAL o] | CONTROLLER | |
MODES
IN PACKER P, P,
BUFFER DATA
P - C > C > —» P
CONTEXT CONTEXT
CONTROLLER GALOIS CORE UPDATE
C FIG. 10 C
60\5 610~ MGCE CORE MCE
INSTR . DECODE EXECUTE
ARRAY
ALU CRYPTO CORE
640 SCHEDULER 660
\ /
| CRYPTO N N CRYPTO
C.F " | CONTEXT DATA >| REGISTER BANK ~_ " | CONTEXT DATA C.F
A A 620 A
A y
[A 3
Y 63/0 Y
p INPUT DATA CRYPTO PADDING |.—680 PROCESSED p
BLOCK ™-650 LOGIC 670~ DATABLOCK
[§
P
A Y
Y 4 \ 4
CRYPTO CRYPTO CRYPTO
FIG. 11 CORE 1 CORE 2 CORE 3 \\
(EX AES) (EX DES) {EX GALOIS F) 600

615.i

Patent Application Publication

Apr. 13,2017 Sheet 10 of 16

US 2017/0104732 Al

P

Auth_top
320 P = PACKET DATA F = CONFIG DATA
C = CONTEXT DATA' — = SCHEDULER DATA
Auth_in_packer Auth_core_top Auth_out_packer
IN PACKER MD5 CORE OUT PACKER
| | CONTROLLER . .| | CONTROLLER
a SHA1 CORE P
N Eﬁ?KER g IN " | OUT PACKER
BUFFER C DATA
P < > SHA2-224 CORE >
IN PACKER
CONTEXT CONTEXT
CONTROLLER SHA2-256 CORE UPDATE
c FIG. 12 c
?—IP
PDSP_CDE CLUSTER
F » |-RAM |« F
PDSP |, C o| CONTEXT C
F - » PRO VIEWER
A
Y
—>{ IN DATA > CDE (I~ e
p «—s| PACKER P »| CORE | P PACKER |—P

Patent Application Publication Apr. 13,2017 Sheet 11 of 16 US 2017/0104732 A1l

’3/7 0

Airc_in_packer Airc_core_top Airc_out_packer

IN PACKER SOFT OUT PACKER
CONTROLLER - OPERATIONAL | | CONTROLLER

" > MODES > —
IN PACKER P P
> IN AES CORE *| | OUT PACKER
DATA BUFFER DATA
P> < KASUMI CORE “> — P

IN PACKER

CONTEXT CONTEXT
CONTROLLER Snow3G CORE UPDATE

C FIG. 14 C
INITIALIZATION

ENABLE PHP(s) IN
CMD_STATUS REG

!

DOWNLOAD F/W
INTO PDSP |-RAM

WRITE
\INTO/ENABLE PDSP /
m:mQTfne

ENABLE REQUIRED H/W
ENGINES, BY WRITING
TO CMD_STATUS

!

FORM SECURITY CONTEXT
TO SET UP CONNECTION

QUEUE PACKETS
TO PROCESS

FIG. 15

Patent Application Publication Apr. 13,2017 Sheet 12 of 16 US 2017/0104732 A1l

SETUP CONTEXT

(_ BEGIN)

v
HOST FORMS SC AT
SCPTR ADDR, ALLOC SCID

Y
HOST SETS OWNER=1
(CP_ACE)

v
SC ACCESS BY HOST:
NO CHG

!

HOST QUEUES PACKETS
WITH SCPTR, SCID

!

CP_ACE GETS SCID,
SCPTR, CONTEXT
CTRL FLAGS

CACHE
LOOKUP ON
SCID

PASS

DMA: SCPTR

YES

OWNER=1?

NO
Y
DROP SCID, MARK PKT BAD FETCH CONTEXT

< Y
Y

(RETURN)
FIG. 16

Patent Application Publication Apr. 13,2017 Sheet 13 of 16 US 2017/0104732 A1l

TEARDOWN

HOST SEND PKT:
NO PAYLOAD:
TEARDOWN =1

HOST PREVENT PACKETS
IN THE SEC CONTEXT

CP_ACE RECEIVES
TEARDOWN PACKET

PROCESS PACKETS
IN LOCAL BUFFERS

!

HOST PREVENTS
ALLOCATION OF
SAME SCID PENDING

!

CP_ACE TEARS DOWN EVICT SECURITY CONTEXT

I BEGIN
CP_ACE CLEARS:
OWNER=0 HOST WRITE IN SCCTL:
EVICT DONE=11111..
RETURN
HOST SEND PACKET
FIG. 17 OR WRITE MMR:
FORCE_EVICT=1

H/W EVICTION

!

EVICT_DONE=000...

HOST RECEIVES
EVICT_DONE=000..
RETURN

FIG. 18

Patent Application Publication

Apr. 13,2017 Sheet 14 of 16

PASS 1/PASS 2 ENGINE ID

< MooE?

SET SEQUENCE
OF ENGINE IDs

US 2017/0104732 Al

USE MULTIPLE
PASS NRS?

USE MULTIPLE
PASS NRS?

SET PASS NRS, ANY ORDER OK

SET PASS NRS
CONSECUTIVELY
(SECOND PASS GETS PASS 2)

Y

Y

KASUMI
INBOUND
y

\

AUTH (PASS 1)

AUTH (PASS 2)

KASUMI AUTH (PASS 1)

ENCR (PASS 2) | | ENCR (PASS 1) KASUMI ENCR (PASS 2)

»
L

Y

Y

(_ RETURN)

FIG. 19

US 2017/0104732 Al

Apr. 13,2017 Sheet 15 of 16

Patent Application Publication

0C OIA — g'gzse | waaow .
iy —) Y, A @O\Nmm O
o TENodRoTy 002 [A995 VdasH
o_\mm HaaA . dsa azavs | | vwaom o hesse
A 4 A A A
8e5e 0V do -] Sd9 o N Tivmai | 9556
Q 7Ese v.ommmﬁy mommwmmm £0z5¢ Hovid | | sws | 4
. A 3
mwmml TINAON 10HINOD |+ Euzzmoxﬂz_ N Nomem &Nmm s |
(dNMM) INDHd 03009 =y — [8sn
¥ TIYMIYE 03ddiA dIHJ-NO 2
4 WHYAVT10D § i t $ ‘ !
S13S3 THLD WAN
Loannoouauy | TIYM3dE | | Timau | | 3 cl T f Tvma
3 7 7 S S
NOILYI0IA A4S WAASS YAAAS |'¢¢GE
MEL r)]
09¥¢
/w“ WSS |~ ONASY | [ONASY |
- y s_. 01GE [} [
| TEree s s H'8lSE 1 pom
_ DNILLIS STANNYHD YN | »| HITaNVH
AV |e—s TIVMIddF———————————— ANIINT 1 4NN LdNYHILNI
o SYALSIDIY TYNYIINI . YN > $1
o SIWILSASENS YING 'GIGE taan—4 | 0222 NdN
) dsa T/ . SIN3LSASENS NdIN o/
) 192
ani 4/ VEIAYD T/m.om_,mm_mmm |
dIV [AL [« AV1dSIO .. VAI
S ovoise w L
SOIHdVYD ag/ae K 005e

US 2017/0104732 Al

Apr. 13,2017 Sheet 16 of 16

Patent Application Publication

Y1 HINY cc "DIA
A
D
\
Hynw W29

(OINFT| [{¥INTT

| VIVA HINVY
Hiinw ﬁ Hynw w Hynw
A
L6 1
. .
f\ A] N v'e
¢ 1X3143HdID I IX4143HdID

N
o ¢ LalNvid

A

M.
o ¢ ANV

Z YAINNOD fﬁ HONI uT

L 43INNOD fm HONI uf

0 "3LINNOD

I DIH

SMH NTANI
«ONISS3I304d
Jd0N. Sl

NOILYTNNIS IHYMAYHVYH
01 I9vVINI I avOT

¢ANH
J719INISSY 3003
s30d

H9719WASSY J0N
HINOYHL NNy

f

A19INISSY JON NI
wINISSIO0Hd JA0W. 31VIHI

NOILYOIHI03dS NOYL
nINISSTO0H JAOW

%

US 2017/0104732 Al

SECURITY PROCESSING ENGINES,
CIRCUITS AND SYSTEMS AND ADAPTIVE
PROCESSES AND OTHER PROCESSES

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application is a divisional of application Ser.
No. 15/205,487, filed Jul. 8, 2016, currently pending;
[0002] Which was a divisional of prior application Ser.
No. 15/045,948, filed Feb. 17, 2016, now U.S. Pat. No.
9,503,265, issued Nov. 22, 2016;

[0003] Which was a divisional of prior application Ser.
No. 14/712,396, filed May 14, 2015, now U.S. Pat. No.
9,305,184, issued Apr. 5, 2016;

[0004] Which was a divisional of prior application Ser.
No. 13/165,190, filed Jun. 21, 2011, now U.S. Pat. No.
9,141,831, issued Sep. 22, 2015;

[0005] Which is related to provisional U.S. patent appli-
cation “Security Processing Engines, Circuits and Systems
and Adaptive Processes and Other Processes” Ser. No.
61/362,393, (TI-67750PS) filed Jul. 8, 2010, for which
priority is claimed under 35 U.S.C. 119(e) and all other
applicable law, and which is incorporated herein by refer-
ence in its entirety.

[0006] And is also related to provisional U.S. patent
application “Mode Control Engine (MCE) For Confidenti-
ality and Other Modes, Circuits and Processes” Ser. No.
61/362,395, (TI-68484PS) filed Jul. 8, 2010, for which
priority is claimed under 35 U.S.C. 119(e) and all other
applicable law, and which is incorporated herein by refer-
ence in its entirety.

[0007] This application is related to U.S. Patent Applica-
tion Publication 2004/0025036, “Run-time firmware authen-
tication” dated Feb. 5, 2004, (TI-34918), which is incorpo-
rated herein by reference in its entirety.

[0008] This application is related to U.S. Patent Applica-
tion Publication 2007/0294496, “Methods, Apparatus, and
Systems for Secure Demand Paging and Other Paging
Operations for Processor Devices” dated Dec. 20, 2007,
(TI-38213), which is incorporated herein by reference in its
entirety.

[0009] This application is related to U.S. Patent Applica-
tion Publication 2008/0114993, “Electronic Devices, Infor-
mation Products, Processes of Manufacture And Apparatus
For Enabling Code Decryption in a Secure Mode Using
Decryption Wrappers and Key Programming Applications,
and Other Structures” dated May 15, 2008, (TI-38346),
which is incorporated herein by reference in its entirety.
[0010] This application is related to U.S. Patent Applica-
tion Publication 2007/0110053 “Packet Processors and
Packet Filter Processes, Circuits, Devices, and Systems”,
dated May 17, 2007 (TI-39133), which is incorporated
herein by reference in its entirety.

[0011] This application is related to U.S. Patent Applica-
tion Publication 2007/0226795, “Virtual Cores and Hard-
ware-Supported Hypervisor Integrated Circuits, Systems,
Methods and Processes of Manufacture” dated Sep. 27, 2007
(TI-61985), which is incorporated herein by reference in its
entirety.

[0012] This application is related to U.S. Patent Applica-
tion Publication 2010/0138857, “Systems and Methods for
Processing Data Packets” dated Jun. 3, 2010 (TI-63830),
which is incorporated herein by reference in its entirety.

Apr. 13,2017

[0013] This application is related to U.S. Patent Applica-
tion Publication 2010/0322415, “Multilayer Encryption of a
Transport Stream Data and Modification of a Transport
Header” dated Dec. 23, 2010 (TI1-63831), which is incorpo-
rated herein by reference in its entirety.

[0014] This application is related to U.S. patent applica-
tion Ser. No. 12/815,734 “Slice Encoding and Decoding
Processors, Circuits, Devices, Systems and Processes” (T1-
67049), filed Jun. 15, 2010, which is incorporated herein by
reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0015] Not applicable.

COPYRIGHT NOTIFICATION

[0016] Portions of this patent application contain materials
that are subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of
the patent document, or the patent disclosure, as it appears
in the United States Patent and Trademark Office, but
otherwise reserves all copyright rights whatsoever.

BACKGROUND

[0017] This invention is in the field of information and
communications, and is more specifically directed to
improved processes, circuits, devices, and systems for infor-
mation and communication processing and/or protection
against unauthorized interception of communications, and
processes of operating, protecting and making them. With-
out limitation, the background is further described in con-
nection with communications processing and wireless and
wireline communications, and security processing.

[0018] Wireless communications, of many types, have
gained increasing popularity in recent years. The mobile
wireless (cellular) telephone has become ubiquitous around
the world. Mobile telephony can communicate video and
digital data, in addition to voice. Wireless devices, for
communicating computer data over a wide area network,
using mobile wireless telephone channels and techniques are
also available. Ethernet and other wireline broadband tech-
nologies support many office systems and home systems.
[0019] Wireless data communications in wireless local
area networks (WLAN), such as that operating according to
the well-known IEEE 802.11 standard, has become espe-
cially popular in a wide range of installations, ranging from
home networks to commercial establishments. Short-range
wireless data communication according to the Bluetooth
technology permits computer peripherals to communicate
with a personal computer or workstation within the same
room.

[0020] Security is essential to protect retail and other
commercial transactions in electronic commerce. Security is
vital to protect medical data, medical records, and other
storage and transfer of personal data, or in any context in
which personal privacy is desirable. Security is fundamental
for both wireline and wireless communications and at mul-
tiple layers in communications, such as transport layer,
network layer, and other layers. Added features and increas-
ing numbers of security standards add further processing
tasks to communications systems. These potentially involve
additional software and hardware in systems that already
face cost and power dissipation challenges. Even the ability

US 2017/0104732 Al

of the system itself to keep up with the task load and rate of
information flow may be jeopardized.

[0021] Each of the data communication security standards
like IPSEC, SRTP, TLS, WiMax, Wireless 3G and Wireless
4G uses its own form of data cryptography and source
authentication. (Refer to TABLE 1 Glossary of acronyms.)
To make data communication more secure each security
standard defines its own additional level of processing
beyond standard cryptographic algorithmic processing
(AES, 3DES, Kasumi etc). This additional processing called
“mode operation” is different for each application and
different within a given application depending upon current
mode of operation and peer capabilities. This mode process-
ing is sometimes very complex and calls for repeated
cryptographic processing for a same data block. Some
popular examples of the confidentiality modes that use AES
or 3DES cores are CBC, OFB, CFB, CTR, GCM, and CCM
which may be used in IPSEC applications. To secure wire-
less data traffic, transmitted via antenna, Kasumi-F8 and
Snow3G-F8 are used in 3GPP technology, for a couple of
examples.

[0022] This cryptographic “mode operation” processing
presents a huge technological challenge, given that perfor-
mance and chip area vitally matter, to support so many
different types of processing in hardware even though the
modes include the basic cryptography AES, 3DES, etc., in
the process. Moreover, as security standards evolve, new
modes are added continually to overcome or mitigate secu-
rity issues as and when found in mode processing, thereby
leading to a further problem of technologically keeping up
with new modes of security processing in hardware.
[0023] If system hardware is to support multiple security
standards at extremely high processing speeds and transfer
rates (called bit-rates), more cryptography standards must be
supported with high performance even though each standard
defines its own data cryptography processes, authentication
methods and operational encryption modes.

[0024] Hardware implementation of confidentiality modes
like CBC, OFB, CFB, CTR, GCM, and CCM, convention-
ally calls for custom logic for each mode even when they
may use the same cryptographic process (AES, 3DES etc).
Performance and chip real estate area suffer. Competitive
issues and market demands add yet further dimensions of
performance, chip area, and QoS (Quality of service) to the
challenge of implementing so many security standards.
Moreover, as security standards evolve, new modes are
invented continually in the industry to overcome or mitigate
newly-detected types of attacks.

[0025] Departures for more efficient ways of handling
and/or protecting packet and non-packet data, voice, video,
and other content are needed for microprocessors, telecom-
munications apparatus and computer systems.

SUMMARY OF THE INVENTION

[0026] Generally, and in one form of the invention, an
electronic circuit includes one or more programmable con-
trol-plane engines operable to process packet header infor-
mation and form at least one command, one or more
programmable data-plane engines selectively operable for at
least one of a plurality of cryptographic processes selectable
in response to the at least one command, and a program-
mable host processor coupled to such a data-plane engine
and such a control-plane engine.

Apr. 13,2017

[0027] Generally, and in another form of the invention, a
security context cache module is for use with a host pro-
cessor and an external memory. The module includes a local
cache memory, a local processor coupled with the local
cache memory, an ingress circuit having an input for ingress
of a packet stream including an ingress packet having a
security context pointer, and an auto-fetch circuit responsive
to such ingress packet and operable to automatically fetch a
security context from the external memory to the local cache
memory using the security context pointer, and to associate
the security context in the local cache memory with the
packet stream, the auto-fetch circuit operable for multiple
such packet streams and ingress packets, whereby to allow
simultaneous security connections.

[0028] Generally, and in a further form of the invention, a
streaming interface for packet data includes a buffer circuit
for a packet stream including a packet having an associated
request field for thread identification, the buffer circuit
operable to provide a ready signal indicating that the buffer
circuit currently has at least a predetermined amount of
space to accept data; and a data transfer circuit responsive to
the request for thread identification to transfer data to a
particular target thread, the data transfer circuit including a
control circuit responsive to the ready signal, and responsive
to a start-of-packet indicator and an end-of-packet indicator
and a drop-packet indicator, and further responsive to a
multi-bit thread identification of a thread that is currently
occupying the buffer circuit.

[0029] Generally, yet another form of the invention
involves a control method for packet processing. The control
method includes host-loading a first storage area with a
context including control data and processing instructions
for processing at least part of a packet, supplying a stream
of packets including a particular packet to a packet process-
ing subsystem, the particular packet including a pointer to a
context in the first storage area; operating the packet pro-
cessing subsystem to access the context from the first
storage area for use in the packet processing subsystem in
accordance with the pointer, and processing the stream of
packets in the packet processing subsystem in accordance
with the control data and processing instructions in the
context.

[0030] Generally, another further form of the invention
involves an electronic method of processing packets. The
method includes providing a set of accelerator engines and
at least one separate control engine, receiving packets from
a stream using an electronic interface, electronically chunk-
ing the packets into chunks in a memory, the chunks being
generally shorter than their packets and at least one of the
chunks having associated control information, operating the
separate control engine in response to the control informa-
tion to electronically generate and store a sequence of engine
identifications representing a pipelined process by selected
ones of the accelerator engines one after another according
to the sequence; and coupling and operating the accelerator
engines responsive to the stored sequence of engine identi-
fications so that a first accelerator engine having the first
engine identification in the sequence processes a series of
the chunks to produce resulting chunks, and a second
accelerator engine having the second engine identification in
the sequence processes the resulting chunks from the first
accelerator engine beginning substantially as soon as the
first of the resulting chunks comes from the first accelerator
engine, whereby the stream of packets is pipeline-processed.

US 2017/0104732 Al

[0031] Generally, and in still another form of the inven-
tion, a packet interface circuit includes a control circuit
operable to receive packets each having a header and a
payload, some of the packets representing a first stream, and
some others of the packets representing a second stream, the
control circuit operable to assign thread identifications iden-
tifying each such stream, a memory, and a chunking circuit
operable, when a given such packet has a payload exceeding
a predetermined length, to store chunks in the memory so
that the chunks have the predetermined length or less, and
the chunking circuit operable to load chunk control infor-
mation into the memory, the control information indicating
start of packet (SOP), middle of packet (MOP), and end of
packet (EOP), depending on the position in the payload of
data in a given stored chunk.

[0032] Generally, a further process form of the invention
involves a communication method for control communica-
tion between processors. The communication method
includes electronically breaking ingress packets into smaller
chunks, one of the chunks for a packet being a start-of-
packet chunk having associated control information, oper-
ating one or more programmable control-plane engines to
process such a start of packet chunk and form at least one
command to organize a set of data plane engines into a
particular pipeline topology, and selectively operating the
data-plane engines programmably to process the chunks in
accordance with the command, whereby to effectuate at least
one of a plurality of packet processing modes.

[0033] Generally, and in a yet further form of the inven-
tion, an electronic buffering circuit includes at least three
processors each having inputs and outputs and identified by
respective engine identifications, and at least one of the
processors operable to generate particular engine identifica-
tions of at least two of the processors; a plurality of buffers
at least equal in number to the plurality of processors; and
a selection circuit responsive to controls based on the engine
identifications of the processors for any-order interconnec-
tion of a selected processor-buffer-processor topology.
[0034] Generally, and in another additional form of the
invention, a packet-processing electronic subsystem
includes a first data interface for first streaming data, a
second data interface for second streaming data, a scheduler
circuit coupled to the first and second data interfaces and
including a packet memory, a security context cache module
coupled for input from, and output to, the scheduler circuit,
the security context cache module including a cache con-
troller and a cache storage for at least one security context,
a packet header processing module coupled for input from,
and output to, the scheduler circuit, an authentication mod-
ule coupled for input from, and output to, the scheduler
circuit; and an encryption module coupled for input from,
and output to, the scheduler circuit and the encryption
module including control circuitry and encryption accelera-
tors responsive to a security context in the security context
cache module to operate the encryption module and the
authentication module as specified by the security context
and the packet header processing module.

[0035] Other processors, circuits, devices and systems and
processes for their operation and manufacture are disclosed
and claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] FIG. 1 is a block diagram of an inventive subsys-
tem for efficient cryptographic acceleration.

Apr. 13,2017

[0037] FIG. 1A is a four-quadrant diagram of processing
parallelism of the inventive subsystem of FIG. 1, e.g., in
Internet and wireless, and in a control plane and a data plane.
[0038] FIG. 2 is a diagram of memory spaces related by
pointers, and including inventive security data structures
acting as a data sink receive queue at top and data source
transmit queue at bottom which are established or supported
by a host processor and the subsystem embodiment of FIG.

[0039] FIG. 3 is a composite diagram of packets and
descriptors therein together with storage spaces for a secu-
rity context and data buffer space(s) used for the inventive
security data structures of FIG. 2.

[0040] FIG. 4 is a partially block, partially flow, diagram
wherein the inventive subsystem of FIG. 1 adaptively orga-
nizes a programmable structure called a logical topology for
IPSEC outbound and IPSEC inbound packets.

[0041] FIG. 5 is a partially block, partially flow, diagram
wherein the inventive subsystem of FIG. 1 adaptively orga-
nizes a programmable structure (logical topology) for Air
cipher/Stream cipher.

[0042] FIG. 6 is a storage space diagram of an inventive
security context data structure for IPSEC in ESP mode, such
as to support FIG. 4, or alternatively with an inventive
security context for SRTP.

[0043] FIG. 7 is a storage space diagram of an inventive
security context data structure that supports FIG. 5 for Air
Cipher inbound and outbound. Notice that the order of
integrity and encryption in the security context is reversed in
this example depending on the Outbound or Inbound opera-
tion.

[0044] FIG. 8 is a block diagram of an inventive security
context cache for the security context data structures such as
those of FIGS. 6 and 7.

[0045] FIG. 9 is a storage space diagram of an inventive
internal buffer format with associated buffer pointer posi-
tions and that is provided for an inventive process of
chunking packets.

[0046] FIG. 10 is a block diagram of an inventive encryp-
tion module in the subsystem embodiment of FIG. 1.
[0047] FIG. 11 is a block diagram of an inventive mode
control engine (MCE) for use in the encryption module of
FIG. 10 and in the Air Cipher module of FIG. 14.

[0048] FIG. 12 is a block diagram of an inventive authen-
tication module in the subsystem embodiment of FIG. 1.
[0049] FIG. 13 is a block diagram of an inventive packet
header processing (PHP) module in the subsystem embodi-
ment of FIG. 1.

[0050] FIG. 14 is a block diagram of an inventive Air
Cipher module in the subsystem of FIG. 1 and that uses the
MCE embodiment of FIG. 11.

[0051] FIG. 15 is a flow diagram of an inventive process
for initialization of the subsystem of FIG. 1.

[0052] FIG. 16 is a flow diagram of an inventive process
for setting up a security context for the subsystem embodi-
ment of FIG. 1.

[0053] FIG. 17 is a flow diagram of an inventive process
for tearing down a security context for the subsystem
embodiment of FIG. 1.

[0054] FIG. 18 is a flow diagram of an inventive process
for evicting a security context in FIGS. 1 and 8 for the
subsystem embodiment of FIG. 1.

US 2017/0104732 Al

[0055] FIG. 19 is a flow diagram of an inventive process
for issuing Engine IDs for multiple execution passes for the
subsystem embodiment of FIG. 1.

[0056] FIG. 20 is a block diagram of an inventive secure
telecommunication and processing system combination with
structures and processes as disclosed herein.

[0057] FIG. 21 is a flow diagram of a process for inventive
mode processing code assembly for the FIG. 11 MCE
embodiment.

[0058] FIG. 22 is a flow diagram of a process for inventive
mode processing in FIGS. 1 and 11 by the MCE embodiment
according to assembly code generated according to FIG. 21.
[0059] Corresponding numerals in different Figures indi-
cate corresponding parts except where the context indicates
otherwise. A minor variation in capitalization or punctuation
or spacing, or lack thereof, for the same thing does not
necessarily indicate a different thing. A suffix .i or .j refers
to any of several numerically suffixed elements having the
same prefix.

