US 20220171627A1

a2y Patent Application Publication o) Pub. No.: US 2022/0171627 A1l

a9y United States

BAUM et al.

43) Pub. Date: Jun. 2, 2022

(54) SYSTEMS AND METHODS FOR
PERFORMING MATRIX COMPRESS AND
DECOMPRESS INSTRUCTIONS

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Dan BAUM, Haifa (IL); Michael
ESPIG, Newberg, OR (US); James
GUILFORD, Northborough, MA (US);
Wajdi K. FEGHALI, Boston, MA
(US); Raanan SADE, Kibutz Sarid
(IL); Christopher J. HUGHES, Santa
Clara, CA (US); Robert VALENTINE,
Kiryat Tivon (IL); Bret TOLL,
Hillsboro, OR (US); Elmoustapha
OULD-AHMED-VALL, Chandler, AZ
(US); Mark J. CHARNEY, Lexington,
MA (US); Vinodh GOPAL,
Westborough, MA (US); Ronen
ZOHAR, Sunnyvale, CA (US);
Alexander F. HEINECKE, San Jose,
CA (US)

(21) Appl. No.: 17/672,253
(22) Filed: Feb. 15, 2022
Related U.S. Application Data

(63) Continuation of application No. 16/934,003, filed on
Jul. 20, 2020, now Pat. No. 11,249,761, which is a

continuation of application No. 16/144,902, filed on
Sep. 27, 2018, now Pat. No. 10,719,323.

Publication Classification

(51) Int. CL
GOGF 9/30 (2006.01)
GOGF 9/38 (2006.01)
(52) US.CL

CPC ... GO6F 9/30178 (2013.01); GOGF 9/30145
(2013.01); GO6F 9/3802 (2013.01); GO6F
9/3013 (2013.01); GOG6F 9/30036 (2013.01)

(57) ABSTRACT

Disclosed embodiments relate to matrix compress/decom-
press instructions. In one example, a processor includes
fetch circuitry to fetch a compress instruction having a
format with fields to specify an opcode and locations of
decompressed source and compressed destination matrices,
decode circuitry to decode the fetched compress instruc-
tions, and execution circuitry, responsive to the decoded
compress instruction, to: generate a compressed result
according to a compress algorithm by compressing the
specified decompressed source matrix by either packing
non-zero-valued elements together and storing the matrix
position of each non-zero-valued element in a header, or
using fewer bits to represent one or more elements and using
the header to identify matrix elements being represented by
fewer bits; and store the compressed result to the specified
compressed destination matrix.

- Load/
Tile {0 Store
K=8, N=32,
Size = 4B, pair=no
104
Tile 1
K=8, N=32,
Size = 4B, pair=no
106
Tile 12
K=8, N=16,
Size = 8B, pair=no
108
Tile 13
K=8, N=16,
Size = 8B, pair=no
110

Application Memory 102

Patent Application Publication

Tile t0
K=8, N=32,

Jun. 2,2022 Sheet 1 of 43

Size = 4B, pair=no
104

Tile 4
K=8, N=32,
Size = 4B, pair=no
106

Tile t2
K=8, N=16,
Size = 8B, pair=no
108

Tile t3
K=8, N=16,
Size = 8B, pair=no
110

Application Memory 102

FIG. 1A

Tile t4L
K=8, N=32,
Size = 4B, pair=yes
124

Load/
Store

—————— L | 4R
: ;“ ::/, gt
¢ f' R

t

&

Tile 4R
K=8, N=32,
Size = 4B, pair=yes

126

Application Memory 122

Tite t5L
K=8, N=16,
Size = 8B, pair=yes
128

Tile t5R
K=8, N=16,
Size = 8B, pair=yes
130

FIG. 1B

US 2022/0171627 Al

Patent Application Publication Jun. 2, 2022 Sheet 2 of 43 US 2022/0171627 A1

MEMORY
ADDRESS MEMORY
0 A B C D
(A) Nt | E | F] G | H TILE
N+2 | K L
REGISTERS
REGO[A B C D
B regt[E I'F [G | H TILE
REG2| | J K L
FMA
STORAGE
A B C D
(C) E F G H TILE
| J K L

US 2022/0171627 Al

Jun. 2,2022 Sheet 3 of 43

Patent Application Publication

tttttttt - Ozt
gXV=+0 | ”
| (@) 1L
!
a1l A 8
© _ (v) oL
0%V
| S0E
o | SY344ng v1va
auOYNd |

¢ 'Old

YiVQ UL FHOLS

>

<

v1va 311 avol

|

SNOILYHHdO NOLLY INGINYIN 3T1L

1Ie

108

HO1YH3 7300V SNOILYHIHO XIdivIA

SANVAINOD

503

FOVAHTINI AHOWIW INFHFHOO

U1

108

W3 LSAS ONIONISSIO0Hd
4085300Hd LSOH

Patent Application Publication

US 2022/0171627 Al

Jun. 2, 2022 Sheet 4 of 43
Y
| | MEZIER |
h 4 h 4
MATRIX
PROCESSOR | l OPERATIONS
401 CIRCUITRY
405
FIG. 4
MATRIX
OPERATIONS < q PROCESSOR
CIRCUITRY 501
505
TILE HOST
MEMORY MEMORY
307 203

FIG. 5

US 2022/0171627 Al

Jun. 2,2022 Sheet 5 of 43

Patent Application Publication

£09
(INIXDA)
g 371

99l
I N %
NIL-va [L-ullo-wlo [+-wlo a:i-émnv
-« LN LM YINS b YING 0 LMY
[-Mlwly
00
o LN L VYIS b VYINA 0L vYIN >
1 Y
IN‘Holg
L-NO'VINA L OVINS iid
< 00VINS
follwly
[1-ulfwld [wlo [ofiwlo
G095 (INIXImD)
23IL

709
(XD
VIl

Patent Application Publication

SIGNED
SOURCE 1
ELEMENTS

701

INIT/
PREVIOUS

Jun. 2,2022 Sheet 6 of 43 US 202

2/0171627 Al

3 2 3 2 SIGNED

SOURCE 2

312 0 | 1 —"ELEmMENTS
703

UL\‘ |+l

MULTIPLIER
705

MULTIPLIER
107

RESULT A

709

ADDER
m

4

ADDER
713

ITERATION

RESULT

715

FIG. 7

Patent Application Publication Jun. 2, 2022 Sheet 7 of 43 US 2022/0171627 A1

SIGNED 3 2 3 2 SIGNED
SOURCE 1 SOURCE 2
eLemenTs Lo | 2 L~ EEENTs
801 l $ ‘\\ l l 803
MULTIPLIER MULTIPLIER
805 807
INIT/
PREVIOUS
1
RESULT™ |
809

*YV

ADDER/
SATURATION
813
ITERATION
RESULT 3
815

FIG. 8

—
-
7 n———
m m mv_u_ 616 11NS3H
~
y—
=
S
8
Q
7 —
=] JAYS
y3aay
s i Gl6
S 1INSHY/LINI
S
g
7 313
~ dq3aav
8
Q
2’ Q
=
=
J
116 606 106 G06
34NN 34NN S3ANdILTINN 34NN

L1t

_ _ 106
SINIWIT3
€06 -~
siNawsls — L&l el tio 0|+]| z|c¢ | 304N0S
Z 304N0S QANDISNN 0o 1 T ¢ 0o 1 7z ¢ danNoIs

Patent Application Publication

Yo
«
Aﬁ“ [] PrT——
2 0l 'Ol T[0T LINS3Y
-
S
(o
8
(o]
[99] U
= £107
NOILYYNLYSH3aay
[a]
=) (1INSTYH SNOIATH/VILIND
- §I0T € 309N0S QIONIS
3
=]
[90]
&
< 101 6007 7007 0L
» Y3NdILINN Y3NdILINN Y3NdILINN NEREIRNL
= a A A A A I
=
S
=
=
[~™
=
S
b
= €00} 1001
= 2304N0S z v 1o o 1 11 z 1 ¢ b +308N0s
= Q3aNDISNN g3aNoIs
=
o r ¢ ¢ 0 } Z ¢
g

Patent Application Publication Jun. 2, 2022 Sheet 10 of 43 US 2022/0171627 A1

ACCUMULATOR 2X INPUT SIZES 1101

SOURCES BITS g ACCUMULATOR BITS
BYTE 8 WORD/HPFP 16
WORD 16 INT32/SPFP 32
SPFP/INT32 32 INT64/DPFP 64

ACCUMULATOR 4X INPUT SIZES 1103

SOURCES BITS S ACCUMULATOR BITS
BYTE 8 INT32/SPFP 32
WORD 16 INT64/DPFP 64

ACCUMULATOR 8X INPUT SIZES 1105

SOURCES BITS ACCUMULATOR BITS
BYTE 8 INT64/DPFP 64

FIG. 11

US 2022/0171627 Al

Jun. 2, 2022 Sheet 11 of 43

Patent Application Publication

(34
AHOWIW

AN E
— ;
o Lo
P42 GOz} 102V “ AYLINOYID |
AHOWIW Z 3400 N 3400 | SNOILY¥3dO "
“ XidLvn |
(144}
N ¥3TI04LNOD
AHOWIW
svel f
ONIY
T ————
| AMLINOHO | Loddns | Tzt
| SNOLLY¥3dO | — DA 03400
RN £0cl
o | L 3409

(3443
L 43110HLNOD
AHOWIW

=
~
S . (i) S S 7T
= ¢l "Ol4d — EZEl 1ZeY
= EIET | AULNOYO ALINAYI LN ARLINOYHID
- JHOYD < $S3D0Y QNISMOLOIA TS SNOILYY3dO
m AHOWIW X1 Ly
o
& TTET AMLINOYIO NOLLAD3XS
[70]
= ﬁ 0
g g
cm Gie T1E3
~ ST HILSIOTY WOISAHd LNO¥D
— % ANINEHLTY
2 i
[-?) U
= 60T
AHLINOYIO ¥3TNA3HIS
i f
&
~ T0ET IWYNIWILYI0T
=
=
J
m—
|
| SO MAEEV €07] wo%,a
|
. 3C000HOIN M AMLINOMIO JA00IAHONYYE NOLONYLSN
L | -

06EL
8400

Patent Application Publication

=
8 . — f.
2 A0 E - 1A Jraz}
S T | | AULNOHD AYLINOHIO
S JHOVO $S300V SNOILYY3dO
S AHONIN XIMLVW
(o]
% TIPT AMLINOYIO NOLLNOIX3
N |
S
° STH]
— 3714 ¥31SI93Y T¥OISAHd 578
g % _ LINOYIO ININIAILTY
=
- 5071
3 AYLINOYIO ¥IINAIHOS
: f
o
g 07T IWYNI/ALYOOTV
py
=
=1
= T -
<
} S
=
£ “ 3A000HOIN “ AYLINOYIO JA00FWHONYYE NOLLONMLSN]
=
S - 3
Nt
<
=
&
< AN
£ 061
£ 24070
[~%

Patent Application Publication Jun. 2, 2022 Sheet 14 of 43 US 2022/0171627 Al

A A Ag
A= Ay An Az

ADDR VALUE ADDR VALUE
0 Ass 0 A
1 A 1 Az
2 A13 2 A12
3 Ass 3 Az
4 Az 4 Ais
5 Az 5 Az
ROW MAJOR COLUMN MAJOR

FIG. 15

US 2022/0171627 Al

Jun. 2,2022 Sheet 15 of 43

Patent Application Publication

91 'Ol
3LVLS LINIOL STTIL NaNLTY / 3SVITRIT L

d007 ¥3LNO 40 aN3 /4

LWL 'W+OY+ISY THOLST L

AHONIN NEXIYLYIN O IHL 3LvAdN # OWINL 1GY+SY IHOLST UL

d00T 3Nl

LIS dIND

% M aav

LYot 0Ly aav

d007 40 3AISLNO NMONY SLNYLSNOD Ag SHIALNIOC 3LVAdN /3 '8d Ady
0 40 UL LHOM JLvAdN // SANL TWINL LWL SdYINNL

UL LSONLHON LX3N WOYH4 8 HLIM Q30v0T LOHS // N+LLE+0LY 'SNNL AYOTTIL
0 40 3L 1437 31vadN /7 EWNL TWNL "OWINL SAVINL

g8 40 QVO1 Q3ARLS St LIYS / LIY+01Y "ENNL VO TIL

MLSNI VINNL T W04 43SN3Y 'Y 40 QY01 AIAIILS SITOYS // 64+8Y TAINL AYOT13TIL

:d001

0 ‘Y4 AOW

N NOISNIWIQ QWIS NI ONITIOUNN ‘0 40 3L ONOOIS /f N+OH+SH 'LNINL QYO T3 IL
SYH 1QY *0 0L SINIOJ 1S *LSADYS / 1aY+SY ‘OWNL QvOT13 L

1

(NMOHS LON) ONITIL IHOVD IHL ONIAINA S400T HILNO INOS INNSSY //

[xvul 914NOOF L

£094 1091
9

o s

Patent Application Publication Jun. 2, 2022 Sheet 16 of 43 US 2022/0171627 Al

CONFIGURE USAGE OF MATRICES (TILES) 1701

'

LOAD AT LEAST ONE MATRIX (TILE) FROM MEMORY 1703

!

PERFORM AT LEAST ONE MATRIX (TILE) OPERATION 1705

!

STORE AT LEAST ONE MATRIX (TILE) TO MEMORY 1707

'

CONTEXT SWITCH 1709

FIG. 17

Patent Application Publication Jun. 2, 2022 Sheet 17 of 43 US 2022/0171627 A1

MEMORY 1801 PROCESSOR/CORE 1805
INSTRUCTION
EXECUTION
RESQURCES
TILE DESCRIPTION 1803 1811
-
TILE
CONFIGURATIONS 1817

PALETTE |} REGISTER(S)

DATA TABLE 1813 1819

FIG. 18

Patent Application Publication

Jun. 2,2022 Sheet 18 of 43

PALETTE ID 1901

STARTM 1903

PAIR INDICATORS

STARTP 1905 1907
0 0
0 0
0 0
TMMO ROWS 1913 TMMO COLUMNS
1915
TMM1 ROWS TMM1 COLUMNS
TMM15ROWS | TMM15 COLUMNS

FIG. 19

US 2022/0171627 Al

Patent Application Publication Jun. 2, 2022 Sheet 19 of 43 US 2022/0171627 Al

REGISTERS 1819
TMMO CONFIG
2001 SR
STATUS
TMMN CONFIG -
0 STARTROW 2013
FIG. 20(A)
REGISTERS 1819
TMMO ROW TMMO COL.
STARTP 2011
CONFIG 2021 CONFIG 2023 ST
2015
TMMN ROW TMMN COL.
CONFIG CONFIG STARTROW 2013
FIG. 20(B)
REGISTERS 1819
TMM CONFIGS 2031 STARTP 2011 | STARTROW2013 | To10S
FIG. 20(C)
REGISTERS 1819
TMM CONFIGS 2031
STARTP 2011 STARTROW 2013 STZ’ggS

FIG. 20(D)

US 2022/0171627 Al

Jun. 2,2022 Sheet 20 of 43

Patent Application Publication

Vi¢ Old

A y0T¢C 0T1¢
i 611¢ " € £131n041) [Ainoup) = 93EI01S
“ R apodaQ Y3394 opoe)
p Wy 80TC
" 0243y AJ3noaD uoinIaXxX3
A H A
! o S
viic ” 9ITC Jayn "
8717 sia1siday ¢ w m - % ...m... /
Alowapy
Y 001¢

g [y ey |

“ 7ITe OTT? “

1 Adpnouan AJnoa) 1

i i
> ssatdwo) ssaadwodaq |,
§ e i pae—— !
aiore J101¢ g101z V101lc
uo11e30] wiyiii08)y uo11e207 & 5594dW0d9QaRL
{wow fapy/3s4)] ssaudwooag f{waw /3 / 884) + SSRadwoDaL
32in08 /ssaadwio) uoneuiIsag apoodQ

T0TZ uononisu| ssesdwoosqy/ssaidwonal]

US 2022/0171627 Al

Jun. 2, 2022 Sheet 21 of 43

Patent Application Publication

0000 070049,8

0000 T0004.8

10710 00109,8

0001 07004.8

0000 100049,8

0100 00104.8

1010 07009,8

QIOIOO|O|O|O|O

olo|ojo|ojo|O|e

QOO0 (O|Q|C|C

QOO0 (O|Q|C|C

Q- |O|O|O]Z|O O

olojojojojololo
olwlo|jo|-|Z|olo

<L{DO|IQ|T |~ Ix

0000 001049,8 J

v8cle
SJUBWID|T XUIBW

Z1¢ uoileuiysag Uw.u.mw;arcou

g8¢ic
SUONISOd
019Z-UON

g1Z¢ "9l

Alnoay
ssatdwo)

9ll¢

ARnoan uonnoaaxy

OIOIO|HOIOIC

olujoljojoiziolo
olojglojojojolo
olwiojojoiTiolo
ojojojajojoi-io
olmijolo|Tiojolx
gjojviojol—-jojo
ojojojojojojoio

o

vle
92In0g passaidwossg

0c¢te

acctc

(waw / ay11 / Bau)
uoneaot
324n0S§
passasdwaodag

Wy08lY
ssaidwo)

44 %4

{waw / 8y / 881}
uoneIo]
uoizeussag

passaudwo)

+ SSaudwodayiy

apoadp

Ze L2 uononnsuy ssasdwonsii|

US 2022/0171627 Al

Jun. 2, 2022 Sheet 22 of 43

Patent Application Publication

0000 070049,8

0000 T0004.8

10710 00109,8

0001 07004.8

0000 100049,8

0100 00104.8

1010 07009,8

s fol (o} (o} lo} o} e] {a]

Qlojojo|ojo|o|o

(Sl iyliellelie]lle}le] o]

L ZIO|0|00|O|0

Vilxlololojojo|o
wiSlolojojo|olo
o|l—-jlojo|ojojo|o

|~ |O|O|O|O|O|O

0000 00704.8 J

veele
SjuSWS|g XUIBN

€T ¢ uolleunsaq passaudwo)

d8cic
SUONISOd
019Z-UON

J1Z Ol

Aynoan
ssaidwon

9tT¢C

Annoan uonrnlex3

QIOIOIHOIOIO

O jOIOIOIZI010
QIOIGIOIOIOIOIO

olwioiojoiZiolo

OIOIOIOO OO

0

OiNIOIOIT OO

<OV IOIo—{ojo

OO0 OO0

92In0g pessaldwoosg

0€1¢

acetle

(waw / 313 / Bau)
uoi1L207]
92unosg
passasdwaodag

wy0B)yY
ssaudwo)

qcele

(waw /8y / 8au)
uo1Ed0]
uojleUNSag

passaJdwo)

+ SSaudwodayiy

apoadp

Z€1¢ uononnsu| sseidwonsii]

vele

US 2022/0171627 Al

Jun. 2,2022 Sheet 23 of 43

Patent Application Publication

€9-9S

Q5 8Y

Ly-OF

6¢-CE

TE-vC

€91

S1-80

o{ojojoioixiolo
glolojojrjojolo
Niofwlojoloftifo
ojojol1iolHlo]o0
ofolojoiajololo
oiolofoiojoldlo
jiol3afojofdglolo
pjojojojojolv]o
8vic
uoneunsaqg
passasdwioseq

ai¢ "o

2712 uononnsuj ssesdwoossdalil

-
¢ [volvolvolvolvalvolvalvslvalvalvalvolralvoles] X
v9 v9 ¥9 vo|vo|vo v9 v ivolve | vo o valva|1s] ¢
V9 v9 | v9|v9|vo | v9|v9 | va|vo | vS Zb] N Sy | N | 1] |
YA € y vo|va|va | vo|vo|vo|ve | valvo v ve v9}9E] 1 |vE| H
AN N volvalvalvalvelvalva | valvalvalvalvaiveiveizz] G
s volvalvalvalvolvolvolvaivalvalvaivaiez) o {21] 2
ssaidwodaq v9 9 vo|volvolvolvolvalrolralst] 4 {€1| 3 (01| 8
ww y T _ |79]v9|v9|v9|¥9|v9|vo|¥9]v9|v9|va|v9|va | v9] I | ¥
[24%4
e 901N0G
Svic passauduion
Apnoa) uo1Ndaxy
ovic
azviec Fevic gevie K4 414
{wswi / ay11 / 8a4) {waw /a3 / Sa4)
uoeIo] uocHedo] » Ssaidwoagayiy
324n0s WyILo gy UoNIeUNRSI
passaadwon ssasdwodag passasduwionag apoado