DETAILED DESCRIPTION OF EMBODIMENTS

[0060] To solve the above noted problems and other
problems, smart, scalable high performance, configurable
cryptographic engines (occasionally referred to as CP_ACE
herein) provide an example of a remarkable, adaptive sub-
system category of embodiments, allowing multiple security
standards like IPSEC, SRTP, TLS, WiMax, wireless 3G and
wireless 4G to be processed concurrently and efficiently
using the same processing engines. The subsystem embodi-
ment of FIG. 1 is adaptive, adapted, or adaptable by allow-
ing firmware-controlled security header processing and
hardware-driven, any-order data staging, cipher block for-
matting and cryptographic processing.

[0061] Such subsystem embodiments can satisfy
extremely high bit-rate demands and provide a rich feature
set to accommodate industry cryptography standards to
carry out content encryption and authenticity validation for
wire-side and wireless-side traffic. Moreover, these embodi-
ments can provide anti-replay protection and resist other
types of security attacks.

[0062] A form of the subsystem employs multiple engines
that primarily process streams of data and controllably
separates or segregates them from one or more additional
engines that primarily perform control functions and
responses to conditions—thereby establishing a data plane
and a control plane herein. The separation desirably avoids
or obviates blocking effects that might otherwise arise
between control plane processing and data plane processing,
while the control plane schedules and otherwise controls the
data plane. The separable data planes and their independent
control avoid stalling of either plane by the other plane. A
host processor is also provided that can call the subsystem
and further is free to itself selectively use the data plane and
bypass the control plane, e.g. without engaging control plane
components. Two-way register access between control plane
and data plane promotes monitoring, control of blocks and
their topology, and controllable separation. The cut-through
structure separates the data plane from the control plane, or
generally provides a parallel control information transfer
path in one circuit half or control plane as compared with a
data transfer path in another circuit half or data plane for true
pipelined processing. That way, no stall arises even if delays
occur in either the control plane or data plane.

Apr. 13,2017

[0063] The subsystem preserves and enhances Quality of
Service (QoS) by automatically breaking a data packet into
small chunks and scheduling these data chunks based on
configured or requested QoS level. Such QoS level indicates
or represents packet stream priority and is used by the
subsystem to control and/or establish subsystem latency
(packet throughput delay) and data rate, for instance. This
important ability to switch within-a-packet allows QoS
preference, such as to give higher priority to packets of
another type or QoS level, to be effective immediately. Some
modes or packet types may automatically have a particular
QoS level associated with them in the configuration.

[0064] The high performance, adaptive, and configurable
cut-through embodiments with internal data chunking allow
multiple security standards to be processed concurrently at
high bit rate and low latency. Mere updates to firmware for
the subsystem confer the ability to support new standards in
the field. Such subsystem processes packets in data chunks
thereby giving ability to switch within-a-packet to a new
higher priority packet, thereby preserving and enhancing
Quality of Service.

[0065] The subsystem of FIG. 1 hosts a security context
cache module of FIG. 8 that fetches and evicts a respective
control data structure for each security context that holds
information like cryptographic keys and modes from exter-
nal memory 120 on demand basis. This information is
fanned out to the data processing engine(s) automatically by
hardware before data is processed. Optionally the control
structure itself can be encrypted to safeguard access to keys
in external memory 120. Arbitrated port controllers are
coupled to a data lookup cache portion and to a security
context cache portion, further effectuating the parallelism of
control plane and data plane in the cache structure of such
subsystem embodiments.

[0066] The subsystem circuitry partially constructs a secu-
rity context as a control plane operation in the local context
cache store by an access to host memory. The circuitry also
acts to process an incoming packet into packet chunks each
including a portion of data from an incoming packet and to
affix control information into at least one such chunk. The
subsystem provides a further contribution to the construction
of the security context in the local context store from the
control information in the packet chunk in the data plane.
Interlocked security is thus flexibly provided by operations
in both the control plane and the data plane.

[0067] Moreover, the subsystem introduces both control
plane/data plane parallelism and cryptographic parallelism
such as for Internet and wireless concurrently. This consti-
tutes a two-dimensional streaming parallelism in four quad-
rants (see FIG. 1A) for control/data and Internet/wireless
cryptographic and other processing that can with dramatic
efficiency securely handle the real-life applications that
users care about now and in the future.

[0068] Cryptography processing is conventionally very
expensive and burdensome on a main CPU (or array of
CPU’s) at least because new security standards require more
data and instruction bandwidth and processing in conjunc-
tion with the high incoming packet rate. The subsystem
embodiments described herein offer tremendous advantage
since the process of operation offloads data security related
processing from the main CPU (host processor or array, see
FIG. 20) and at the same time supports multiple security
standards at high performance. The subsystem also provides

US 2017/0104732 Al

a direct mode in which one or more such CPUs can directly
engage hardware cryptographic cores to process non-packet
(non-standard) data.

[0069] The field of Cryptography processing has numer-
ous acronyms, and TABLE 1A provides a Glossary for some
of them. TABLE 1A also illustrates the diversely extensive
numerousness of these processing operations demanded for
execution at high rates.

TABLE 1

GLOSSARY OF CRYPTOGRAPHY AND COMMUNICATIONS

Acronym Description

AAD Additional authenticated data (for Galois)

AES Advanced Encryption Standard

AES-CMAC Advanced Encryption Standard Cipher-based Message
Authentic’n Code

Air Cipher Cipher to protect wireless over-the-air communications

AH Authentication Header, part of IPSEC

CBC* Cipher Block Chaining

CBC-MAC Cipher Block Chaining - Message Authentication Code

CCM* Counter with CBC-MAC

CFB* Cipher Feedback

Cipher Procedure for performing encryption or decryption

CTR* Counter. An encryption mode.

DES Data Encryption Standard

DFC Decorrelated Fast Cipher

DSL Digital Subscriber Line, type of wired network over
telephone line

ECB Electronic Code Book

Ethernet Type of wired network using cabling on premises
between computers

ESP Encapsulating Security Payload, part of IPSEC packet
protection

A5/3 GSM key stream generator

F8# A confidentiality process in UMTS, uses Kasumi

Fo# An integrity process in UMTS, uses Kasumi

ECB Electronic Code Book

FIPS Federal Information Processing System

GCM* Galois Counter Mode

GMAC Galois Message Authentication Code

GPRS General packet radio service. A wireless standard.

HMAC Hashed Message Authentication Code

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IPSEC Internet Protocol Security

Kasumi Block cipher in UMTS, GSM, GPRS. An Air Cipher.

LAN Local Area Network

MACSEC Media Access Control Security, IEEE 802.1AE, e.g.,
for Ethernet

MD3 Message Digest 5

NIST National Institute of Standards and Technology

OFB* Output Feedback. An encryption mode.

RFC Request for Comment

SHA Secure Hash Algorithm

SnowSG Word-oriented stream cipher, an Air Cipher

SRTP Secure Real-time Transport protocol

SS Subscriber Station

SSL Secure Socket Layer

TLS Transport Layer Security

UMTS Universal Mobile Telecommunications System. A
wireless standard.

WLAN Wireless Local Area Network

3DES Triple DES

3GPP 3rd Generation Partnership Project

*Examples of confidentiality modes that use AES or 3DES cores are CBC, OFB, CFB,
CTR, GCM, and CCM, which are used in IPSEC applications.

#Kasumi-F8 and Snow3G-F8 are used in 3GPP technology to secure data traffic trans-
mitted via antenna, hence the phrase Air Cipher herein.

[0070] TABLE 1B provides another Glossary for acro-
nyms used to describe the embodiments.

Apr. 13,2017

TABLE 1B

GLOSSARY OF BLOCKS AND DATA STRUCTURES

Acronym Description

CDMA CPPI DMA controller (distinct from wireless CDMA next)

CDMA Wireless code division multiplex for telecom

CMD Command

CPPI Communication Processor Peripheral Interface

CP_ACE Accelerated Cryptographic Engine. Subsystem example of
embodiment.

CTR Counter

CTX Context

ctxcach Context Cache

DDR Double Date Rate, type of RAM

DMA Direct Memory Access, peripheral circuit

EMIF External Memory Interface

EOP End of Packet

FwW Firmware, e.g. software stored in flash non-volatile
memory.

HEFN Hyperframe Number

HW Hardware

v Initialization Vector, for key derivation

LSB Least Significant Bit

MCE Mode control engine, another type of embodiment

MMR Memory Mapped Register

MOP Middle of Packet

MSB Most Significant Bit

PA Packet accelerator

PHP Packet header processor

PDSP Packed Data Structure Processor, another type of
embodiment: programmable engine for parsing a packet
header, trailer, and payload

PKA Public Key Accelerator

RAM Random Access Memory

RISC Reduced Instruction Set Computing or Computer

RNG Random Number Generator

ROC Rollover Counter

SC Pointer Security context pointer holding data
structure in host memory

SCCTL Security context control word, TABLES 19, 10.

SCID Security context ID

SCIDX Security index

SCPTR Security context pointer

SOP Start Of Packet

sW Software or firmware

SW Software Word

VBUSP VBUS Protocol bus signaling protocol

[0071] Embodiments exemplified by the subsystems

described at length herein are flexible and adaptive thereby
allowing new security standards and application-specific
encryption operational modes to be updated in the field.
Various embodiments provide a high performance, loosely
coupled packet engine to encrypt, decrypt and authenticate
data on-the-fly thereby maintaining a suitably-specified
wire-rate or wireless rate, and to perform a threshold level
of security monitoring on inbound traffic to provide sanity
and integrity checks to protect host processor 100 from
unwanted traffic. Minimal intervention from host 100 is
involved to process data, but at same time the host 100 is
fully in control of such processing. The subsystem can cache
high-speed connections keys and control, thereby promoting
efficient high speed execution. Auto-fetch keys and control
structures from host memory are provided in secure fashion
as and when appropriate, so that the system is secure when
caching high-speed connections keys and control. Some
embodiments provide direct cryptographic processing accel-
eration to host 100 to encrypt/authenticate raw data (non-
packet), especially for multi-media applications.

[0072] A public key accelerator (PKA) aids host 100 for
key generation/derivation mainly for IKE and other similar

US 2017/0104732 Al

processes. A non-deterministic true random number genera-
tor (TRNG) is provided and is host-accessible. A high
performance, link-list based, descriptor-driven scatter-
gather CPPI DMA (direct memory access) can queue pack-
ets. Firmware is updatable in the field to enhance/support
new processing features such as new header processing
features and other features.

[0073] The system has a remarkable structure and process
to update micro-instructions in the field to support new
encryption operation modes like CCM etc.

[0074] High Level protocols supported include 1) trans-
port mode for both AH and ESP processing for IPSEC
protocol stack, 2) tunnel mode for both AH and ESP
processing, 3) full header parsing and padding checks, 4)
Construct initialization vector IV from header, 5) anti-replay
attack resistance, 6) SRTP protocol stack to support F8 mode
of processing and replay protection, 7) WiMax encryption,
8) 3GPP protocol stack, 9) Wireless Air cipher standard, 10)
AS5/3 mode, 11) firmware enhancements for SSL. and MAC-
SEC.

TABLE 2

PERFORMANCE EXAMPLE

Protocol Mbits/sec
IPSEC - ESP 1400
IPSEC - AH 1400
3GPP 400
SRTP 400

Legal co-existence

IPSec + SRTP
IPSec + 3GPP

1800 (Total)
1800 (Total)

[0075] In the keys and control structure, host 100 forms a
security context under which the hardware encrypts and
decrypts keys, provides connection-specific control flags,
anti-replay windows, and firmware parameters, and estab-
lishes static connection values such as a nonce or a salt. (A
nonce is a security string or number used once. A salt is a
random value input used along with a password in key
derivation.)

[0076] The system in one example supports up to 32,768
(or 2'%) simultaneous connections or more. Setup is as easy
as sending packet pertaining to that connection. Host 100
can lock high-speed connections. Any connection can be
smoothly torn down.

[0077] A control structure is auto-fetched on a demand
basis, as and when requested, to cache up to 64 security
contexts or more. A security context is cached permanently
if locked by host 100. Also, host 100 is operable to auto-
matically evict old connections to make room for new
connections.

[0078] Some embodiments secure the security context
itself, and/or fetch the connection in secure mode using
secure infrastructure.

[0079] In FIG. 1, hardware 200 in one embodiment has a
Two-Plane architecture herein including a data plane 300
and a control plane 400. The data plane 300 supports
cryptographic payload processing by providing and utilizing
modules for authentication processing 320, encryption pro-
cessing 310, air ciphering 370, public key acceleration PKA,
and a true random number generator TRNG. Further, as
shown in FIGS. 1, 10, 11, 12, 13, and 14, the planes cut

Apr. 13,2017

through each of the just-noted modules and the packet
header processing PHP modules 410 and 460. The data plane
involves the blocks or sub-blocks primarily involved with
handling packets “p” (packet data). The control plane
involves the sub-blocks primarily involved with handling
packets “c” for control data, packets “_” (unmarked) for
scheduler data, and packets “f” for configuration data. PKA
and TRNG by having lines marked “f” represent a slight
legend exception to the foregoing generalization, and PKA
and TRNG partake of data-plane. The basic structure and
benefits of the distinction between planes are nonetheless
consistent throughout.

[0080] The control plane includes one or more packet
header processing PHP modules and provides Ingress header
checks and Egress header updating. The special CPPI 10’s
along with these data and control planes provide a high-
performance streaming interface.

[0081] In both control plane and data plane, shared hard-
ware crypto core hardware is provided for IPSec, SRTP and
Transport layer, thereby saving integrated circuit real estate
expense. The architecture segregates the data plane 300 from
the control plane 400 (or generally provides a parallel
control information transfer path in upper half as compared
with data path in lower half in FIGS. 10, 11, 12, 13, and 14)
for true pipelined processing, so no stall arises even if delays
occur in either the control plane or data plane. The fully-
pipelined engine, or structure e.g. of FIG. 1, supports
Encryption and Authentication simultaneously, and also
provides any-order staging, such as AES followed by SHA
or SHA followed by AES, or AES1 followed by AES2, for
some examples.

[0082] In data plane 300 (or cut-through data-related por-
tion in FIGS. 10, 11, 12, 13, and 14), a cryptographic
payload processing module provides authentication 320
processing for SHA1 and AES (used for authentication too),
MDS, and SHA2, for instance. Keyed HMAC (Hashed
Message Authentication Code) operation via hardware core
using MDS5, SHA1, SHA2-224 and SHA2-256, and support
for truncated authentication tag are included.

[0083] Block data encryption is supported via respective
hardware cores for processing AES, DES, 3DES, and Galois
multiplier, see module 310. Supported Air Ciphers include
Kasumi and Snow3G for stream data encryption, see module
370. Security context architecture has on-chip cache (FIG.
8) with auto-fetch and can cache 64 contexts and auto-Evict
or auto-Fetch a Security context on a demand basis. A Public
Key Accelerator module includes a high performance, pub-
lic key engine for large vector math operation and supports
a modulus size up to 4096-bits or more for public key
computations. Further, the Cryptographic Payload process-
ing module(s) in the data plane has a True Random Number
Generator TRNG, is non-deterministic and FIPS compliant.
Null cipher and null authentication support debugging.
[0084] Further in FIG. 1, the independent control plane
and data plane architecture allows host 100 to selectively use
only data plane 300 components while bypassing the control
plane 400. In a cut-through mode of operation, packets are
processed as and when received, without waiting for the
complete packet to finish. Packets are processed in chunks
thereby ensuring that all the hardware engines are fully
engaged. The context cache module 510 is coupled for auto
fetch of security context based on current state of an engine,
and pre-fetch security context is based on information
available from an ingress FIFO. An option allows storage of

US 2017/0104732 Al

security context within an engine for high performance
connections. Auto-eviction of security context is based on
unavailability of space within the context cache in FIG. 8.
Fully pipelined engines for parallel processing allow mul-
tiple processing on a same payload by auto-forwarding to
next engine.

[0085] To avoid limitlessly accumulating mode-specific
hardware cores for multiple modes like CBC, OFB, CFB,
CTR, GCM, CCM and other modes, a remarkable program-
mable Mode Control Engine MCE of FIG. 11 herein
sequences various logical and arithmetic operations and
other instructions to achieve each desired encryption/au-
thentication operational mode and leverage the speed of
associated hardware crypto cores. The sequence of opera-
tions is contained in a set of instructions that are stored as
part of the security context in the memory. MCE also has
registers (e.g., four registers each 128-bit such as in its
Register Bank) to store the immediate result after each
operation. In addition, the security context of FIG. 2 in
memory stores encryption and authentication key and some
other security parameters such as Initial Vector (IV), encryp-
tion mode, authentication tag length and location, date offset
and security process details. Many of the MCE instructions
as in TABLE 13 are also specifically set up to have direct
access to these parameters.

[0086] In the control plane 400 (or cut-through control-
related portion in FIGS. 10, 11, 12, 13, and 14), a crypto-
graphic control plane processing module includes two
instances 410, 460 of a PHP (Packet header processor) of
FIG. 13 and has a 32-bit Low gate count RISC CPU (PDSP)
header processing engine for programmable protocol-related
packet header and trailer and payload parsing for true 64K
bytes packet processing, padding checks, security procedure
control and decode, 16K of instruction RAM, and 8K
scratch-pad RAM in one set of RAM size parameters for an
implementation example. A hardware-accelerated security
context viewer module is provided, as well as a hardware-
accelerated packet viewer module. A special data engine
designated CDE is beneficial for packet type application and
allows hardware accelerated bytes insertion and removal
from any packet.

[0087] Software and firmware architecture includes firm-
ware for IPSEC, firmware for SRTP, and firmware for 3GPP,
and firmware that schedules the processing for the hardware
engines. A driver layer is provided.

[0088] In FIGS. 1 and 2, the subsystem 200 includes and
uses FIFOs and CDMA (CPPI DMA Communication Pro-
cessor Peripheral Interface direct memory access controller)
to fetch packet descriptors and buffers contents from a
system 3500 such as in FIG. 20. In FIG. 2, subsystem 200
(3540) maintains a receive queue (Queue X) for ingress for
the security accelerator. Receive queue holds one or more
Host Packet Descriptors that each have 1) a handle to access
a security context buffer in a protocol-specific part, and 2) a
pointer to a Data Buffer for data or from which to access
data. The security context (SC) buffer holds security context
information that is collectively called a Security Context.
The Security Context includes information such as encryp-
tion and authentication key, initialization vector (IV),
encryption mode, authentication tag length and location, and
data offset and other security process details. The Data
Buffer holds SOP (start of packet), EOP (end of packet), and

Apr. 13,2017

a block of data to be cryptographically processed such as by
encryption, decryption, authentication, or otherwise accord-
ing to the encryption mode.

[0089] In FIG. 2, subsystem 200 also maintains a transmit
queue (Queue Y) used for egress with the security context,
and multiple transmit queues are established for multiple
concurrent security contexts. A transmit queue holds a Host
Packet Descriptor that contains 1) a handle to access the
security context buffer or an output security context buffer in
the protocol-specific part, 2) a pointer to the Data Buffer or
to an output data buffer from which to access data, and 3)
extended packet information, such as to indicate whether the
security context has been updated. The security context (SC)
buffer for transmit purposes not only holds the Security
Context as already described but also any updated ROC
(rollover count), HFN (hyperframe number), etc. The Data
Buffer for transmit purposes holds SOP (start of packet),
EOP (end of packet), and a block of output data resulting
from the cryptographic processing.

[0090] In FIG. 3, receive operations relate to that receive
queue of FIG. 2 and involve ingress of a series of packets
each having a plaintext PDU (Protocol Data Unit) header
and packet payload data arriving for cryptographic process-
ing. Host Packet Descriptors correspond to the packets and
have a pointer that points to the data buffer block of data to
be decrypted or encrypted. Such Host Packet Descriptor has
one or more protocol-specific fields that point to the Security
Context or fields therein. These receive operations also
relate to the chunking of the packets by subsystem 200, i.e.
breaking a data packet on ingress into smaller data chunks.

[0091] In FIG. 4, the subsystem 200 of FIG. 1 adaptively
organizes a programmable structure called a logical topol-
ogy for IPSEC outbound and IPSEC inbound packets using
its IPSEC PHP 410 in FIG. 1. (See FIG. 13 for a PHP detail
that is used in each of the IPSEC PHP and Air Cipher PHP
and that uses a processor PDSP.) For IPSEC outbound
packets, first pass packet header processing by IPSEC PHP
410 is followed in FIG. 4 by Encryption SS 310, then
Authentication SS 320, and then IPSEC PHP pass 2 pro-
cessing. See also the associated security context of FIG. 6
and FIG. 3. For IPSEC inbound packets, first pass packet
header processing by IPSEC PHP 410 is followed in FIG. 4
by Authentication SS 320, then Encryption SS 310 (decryp-
tion), and then IPSEC PHP pass 2 processing. If one IPSEC
packet stream is outbound while another IPSEC packet
stream is inbound, then both forms of processing in FIG. 4
can be set up and executed concurrently. Buffering 250./
supports the logical topology, such as cascade or serial
nature of the outbound and inbound processes. Indeed, the
subsystem of FIG. 1 not only effectively supports either of
those FIG. 4 processes individually but also is or can be
relatively evenly loaded while supporting both of those FIG.
4 processes concurrently. This is because the chunks (FIG.
9) are likely to be of similar size, and the differing order of
operations for outbound and inbound readily have a FIG. 1
encryption block 310 running for outbound while an authen-
tication block 320 is running for inbound, and vice versa.
Notice that the buffers 250.i in FIG. 4 are some of the FIFO
buffers at the inputs of Crypto Data and Scheduler SCR 260
of FIG. 1 and any buffers in the blocks or modules them-
selves. Under the configured or programmably established
logical topology, those buffers of FIG. 1 are re-arranged or
selectively multiplexed into whatever operational order
(such as in the examples of FIGS. 4 and 5) is specified to

US 2017/0104732 Al

establish a particular currently-employed process or future
process. These processes can be in one security context or in
plural security contexts such as represented by any one or
more of various forms of FIGS. 6 and 7 and FIGS. 2 and 3.
[0092] When FIG. 1 is considered in light of FIGS. 4 and
5, the logical topologies of FIGS. 4 and 5 or otherwise, are
recognized as various programmably-helical paths (involv-
ing what are called “rounds” herein) that can be established
adaptively in and in a sense form the structure of FIG. 1 into
one or more coils (rounds) mediated by the Crypto Data and
Scheduler SCR 260. Depending on context, the term
“round” may also refer to a sequence of operations cycling
through a same given subset of the modules among modules
410, 460, 310, 320, 370 and buffers 250.;. Notice the
compatible lines for control plane and data plane throughout
FIGS. 10-14. Multiple packet flows streaming into the PA
and CDMA Ingress CPPI Streaming Interfaces are coiled at
any given moment into logical topologies of approximately
concurrent data flow and processing, and output data
streams emerge out of the PA and CDMA Egress CPPI
Streaming Interfaces. The various modules that concurrently
participate in the different coils (rounds), and in what order
for each coil (round), are established according to the
Security Context Cache information and the Configuration
SCR information. The operations of the modules are
sequenced in a given coil (round). These operations appear
to alternate or form other remarkable patterns of operation in
space and time, as the remarkable CP_ACE subsystem 200
is configured and called and does its work.

[0093] InFIG. 5, the inventive CP_ACE subsystem 200 of
FIG. 1 adaptively organizes a programmable structure (logi-
cal topology) for Air cipher/Stream cipher. For Air Cipher,
first pass packet header processing by PDSP of FIGS. 1, 13
Air Cipher PHP 460 is followed in FIG. 5 by Air Cipher SS
processing in the separate Air Cipher module 370 of FIGS.
1 and 14, and then further followed by FIG. 5 Air Cipher
PHP 460 pass 2 processing. See also the associated security
context of FIG. 7 and FIG. 3 and TABLE 5. Concurrently or
otherwise for Stream cipher, first pass packet header pro-
cessing by PHP 460 is followed in FIG. 5 by Stream Cipher
SS in module 370, and then PHP 460 pass 2 processing.
Buffering 250.7 again supports the logical cascade or serial
nature of these parallel processes so that the subsystem of
FIG. 1 is relatively evenly loaded.

[0094] Notice that the logical topologies of both FIGS. 4
and 5 can be executed concurrently due to the additional
level of parallelism of the subsystem 200. Accordingly, not
only can subsystem 200 be characterized by control plane/
data plane parallelism but also cryptographic parallelism
such as illustrated for supporting Internet and wireless
concurrently. Subsystem 200 embodiments thus also
remarkably introduce a two-dimensional parallelism in four
quadrants for control/data and Internet/wireless crypto-
graphic and other processing to which the advantages com-
mend them.