31¢ Old

US 2022/0171627 Al

9)

X 0861¢

X | Aleuonoig

)

4 XIx[x[x[x]og]x]x
. XxPxix{x|x{gltx]x 0000 0100498 wamﬂm“xm
N x{elx]xJo]x]x]x}] | 0700 100049,8 YA E 2
S x x| x]o|x]te xix
=) xfxlelx{x{xjelx 0010 00109.8 A (€ A X1 x| x| x X{xix
M xfxixl{elx{olix]|x 000T0T009.8 AUNDAD - 2
= x| xIx|x]glx}x|x}| | 0000 100098 ssaidwo) V.Ame X H H X w H
m xlolx{x|x{xtelx 0T00 0010498 mexmxxm.x
N oixlelx|x{eltx]x 1010 _07009.8 B
o X| X[X|X|X|x|0]X 0000 001049,8 - vaic
S TEET? 6CTe 82IN0g possaldwoss
~ g89l¢ AJjinaar) uonnaaxg
. sjuswia|3 XuUje Areuonoiq asn
=
=
J
8GTZ uolleunsag passaidwo)d 124

g
ﬁ
<
2
w azsic 3751¢ §75T¢ vesie
-
= {wow / a1y / 8a4) {waw /o / 8au)
2 uo13ed0T] uo1e207] x Ssa4dwiodajit
5 224N0§ Wwyio8y uoneunsag
.“llu_._ passaidwodag ssasdwio) passaidwo) apoodo
=)
< S
= 2612 uononnsuj ssaudwonaji |
&
]
-

41¢ 'Ol

US 2022/0171627 Al

Jun. 2,2022 Sheet 25 of 43

Patent Application Publication

gl0|0]0|O|T|0f0}T|O|T}|0|0}|0j0O]T .
gjr|ojojTjojojojojofrjojojrjojo
0]0)10j0j0fTj0Oj0}T|0|TI0j0j0j0]O
T]0]0j0j0jojT}0j0|T]|0}j0j0l0|T]|O
[Z Ysewig uolisod Juawa|3 019Z-UoN YA 1
T TS T T T T T T To TN T T Ad3inoan
- -T-1=-1-yr s ssaidwio)
AR REEE
,-E.,-((-,-oum,q ¥9l¢
SjuswIg|3 Xiije
vesle s 13 X14eN 92In0g pessaldwoosg
99T1¢
891 ¢ uoneunsaq passasdwo)d AJ3No4D) UoiNdaxX3
091¢
azsie 3291¢ §291¢ veote
{waw / 8y / Sau) (waw /a3 / 8a4)
uonesol uoeI07 « penypsssidwodaji}
324n0g wiyyody uonEeLIISa(
passasdwodag ssaidwo) passaidwo) 3poado
291 ¢ uononiisu| penpssalduwoneli|

US 2022/0171627 Al

Jun. 2,2022 Sheet 26 of 43

Patent Application Publication

ol¢ Old

010|0J010{01}0 i 0000 010098
olololololofo]fr]i 0000 100098
01001} 0 0 NNWA I || TOIO 001048
0{olojo}o]ojmn|nH| 0001 010048 - JU, r—fojojojolojofo]x}0000 010098
010101010101 0G1aq} 0000 100048 mmm‘_.aE.ou 0j101010{0]j01{0] [OOOO£HOODQ_w
0100100109902 0100 007104.8 01010100 {NIN] I {1010 0010498
01010101 0]14413314d9 ﬁOHOiOﬁOOPm ¢ A 01010101 0{01T1|H OOOHHOﬂOOQ_w
0101010101010 {vy}f 0000 001098 _J URRHD 0101010(010{0]C Oooos;ﬁoocn.w
N do ie21807 0]101010]0{0}1D[2{I0T00 007048
valilz g8lle 10 2RIy Y 0l0{0j0|0{313]81iT010 0T00%.8
SJUBWBIT XIIBN suolisod < __llojojofo[ofn|o]|Vv}0000 001098
01ez-UON Ju Iz aviie
ss31d110733 sjustue(g josleg
R T ¢ uolreunsaq passasdwio) ey OJBZ-UON
CYAY4
Asnoa uoIINIBXY HL1¢ 224n05 passasdwio)
EY AR FITT azzie 32LTT e velle
(waus / a1 / 801) (woui /oy / Bau)f| « S524dwOD O
do 21807 uoI1eI07] uoRE0] ssaadwodsg a|iL
w08y i 224n08 W08y UOIIBUNSAQ
ssaudwio] BUIYIY passasdway fssesdwosagl] passsudwior 3poado

Zl1Z¢ uononysu| ssaidwondossaiduoosge|i]

US 2022/0171627 Al

Jun. 2,2022 Sheet 27 of 43

Patent Application Publication

ofojofolopmifolo ,
ofojojolm]jofolo A
NNjOfwwjojojolnio AUNDUID
0j]0}0{T1{O[HHjO]O v* ssaidwodsq (0jojojojojxjo]loO
gf{ojojojaqjojo]o mw_w,_wmmﬁ_uw
ofoolojofolofx]o
4] of33]olofagfo]o do jesi807 A|A 0]0f{0|7]0JH|01O
ojojojofojojwlo}l J 40 wwmmwmww
TV A D13BWYI
8eTe itk TTo3Tololalolo
uoneunsa(. \../0]ojolojo]ojv]o
passaldwodag Anaan
ssaidwo) v8l¢
804n0g possalduwioss
981¢
Aqinoan uonndsx3
081¢
3C8TC JC8TC [e14:344 J¢81¢C g¢81¢C vesic
{waw / 311 / 8a4) {waw / 3}y / 834) + 5534dwo) dO
do {ea18071 uoneso] uoies0] ss21dw033q 3)iL
wypo8y 30 224N0% wiyyIo8)y uoeuNSag
ssaudwio) aewyy || passaidwonag ||ssesdwonag)| passsidwosag 3poddo
Z281¢ uoponasu| ssaidwoossgdossaiduwions)|

HiZ "Old

Patent Application Publication Jun. 2, 2022 Sheet 28 of 43 US 2022/0171627 A1

FETCH, USING FETCH CIRCUITRY, A COMPRESS INSTRUCTION SPECIFYING A COMPRESS
ALGORITHM AND LOCATIONS OF A DECOMPRESSED SOURCE MATRIX AND A COMPRESSED
DESTINATION MATRIX
2201

i

DECODE, USING DECODE CIRCUITRY, THE FETCHED COMPRESS INSTRUCTION
2203

i

RESPOND, USING EXECUTION CIRCUITRY, TO THE DECODED COMPRESS INSTRUCTION BY
GENERATING A RESULT MATRIX REQUIRING FEWER BITS OF STORAGE THAN THE SPECIFIED
DECOMPRESSED SOURCE MATRIX BY EITHER PACKING NON-ZERO-VALUED ELEMENTS OVER ZERO-
VALUED ELEMENTS OR REDUCING AN AVERAGE BIT SIZE OF MATRIX ELEMENTS BY REPLACING
ONE OR MORE FLOATING POINT VALUES WITH DICTIONARY POINTERS TO A LIST OF FLOATING
POINT VALUES, EACH DICTIONARY POINTER COMPRISING FEWER BITS THAN ITS ASSOCIATED
MATRIX ELEMENT
2205

FIG. 22

Patent Application Publication Jun. 2, 2022 Sheet 29 of 43 US 2022/0171627 Al

FETCH, USING FETCH CIRCUITRY, A COMPRESS INSTRUCTION HAVING A FORMAT WITH
FIELDS TO SPECIFY AN OPCODE AND LOCATIONS OF DECOMPRESSED SOURCE AND
COMPRESSED DESTINATION MATRICES
2301

'

DECODE, USING DECODE CIRCUITRY, THE FETCHED COMPRESS INSTRUCTION
2303

'

RESPOND, USING EXECUTION CIRCUITRY, TO THE DECODED DECOMPRESS INSTRUCTION BY
GENERATING A COMPRESSED RESULT ACCORDING TO A COMPRESS ALGORITHM BY
COMPRESSING THE SPECIFIED DECOMPRESSED SOURCE MATRIX BY EITHER PACKING NON-ZERO-
VALUED ELEMENTS TOGETHER AND STORING THE MATRIX POSITION OF EACH NON-ZERO-VALUED
ELEMENT IN A HEADER, OR USING FEWER BITS TO REPRESENT ONE OR MORE ELEMENTS AND
USING THE HEADER TO IDENTIFY MATRIX ELEMENTS BEING REPRESENTED BY FEWER BITS, AND
STORING THE COMPRESSED RESULT TO THE SPECIFIED COMPRESSED DESTINATION MATRIX

2305

FIG. 23

Patent Application Publication

Jun. 2, 2022 Sheet 30 of 43 US 2022/0171627 Al
TileCompress Instruction 2402
Opcode Compressed : Compress : Decompressed
Destination i Algorithm Source
TileDeompress * Location : : Location
{reg / tile / mem} : : (reg / tite / mem)
i t
1 }
24024 24028 [t 2402¢ M| 24070
TileDecompress Instruction 2412
Opcode Decompressed f —D-é;o?ﬁ-;a;e;s- -i Compressed
Destination } Algorithm Source
TileDeompress * Location : : Location
{reg / tile / mem) : ! (reg / tile / mem)
' 1
2412A 24128 : 24312C : 2412D

TileDecompressOpCompress Instruction 2422
Opcode Compressed {iDecompressj Compressed Arithmetic Compress
Destination Algorithm Source or Algorithm
Tile Decompress Location Logical Op
OP Compress * ||{reg / tile / mem) {reg / tile / mem)
2427 24228 2422¢ 24220 2422€ 2422F
TileCompressOpDecompress Instruction 2432
Opcode Decompressed }{Decompress}] Decompressed [} Arithmetic Compress
Destination Algorithm Source or Algorithm
Tite Decompress . . Logical Op
OP Compress * {reg / tife / mem)} {reg / tile / mem)
2432A 24328 2432¢C 2432D 2432¢ 2432F

US 2022/0171627 Al

Jun. 2,2022 Sheet 31 of 43

Patent Application Publication

b " Torz | vz | 8% | I @ Y) -
15757 gyl o et ol Shdl oz | omzamy |z oo | FOz e | e ez |
(S1vigai oy | ewes | vzoge 10T36) NOLYININVIY | 0BG SS300Y) a8 hollvaiaol, a2

_ | VHOdNELNON
R .\ _).\ - SSF00Y AHOWN -
. 05T | weT |, — W | 0% | mo
17757 a1313| a4 e o ausd | Tazeee ey 3SE | g | gag | R
ISLVIQIAAI| ISV | Wewai3 v id THONALY SSY10 | Sanon | X3ANI INOLLYNIO
| _[Buuw ®% X A "larsiozy] 3sva

_

_ T | | S22 TVH0dAL 2sz

| AIw HZ*I | SS30IV AHOWIN 85300V
f——— — . NOLLON3 ~ _ AJON
L 05z | ag VoW | 75SC 72 | e |]
Y Aeg ER OEE] I Y-l I R AgE R z%ommmm%wm VBOSZ | SS300vV| am3id | a1an %mm_
LvIcENAI SV EnaTa WHOFSNYaL v1va "G SSV10 | Ao | XN INOILY340), G,
: UMW viva N Jd3Lsio3y| 35ve 1elO:

| _ o SR
q - TATNS RAAT S\

V950 85z a3l | 995 —
| g | 926 | G NOILYS3d0 | 413 <$mm) Wl | 3% | g |
Esm%z SSv] LAy ONOH 3vs | TVEEer IVB0Gz vl $8300V | dnad | A | aaan

INGWTT T ONNOY | SSVYTI0 |AMON3W] X3aNI INOILYY3dO
] JLMM Vyeag d131d VN0
b vivad T0HINOD ANAOY | ” _ON_juisiony] 3sva PR
w A | 10162 "d0 3dAL THIND ONNOY 5052
05z L1103 &wxwﬁmﬁ@m “ EEETY , | TIN4'SS300V AHONSN ON S8300%
| _ _ | | ON
{)
=T =T as T e — —
e AR LA . —— 0% | - -
7767 1314] SBs et ol 4 o dgial 0952 | 755 anand vz cisc T3E) gy | % NI LT
I3LVIGENAL) sepy | WeWR3 ™ Gpey |1 ssy10f 14 | yaay INoiLvedo| 3131
_ app | Be0 | IG5 99 5657 71314 NOILYHAd0 NoILYINTWOnY [933I00M I gioayl T agve (VIO
———- 7 S — V152 : * A .
1314 300040 TIN4 v&Z Ol

Yo
O i P 7 A |)
e~ 052 BRI p— oA Ry A . e | 7HC T2 | e
& 7757 1| o | 0134 |9 dsig) e | TR 8 B Voo cralemers of B | ST | GG | 9
= I 1viqanniysva | O 1 orars 1O youar | 1svo | IOHINGS Foowin] SS309VI xaaNI INoiLvaadol, T3
= ! N sl FTYOY Jowen | dvods) Vuasioqy| 3svg [YWHO4
S~ o o o — —— — —— —
X | | _ | | P 1752 0282
= OWMOOYNIN 88300V
2 , | _ _ _ _ AHOWIW
= | | _ | | f
| _ _ | | _
@ | ~ _ . u _
= , _ _ | | |
~ | | | : i |
n X |
b ——— — | | P { .
g R p— e —
E _ 0157 86557 s Vovse | e W2 | e
2 I aan| ol Sam] peid flzvrgee % ABeese ol ss3oov | g | g |
. JULVIGIAWIISYA | NG T3 9puo1 f1°3218A bzl SSYO [ASONIN). XIANI INOLLYAO0) iy
X " 3L viva 101097 J__ON_ judisiozy| 3eva [FYNEO
Q ———— | |) ! | | 1167 dO JdAL
o _ | JZISA “IWM “D0Y WaW ON
P —— e | | | _ .
u ettt N) "
= N ~ ~
L 0052 VB55? e Vorsz | BT T | e
ZaEulaEd Sam L] ped TS ozt A lamaez gl ss300v | @134 | aai %ﬁm_
- EIET ST TR uonesedofl ONY Jl, oS hgd SSYT0 | AHONEW| X3ANI INOILYYEdO] Jiaia |
E F UMM viva punoy ___A_ON_judision] 3sva
5 —-—= _ ! | . | 215740 3AAL THIND ONY — 2
= | vigsz | _ IL¥Vd “OWM “O0V WaW ozmwmow<
= 0052 LYWHO4 NOILONMLSNI a3 181 ! |
, AHOWIW
- ATONZIY4 HOLDIA OINTD m * | | on
= l o e e \
= | U e, I 89¢6¢
£ 7%z il 895 | —w | %% e | e
g I7757 araia | o o o 7z A vaze | 0Bl agi | o |G | g e |
= |3 LIV ISYIN| 1WoLesd — SSY IO 4 o ol XN INOILYHIAO v |
< | =TT I 0652 Q1314 NOILYYIdO NOILYINIWONY REI Y B
= -) b1 . 3 -
m 7314 3002d0 TIN4 457 ‘914

US 2022/0171627 Al

Jun. 2,2022 Sheet 33 of 43

Patent Application Publication

997 'Ol4 | 0£9z 01314 3080940 I 6797 01314
evac ONIGOONT
@134 NOILYE3IHO 38VE yi433g
AMAAALALALA LA] f]wjidw] {afd] (2ol
%
%9 9 QEEMA opez 9592 h
mS M\w o 7952 Q314 HLAIM
_ 44 AJATATA W/ O3y _ AL 18X INIWIT3 YLYa ovez a3l
P¥ez 0314 XIONI 43LSIO3Y
G192 dYW 3009dO LVIE04
29¢ Ol .
FI5Z 01314 300040 TIN4
009Z LYINO4 NOILONYLSNI ATONZIYS HOLOFA OI4|03dS
‘ N A9 GINALLINA ST HOIHM 5797 A3 K
¥OL0V4 INFWIOVTASIA 3HL AINO SATOH 0457 ANIGOONT
108 'N,8dSi0 SY OL a3HN3ITY (10=COW NIHM e X435
N:8dS10) 82957 Q7314 HOLOVA INIWIOYIdSIa MSYIN LM 2552 5197 0vSz 1314
25e 0597 [09T 0E9% s oo s A0S
| Rkl | G314 300040 TY3Y | 0297 G734 AMA | 30000 X3y | qv
—-— e e I _ -
et latalalay ais il wet aow JATATATATATATAT AR] Al 6 Te o o) al afnf Al AfAT ATl]][]l a] x]u zoxo
FI%IL. . | | C _
(0L=COW NIHM 2£dS1Q) | | ¥552 |
V2992 413id wzmﬁmoﬁmwa a3 <.WWMN - 0192 X3y
w55 | Tegs | 7597 ovz | ¥¥9C | Zvoe || 049 X3d ¥952 Q1314 HLAIM
o | e ‘s WM | 934 | QOW SSY10 INGWE3 V1va
g 59 L ¢ Y L« 2092 X1434d X33 <
31A8 8IS 3LA8 W dOW | V9Z 'Old

Patent Application Publication Jun. 2, 2022 Sheet 34 of 43 US 2022/0171627 Al

FIG. 26D CLA%%@)%IELD ALP%\SEIELD BETA EIELD 2554
N =
AUGMENTATION OPERATION FIELD 2550 (T 5TETE
mS MOD FIELD 2642
FIELD 2552A [a|B|B|B 11 RS/"G BIB[B
ROUND2552A.1: : : : | F’ELDZ552A: : : :
S&1rznm | /0828180
I
2556 / L.Y_J | DATA
TRANSFORM e
ROUND OPERATION FIELD 2558 | 25502
. i DATA TRANSFORM
U=0 ROUND CONTROL FIELD 2554A | | FIELD 29548
MOD FIELD 2642
T s 8] [0]or[od OR10|
T 75624
I N
EVICTION [eH['s; [s:fs0|! S8 I, D} DYDY D
HINTFIELD Lol 2> 1™ . 1D}y Dy
25528
2650 2562B
DATA MANIPULATION FIELD 2554C
MOD FIELD 2642
BIBIBNRL [11 BIBIBN RL
T T FIELD T T FIELD
L1 | 2557A | | | 2557A
WRITE |
MASK "0 roun | ml bl Il Qe
CONTROL < \
e) T2sE7AT | ™ 2557A2
25526 o ROUE N | VECTOR LENGTH FIELD
1| FIELD 2559A | 25598
U= MERGING —_[;
= MOD FIELD 2642
A L 00|0R[Q1]OR[10
1 T T71 2562A
| 114 p—‘h‘—q
LiiLlo q L..SB llDllDllDllDl
v 2650 25628
FECTOR LENGTH BROADCAST FIELD 25578

US 2022/0171627 Al

Jun. 2,2022 Sheet 35 of 43

L¢ 9Ol

Patent Application Publication

2

0y

siig 9
G172 sieisibay yse Sl

0642 314 H31SI193Y Lv1d

HIODILINI 3IAOV XWIN
m‘:mgrv@

]

7 [
i

i

|

aasviv

~

{

!

i

siig og
(d448%)
57k 4
A4 HILSIDTAYE MOVLS dd HVIVOS

lwiz
Slig 9s¢
> Y

ﬂm:m 8zl

Shiux ShugA

Owiux OwiwA Owiwz
ﬁ Y

s11g215
0172 siesibay Joj00A
Silig ¥a X ol

Gz 12 siesibay esoding jeisuen)