[0095] As illustrated by examples of FIG. 6 and FIG. 7,
each individual security context per-connection accessible
via Ctx Fetch VBUSP in FIG. 1 Host memory 120 (3520.3,
3550 in FIG. 20) is made up of three parts: Software-only
section, PHP section, and data plane processing section. The
Software only section holds the information that is used by
software (DSP code) for managing security context and for
storing connection-specific data, and this information does
not need to be fetched by CP_ACE subsystem 200. The PHP

Apr. 13,2017

section in FIG. 6 or 7 holds PHP control information used by
each packet header processing (PHP) module 410 or 460 in
subsystem 200 to maintain the current state of the connec-
tion along with data used to process packets. This PHP
section in FIG. 6 or 7 is fetched and updated as needed using
DMA 520 of FIG. 8. The third and fourth sections in FIG.
6 or 7 hold data plane processing (Encryption, Authentica-
tion, and/or Air Cipher) module-specific control and state
information fetched by subsystem 200 as needed. Subsystem
200 does not need to write/update these data plane process-
ing subsystem sections. To maximize the EMIF (external
memory interface) efficiency, each FIG. 6 section starts at a
64-bytes aligned address, for instance. Hardware control
structure is aligned to 64-bytes to allow cascading of mul-
tiple control structures.

[0096] In FIG. 6, a security context example is shown for
IPSEC or SRTP in ESP mode as seen by DSP software. This
context uses Authentication (SHA/MDS) and Encryption
(AES/3DES). This flow is same for both Inbound and
Outbound. A Host pointer points to a 64-bytes Software-
only section that is not fetched by CP_ACE. The SCPTR
pointer of TABLE 10 points to a section in FIG. 6 that has
SCCTL (8-bytes), a Packet Header processor (PHP) module-
specific section, followed by an encryption module-specific
section, and further followed by an Authentication module-
specific section. The 56-bytes Packet Header processor
(PHP) module specific section is fetched by subsystem 200
and used for IPSEC header processing using PDSP and CDE
engine and PHP Pass1/Pass2 Engine ID (TABLE 5). The
96-bytes Encryption module-specific section is fetched by
subsystem 200 and used for IPSEC encryption using AES/
3DES core and Encryption Pass1 Engine ID. See discussion
of FIG. 10 and TABLES 11-12 later hereinbelow. The
96-bytes authentication module-specific section is also
fetched by CP_ACE and used for IPSEC Authentication
using SHA/MDS core and Authentication Pass1 Engine 1D.
See discussion of FIG. 12 and TABLE 15 also.

[0097] In FIG. 6, for SRTP, the three module-specific
sections are used in the same way but have different numbers
of bytes than used for IPSEC. Thus, multiple modes for
IPSEC and for SRTP respectively are analogously supported
by the same FIG. 1 hardware for PHP, encryption, and
authentication.

[0098] In FIG. 7, another example of security context is
provided for Air cipher Outbound, where encryption (Ka-
sumi-F8) is done first, followed by Authentication (Kasumi-
F9). In this case a same hardware engine is used twice. The
order of Authentication/Encryption sections is beneficially
reversed in FIG. 7 for Air Cipher Inbound. A 56-bytes Packet
Header processor (Air Cipher PHP) module-specific section
is fetched by subsystem 200 and used for Air cipher header
processing using PDSP and CDE engine and PHP Pass1/
Pass2 Engine ID (TABLE 5). A 64-bytes Air cipher module
specific section is fetched by subsystem 200 and used for Air
cipher encryption using Kasumi/AES/Snow3G core (e.g.,
Kasumi-F8) and Air Cipher Passl Engine ID. A second 64
bytes Air cipher module-specific section is also fetched by
CP_ACE and used for Air cipher integrity protection using
Kasumi/AES/Snow3G core (e.g., Kasumi-F9) and Air
Cipher Pass2 Engine ID. See discussion of FIG. 14 and
TABLES 16-17 also.

[0099] FIG. 7 also is re-used as a Figure to show a separate
example of security context (separately-stored in memory)
for Air cipher Inbound, where Authentication (Kasumi-F9)

US 2017/0104732 Al

is done first, and followed by Encryption (Kasumi-F8). In
this case a same hardware engine is used twice. The order of
Authentication/Encryption sections is reversed for Air
Cipher Inbound relative to Air Cipher Outbound. In this
way, two different Air cipher modes are supported, depend-
ing on the configuration or loading of the security context.
[0100] In FIG. 7, yet another security context applies
analogously to CCM for Inbound or Outbound modes. The
control bits track those of the Air Cipher description by
analogy, except that for CCM an AES/3DES core is speci-
fied.

[0101] FIG. 8 shows a block diagram for the security
context cache module 510 that is coupled to context RAM
570 in subsystem 200 of FIG. 1, and the block diagram also
illustrates a flow of the security context cache working
process. In FIG. 8, the security context cache 510 has a
DMA module 520 that interfaces with the context RAM 570
and couples to a master interface with context fetch bus
VBUSP to access security contexts (as in FIG. 2, 3, 6 or 7)
in host memory 120 in FIG. 1. This portion operates as a
control-plane structure. DMA 520 is operable for fetch and
eviction operations with context RAM 570. A lookup mod-
ule 530 interfaces with a storage called Lookup RAM for
data read/write. Such storage is suitably provided in the
context RAM 575 space in FIG. 1. Note also the FIG. 1
parallel buffers 250.5 and 250.15 which can be coupled to
modules 520, 530 in FIG. 8 directly or multiplexer-coupled
into the cache structure. Thus the cut-through organization is
carried consistently into the cache structure.

[0102] Cache module 510 in FIG. 8 has three cache port
controllers: 1) PA CPPI port controller 540, 2) CDMA CPPI
port controller 550, and 3) MMR port controller 560.
Arbitration logic 580 supports lookup module 530 by arbi-
trating any lookup contention for module 530 as between
any of the port controllers 540, 550, 560. Arbitration logic
590 supports evict/fetch DMA module 520 by arbitrating
any contention for DMA 520 as between any of the port
controllers 540, 550, 560. Each of these three port control-
lers has a set of three control lines with a port prefix followed
by _Lookup_Req to activate a lookup request, _EOP_Req to
activate an end of packet request, and _Schd_Req to return
a scheduling response output. (FIG. 1 shows these control
lines in abbreviated manner simply by lines 262, 263 cou-
pling crypto data and scheduler SCR 260 with security
context cache module 510.) Each triplet of these control
lines is designated by a prefix PA, CDMA, or MMR to
indicate that it is coupled to PA CPPI, CDMA CPPI, or
MMR block in FIG. 1. Each of the three port controllers 540,
550, 560 has two output lines to convey requests to lookup
arbitration 580 and DMA arbitration 590. See, among other
controls descriptions elsewhere herein: For PA, see
TABLES 26, 28. For CDMA, see TABLES 25, 27. For
MMR, see TABLES 21-24. For security context cache
operations pertaining to setting up, tearing down, and evict-
ing a security context, see FIGS. 16-18 and TABLE 9.
[0103] Turning to FIG. 9, an internal buffer format is
depicted. A packet as received from CPPI 210 or 220 as part
of ingress flow is chunked into smaller data blocks within
subsystem 200 and packed into the buffer, e.g. 265, with the
illustrated format. All of the data processing engines in FIG.
1 use and operate on the basis of this FIG. 9 format to access
data for their respective processing. Packet data start posi-
tion is variable and dependent upon length of the CPPI
Pre-data Control words section in FIG. 9. If no CPPI

Apr. 13,2017

Pre-data Control words are present, then packet data starts at
offset of 64-bytes. In this example, CPPI Pre-data Control
words as formed by Host 100 or PDSP software are 8-bytes
aligned. Padding of zeroes is executed, if need be, to achieve
8-bytes alignment.

[0104] In FIG. 9, this internal buffer format or chunk
buffer begins at a pointer address Buf_Ptr with a Descriptor
area (e.g., 24 bytes). Refer also to FIGS. 2 and 3 Host Packet
Descriptor discussion. Descriptor area is followed by a SW
word area (e.g. 8 bytes, see also TABLE 3 and SW0, SW1).
Trailer information called the PS word (32 bytes) and then
up-to-128 bytes CPPI pre-data control words such as Com-
mand label(s) are next in succession. Then follow a Front
Packet Grow region (32 bytes), an up-to-256 bytes chunk of
variable length packet data, and a Rear Packet Grow region
(32 bytes). (All of the numbers of bytes represent non-
limiting examples.)

[0105] Each Grow region provides a guard band of buffer
space. The Front Packet Grow region provides a degree of
protection of CPPI Pre-data Control Words (e.g., Command
label(s)) from an error or attack involving the Packet data
section in FIG. 9. The Rear Packet Grow region provides a
degree of protection of an adjacent chunk buffer space
(beyond FIG. 9) from an error or attack that might affect or
run-on the size of the Packet data section.

[0106] Returning to FIG. 1, data processing engines and
security contexts are further detailed. The letter-code leg-
ends for lines used in FIG. 1 and FIGS. 10 and 12-14 are:
p=Packet Data

c=Context Data

f=Configuration Data

(none)=Scheduler Data.

[0107] In FIG. 1, the data planes and their independent
control avoid stalling of either plane by the other plane.
Also, host 100 is free to selectively use the data plane
without engaging control plane components. Control plane
processing in subsystem 200 is carried out in a Packet header
processing (PHP) subsystem 410, 460 each as in FIG. 13 and
equipped with PDSP (RISC CPU) and associated CDE
engine to parse packet headers and define routing for the
data plane. PHP PDSP thereby sets up any desired logical
topology as illustrated in the FIGS. 4-5 examples and frees
up Host 100. In some embodiments, the PHP PDSP program
accesses and executes an adapted version of software that
would otherwise burden the Host, so that PHP 410 or 460
controls the hardware modules 310, 320, 370 instead, based
on the packet headers and based on the security context (e.g.,
FIGS. 6, 7, TABLE 19) and Ingress data (TABLE 31 and
FIG. 9).

[0108] Firmware executed on PHP PDSP extracts and
inspects security headers as per the security protocol stack
(IPSEC/SRTP/3GPP etc) in use to define the action to be
carried out on the packet. If the packet passes the header
integrity check, then packet header processor PHP subsys-
tem (FIG. 13) sets the route for payload processing within
subsystem 200. To set the route for payload processing, PHP
adds a Command label CmdLbl in a pre-defined format (e.g.
TABLES 4-6) in a data buffer holding a packet or chunk as
in FIG. 9. Command label CmdLbl is used by an applicable
other hardware module (e.g. Encryption, Authentication, Air
Cipher) to forward the packet to the appropriate hardware
engine in such module 310, 320 or 370. For instance, the
packet can be sent to one of AES, DES, or Galois in
Encryption module 310; and/or one of the SHA cores or

US 2017/0104732 Al

MDS5 in Authentication module 320; and/or one of AES,
Kasumi or Snow3G core in Air Cipher module 370. The
native processing to which each selected scheduled core is
adapted then executes. The results are fed into, between and
from modules according to the logical topology or topolo-
gies set up by PHP 410 or 460 or both.

[0109] In FIG. 1, Data plane processing is carried out by
various data processing subsystems, or modules that are
partitioned based on nature of processing done by such
subsystem or module. Subsystem 200 has three major data
processing subsystems, namely 1) Encryption module 310,
2) Authentication module 320 and 3) Air cipher module 370.
Packets or chunks thereof are forwarded to the applicable
individual data plane module by decoding the command
label prefixed in front of the packet chunk (FIG. 9). The
command label is attached by control plane, e.g. PHP 410 or
460. Host 100 also can leverage CP_ACE 200 flexibility by
selectively engaging any data plane components by prefix-
ing a Command label in or from the packet thereby bypass-
ing PDSP based processing of PHP.

[0110] The Encryption module 310 of FIGS. 1 and 10
supports confidentiality by carrying out the task of encrypt-
ing/decrypting a payload from desired offset using hardware
encryption cryptographic cores. In FIG. 9, such offset is
represented by the expression Bfr_Ptr+64+ctl_length+block
data offset. Buffer pointer Bfr_Ptr points to the chunk, and
the just-given offset expression points to portion of packet
data payload in the chunk. Encryption subsystem 310 has an
MCE (mode control engine, FIGS. 1, 11), an AES core,
3DES core and Galois multiplier core which are deployed by
MCE. Mode control engine MCE in the encryption module
310 implements various confidentiality modes like ECB,
CBC, CTR, OFB, GCM etc, see “Soft Operational Modes”
block representing MCE operation in FIG. 10.

[0111] The Authentication module 320 of FIGS. 1 and 12
provides integrity protection. Authentication module 320 is
equipped with SHA1 core, MD5 core, SHA2-224 core and
SHA2-256 core to support keyed (HMAC) and non-keyed
hash calculations electronically.

[0112] The Air cipher module 370 of FIGS. 1 and 14
secures data sent to a wireless device (such as modem 1100
in FIG. 20) over the air by using wireless-infrastructure-
defined cryptographic cores like Kasumi or Snow3G. This
module 370 is also used to decrypt the data as received from
air interface modules.

[0113] Further in FIG. 1, the control and data plane
processing engines 410, 460, 310, 320, 370 each have lines
to context RAM 570 to access or store/update the control
information pertaining to each logical connection. Context
RAM 570 holds the information like Keys, 1V, partial data,
etc., for each active security context (e.g., as in FIG. 2, 3, 6,
or 7). Cryptographic engine CP_ACE provides and can store
up to e.g., 64 or more context-identifying numbers on-chip
based on the desired performance. Context RAM 570 is
coupled with Security Context Cache module 510 (FIG. 8)
to fetch the context information from external memory 120
to populate the active context on a real-time demand basis.
[0114] In FIG. 1, subsystem 200 accepts packets on
respective 32-bit PA and CDMA Streaming buses PA_Str
and CDMA_Str respectively feeding a PA (packet accelera-
tor) Ingress CPPI Streaming Interface port 210 and a CDMA
Ingress CPPI Streaming Interface port 220 as part of ingress
flow. Each packet destined to subsystem 200 is prefixed with
at least 8-bytes of CPPI Software Word (for FIG. 9) that

Apr. 13,2017

holds information about security context to uniquely identify
security connection and associated security parameters. See
TABLE 31. Coherency is maintained by CPPI DMA. Word
order of operations is in-order so that each new packet starts
after a last (previous) packet is completely fetched by
CP_ACE. Egress is handled by a PA Egress CPPI streaming
interface 270 and a CDMA Egress CPPI streaming interface
280 on other side or output side of the Crypto Data and
Scheduler SCR 260 that has numerous 64-bit registers.
[0115] Regarding the input side of Crypto Data and Sched-
uler SCR 260, notice that nine FIFO (first in first out) buffers
250.; or queues support: A) the Security Context Cache
module 510 with a pair of such buffers 250.5, 250.15 for
important parallelism and control bandwidth, and B) one
buffer for each of the two Ingress CPPI Streaming Interfaces
for PA and CDMA, C) one buffer each (250.1, 250.11) for
IPSEC PHP and Air Cipher PHP, and D) one buffer each
(250.3, 250.4, 250.7) for the hardware modules or engines
(e.g. Encryption 310, Authentication 320, Air Cipher 370)
and buffers 250.2, 250.6 for the IPSEC PHP 410 and Air
Cipher PHP 460 respectively.

[0116] Crypto Data and Scheduler SCR 260 has an asso-
ciated Packet RAM 265 and an associated Block Manager
Module 380. Crypto Data and Scheduler SCR 260 has
respective outputs coupled to IPSEC PHP 410 and Air
Cipher PHP 460, and to the Encryption, Authentication, and
Air Cipher hardware modules 310, 320, 370, as well as
outputs to the PA Egress CPPI streaming interface 270 and
the CDMA Egress CPPI streaming interface 280, and an
output line (when included) directly external to CP_ACE.
[0117] Security Context Cache module 510 has inputs for
context Ctx Fetch by a 128-bit VBUSP bus, and two 64-bit
wide lines 262, 263 from Crypto Data and Scheduler SCR
260. Security Context Cache module 510 has a context data
line coupled to Context RAM 570, as do each of IPSEC PHP
410 and Air Cipher PHP 460, and the Encryption, Authen-
tication, and Air Cipher hardware modules 310, 320, 370.
Context RAM SCR 570 in turn is coupled to three banks of
Context RAM 575.

[0118] A Configuration SCR 350 store receives 32-bits
input from a Configuration VBUSP bus. Configuration SCR
350 supplies or is accessed for Configuration data for each
of IPSEC PHP 410 and Air Cipher PHP 460, as well as
providing Configuration data for each of RNG, PKA, MMR
registers and two banks of Configuration RAM.

[0119] Packets are fetched to subsystem 200 via CPPI
CDMA using, e.g., two ingress channels and sent out of
CP_ACE via, e.g., 16 egress channels (threads). Crypto Data
and Scheduler SCR 260 internally breaks up a received
packet on-the-fly from either Ingress port (PA 210 or CDMA
220) into data chunks. Each data chunk can hold maximum
of e.g. 256-bytes of packet payload. Six banks of packet
RAM 265 support Crypto Data and Scheduler SCR 260.
This chunking operation is provided to fully engage the
hardware engines in modules 310, 320, 370 and to reduce
internal buffer (RAM) spaces 250.i. Chunking also promotes
efficient, low-latency cut-through mode operations in sub-
system 200 wherein the packet data can thereby be pro-
cessed and is processed as and when received without
waiting for a given whole packet to be completely received
and stored.

[0120] The initial route in Ingress flow within subsystem
200 is determined by an Engine 1D that is extracted from the
CPPI software word SW in FIG. 9 and described hereinbe-

US 2017/0104732 Al

low, see also TABLES 3 and 5. Subsequent sequence
processing of the data chunk is determined by the command
label prefixed to the chunk (FIG. 9, TABLES 4-6) by Host
100 or PHP (packet header processor) module 410 or 460 of
FIG. 13. The command label (TABLE 4) holds the engine
select codes of TABLE 5 with optional parameters. Multiple
command labels can be cascaded (TABLE 6) to allow a
chunk to be routed to multiple engines within subsystem 200
to form a logical processing chain. Optional parameters of a
command label provide control information pertaining to
each processing engine.

[0121] CP_ACE allows processing of interleaved data
chunks, but always ensures that chunks of a given packet
follow the same route within the system thereby maintaining
packet data coherency. Chunks are routed to next engine
based on command label, and a chunk can be routed back to
a same engine for second stage processing. Once chunks are
processed they are queued for Egress to exit subsystem 200.
Subsystem 200 has two physical egress ports 270, 280 (PA
and CDMA). Internal hardware structure ensures that pack-
ets entering PA Ingress port 210 can only exit PA Egress port
270; likewise packets entering CDMA Ingress port 220 can
only exit CDMA Egress port 280. As packets internal to
subsystem 200 are processed in chunks, chunks belonging to
different packets may cross each other in time, i.e. a data
chunk of a last received packet may come out first on Egress
before a first packet data chunk. Hence, CP_ACE has 16
Egress CPPI DMA channels, and internal hardware ensures
that all data chunks belonging to an individual packet go out
on a same Egress CPPI DMA channel (thread). The internal
hardware maintains packet data coherency on a given CPPI
DMA channel.

[0122] Subsystem 200 also hosts TRNG (True Random
Number Generator) and PKA (Public Key Accelerator)
modules that can be accessed via Memory mapped registers
by IPSEC PHP 410 PDSP, Air Cipher PHP 460 PDSP, or by
Host 100 to aid key generation and computation.

[0123] CPPI software words SW are formed and attached
to a packet (e.g., chunk in FIG. 9) by a packet queuing entity.
SW Word0 and SW Word1 of CPPI hold the information to
associate the current packet to a security context. SW Word2
is optionally used to specity destination CPPI queue.
[0124] In TABLE 3, a single bit is sufficient for Present
info and each flag, otherwise multiple bits are provided.

TABLE 3

CPPI SW Word0

Field Width

CPPI Destination
Info Present
Command Label
Present
Command Label

Offset Multiple bits
Engine ID Multiple bits
Evict, Tear, NoPayload Flags

Security Context ID (SCID) Multiple bits

[0125] In TABLE 3, the CPPI Destination Info Present
flag indicates that SW word2 is holding CPPI destination
queue information thereby detailing the flow index on
ingress and free queue number or thread to be used on egress
when sending this packet out to CPPI after processing.
(Compare also with TABLE 21 and with TABLES 25-28

Apr. 13,2017

_thread_id and _req_thread_id controls for CPPI I/Fs, and
see TABLE 31 Word 2 Flow index description.) The Engine
ID field selects the first processing accelerator engine within
the subsystem 200. The Engine ID field is used, for instance,
if host 100 is about to send data directly to one or more data
plane processing engines (Encryption 310, Authentication
320, Air Cipher 370, or cores in any of them) without
involving a control plane engine IPSEC PHP 410 or Air
Cipher PHP 460. Host 100 may be programmed to insert a
default engine ID code PA_ENG_ID or CDMA_ENG_ID
that directs the hardware to select the first processing engine
from the programmed memory-mapped register MMR (FIG.
1, TABLE 21) defined for that ingress interface. The Com-
mand label info field has the Command Label Present flag
and multi-bit Command Label Offset. The most significant
bit (MSB) of the command label info is the Command [abel
Present flag, indicating that command label has been formed
by Host. The Command Label Offset (Cmd Label Offset, PS
info) is defined from the start of the CPPI Pre-data Control
words section (see FIG. 9, TABLES 3, 7) where an engine-
specific command label (if any) has been formed. (CPPI
Pre-data Control words section is called Control section for
short, elsewhere herein.) Host 100 uses such command label
when directly engaging the data processing engines without
involving control plane engine 410 or 460. Command Label
Offset is address aligned on and specified in 8-bytes units.
[0126] Evict, Teardown and No-Payload flags in TABLE 3
are used to override the default behavior of the context cache
module 510 (FIG. 8).

[0127] InTABLE 3, Security Context ID (SCID) has MSB
bit as its First Tier bit and the remaining bits as a security
index (SCIDX). MSB bit (First Tier) being set indicates that
this is a First Tier connection. Context cache module (FIG.
8) uses the multi-bit security Index (SCIDX) to search an
internal table for a locally cached security context. If the
search is successful, then the locally cached security context
is used to process the packet, else a DMA fetch request is
issued from a 32-bits security context pointer SCPTR in
CPPI SW word 1 to internal cache memory to populate the
security context. 32-bit security context pointer SCPTR in
CPPI SW word 1 is a 64-bytes-aligned physical external
memory address that is used to fetch a particular security
context (e.g., as in FIG. 6 or 7) from external memory 120.
(SCPTR also is in SCCTL of FIG. 6 and in TABLE 10.)

[0128] Optional CPPI SW word 2 has three fields utilized
when host 100 is directly engaging data processing engines
with no PHP involved. Egress CPPI Destination Queue
number has multiple-bits to select the Egress destination
CPPI Queue to be used after subsystem 200 processing and
therefore the Host supplies this parameter to select CPPI
destination queue. Egress CPPI Flow Index field holds a
CPPI flow index for Egress CPPI transfers. Egress CPPI
Status length field provides CPPI streaming status data, such
as for the Authentication engine 320 (FIG. 12). This field
specifies a number of 4-bytes aligned bytes to send as CPPI
streaming status that appears in CPPI PS section at Host 100.
[0129] TABLE 4 shows a Command label format or
structure for PHP PDSP or Host to issue to the data plane
processing engines (Encryption 310, Authentication 320, Air
Cipher 370 module in FIG. 1). The command label structure
is PDSP friendly, so that each PHP can rapidly populate the
fields in the command label structure. In FIG. 9, the first data
block (chunk) of a packet is prefixed with a Command label
that holds the information about the processing to be carried

US 2017/0104732 Al

out on the payload by data plane processing engines 310,
320, or 370 and specified crypto cores therein. Non-first data
blocks (chunks) of the packet can also optionally contain a
Command label to pass in-line instructions to the selected
data plane processing module 310, 320, or 370. The Com-
mand label contains a Next Processing Engine select code
followed by the optional control information meant for
selected data plane processing engine or crypto core. A
Command label can be attached (prefixed) by the packet
header processing PHP module or by Host 100 thereby
setting the sequence of processing (logical topology, e.g. of
FIG. 4 or 5) on header and payload within CP_ACE. Host
prefixes the Command label when host 100 is to engage data
plane processing components without involving control
plane components within subsystem 200. In the TABLE 4
Command label, the Next engine select code is followed by
length fields, offset fields, option encoding and option bytes.
Up to e.g. three options can be specified in the option bytes
field of the Command label. Each option ends at 8-bytes
boundary. Padding of zeroes is added to align to a boundary
of'8 bytes when padding is needed to do so. A first data block
(FIG. 9 Packet data section in the chunk) follows the
Command label.

TABLE 4

Apr. 13,2017

TABLE 5-continued

NEXT ENGINE ID BITS

ENGINE ID BIT ENGINE DESCRIPTION

Authentication Engine to carry out Hashing operation has
Module Pass 1 SHA1, MD35 and SHA2 cores.
Authentication Code for Pass2 Authentication in case payload

Module Pass 2
IPSEC Header
processor Pass 1

is routed again to Authentication module.
Engine to carry out IPSEC header packet
processing holds PDSP that carries out
IPSEC protocol-specific header operation. In
Pass 1 the packet header is parsed and
inspected.

Pass 2 for IPSEC header packet processing
updates and acknowledges the result from
payload processing module.

IPSEC Header
processor Pass 2

Output Port 1 This is used to send data out of subsystem
Egress module 1. 200.

Air Cipher Module Engine for air cipher processing. Passl has,
Pass 1 e.g. AES, Kasumi and Snow3G cores.