00£¢ FUNLOILIHOYY ¥31S103d

US 2022/0171627 Al

Jun. 2,2022 Sheet 36 of 43

Patent Application Publication

— ——

b
74/

{ LIAWOD

UR || I
1INA LINM FHOVD Viva 0752 LINA
™ 3Hovo 3787 AOWIN
A LINA §1L Y1V
) K
¥ 09982 (S)431SN10 NOILNO3XT
Wee I J— -
(SIUNN (Nv@mm
$S300V SILINA
r|.~|> [
8557 (S)LINN STT14 ¥ILSIOTY TYIISAHd
A - .
= ¥58¢ 4a82 9ld
G8¢ (S)LLINN ¥3TINATHOS LINA LNSNENILLEY
78 LN 4 0%8Z LINN
HOLYOOTV / SNVYNIY INIONI NOILND3X3
— * 0%8¢
%82 LINN 300530 1IN GNT LNOYA
A
[BEBZ HOL3INOLLOMMISNI | /
- i 068Z 340D
9582 LINN 8711 NOILONYLSNI 7682 1IN
> 582 LINN IHOYD NOILONYLSNI NOILOIOTHd HONYE
v8¢ Ol
I 8187 7182 T T T T T T
wzww%% JLUM T avad adowan Ziee orsz | goee | 90wz ozmumwmo 7097
NOLLdanxg] AHONEW | 39¥18 31N03X3 jav3d | 3INa3HOS IONINYNIY 00 TIV|30003a poay [T TEE
i O ET Maglomx™ | L 1

0082 INMEdId ~——

US 2022/0171627 Al

Jun. 2,2022 Sheet 37 of 43

Patent Application Publication

V9062
IHOVO Viva i1

L

2062 |
MHOMLAN LOINNOOYILNI

:

Y06¢
dHOVO 271
dH1 40 1359dNS VOO

906c
FHOVO 11

'

S144:14 Veiee
LHIANOD LHIANOD
OR3NNN OI43INNN

vi6c

SHILSIOFY

HOLO3A
Pie]

Y
0c6e (244

ATZZIMS ALVOd3d

vi6c
SHILSIDIY

HOLO3AN

clbe

SHILSIDIY
HVIVOS

vhe |

8C6¢
N1y JOLO3A FAIM-9L

]

9¢6e
SHILSIOTY MSVYIN JLIdM

g6< "Old

D

—

olee
LINA
HOLO3A

8062
LINM
HVIVOS

Ly |

006c
3A0030 NOLLONYLSNI

V6

¢ 'Old

Patent Application Publication Jun. 2, 2022 Sheet 38 of 43 US 2022/0171627 Al

PROCESSOR 3000
| SPECIAL | CORE 3002A | CORE 202 | SYSTEM AGENT
PURPOSE ——— | UNIT3010
| LoGIC 3008 | | CACHE || CACHE |
‘ T uNTE) e unms) | BUS
; 30044 : | 300N M — — ——— | CONTROLLER
| - T T {1 INTEGRATED f uNiT(s) 3018
| SHARED CACHE UNIT(S) 3008 {I MEMORY
{ be—m—m T _ | CONTROLLER
, | NTERCONNECT RETWORK 3012 | UNITIS) 2014 |

Patent Application Publication Jun. 2, 2022 Sheet 39 of 43 US 2022/0171627 Al
3115
3100\ R —— 77
| — — —/9 _— 3110
~ l'_ —1PROCESSOR|{™— T 7]
| — 3195
| _— 3145 / | _— 3140
| ‘ CONTROLLER
CO- ‘ HUB 3120 MEMORY
— ;—r‘“““ S— S e —
| PROCESSOR I GMCH 3190 ‘
. J .
|
3160
—~ l— L
/o i IOH 3150 |
, |

FIG. 31

US 2022/0171627 Al

Jun. 2,2022 Sheet 40 of 43

Patent Application Publication

— ¢¢ 9Old
(1443 0878
PUe 3009 | s3omaa | 3snow
JOYNOLS Lact WINOD ceee JOUYOFAIM
F 022¢ —\ h i
[S¥43 [744 2% 81ce
¥0SSIN0Yd o/l olany $3IA3A O/ 390149 Sne
9i¢¢e I\ ﬂ _ _
96ze —— 4l 2675 —1 A4/ _ T4
o676 — drd 0625 13SdIHO JES _%mmm_oo%oo_
628 — —_———
pSZE 2628
]
087¢ dd d-d d-d dd 077¢
9878 — 99Z¢ A\ \ /l [9/Z¢
8/2¢
0528
— 7828 Ut —
NI NI
¥E€e F44%
AHOWIW AMOWIN
HOSSIN0OHd0D
/408S300Yd HOSSIN0Yd

/8% wejshg

US 2022/0171627 Al

Jun. 2, 2022 Sheet 41 of 43

Patent Application Publication

veze
AHOW3N

14343
AHOWAN

€€ Old
GIEe
O/l AV
062¢ 9678 —1 1
13SdIH
86z¢ —1 dd 0 y6¢ ——1 d-d
vzt —1 y 25— y
S
087c d-d d-d dd d-d 0iz¢
9826 — goze — \ \ L gz
81Z¢
062¢
£ 7868 e —7
10 10
¥0SS3I00d HOSSI00Nd
e |
| s3oiA3aon

—e ow—— o—)

/ 00€€

US 2022/0171627 Al

Jun. 2, 2022 Sheet 42 of 43

Patent Application Publication

VIO (S)LINN
7 — 0E7E ¥3TI0HINOD
uNn Avidsia | | SPEENIYAGE L e s AHOWN
Q3LVHOINI
910¢ (S)LINN T L
ST | ZOT(OUNNL10INNOOMAINI |-
/ 7
=== =
a |
I _
;o 00€ (S)LINN IHOVO AIUVHS
f e T
|t NROOE | VH00¢
I (SILINN | oo - (S)LINN
IN3OY WILSAS | NzooE w00 ! VZ00E 3400

01¥€ HOSS300Ud NOILYOIddVY

027¢ ($)40SS3004d0D

/ 00%€

diHO ¥V NO W31SAS

v€ 'Ol

US 2022/0171627 Al

Jun. 2,2022 Sheet 43 of 43

Patent Application Publication

G¢ 'Ol

20SE IOVNONYT 13ATTHOIH

805€ ¥3NdWOD
138 NOILONHLSNI
JALLYNEALTY

0G€ "3 HdWOO 98X

90G¢ 3000 AYVYNIG 98X

ZTGE ¥3LYIANOD
NOLLOMYLSNI
DIGE 3000 AYYNIG
13S NOLLONYLSNI
THVMILOS INLYNYILTY
FUYMAHYH
Y
Ve FIGE 3OO L3S NOLLONYLSNI
F400 L3S NOILONYLSNI
98X INO LSV 98X NV LNOHLIM HOSSIO0Nd
LY HLIM ¥OS$300%d

US 2022/0171627 Al

SYSTEMS AND METHODS FOR
PERFORMING MATRIX COMPRESS AND
DECOMPRESS INSTRUCTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present patent application is a continuation
application claiming priority from U.S. patent application
Ser. No. 16/934,003 filed Jul. 20, 2020, now U.S. Pat. No.
11,249,761, which is a continuation application claiming
priority from U.S. patent application Ser. No. 16/144,902
filed Sep. 27, 2018, now U.S. Pat. No. 10,719,323, each of
which is incorporated herein by reference in its entirety.

FIELD OF INVENTION

[0002] The field of invention relates generally to computer
processor architecture, and, more specifically, to systems
and methods for performing matrix compress and decom-
press instructions.

BACKGROUND

[0003] Matrices are increasingly important in many com-
puting tasks such as machine learning and other bulk data
processing. Deep Learning is a class of machine learning
algorithms. Deep learning architectures, such as deep neural
networks, have been applied to fields including computer
vision, speech recognition, natural language processing,
audio recognition, social network filtering, machine trans-
lation, bioinformatics and drug design.

[0004] Inference and training, two tools used for deep
learning, are tending towards low precision arithmetic.
Maximizing throughput of deep learning algorithms and
computations may assist in meeting the needs of deep
learning processors, for example, those performing deep
learning in a data center.

[0005] General Matrix Multiply (GEMM) is a common
algorithm in machine learning, and also in linear algebra,
statistics, and many other domains. Convolution is also
commonly applied in machine learning. Instructions for
performing matrix compress and decompress operations are
useful in performing convolution and GEMM algorithms in
a machine learning context.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

[9007] FIG. 1A illustrates an embodiment of configured
t[?}g?);S] FIG. 1B illustrates an embodiment of configured
t[1(}::)?);9] FIG. 2 illustrates several examples of matrix stor-
2[1(%(6):;10] FIG. 3 illustrates an embodiment of a system

utilizing a matrix (tile) operations accelerator;

[0011] FIGS. 4 and 5 show different embodiments of how
memory is shared using a matrix operations accelerator;
[0012] FIG. 6 illustrates an embodiment of matrix multi-
ply accumulate operation using tiles (“TMMA™);

[0013] FIG. 7 illustrates an embodiment of a subset of the
execution of an iteration of a chained fused multiply accu-
mulate instruction;

Jun. 2, 2022

[0014] FIG. 8 illustrates an embodiment of a subset of the
execution of an iteration of a chained fused multiply accu-
mulate instruction;

[0015] FIG. 9 illustrates an embodiment of a subset of the
execution of an iteration of a chained fused multiply accu-
mulate instruction;

[0016] FIG. 10 illustrates an embodiment of a subset of the
execution of an iteration of chained fused multiply accumu-
late instruction;

[0017] FIG. 11 illustrates power-of-two sized SIMD
implementations wherein the accumulators use input sizes
that are larger than the inputs to the multipliers according to
an embodiment;

[0018] FIG. 12 illustrates an embodiment of a system
utilizing matrix operations circuitry;

[0019] FIG. 13 illustrates an embodiment of a processor
core pipeline supporting matrix operations using tiles;
[0020] FIG. 14 illustrates an embodiment of a processor
core pipeline supporting matrix operations using tiles;
[0021] FIG. 15 illustrates an example of a matrix
expressed in row major format and column major format;

[0022] FIG. 16 illustrates an example of usage of matrices
(tiles);
[0023] FIG. 17 illustrates an embodiment a method of

usage of matrices (tiles);

[0024] FIG. 18 illustrates support for configuration of the
usage of tiles according to an embodiment;

[0025] FIG. 19 illustrates an embodiment of a description
of the matrices (tiles) to be supported;

[0026] FIGS. 20(A)-(D) illustrate examples of register(s);
[0027] FIG. 21A illustrates a block diagram of hardware
processing components to use to execute TileCompress/
Decompress instructions, according to some embodiments;
[0028] FIG. 21B illustrates an exemplary execution of a
TileCompress instruction according to some embodiments;
[0029] FIG. 21C illustrates an exemplary execution of a
TileCompress instruction according to some embodiments;
[0030] FIG. 21D illustrates an exemplary execution of a
TileDecompress instruction according to some embodi-
ments;

[0031] FIG. 21E illustrates an exemplary execution of a
TileCompress instruction according to some embodiments;
[0032] FIG. 21F illustrates an exemplary execution of a
TileCompressQuad instruction according to some embodi-
ments;

[0033] FIG. 21G illustrates an exemplary execution of a
TileDecompress-Compress instruction according to some
embodiments;

[0034] FIG. 21H illustrates an exemplary execution of a
TileCompress-Decompress instruction according to some
embodiments;

[0035] FIG. 22 illustrates a processing flow of a processor
executing a TileCompress instruction according to some
embodiments;

[0036] FIG. 23 illustrates a processing flow of a processor
executing a TileDecompress instruction according to some
embodiments;

[0037] FIG. 24 is a block diagram illustrating a format of
various TileCompress and TileDecompress instructions
according to some embodiments;

[0038] FIGS. 25A-25B are block diagrams illustrating a
generic vector friendly instruction format and instruction
templates thereof according to embodiments;

US 2022/0171627 Al

[0039] FIG. 25A is a block diagram illustrating a generic
vector friendly instruction format and class A instruction
templates thereof according to embodiments;

[0040] FIG.25B is a block diagram illustrating the generic
vector friendly instruction format and class B instruction
templates thereof according to embodiments;

[0041] FIG. 26A is a block diagram illustrating an exem-
plary specific vector friendly instruction format according to
embodiments;

[0042] FIG. 26B is a block diagram illustrating the fields
of the specific vector friendly instruction format that make
up the full opcode field according to one embodiment;
[0043] FIG. 26C is a block diagram illustrating the fields
of the specific vector friendly instruction format that make
up the register index field according to one embodiment;
[0044] FIG. 26D is a block diagram illustrating the fields
of the specific vector friendly instruction format that make
up the augmentation operation field according to one
embodiment;

[0045] FIG. 27 is a block diagram of a register architecture
according to one embodiment;

[0046] FIG. 28A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments;

[0047] FIG. 28B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments;

[0048] FIGS. 29A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip;

[0049] FIG. 29A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network and with its local subset of the Level 2 (1.2) cache,
according to embodiments;

[0050] FIG. 29B is an expanded view of part of the
processor core in FIG. 29A according to embodiments;

[0051] FIG. 30 is a block diagram of a processor that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments;

[0052] FIGS. 31-34 are block diagrams of exemplary
computer architectures;

[0053] FIG. 31 shown a block diagram of a system in
accordance with one embodiment of the present invention;
[0054] FIG. 32 is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention;

[0055] FIG. 33 is a block diagram of a second more
specific exemplary system in accordance with an embodi-
ment of the present invention;

[0056] FIG. 34 is a block diagram of a System-on-a-Chip
(SoC) in accordance with an embodiment of the present
invention; and

[0057] FIG. 35 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments.

Jun. 2, 2022

DETAILED DESCRIPTION

[0058] In the following description, numerous specific
details are set forth. However, it is understood that embodi-
ments may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description.

[0059] References in the specification to “one embodi-
ment,” “an embodiment,” “an example embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to
affect such feature, structure, or characteristic in connection
with other embodiments whether or not explicitly described.
[0060] In many mainstream processors, handling matrices
is a difficult and/or instruction intensive task. For example,
rows of a matrix could be put into a plurality of packed data
(e.g., SIMD or vector) registers and then operated on indi-
vidually. For example, multiplying two 8x2 matrices may
require a load or gather into four 8x1 packed data registers
depending upon data sizes. Then the contents of the packed
data registers are multiplied. Then the resulting packed data
registers are scattered back to memory. While for small
matrices this scenario may be acceptable, gathering matrix
rows in vector registers, then performing the operation, then
scattering the rows back to memory is often not acceptable
with larger matrices. Disclosed embodiments offer a better
solution.

Discussion

[0061] Described herein are mechanisms to support matrix
operations in computer hardware such as central processing
units (CPUs), graphic processing units (GPUs), and accel-
erators. The matrix operations utilize 2-dimensional (2-D)
data structures representing one or more packed regions of
memory such as registers. Throughout this description, these
2-D data structures are referred to as tiles. Note that a matrix
may be smaller than a tile (use less than all of a tile) or utilize
a plurality of tiles (the matrix is larger than the size of any
one tile). Throughout the description, matrix (tile) language
is used to indicate operations performed using tiles that
impact a matrix; whether or not that matrix is larger than any
one tile is not typically relevant.

[0062] Each tile may be acted upon by different operations
such as those that are detailed herein and include, but are not
limited to: matrix (tile) multiplication, tile add, tile subtract,
tile diagonal, tile zero, tile transpose, tile dot product, tile
broadcast, tile row broadcast, tile column broadcast, tile
multiplication, tile multiplication and accumulation, tile
move, etc. Additionally, support for operators such as the use
of a scale and/or bias may be used with these operations or
in support of non-numeric applications in the future, for
instance, OpenCL “local memory,” data compression/de-
compression, etc. Also described herein are instructions for
performing tile compress/decompress (TileCompress/De-
compress) instructions

[0063] Portions of storage (such as memory (non-volatile
and volatile), registers, cache, etc.) are arranged into tiles of

US 2022/0171627 Al

different horizontal and vertical dimensions. For example, a
tile may have horizontal dimension of 4 (e.g., four rows of
a matrix) and a vertical dimension of 8 (e.g., 8 columns of
the matrix). Typically, the horizontal dimension is related to
element sizes (e.g., 2-, 4-, 8-, 16-, 32-, 64-, 128-bit, etc.).
Multiple datatypes (single precision floating-point, double
precision floating-point, integer, etc.) may be supported.

Exemplary Usage of Configured Tiles

[0064] In some embodiments, tile parameters can be con-
figured. For example, a given tile may be configured to
provide tile options. Exemplary tile options include but are
not limited to: a number of rows of the tile, a number of
columns of the tile, whether the tile is VALID, and whether
the tile consists of a PAIR of equal-sized tiles.

[0065] FIG. 1A illustrates an embodiment of configured
tiles. As shown, 4 kB of application memory 102 have stored
thereon 4 1 kB titles, tile t0 104, tile t1 106, tile t2 108, and
tile t3 110. In this example, the 4 tiles do not consist of pairs,
and each have elements arranged in rows and columns. Tile
t0 104 and tile t1 106 have K rows and N columns of 4-byte
elements (e.g., single precision data), where K equals 8 and
N=32. Tile t2 108 and tile t3 110 have K rows and N/2
columns of 8-byte elements (e.g., double precision data). As
the double precision operands are twice the width of single
precision, this configuration is consistent with a palette, used
to provide tile options, supplying at least 4 names with total
storage of at least 4 kB. In operation, the tiles can be loaded
from and stored to memory using load and store operations.
Depending upon the instruction encoding scheme used, the
amount of available application memory, as well as the size,
number, and configuration of available tiles varies.

[0066] FIG. 1B illustrates an embodiment of configured
tiles. As shown, 4 kB of application memory 122 have stored
thereon 2 pairs of 1 kB-titles, the first pair being tile 41, 124
and tile t4R 126, and the second pair being tile t51. 128 and
tile t5R 130. As shown the pairs of tiles are divided into a
left tile and a right tile. In other embodiments, the pair of
tiles are divided into an even tile and an odd tile. In this
example, the 4 tiles each have elements arranged in rows and
columns. Tile t4L 124 and tile t4R 126 have K rows and N
columns of 4-byte elements (e.g., single precision floating-
point data), where K equals 8 and N equals 32. Tile t51. 128
and tile t5R 130 have K rows and N/2 columns of 8-byte
elements (e.g., double precision floating-point data). As the
double precision operands are twice the width of single
precision, this configuration is consistent with a palette, used
to provide tile options, supplying at least 2 names with total
storage of at least 4 kB. The four tiles of FIG. 1A use 4
names, each naming a 1 kB tile, whereas the 2 pairs of tiles
in FIG. 1B can use 2 names to specify the paired tiles. In
some embodiments, tile instructions accept a name of a
paired tile as an operand. In operation, the tiles can be loaded
from and stored to memory using load and store operations.
Depending upon the instruction encoding scheme used, the
amount of available application memory, as well as the size,
number, and configuration of available tiles varies.

[0067] In some embodiments, tile parameters are defin-
able. For example, a “palette” is used to provide tile options.
Exemplary options include, but are not limited to: the
number of tile names, the number of bytes in a row of

Jun. 2, 2022

storage, the number of rows and columns in a tile, etc. For
example, a maximum “height” (number of rows) of a tile
may be defined as:

Tile Max Rows=Architected Storage/(The Number
of Palette Names®*The Number of Bytes per
TOW).

[0068] As such, an application can be written such that a
fixed usage of names will be able to take advantage of
different storage sizes across implementations.

[0069] Configuration of tiles is done using a tile configu-
ration (““TILECONFIG”) instruction, where a particular tile
usage is defined in a selected palette. This declaration
includes the number of tile names to be used, the requested
number of rows and columns per name (tile), and, in some
embodiments, the requested datatype of each tile. In some
embodiments, consistency checks are performed during the
execution of a TILECONFIG instruction to determine that it
matches the restrictions of the palette entry.

Exemplary Tile Storage Types

[0070] FIG. 2 illustrates several examples of matrix stor-
age. In (A), atile is stored in memory. As shown, each “row”
consists of four packed data elements. To get to the next
“row,” a stride value is used. Note that rows may be
consecutively stored in memory. Strided memory accesses
allows for access of one row to then next when the tile
storage does not map the underlying memory array row
width.

[0071] Tile loads from memory and stores to memory are
typically strided accesses from the application memory to
packed rows of data. Exemplary TILELOAD and TILE-
STORE instructions, or other instruction references to appli-
cation memory as a TILE operand in load-op instructions,
are, in some embodiments, restartable to handle (up to)
2*rows of page faults, unmasked floating-point exceptions,
and/or interrupts per instruction.

[0072] In (B), a matrix is stored in a tile comprised of a
plurality of registers such as packed data registers (single
instruction, multiple data (SIMD) or vector registers). In this
example, the tile is overlaid on three physical registers.
Typically, consecutive registers are used, however, this need
not be the case.

[0073] In (C), a matrix is stored in a tile in non-register
storage accessible to a fused multiple accumulate (FMA)
circuit used in tile operations. This storage may be inside of
a FMA, or adjacent to it. Additionally, in some embodi-
ments, discussed below, the storage may be for a data
element and not an entire row or tile.

[0074] The supported parameters for the TMMA architec-
ture are reported via CPUID. In some embodiments, the list
of information includes a maximum height and a maximum
SIMD dimension. Configuring the TMMA architecture
requires specifying the dimensions for each tile, the element
size for each tile and the palette identifier. This configuration
is done by executing the TILECONFIG instruction.

[0075] Successful execution of a TILECONFIG instruc-
tion enables subsequent TILE operators. A TILERE-
LEASEALL instruction clears the tile configuration and
disables the TILE operations (until the next TILECONFIG
instructions executes). In some embodiments, XSAVE,
XSTORE, etc. are used in context switching using tiles. In
some embodiments, 2 XCRO bits are used in XSAVE, one
for TILECONFIG metadata and one bit corresponding to
actual tile payload data.

[0076] TILECONFIG not only configures the tile usage,
but also sets a state variable indicating that the program is in
a region of code with tiles configured. An implementation

US 2022/0171627 Al

may enumerate restrictions on other instructions that can be
used with a tile region such as no usage of an existing
register set, etc.

[0077] Exiting a tile region is typically done with the
TILERELEASEALL instruction. It takes no parameters and
swiftly invalidates all tiles (indicating that the data no longer
needs any saving or restoring) and clears the internal state
corresponding to being in a tile region.

[0078] Insome embodiments, tile operations will zero any
rows and any columns beyond the dimensions specified by
the tile configuration. For example, tile operations will zero
the data beyond the configured number of columns (factor-
ing in the size of the elements) as each row is written. For
example, with 64-byte rows and a tile configured with 10
rows and 12 columns, an operation writing FP32 elements
would write each of the first 10 rows with 12*4 bytes with
output/result data and zero the remaining 4*4 bytes in each
row. Tile operations also fully zero any rows after the first
10 configured rows. When using 1K tile with 64-byte rows,
there would be 16 rows, so in this example, the last 6 rows
would also be zeroed.

[0079] Insome embodiments, a context restore instruction
(e.g., XRSTOR), when loading data, enforces that the data
beyond the configured rows for a tile will be maintained as
zero. If there is no valid configuration, all rows are zeroed.
XRSTOR of tile data can load garbage in the columns
beyond those configured. It should not be possible for
XRSTOR to clear beyond the number of columns configured
because there is not an element width associated with the tile
configuration.

[0080] Context save (e.g., XSAVE) exposes the entire
TILE storage area when writing it to memory. If XRSTOR
loaded garbage data in to the rightmost part of a tile, that
data will be saved by XSAVE. XSAVE will write zeros for
rows beyond the number specified for each tile.

[0081] In some embodiments, tile instructions are restart-
able. The operations that access memory allow restart after
page faults. The computational instructions that deal with
floating-point operations also allow for unmasked floating-
point exceptions, with the masking of the exceptions con-
trolled by a control and/or status register.

[0082] To support restarting instructions after these
events, the instructions store information in the start regis-
ters detailed below.

Matrix (Tile) Operation Systems

Exemplary Hardware Support

[0083] FIG. 3 illustrates an embodiment of a system
utilizing a matrix (tile) operations accelerator. In this illus-
tration, a host processor/processing system 301 communi-
cates commands 311 (e.g., matrix manipulation operations
such as arithmetic or matrix manipulation operations, or
load and store operations) to a matrix operations accelerator
307. However, this is shown this way for discussion pur-
poses only. As detailed later, this accelerator 307 may be a
part of a processing core. Typically, commands 311 that are
tile manipulation operator instructions will refer to tiles as
register-register (“reg-reg”) or register-memory (“reg-
mem”) format. Other commands such as TILESTORE,
TILELOAD, TILECONFIG, etc., do not perform data
operations on a tile. Commands may be decoded instructions
(e.g., micro-ops) or macro-instructions for the accelerator
307 to handle.

Jun. 2, 2022

[0084] In this example, a coherent memory interface 303
is coupled to the host processor/processing system 301 and
matrix operations accelerator 307 such that they can share
memory. FIGS. 4 and 5 show different embodiments of how
memory is shared using a matrix operations accelerator. As
shown in FIG. 4, the host processor 401 and matrix opera-
tions accelerator circuitry 405 share the same memory 403.
FIG. 5 illustrates an embodiment where the host processor
501 and matrix operations accelerator 505 do not share
memory but can access each other’s memory. For example,
processor 501 can access tile memory 507 and utilize its host
memory 503 as normal. Similarly, the matrix operations
accelerator 505 can access host memory 503, but more
typically uses its own memory 507. Note these memories
may be of different types.

[0085] Insome embodiments, the matrix operations accel-
erator 307 includes a plurality of FMAs 309 coupled to data
buffers 305 (in some implementations, one or more of these
buffers 305 are stored in the FMAs of the grid as shown).
The data buffers 305 buffer tiles loaded from memory and/or
tiles to be stored to memory (e.g., using a tileload or tilestore
instruction). Data buffers may be, for example, a plurality of
registers. Typically, these FMAs are arranged as a grid of
chained FMAs 309 which are able to read and write tiles. In
this example, the matrix operations accelerator 307 is to
perform a matrix multiply operation using tiles T0, T1, and
T2. At least one of tiles is housed in the FMA grid 309. In
some embodiments, all tiles in an operation are stored in the
FMA grid 309. In other embodiments, only a subset is stored
in the FMA grid 309. As shown, T1 is housed and T0 and T2
are not. Note that A, B, and C refer to the matrices of these
tiles which may or may not take up the entire space of the
tile.

[0086] FIG. 6 illustrates an embodiment of matrix multi-
ply accumulate operation using tiles (“TMMA”™).

[0087] The number of rows in the matrix (TILE A 601)
matches the number of serial (chained) FMAs comprising
the computation’s latency. The number of rows in some
embodiments does not match the number of serial FMAs,
which can be smaller or larger. An implementation is free to
recirculate on a grid of smaller height, but the computation
remains the same.

[0088] In this illustrated embodiment, the source/destina-
tion vector comes from a tile of N rows (TILE C 605) and
the grid of FMAs 611 performs N vector-matrix operations
resulting in a complete instruction performing a matrix
multiplication of tiles. Tile B 603 is the other vector source
and supplies “broadcast” terms to the FMAs in each stage.
[0089] In operation, in some embodiments, the elements
of matrix B (stored in a tile B 603) are spread across the
rectangular grid of FMAs. Matrix B (stored in tile A 601) has
its elements of a row transposed to match up with the
columnar dimension of the rectangular grid of FMAs. At
each FMA in the grid, an element of A and B are multiplied
and added to the incoming summand (from above in the
Figure) and the outgoing sum is passed to the next row of
FMAs (or the final output).

[0090] The latency of a single step is proportional to K
(row height of matrix B) and dependent TMMAss typically
have enough source-destination rows (either in a single tile
or across tile) to hide that latency. An implementation may
also split the SIMD (packed data element) dimension M
(row height of matrix A) across time steps, but this simply
changes the constant that K is multiplied by. When a

US 2022/0171627 Al

program specifies a smaller K than the maximum enumer-
ated by the TMACC, an implementation is free to implement
this with “masking” or “early outs.”

[0091] The latency of an entire TMMA is proportional to
N*K. The repeat rate is proportional to N. The number of
MACs per TMMA instruction is N*K*M.

[0092] FIG. 7 illustrates an embodiment of a subset of the
execution of an iteration of a chained fused multiply accu-
mulate instruction. In particular, this illustrates execution
circuitry of an iteration of one packed data element position
of the destination. In this embodiment, the chained fused
multiply accumulate is operating on signed sources wherein
the accumulator is 2x the input data size.

[0093] A first signed source (source 1 701) and a second
signed source (source 2 703) each have four packed data
elements. Each of these packed data elements stores signed
data such as floating-point data. A third signed source
(source 3 709) has two packed data elements, each of which
stores signed data. The sizes of the first and second signed
sources 701 and 703 are half that of the third signed source
(initial value or previous result) 709. For example, the first
and second signed sources 701 and 703 could have 32-bit
packed data elements (e.g., single precision floating-point)
while the third signed source 709 could have 64-bit packed
data elements (e.g., double precision floating-point).
[0094] In this illustration, only the two most significant
packed data element positions of the first and second signed
sources 701 and 703 and the most significant packed data
element position of the third signed source 709 are shown.
Of course, the other packed data element positions would
also be processed.

[0095] As illustrated, packed data elements are processed
in pairs. For example, the data of the most significant packed
data element positions of the first and second signed sources
701 and 703 are multiplied using a multiplier circuit 705,
and the data from second most significant packed data
element positions of the first and second signed sources 701
and 703 are multiplied using a multiplier circuit 707. In
some embodiments, these multiplier circuits 705 and 707 are
reused for other packed data elements positions. In other
embodiments, additional multiplier circuits are used so that
the packed data elements are processed in parallel. In some
contexts, parallel execution is done using lanes that are the
size of the signed third source 709. The results of each of the
multiplications are added using addition circuitry 711.
[0096] The result of the addition of the results of the
multiplications is added to the data from most significant
packed data element position of the signed source 3 709
(using a different adder 713 or the same adder 711).
[0097] Finally, the result of the second addition is either
stored into the signed destination 715 in a packed data
element position that corresponds to the packed data element
position used from the signed third source 709 or passed on
to the next iteration if there is one. In some embodiments, a
writemask is applied to this storage such that if a corre-
sponding writemask (bit) is set, the storage happens, and, if
not set, the storage does not happen.

[0098] FIG. 8 illustrates an embodiment of a subset of the
execution of an iteration of a chained fused multiply accu-
mulate instruction. In particular, this illustrates execution
circuitry of an iteration of one packed data element position
of the destination. In this embodiment, the chained fused
multiply accumulate is operating on signed sources wherein
the accumulator is 2x the input data size.

Jun. 2, 2022

[0099] A first signed source (source 1 801) and a second
signed source (source 2 803) each have four packed data
elements. Each of these packed data elements stores signed
data such as integer data. A third signed source (source 3
809) has two packed data elements, each of which stores
signed data. The sizes of the first and second signed sources
801 and 803 are half that of the third signed source 809. For
example, the first and second signed sources 801 and 803
could have 32-bit packed data elements (e.g., single preci-
sion floating-point) the third signed source 809 could have
64-bit packed data elements (e.g., double precision floating-
point).

[0100] In this illustration, only the two most significant
packed data element positions of the first and second signed
sources 801 and 803 and the most significant packed data
element position of the third signed source 809 are shown.
Of course, the other packed data element positions would
also be processed.

[0101] As illustrated, packed data elements are processed
in pairs. For example, the data of the most significant packed
data element positions of the first and second signed sources
801 and 803 are multiplied using a multiplier circuit 805,
and the data from second most significant packed data
element positions of the first and second signed sources 801
and 803 are multiplied using a multiplier circuit 807. In
some embodiments, these multiplier circuits 805 and 807 are
reused for other packed data elements positions. In other
embodiments, additional multiplier circuits are used so that
the packed data elements are processed in parallel. In some
contexts, parallel execution is done using lanes that are the
size of the signed third source (initial value or previous
iteration result) 809. The results of each of the multiplica-
tions are added to the signed third source 809 using addition/
saturation circuitry 813.

[0102] Addition/saturation (accumulator) circuitry 813
preserves a sign of an operand when the addition results in
a value that is too big. In particular, saturation evaluation
occurs on the infinite precision result between the multi-
way-add and the write to the destination or next iteration.
When the accumulator 813 is floating-point and the input
terms are integer, the sum of products and the floating-point
accumulator input value are turned into infinite precision
values (fixed point numbers of hundreds of bits), the addi-
tion of the multiplication results and the third input is
performed, and a single rounding to the actual accumulator
type is performed.

[0103] Unsigned saturation means the output values are
limited to a maximum unsigned number for that element
width (all 1s). Signed saturation means a value is limited to
the be in the range between a minimum negative number and
a max positive number for that element width (for bytes for
example, the range is from -128 (=-2"7) to 127(=2"7-1)).
[0104] The result of the addition and saturation check is
stored into the signed result 815 in a packed data element
position that corresponds to the packed data element posi-
tion used from the signed third source 809 or passed on to
the next iteration if there is one. In some embodiments, a
writemask is applied to this storage such that if a corre-
sponding writemask (bit) is set, the storage happens, and, if
not set, the storage does not happen.

[0105] FIG. 9 illustrates an embodiment of a subset of the
execution of an iteration of a chained fused multiply accu-
mulate instruction. In particular, this illustrates execution
circuitry of an iteration of one packed data element position

US 2022/0171627 Al

of the destination. In this embodiment, the chained fused
multiply accumulate is operating on a signed source and an
unsigned source wherein the accumulator is 4x the input
data size.

[0106] A first signed source (source 1 901) and a second
unsigned source (source 2 903) each have four packed data
elements. Each of these packed data elements has data such
as floating-point or integer data. A third signed source (initial
value or result 915) has a packed data element of which
stores signed data. The sizes of the first and second sources
901 and 903 are a quarter of the third signed source 915. For
example, the first and second sources 901 and 903 could
have 16-bit packed data elements (e.g., word) and the third
signed source 915 could have 64-bit packed data elements
(e.g., double precision floating-point or 64-bit integer).
[0107] In this illustration, the four most significant packed
data element positions of the first and second sources 901
and 903 and the most significant packed data element
position of the third signed source 915 are shown. Of course,
other packed data element positions would also be processed
if there are any.

[0108] As illustrated, packed data elements are processed
in quadruplets. For example, the data of the most significant
packed data element positions of the first and second sources
901 and 903 are multiplied using a multiplier circuit 905,
data from second most significant packed data element
positions of the first and second sources 901 and 903 are
multiplied using a multiplier circuit 907, data from third
most significant packed data element positions of the first
and second sources 901 and 903 are multiplied using a
multiplier circuit 909, and data from the least significant
packed data element positions of the first and second sources
901 and 903 are multiplied using a multiplier circuit 911. In
some embodiments, the signed packed data elements of the
first source 901 are sign extended and the unsigned packed
data elements of the second source 903 are zero extended
prior to the multiplications.

[0109] In some embodiments, these multiplier circuits
905-911 are reused for other packed data elements positions.
In other embodiments, additional multiplier circuits are used
so that the packed data elements are processed in parallel. In
some contexts, parallel execution is done using lanes that are
the size of the signed third source 915. The results of each
of the multiplications are added using addition circuitry 913.
[0110] The result of the addition of the results of the
multiplications is added to the data from most significant
packed data element position of the signed source 3 915
(using a different adder 917 or the same adder 913).
[0111] Finally, the result 919 of the second addition is
either stored into the signed destination in a packed data
element position that corresponds to the packed data element
position used from the signed third source 915 or passed to
the next iteration. In some embodiments, a writemask is
applied to this storage such that if a corresponding write-
mask (bit) is set, the storage happens, and, if not set, the
storage does not happen.

[0112] FIG. 10 illustrates an embodiment of a subset of the
execution of an iteration of chained fused multiply accumu-
late instruction. In particular, this illustrates execution cir-
cuitry of an iteration of one packed data element position of
the destination. In this embodiment, the chained fused
multiply accumulate is operating on a signed source and an
unsigned source wherein the accumulator is 4x the input
data size.

Jun. 2, 2022

[0113] A first signed source 1001 and a second unsigned
source 1003 each have four packed data elements. Each of
these packed data elements stores data such as floating-point
or integer data. A third signed source 1015 (initial or
previous result) has a packed data element of which stores
signed data. The sizes of the first and second sources are a
quarter of the third signed source 1015 (initial or previous
result). For example, the first and second sources could have
16-bit packed data elements (e.g., word) and the third signed
source 1015 (initial or previous result) could have 64-bit
packed data elements (e.g., double precision floating-point
or 64-bit integer).

[0114] In this illustration, the four most significant packed
data element positions of the first signed source 1001 and the
second unsigned source 1003 and the most significant
packed data element position of the third signed source 1015
are shown. Of course, other packed data element positions
would also be processed if there are any.

[0115] As illustrated, packed data elements are processed
in quadruplets. For example, the data of the most significant
packed data element positions of the first signed source 1001
and the second unsigned source 1003 are multiplied using a
multiplier circuit 1005, data from second most significant
packed data element positions of the first signed source 1001
and the second unsigned source 1003 are multiplied using a
multiplier circuit 1007, data from third most significant
packed data element positions of the first signed source 1001
and the second unsigned source 1003 are multiplied using a
multiplier circuit 1009, and data from the least significant
packed data element positions of the first signed source 1001
and the second unsigned source 1003 are multiplied using a
multiplier circuit 1011. In some embodiments, the signed
packed data elements of the first signed source 1001 are sign
extended and the unsigned packed data elements of the
second unsigned source 1003 are zero extended prior to the
multiplications.

[0116] In some embodiments, these multiplier circuits
1005-1011 are reused for other packed data elements posi-
tions. In other embodiments, additional multiplier circuits
are used so that the packed data elements are processed in
parallel. In some contexts, parallel execution is done using
lanes that are the size of third signed source 1015 (initial or
previous result). The result of the addition of the results of
the multiplications is added to the data from most significant
packed data element position of third signed source 1015
(initial or previous result) using adder/saturation 1013 cir-
cuitry.

[0117] Addition/saturation (accumulator) circuitry 1013
preserves a sign of an operand when the addition results in
a value that is too big or too small for signed saturation. In
particular, saturation evaluation occurs on the infinite pre-
cision result between the multi-way-add and the write to the
destination. When the accumulator 1013 is floating-point
and the input terms are integer, the sum of products and the
floating-point accumulator input value are turned into infi-
nite precision values (fixed point numbers of hundreds of
bits), the addition of the multiplication results and the third
input is performed, and a single rounding to the actual
accumulator type is performed.

[0118] The result 1019 of the addition and saturation
check is stored into the signed destination in a packed data
element position that corresponds to the packed data element
position used from third signed source 1015 (initial or
previous result) or passed to the next iteration. In some

US 2022/0171627 Al

embodiments, a writemask is applied to this storage such
that if a corresponding writemask (bit) is set, the storage
happens, and, if not set, the storage does not happen.
[0119] FIG. 11 illustrates power-of-two sized SIMD
implementations wherein the accumulators use input sizes
that are larger than the inputs to the multipliers according to
an embodiment. Note the source (to the multipliers) and
accumulator values may be signed or unsigned values. For
an accumulator having 2x input sizes (in other words, the
accumulator input value is twice the size of the packed data
element sizes of the sources), table 1101 illustrates different
configurations. For byte sized sources, the accumulator uses
word or half-precision floating-point (HPFP) values that are
16-bit in size. For word sized sources, the accumulator uses
32-bit integer or single-precision floating-point (SPFP) val-
ues that are 32-bit in size. For SPFP or 32-bit integer sized
sources, the accumulator uses 64-intenger or double-preci-
sion floating-point (DPFP) values that are 64-bit in size.
[0120] For an accumulator having 4x input sizes (in other
words, the accumulator input value is four times the size of
the packed data element sizes of the sources), table 1103
illustrates different configurations. For byte sized sources,
the accumulator uses 32-bit integer or single-precision float-
ing-point (SPFP) values that are 32-bit in size. For word
sized sources, the accumulator uses 64-bit integer or double-
precision floating-point (DPFP) values that are 64-bit in size
in some embodiments.