Air Cipher Module Pass2 for air cipher module, e.g. in

Pass 2 GCM/CCM mode

SRTP/Air cipher
Header processor,
Pass 1

Engine to carry out SRTP/Air Cipher packet
header processing. The engine holds PDSP to
carry out SRTP/Air cipher protocol-specific
header operation.

COMMAND LABEL FORMAT

Next
Engine
D Command SOP
select label Length to be processed bypass
code length (16-bits) length Options control info (24-bits)
Option A Option A Option A Option A Option A Option A Option A Option A
MSB byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
byte (8-bits)
byte 0
Option A Option A Option A Option A Option A Option A Option A Option A
byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 LSB byte
byte 15 (8-bits)
Option B Option B Option B Option B Option B Option B Padding
MSB Byte 1 byte 2 byte 3 byte 4 LSB
byte 0 byte 5
[0130] TABLE 5 describes the bits of a Next Engine ID, TABLE 5-continued

used to decode the next processing. In some embodiments,
Next Engine ID bit fields are substituted for any one, some
or all of these Next Engine ID bits. Each activated bit is
decoded to activate the corresponding engine that is signi-
fied. The decoder is responsive to activation of multiple bits
to activate the corresponding engines.

TABLE 5

NEXT ENGINE ID BITS

ENGINE ID BIT ENGINE DESCRIPTION

Host inserts default engine ID select code,

in this scenario the hardware picks up first
processing engine from the programmed MMR
memory-mapped register defined for that
ingress interface.

Engine to carry out Encryption/decryption.
This engine has AES, DES, Galois core along
with mode control engine MCE.

Pass 2 for Encryption/decryption engine in
CCM mode wherein two levels of encryption
processing are executed.

Default Ingress
Engine ID

Encryption Module
Pass 1

Encryption Module
Pass 2

NEXT ENGINE ID BITS

ENGINE ID BIT ENGINE DESCRIPTION

SRTP/Air cipher
Header processor

Pass 2 for SRTP/Air cipher header packet
processing. Pass 2 updates and acknowledges

Pass 2 result from payload processing module. Output
Port 2 Egress module 2 is used to send data
from subsystem 200.

[0131] In TABLE 4, a multi-bit Engine Header Length

field within a Command label indicates the engine-specific
Command label length. This length mainly indicates total
number of option bytes present plus (or beyond) the 8-bytes
of command label. A longer multi-bit Length To Be Pro-
cessed field allows the hardware engines to bypass data
towards end of data block and indicates the total number of
bytes to be processed after bypassing SOP Bypass Length
for a current packet. Value of all one’s implies that all valid
bytes within the current packet are processed through end-
of-packet EOP from given bypass length. A value of all

US 2017/0104732 Al

zero’s directs a skip over the current packet so it is skipped
from processing. This length is valid in the SOP chunk.

[0132] SOP Bypass Length indicates numbers of bytes to
be ignored from beginning of packet before processing the
data. All data before SOP bypass length is bypassed. This
length is specified in bytes. This feature allows hardware
engine to bypass/ignore that data at start of packet.

[0133] Further in the Command label of TABLE 4,
Options Control Info specifies the length and Context RAM
offset of data that is carried in option bytes. Options Control
Info is decoded by selected processing engine to extract the
data from option bytes and populate context RAM 570, 575.
Multiple different options can be specified in single com-
mand label to pass control/messaging information to
selected processing engine. Options Control Info has the
following multi-bit fields:

[0134] Option-A Length specifies the length in units of
8-bytes of option-A bytes present in an Option Bytes area of
a Command label. Value of 0 implies option-A is not present.
Value of all 1’s implies an Option-A Length of 64-bytes.

[0135] Option-A Context Offset specifies the offset in
units of 8-bytes from start of engine-specific security context
section (e.g., Encryption module-specific section or other
module-specific section in FIG. 6 or 7) where the Option
Bytes area of a Command label is written. Option-B/Op-
tion-C Length and Option-B/Option-C Context Offset have
analogous meanings as noted for Option-A. Option-A is
packed first, then Option-B and then Option-C and then
additional options, if any.

[0136] Option Bytes holds the data as specified in the
engine option bytes encoding, and used to pass in-band
control or message information from control plane process-
ing components to data plane components on a per-packet or
per-chunk basis. (In-band or in-line refers to control/mes-
sage signaling sent with or accompanying the data to be
processed.) Each option ends at an 8-bytes boundary, and
zeroes are padded to align the data if the actual bytes are
misaligned. Option bytes are extracted and populated into a
security context before a packet is processed so that the
specified option bytes are made effective for the current data
packet.

[0137] Notice that this embodiment in effect uses the bytes
after the Next Engine ID not only promotes packet process-
ing efficiency but also communicates metadata or access
data to control data extraction and writing of respective
option data from the Command label into the corresponding
engine-specific area of a security context, such as in FIG. 6
or 7. In this way, a type of sandwiched or interlocked process
embodiment partially constructs or contributes to a security
context for FIG. 6 or 7 directly, and also constructs the
packet (or chunk) information of FIG. 9 that includes the
Command label and the Software Word SW, and then further
contributes to and completes the security context for FIG. 6
or 7 using the Command label and the Software Word SW
of FIG. 9. Thanks to the interlocked process, the CPPI

Apr. 13,2017

Pre-data Control words prefixed to the packet or chunk itself
are remarkably used to contribute to the security context to
which the software Word associates the packet or chunk, and
thereby also enhance overall system security and resistance
to attack. Moreover, neither the process contribution that
partially constructs the security context nor the contribution
from the CPPI Pre-data Control words that completes the
security context is sufficient in itself to provide a security
context with which successful cryptographic processing can
occur. Furthermore, the particular instruction contents and
instruction sequences executed by MCE provide even a third
level of security and flexibility.

[0138] Some other embodiment might provide core ID
(e.g. AES, DES, Galois, etc) and crypto mode parameters as
what might be called option data for a particular engine 1D.
The security context for Authentication block 320 is popu-
lated somewhat that way, see description of FIG. 12 and
TABLE 15. By contrast, this embodiment primarily or
instead uses MCE software instructions based on a remark-
able instruction set described later hereinbelow to flexibly
handle such matters of core ID and establishing Crypto
mode in modules 310 and 370, see e.g. TABLES 13, 14 and
32. Authentication block 320 lacks MCE and MCE instruc-
tions, although it can be called by an MCE, and the security
context for Authentication 320 is completed in a somewhat
different way than for the Encryption 310 and Air Cipher
370. Therefore, subsystem 200 may be characterized as a
mixed embodiment or as actually including two embodi-
ments for security context formation. Moreover, in a logical
topology in which the Authentication is cascaded with
encryption or decryption, system security is still further
enhanced by the distinct additional step in the security
context formation to support authentication. Put another
way, the architectural diversity in the subsystem 200
embodiment contributes to security and flexibility.

[0139] Description at this point returns to the examples of
command labels themselves.

[0140] In TABLE 6, multiple command labels are cas-
caded to allow a packet payload to be routed to multiple data
plane processing engines within a subsystem to form a
logical processing chain (a multi-turn coiled logical topol-
ogy, cf. FIGS. 1, 4 and 5). As noted in connection with
TABLE 4, a first data block (Packet data section protected by
Front packet Grow region) follows in FIG. 9 after the
Command label of TABLE 6.

[0141] Comparing the particular examples represented by
TABLES 4 and 6, note that TABLE 4 shows a 16-byte
Option A and a 6-byte Option B. TABLE 6 shows an 8-byte
Option A, a 14-byte Option B (end-padded), and then a
16-bit Option C. In both Tables 4 and 6, the column headings
“Next engine select code | . . . | Options Control Info” are
not included in the electronic form of the command labels.
Many particular examples of command labels and cascaded
command labels may be established without altering a given
hardware implementation of subsystem 200.

US 2017/0104732 Al

TABLE 6

14

Apr. 13,2017

CASCADED MULTIPLE COMMAND LABELS

Next
engine Command SOp
select Label Bypass
code Length Length to be Processed Length Options Control Info
Option A Option A Option A Option A Option A Option A Option A Option A
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
MSB byte LSB byte
Option B Option B Option B Option B Option 2 Option 2 Option 2 Option 2
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
MSB byte
Option B Option B Option B Option B Option Option B Padding
byte 8 byte 9 byte 10 byte 11 byte 12 byte 13
LSB byte
Option C Option C Option C Option C Option C Option C Option C Option C
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
MSB byte
Option C Option C Option C Option C Option C Option C Option C Option C
byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15
LSB byte
[0142] In TABLE 7, a Scheduler Control Word is used to

hand over each data block that is being transferred from one
processing engine to another within the subsystem 200. This
word is used by the hardware engines to decode the length
and location of packet and security context along with other
control information. This Scheduler Control Word is uni-
formly used by the hardware engines to communicate and
pass each data block to each other, so PDSP is presented a
reformatted, firmware-friendly view of this word. Notice
that such passing in an embodiment can occur in the sense
of control, with or without actually transferring a data block
between different storage spaces within the subsystem 200.

TABLE 7

SCHEDULER CONTROL WORD

FIELD NAME DESCRIPTION

Block Data Number of actual valid bytes present in Packet Data

Length section of FIG. 9 buffer.

CTL_ Length Number of actual valid bytes present in CPPI
Pre-Data Control Words section of buffer.

PS Length This field indicates the actual valid bytes present
in Trailer Info (PS word) section of buffer.

Block Data Number of offset valid bytes present in Front

Offset Packet Grow Region of FIG. 9 buffer, used if
non-first chunk data increases due to previously
captured partial bytes.

Ingress Ingress source port, O = PA port, 1 = CDMA port

Port

Single Single chunk packet flag.

Chunk

Packet

Drop Drop packet bit indicates to drop current packet at

Packet Egress, hence no processing. All data processing
engines record this drop bit to bypass all chunks
belonging to this packet. This bit is only set by
Firmware and is not altered by any data processing
engine.

Ramidx Ram index is multi-bit context RAM 575 address
value or index used to uniquely indentify and
associate security context with packet/chunks in
packet RAM 265. This value is established validly
for every packet chunk.

Error Code Error code is used to pass error condition from

data processing engine to Firmware. TABLE 8
details error codes reportable by various data
processing engines. All data processing engines

TABLE 7-continued

SCHEDULER CONTROL WORD

FIELD NAME

DESCRIPTION

Buffer ID

SOp

EOP

Egress
Status

Flags

Cmd Label

Offset

Command

Label

Present

Engine ID

bypass chunks of current packet if error code is
non-zero.

Buffer ID is used to locate internal data buffer

for data processing engine to use to read chunk

data such as from packet RAM 265. This address or
index value is established validly for every

packet chunk.

Start of Packet, bit when set indicates that

current chunk is first chunk of given packet.
Actuate parsing of buffer in FIG. 9 for more
extensive Pre-data information.

End of Packet, bit when set indicates that current
chunk is last chunk of given packet.

These 4 bits are used to pass CPPI Error Code from

Firmware. Error Codes (TABLE 8) can be changed even

at last chunk of packet. Egress module reports
last-reported Egress status flag as CPPI Error Code
with EOP.

These 4 bits indicate the position in units of
8-bytes of Command label within Control CTL section
of buffer (FIG. 9).

This bit informs data processing engine if Command
Label is present or not. If absent, data processing
engine uses info from security context to process
and forward current chunk.

Current engine ID used to route data chunk within

subsystem 200.

US 2017/0104732 Al
15

TABLE 8 describes Error Codes.
TABLE 8

Apr. 13,2017

ERROR CODES GENERATION

Error Code Description

ERR_CTX__SOP

Context cache lookup failed for non-SOP lookup request, e.g.,

SOP chunk was marked as bad. In normal operation the non-SOP
lookup does not fail as CP__ACE module 510 ensures that context
is not evicted until all outstanding chunks are processed.

ERR_DMA__ OWNERSHIP

Owner bit set to Host while fetching security context from host

memory 120. Host 100 ensures that owner bit is set to “CP_ACE”

before queueing any packets.
ERR_CTX_IDRECYCLE

Host ensures security context ID is properly recycled and no

outstanding packets for recycled context ID remain. There error is
generated if packets lookup request appear after context has been
marked as “to be torn down” and CP__ACE has not yet completed
the teardown operation. See also Tear Down process in FIG. 17.

ERR_CTX_AUTOFETCH

If context cache module 510, 570 is operated in Auto-fetch

disabled mode, then host 100 ensures that security context is
cached before packets arrive for that particular context. This error
is generated if Auto-fetch is disabled and no locally cached

security context is found.
ERR__ENCR_NOCMDLBL
command label at least for first data chunk.
ERR_AUTH_NOCMDLBL
command label at least for first data chunk.
ERR__AIRC_NOCMDLBL
command label at least for first data chunk.

Encryption module 310 received SOP data chunk with no
Authentication module 320 received SOP data chunk with no

Air Cipher module 370 received SOP data chunk with no

[0143] Description now details the Block Manager mod-
ule 380 of FIG. 1. Block Manager module 380 allocates or
frees internal buffer (blocks for use as in FIG. 9) and
Thread-IDs (for use as in TABLES 25-28). Within the
system each respective CPPI Ingress module 210, 220
requests Block Manager 380 for allocation of buffer blocks,
e.g. in Packet RAM 265, to pack an incoming packet data
stream for chunking. The corresponding CPPI Egress mod-
ule 270 or 280 signals Block Manager 380 to return each
used buffer block back to a free pool. Similarly, each CPPI
Ingress module 210, 220 requests Block Manager 380 for a
thread-ID if it encounters a packet having a size that is
greater than e.g. 252-bytes, and each corresponding CPPI
Egress module 270 or 280 subsequently signals Block
Manager 380 to free-up the allocated thread-ID when such
packet is fully processed. Block Manager module 380 has
one slave VBUSP bus interface for such allocate requests
and free-up signaling to be made via this interface. An
allocate request (VBUSP Write) to address 0x0 is deemed by
the Block Manager circuit to be from PA CPPI Ingress port
210, whereas an allocate request (VBUSP Write) to address
0x08 is deemed by the Block Manager 380 circuit to be from
the CDMA CPPI Ingress port 220. A Free-up request
(VBUSP Read) from either PA CPPI Egress port 270 or
CDMA CPPI Egress port 280 is made to address 0x0. Block
Manager module 380 maintains two independent pools or
storage spaces, one for PA packet flow and other for CDMA
packet flow, to ensure that a stall in one of the flows does not
impact the other flow. For instance, if PA Egress 270 is
back-logged due to descriptor unavailability, this will only
impact PA path by exhausting all available free buffers from
PA pool of Block Manager 380. But CDMA Egress 280 flow
will continue to receive free buffers from its dedicated pool
maintained by Block Manager 380. The number of free
buffers in each pool is configurable via FIG. 1 memory
mapped registers MMR. Block Manager 380 ensures that at

least 4 buffers (1 bank) are allocated to each pool even if
MMR configuration is set to 0 buffers for the selected pool.
[0144] Returning to FIG. 8, Security Context Cache mod-
ule 510 populates FIG. 1 Context RAM SCR 570 based on
ingress Security Context ID and type of context, and smart-
evicts and fetches security context to/from external memory
120 as and when appropriate. Hardware based lookup of
cached security context from context RAM 570, 575
increases speed of performance. The Context Cache module
510 supports two tiers of context. First Tier contexts have
permanent residence in context RAM 570, 575 until affir-
matively evicted (TABLE 9) by a processor such as Host
external to module 510 and are not auto-evicted by module
520 therein. The module 520 can force eviction and force
teardown of a security context by an auto-eviction process
on contexts other than First Tier. The processes of populat-
ing and evicting of a security context are supported by and
have associated memory management register MMR fields,
see e.g. TABLES 23-24. An Ownership bit (TABLE 10) for
cache coherency is checked and updated.

[0145] In FIG. 8, Security Context Cache module 510 of
FIG. 1 operates to auto-fetch security context from external
memory 120 and associates the security context with an
ingress packet using SCPTR. This context cache module 510
beneficially allows any number of simultaneous security
connections by not only caching up to a limited number of
contexts on-chip (in subsystem 200 blocks 570, 575) but
also fetching other contexts as and when requested for
processing. Context cache module 510 does the task of
fetching and associating a security context with each ingress
packet. Context cache module 510 populates Context RAM
570, 575 with data to/from the external memory 120 based
on the security context parameters. Context cache module
510 carries out auto-evict and auto-fetch operations to allow
free space for new connections.

[0146] As discussed hereinabove, context cache module
510 allows two tiers of security connections to facilitate fast

US 2017/0104732 Al

retrieval for performance critical connections. Each security
context of the First Tier has permanent residence within
Context RAM 570, 575 for fast retrieval and is not evicted
automatically by context cache module 510. Instead, Host
100 has the option to force eviction (TABLE 9). First Tier
connection is established by setting a First Tier bit (TABLE
3, in SCID) while setting up the security context. Second
Tier connections are maintained or kept while space is
available within Context RAM 570, 575. Then if the context
RAM space becomes full, a new fetch request for a new
security context automatically evicts (FIG. 8 module 520)
one or more of the Second Tier connections into external
memory 120 to allow free space to populate the new security
context into the context RAM space. Each access request to
Context Cache module 510 along with security parameter
SCIDX triggers a search in an internal cache table to
determine the action. If lookup 530 fails, then a DMA 520
operation is started to populate the requested security con-
text into the context RAM space of the cache; else if lookup
530 succeeds, the already-cached version of the requested
security context is used for processing the packet for which
that security context is requested.

[0147] InFIGS. 1 and 8, the Context Cache hardware 510,
570, 575 employs a process to manage caching of security
context. This hardware implements a four-way cache where
the LSB 4-bits of SCIDX in context-ID (SCID) act as the
cache way-select control. Once the cache way has been
identified, then four comparisons are performed within the
selected cache way to look for a security ID match. If
security ID (SCIDX) matches with any of the four stored
cache ways, then the security context is recognized as
locally cached. But if lookup/match fails, then security
context is fetched by DMA 520 using pointer SCPTR from
FIG. 9 CPPI SW word 1, and the first empty cache way is
marked with data from current security context. If lookup
finds no empty slot within the selected cache way, then
module 520 hardware evicts the last non-active security
context which is non-First Tier. In order to avoid deadlock,
hardware does not allow marking all four contexts within a
given cache way as First Tier. The last First Tier request is
ignored if remaining three contexts are First Tier. In order to
efficiently use the caching mechanism, a linear incremented
security context ID is used for new connections. It should be
understood that other context cache policies are also feasible
in various embodiments.

[0148] Context cache module 510 has or is provided with
the security context pointer SCPTR (see, e.g., FIG. 9 in
SW1, FIG. 6 in SCCTL, TABLE 10), and the security
context ID (SCID, TABLE 3), along with control flags and
other data with each cache access request by an engine 310,
320, 370, 410, or 460. Security context pointer SCPTR is a
physical external memory 120 address that is used to fetch
security context. The format of the security context is in
FIG. 6 or 7 and the format of the security context control
word SCCTL is defined in TABLE 10. SCPTR is a 64-bytes
aligned system address, for instance. Security context ID
(SCID) has MSB bit as First Tier bit and remaining 15-bits
as security index SCIDX, see also discussion of TABLE 3.
Context cache module 510 uses 15-bits security Index
(SCIDX) to search an internal table for a locally cached
security context. If search is successful, then the locally
cached security context is used to process the packet asso-
ciated to it; else a DMA 520 fetch request is issued from or
based on the 32-bits security context pointer (SCPTR) to

Apr. 13,2017

populate the requested security context from host memory
120 into internal cache memory 570, 575. Context cache
module 510 supports passing control flags along with a
request to it to override its default behavior. Control flags are
named Force Evict, Force Tear Down and SOP.

[0149] TABLE 9 describes the action taken by context
cache module 510 based on control flags Force Evict and
Force Tear Down. Host 100 is programmed suitably to
ensure that security context ID is properly recycled and no
packets for a recycled security context ID remain outstand-
ing.

TABLE 9

CONTROL FLAGS FOR ACTIONS
BY CONTEXT CACHE MODULE 510

Force
Force Tear
Evict Down Action

0 0
0 1

Normal operation

Teardown current security context after all
outstanding packets within CP__ACE system 200
pertaining to this particular security context have
been processed. In this mode context, cache module
510 clears Owner bit in SCCTL header in external
memory 120 thereby handing security context
ownership back to Host 100. Clearing of Owner bit
by hardware 520 is indication to Host 100 that
Teardown operation has been completed. For instance,
context cache module can write 32 bytes and then
clear the Owner bit. See also FIG. 17 illustrating
Teardown.

Evict current security context to external memory
120 after all outstanding packets within CP__ACE
system 200 pertaining to this particular security
context have been processed. In this mode, context
cache module 510 looks at Evict PHP Count in
SCCTL to determine the numbers of bytes (0, 64, 96
or 128) to be evicted. Clearing of Evict Done bits

by hardware 520 is indication to Host 100 that Evict
operation has been completed. Evict operation will
free a currently-occupied context cache 570, 575
location. See also FIG. 18 illustrating eviction
process.

Teardown and Evict current security context after

all outstanding packets within CP__ACE system 200
pertaining to this particular security context have
been processed. In this mode, context cache module
510 clears Owner bit and Evict Done bits in SCCTL
header in external memory 120 thereby handing
security context ownership back to Host 100.
Clearing of Owner bit and Evict Done bit by hardware
520 is indication to Host 100 that Teardown/Evict
operation has been completed. In this mode, Context
Cache module 510 looks at Evict PHP Count in SCCTL
to determine the numbers of bytes (0, 64, 96 or 128)
to be evicted. If Evict Count is 0, then context

cache module 510 writes 32-bytes and then clears the
Owner bit. See also both FIGS. 17 and 18.

[0150] The security context structure in host memory 120
(DDR3/1L2 e.g., 3550, 3520.3 in FIG. 20) is fetched by
Context Cache module 510 on a demand basis. Given a
particular EMIF architecture for DDR3 memory, the data
structure is arranged to have maximum EMIF efficiency
while fetching and updating security context. In FIG. 1, each
processing engine or module (Encryption, Authentication,
Air Cipher module and PHP (packet header processing) is
coupled to a security context RAM SCR 570, 575 that holds
the control information to process ingress data blocks. This
Context RAM 570, 575 is populated by cache control

US 2017/0104732 Al

module 510 of FIG. 8 by module 510 splitting, or copying
and processing and adding module-specific sections to, the
host unified data structure on a per-connection basis into an
engine-specific data structure for storage by the context
RAM 570, 575.

[0151] In TABLE 10, a first fetchable section of security
context has security context control word (SCCTL, see also
FIGS. 6-7 and SW word 1 in FIG. 9) that details the size,
ownership and control information pertaining to security
context and including an Owner bit, an Evict Done bit-field,
an a Fetch/Evict control field. This information is populated
by Host 100. Other SCCTL bit fields that can be provided
include a SCID filled by hardware, and a SCPTR filled by
hardware.

TABLE 10

SECURITY CONTEXT CONTROL WORD SCCTL

Owner Context Ownership bit, 0 = Host, 1 = CP__ACE HW 200. Host
100 hands over ownership to CP__ACE 200 before pushing any
packet for given context. After Teardown, CP_ACE 200
relinquishes ownership back to Host 100 by clearing this

bit. Host 100 can only set this bit, CP__ACE 200 can only
clear the bit. Context cache module 510 monitors this bit
during fetch operation. If this bit is zero (0) then the

packets are marked as error and forwarded to default

queue.

All 7-bits are set to zero when evict operation is

completed. Controllable by either Host 100 or hardware

200.

Host controlled. Info byte details sections within

security context information to fetch/evict. Bit fields

in this byte and two bits codes used by each of them:

Fetch PHP Bytes (2 bits)

Fetch Encr/Air Passl (2 bits)

Fetch Auth bytes or Encr/Air Pass2 (2 bits)

Evict PHP bytes (2 bits)

Evict
Done

Fetch/
Evict
Size

00 = Reserved
01 = 64 bytes
10 = 96 bytes
11 = 128 bytes

Apr. 13,2017

17

TABLE 10-continued

SECURITY CONTEXT CONTROL WORD SCCTL

SCID Security context ID, filled by Hardware.
SCPTR Security context pointer, filled by Hardware.

[0152] FIGS. 10 and 12-14 respectively detail processing
engines in FIG. 1 for Encryption 310 (FIG. 10), Authenti-
cation 320 (FIG. 12), Packet Header Processing PHP 410 or
460 (FIG. 13), and Air Cipher 370 (FIG. 14). Each process-
ing engine has pipeline stages to carry out its module-
specific task(s). Multiple engines can be cascaded by using
cascaded Command Labels as in TABLE 6 to realize pro-
tocol-specific end-to-end cryptographic processing, see e.g.
FIGS. 4 and 5 logical topologies. The letter-code legends for
lines used in FIGS. 10 and 12-14 are same as for FIG. 1:

[0153] p=Packet Data

[0154] c=Context Data

[0155] {=Configuration Data

[0156] (none)=Scheduler Data.