[0121] For an accumulator having 8x input sizes (in other
words, the accumulator input value is eight times the size of
the packed data element sizes of the sources), table 1105
illustrates a configuration. For byte sized sources, the accu-
mulator uses 64-bit integer.

[0122] As hinted at earlier, matrix operations circuitry
may be included in a core, or as an external accelerator. FIG.
12 illustrates an embodiment of a system utilizing matrix
operations circuitry. In this illustration, multiple entities are
coupled with a ring interconnect 1245.

[0123] A plurality of cores, core 0 1201, core 1 1203, core
2 1205, and core N 1207 provide non-tile-based instruction
support. In some embodiments, matrix operations circuitry
1251 is provided in a core 1203, and in other embodiments
matrix operations circuitry 1211 and 1213 are accessible on
the ring interconnect 1245.

[0124] Additionally, one or more memory controllers
1223-1225 are provided to communicate with memory 1233
and 1231 on behalf of the cores and/or matrix operations
circuitry.

[0125] FIG. 13 illustrates an embodiment of a processor
core pipeline supporting matrix operations using tiles.
Branch prediction and decode circuitry 1303 performs
branch predicting of instructions, decoding of instructions,
and/or both from instructions stored in instruction storage
1301. For example, instructions detailed herein may be
stored in instruction storage. In some implementations,
separate circuitry is used for branch prediction and in some
embodiments, at least some instructions are decoded into
one or more micro-operations, microcode entry points,
microinstructions, other instructions, or other control signals
using microcode 1305. The branch prediction and decode
circuitry 1303 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), microcode read
only memories (ROMs), etc.

Jun. 2, 2022

[0126] The branch prediction and decode circuitry 1303 is
coupled to allocate/rename 1307 circuitry which is coupled,
in some embodiments, to scheduler circuitry 1309. In some
embodiments, these circuits provide register renaming, reg-
ister allocation, and/or scheduling functionality by perform-
ing one or more of: 1) renaming logical operand values to
physical operand values (e.g., a register alias table in some
embodiments), 2) allocating status bits and flags to the
decoded instruction, and 3) scheduling the decoded instruc-
tion for execution on execution circuitry out of an instruc-
tion pool (e.g., using a reservation station in some embodi-
ments).

[0127] The scheduler circuitry 1309 represents any num-
ber of different schedulers, including reservations stations,
central instruction window, etc. The scheduler circuitry 1309
is coupled to, or includes, physical register file(s) 1315. Each
of the physical register file(s) 1315 represents one or more
physical register files, different ones of which store one or
more different data types, such as scalar integer, scalar
floating-point, packed integer, packed floating-point, vector
integer, vector floating-point, status (e.g., an instruction
pointer that is the address of the next instruction to be
executed), tiles, etc. In one embodiment, the physical reg-
ister file(s) 1315 comprises vector registers circuitry, write
mask registers circuitry, and scalar registers circuitry. These
register circuits may provide architectural vector registers,
vector mask registers, and general-purpose registers. The
physical register file(s) 1315 is overlapped by a retirement
circuit 1317 to illustrate various ways in which register
renaming and out-of-order execution may be implemented
(e.g., using a reorder buffer(s) and a retirement register
file(s); using a future file(s), a history buffer(s), and a
retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement circuit 1317 and the
physical register file(s) 1315 are coupled to the execution
circuitry 1311.

[0128] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor may also
include separate instruction and data cache units and a
shared [.2 cache unit, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

[0129] The execution circuitry 1311 is a set of one or more
execution circuits, including scalar circuitry 1321, vector/
SIMD circuitry 1323, and matrix operations circuitry 1327,
as well as memory access circuitry 1325 to access cache
1313. The execution circuits perform various operations
(e.g., shifts, addition, subtraction, multiplication) and on
various types of data (e.g., scalar floating-point, packed
integer, packed floating-point, vector integer, vector float-
ing-point). While some embodiments may include a number
of execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execu-
tion unit or multiple execution units that all perform all
functions. The scalar circuitry 1321 performs scalar opera-
tions, the vector/SIMD circuitry 1323 performs vector/

US 2022/0171627 Al

SIMD operations, and matrix operations circuitry 1327
performs matrix (tile) operations detailed herein.

[0130] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement a pipeline as follows: 1) an instruction fetch
circuit performs fetch and length decoding stages; 2) the
branch and decode circuitry 1303 performs a decode stage;
3) the allocate/rename 1307 circuitry performs an allocation
stage and renaming stage; 4) the scheduler circuitry 1309
performs a schedule stage; 5) physical register file(s)
(coupled to, or included in, the scheduler circuitry 1309 and
allocate/rename 1307 circuitry and a memory unit perform
a register read/memory read stage; the execution circuitry
1311 performs an execute stage; 6) a memory unit and the
physical register file(s) unit(s) perform a write back/memory
write stage; 7) various units may be involved in the excep-
tion handling stage; and 8) a retirement unit and the physical
register file(s) unit(s) perform a commit stage.

[0131] The core may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 1390 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

[0132] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0133] FIG. 14 illustrates an embodiment of a processor
core pipeline supporting matrix operations using tiles.
Branch prediction and decode circuitry 1403 performs
branch predicting of instructions, decoding of instructions,
and/or both from instructions stored in instruction storage
1401. For example, instructions detailed herein may be
stored in instruction storage. In some implementations,
separate circuitry is used for branch prediction and in some
embodiments, at least some instructions are decoded into
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals
using microcode 1405. The branch prediction and decode
circuitry 1403 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), microcode read
only memories (ROMs), etc.

[0134] The branch prediction and decode circuitry 1403 is
coupled to allocate/rename 1407 circuitry which is coupled,
in some embodiments, to scheduler circuitry 1409. In some
embodiments, these circuits provide register renaming, reg-
ister allocation, and/or scheduling functionality by perform-
ing one or more of: 1) renaming logical operand values to
physical operand values (e.g., a register alias table in some
embodiments), 2) allocating status bits and flags to the

Jun. 2, 2022

decoded instruction, and 3) scheduling the decoded instruc-
tion for execution on execution circuitry out of an instruc-
tion pool (e.g., using a reservation station in some embodi-
ments).

[0135] The scheduler circuitry 1409 represents any num-
ber of different schedulers, including reservations stations,
central instruction window, etc. The scheduler unit(s) sched-
uler circuitry 1409 is coupled to, or includes, physical
register file(s) 1415. Each of the physical register file(s)
1415 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating-point, packed integer, packed
floating-point, vector integer, vector floating-point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), tiles, etc. In one embodiment,
the physical register file(s) 1415 comprises vector registers
circuitry, write mask registers circuitry, and scalar registers
circuitry. These register circuits may provide architectural
vector registers, vector mask registers, and general-purpose
registers. The physical register file(s) 1415 is overlapped by
a retirement circuit 1417 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement circuit 1417 and the
physical register file(s) 1415 are coupled to the execution
circuitry 1411.

[0136] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor may also
include separate instruction and data cache units and a
shared [.2 cache unit, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

[0137] The execution circuitry 1411 a set of one or more
execution circuits 1427 and a set of one or more memory
access circuits 1425 to access cache 1413. The execution
circuits 1427 perform matrix (tile) operations detailed
herein.

[0138] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement a pipeline as follows: 1) an instruction fetch
circuit performs fetch and length decoding stages; 2) the
branch and decode circuitry 1403 performs a decode stage;
3) the allocate/rename 1407 circuitry performs an allocation
stage and renaming stage; 4) the scheduler circuitry 1409
performs a schedule stage; 5) physical register file(s)
(coupled to, or included in, the scheduler circuitry 1409 and
allocate/rename 1407 circuitry and a memory unit perform
a register read/memory read stage; the execution circuitry
1411 performs an execute stage; 6) a memory unit and the
physical register file(s) unit(s) perform a write back/memory
write stage; 7) various units may be involved in the excep-
tion handling stage; and 8) a retirement unit and the physical
register file(s) unit(s) perform a commit stage.

[0139] The core may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have

US 2022/0171627 Al

been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 1490 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

[0140] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-

ogy).
Layout

[0141] Throughout this description, data is expressed
using row major data layout. Column major users should
translate the terms according to their orientation. FIG. 15
illustrates an example of a matrix expressed in row major
format and column major format. As shown, matrix A is a
2x3 matrix. When this matrix is stored in row major format,
the data elements of a row are consecutive. When this matrix
is stored in column major format, the data elements of a
column are consecutive. It is a well-known property of
matrices that AT*B’=(BA)7, where superscript T means
transpose. Reading column major data as row major data
results in the matrix looking like the transpose matrix.

[0142] In some embodiments, row-major semantics are
utilized in hardware, and column major data is to swap the
operand order with the result being transposes of matrix, but
for subsequent column-major reads from memory it is the
correct, non-transposed matrix.

[0143] For example, if there are two column-major matri-
ces to multiply:

ab gik ag + bh ai + bj ak + bl
cd* hjl= cg+dhci+djck+dl
ef eg+fhei+fjek + 11
(3x2) (2x3) (3x3)
[0144] The input matrices would be stored in linear
memory (column-major) as:
[0145] acebdf
[0146] and
[0147] ghijkL
[0148] Reading those matrices as row-major with dimen-

sions 2x3 and 3x2, they would appear as:

ace and gh
bdf ij
k1

Jun. 2, 2022

[0149] Swapping the order and matrix multiplying:

gh ace ag + bh cg + dh eg + th

ij * bdf= ai + bjci+dj ei +f

kl ak + bl ck + dl ek + fl
[0150] the transpose matrix is out and can then be stored

in in row-major order:
[0151] ag+bh cg+dh eg+th ai+bj ci+dj ei+fj ak+bl ck+dl
ek+fl
[0152] and used in subsequent column major computa-
tions, it is the correct un-transposed matrix:

ag + bh al + bj ak + bl
cg +dh ci+dj ck +dl1
eg + fh el +fj ek + fl

Exemplary Usage

[0153] FIG. 16 illustrates an example of usage of matrices
(tiles). In this example, matrix C 1601 includes two tiles,
matrix A 1603 includes one tile, and matrix B 1605 includes
two tiles.

[0154] This figure shows an example of the inner loop of
an algorithm to compute a matrix multiplication. In this
example, two result tiles, tmm0 and tmm1, from matrix C
1601 are used to accumulate the intermediate results. One
tile from the matrix A 1603 (tmm2) is re-used twice as it
multiplied by two tiles from matrix B 1605. Pointers to load
a new A matrix (tile) and two new B matrices (tiles) from the
directions indicated by the arrows. An outer loop, not shown,
adjusts the pointers for the C tiles.

[0155] The exemplary code as shown includes the usage
of a tile configuration instruction and is executed to config-
ure tile usage, load tiles, a loop to process the tiles, store tiles
to memory, and release tile usage.

[0156] FIG. 17 illustrates an embodiment of usage of
matrices (tiles). At 1701, tile usage is configured. For
example, a TILECONFIG instruction is executed to config-
ure tile usage including setting a number of rows and
columns per tile. Typically, at least one matrix (tile) is loaded
from memory at 1703. At least one matrix (tile) operation is
performed at 1705 using the matrices (tiles). At 1707, at least
one matrix (tile) is stored out to memory and a context
switch can occur at 1709.

Exemplary Configuration

Tile Configuration Hardware Support

[0157] As discussed above, tile usage typically needs to be
configured prior to use. For example, full usage of all rows
and columns may not be needed. Not only does not config-
uring these rows and columns save power in some embodi-
ments, but the configuration may be used to determine if an
operation will generate an error. For example, a matrix
multiplication of the form (NxM)*(LxN) will typically not
work if M and L are not the same.

[0158] Prior to using matrices using tiles, in some embodi-
ments, tile support is to be configured. For example, how
many rows and columns per tile, tiles that are to be used, etc.
are configured. A TILECONFIG instruction is an improve-
ment to a computer itself as it provides for support to

US 2022/0171627 Al

configure the computer to use a matrix accelerator (either as
a part of a processor core, or as an external device). In
particular, an execution of the TILECONFIG instruction
causes a configuration to be retrieved from memory and
applied to matrix (tile) settings within a matrix accelerator.

Tile Usage Configuration

[0159] FIG. 18 illustrates support for configuration of the
usage of tiles according to an embodiment. A memory 1801
contains the tile description 1803 of the matrices (tiles) to be
supported.

[0160] Instruction execution resources 1811 of a proces-
sor/core 1805 stores aspects of a tile description 1803 into
tile configurations 1817. The tile configurations 1817
include palette table 1813 to detail what tiles for a palette are
configured (the number of rows and columns in each tile)
and a marking that matrix support is in use. In particular,
instruction execution resources 1811 are configured to use
tiles as specified by the tile configurations 1817. The instruc-
tion execution resources 1811 may also include a machine
specific register or configuration register to indicate tile
usage. Additional values such as in-use and start values are
also set. The tile configurations 1817 utilize register(s) 1819
to store tile usage and configuration information.

[0161] FIG. 19 illustrates an embodiment of a description
of the matrices (tiles) to be supported. This is the description
that is to be stored upon an execution of a STTILECFG
instruction. In this example, each field is a byte. In byte [0],
a palette ID 1901 is stored. The palette ID is used to index
a palette table 1813 which stores, per palette ID, a number
of bytes in a tile, and bytes per row of the tiles that are
associated with this ID as defined by the configuration.
[0162] Byte 1 stores a value to be stored in a “startRow”
register 1903 and byte 2 stores a value to be stored in a
register, startP 1905. To support restarting instructions after
these events, the instructions store information these regis-
ters. To support restarting instructions after break events
such as those detailed above, the instructions store informa-
tion in these registers. The startRow value indicates the row
that should be used for restart. The startP value indicates the
position within the row for store operations when pairs are
used and, in some embodiments, indicates the lower half of
the row (in the lower tile of a pair) or higher half of the row
(in the higher tile of a pair). Generally, the position in the
row (the column) is not needed.

[0163] With the exception of TILECONFIG and STTI-
LECFG, successfully executing matrix (tile) instructions
will set both startRow and startP to zero.

[0164] Any time an interrupted matrix (tile) instruction is
not restarted, it is the responsibility of software to zero the
startRow and startP values. For example, unmasked float-
ing-point exception handlers might decide to finish the
operation in software and change the program counter value
to another instruction, usually the next instruction. In this
case the software exception handler must zero the startRow
and startP values in the exception presented to it by the
operating system before resuming the program. The oper-
ating system will subsequently reload those values using a
restore instruction.

[0165] Byte 3 stores an indication of pairs (1b per tile) of
tiles 1907.
[0166] Bytes 16-17 store the number of rows 1913 and

columns 1915 for tile 0, bytes 18-19 store the number of
rows and columns for tile 1, etc. In other words, each 2-byte

Jun. 2, 2022

group specifies a number of rows and columns for a tile. If
a group of 2 bytes is not used to specify tile parameters, they
should have the value zero. Specifying tile parameters for
more tiles than the implementation limit or the palette limit
results in a fault. Unconfigured tiles are set to an initial state
with 0 rows, 0 columns.

[0167] Finally, the configuration in memory typically ends
with an ending delineation such as all zeros for several
consecutive bytes.

Exemplary Tile and Tile Configuration Storage

[0168] FIGS. 20(A)-(D) illustrate examples of register(s)
1819. FIG. 20(A) illustrates a plurality of registers 1819. As
shown each tile (TMMO 2001 . . . TMMN 2003) has a
separate register with each register storing a row and column
size for that particular tile. StartP 2011 and StartRow 2013
are stored in separate registers. One or more status registers
2015 are set (e.g., TILES_CONFIGURED=1) to indicate
tiles are configured for use.

[0169] FIG. 20(B) illustrates a plurality of registers 1819.
As shown each tile has separate registers for its rows and
columns. For example, TMMO rows configuration 2021,
TMMO columns configuration 2023, StartP 2011 and Star-
tRow 2013 are stored in separate registers. One or more
status registers 2015 are set (e.g., TILES_CONFIG-
URED=1) to indicate tiles are configured for use.

[0170] FIG. 20(C) illustrates a single register 1819. As
shown, this register stores tile configurations (rows and
columns per tile) 2031, StartP 2011, and StartRow 2013 are
stored in single register as packed data registers. One or
more status registers 2015 are set (e.g., TILES_CONFIG-
URED=1) to indicate tiles are configured for use.

[0171] FIG. 20(D) illustrates a plurality of registers 1819.
As shown, a single register stores tile configuration (rows
and columns per tile) 2031. StartP and StartRow are stored
in separate registers 2011 and 2013. One or more status
registers 2015 are set (e.g., TILES_CONFIGURED=1) to
indicate tiles are configured for use.

[0172] Other combinations are contemplated such as com-
bining the start registers into a single register where they are
shown separately, etc.

Matrix Compress and Decompress Instructions

[0173] Disclosed embodiments describe instructions,
sometimes referred to as TileCompress or TileDecompress
instructions, for performing compression or decompression
of matrices (tiles), respectively. Disclosed embodiments
compress and decompress matrices while loading them into
registers or while storing them to memory. Several com-
pression algorithms are described.

[0174] The disclosed TileCompress and TileDecompress
instructions improve processor performance by reducing the
size of data being transferred and maintained. With less data
to transfer, memory accesses take less time. Since memory
accesses are often a system-wide performance bottleneck,
improvements to memory access performance are expected
to also improve overall system performance.

[0175] In some embodiments, matrices are compressed
before being stored to memory, such as an [.1 data cache.
When compressed matrix data is stored to a lower-level
cache, it advantageously maintains its smaller size through-
out different levels of a memory hierarchy, effectively
increasing the size of available memory.

US 2022/0171627 Al

[0176] Insome embodiments, matrices are compressed by
replacing zero-valued elements with non-zero-valued ele-
ments, leaving only non-zero-valued elements to multiply,
and avoiding expending power to multiply by zero.

[0177] Processing of TileCompress/Decompress instruc-
tions according to some embodiments is illustrated and
described with respect to FIGS. 21A-23. A format of the
TileCompress/Decompress instructions according to dis-
closed embodiments is illustrated and described with respect
to FIGS. 24-26D. Processors having execution circuitry to
process TileCompress/Decompress instructions are further
illustrated and described with respect to FIGS. 28-31. Com-
puting systems for processing TileCompress/Decompress
instructions are further illustrated and described with respect
to FIGS. 32-35.

[0178] In operation, a result of the compress operation is
generated for each element of the specified decompressed
source matrix. In some embodiments, a result of the com-
press operation is generated for two or more elements of the
specified decompressed source matrix. Some generated
results are moved to a different relative position within the
specified compressed destination matrix, for example, to
replace a zero-valued element with non-zero-valued ele-
ments. Some generated results maintain the same relative
position within the specified destination matrix, but use
fewer bits for the value, for example, a double-precision
floating-point valued of the decompressed source matrix can
be replaced with a few bits to specify a dictionary entry. The
elements of the specified compressed source matrix and
decompressed destination matrix may be collections of
values in any of floating-point registers, vector registers, tile
registers, and memory.

[0179] In some embodiments, tile registers are supported
using an overlay over physical registers. For example, a tile
may utilize 16 1,024-bit registers, 32 512-bit registers, etc.
depending on the implementation. In some embodiments,
matrix operations utilize tile registers comprising 2-dimen-
sional (2-D) data structures representing one or more packed
regions of memory such as registers. Throughout this
description, these 2-D data structures are referred to as tiles
or tile registers.