[0157] In FIG. 10, Encryption module 310 encrypts or

decrypts payload from desired offset in FIG. 9 using hard-
ware encryption cryptographic cores. Encryption module
has an AES core, 3DES core, and Galois multiplier core and
a Soft Operational Modes block occupied for example by a
mode control engine MCE of FIG. 11. Mode control engine
MCE implements various confidentiality modes like ECB,
CBC, CTR, OFB, GCM etc., as environment for and
employing the AES, 3DES, or Galois multiplier core(s).
[0158] In FIG. 1, Context RAM 570 supports processing
engines in FIG. 1 for Encryption (FIG. 10), Authentication
(FIG. 12), Packet Header Processing PHP (FIG. 13), and Air
Cipher (FIG. 14). A data structure of TABLE 11 is stored,
e.g. by IPSEC PHP 410, in the encryption module-specific
section in FIG. 6 in context RAM 570 before the information
is used by encryption module 310 to process a data block
from FIG. 9 packets forwarded for a particular context ID
(SCID). (For analogous Context RAM data structures
adapted for Authentication or Air Cipher, see TABLE 15 or
TABLE 16.)

TABLE 11

DATA STRUCTURE FOR ENCRYPTION MODULE USE

Field Name

Write Access Description

EncryptionModeSel
Default Next Engine-ID

s/w (ctxetrl)
s/w (ctxetrl)

0 = Actual crypto processing, 1 = NULL

Bit field to Default Next engine, used if Cmd Label
Absent Error is generated or Use Default Eng-ID is
encountered in Cmd label.

EncryptionModeCtrlWord s/w (ctxetrl) Multiple bytes specify encryption mode
processing to implement GCM, ECB, CBC,
xPON CTR, NIST CTR etc.

EncryptionKeyValue s/w (key) Multiple bytes. Key used for cipher operation.
This key also loadable in-band via option bytes.

EncryptionAux 1 s/w (Aux 1) Stores second key for e.g., CCM.

EncryptionAux 2 s/w (Aux 2) Used when encryption mode involves IV.

EncryptionAux 3 s/w (Aux 3) Used when encryption mode involves Nonce.

EncryptionAux 4

Stores intermediate mode control data used for next
block. Not loaded from host.

(Aux data 4)

(The above fields EncryptionAux1-4 store optional multiple bytes fields for auxiliary data.
Each such Aux field can be loaded in-band. Mode control engine MCE does not alter Aux1
and may alter Aux2-4.)

PreCryptoDataStore

h/iw Multiple bytes. The data stored in this context is
used next time the context is active to create crypto

block size quanta for AES/3DES engine core.

US 2017/0104732 Al

[0159] The TABLE 11 Encryption Mode Control Word
has a format set out in TABLE 12. Write access is by s/w
(ctxctrl).

TABLE 12

ENCRYPTION MODE CONTROL WORD FORMAT

Field Name Description

Update Trailer
In Every Chunk.

Bit, if set, updates trailer data to

FIG. 9 Trailer section in every FIG. 9
chunk, including SOP chunk.

Bit, if set, updates trailer data to

FIG. 9 Trailer section of buffer only
after last crypto block has been
processed. This trailer data is
repeated for subsequent chunks of same
packet.

Bit, if set, updates processed data to
FIG. 9 Packet Data section of buffer.

Update Trailer
After Length
Processed.

Packet Data
Section Update

Encrypt/Decrypt Bit (0/1).
EncryptionBlkSize 0 =8 bytes, N = 8 bytes x 2'N.
ModeCtrlInstrOffset 12-bits Instruction offset for SOP,
MOP and EOP data block.
ModeCtrlInstrs Multiple bytes for Mode Control
instructions.
[0160] In FIG. 11, a Mode Control Engine (MCE) 610

promotes a higher level of security and more flexibility to
accommodate each engine or module circuit 600, e.g. for
module 310 or 370 to various different encryption/decryp-
tion modes. Basic encryption processing by cryptographic
cores 615.i is complemented with encryption operational
modes by MCE 610, such as a first MCE 610.1 in module
310 and a second MCE 610.2 in Air Cipher module 370.
Encryption operational modes define an additional level of
processing or staging before cryptographic cores 615.i are
engaged. Encryption operational modes are either specified
by NIST publications or are defined by the application
specification. Some of the NIST modes are CBC, OFB, ECB
and CTR (Counter) whereas a few popular application
modes are GCM, CCM, F8, CMAC etc. As more and more
encryption operation modes are developed in the industry,
there is need to achieve the encryption operational modes
via a software controlled programmable engine that can be
updated to support each new encryption operational mode.
An embodiment module 600 with MCE 610 and crypto
cores 615.;i answers this need.

[0161] This programmable mode control engine MCE
embodiment has a programmable micro-instructed engine to
carry out Mode Processing, all as described herein, and can
be updated in the field to support new modes. Some of
implemented modes are ECB (Electronic code book), CBC
(Cipher block chaining), CFB (Cipher feedback), OFB (Out-
put feedback), CTR (Counter), F8, F9, CBC-MAC (Cipher
block chaining-Message authentication code), CCM (Coun-
ter with CBC-MAC), GCM (Galois counter mode), GMAC,
and AES-CMAC.

[0162] The MCE hardware embodiment 600 of FIG. 11
creates an environment around native cryptographic cores
615.i (AES, 3DES, Galois multiplier, etc. in FIG. 10) that
allows additional software- or firmware-defined custom pro-
cessing before or after crypto processing by the native cores
615.;. MCE 610 also enables storing of parameters for
subsequent rounds of execution, thereby conferring the
ability to process crypto data based on a previous round
(history) rather than based on only current round. Note in

18

Apr. 13,2017

FIG. 11 the two-way register access between control plane
and data plane, such as for monitoring and control.

[0163] In FIG. 11, this remarkable mode control engine
MCE handles mode processing via a programmable engine
that provides flexibility of realizing various types of cryp-
tographic mode processing while at the same time delivering
performance beyond or greatly exceeding that of a general
purpose programmable processor. Mode control engine
MCE programmably sequences or schedules various logical,
arithmetic and cryptographic operations to achieve, e.g., a
specified confidentiality mode and continually keeps one or
more cryptographic hardware cores engaged. MCE is fast
because it creates an environment around and uses one or
more of these fast, native hardware cryptographic (Crypto)
cores (AES, 3DES etc). MCE is flexible and economical of
chip real estate because MCE programmably executes firm-
ware (see, e.g., discussion of FIG. 22) based on an instruc-
tion set (TABLE 13) specifically for cryptographic applica-
tion, and that permits updates to add custom processing
before or after crypto processing by the Crypto core(s).
MCE also enables storing of parameters for subsequent
rounds thereby conferring the ability to process crypto data
based on each previous round (history) rather than based on
only a current round.

[0164] In FIG. 11, the MCE has an MCE core 610 includ-
ing decode logic and execute logic that respectively decodes
and executes micro-instructions of TABLE 13, which are
devised especially for cryptographic mode processing.
Sequences of these micro-instructions are loaded before-
hand into the Instruction Array block 605 and are accessed
by the decode logic. The execute logic is supported by an
ALU (arithmetic logic unit) and a Register Bank 620 in the
MCE core. Bit fields from the instructions in the instruction
array 605 or instruction decoder, and controls decoded from
an instruction by the instruction decoder, can be suitably
transferred directly to any other block in the MCE as
appropriate to effectuate any operations that the instructions
are coded to represent. Crypto core scheduler logic is
provided in the MCE core 610 to respond to instructions and
to handshake with Crypto cores 615.i.

[0165] In FIG. 11, notice the structural parallelism in the
MCE hardware to support the control plane and data plane
structures of MCE. Context data and configuration data (c,
f) are fed by a first MCE input bus from context RAM 570,
575 to a Crypto Context Data input storage block 640 that
in turn is coupled to the Register Bank 620. Packet data (p)
are fed by a second MCE input bus to an Input Data Block
650. A first MCE output (c, f) bus emanates from a Crypto
Context Data output storage block 660 that in turn is coupled
to and fed from the Register Bank 620. A second MCE
output bus emanates from a Processed Data Block 670 and
conveys processed data (p) from MCE core or its Crypto
cores. A Crypto Padding Logic block 680 is also controlled
by the MCE core and Proc_Pad instruction and selectively
couples the MCE core to any one, some or all of its Crypto
cores, and padding operation is supported when appropriate.
(In FIG. 10 particular crypto cores are coupled to MCE, e.g.,
as shown in FIG. 11. In FIG. 14, another such MCE as in
FIG. 11 is coupled with AES, Kasumi, and Snow3G cores
instead.) A shared data bus 630 of MCE is controllably used
to couple (or isolate) any two, several or all six of the Crypto
Context Data input block 640, Register Bank 620, Input
Data Block 650, Crypto Context Data output block 660,
Processed Data Block 670, and the Crypto Padding Logic

US 2017/0104732 Al

680. In all these ways the control plane and data plane
structures are endowed with controllably parallel operations
for data transfers respective to each of them.

[0166] The sequences of micro-instructions tune the
operations of flexible hardware of FIGS. 10-11 at run-time
to implement a given mode which may include crypto-
graphic algorithmic processing (AES, 3DES etc). These
micro-instructions can be altered or added while a device
with MCE is in the field to endow MCE with newly defined
modes.

[0167] Each instruction is e.g., 12-bits wide, where the
first 4-bits are the opcode and remaining 8-bits serve as
operands. The instructions execute sequentially for every
encryption block and the data-out is produced at the last
instruction. Since the start, middle and end of block (SOP,
MOP, EOP) in a packet may need a different sequence of
operations, Mode Control Engine also allows three different
starting points for instructions execution.

[0168] In FIG. 11, MCE parallel processes the mode
operations with native cryptographic core processing. It uses
128-bit registers and 128-bits arithmetic operations to real-
ize a specified operational mode. MCE also can trigger
multiple cryptographic engines and cores (e.g., AES, 3DES
and Galois multiplier of FIG. 10) on same data block to
achieve confidentiality processing (encryption 310) and
source authentication (hashing 320) in a single MCE pass.
[0169] An assembler process for MCE is described later
hereinbelow using FIGS. 21-22.

[0170] MCE is a programmable engine that sequences
various logical and arithmetic operations to achieve each
encryption operational mode with high performance.
Encryption mode operation is specified by EncryptionMo-
deCtrlWord of TABLES 11-12 that has the format of TABLE
12 and is stored within the encryption module-specific
section of the security context of FIG. 6. Security context
holds the instructions for Soft Mode Control Engine to
specify the sequence of logical operation to achieve each
desired encryption operational mode.

[0171] EncryptionModeCtrlWord, detailed in TABLE 12,
is made up of offset fields ModeCtrlInstrOffset and an actual
instructions field ModeCtrlInstrs. The ModeCtrlInstrOffset
offset fields are: SOP offset (4-bits), MOP (Middle) offset
(4-bits), EOP offset (4-bit). The actual instructions field
ModeCtrlInstrs holds a Mode Control engine MCE instruc-
tion with a number of bits given by (MaxModelnstr*12) bits,
e.g. with MaxModelnstr is set to 16. (This MaxModelnstr
can be instantiated as the size of the Instruction Array
hardware, or alternatively in some embodiments be included
as a parameter MaxModelnstr in EncryptionModeCtrl-
Word.) Because the mode processing is different (as
described for FIG. 22) for start of packet SOP, middle packet
MOP, and end of packet EOP, soft Mode Control Engine
MCE allows three different starting points for instructions
execution. These starting points are specified in SOP offset,
Middle offset and EOP offset, e.g., bit fields in ModeCtrlIn-
strOffset of TABLE 12.

[0172] InFIG. 11, the Mode Control engine MCE has four
128-bit registers that are used as a buffering Register Bank
620 as well as TABLE 13 instruction-specifiable processing
registers Reg0-3. These registers also receive the FIG. 11
context “c” information such as TABLE 11 “Data-in” (En-
cryptionModeSel, Default Next Engine-ID, EncryptionMo-
deCtrlWord) via context RAM 570 and Crypto Context Data
register 640 from PHP 410 or 460 or Host 100 to realize any

Apr. 13,2017

mode function. These registers also receive FIG. 11 con-
figuration data “f” as crypto parameters in TABLE 11 like
Key (EncryptionKeyValue), EncryptionAux 1, Encryption-
Aux 2, EncryptionAux 3. On every new round, the Data-in
(e.g., Plaintext) is automatically loaded into register RegO0,
and similarly the EncryptionAux 1, Aux 2, Aux 3 are
auto-loaded to registers Regl, Reg2 and Reg3 respectively.
EncryptionAux 4 restores the value of register Reg3.

[0173] Depending on embodiment or configuration, the
Data-in can be auto-loaded as a predetermined number of
data bytes (e.g. 16 bytes as in TABLE 32) for processing.
This means that in some embodiments fewer than all the
packet data bytes (e.g. 256 bytes in Packet Data section of
FIG. 9) are processed in each round, so that multiple rounds
are used to process a chunk in such cases. Also, the embodi-
ment of FIG. 1 can process an e.g. 16-byte portion of one
chunk while concurrently processing a respective other
16-byte portion of that chunk or each of one or more other
chunks in other engines or cores in subsystem 200. Various
other embodiments may process all the Packet data bytes in
a chunk in one round or even process all the Packet data
bytes in more than one chunk in one round.

[0174] The MCE instructions as described using TABLE
13 are carefully devised keeping various encryption opera-
tional modes in view to balance the architectural and com-
putational complexity and performance.

[0175] In FIG. 11, Instructions for MCE arrive via an
Instruction Array or buffer and are passed to the instruction
decoder in MCE. The following TABLE 13 teaches and
describes the remarkable instructions and their instruction
format according to which the instruction decoder of mode
control engine MCE of FIG. 11 is straightforwardly imple-
mented to convert any instruction to control signals for
execution circuits that themselves, and/or together with a
scheduler for the hardware crypto cores, electronically carry
out the operations that each instruction is coded to represent.
Each instruction is 12-bits wide, where the first 4-bits are
opcode and remaining 8-bits serve as operands. This regu-
larity in the instruction width and format of all instructions
allows structuring the instruction store in rectangular form
of an Instruction Array in FIG. 11 as well as economical,
swift decoding of instructions from the Instruction Array by
the Decode logic. The first column in TABLE 13 is opcode,
followed by three fields that can be used to specify source
and destination. Certain instructions like WAIT_OUT are
special instructions that are geared towards performance and
carry out multiple operations in a single cycle.

[0176] Among its other remarkable instructions, the MCE
has PROC, PROC_MASK and PROC_PAD instructions
that orchestrate the hardware crypto cores that the MCE
programmably controls. PROC, PROC_MASK, and
PROC_PAD instructions activate the MCE Crypto Core
Scheduler circuit in FIG. 11 to cause instruction-designated
crypto core(s) to operate and handshake with the Crypto
Core Scheduler Circuit. PROC_PAD also activates the
Crypto Padding Logic in FIG. 11. WAIT, OUT and OUTSET
are a trio of instructions that interrelate MCE operations and
crypto core operations as described in the tabulation and use
the handshake with the Crypto Core Scheduler Circuit.

[0177] The remarkable PROC_MASK instruction in
encryption module’s MCE engine (FIG. 11) supports partial
bytes in GCM mode, such as for WiMax mesh networking.

US 2017/0104732 Al

A remarkable pad instruction PROC_PAD is provided in the
MCE engine to ease, or reduce burden on, Firmware from
padding.

[0178] Furthermore, a JUMP instruction is remarkably
based on packet logic responsive to: SOP, MOP, EOP, or
Not-EOP. JUMP circuitry has a SOP detector, MOP detector
and EOP detector coupled to the packet buffer and/or
register associated therewith. The Field0 value for SOP,
MOP, EOP or not-EOP in the JUMP instruction is decoded
to provide an enable for the respective SOP detector, MOP
detector and EOP detector. The MCE has a Program Counter
(PC) that ordinarily is incremented by MCE clock to gen-
erate addresses to MCE instruction array RAM space,
thereby to sequence through the MCE software program.
When a JUMP instruction is encountered in the program, the
enabled SOP detector, MOP detector or EOP (or Not-EOP)
detector provides an output signal active. That detector
output signal enables a jam circuit that jams the jump
address in, or pointed to by, the JUMP instruction into the
Program Counter (PC) of the MCE to cause a jump by MCE
to the jump address. Specifically, in the tabulated JUMP
instruction of TABLE 13, the jump address is formed by an
adder that increments the PC by an instruction Offset value
in fields 2 and 1 of the JUMP instruction. TABLE 12 or 17
can also provide a bit field ModeCtrlInstrOffset defining
Offset for SOP, MOP and EOP data block. Some embodi-
ments provide the detectors as comparators associated with
a packet parser that finds a SOP, MOP or EOP packet field.
Some embodiments provide a MOP detector as logic that
responds after SOP has occurred and currently not-SOP and
not-EOP for the packet. Another embodiment has a MOP
detector as a comparator fed with a packet byte counter so
that that detects when the data stream for the packet has
reached a certain programmed byte-count value in a field of
TABLE 12 or 17 representing a particular position that
indicates e.g., MOP as start-of-payload or some other sig-
nificant MOP position in the packet or offset from starting

Apr. 13,2017

byte of the packet. Logic detects if that bit field is non-zero,
and if so, uses that bit-field instead of a default value for the
comparator. In any of these ways, the remarkable MCE with
its special JUMP instruction facilitates processing of packets
where the desired operations are specific to, or depend on,
the SOP, MOP, and EOP position or status in a packet. An
unconditional (Always) jump code can also be put in Field0.
[0179] The MCE instruction set (ISA) combines with the
foregoing a powerful set of ALU instructions for bit-wise
XOR, AND, OR, and INC; a shift instruction LSFT; two
load instructions CP (copy) and LD (load), and no-op NOP.
Bit-wise XOR is important, among other things, for provid-
ing XOR for crypto operations as well as using XOR to
perform a comparison. An instruction is called blocking that
pauses MCE core until a given Crypto core signals Done,
and a non-blocking instruction leaves MCE core free to run
during execution by a Crypto core.

[0180] In an example TABLE 13, the Mode Control
Engine (MCE) has 16 instruction opcodes assigned distinct
binary values. See also assembler example TABLE 32 with
FIGS. 21-22 description later hereinbelow. Each opcode has
multi-bit fields Field2, Field1, Field0. To avoid repetition of
verbiage in TABLE 13 note that, unless otherwise, Field 2
throughout TABLE 13 can indicate a destination (Dst)
register Reg0, 1, 2, 3 by a corresponding 2-bit representa-
tion. Also, unless otherwise, Fields 1, 0 throughout TABLE
13 can each indicate a particular one of multiple Source 2
(Src2) or Source 1 (Srcl) categories each with four registers
Reg j=0, 1, 2, 3 and with j=4=Key[127:0] or j=5=Key[255:
128] by corresponding multi-bit representation. (Numerals
like =0, 1, 2, 3, . . . 7 represent possible values j for an entry
to a given Fieldi, a particular such value j electronically
entered with j in binary form.) Depending on the applicable
EnginelD (encryption 310, authentication 320, air cipher
370) to which the MCE OUTSET information pertains,
references to an Aux in TABLE 13 refer to an Encryption-
Aux of TABLE 11, an AuthenticationAux of TABLE 15 or
to an AirCipherAux of TABLE 16.

TABLE 13

INSTRUCTION FORMAT FOR MODE CONTROL ENGINE MCE

Opcode (4-bits) Field2 (2-bits)

Field1 (3-bits) Field0 (3-bits) Description

PROC

Process instruction to activate selected crypto core using data from Srcl for crypto

processing. Use Src2 for Core-and-Key Select to select crypto processing core along with Key
select, whereas Core-Misc provides data to selected crypto core of a module where MCE

resides-

-see TABLE 14 (or TABLE 18 for Air Cipher). PROC is a non-blocking command thereby

providing ability to prepare for next round while selected crypto core executes.
PROC_MASK Same as PROC except output data of PROC__MASK is masked based on actual

valid bytes present that particular round.

Field2: Core-Misc, see TABLE 14 (or TABLE 18 for Air Cipher).

Field1: Core-and-key select; TABLE 14; or TABLE 18 for Air Cipher.

Field0: Srcl: 0= Reg0, 1= Regl, 2= Reg2, 3= Reg3, 4= Key[127:0], 5= Key[255:128].

Applies selected padding to last block of packet based on number of valid
bytes in last crypto block. Executed with FIG. 11 Crypto Padding Logic 680.

Field1: Padding sequence. O = 000....., 1 = 010..., 2 = 1000..., 3 = 1100...

Field0: Srcl: 0= Reg0, 1= Regl, 2= Reg2, 3= Reg3.

Blocking instruction until crypto core finishes the current run, whereupon Srcl is

stored to Dst. WAIT Fieldl entry can also be 6= Data from crypto core. WAIT FieldO entries are
either 6= Data from crypto core, or 7= Data from crypto core XOR’ed with Src2 (Fieldl).
Outputs all the fields (IV, nonce, data-out) as pre-set by OUTSET instruction thereby

completing the current iteration. OUT is last instruction executed for a current run of MCE.
WAIT and OUT are combined for high performance.

PROC_PAD

Field2: Dst Reg0-3.
WAIT
OouT
WOuUT

Also called WAIT__OUT.
OUTSET

Sets source that goes out as Aux 3, Aux 2 and data-out. Non-blocking instruction
thereby gives ability to prepare the output before Done is sensed from crypto core. If

US 2017/0104732 Al

21

TABLE 13-continued

Apr. 13,2017

INSTRUCTION FORMAT FOR MODE CONTROL ENGINE MCE

Opcode (4-bits) Field2 (2-bits) Field1 (3-bits)

Field0 (3-bits)

Description

WAIT_OUT is next after OUTSET, blocks until crypto core issues Done. When Done, all fields
are output from crypto core and current iteration is marked as complete. OUTSET is executed as
last instruction for current run of MCE. Field2, 1, O are specified as follows.

Field 2: Aux-3 Select: 0= Reg0, 1= Regl, 2= Reg2, 3= Reg3.
Dst Reg: 0= Reg0, 1= Regl, 2= Reg2, 3= Reg3.

Field1l: Aux-2 Select: 0= Reg0, 1= Regl, 2= Reg2, 3= Reg3.
4= Data from crypto core.

5= WAIT_OUT instruction Srcl XOR’ed with
WAIT_OUT instruction Src2.

6= Data from crypto core XOR’ed with

WAIT_OUT instruction Srcl.

7= Data from crypto core XOR’ed with

WAIT_OUT instruction Src2.

0= Reg0, 1= Regl, 2= Reg?, 3= Reg3,

4= Aux1[127:0], 5= Aux1[255:128],

6= Data from crypto core, 7= Zeroes.

Field0: Same way as Fieldl above except provides Dataout-select instead of Aux-2 Select;
and Src2 code 7 instead means Data from crypto core XOR’ed with Src2.

JUMP Jump instruction. Fields 2, 1 form Immediate value, instruction offset. FieldO is a
Condition code: 0 = Always, 1 = Jump if SOP, 2 = Jump if MOP, 3 = Jump if EOP, 4 = Jump if
no EOP.

XOR Bitwise-XOR Srcl with Src2 and store result in Dst.

AND Bitwise-AND Srcl with Src2 and store result in Dst.

OR Bitwise-OR Srcl with Src2 and store result in Dst.

CP Copy Srcl content to Dst. (Src2 not involved.)

INC Increment value in Srcl and write to Dst.

LD Immediate instead of Src2, 1. Load Dst with constant value.

LSFT Left shift Srcl based on Shift value in Src2.

NOP No operation instruction.

TABLE 14

CORE AND KEY TABLE FOR PROC_MASK
INSTRUCTION OF MCE IN ENCRYPTION MODULE

Core and Key Select [3 bits] (Field1) Core-Misc [2 bits] (Field2)

=0 => Null 00

1 => AES Core 00 = 128 bits key
=> AES Key from Key-in 01 =192 bits key
=> AES Key from Aux 1 10 = 256 bits key
2 => DES/3DES

=> DES/3DES Key from Key-in
=> DES/3DES Key from Aux 1
3 => Galois Multiplier core

=> Galois Key from Key-in 00
=> Galois Key from Aux 1

===
=

00 = DES mode
01 = 3DES mode

EBETEEEEETEY
=]
= n
ol —mol —ol

Note:
Augx | refers to EncryptionAux 1 of TABLE 11 and in Encryption module-specific section

of Security Context of FIG. 6. Regarding Key-in, see TABLE 11 EncryptionKeyValue and
TABLE 13 Keyl[:].

[0181] In FIG. 12, Authentication module 320 provides
data integrity protection and source authentication to secu-
rity packets. The authentication subsystem hosts SHAI,
MDS, SHA2-224 and SHA2-256 hashing hardware cores to
compute a digest that is used for data integrity checks.

Authentication module 320 also supports keyed hashed
computation as per HMAC to provide source authentication
used with any of the supported hardware hashing cores.

[0182] For high performance, particularly for small pack-
ets, some embodiments only support HMAC from pre-
computed inner/outer hash. The host 100 processor carries
out an initial key preparation stage to generate an inner pad
and outer pad. Suitable data structure and sequence of
processing are provided and implemented.

[0183] The data structure is stored beforehand by PHP 410
or 460 or by Host 100 in Context RAM 570 for use by the
Authentication module 320. Authentication module 320 uses
this information to process the FIG. 9 data block when
packets are forwarded for a particular Security Context ID.
TABLE 15 sets forth a data structure example. See also the
Authentication module-specific section in FIG. 6, or appli-
cable Air Cipher integrity section in FIG. 7.

[0184] In some other embodiments, Authentication mod-
ule 320 is also provided with its own processor such as MCE
for handling or controlling involved authentication opera-
tions now and in the future. FIG. 12 economically lacks such
MCE.

TABLE 15

DATA STRUCTURE FOR AUTHENTICATION MODULE 320

Field Name

Write Access

Description

AuthenticationModeSel
Default Next Engine-ID

s/w (ctxetrl)
s/w (ctxetrl)

Bit: 1 = NULL, 0 = Actual Hash processing.
Multi-bit. Default Next engine, used if Cmd Label Absent Error is

generated or Use Default Eng-1d is encountered in Cmd label.

US 2017/0104732 Al

TABLE 15-continued

Apr. 13,2017
22

DATA STRUCTURE FOR AUTHENTICATION MODULE 320

Field Name Write Access Description

AuthenticationSWControl S/w(ctrl) Bit fields:

Bit A: Upload hash every chunk.

1 => Upload hash in Trailer section of every data chunk. Initial

data chunks will have partial computed hash.

0 => do not upload Trailer section in every chunk.

Bit B: Computed hash upload control.

1 => Upload computed hash to Trailer TLR section only after complete
specified length has been processed. Completed hash repeated for all
subsequent chunks in same packet.

0 => Do not upload computed hash to Trailer TLR section of buffer.
Bit C: HMAC or basic hash. 0 => HMAC, 1 => basic hash bits.

Bits D: Authentication core select field selects core for authentication

operation.

0 =>NULL, 1 => MDS5, 2 => SHAI, 3 => SHA2-224, 4 => SHA2-256.

AuthenticationLength S/w(etrl) Multiple bytes.

1 = Authentication length is overridden for EOP packet or chunk via

firmware.

0 = Let hardware calculate the length based on actual bytes hashed.

AuthenticationKeyValue s/w (key)

Multiple bytes. Master Key or Pre-computed inner digest for HMAC

Hash(Key XOR Inner Constant). The inner pad is padded to 256 bits by
adding padding bits towards LSB.

AuthenticationAux1 s/w (Aux 1)

Optional Multiple bytes. Pre-computed outer pad ‘opad’ for HMAC,

hash carries over opad, i.e. Hash(Key XOR Outer Constant). Outer
digest is padded to 256 bits by adding padding bits towards LSB.

AuthenticationAux 2 s/w (Aux 2)

Optional multiple-bytes field stores partial hash if current block

lacks complete packet. This value is restored into authentication
core when next block of same packet is active.

PreCryptoDataStore h/iw Multiple-bytes data to be stored

in this context that is used the

next time the context is active to create crypto block size quanta
for the AES/3DES and/or SHA/MDS3 engine.

[0185] An Air Cipher PHP 460 structure for the control
plane is the same as or similar to that of IPSEC PHP 410 of
FIG. 13, so FIG. 13 is re-used as a diagram of Air Cipher
PHP 460 with analogous description except for Air cipher
processing.

[0186] In FIG. 14, Air cipher module 370 provides an Air
cipher interface that carries out the task of encrypting/
decrypting FIG. 9 payload consistent with 3GPP air inter-
face security. The air cipher subsystem 370 does data plane
processing using AES, Kasumi or Snow3G cores. Software-
operable Mode Control Engine MCE is re-used from or
analogous to MCE in encryption subsystem 310 to allow F8,

CBC or F9 processing using Kasumi, AES or Snow3G
mode.

[0187] To support Air Cipher module 370 processing of a
FIG. 9 data block, Air Cipher PHP 460 (or Host 100) stores
a data structure for the applicable inbound or outbound Air
Cipher module-specific section of FIG. 7 beforehand in
context RAM 570 of FIG. 1 before FIG. 9 packets or chunks
are forwarded to Air Cipher module 370 for a particular
Security Context ID. This data structure to support Air
Cipher is detailed in TABLE 16. The reader may compare
and contrast TABLE 16 with the separate data structure
TABLE 11 in RAM 570 and FIG. 6 for supporting encryp-
tion module 310.

TABLE 16

DATA STRUCTURE FOR AIR CIPHER MODULE 370

Field Name

Write Access

Description

AirCipherModeSel
Default Next Engine-ID

AirCipherModeCtrl Word

AirCipherKeyValue

AirCipherAux 1

AirCipherAux 2

s/w (ctxetrl)
s/w (ctxetrl)

s/w (ctxetrl)

s/w (key)

s/w (Aux 1)

s/w (Aux 2)

Bit: 0 = Actual crypto processing, 1 = NULL.

Multi-bit Default Next engine, used if Cmd Label Absent
Error is generated or Use Default Eng-ID is encountered
in Cmd label.

Multiple bytes specify AirCipher mode processing for
modes: GCM, ECB, CBC, xPON CTR, NIST CTR, etc. See
TABLE 17.

Multiple bytes used for cipher operation. This key can
also be loaded in-band via option bytes.

Optional multiple bytes field used to store auxiliary

data to support Air Cipher modes like CCM to store
second key. Can be loaded in-band via option bytes

in Cmd label. Mode control engine MCE cannot alter the
value of this field.

Optional second Aux multiple bytes field used if
AirCipher mode involves IV. This value is alterable by

US 2017/0104732 Al

TABLE 16-continued

Apr. 13,2017

DATA STRUCTURE FOR AIR CIPHER MODULE 370

Field Name Write Access Description

Mode Control Engine MCE and loadable in-band via option

bytes.

AirCipherAux 3 s/w (Aux 3)

Optional third Aux data multiple bytes field used if

the AirCipher mode involves Nonce. This value is
alterable by Mode Control Engine MCE and loadable

in-band via option bytes.
AirCipherAux 4

(Aux data 4) lYw Multiple bytes Aux data 4 to store intermediate mode

control data to be used for next block. This space
cannot be loaded from main host, but can be loaded

in-band via option bytes.
PreCryptoDataStore h/iw

Multiple bytes data to be stored in this context that

is used the next time the context is active to create
crypto block size quanta for AES/Kasumi/Snow3G engine.

TABLE 17 tabulates the format of the important TABLE 16
word designated AirCipherModeCtrlWord.

TABLE 17

FORMAT OF AirCipherModeCtrlWord

Field Name Description

Update Trailer
In Every Chunk.

Bit, if set, updates trailer data to

FIG. 9 Trailer section in every FIG. 9
chunk, including SOP chunk.

Bit, if set, updates trailer data to

FIG. 9 Trailer section of buffer only
after last crypto block has been
processed. This trailer data is
repeated for subsequent chunks of same
packet.

Bit, if set, updates processed data to
FIG. 9 Packet Data section of buffer.

Update Trailer
After Length
Processed.

Packet Data
Section Update

Encrypt/Decrypt Bit (0/1).
EncryptionBlkSize 0 =8 bytes, N = 8 bytes x 2'N.
ModeCtrlInstrOffset 12-bits Instruction offset for SOP,
MOP and EOP data block.
ModeCtrlInstrs Multiple bytes for Mode Control
instructions.
[0188] In FIG. 14, the Air Cipher data plane module 370

somewhat resembles the Encryption module 310 of FIG. 10.
Air Cipher module 370 has an In-Packer and Out-Packer
flanking a central execution core Air_core_top. This execu-
tion core has a Soft Operational Modes block. For this block,
a soft Mode Control Engine MCE like that in FIG. 11 and
TABLE 13 is provided to achieve a high level of security,
but wherein Air cipher encryption by AES, Kasumi, or
Snow3G hardware cryptographic cores is mostly comple-
mented with Air Cipher operational modes, which the flex-
ible MCE in FIG. 14 readily establishes. The Air Cipher
operational modes define an additional level of processing or
staging before the cryptographic cores are engaged. The
flexibility of MCE beneficially complements the speed of
the cryptographic cores. Air Cipher operational modes that
can be specified for module 370 include the NIST modes
CBC, OFB, ECB and CTR(Counter), and some other sup-
ported application modes are CCM, F8, CMAC etc. (See
AirCipherModeCtrlWord in TABLES 16-17.) As more and
more air cipher operation modes are developed in the
industry, mode control engine MCE answers a need to
achieve the air cipher operational modes flexibly via its
software controlled programmable engine that can be

updated to support new air cipher operational modes. MCE
is a programmable engine that sequences various logical and
arithmetic operations to achieve air cipher operational
modes with high performance essential to execute such
modes flexibly.

[0189] Air Cipher mode operation is specified by AirCi-
pherModeCtrlWord (see TABLES 16, 17 and 12) that is
stored in Context RAM 570 as part of the security context
that holds the instructions for soft Mode Control Engine in
FIG. 14 and FIG. 11 to specify the sequence of logical
operation to achieve each desired air cipher operational
mode.

[0190] Details of Mode Control Engine MCE for Air
Cipher module 370 of FIG. 14 and its instruction format are
the same as in the description of FIG. 11 and are the same
as in TABLE 13 except that the PROC_MASK instruction
for Air Cipher MCE in FIG. 14 is specified using TABLE 18
Core and Key select information to support TABLE 13
description of the instruction set.

TABLE 18

CORE AND KEY SELECT FOR PROC__MASK INSTRUCTION
OF MCE IN AIR CIPHER MODULE 370

Core and key select (3-bits) (Fieldl) Core-Misc (2 bits) (Field2)

=0 => Null 00

=1 => AES Core 00 = 128 bits key
0 => AES Key from Key-in 01 = 192 bits key
1 => AES Key from Aux 1 10 = 256 bits key
:0] = 2 => Kasumi Core

0 => Kasumi Key from Key-in
1 => Kasumi Key from Aux 1
:0] = 3 => Snow3G core

0 => Snow3G Key from Key-in
1 => Snow3G Key from Aux 1

00 for all

[0] = 1 => Init Key
[1] = 1 => Store Snow3G state

Note:

Aux 1 refers to AirCipherAux 1 of TABLE 16 and in Air Cipher module-specific section
of Security Context of FIG. 7.

[0191] The FIG. 14 Snow3G core in Air Cipher module
370 saves and restores an internal state of, e.g., 76-bytes
while processing intermediate chunks. Hence, this 76-bytes
state value 1is stored in an Authentication part
(EnginelD=Authentication Module code-value) of the secu-
rity context (See FIG. 6). Air Cipher 370 using Snow3G core
uses the encryption section (engine ID=Encryption Module
code-value). As part of key initialization for Snow3G core,
a multi-byte IV (Initialization Vector for key derivation) is

US 2017/0104732 Al

picked or obtained from register Regl of MCE register bank
620. Therefore, MCE instructions ensure that an Initializa-
tion Vector IV is stored at register Regl before issuing a
PROC instruction (TABLE 13) that involves key initializa-
tion.

[0192] Returning to FIG. 13, each Packet header processor
(PHP) Module 410 or 460 is part of the control plane of FIG.
1 that parses and inspects security headers to establish the
sequence of processing to be carried out on the packet. The
Header processing PHP subsystem hosts a PDSP RISC CPU
to carry out control plane operations. PDSP Pro in FIG. 13
is connected to tightly coupled memories to allow faster
access to packet data. Packet header processor PHP module
has an instruction RAM that is populated by host 100 as part
of initialization. This firmware holds the control plane code
as per IPSEC, SRTP or 3GPP standards to parse and inspect
ingress packet headers.

[0193] A Descriptor information word (see FIGS. 2, 3 and
9) provides control information about the current data chunk
thereby providing various lengths and other fields. The
format and definition of each field is suitably specified.
[0194] InFIG. 13, the PHP module is complemented with
security context viewer module that provides a rolling
window view of the security context. This allows easy
access and update of security context data to PDSP firmware
as the window is directly mapped to PDSP registers.
[0195] Following are the commands that can be issued by
PDSP to adjust the position of window and indicate DONE
to the security context viewer module Context Viewer in
FIG. 13. A security context viewer command register has
one byte designated Offset and another byte designated
Operation. The Offset byte specifies an offset (e.g., 0 to 255)
from start of security context (FIG. 6 or 7) where the
window is to be positioned. The Operation byte specifies a
command code signaling the type of operation to perform:
SCV_CMD_POSITION_WINDOW 0x1, and SCV_CMD_
DONE 0x2. (SCV refers to the security context viewer.)
[0196] Context RAM 570 of FIG. 1 also supports the PHP
module of FIG. 13 with a data structure of TABLE 19
pre-stored by Host 100 or Context Cache Module 510 in the
Context RAM 570 before packets are forwarded for a
particular Security Context ID. The data structure informa-
tion is in the PHP module-specific section in FIG. 6 or FIG.
7 and is used to process the data block using the information
in TABLE 19.

TABLE 19

Apr. 13,2017

TABLE 20

SYSTEM CONSTANTS FOR ADDRESS RANGES

Cco Scratchl_ LRAMO BASE

C1 Scratch2_ LRAM1 BASE

C20 TRNG True Random number generator base address
C21 PKA Public key accelerator base address

The following constants hold pairs of ranges for PHP1 and PHP2.
PHP2 Ditto for each of these:

C6 PHP1 CDE_ Sideband RXPKT

c7 PHP1_CDE_ Sideband TXPKT

Cc8 PHP1_CDE_ Sideband HELDPKT

C10 PHP1 Random Number FIFO control Block

C11 PHP1 Packet Instance Base Address

C12 PHP1 Temporary storage of Aux (ICV) Data

C13 PHP1 Temporary storage of Command Label Table

C14 PHP1 Global Statistics

C15 PHP1 Random Number FIFO base address

Cl6 PHP1 IPSEC ESP Tx Command Label Processing Table
C17 PHP1 IPSEC ESP Rx Command Label Processing Table
C18 PHP1 IPSEC AH Tx Command Label Processing Table
C19 PHP1 IPSEC AH Rx Command Label Processing Table
[0198] Returning to FIG. 1, CP_ACE subsystem 200 hosts

a Public key accelerator module PKA that is accessible via
memory mapped registers. The PKA module provides a
high-performance public key engine to accelerate the large
vector math processing that is involved in Public Key
computations.

[0199] The public key engine of PKA provides the fol-
lowing basic operations: Large vector add, Large vector
subtract, Large vector compare (XOR), Vector shift left or
right, Large vector multiply, Large vector divide, and Large
vector exponentiation. PKA can execute a Diffie-Hellman
exponentiation operation for high security based on modulus
sizes up to large numbers of bits and large exponents. A
small amount of additional software processing is executed
on the Host 100 processor as well. Operand and result
vectors are stored in a multi-Kbytes vector RAM. The
vectors are sequentially cycled through the processing
engines of the PKA, with intermediate products from large
or complex operations temporarily stored a RAM as well.
The Host configures PKA for the intended operation, pro-
viding proper operand data, and allocating space for the
result vector.

DATA STRUCTURE FOR PHP MODULE 410 or 460

Field Name Write Access Description

SCCTL s/w (ctxetrl)

Multiple bytes. As in context cache module, SCCTL field

contains SCID, SCPTR and other control flags, TABLE 10

FirmwareReadWriteSpace

s/w and H/w Multiple bytes. Firmware Read and write space. This

information is used by firmware to maintain dynamic
parameters like rolling window markers etc. This section
is updated by hardware when the context is evicted to

external memory.

[0197] A set of address ranges (each is a pair of numbers
[:]) are adopted as pre-specified system constants for the
PDSP, as templated in TABLE 20. RXPKT means Receive
Packet (Ingress), TXPKT means Transmit Packet (Egress).
PHP1 is IPSEC PHP 410, PHP2 is Air Cipher PHP 460 in
FIG. 1.

[0200] InFIG. 1, a True Random number (TRNG) Module
provides a non-deterministic random number generator to
assist host with key derivation operations like IKE etc. This
can also be used to create initialization vector for certain
encryption modes. CP_ACE hosts true random number

US 2017/0104732 Al
25

generator TRNG, which can accessed via memory mapped
registers MMR.

[0201] Some memory mapped registers MMR to config-
ure and control various features of cryptographic engine
CP_ACE of FIG. 1 are described hereinbelow.

TABLE 21

MEMORY MAPPED REGISTERS

CMD__STATUS See TABLE 22.

CTXCACH_CTRL See TABLE 23.

CTXCACH_SC_ID See TABLE 24.

CTXCACH_SC_PTR Context Cache Security Context Pointer
Register for MMR based fetch RW 0x0.

CTXCACH_MISSCNT Context Cache miss count.

BLKMGR_PA_BLKS Number M of packet blocks reserved for PA
Port in units of 4 blocks to ensure that PA
and CDMA flows do not stall each other.
CP__ACE system has N total blocks. CDMA
Port flow gets N/4 — M such units. See also
Block Manager 380.

PA_FLOWID PA Port default CPPI Flow ID used for packet
coming from PA Ingress port. RW 0x0

CDMA_ FLOWID CDMA Port default CPPI Flow ID, ditto.

PA_ENG_ID PA Port default Next engine ID to select first

processing engine within CP__ACE if Default

Engine ID select code is detected in incoming

CPPI SW word0 word. RW 0x10
CDMA__ENG_ID Ditto for CDMA Port default Next engine ID

[0202] Command Status Register CMD_STATUS from
TABLE 21 includes for each of the following blocks of
TABLE 22 a read-only busy status bit (_BUSY) generated
by respective block and an enable _EN bit that is R/'W
read/writeable by firmware, the bits forming a bit-pair. All
resets are to non-busy, non-enabled statuses.

TABLE 22

COMMAND STATUS REGISTER

BLOCK BIT-PAIR __BUSY, _EN

PA CPPI Ingress port

PA CPPI Egress port

CDMA CPPI Ingress port

CDMA CPPI Egress port

Security context cache module

PHP1 IPSEC Packet Header Processing module
PHP2 Air Cipher Packet Header Processing module
PKA module*

TRNG module*

Encryption module*

Authentication module*

Air Cipher hardware module*

*E-fused enable __EN. Also, an e-fuse enable is provided to enable the subsystem 200.

[0203] The Context Cache Control Register CTXCACH_
CTRL from TABLE 21 is detailed in TABLE 23.

TABLE 23

CONTEXT CACHE CONTROL REGISTER

Field Name Description Type Reset

BUSY Bit, if set, indicates that R 0x0
context cache engine is busy.

CTX_CNT Current cached security context R 0x0
multi-bit count.

CLR__STATS Setting this bit clears context RW 0x0

cache statistics. Auto-cleared.

CDMA__ PORT_EN Enable CDMA ctxcach port. If RW 0xl
this port is disabled, no
look-up nor auto-fetch will

Apr. 13,2017

TABLE 23-continued

CONTEXT CACHE CONTROL REGISTER

Field Name Description Type Reset

happen for security context
for packets coming on this
port.
PA_PORT_EN Enable PA ctxcach port. If pot RW 0xl
is disabled, no look-up nor
auto-fetch will happen for
security context for packets
coming on this port.
CLR_CACHE_TABLE Clear internal cache table. This RW 0x0
bit clears after operation is
completed. Cache table is auto
cleared after reset.
AUTO_FETCH_ EN Enable Auto fetch for security RW 0x1
context

[0204] The Context Cache Security Context Identification
Register CTXCACH_SC_ID from TABLE 21 is detailed in
TABLE 24.

TABLE 24

CONTEXT CACHE SECURITY CONTEXT
IDENTIFICATION REGISTER

Field Name Description Type**

DONE Done bit set indicates operation is R
completed.

SC_ERRORCODE Return Error code bits. return of R
Zero mean success.

SC_RAMIDX Return Ram index byte. R

GO Go bit. Setting this bit will execute RW
selected action.

SC_TEAR Tear-down selected SCID. RW

SC_FETCH_EVICT If set Evicts selected SCID.
If reset Fetch selected SCID. RW

SC_ID SCID for MMR based fetch RW

BUSY If set, Busy bit indicates that R
context cache engine is busy.

CTX_CNT Current cached security context R
multi-bit count.

CLR__STATS Setting this bit clears context cache RW

statistics. Auto cleared.
CDMA_ PORT__EN Enable CDMA ctxcach port. If this port RW
is disabled then no look-up nor
auto-fetch will happen for security
context

**Types are R: Read; RW: Read/Write. Reset for all fields is to 0x0, except PORT_EN
which is reset-enabled to 0x1.

[0205] Host polls the system of FIG. 1, for example. Other
embodiments may provide for interrupts to Host. Different
embodiments or options provided therein support a specified
or configured endian type. Security context is formed as
shown in context cache section. Host swaps words based on
system width configuration to ensure that memory print of
security context is same in either endian.

[0206] CP_ACE is suitably clocked by a main clock (e.g.,
350 MHz) and a synchronous divide-by-two off main clock
to drive cryptographic cores like PKA, PKA RAM, and
TRNG. Internal clock gating shuts down clock to any of
various cryptographic cores in response to Host/PDSP via a
memory mapped register MMR based on current operational
mode, and provided a Done acknowledgment is received
from an affected core. See, e.g., TABLE 22 with module-
specific enable <_EN’=0.

[0207] In FIG. 1, the CDMA Ingress CPPI Streaming
interface is used to receive packet data from CPPI DMA
(CDMA) for packets coming from Host and has controls
tabulated in TABLE 25.

US 2017/0104732 Al Apr. 13,2017
26

TABLE 25

CONTROLS FOR CDMA INGRESS CPPI STREAMING INTERFACE

In/Out
Signal Pin Name Type Function

cp_ace_pktstrm__incdma_ thread_sready Out. Indicates that CP__ACE’s CDMA Ingress port
currently have buffering to accept a block
of data.
cp_ace_pktstrm__incdma_ thread_id In. Thread ID: Indicates the thread that is
currently occupying the streaming interface.
Multi-bit with log2 number of threads.
cp_ace_ pktstrm__incdma_ req In. Request: when asserted indicates
that all of the other information on the
bus is valid.

cp_ace_ pktstrm__incdma_ data_ type In. Data Type indicates the type of data that is
being transferred on the data bus. Multi-bit.
cp_ace_pktstrm__incdma_req_ thread id In. Request Thread ID indicates the target

thread to which data will be transferred on
the following clock cycle.

cp_ace_ pktstrm__incdma_ worden In. Word Enable: Indicates which 32-bit words on
the interface are valid. Primarily used on
interfaces wider than 32-bits to allow one or
more optional words to be included/excluded
during the data phase transfer. Not used for
the payload data data phases.

cp_ace_ pktstrm__incdma_ xent In. Data Phase Byte Count: Indicates how many
payload bytes are transferred during the
current data phase. Pertinent for payload
data data phases.

cp_ace_ pktstrm__incdma_ data In. Data: The info, control, PS, and payload
data word.
cp_ace_pktstrm__incdma_ sop Start of Packet Indicator: Asserted

co-incident with the start for the block,
to indicate that a new packet is starting.

cp_ace_ pktstrm__incdma_ eop In. End of Packet Indicator: Asserted to
indicate the close of a packet.
cp_ace_ pktstrm__incdma_ drop In. Drop Packet Indicator: Asserted to

indicate that the current packet in this
thread should be dropped at the
destination.

cp_ace_pktstrm__incdma_ pkt_error[3:0] In. Packet Error Indicator bit indicates if
an error occurred during reception of
this packet. 0 = No error occurred, 1 =
Error occurred. Additional information
about different errors may be encoded
in the error flags fields.

[0208] InFIG. 1, the PA Ingress CPPI Streaming interface TABLE 27

is used to receive packet data from PA port. TABLE 26

tabulates controls for this interface. CONTROLS FOR CDMA EGRESS

CPPI STREAMING INTERFACE

TABLE 26 cp_ace_pktstrm_ outcdma_ thread mready Out. Master Thread
Ready: Indicates
CONTROLS FOR PA INGRESS CPPI STREAMING INTERFACE which threads
(Analogous to TABLE 25 for simplicity of architecture. currently have
Substitute “pa” for “cdma” in TABLE 25 wherever valid information
“cdma” occurs in TABLE 25 to obtain TABLE 26.) waiting to be
transferred to
cp_ace_pktstrm__inpa_ thread sready Out This signal indicates that the slave.
CP_ACE’s PA Ingress Multi-bit field
port currently have with number of
buffering to accept a bits equal to
block of data. number of threads.
. etc. ete.
[0209] Controls for CDMA Egress CPPI streaming inter- TABLE 28

face are listed in TABLE 27. Notice that for simplicity of

architecture, these controls substitute “out” for “in” in CONTROLS FOR PA EGRESS CPPI STREAMING INTERFACE

TABLE 25 wherever “in” occurs in TABLE 25 field desig- (Analogous to TABLE 27 for simplicity of architecture. Substitute
nators to obtain TABLE 27. Note that the first control entry “pa” for “cdma” in TABLE 27 wherever “cdma” occurs in
in TABLE 27 is somewhat differently worded than the first TABLE 27 field designators to obtain TABLE 28.)

control entry in TABLE 25.

US 2017/0104732 Al

[0210] The memory map of the FIG. 1 subsystem is
suitably allocated to the various storage structures, such as
in TABLE 29, so they are addressable. AIHM means “All
internal hardware modules.” AHE means “All hardware
engines.” Respective sizes are suitably adopted for the
various structures in the design process, and their values are
accumulated to determine address offsets from some base
address to establish addresses for all the memory-mapped
structures.