[0180] Some compression techniques use headers, which
can be stored in a register or in memory. An exemplary
processor register file for use with disclosed embodiments is
further illustrated and described with respect to FIG. 27.

Compression Algorithms

[0181] Several different compression/decompression
algorithms are supported by disclosed embodiments.
Replace Zero-Valued Elements with Non-Zero-Valued Ones
[0182] As mentioned above, one of the disclosed com-
pression algorithms calls for searching matrices to find
zero-valued elements and replacing them with non-zero-
valued elements. In so doing, the disclosed compression
algorithm orders all non-zero-valued elements consecu-
tively, allowing them to be read without wasting memory
bandwidth to read the zero-valued elements. See, for
example, FIG. 21B and FIG. 21C. In some embodiments, a
header is stored in memory or in a register and contains the
logical matrix positions of the non-zero-valued elements that
have been moved. Tiles can be accompanied by bitmasks
that specify the destination to which elements should be
written.

Jun. 2, 2022

Replace Common Values with a Reference to a Dictionary
Entry

[0183] A dictionary approach may also be applied, target-
ing cases where most of the values are a small subset of the
entire possible range. Such an embodiment is illustrated and
described, for example, with respect to FIG. 21E. The
embodiment illustrated in FIG. 21E uses a bitmask to
indicate which elements are to use a dictionary. Alterna-
tively, each data element could include a prefix to indicate
whether to use a dictionary.

Use an Approximate Value to Replace any Value in a Range
of Values

[0184] Though not shown in any Figures, a similar
approach to the dictionary substitution described above and
shown in FIG. 21E is to use an approximate value to replace
elements within a range of values. For example, floating-
point numbers between, say, 4.9 and 5.1 may be replaced
with a pointer to an approximate equivalent, 5.0, in a list or
dictionary of approximate values.

Specitying a Compressed Element’s Matrix Position

[0185] In some embodiments, for example, as shown in
FIG. 21F, a compressed matrix is associated with a bitmask
header, such as bitmask header 2168B of FIG. 21F. The
header has one bit per element and is used to represent the
logical matrix position of each non-zero-valued element. For
example, with reference to FIG. 21F, compressed destination
matrix 2168 is a 64-entry matrix having 15 non-zero-valued
elements, and 64-bit non-zero-element position bitmask
2168B includes 15 bits set to “1” to represent the logical
matrix position of each non-zero value element. In other
embodiments, a value of ‘0’ can be used to represent
non-zero-valued elements. The header can be in the com-
pressed tile, or in a different location in the memory, or in a
register. In some embodiments, the header and/or the bit-
mask are compressed to get even more efficient compres-
sion.

[0186] Insome embodiments, the matrix position is speci-
fied as an index to the logical position of the compressed
element in its associated matrix and value.

[0187] In some embodiments, such as compressed matrix
2144 of FIG. 21D, non-zero values and their location index
are interleaved with the values. In other embodiments, the
location indices are store in a different header or memory
location.

[0188] As described above, in a dictionary approach,
common values are replaced with an index into a list, or
dictionary of values.

Format of Compressed Matrices (Tiles)

[0189] As described herein, decompressed matrices are
arrays, for example arrays having M rows and N columns,
of elements having various different formats, including, for
example, 32-bit single-precision and 64-bit double-precision
single-precision floating-point, or double-precision floating-
point, and also 4-bit, 8-bit, 16-bit, and 32-bit integer.

[0190] When compressed, however, the MxN matrix has
either fewer non-zero elements, or fewer average bits per
element, or both. In particular, in some embodiments, com-
pressing the source matrix (tile) calls for moving non-zero
elements to take the place of zero-valued elements. Dis-

US 2022/0171627 Al

closed embodiments describe how to keep track of the
original position of such an element that has moved.

Compressed Format: Header Per-Row Identifies Non-Zero
Elements

[0191] FIG. 21B illustrates an exemplary compressed
matrix 2128 having 8 rows and 8 columns of matrix ele-
ments 2128 A, with the non-zero elements packed to the left.
Also shown are 8-bit headers non-zero positions 2128B,
with one header per row indicating the original position of
each of the packed nonzero elements in the original, uncom-
pressed matrix 2124. For example, element ‘A,’ the only
non-zero element in the first row of the uncompressed
matrix is packed to the left of the compressed matrix, and the
8-bit header for the first row is 0100-0000, indicating that
‘A’ occupies logical position 1 of the decompressed source
matrix (tile).

[0192] As shown, each row of compressed destination
2128 consists of an 8-bit header, and up to eight non-zero
elements. In some embodiments, for example when each
row of compressed destination is stored in a 128-bit register,
and supposing each of the elements is a 16-bit word, there
is no room left in the register to store the 8-bit header. In
some such embodiments, one of the register elements that
was to store data instead stores a header. For example, in
some embodiments, each row of the compressed destination
consists of 7 data elements and element being used for the
header.

[0193] FIG. 21C illustrates an exemplary compressed
matrix 2138 having 8 rows and 8 columns of matrix ele-
ments 2138A, with the non-zero elements packed into the
first two rows. Advantageously, the third through eighth
rows of matrix elements 2138 A can be ignored subsequently,
because they only contain zeroes. Also shown are 8-bit
headers non-zero positions 2138B, with one header per row
indicating the original position of each of the packed non-
zero elements in the original, uncompressed matrix 2134.
For example, the packed matrix elements 2138A include
fourteen (14) non-zero-valued elements packed into the first
two rows, and the eight headers together have fourteen (14)
bits set to indicate the original positions of those non-zero-
valued elements.

Compressed Format: Logical Matrix Position Stored with
Each Element

[0194] FIG. 21D illustrates another exemplary format for
the compressed matrix (tile). Here, compressed source
matrix 2144 has 8 rows and 8 columns, and includes a 9-bit
matrix position with each element, zero-valued elements
have a matrix position equal to 64. All zero-valued elements,
for illustrative purposes, have been shown as having a
matrix position equal to 64. But, in operation, a single value
of 64 could be applied to zero-valued eclements.

Compressed Format:
Identified Elements

[0195] FIG. 21E illustrates another exemplary format for
the compressed matrix (tile). Here, compressed matrix
2158A has 64 entries, 12 of which are to be substituted with
an element from dictionary 2158C. Destination elements not
using the dictionary are illustrated with an ‘x,” to signify a
Don’t Care value. Use dictionary 2158B is a sequence of
eight headers, one per row, which are multibit selectors to
indicate which elements of the row are to be substituted with

Substitute Dictionary Entry for

Jun. 2, 2022

a dictionary entry. Beneficially, the elements to be substi-
tuted, otherwise consisting of 32 or 64 bits, only need two
bits to select one of four dictionary entries.

Compressed Format: Some Tolerable Loss in Accuracy

[0196] Insome embodiments, the compressed format calls
for replacing one or more elements with an approximate
value. Here, the compressed format could follow the
example of FIG. 21E, where one or more values of the
compressed matrix are to be substituted with an approximate
value taken from dictionary 2158C.

[0197] In some embodiments, the compression calls for
replacing numbers within a range of values with an approxi-
mate substitute. For example, in some embodiments, with
respect to FIG. 21E, execution circuitry 2156 is to replace
any element having a value between 4.9 and 5.3 with 5.1.
Using an approximate value may sacrifice some accuracy,
but may also allow more 32/64 bit elements to be replaced
with a 2-bit dictionary index.

Exemplary Execution

[0198] FIG. 21A is a block diagram of hardware process-
ing components used to execute TileCompress/Decompress
instructions, according to some embodiments. As shown,
computing system 2100 includes code storage 2102 (to store
TileCompress/Decompress instructions), fetch circuitry
2104 (to fetch TileCompress/Decompress instructions) and
decode circuitry 2106 (to decode fetched instructions).
Computing system 2100 further includes execution circuitry
2108, decompress circuitry 2110, compress circuitry 2112,
registers 2114, buffer 2116, memory 2118, and optionally,
retire or commit circuit 2119. Decompress circuitry 2110
and compress circuitry 2112 are shown surrounded by a
dashed border, which is to indicate that those circuits could
in some embodiments be incorporated into execution cir-
cuitry 2108.

[0199] In the context of the illustrated system, decode
circuitry is similar to that illustrated and described at least
with respect to FIGS. 13, 14, and 28A-B.

[0200] As shown, TileCompress/Decompress instruction
2101 includes fields to specify an opcode 2101A (e.g.,
TileCompress or TileDecompress), a destination matrix
location 2101B, a compress or decompress algorithm
2101C, and a source matrix (tile) location 2101D. As
disclosed herein, source and destination matrices identified
by TileCompress/Decompress instructions can be located in
any of registers 2114, buffer 2116, and memory 2118.
[0201] Inoperation, computing system 2100 is to use fetch
circuitry 2104 and decode circuitry 2106 to fetch and decode
TileCompress/Decompress instructions from code storage
2102. Execution circuitry is to respond to a decoded Tile-
Compress/Decompress instruction by using the compress
circuitry 2112 to respond to TileCompress instructions,
performing arithmetic and/or logical operations on matrices,
and using the decompress circuitry 2110 to respond to
TileDecompress instructions.

[0202] Execution circuitry is further illustrated and
described with respect to FIGS. 3-14. In some embodiments,
execution circuitry is a matrix operations accelerator, such
as that illustrated and described as accelerator 307 (FIG. 3).
In some embodiments, execution circuitry is a matrix opera-
tions circuit, such as matrix operations circuitry 405 (FIG.
4), 505 (FIG. 5), or 1213 (FIG. 12), and 1327 (FIG. 13).

US 2022/0171627 Al

[0203] FIG. 21B illustrates execution of a TileCompress
instruction, according to some embodiments. As shown,
TileCompress instruction 2122 includes fields to specify an
opcode 2122A (e.g., TileCompress), a compressed destina-
tion matrix location 2122B, a compress algorithm 2122C,
and a decompressed source matrix location 2122D. Also
shown are the specified source matrix 2124, execution
circuitry 2126, which includes compress circuitry, and the
specified compressed destination matrix 2128.

[0204] In the context of the illustrated system, decode
circuitry is similar to that illustrated and described at least
with respect to FIGS. 13, 14, and 28A-B.

[0205] Execution circuitry is further illustrated and
described with respect to FIGS. 3-14. In some embodiments,
execution circuitry is a matrix operations accelerator, such
as that illustrated and described as accelerator 307 (FIG. 3).
In some embodiments, execution circuitry is a matrix opera-
tions circuit, such as matrix operations circuitry 405 (FIG.
4), 505 (FIG. 5), or 1213 (FIG. 12), and 1327 (FIG. 13).
[0206] In operation, a computing system 2120 is to pro-
cess a TileCompress instruction 2122 by generating a result
matrix requiring fewer bits of storage than the specified
decompressed source matrix by either packing non-zero-
valued elements over zero-valued elements, as is done here,
or by reducing an average bit size of matrix elements by
replacing one or more floating-point values with dictionary
pointers to one or more items in a list of floating-point
values, as is shown in FIG. 21E. Using such a dictionary
approach allows the matrix to be represented with fewer bits
because each dictionary pointer comprises fewer bits than its
associated matrix element.

[0207] FIG. 21C illustrates execution of a TileCompress
instruction, according to some embodiments. As shown,
TileCompress instruction 2132 includes fields to specify an
opcode 2132A (e.g., TileCompress), a compressed destina-
tion matrix location 2132B, a compress algorithm 2132C,
and a decompressed source matrix location 2132D. Also
shown are the specified source matrix 2134, execution
circuitry 2136, which includes compress circuitry, and the
specified compressed destination matrix 2138. Here, the
non-zero-valued elements of the source matrix 2134 have
been packed into the first two rows of the destination matrix
2138. In operation, a processor is to minimize usage of
memory bandwidth by reading just the first two rows and
ignoring the rest.

[0208] In the context of the illustrated system, decode
circuitry is similar to that illustrated and described at least
with respect to FIGS. 13, 14, and 28A-B.

[0209] Execution circuitry is further illustrated and
described with respect to FIGS. 3-14. In some embodiments,
execution circuitry is a matrix operations accelerator, such
as that illustrated and described as accelerator 307 (FIG. 3).
In some embodiments, execution circuitry is a matrix opera-
tions circuit, such as matrix operations circuitry 405 (FIG.
4), 505 (FIG. 5), or 1213 (FIG. 12), and 1327 (FIG. 13).
[0210] In operation, a computing system 2130 is to pro-
cess a TileCompress instruction 2132 by generating a result
matrix requiring fewer bits of storage than the specified
decompressed source matrix by either packing non-zero-
valued elements over zero-valued elements, as is done here,
or by reducing an average bit size of matrix elements by
replacing one or more floating-point values with dictionary
pointers to one or more items in a list of floating-point
values, as is shown in FIG. 21E. Using such a dictionary

Jun. 2, 2022

approach allows the matrix to be represented with fewer bits
because each dictionary pointer comprises fewer bits than its
associated matrix element.

[0211] FIG. 21D illustrates execution of a TileDecompress
instruction according to some embodiments. As shown,
TileDecompress instruction 2142 includes fields to specify
an opcode 2142A (e.g., TileDecompress), a decompressed
destination matrix location 2142B, a decompress algorithm
2142C, and a compressed source matrix location 2142D.
Also shown are the specified compressed source matrix
2144, execution circuitry 2146, which includes decompress
circuitry, and the specified decompressed destination matrix
2148.

[0212] In the context of the illustrated system, decode
circuitry is similar to that illustrated and described at least
with respect to FIGS. 13, 14, and 28A-B.

[0213] Execution circuitry is further illustrated and
described with respect to FIGS. 3-14. In some embodiments,
execution circuitry is a matrix operations accelerator, such
as that illustrated and described as accelerator 307 (FIG. 3).
In some embodiments, execution circuitry is a matrix opera-
tions circuit, such as matrix operations circuitry 405 (FIG.
4), 505 (FIG. 5), or 1213 (FIG. 12), and 1327 (FIG. 13).
[0214] In operation, a computing system 2140 is to use
fetch circuitry to fetch a TileDecompress instruction 2142
specifying a decompress algorithm 2142C and locations of
compressed source matrix 2144, specified by 2142D, and
decompressed destination matrix 2148, specified by 2142B,
wherein the specified compressed source matrix was gener-
ated as in FIG. 21B by packing non-zero-valued elements
over zero-valued elements and storing an associated matrix
position for each of the non-zero-valued elements that was
moved during the packing, a TileDecompress instruction by
writing each of the non-zero-valued elements to its associ-
ated matrix position within the specified destination matrix
2148 and writing any remaining values of the specified
destination matrix 2148 to zero.

[0215] FIG. 21E illustrates execution of a TileCompress
instruction, according to some embodiments. As shown,
TileCompress instruction 2152 includes fields to specify an
opcode 2152A (e.g., TileCompress), a compressed destina-
tion matrix location 2152B, a compress algorithm 2152C,
and a decompressed source matrix location 2152D. Also
shown are the specified decompressed source matrix 2154,
execution circuitry 2156, which includes compress circuitry,
and the specified compressed destination matrix 2158,
which includes matrix elements 2158A and use dictionary
2158B headers consisting of 8-bit headers for each row.
[0216] In the context of the illustrated system, decode
circuitry is similar to that illustrated and described at least
with respect to FIGS. 13, 14, and 28A-B.

[0217] Execution circuitry is further illustrated and
described with respect to FIGS. 3-14. In some embodiments,
execution circuitry is a matrix operations accelerator, such
as that illustrated and described as accelerator 307 (FIG. 3).
In some embodiments, execution circuitry is a matrix opera-
tions circuit, such as matrix operations circuitry 405 (FIG.
4), 505 (FIG. 5), or 1213 (FIG. 12), and 1327 (FIG. 13).
[0218] In operation, a computing system 2150 is to pro-
cess a TileCompress instruction by generating a result
matrix requiring fewer bits of storage than the specified
decompressed source matrix by reducing an average bit size
of matrix elements by replacing one or more floating-point
values with dictionary pointers to a dictionary, or list of

US 2022/0171627 Al

floating-point values, each dictionary pointer comprising
fewer bits than its associated matrix element. Here, the
dictionary pointers each only require 2 bits.

[0219] FIG. 21F illustrates execution of a TileCom-
pressQuad instruction, according to some embodiments. As
shown, TileCompressQuad instruction 2162 includes fields
to specify an opcode 2162A (e.g., TileCompressQuad), a
compressed destination matrix location 2162B, a compress
algorithm 2162C, and a decompressed source matrix loca-
tion 2162D. Also shown are the specified decompressed
source matrix 2164, execution circuitry 2166, which
includes compress circuitry, and the specified compressed
destination matrix 2168, which includes matrix elements
2168A and non-zero element position bitmask 2168B.
[0220] In the context of the illustrated system, decode
circuitry is similar to that illustrated and described at least
with respect to FIGS. 13, 14, and 28A-B.

[0221] Execution circuitry is further illustrated and
described with respect to FIGS. 3-14. In some embodiments,
execution circuitry is a matrix operations accelerator, such
as that illustrated and described as accelerator 307 (FIG. 3).
In some embodiments, execution circuitry is a matrix opera-
tions circuit, such as matrix operations circuitry 405 (FIG.
4), 505 (FIG. 5), or 1213 (FIG. 12), and 1327 (FIG. 13).
[0222] In operation, a computing system 2160 is to pro-
cess a TileCompressQuad instruction 2162 by generating a
result matrix requiring fewer bits of storage than the speci-
fied decompressed source matrix by packing non-zero-
valued elements over zero-valued elements, as is illustrated
and described with respect to FIG. 21B. But here, the
uncompressed source matrix 2164 has been partitioned into
four quadrants, and the non-zero values for each quadrant
are written to a different row of specified destination matrix.
[0223] FIG. 21G illustrates execution of a TileDecompres-
sOpCompress instruction, according to some embodiments.
As shown, TileDecompressOpCompress instruction 2172
includes fields to specify an opcode 2172A (e.g., TileDe-
compressOpCompress), a compressed destination matrix
location 2172B, a decompress algorithm 2172C, a com-
pressed source matrix location 2172D, an arithmetic or
logical op 2172E, and a compress algorithm 2172F. Also
shown are the specified compressed source matrix 2174,
which includes matrix elements 2174 A and non-zero select
2174B, execution circuitry 2176, which includes decom-
press circuitry, arithmetic or logical operation circuitry, and
compress circuitry, and the specified compressed destination
matrix 2178, which includes matrix elements 2178A and
non-zero element position bitmask 2178B.

[0224] Execution circuitry is further illustrated and
described with respect to FIGS. 3-14. In some embodiments,
execution circuitry is a matrix operations accelerator, such
as that illustrated and described as accelerator 307 (FIG. 3).
In some embodiments, execution circuitry is a matrix opera-
tions circuit, such as matrix operations circuitry 405 (FIG.
4), 505 (FIG. 5), or 1213 (FIG. 12), and 1327 (FIG. 13)
[0225] In operation, a computing system 2170 is to
respond to a decoded decompress instruction specifying a
compressed source matrix location, a decompression algo-
rithm, and a decompressed destination matrix location by
copying each element of the specified source matrix to its
associated matrix position in the specified destination
matrix. The processor is then to generate a result of an
operation on the specified destination matrix. Finally, the
processor is to respond to a decoded compress instruction

Jun. 2, 2022

specifying a compressed destination matrix location, a com-
pression algorithm, and an uncompressed source matrix
location comprising the generated result by compressing the
specified uncompressed source matrix, and writing the com-
pressed matrix and its associated matrix positions to the
specified compressed destination matrix.