TABLE 29

MEMORY MAPPED STORAGE STRUCTURES

Offset Size Region Primary Access
MMR/Ctxcach registers Host/PDSP
PDSP 0, 1 Control/Status Registers Host/Debugger
PDSP 0, 1 Debug Registers Debugger

PDSP 0, 1 Program Memory Host/Debugger
PDSP Scratch Memory 0, 1 Host/PDSP/CDE
CDE 0, 1 Sideband Memory Interface PDSPO, 1 respectively
PKA module, Vector RAM starts at offset. Host/PDSP
TRNG module Host/PDSP

PA Ctxcach module Lookup Port ATHM

PA Ctxcach module EOP Port ATHM

All internal Port
Hardware modules

CDMA Ctxcach module Lookup

27

Apr. 13,2017

[0211] In FIG. 1, the subsystem can provide 1.4 Gbits/sec
high performance on Ethernet traffic while running at 350
MHz for IPSEC and SRTP protocols. This subsystem also
can process 400 Mbits/sec of air cipher traffic as defined by
3GPP in parallel to IPSEC. In order to provide the IPSEC/
SRTP performance, the internal hardware cores like AES,
3DES, SHAI etc are able to saturate the ingress traffic bit
rate while running at 350 MHz.

[0212] Projected performance of various cores based on
packet size is discussed next. The number of packets to be
processed by the subsystem each second is called the packet
rate. The packet rate for 1.4 Gbit/sec is a function of packet
size. For 1.4 Gbits/sec Ethernet traffic, the subsystem pro-
cesses 2.08 million 64-bytes packets per second. The num-
ber of packets per second decreases approximately inversely
with increasing packet size.

[0213] Performance is also considered for the individual
hardware cores in FIG. 1 on a most-burdensome case basis
in various modes to process the 1.4 Gbits/sec of Ethernet
traffic. In AES-CCM mode of encryption, for instance, a
same packet payload is run twice for AES processing. In
hashing, SHA1 using HMAC uses an additional hashing
round to close the keyed hash.

CDMA Ctxcach module EOP Port ATHM
Eig;itﬁnﬁeg _H;thﬂe ﬁgaMHostDSP . .[02.14!] TABLE 30 .describes the perforr.nan.ce of each
read-only individual core running at 350 MHz. Air cipher cores
PA CPPI Egress Port ATHM (Kasumi and Snow3G) are run at half the clock of the
g}zggfgglsjfﬁf;;in ﬁgﬁ CP_ACE clock in this example. Size refers to Block size i.n
Encryption module scheduler port ATHM bits. Cycles refers to cycles per block. Modes overhead is
Authentication module scheduler port AIHM entitled Modes. Frequency (MHz) is entitled Freq. “Actual”
iﬁgﬁgﬁgﬁi:&?Cheduler port ﬁgﬁ refers to Actual Throughput (Mbits/sec), and “Goal” refers
to Throughput Goal (Mbits/sec). Modules are also called
cores.
TABLE 30
PERFORMANCE OF CORES
Module Size Cycles Modes Freq Actual Goal Remarks
AES core 128 15 1 350 2,800.0 1,365.0 256-bit key nrs case
3DES core 64 14 1 350 14933 1,365.0 3 key nrs, case
Galois 128 8 1 350 4977.8 1,365.0 Galois mult., GCM mode
AES-CCM 128 13 1 350 1,600.0 1,365.0 Run twice for 1 key block
128/192bits
AES-CCM-256 bits 128 15 1 350 1,400.0 1,365.0 Run twice for 1 key block
Kasumi 64 16 2 350 12444 400.0 Kasumi in F8 mode same
Snow3G** 320 96 2 350 1,1429 400.0 See Note.
SHA1 512 81 1 350 2,1854 1,386.0 SHA 1 core
MD5 512 65 1 350 27152 1,386.0 MDS5 core
SHA2 512 65 1 350 27152 1,386.0 SHA 2 core
HMACSHAL1 512 81 1 350 2,1854 2,133.0 SHA 1 core
HMAC-MD5 512 65 1 350 27152 2,133.0 MDS5 core
HMACSHA?2 512 65 1 350 27152 2,133.0 SHA 2 core

**Note

for Snow3G: 40 bytes in one block (38 cycles for first 4 bytes, 2 cycles each for subsequent 4 bytes, 40 cycles for store/restore),
most-burdensome case store/restore each 40 bytes.

US 2017/0104732 Al

[0215] In FIGS. 15-19, description now turns to process
embodiments for integration of the CP_ACE into a chip
level context of FIG. 20.

[0216] In FIG. 15, an Initialization process embodiment
has the following steps:

INITIALIZATION PROCESS, FIG. 15

[0217] 1. Enable PHP1SS_EN and/or PHP2SS_EN in
CMD_STATUS Register. (TABLE 22).

[0218] 2. Download Firmware into PDSP’s instruction
RAM, see I-RAM, FIG. 13.

[0219] 3. Enable PDSP by writing into PDSP registers.

[0220] 4. Enable support by other hardware engine(s) by
writing into CMD_STATUS Register.

[0221] 5. Set up connection by forming CP_ACE specific
security context in RAM 570, 575, using format in FIG.
6or7.

[0222] 6. Queue packets to be processed by CP_ACE, e.g.
by ingress into Packet RAM 265 and chunking using
format in FIG. 9.

[0223] In FIG. 16, a security context setup process

embodiment has the following steps, wherein Host and

CP_ACE handshake to avoid race conditions.

SETTING UP SECURITY CONTEXT: PROCESS, FIG. 16

[0224] 1. Host forms security context in Host memory at
SCPTR address and allocates SCID.

[0225] 2. Host (not SA) relinquishes ownership to
CP_ACE by setting Owner bit in SCCTL to 1. (See
TABLE 10.)

[0226] 3. Host cannot make any more changes to security
context after CP_ACE has been made owner.

[0227] 4. Host queues packets with above SCPTR and
SCID whenever packet is meant for this connection.
Alternatively, Host can add security context via Memory
map registers MMR.

[0228] 5. CP_ACE gets SCID, SCPTR along with context
control flags, per SCCTL in TABLE 10.

[0229] 6. CP_ACE does internal look-up on SCID to
check for cached connection.

[0230] 7. Since this is first packet for given connection,
internal look-up fails.

[0231] 8. CP_ACE issue DMA to fetch security context
using SCPTR.

[0232] 9. CP_ACE checks for owner to be CP_ACE (i.e.
Owner bit is set to 1 by host).

[0233] 10. If owner is not CP_ACE (Owner bit is 0),
CP_ACE drops the security context and mark packet as
bad by setting corresponding error code.

[0234] 11. If owner bit is CP_ACE (Owner bit is 1),
CP_ACE fetches the complete security context.

[0235] In FIG. 17, a security context tear-down process

embodiment has the following steps:

TEAR DOWN PROCESS, FIG. 17

[0236] 1. Host sends tear-down packet to CP_ACE with
No Payload and Tear-down bit set, see TABLE 3 and
TABLE 9. Alternatively, Host can set tear-down bit in last
packet.

2. Host ensures that no new packets are sent to this security
context after tear-down packet has been sent.

3. CP_ACE records that given security context is to be
subject to tear-down.

Apr. 13,2017

4. CP_ACE ensures that all packet within CP_ACE buffers
are processed before tear-down action is executed.

5. Finally, CP_ACE clears owner bit (Owner bit, SCCTL,
TABLE 10) to give control back to Host. Host is pro-
grammed so that, after launching the tear-down packet, host
waits for an Ownership bit (Owner bit SCCTL) to be cleared
as indication that the tear-down operation has been com-
pleted.

6. Host ensures that the same SCID is not used until
tear-down operation is completed as indicated by clearing of
Owner bit.

[0237] InFIG. 18, a process embodiment to evict security
context has the following steps:

EVICT SECURITY CONTEXT: PROCESS, FIG. 18

[0238] 1. Host writes all 1°s in Evict Done bits in SCCTL,
see TABLE 10.

2. Host Send packet with Force Evict flag set, alternatively
host can set evict information via memory mapped register
3. When hardware completes evict operation, it changes
Evict Done to all 0’s.

4. Host senses change in state of Evict Done from all 1°s to
all 0’s to know evict has been completed.

[0239] InFIG. 19, a process embodiment to choose Pass1/
Pass2 engine ID, see TABLE 5, for data processing engines
has the following steps:

CHOOSE PASS1/PASS2 ENGINE ID: PROCESS, FIG. 19

[0240] 1. Passl and Pass2 can be used in any order if same
hardware engine is not used twice in the flow, for instance
AUTH (Pass2)—=ENCR (Pass1) and AUTH(Pass1)—ENCR
(Pass2) are permissible.

2. If same hardware engine is used for both Encryption and
Authentication, then second pass uses Pass2 engine ID. (See
TABLE 5.) For instance, if Air Cipher hardware engine is
used for both Kasumi-encryption and Kasumi-authentica-
tion for inbound flow (AUTH—ENCR), then Kasumi-au-
thentication uses Passl code value, and Kasumi-encryption
uses Pass2 code value.

[0241] Further a process embodiment to remove last
chunk has the following steps:

[0242] This process is performed because the last chunk
might have 1-byte.

REMOVE LAST CHUNK: PROCESS

[0243] 1. Set “EOP: in CDE descriptor for second-last
chunk.

2. Set “SOP”, “EOP” and “Drop” for last chunk (chunk to
be removed).

CPPI/CP_ACE architectural parameters are listed next.

1. CPPI streaming control length may have a maximum for
ingress packet length, e.g., some (power of two)-bytes) or
other number of bytes.

2. Regarding byte alignment, CPPI streaming control in
some embodiments may have a desirable alignment (e.g.,
8-bytes aligned).

3. Within CP_ACE, PHP PS length may be established as,
e.g., multiple of 8-bytes. For PS Word, see FIG. 9.

4. Egress CPPI streaming control+CPPI streaming status
length may have a maximum, e.g., some (power of two)-
bytes or other number of bytes.

US 2017/0104732 Al Apr. 13,2017
29

5. Egress CPPI streaming status may be established, e.g., as [0244] TABLE 31 explains CDE descriptor fields and
a multiple of 4-bytes. Notice this is different than internal =~ mapping to Ingress CPPI streaming descriptor from the
PHP PS length of 8-bytes aligned. viewpoint of the FIG. 13 PHP PDSP. TABLE 31 also

describes firmware processing for each of the fields. TABLE
6. CP_ACE outputs packet length as all-ones to CPPI DMA, 31 helps describe Descriptor Area of FIG. 9 as well as the
thereby allowing CPPI DMA to count packet data length. other fields/words/areas in FIG. 9.

TABLE 31

CDE AND INGRESS CPPI STREAMING DESCRIPTORS

Value Set
CDE by HW Valid FwW FW must
word Field at Ingress at chunk access edit Description

WORD 0:

In Word 0, Thread ID field is HW-allocated, valid at All chunks, and FW does not access nor
edit. Thread ID chooses DMA channel on Egress.

In Word 0, a CPPI Egress status length field is set at Ingress to CPPI streaming SW 2 “Status
length”, if SW2 is not present then this field is set to zeroes. Valid at SOP chunk only. FW
accesses to specify the valid PS Data size for EOP chunk Trailer section. FW need not edit this
fleld, which specifies the Valid PS Data Size that is included from PS section of the EOP chunk.
CPPI gets informed up-front with upcoming Egress status length. Egress status length is multiple
of a predetermined number of bytes and specified in units of bytes as master length of status
words and overrides any other PS (status) length.

Further in Word 0, HW loads a Full Packet Length field with a value of complete packet length
as reported by Ingress CPPI streaming wordl Pkt Length. This is valid at SOP chunk only. FW
does not access and need not edit this field. This field represents Total Reassembled packet
length as informed by ingress CPPI DMA, which computes full packet size in its egress flow.
WORD 1:

In Word 1, a Next Engine ID is loaded by HW from CPPI Packet streaming SWO Engine ID or
from Interface Default register if Use-Default is present in SWO Engine ID. Valid at all chunks.
Firmware accesses this Next Engine ID field to specify the next engine and edits this field if
firmware is in the chunk path.

Word 1 has a Command label Info field. HW inserts CPPI Packet streaming SWO0 Cmdlbl Info
valid at SOP Chunk only. Firmware specifies this command label info and edits it if firmware is
in the chunk path. Command label info is made up of Command Label Present and Command
Label Offset.

Word 1 has a Valid PS Data Size field. At Ingress, HW inserts Zeroes. Field is valid at EOP
chunk only. FW can access and change the Valid PS Size but may omit to do so. This Valid PS
Data Size value goes out as a form of CPPI streaming status on EOP chunk.

Further, Word 1 has a Physical PS Data size field. HW loads a value, e.g. 32 valid for all chunks.
FW does not access nor edit this field, which is a hole that is used by HW to insert a computed
hash value.

WORD 2:

In Word 2, a Packet Type field is loaded by HW from CPPI streaming Word 0 Pkt Type, valid at
SOP chunk only. FW does not access nor edit.

A Word 2 field called Drop Bit is set by HW if No Payload is set in CPPI Packet streaming
SWO. Valid for all chunks. FW can access this field in case FW would like to drop current
packet, but FW does not edit this field. FW can set Drop Bit in any chunk. HW takes care

to abort complete packet.

HW sets a Word 2 SOP Bit field upon first chunk of packet, valid for SOP chunk only. FW can
access this field in case FW is about to abort last chunk, but does not edit this indicator of first
chunk of packet. FW uses this field to decode first chunk.

HW sets a Word 2 EOP bit field at last chunk of packet, field valid for EOP Chunk only. FW can
access this field in case FW is about to abort last chunk, but does not edit this indicator of last
chunk of packet. FW uses this field to decode last chunk.

HW sets a Word 2 PS Flags field with CPPI Packet streaming Word O PS Flags and the field is
valid on all chunks. FW accesses to alter PS flags. This will change Error Code in CPPI
descriptor. The last updated value goes out.

A Word 2 Error Flags fleld is set by HW to Zeroes, valid on SOP chunk only. FW does not
access nor edit Error Flags. Hardware engine (like Encryption) reports error in this field.

HW sets a Word 2 Source ID field to the CPPI Packet streaming Word O Src-ID, valid on SOP
chunk only. FW does not access nor edit Error Flags.

A Word 2 Flow Index is set by HW with CPPI Packet streaming SW2 Flow Index, and if SW2 is
not present then from MMR Flow Index register. Valid on SOP chunk only. FW accesses this
fleld and specifies a new Flow Index if firmware is in the chunk path. CPPI Flow index is used
to select destination queue parameters.

WORD 3:

In Word 3, at ingress, HW sets a Control Data Size to CPPI Packet streaming PS length, counted
by Ingress module, valid on SOP chunk only. CDE engine changes this value on Insert/Remove
command. FW need not edit this field. CPPI PS data on ingress is used as CDE CTL data for
PHP.

Also in Word 3, at ingress, HW sets a Packet Data Size to Number of packet data bytes packed
in current chunk, valid on all chunks. CDE engine changes this value on Insert/Remove
command. FW need not edit this field. Ingress module packs up to 252 bytes of packet data into
current chunk.

US 2017/0104732 Al

TABLE 31-continued

Apr. 13,2017

CDE AND INGRESS CPPI STREAMING DESCRIPTORS

Value Set
CDE by HW Valid FwW FW must
word Field at Ingress at chunk access edit Description
WORD 4:

In Word 4, at ingress, HW sets a Packet Id/Destination Tag to CPPI Packet streaming Word 2
Dst_Tag, valid on SOP chunk only. FW does not access nor edit this field. Packet ID is set by

PA instead.

Also in Word 4, at ingress, HW sets a Word Destination Queue Manager field to the queue
number represented by CPPI Packet streaming word SW2 Dest Queue Num. If SW2 is not
present, then the field is set to all 1’s. Valid on SOP chunk only. FW accesses this field to

specify this CPPI destination queue info if FW is in the chunk path.
TIMESTAMP:

The Timestamp word has a Timestamp field. On ingress, HW loads the Timestamp field with
contents of a CPPI Packet streaming word Extended Packet Info Word 0, valid on SOP chunk

only. FW do not access nor alter this field.
SOFTWARE DATA WORDS 0, 1:

The Software Data Word 0 and 1 are loaded by HW on Ingress with contents of CPPI Packet
streaming word Extended Packet Info Word 1 and 2 respectively, valid on SOP chunk only. FW
can optionally access this field to pass custom data to other peripherals. SW 0 word, SW 1 word

are not altered by hardware.
TRAILER SECTION WORDS:

On ingress, HW loads Trailer section words (e.g. 8) with PS info Trailer section from CDE, valid
on EOP chunk only. FW accesses optionally to change trailer data. HW sends trailer (CDE PS
info) as CPPI streaming status on Egress side. Trailer section (if present) in EOP chunk only
goes as status. Trailer section of all other chunks is ignored and not altered by hardware.

CONTROL SECTION

On ingress, HW loads the control section words (e.g. up to 16) from CPPI Packet streaming
words called PS Section, valid on SOP chunk only. FW accesses optionally to change control

data. HW on egress automatically removed control data from start of
control until end of current command label.
PACKET DATA

On ingress, HW loads the Packet data with CPPI Packet streaming word called Packet
Data, Valid on all chunks. FW accesses optionally to change packet data. HW packs maximum
number of bytes, e.g. 252-bytes, in one chunk, to allow FW to bypass whole chunk if desired.

[0245] In FIG. 20, an embodiment improved as in the
other Figures herein has one or more video codecs imple-
mented in IVA hardware, video codec 3520.4, and/or oth-
erwise appropriately to form more comprehensive system
and/or system-on-chip embodiments for larger device and
system embodiments. In FIG. 20, a system embodiment
3500 improved as in the other Figures has an MPU subsys-
tem and the IVA subsystem, and DMA (Direct Memory
Access) subsystems 3510.;. The MPU subsystem suitably
has one or more processors with CPUs such as RISC or
CISC processors 2610, and having superscalar processor
pipeline(s) with L1 and L2 caches. The IVA subsystem has
one or more programmable digital signal processors (DSPs),
such as processors having single cycle multiply-accumulates
for image processing, video processing, and audio process-
ing. IVA provides multi-standard (H.264, H.263, AVS,
MPEG4, WMV9, RealVideo®) encode/decode at D1 (720x
480 pixels), and 720p MPEG4 decode, for some examples.
A video codec for IVA is improved for high speed and low
real-estate impact as described in the other Figures herein.
Also integrated are a 2D/3D graphics engine, a Mobile DDR
Interface, and numerous integrated peripherals as selected
for a particular system solution.

[0246] Digital signal processor cores suitable for some
embodiments in the IVA block and video codec block may
include a Texas Instruments TMS32055x™ series digital
signal processor with low power dissipation, and/or
TMS320C6000 series and/or TMS320C64x™ series VLIW
digital signal processor, and have the circuitry and processes
of'the FIGS. 1-19 and 22 coupled with them as taught herein.

For example, a 32-bit eight-way VLIW (Very Long Instruc-
tion Word) pipelined processor has a program fetch unit,
instruction dispatch unit, an instruction decode unit, two
data paths and a register files for them. The data paths
execute the instructions. Each data path includes four func-
tional units L, S, M, D, suffixed 1 or 2 for the respective data
path. Control registers and logic, test logic, interrupt logic,
and emulation logic are also included. Plural pixel data is
packed into each processor data word. Luma and chroma
pixel data may be expressed in 8 bits and packed into each,
e.g., 32-bit data word. The data processing apparatus
includes many instructions that operate in single instruction
multiple data (SIMD) mode by separately considering plural
parts of the processor data word. For example, and ADD
instruction can operate separately on four 8-bit parts of the
32-bit data word by breaking the carry chain between 8-bit
sections. Various manipulation instructions and circuits for
the packed data are also provided. The IVA subsystem is
suitably provided with .1 and [.2 caches, RAM and ROM,
and hardware accelerators as desired such as for motion
estimation, variable length codec, and other processing.

[0247] DMA (direct memory access) performs target
accesses via target firewalls 3522./ and 3512.i of FIG. 20
connected on interconnects 2640. A target is a circuit block
targeted or accessed by another circuit block operating as an
initiator. In order to perform such accesses the DMA chan-
nels in DMA subsystems 3510.; are programmed. Each
DMA channel specifies the source location of the Data to be
transferred from an initiator and the destination location of
the Data for a target. Some Initiators are MPU 2610, DSP
DMA 3510.2, SDMA 3510.1, Universal Serial Bus USB HS,
virtual processor data read/write and instruction access,

US 2017/0104732 Al

virtual system direct memory access, display 3510.4, DSP
MMU (memory management unit), camera 3510.3, and a
secure debug access port to emulation block EMU for
testing and debug (not to be confused with emulation
prevention pattern insertion and removal).

[0248] Data exchange between a peripheral subsystem and
a memory subsystem and general system transactions from
memory to memory are handled by the System SDMA
3510.1. Data exchanges within a DSP subsystem 3510.2 are
handled by the DSP DMA 3518.2. Data exchange to store
camera capture is handled using a Camera DMA 3518.3 in
camera subsystem CAM 3510.3. The CAM subsystem
3510.3 suitably handles one or two camera inputs of either
serial or parallel data transfer types, and provides image
capture hardware image pipeline and preview. Data
exchange to refresh a display is handled in a display sub-
system 3510.4 using a DISP (display) DMA 3518.4. This
subsystem 3510.4, for instance, includes a dual output three
layer display processor for 1xGraphics and 2xVideo, tem-
poral dithering (turning pixels on and off to produce grays or
intermediate colors) and SDTV to QCIF video format and
translation between other video format pairs. The Display
block 3510.4 feeds an L.CD (liquid crystal display), plasma
display, DLP™ display panel or DLP™ projector system,
using either a serial or parallel interface. Also television
output TV and Amp provide CVBS or S-Video output and
other television output types.

[0249] In FIG. 20, a hardware security architecture includ-
ing SSM 2460 propagates Mreqxxx qualifiers on the inter-
connect 3521 and 3534. The MPU 2610 issues bus transac-
tions and sets some qualifiers on Interconnect 3521. SSM
2460 also provides one or more MreqSystem qualifiers. The
bus transactions propagate through the [.4 Interconnect 3534
and line 3538 then reach a DMA Access Properties Firewall
3512.1. Transactions are coupled to a DMA engine 3518.i in
each subsystem 3510.; which supplies a subsystem-specific
interrupt to the Interrupt Handler 2720. Interrupt Handler
2720 is also fed one or more interrupts from Secure State
Machine SSM 2460 that performs security protection func-
tions. Interrupt Handler 2720 outputs interrupts for MPU
2610. In FIG. 20, firewall protection by firewalls 3522.;/ is
provided for various system blocks 3520.i, such as GPMC
(General Purpose Memory Controller) to Flash memory
3520.1 for firmware and updates, ROM 3520.2 for firmware,
on-chip RAM 3520.3 for working run-time contexts and
data, Video Codec 35204, WCDMA/HSDPA 3520.6,
device-to-device SAD2D 3520.7 to Modem chip 1100, and
a DSP 3520.8 and DSP DMA 3528.8. In some system
embodiments, Video Codec 3520.4 has codec embodiments
as shown in the other Figures herein. A System Memory
Interface SMS with SMS Firewall 3555 is coupled to SDRC
3552.1 (External Memory Interface EMIF with SDRAM
Refresh Controller) and to system SDRAM 3550 (Synchro-
nous Dynamic Random Access Memory).

[0250] In FIG. 20, interconnect 3534 is also coupled to
Control Module 2765 and FIG. 1 cryptographic accelerator
CP_ACE 3540 (200) and PRCM 3570. Power, Reset and
Clock Manager PCRM 3570 is coupled via L4 interconnect
3534 to Power IC circuitry in chip 1200, which supplies
controllable supply voltages VDD1, VDD2, etc. PRCM
3570 is coupled to L4 Interconnect 3534 and coupled to
Control Module 2765. PRCM 3570 is coupled to a DMA
Firewall 3512.1 to receive a Security Violation signal, if a

Apr. 13,2017

security violation occurs, and to respond with a Cold or
Warm Reset output. Also PRCM 3570 is coupled to the SSM
2460.

[0251] In FIG. 20, some embodiments have symmetric
multiprocessing (SMP) core(s) such as RISC processor
cores in the MPU subsystem. One of the cores is called the
SMP core. A hardware (HW) supported secure hypervisor
runs at least on the SMP core. Linux SMP HLOS (high-level
operating system) is symmetric across all cores and is
chosen as the master HLOS in some embodiments.

[0252] The embodiments are suitably employed in gate-
ways, decoders, set top boxes, receivers for receiving sat-
ellite video, cable TV over copper lines or fiber, DSL
(Digital subscriber line) video encoders and decoders, tele-
vision broadcasting and audio/video multicasting, optical
disks and other storage media, encoders and decoders for
video and multimedia services over packet networks, in
video teleconferencing, and video surveillance. Some
embodiments, such as fed from video surveillance sources,
prepare numerous packet data streams for efficient transmis-
sion for remote reception point(s). Some embodiments
handle numerous packet data streams for reception and
distribution to multiple audio/visual display locations over
an extended user space. Some embodiments handle and
integrate numerous incoming packet data streams for con-
current intelligible delivery to the user experience in a more
confined space.

[0253] Accordingly, it is emphasized that, although FIG. 1
for convenience has legends somewhat oriented toward the
particular application of security and cryptographic process-
ing, subsystem 200 is also applicable or extendable to other
forms of pipelined multiple packet-stream processing. In
such other forms, for instance, processing contexts other
than or additional to security contexts are handled by
module 510. Also, any particular modules or engines 310,
320, 370, etc., suitably can have different cores than, or
additional cores beyond, the particular Crypto cores shown
in the middle of FIGS. 10, 12 and 14. Various embodiments
are prepared as subsystems and/or systems for all applica-
tions to which their advantages commend them now and in
the future.

[0254] The system embodiments of and for FIG. 20 are
also provided in a communications system and implemented
as various embodiments in any one, some or all of cellular
mobile telephone and data handsets, a cellular (telephony
and data) base station, a WLAN AP (wireless local area
network access point, IEEE 802.11 or otherwise), a Voice
over WLAN Gateway with user video/voice over packet
telephone, and a video/voice enabled personal computer
(PC) with another user video/voice over packet telephone,
that communicate with each other. A camera CAM provides
video pickup for a cell phone or other device to send over the
internet to another cell phone, personal digital assistant/
personal entertainment unit, gateway and/or set top box STB
with television TV. Video storage and other storage, such as
hard drive, flash drive, high density memory, and/or compact
disk (CD) is provided for digital video recording (DVR)
embodiments such as for delayed reproduction, transcoding,
and retransmission of video to other handsets and other
destinations. An STB embodiment includes a system inter-
face, front end hardware, a framer, a multiplexer, a multi-
stream bidirectional cable card (M-Card), and a demulti-
plexer. The STB includes a main processor(s), a transport
packet parser, and a decoder, improved as taught herein and

US 2017/0104732 Al

provided on a printed circuit board (PCB), a printed wiring
board (PWB), and/or in an integrated circuit on a semicon-
ductor substrate.

[0255] In FIG. 20, a Modem integrated circuit (IC) 1100
supports and provides wireless interfaces for any one or
more of GSM, GPRS, EDGE, UMTS, and OFDMA/MIMO
embodiments. Codecs for any or all of CDMA (Code
Division Multiple Access), CDMA2000, and/or WCDMA
(wideband CDMA or UMTS) wireless are provided, suitably
with HSDPA/HSUPA (High Speed Downlink Packet
Access, High Speed Uplink Packet Access) (or 1xEV-DYV,
1xEV-DO or 3xEV-DV) data feature via an analog baseband
chip and RF GSM/CDMA chip to a wireless antenna.
Replication of blocks and antennas is provided in a cost-
efficient manner to support MIMO OFDMA of some
embodiments. Modem 1100 also includes an television RF
front end and demodulator for HDTV and DVB (Digital
Video Broadcasting) to provide H.264 and other packetized
compressed video/audio streams for Start Code detection,
slice parsing, and entropy decoding by the circuits of the
other Figures herein. An audio block in an Analog/Power IC
1200 has audio I/O (input/output) circuits to a speaker, a
microphone, and/or headphones as illustrated in FIG. 20. A
touch screen interface is coupled to a touch screen XY
off-chip in some embodiments for display and control. A
battery provides power to mobile embodiments of the sys-
tem and battery data on suitably provided lines from the
battery pack.

[0256] DLP™ display technology from Texas Instruments
Incorporated is coupled to one or more imaging/video
interfaces. A transparent organic semiconductor display is
provided on one or more windows of a vehicle and wire-
lessly or wireline-coupled to the video feed. WLAN and/or
WiMax integrated circuit MAC (media access controller),
PHY (physical layer) and AFE (analog front end) support
streaming video over WLAN. A MIMO UWB (ultra wide-
band) MAC/PHY supports OFDM in 3-10 GHz UWB bands
for communications in some embodiments. A digital video
integrated circuit provides television antenna tuning,
antenna selection, filtering, RF input stage for recovering
video/audio and controls from a DVB station.

[0257] Various embodiments are thus used with one or
more microprocessors, each microprocessor having a pipe-
line, and selected from the group consisting of 1) reduced
instruction set computing (RISC), 2) digital signal process-
ing (DSP), 3) complex instruction set computing (CISC), 4)
superscalar, 5) skewed pipelines, 6) in-order, 7) out-of-order,
8) very long instruction word (VLIW), 9) single instruction
multiple data (SIMD), 10) multiple instruction multiple data
(MIMD), 11) multiple-core using any one or more of the
foregoing, and 12) microcontroller pipelines, control periph-
erals, and other micro-control blocks using any one or more
of the foregoing.

[0258] A packet-based communication system can be an
electronic (wired or wireless) communication system or an
optical communication system.

[0259] Various embodiments as described herein are
manufactured in a process that prepares RTL (register trans-
fer language or hardware design language HDL) and netlist
for a particular design including circuits of the Figures
herein in one or more integrated circuits or a system. The
design of the encoder and decoder and other hardware is
verified in simulation electronically on the RTL and netlist.
Verification checks contents and timing of registers, opera-

Apr. 13,2017

tion of hardware circuits under various configurations,
packet parsing, and data stream detection, bit operations and
encode and/or decode for H.264 and other video coded bit
streams, proper responses to Host and to MCE, real-time and
non-real-time operations and interrupts, responsiveness to
transitions through confidentiality modes and other modes,
sleep/wakeup, and various attack scenarios. When satisfac-
tory, the verified design dataset and pattern generation
dataset go to fabrication in a wafer fab and packaging/
assembly produces a resulting integrated circuit and tests it
with real time voice, video and data. Testing verifies opera-
tions directly on first-silicon and production samples such as
by using scan chain methodology on registers and other
circuitry until satisfactory chips are obtained. A particular
design and printed wiring board (PWB) of the system unit,
has a video codec applications processor coupled to a
modem, together with one or more peripherals coupled to
the processor and a user interface coupled to the processor.
A storage, such as SDRAM and Flash memory is coupled to
the system and has VL.C tables, configuration and param-
eters and a real-time operating system RTOS, image codec-
related software such as for processor issuing Commands
and Instructions as described elsewhere herein, public
HLOS, protected applications (PPAs and PAs), and other
supervisory software. System testing tests operations of the
integrated circuit(s) and system in actual application for
efficiency and satisfactory operation of fixed or mobile video
display for continuity of content, phone, e-mails/data ser-
vice, web browsing, voice over packet, content player for
continuity of content, camera/imaging, audio/video synchro-
nization, and other such operation that is apparent to the
human user and can be evaluated by system use. Also,
various attack scenarios are applied. If further increased
efficiency is called for, parameter(s) are reconfigured for
further testing. Adjusted parameter(s) are loaded into the
Flash memory or otherwise, components are assembled on
PWB to produce resulting system units.

[0260] The packet filtering described herein facilitates
operations in RISC (reduced instruction set computing),
CISC (complex instruction set computing), DSP (digital
signal processors), microcontrollers, PC (personal com-
puter) main microprocessors, math coprocessors, VLIW
(very long instruction word), SIMD (single instruction mul-
tiple data) and MIMD (multiple instruction multiple data)
processors and coprocessors as cores or standalone inte-
grated circuits, and in other integrated circuits and arrays.
[0261] The cryptographic accelerator CPE_ACE is useful
in other types of integrated circuits such as ASICs (appli-
cation specific integrated circuits) and gate arrays and to all
circuits to which the advantages of the improvements
described herein commend their use.

[0262] Turning to FIGS. 21-22, an assembler is created to
compile and assemble MCE assembly code to machine
code. The assembler is written, for instance in Perl, for the
MCE architecture to efficiently convert the MCE assembly
code to optimized machine code.

[0263] The assembly instructions follow a specific syntax
format. Each field in the instruction is separated by comma.
Lines that start with # are comments and will not be
processed. The decimal number at the leftmost column is
shown in this example only for reference. The MCE Assem-
bler allows user to specify one of three starting points: SOP,
MOP and EOP by adding a corresponding label at the front
of the starting section.

US 2017/0104732 Al
33

[0264] In FIG. 21, a process of creating the MCE instruc-
tions involves the following steps for example: Based on the
mode and algorithm specification as input, the mode opera-

Apr. 13,2017

FIG. 10 that return outputs, such as Ek or multH of FIG. 22,
and thereafter see FIG. 10 Out Packer and FIG. 11 output
delivery path 620, 670, 260.

TABLE 32

MCE ASSEMBLY CODE EXAMPLE FOR GCM

Aux1[255:128] = hash key H (used in Galois multiplication)
Aux1[127:0] = Len(A) || Len(C)

Aux2 = Regl
Aux3 = Reg2
Aux4 = Reg3
Plaintext = Reg0

= AAD Additional Authenticated Data

= {IV, CTR}

—> Ek(counter0) operation

—> loaded in every round (each round is 16-byte).

#% First block of input use the following operations **#%*
Process counter0 using AES, store it in Aux4

1 MCE__PROC, MISC_AESKEY_ 128, CORE_AES_ KEY_KEYIN, REG2
2 MCE__WAIT, REG3, SRC2__ZERO, SRC1_DFC
Process the AAD and store the result in R2 (Aux3)
3 MCE__PROC, MISC_00, CORE_GM_KEY_ AUXIN, REG1
4 MCE__WAIT, REGI, SRC2__ZERO, SRC1_DFC
#% Round 2 and later use the following operations *****
5 MCE_INCG, REG2, 000, REG2
6 MCE__PROC_MASK,
MISC_AESKEY_ 128, CORE_AES_ KEY_ KEYIN, REG2
7 MCE__WAIT, REGO, REGO, SRC1_DFC_XOR_SRC2
8 MCE_XOR, REGI, REGO, REG1
9 MCE__PROC, MISC_00, CORE_GM_KEY__AUXIN, REG1
10 MCE__JUMP, 01100, IF_EOP
Only does the following if this is NOT the last round.
11 MCE_OUTSET, REG2, DATAOUT__DFC REGO
12 MCE_WOUT, REGI, SRC2__ZERO, SRC1_DFC
The jump instruction above goes to here if this is the last round (EOP).
13 MCE__WAIT, REG2, SRC2_AUX1_LOWER, SRC1_DFC_XOR_SRC2
14 MCE__PROC, MISC_00, CORE_GM_KEY__AUXIN, REG2
15 MCE_OUTSET, REGO, DATAOUT DFC XOR_WOUT_SRC2, REGO
16 MCE_WOUT, REGO, REGS, SRC1_DFC
tions are converted to logical operations in MCE instruction [0267] In the assembly code above, sixteen assembly

format. The logical operations are converted into machine
code using the MCE assembler, and finally simulated in
hardware to verify the output.

[0265] In FIG. 22, an MCE example is described here for
GCM (Galois-Counter Mode) to provide confidentiality and
authentication in IPSEC. GCM involves two main functions:
block cipher encryption which typically uses AES algorithm
and a Galois multiplication procedure. GCM delivers two
outputs: encrypted text (ciphertext) and an authentication
tag. The authenticated encryption operation is shown in FI1G.
22 wherein the Ek notation denotes the block cipher encryp-
tion using the key K, ‘multH’ denotes a Galois multiplica-
tion by the hash key H, and “incr” denotes a counter
increment operation.

[0266] Implementation of the FIG. 22 GCM operation
using MCE assembly code is shown below as TABLE 32.
Refer to TABLE 13 for instruction description correspond-
ing to assembly code entries of the type MCE_<Instruction
Name>. The instruction line numbers in TABLE 32 are
correlated to enumeration boxes marked on FIG. 22. The
instruction line numbers in TABLE 32 also represent loca-
tions of 12-bit machine coded instruction in the Instruction
Array of FIG. 11 that are decoded by Decode block and
executed by Execute block in the FIG. 11 MCE. Regarding
TABLE 32 Auxl, 2, 3, 4, see also TABLE 11 and FIG. 10
blocks for Context Controller and Context Update and FIG.
11 path 570, 640, 620, 660, 570. For Plaintext, see also FIG.
9, and FIG. 10 In Packer and FIG. 11 path 260, 650, 620.
PROC instructions (TABLE 32, TABLE 13) call cores in

instructions realize GCM mode. Since the operations for the
first round differ from the later rounds, the offsets are
specified as: start of packet (SOP) offset=0, middle of packet
(MOP) and end of packet (EOP) offset=4. That means
instruction number 1 (MCE_PROC) through 12 (MCE_
WOUT) executes sequentially in the first round. In the
second and later round, instruction number 5 (MCE_INC)
through instruction number 12 (MCE_WOUT) executes
sequentially. However, when instruction number 10 (MCE_
JUMP) is encountered and when this round is the last round,
it will skip instructions 11 and 12 and jump to instruction 13
(MCE_WAIT) and continue until instruction #16 (MCE_
WOUT). The output of the Perl assembler is a sequence of
a number of machine-code instructions in binary form and
equal in number to the number of instructions listed in the
assembly code like that listed above, each machine-code
instruction including its opcode and its bit-fields Field2, 1,
0.

[0268] Mode Control Engine MCE of FIG. 11 provides a
significant advantage in flexibility and control to program a
sequence of operations through uncomplicated software.
MCE can thus implement any mode that uses a cipher core
inside the encryption engine. Thus, the same security accel-
erator is re-usable in devices with different security require-
ments.

[0269] Moreover, MCE (mode control engine) can add or
support new cryptographic operational modes in the field by
changing the micro-instructions, thereby adjusting the hard-
ware at run-time to support new modes at high performance
in native hardware.

US 2017/0104732 Al

[0270] Since the MCE instructions are devised specifically
for cryptographic mode processing in this example, MCE
delivers high performance and adds low or little overhead
over the native cryptographic processing (AES, 3DES etc.)
cores together with which cores MCE processes its mode
operations. The cryptographic engine using MCE occupies
much smaller area compared to hardware cores respectively
dedicated for each mode and useless for the other modes.
[0271] In addition to inventive structures, devices, appa-
ratus and systems, processes are represented and described
using any and all of the block diagrams, logic diagrams, and
flow diagrams herein. Block diagram blocks are used to
represent both structures as understood by those of ordinary
skill in the art as well as process steps and portions of
process flows. Similarly, logic elements in the diagrams
represent both electronic structures and process steps and
portions of process flows. Flow diagram symbols herein
represent process steps and portions of process flows in
software and hardware embodiments as well as portions of
structure in various embodiments of the invention.
ASPECTS (See Notes paragraph at end of this Aspects
section.)

[0272] 1A. The electronic circuit claimed in claim 1
wherein said security context cache module includes a data
lookup cache portion and a security context cache portion,
and arbitrated port controllers coupled to said data lookup
cache portion and to said security context cache portion.
[0273] 1B. The electronic circuit claimed in claim 1 fur-
ther comprising a security context cache module that is
operable on a demand basis to fetch and later evict a
respective control data structure for each security context.
[0274] 1B1. The electronic circuit claimed in claim 1B
further comprising an external memory coupled with said
host processor, and at least one such control data structure
holding a cryptographic key and a cryptographic mode
indication from said external memory.

[0275] 1C. The electronic circuit claimed in claim 1
wherein said control plane engine is operable to program-
mably organize a logical topology of data plane engines.
[0276] 1C1. The electronic circuit claimed in claim 1C
wherein under such topology, buffers are re-arranged into
programmably-specified operational order to establish a
particular process.

[0277] 1C2. The electronic circuit claimed in claim 1C
further comprising a multiple-buffer circuit having multiple
inputs and outputs wherein the logical topology includes a
selectable sequence of couplings formed in said multiple-
buffer circuit for at least two of said engines.

[0278] 1C3. The electronic circuit claimed in claim 1C
further comprising ingress streaming interfaces and egress
streaming interfaces, said ingress streaming interfaces oper-
able so that multiple packet flows stream into said ingress
streaming interfaces, and said ingress streaming interfaces
are coupled to the logical topology for approximately con-
current data flow and processing that in turn supply respec-
tive output data streams to said egress streaming interfaces.
[0279] 1D. The electronic circuit claimed in claim 1
wherein said subsystem is adaptive by allowing firmware
controlled security header processing and hardware-driven,
any-order data staging, cipher block formatting and crypto-
graphic processing.

[0280] 1E. The electronic circuit claimed in claim 1
wherein processes can be in one or in plural security
contexts.

Apr. 13,2017

[0281] 1F. The electronic circuit claimed in claim 1 further
comprising a context cache, and wherein a sequence order
for the processing by said engines is established by the at
least one said control plane engine using information in at
least the context cache.

[0282] 1G. The electronic circuit claimed in claim 1
wherein said data-plane engine and said control-plane
engine are together operationally scalable to provide more
processing for additional data streams.

[0283] 1H. The electronic circuit claimed in claim 1
wherein said data-plane engine and said control-plane
engine are together operable for anti-replay protection
against a replay attack.

[0284] 1]. The electronic circuit claimed in claim 1 further
comprising a chunking circuit operable to store at least some
input packets as smaller chunks and responsive to a quality-
of-service (QoS) input by switching within a packet to
schedule the data chunks for processing by said data-plane
engine based on the QoS input, whereby the response to the
QoS input is made more swiftly effective.

[0285] 1K. The electronic circuit claimed in claim 1
further comprising an external memory and a context cache,
said context cache operable to fetch and evict a control data
structure from and to said external memory, and wherein
said data-plane engine and said control-plane engine are
together operable to cryptographically process the control
data structure to safeguard at least part of said control data
structure in the external memory.

[0286] 1L. The electronic circuit claimed in claim 1
wherein the at least one said data-plane engine has func-
tional units, the at least one said control-plane engine further
operable to configurably establish any of a plurality of
different effectively-coiled sequences of and selected from
said functional units and said control-plane engine.

[0287] 1M. The electronic circuit claimed in claim 1
wherein said host processor has a host memory and is
operable to store a key and control structure in said host
memory, and the at least one said data plane engine and
control plane engine are operable to access the key and
control structure to encrypt and decrypt such key, provide
connection-specific control flags, anti-replay windows, and
firmware parameters, and establish static connection values
(nonce/salt).

[0288] 1IN. The electronic circuit claimed in claim 1
further comprising a configuration circuit coupled with the
least one said control-plane engine, and a public key accel-
erator module coupled to said configuration circuit, and
wherein said host processor is operable to store configura-
tion data in said configuration circuit.

[0289] 1NI1. The electronic circuit claimed in claim 1N
further comprising a random number generator module
coupled to said configuration circuit.

[0290] 1P. The electronic circuit claimed in claim 1 further
comprising a scheduler having inputs and outputs operable
to selectively couple said engines in an operational
sequence, and a block manager module coupled to said
scheduler circuit.

[0291] 3A. The electronic circuit claimed in claim 3
wherein hardware-driven, any-order data staging is thereby
effectuated.

[0292] 22A. The security context cache module claimed in
claim 22 further comprising a request-fetch circuit operable
to fetch at least another security context and associate each

US 2017/0104732 Al

such other security context with an ingress packet, as and
when requested by the host processor.

[0293] 23A. The security context cache module claimed in
claim 23 wherein said eviction circuit is responsive to
control flags to indicate a start-of-packet, to force-evict, and
to force teardown of a security context.

[0294] 25A. The security context cache module claimed in
claim 25 further comprising a logic circuit for setting and
resetting an ownership bit for host processor control or local
processor control.

[0295] 27A. The streaming interface claimed in claim 27
wherein said control circuit is operable to lock a high-speed
connection.

[0296] 27B. The streaming interface claimed in claim 27
further comprising a scatter-gather direct memory access
circuit coupled with said control circuit.

[0297] 29A. The streaming interface claimed in claim 27
wherein said control logic is operable to execute tear down
only after all buffered packets from the packet stream are
processed.

[0298] 30A. The control method claimed in claim 30
wherein the host-loading, supplying, operating, and process-
ing involve plural contexts.

[0299] 30B. The control method claimed in claim 30
wherein at least one packet in the stream of packets includes
an identification of a particular cryptographic process, and
the processing includes responding to the identification of
the particular cryptographic process to generate a set of
engine identifications ordered in a particular order to specify
the processing topology, and processing the stream of pack-
ets using a set of engines in the subsystem operated in a
pipeline order represented by the set of ordered engine
identifications, whereby to effectuate the particular crypto-
graphic process.

[0300] 30C. The control method claimed in claim 30
further comprising storing at least some individual packets
in chunks of a packet, and wherein the control data in the
context includes at least one offset, and said processing
includes selectively applying the offset to access different
parts of the program instructions to process a chunk depend-
ing on a position in its packet from which the chunk is
stored.

[0301] 30D. The control method claimed in claim 30
wherein the access to the context includes loading a copy of
the context from the first storage area into the subsystem.
[0302] 30E. The control method claimed in claim 96
wherein the operating includes using an ownership flag to
transfer ownership of the stream to the subsystem.

[0303] 39A. The communication method claimed in claim
39 wherein the at least one command includes a Passl
engine identification and a Pass2 engine identification
wherein Pass1 and Pass2 can be used in any order if a same
hardware engine is not used twice in the flow including a
process selected from the group consisting of 1) AUTH
(Pass2)—=ENCR (Passl), and 2) AUTH(Passl)—ENCR
(Pass2), and when instead a same hardware engine is used
for both Encryption and Authentication then second pass
uses Pass2 engine identification.

[0304] 39A1. The communication method claimed in
claim 39 wherein one of said engines is an air cipher engine
operable for both Kasumi-authentication and Kasumi-en-
cryption for inbound flow, and Kasumi-authentication uses
Pass1 engine identification, and Kasumi-encryption uses
Pass2 engine identification.

Apr. 13,2017

[0305] 42A. The electronic buffering circuit claimed in
claim 42 further comprising configuration bus, configuration
registers, said configuration registers coupled with at least
one of said processors.

[0306] 43A. The electronic buffering circuit claimed in
claim 43 further comprising a direct memory access (DMA)
circuit and at least two additional buffers respectively cou-
pling said two ingress interface circuits to said selection
circuit.

[0307] 43B. The electronic buffering circuit claimed in
claim 43 further comprising a storage for packet informa-
tion, said storage coupled with said ingress interface circuits.
[0308] Notes about Aspects above: Aspects are paragraphs
which might be offered as claims in patent prosecution. The
above dependently-written Aspects have leading digits and
internal dependency designations to indicate the claims or
aspects to which they pertain. Aspects having no internal
dependency designations have leading digits and alphanu-
merics to indicate the position in the ordering of claims at
which they might be situated if offered as claims in pros-
ecution.

[0309] Processing circuitry comprehends digital, analog
and mixed signal (digital/analog) integrated circuits, ASIC
circuits, PALs, PLLAs, decoders, memories, and program-
mable and nonprogrammable processors, microcontrollers
and other circuitry. Internal and external couplings and
connections can be ohmic, capacitive, inductive, photonic,
and direct or indirect via intervening circuits or otherwise as
desirable. Process diagrams herein are representative of flow
diagrams for operations of any embodiments whether of
hardware, software, or firmware, and processes of manufac-
ture thereof. Flow diagrams and block diagrams are each
interpretable as representing structure and/or process. While
this invention has been described with reference to illustra-
tive embodiments, this description is not to be construed in
a limiting sense. Various modifications and combinations of
the illustrative embodiments, as well as other embodiments
of the invention may be made. The terms including,
includes, having, has, with, or variants thereof are used in
the detailed description and/or the claims to denote non-
exhaustive inclusion in a manner similar to the term com-
prising. The appended claims and their equivalents should
be interpreted to cover any such embodiments, modifica-
tions, and embodiments as fall within the scope of the
invention.

What is claimed is:

1. A packet-processing electronic subsystem comprising:

(a) a first data interface having an input for accepting first
streaming data, an encryption input, and a first stream-
ing output;

(b) a second data interface having an input for accepting
second streaming data and having an output;

(c) a third data interface having an output for egress of
third streaming data and having an input:

(d) a fourth data interface having an output for egress of
fourth streaming data and having an input, the first,
second, third, and fourth data interfaces being separate
from one another;

(e) scheduler circuitry having a first streaming input, a
second streaming input coupled to the output of the
second interface, having outputs coupled to the inputs
of the third, and fourth data interfaces, and including a
packet memory, the scheduler circuitry having a secu-
rity context cache interface, and an encryption input;

US 2017/0104732 Al Apr. 13,2017
36

(f) a security context cache coupled to the security context
cache interface of the scheduler circuitry and including
a cache controller and cache storage for a security
context, the security context cache on a demand basis
fetching and later evicting a control data structure for
the security context;

(g) an encryption module coupled to the encryption
interface of the scheduler circuitry, the encryption
module including control circuitry and encryption
accelerators responding to the security context in the
cache storage, and having an encryption output;

(h) first buffer circuitry having an input coupled to the first
streaming output and an output coupled to the first
streaming input; and

(1) second buffer circuitry having an input coupled to the
encryption output and an output coupled to the encryp-
tion input.

2. The subsystem of claim 1 in which the first interface is

a packet accelerator ingress Communication Processor
Peripheral Interface (CPPI) streaming interface.

3. The subsystem of claim 1 in which the second interface
is a code division multiple access (CDMA) ingress Com-
munication Processor Peripheral Interface (CPPI) streaming
interface.

4. The subsystem of claim 1 in which the third interface
is a packet accelerator egress Communication Processor
Peripheral Interface (CPPI) streaming interface.

5. The subsystem of claim 1 in which the fourth interface
is a code division multiple access (CDMA) egress Commu-
nication Processor Peripheral Interface (CPPI) streaming
interface.