[0226] FIG. 21H illustrates execution of a TileCompres-
sOpDecompress instruction, according to some embodi-
ments. As shown, TileCompressOpDecompress instruction
2182 includes fields to specify an opcode 2182A (e.g.,
TileCompressOpDecompress), a decompressed destination
matrix location 2182B, a decompress algorithm 2182C, a
decompressed source matrix location 2182D, an arithmetic
or logical op 2182E, and a compress algorithm 2182F. Also
shown are the specified decompressed source matrix 2184,
execution circuitry 2186, which includes compress circuitry,
arithmetic or logical operation circuitry, and decompress
circuitry, and the specified decompressed destination matrix
2188.

[0227] In operation, a computing system 2180 is to pro-
cess a TileCompressOpDecompress instruction by respond-
ing to a decoded compress instruction specifying a com-
pressed destination matrix location, a compression
algorithm, and an uncompressed source matrix location, by
compressing the specified uncompressed source matrix, and
writing the compressed matrix and its associated matrix
positions to the specified compressed destination matrix.
The processor is then to generate a result of an operation on
the specified compressed destination matrix, and then
respond to a decoded decompress instruction specifying a
compressed source matrix location being set to the generated
result, a decompression algorithm, and a decompressed
destination matrix location by copying each element of the
specified source matrix to its associated matrix position in
the specified destination matrix and zeroing remaining ele-
ments of the specified destination matrix.

Exemplary Method(s) of Execution

[0228] FIG. 22 illustrates an embodiment of a processor
executing a TileCompress instruction. At 2201, the proces-
sor is to fetch, using fetch circuitry, a compress instruction
specifying a compress algorithm and locations of a decom-
pressed source matrix and a compressed destination matrix.
The fetched compress instruction is decoded at 2203. For
example, the fetched TileCompress instruction is decoded
by decode circuitry such as that detailed herein.

[0229] At 2205, the processor is to respond, using execu-
tion circuitry, to the decoded compress instruction by gen-
erating a result matrix requiring fewer bits of storage than
the specified decompressed source matrix by either packing
non-zero-valued elements over zero-valued elements or
reducing an average bit size of matrix elements by replacing
one or more floating point values with dictionary pointers to
a list of floating point values, each dictionary pointer com-
prising fewer bits than its associated matrix element. In
some embodiments, the executed instruction is committed or
retired at 2207 which is optional (as indicated by its dashed
border) insofar as it may occur at a different time, or not at
all.

[0230] FIG. 23 illustrates an embodiment of a processor
executing a TileDecompress instruction. At 2301, the pro-
cessor is to fetch, using fetch circuitry, a compress instruc-
tion having a format with fields to specify an opcode and
locations of decompressed source and compressed destina-

US 2022/0171627 Al

tion matrices. The fetched compress instruction is decoded
at 2303. For example, the fetched TileDecompress instruc-
tion is decoded by decode circuitry such as that detailed
herein, at least at FIG. 13, FIG. 14, and FIGS. 28A-B.

[0231] At 2305, the processor is to respond, using execu-
tion circuitry, to the decoded decompress instruction by
generating a compressed result according to a compress
algorithm by compressing the specified decompressed
source matrix by either packing non-zero-valued elements
together and storing the matrix position of each non-zero-
valued element in a header, or using fewer bits to represent
one or more elements and using the header to identify matrix
elements being represented by fewer bits; and storing the
compressed result to the specified compressed destination
matrix. In some embodiments, the executed instruction is
committed or retired at 2307 which is optional (as indicated
by its dashed border) insofar as it may occur at a different
time, or not at all.

Exemplary Instruction Format(s)

[0232] FIG. 24 is a block diagram illustrating a format of
a TileCompress/Decompress instruction, according to some
embodiments.

[0233] As shown, TileCompress instruction 2402 includes
fields for specifying an opcode 2402A, a compressed des-
tination location 2402B, a compress algorithm 2402C, and a
decompressed source location 2402D. Compress algorithm
2402C is optional, as indicated by its dashed border, insofar
as the processor in some embodiments is to use a predeter-
mined default compress algorithm. Source location 2402D
and destination location 2402B can specify a matrix (tile) in
any of a set of vector registers, and a set of tile registers. In
some embodiments, the destination specifies a matrix(tile) in
memory. Opcode 2402A is shown including an asterisk,
which is to convey that additional prefixes and/or suffixes
may be added to specify instruction behavior. In some
embodiments, not shown, TileCompress instruction 2402
optionally includes additional fields to specify instruction
behavior, including an element size (8b, 16b, 32b, and 64b),
source and destination matrix rows (M) and columns (N). A
format of TileCompress instruction 2402 is further illus-
trated and described with respect to FIGS. 25A-B, and FIGS.
26A-D.

[0234] Load decompress and store compress variants of
the TileCompress/TileDecompress instruction are expected
to be commonly used.

[0235] Also shown, TileDecompress instruction 2412
includes fields for specifying an opcode 2412A, a decom-
pressed destination location 2412B, a decompress algorithm
2412C, and a compressed source location 2412D. Decom-
press algorithm 2412C is optional, as indicated by its dashed
border, insofar as the processor in some embodiments is to
use a predetermined default decompress algorithm. Source
location 2412D and destination location 2412B can specify
a matrix (tile) in any of a set of vector registers, and a set of
tile registers. In some embodiments, the destination specifies
a matrix(tile) in memory. Opcode 2412 A is shown including
an asterisk, which is to convey that additional prefixes
and/or suffixes may be added to specify instruction behavior.
In some embodiments, not shown, TileDecompress instruc-
tion 2412 optionally includes additional fields to specify
instruction behavior, including an element size (8b, 16b,
32b, and 64b), source and destination matrix rows (M) and

Jun. 2, 2022

columns (N). A format of TileDecompress instruction 2412
is further illustrated and described with respect to FIGS.
25A-B, and FIGS. 26A-D.

[0236] As shown, TileDecompressOpCompress instruc-
tion 2422 includes fields for specifying an opcode 2422A, a
compressed destination location 2422B, a decompress algo-
rithm 2422C, a compressed source location 2422F, an arith-
metic or logical op 2422E, and a compress algorithm 2422F.
Source 2422F and destination location 2422B can specify a
matrix (tile) in any of a set of vector registers, and a set of
tile registers. In some embodiments, the destination specifies
a matrix(tile) in memory. Opcode 2422A is shown including
an asterisk, which is to convey that additional prefixes
and/or suffixes may be added to specify instruction behavior.
In some embodiments, not shown, TileDecompressOpCom-
press instruction 2422 optionally includes additional fields
to specify instruction behavior, including an element size
(8b, 16b, 32b, and 64b), source and destination matrix rows
(M) and columns (N). A format of TileDecompressOpCom-
press instruction 2422 is further illustrated and described
with respect to FIGS. 25A-B, and FIGS. 26A-D.

[0237] As shown, TileCompressOpDecompress instruc-
tion 2432 includes fields for specifying an opcode 2432A, a
decompressed destination location 2432B, a decompress
algorithm 2432C, a decompressed source 2432F, an arith-
metic or logical op 2432E, and a compress algorithm 2432F.
Source 2432F and destination location 2432B can specify a
matrix (tile) in any of a set of vector registers, and a set of
tile registers. In some embodiments, the destination specifies
a matrix(tile) in memory. Opcode 2432A is shown including
an asterisk, which is to convey that additional prefixes
and/or suffixes may be added to specify instruction behavior.
In some embodiments, not shown, TileCompressOpDecom-
press instruction 2432 optionally includes additional fields
to specify instruction behavior, including an element size
(8b, 16b, 32b, and 64b), source and destination matrix rows
(M) and columns (N). A format of TileCompressOpDecom-
press instruction 2432 is further illustrated and described
with respect to FIGS. 25A-B, and FIGS. 26A-D.

[0238] Detailed herein are examples of hardware, soft-
ware, etc. to execute the above described instructions. For
example, what is described below details aspects of instruc-
tion execution including various pipeline stages such as
fetch, decode, schedule, execute, retire, etc.

Instruction Sets

[0239] An instruction set may include one or more instruc-
tion formats. A given instruction format may define various
fields (e.g., number of bits, location of bits) to specify,
among other things, the operation to be performed (e.g.,
opcode) and the operand(s) on which that operation is to be
performed and/or other data field(s) (e.g., mask). Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For

US 2022/0171627 Al

example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specity that opcode and operand fields to select
operands (sourcel/destination and source2); and an occur-
rence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to as
the Advanced Vector Extensions (AVX) (AVX1 and AVX2)
and using the Vector Extensions (VEX) coding scheme has
been released and/or published (e.g., see Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Septem-
ber 2014; and see Intel® Advanced Vector Extensions
Programming Reference, October 2014).

Exemplary Instruction Formats

[0240] Embodiments of the instruction(s) described herein
may be embodied in different formats. Additionally, exem-
plary systems, architectures, and pipelines are detailed
below. Embodiments of the instruction(s) may be executed
on such systems, architectures, and pipelines, but are not
limited to those detailed.

[0241] Generic Vector Friendly Instruction Format
[0242] A vector friendly instruction format is an instruc-
tion format that is suited for vector instructions (e.g., there
are certain fields specific to vector operations). While
embodiments are described in which both vector and scalar
operations are supported through the vector friendly instruc-
tion format, alternative embodiments use only vector opera-
tions the vector friendly instruction format.

[0243] FIGS. 25A-25B are block diagrams illustrating a
generic vector friendly instruction format and instruction
templates thereof according to embodiments. FIG. 25A is a
block diagram illustrating a generic vector friendly instruc-
tion format and class A instruction templates thereof accord-
ing to embodiments; while FIG. 25B is a block diagram
illustrating the generic vector friendly instruction format and
class B instruction templates thereof according to embodi-
ments. Specifically, a generic vector friendly instruction
format 2500 for which are defined class A and class B
instruction templates, both of which include no memory
access 2505 instruction templates and memory access 2520
instruction templates. The term generic in the context of the
vector friendly instruction format refers to the instruction
format not being tied to any specific instruction set.

[0244] While embodiments will be described in which the
vector friendly instruction format supports the following: a
64 byte vector operand length (or size) with 32 bit (4 byte)
or 64 bit (8 byte) data element widths (or sizes) (and thus,
a 64 byte vector consists of either 16 doubleword-size
elements or alternatively, 8 quadword-size elements); a 64
byte vector operand length (or size) with 16 bit (2 byte) or
8 bit (1 byte) data element widths (or sizes); a 32 byte vector
operand length (or size) with 32 bit (4 byte), 64 bit (8 byte),
16 bit (2 byte), or 8 bit (1 byte) data element widths (or
sizes); and a 16 byte vector operand length (or size) with 32
bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte)
data element widths (or sizes); alternative embodiments may
support more, less and/or different vector operand sizes
(e.g., 256 byte vector operands) with more, less, or different
data element widths (e.g., 128 bit (16 byte) data element
widths).

[0245] The class A instruction templates in FIG. 25A
include: 1) within the no memory access 2505 instruction
templates there is shown a no memory access, full round

Jun. 2, 2022

control type operation 2510 instruction template and a no
memory access, data transform type operation 2515 instruc-
tion template; and 2) within the memory access 2520
instruction templates there is shown a memory access,
temporal 2525 instruction template and a memory access,
non-temporal 2530 instruction template. The class B instruc-
tion templates in FIG. 25B include: 1) within the no memory
access 2505 instruction templates there is shown a no
memory access, write mask control, partial round control
type operation 2512 instruction template and a no memory
access, write mask control, vsize type operation 2517
instruction template; and 2) within the memory access 2520
instruction templates there is shown a memory access, write
mask control 2527 instruction template.

[0246] The generic vector friendly instruction format 2500
includes the following fields listed below in the order
illustrated in FIGS. 25A-25B.

[0247] Format field 2540—a specific value (an instruction
format identifier value) in this field uniquely identifies the
vector friendly instruction format, and thus occurrences of
instructions in the vector friendly instruction format in
instruction streams. As such, this field is optional in the
sense that it is not needed for an instruction set that has only
the generic vector friendly instruction format.

[0248] Base operation field 2542—its content distin-
guishes different base operations.

[0249] Register index field 2544—its content, directly or
through address generation, specifies the locations of the
source and destination operands, be they in registers or in
memory. These include a sufficient number of bits to select
N registers from a PxQ (e.g. 32x512, 16x128, 32x1024,
64x1024) register file. While in one embodiment N may be
up to three sources and one destination register, alternative
embodiments may support more or less sources and desti-
nation registers (e.g., may support up to two sources where
one of these sources also acts as the destination, may support
up to three sources where one of these sources also acts as
the destination, may support up to two sources and one
destination).

[0250] Modifier field 2546—its content distinguishes
occurrences of instructions in the generic vector instruction
format that specify memory access from those that do not;
that is, between no memory access 2505 instruction tem-
plates and memory access 2520 instruction templates.
Memory access operations read and/or write to the memory
hierarchy (in some cases specifying the source and/or des-
tination addresses using values in registers), while non-
memory access operations do not (e.g., the source and
destinations are registers). While in one embodiment this
field also selects between three different ways to perform
memory address calculations, alternative embodiments may
support more, less, or different ways to perform memory
address calculations.

[0251] Augmentation operation field 2550—its content
distinguishes which one of a variety of different operations
to be performed in addition to the base operation. This field
is context specific. In one embodiment, this field is divided
into a class field 2568, an alpha field 2552, and a beta field
2554. The augmentation operation field 2550 allows com-
mon groups of operations to be performed in a single
instruction rather than 2, 3, or 4 instructions.

[0252] Scale field 2560—its content allows for the scaling
of the index field’s content for memory address generation
(e.g., for address generation that uses 2°°“**index+base).

US 2022/0171627 Al

[0253] Displacement Field 2562A—its content is used as
part of memory address generation (e.g., for address gen-
eration that uses 2scale*index+base+displacement).

[0254] Displacement Factor Field 2562B (note that the
juxtaposition of displacement field 2562A directly over
displacement factor field 2562B indicates one or the other is
used)—its content is used as part of address generation; it
specifies a displacement factor that is to be scaled by the size
of'a memory access (N)—where N is the number of bytes in
the memory access (e.g., for address generation that uses
2scale*index+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 2574 (described later herein) and the
data manipulation field 2554C. The displacement field
2562A and the displacement factor field 2562B are optional
in the sense that they are not used for the no memory access
2505 instruction templates and/or different embodiments
may implement only one or none of the two.

[0255] Data element width field 2564—its content distin-
guishes which one of a number of data element widths is to
be used (in some embodiments for all instructions; in other
embodiments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

[0256] Write mask field 2570—its content controls, on a
per data element position basis, whether that data element
position in the destination vector operand reflects the result
of the base operation and augmentation operation. Class A
instruction templates support merging-writemasking, while
class B instruction templates support both merging- and
zeroing-writemasking. When merging, vector masks allow
any set of elements in the destination to be protected from
updates during the execution of any operation (specified by
the base operation and the augmentation operation); in other
one embodiment, preserving the old value of each element
of the destination where the corresponding mask bit has a 0.
In contrast, when zeroing vector masks allow any set of
elements in the destination to be zeroed during the execution
of any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
2570 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments are
described in which the write mask field’s 2570 content
selects one of a number of write mask registers that contains
the write mask to be used (and thus the write mask field’s
2570 content indirectly identifies that masking to be per-
formed), alternative embodiments instead or additional
allow the mask write field’s 2570 content to directly specify
the masking to be performed.

[0257] Immediate field 2572—its content allows for the
specification of an immediate. This field is optional in the
sense that it is not present in an implementation of the

Jun. 2, 2022

generic vector friendly format that does not support imme-
diate and it is not present in instructions that do not use an
immediate.

[0258] Class field 2568—its content distinguishes
between different classes of instructions. With reference to
FIGS. 25A-B, the contents of this field select between class
A and class B instructions. In FIGS. 25A-B, rounded corner
squares are used to indicate a specific value is present in a
field (e.g., class A 2568A and class B 2568B for the class
field 2568 respectively in FIGS. 25A-B).

Instruction Templates of Class A

[0259] Inthe case of the non-memory access 2505 instruc-
tion templates of class A, the alpha field 2552 is interpreted
as an RS field 2552A, whose content distinguishes which
one of the different augmentation operation types are to be
performed (e.g., round 2552A.1 and data transform 2552A.2
are respectively specified for the no memory access, round
type operation 2510 and the no memory access, data trans-
form type operation 2515 instruction templates), while the
beta field 2554 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
2505 instruction templates, the scale field 2560, the dis-
placement field 2562A, and the displacement scale filed
2562B are not present.

No-Memory Access Instruction Templates—Full Round
Control Type Operation

[0260] In the no memory access full round control type
operation 2510 instruction template, the beta field 2554 is
interpreted as a round control field 2554 A, whose content(s)
provide static rounding. While in the described embodi-
ments the round control field 2554 A includes a suppress all
floating-point exceptions (SAE) field 2556 and a round
operation control field 2558, alternative embodiments may
support may encode both these concepts into the same field
or only have one or the other of these concepts/fields (e.g.,
may have only the round operation control field 2558).
[0261] SAE field 2556—its content distinguishes whether
or not to disable the exception event reporting; when the
SAE field’s 2556 content indicates suppression is enabled, a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating-point excep-
tion handler.

[0262] Round operation control field 2558—its content
distinguishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 2558 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment where a proces-
sor includes a control register for specifying rounding
modes, the round operation control field’s 2550 content
overrides that register value.

[0263] No Memory Access Instruction Templates—Data
Transform Type Operation

[0264] In the no memory access data transform type
operation 2515 instruction template, the beta field 2554 is
interpreted as a data transform field 2554B, whose content
distinguishes which one of a number of data transforms is to
be performed (e.g., no data transform, swizzle, broadcast).
[0265] In the case of a memory access 2520 instruction
template of class A, the alpha field 2552 is interpreted as an
eviction hint field 2552B, whose content distinguishes

US 2022/0171627 Al

which one of the eviction hints is to be used (in FIG. 25A,
temporal 2552B.1 and non-temporal 2552B.2 are respec-
tively specified for the memory access, temporal 2525
instruction template and the memory access, non-temporal
2530 instruction template), while the beta field 2554 is
interpreted as a data manipulation field 2554C, whose con-
tent distinguishes which one of a number of data manipu-
lation operations (also known as primitives) is to be per-
formed (e.g., no manipulation; broadcast; up conversion of
a source; and down conversion of a destination). The
memory access 2520 instruction templates include the scale
field 2560, and optionally the displacement field 2562A or
the displacement scale field 2562B.

[0266] Vector memory instructions perform vector loads
from and vector stores to memory, with conversion support.
As with regular vector instructions, vector memory instruc-
tions transfer data from/to memory in a data element-wise
fashion, with the elements that are actually transferred is
dictated by the contents of the vector mask that is selected
as the write mask.

Memory Access Instruction Templates—Temporal

[0267] Temporal data is data likely to be reused soon
enough to benefit from caching. This is, however, a hint, and
different processors may implement it in different ways,
including ignoring the hint entirely.

[0268] Memory Access Instruction Templates—Non-
Temporal
[0269] Non-temporal data is data unlikely to be reused

soon enough to benefit from caching in the 1st-level cache
and should be given priority for eviction. This is, however,
a hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

[0270] In the case of the instruction templates of class B,
the alpha field 2552 is interpreted as a write mask control (Z)
field 2552C, whose content distinguishes whether the write
masking controlled by the write mask field 2570 should be
a merging or a zeroing.

[0271] In the case of the non-memory access 2505 instruc-
tion templates of class B, part of the beta field 2554 is
interpreted as an RL field 2557A, whose content distin-
guishes which one of the different augmentation operation
types are to be performed (e.g., round 2557A.1 and vector
length (VSIZE) 2557A.2 are respectively specified for the
no memory access, write mask control, partial round control
type operation 2512 instruction template and the no memory
access, write mask control, VSIZE type operation 2517
instruction template), while the rest of the beta field 2554
distinguishes which of the operations of the specified type is
to be performed. In the no memory access 2505 instruction
templates, the scale field 2560, the displacement field
2562A, and the displacement scale filed 2562B are not
present.

[0272] In the no memory access, write mask control,
partial round control type operation 2510 instruction tem-
plate, the rest of the beta field 2554 is interpreted as a round
operation field 2559A and exception event reporting is
disabled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating-
point exception handler).

Jun. 2, 2022

[0273] Round operation control field 2559A—just as
round operation control field 2558, its content distinguishes
which one of a group of rounding operations to perform
(e.g., Round-up, Round-down, Round-towards-zero and
Round-to-nearest). Thus, the round operation control field
2559 A allows for the changing of the rounding mode on a
per instruction basis. In one embodiment where a processor
includes a control register for specifying rounding modes,
the round operation control field’s 2550 content overrides
that register value.

[0274] In the no memory access, write mask control,
VSIZE type operation 2517 instruction template, the rest of
the beta field 2554 is interpreted as a vector length field
25598, whose content distinguishes which one of a number
of data vector lengths is to be performed on (e.g., 128, 256,
or 512 byte).

[0275] In the case of a memory access 2520 instruction
template of class B, part of the beta field 2554 is interpreted
as a broadcast field 2557B, whose content distinguishes
whether or not the broadcast type data manipulation opera-
tion is to be performed, while the rest of the beta field 2554
is interpreted the vector length field 2559B. The memory
access 2520 instruction templates include the scale field
2560, and optionally the displacement field 2562A or the
displacement scale field 2562B.

[0276] With regard to the generic vector friendly instruc-
tion format 2500, a full opcode field 2574 is shown includ-
ing the format field 2540, the base operation field 2542, and
the data element width field 2564. While one embodiment is
shown where the full opcode field 2574 includes all of these
fields, the full opcode field 2574 includes less than all of
these fields in embodiments that do not support all of them.
The full opcode field 2574 provides the operation code
(opcode).

[0277] The augmentation operation field 2550, the data
element width field 2564, and the write mask field 2570
allow these features to be specified on a per instruction basis
in the generic vector friendly instruction format.

[0278] The combination of write mask field and data
element width field create typed instructions in that they
allow the mask to be applied based on different data element
widths.

[0279] The various instruction templates found within
class A and class B are beneficial in different situations. In
some embodiments, different processors or different cores
within a processor may support only class A, only class B,
or both classes. For instance, a high performance general
purpose out-of-order core intended for general-purpose
computing may support only class B, a core intended
primarily for graphics and/or scientific (throughput) com-
puting may support only class A, and a core intended for
both may support both (of course, a core that has some mix
of templates and instructions from both classes but not all
templates and instructions from both classes is within the
purview). Also, a single processor may include multiple
cores, all of which support the same class or in which
different cores support different class. For instance, in a
processor with separate graphics and general-purpose cores,
one of the graphics cores intended primarily for graphics
and/or scientific computing may support only class A, while
one or more of the general-purpose cores may be high
performance general purpose cores with out of order execu-
tion and register renaming intended for general-purpose
computing that support only class B. Another processor that

US 2022/0171627 Al

does not have a separate graphics core, may include one
more general purpose in-order or out-of-order cores that
support both class A and class B. Of course, features from
one class may also be implement in the other class in
different embodiments. Programs written in a high level
language would be put (e.g., just in time compiled or
statically compiled) into an variety of different executable
forms, including: 1) a form having only instructions of the
class(es) supported by the target processor for execution; or
2) a form having alternative routines written using different
combinations of the instructions of all classes and having
control flow code that selects the routines to execute based
on the instructions supported by the processor which is
currently executing the code.

Exemplary Specific Vector Friendly Instruction Format

[0280] FIG. 26A is a block diagram illustrating an exem-
plary specific vector friendly instruction format according to
embodiments. FIG. 26A shows a specific vector friendly
instruction format 2600 that is specific in the sense that it
specifies the location, size, interpretation, and order of the
fields, as well as values for some of those fields. The specific
vector friendly instruction format 2600 may be used to
extend the x86 instruction set, and thus some of the fields are
similar or the same as those used in the existing x86
instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 25 into which the
fields from FIG. 26A map are illustrated.

[0281] It should be understood that, although embodi-
ments are described with reference to the specific vector
friendly instruction format 2600 in the context of the generic
vector friendly instruction format 2500 for illustrative pur-
poses, the invention is not limited to the specific vector
friendly instruction format 2600 except where claimed. For
example, the generic vector friendly instruction format 2500
contemplates a variety of possible sizes for the various
fields, while the specific vector friendly instruction format
2600 is shown as having fields of specific sizes. By way of
specific example, while the data element width field 2564 is
illustrated as a one-bit field in the specific vector friendly
instruction format 2600, the invention is not so limited (that
is, the generic vector friendly instruction format 2500 con-
templates other sizes of the data element width field 2564).
[0282] The generic vector friendly instruction format 2500
includes the following fields listed below in the order
illustrated in FIG. 26A.

[0283] EVEX Prefix 2602 (Bytes 0-3)—is encoded in a
four-byte form.
[0284] Format Field 2540 (EVEX Byte O, bits [7:0])—the

first byte (EVEX Byte 0) is the format field 2540 and it
contains 0x62 (the unique value used for distinguishing the
vector friendly instruction format in one embodiment).
[0285] The second-fourth bytes (EVEX Bytes 1-3) include
a number of bit fields providing specific capability.

[0286] REX field 2605 (EVEX Byte 1, bits [7-5])—
consists of an EVEX R bit field (EVEX Byte 1, bit [7]-R),
EVEX.X bit field (EVEX byte 1, bit [6]-X), and 2557BEX
byte 1, bit [5]-B). The EVEX.R, EVEX.X, and EVEX.B bit
fields provide the same functionality as the corresponding
VEX bit fields, and are encoded using is complement form,
i.e. ZMMO is encoded as 1111B, ZMM15 is encoded as

Jun. 2, 2022

0000B. Other fields of the instructions encode the lower
three bits of the register indexes as is known in the art (rrr,
xxX, and bbb), so that Rrrr, Xxxx, and Bbbb may be formed
by adding EVEX.R, EVEX X, and EVEX.B.

[0287] REX' field 2510—this is the first part of the REX'
field 2510 and is the EVEX.R' bit field (EVEX Byte 1, bit
[4]-R") that is used to encode either the upper 16 or lower 16
of the extended 32 register set. In one embodiment, this bit,
along with others as indicated below, is stored in bit inverted
format to distinguish (in the well-known x86 32-bit mode)
from the BOUND instruction, whose real opcode byte is 62,
but does not accept in the MOD R/M field (described below)
the value of 11 in the MOD field; alternative embodiments
do not store this and the other indicated bits below in the
inverted format. A value of 1 is used to encode the lower 16
registers. In other words, R'Rrrr is formed by combining
EVEX.R', EVEX R, and the other RRR from other fields.

[0288] Opcode map field 2615 (EVEX byte 1, bits [3:0]-
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

[0289] Data element width field 2564 (EVEX byte 2, bit
[7]-W)—is represented by the notation EVEX.W. EVEX.W
is used to define the granularity (size) of the datatype (either
32-bit data elements or 64-bit data elements).

[0290] EVEX.wvvv 2620 (EVEX Byte 2, bits [6:3]-
vvvv)—the role of EVEX.vvvv may include the following:
1) EVEX.vvvv encodes the first source register operand,
specified in inverted (1s complement) form and is valid for
instructions with 2 or more source operands; 2) EVEX . vvvv
encodes the destination register operand, specified in 1s
complement form for certain vector shifts; or 3) EVEX .vvvv
does not encode any operand, the field is reserved and
should contain 1111b. Thus, EVEX.vvvv field 2620 encodes
the 4 low-order bits of the first source register specifier
stored in inverted (1s complement) form. Depending on the
instruction, an extra different EVEX bit field is used to
extend the specifier size to 32 registers.

[0291] EVEX.U 2568 Class field (EVEX byte 2, bit [2]-
U)—If EVEX.U=0, it indicates class A or EVEX.UO; if
EVEX.U=1, it indicates class B or EVEX.U1.

[0292] Prefix encoding field 2625 (EVEX byte 2, bits
[1:0]-pp)—provides additional bits for the base operation
field. In addition to providing support for the legacy SSE
instructions in the EVEX prefix format, this also has the
benefit of compacting the SIMD prefix (rather than requiring
a byte to express the SIMD prefix, the EVEX prefix requires
only 2 bits). In one embodiment, to support legacy SSE
instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these
legacy SIMD prefixes are encoded into the SIMD prefix
encoding field; and at runtime are expanded into the legacy
SIMD prefix prior to being provided to the decoder’s PLA
(so the PLA can execute both the legacy and EVEX format
of these legacy instructions without modification). Although
newer instructions could use the EVEX prefix encoding
field’s content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but
allow for different meanings to be specified by these legacy
SIMD prefixes. An alternative embodiment may redesign
the PLA to support the 2-bit SIMD prefix encodings, and
thus not require the expansion.

[0293] Alpha field 2552 (EVEX byte 3, bit [7]-EH; also
known as EVEX.EH, EVEX.rs, EVEX.RL, EVEX.write

US 2022/0171627 Al

mask control, and EVEX.N; also illustrated with a)—as
previously described, this field is context specific.

[0294] Beta field 2554 (EVEX byte 3, bits [6:4]-SSS, also
known as EVEXs, ,, EVEXr, ,, EVEX.rrl, EVEX.LLO,
EVEX.LLB; also illustrated with PBpp)—as previously
described, this field is context specific.

[0295] REX' field 2510—this is the remainder of the REX"
field and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V")
that may be used to encode either the upper 16 or lower 16
of the extended 32 register set. This bit is stored in bit
inverted format. A value of 1 is used to encode the lower 16
registers. In other words, V'VVVV is formed by combining
EVEX.V', EVEX vvvv.

[0296] Write mask field 2570 (EVEX byte 3, bits [2:0]-
kkk)—its content specifies the index of a register in the write
mask registers as previously described. In one embodiment,
the specific value EVEX kkk=000 has a special behavior
implying no write mask is used for the particular instruction
(this may be implemented in a variety of ways including the
use of a write mask hardwired to all ones or hardware that
bypasses the masking hardware).

[0297] Real Opcode Field 2630 (Byte 4) is also known as
the opcode byte. Part of the opcode is specified in this field.
[0298] MOD R/M Field 2640 (Byte 5) includes MOD field
2642, Reg field 2644, and R/M field 2646. As previously
described, the MOD field’s 2642 content distinguishes
between memory access and non-memory access operations.
The role of Reg field 2644 can be summarized to two
situations: encoding either the destination register operand
or a source register operand or be treated as an opcode
extension and not used to encode any instruction operand.
The role of R/M field 2646 may include the following:
encoding the instruction operand that references a memory
address or encoding either the destination register operand
or a source register operand.

[0299] Scale, Index, Base (SIB) Byte (Byte 6)—As pre-
viously described, the content of SIB 2650 is used for
memory address generation. SIB.xxx 2654 and SIB.bbb
2656—the contents of these fields have been previously
referred to with regard to the register indexes Xxxx and
Bbbb.

[0300] Displacement field 2562A (Bytes 7-10)—when
MOD field 2642 contains 10, bytes 7-10 are the displace-
ment field 2562 A, and it works the same as the legacy 32-bit
displacement (disp32) and works at byte granularity.
[0301] Displacement factor field 2562B (Byte 7)—when
MOD field 2642 contains 01, byte 7 is the displacement
factor field 2562B. The location of this field is that same as
that of the legacy x86 instruction set 8-bit displacement
(disp8), which works at byte granularity. Since disp8 is sign
extended, it can only address between —128 and 127 bytes
offsets; in terms of 64-byte cache lines, disp8 uses 8 bits that
can be set to only four really useful values —128, -64, 0, and
64; since a greater range is often needed, disp32 is used;
however, disp32 requires 4 bytes. In contrast to disp8 and
disp32, the displacement factor field 2562B is a reinterpre-
tation of disp8; when using displacement factor field 2562B,
the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the
memory operand access (N). This type of displacement is
referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with
a much greater range). Such compressed displacement
assumes that the effective displacement is multiple of the

Jun. 2, 2022

granularity of the memory access, and hence, the redundant
low-order bits of the address offset do not need to be
encoded. In other words, the displacement factor field
25628 substitutes the legacy x86 instruction set 8-bit dis-
placement. Thus, the displacement factor field 2562B is
encoded the same way as an x86 instruction set 8-bit
displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to
disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs
to scale the displacement by the size of the memory operand
to obtain a byte-wise address offset). Immediate field 2572
operates as previously described.

Full Opcode Field

[0302] FIG. 26B is a block diagram illustrating the fields
of the specific vector friendly instruction format 2600 that
make up the full opcode field 2574 according to one embodi-
ment. Specifically, the full opcode field 2574 includes the
format field 2540, the base operation field 2542, and the data
element width (W) field 2564. The base operation field 2542
includes the prefix encoding field 2625, the opcode map field
2615, and the real opcode field 2630.

[0303] Register Index Field

[0304] FIG. 26C is a block diagram illustrating the fields
of the specific vector friendly instruction format 2600 that
make up the register index field 2544 according to one
embodiment. Specifically, the register index field 2544
includes the REX 2605 field, the REX' 2610 field, the
MODR/M.reg field 2644, the MODR/M.r/m field 2646, the
VVVV field 2620, xxx field 2654, and the bbb field 2656.
[0305] Augmentation Operation Field

[0306] FIG. 26D is a block diagram illustrating the fields
of the specific vector friendly instruction format 2600 that
make up the augmentation operation field 2550 according to
one embodiment. When the class (U) field 2568 contains O,
it signifies EVEX.UO (class A 2568A); when it contains 1,
it signifies EVEX.U1 (class B 2568B). When U=0 and the
MOD field 2642 contains 11 (signifying a no memory access
operation), the alpha field 2552 (EVEX byte 3, bit [7]-EH)
is interpreted as the rs field 2552A. When the rs field 2552A
contains a 1 (round 2552A.1), the beta field 2554 (EVEX
byte 3, bits [6:4]-SSS) is interpreted as the round control
field 2554A. The round control field 2554A includes a
one-bit SAE field 2556 and a two-bit round operation field
2558. When the rs field 2552 A contains a 0 (data transform
2552A.2), the beta field 2554 (EVEX byte 3, bits [6:4]-SSS)
is interpreted as a three-bit data transform field 2554B.
When U=0 and the MOD field 2642 contains 00, 01, or 10
(signifying a memory access operation), the alpha field 2552
(EVEX byte 3, bit [7]-EH) is interpreted as the eviction hint
(EH) field 2552B and the beta field 2554 (EVEX byte 3, bits
[6:4]-SSS) is interpreted as a three bit data manipulation
field 2554C.

[0307] When U=1, the alpha field 2552 (EVEX byte 3, bit
[7]1-EH) is interpreted as the write mask control (Z) field
2552C. When U=1 and the MOD field 2642 contains 11
(signifying a no memory access operation), part of the beta
field 2554 (EVEX byte 3, bit [4]-S,) is interpreted as the RL
field 2557 A; when it contains a 1 (round 2557A.1) the rest
of the beta field 2554 (EVEX byte 3, bit [6-5]-S,_) is
interpreted as the round operation field 2559A, while when
the RL field 2557 A contains a 0 (VSIZE 2557A.2) the rest

US 2022/0171627 Al

of the beta field 2554 (EVEX byte 3, bit [6-5]-S,_ ;) is
interpreted as the vector length field 2559B (EVEX byte 3,
bit [6-5]-L, o). When U=1 and the MOD field 2642 contains
00, 01, or 10 (signifying a memory access operation), the
beta field 2554 (EVEX byte 3, bits [6:4]-SSS) is interpreted
as the vector length field 2559B (EVEX byte 3, bit [6-5]-
L, o) and the broadcast field 2557B (EVEX byte 3, bit
[4]-B).

Exemplary Register Architecture

[0308] FIG. 27 is a block diagram of a register architecture
2700 according to one embodiment. In the embodiment
illustrated, there are 32 vector registers 2710 that are 512
bits wide; these registers are referenced as zmmO through
zmm31. The lower order 256 bits of the lower 16 zmm
registers are overlaid on registers ymmO-16. The lower order
128 bits of the lower 16 zmm registers (the lower order 128
bits of the ymm registers) are overlaid on registers xmmO-
15. The specific vector friendly instruction format 2600
operates on these overlaid register file as illustrated in the
below tables.

Adjustable

Vector Length Class Operations Registers

Instruction Templates A (FIG. 2510, 2515, zmm registers (the

that do not include 25A; 2525, 2530 vector length is 64 byte)
the vector length U=0)
fleld 2559B B (FIG. 2512 zmm registers (the
25B; vector length is 64 byte)
U=1)

Instruction templates B (FIG. 2517, 2527
that do include the 25B;
vector length field U=1)

Zmm, ymm, or Xmim
registers (the vector length
is 64-byte, 32 byte, or 16

2559B byte) depending on the
vector length field 2559B
[0309] In other words, the vector length field 2559B

selects between a maximum length and one or more other
shorter lengths, where each such shorter length is half the
length of the preceding length; and instructions templates
without the vector length field 2559B operate on the maxi-
mum vector length. Further, in one embodiment, the class B
instruction templates of the specific vector friendly instruc-
tion format 2600 operate on packed or scalar single/double-
precision floating-point data and packed or scalar integer
data. Scalar operations are operations performed on the
lowest order data element position in a zmm/ymm/xmm
register; the higher order data element positions are either
left the same as they were prior to the instruction or zeroed
depending on the embodiment.

[0310] Write mask registers 2715—in the embodiment
illustrated, there are 8 write mask registers (kO through k7),
each 64 bits in size. In an alternate embodiment, the write
mask registers 2715 are 16 bits in size. As previously
described, in one embodiment, the vector mask register kO
cannot be used as a write mask; when the encoding that
would normally indicate kO is used for a write mask, it
selects a hardwired write mask of OxFFFF, effectively dis-
abling write masking for that instruction.

[0311] General-purpose registers 2725—in the embodi-
ment illustrated, there are sixteen 64-bit general-purpose
registers that are used along with the existing x86 addressing
modes to address memory operands. These registers are

Jun. 2, 2022

referenced by the names RAX, RBX, RCX, RDX, RBP, RSI,
RDI, RSP, and R8 through R15.

[0312] Scalar floating-point stack register file (x87 stack)
2745, on which is aliased the MMX packed integer flat
register file 2750—in the embodiment illustrated, the x87
stack is an eight-element stack used to perform scalar
floating-point operations on 32/64/80-bit floating-point data
using the x87 instruction set extension; while the MMX
registers are used to perform operations on 64-bit packed
integer data, as well as to hold operands for some operations
performed between the MMX and XMM registers.

[0313] Alternative embodiments may use wider or nar-
rower registers. Additionally, alternative embodiments may
use more, less, or different register files and registers.
[0314] Exemplary Core Architectures, Processors, and
Computer Architectures

[0315] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

[0316] In-Order and Out-of-Order Core Block Diagram
[0317] FIG. 28A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments. FIG. 28B is a block diagram illustrating
both an exemplary embodiment of an in-order architecture
core and an exemplary register renaming, out-of-order issue/
execution architecture core to be included in a processor
according to embodiments. The solid lined boxes in FIGS.
28A-B illustrate the in-order pipeline and in-order core,
while the optional addition of the dashed lined boxes illus-
trates the register renaming, out-of-order issue/execution
pipeline and core. Given that the in-order aspect is a subset
of the out-of-order aspect, the out-of-order aspect will be
described.

[0318] In FIG. 28A, a processor pipeline 2800 includes a
fetch stage 2802, a length decode stage 2804, a decode stage
2806, an allocation stage 2808, a renaming stage 2810, a

US 2022/0171627 Al

scheduling (also known as a dispatch or issue) stage 2812,
a register read/memory read stage 2814, an execute stage
2816, a write back/memory write stage 2818, an exception
handling stage 2822, and a commit stage 2824.

[0319] FIG. 28B shows processor core 2890 including a
front-end unit 2830 coupled to an execution engine unit
2850, and both are coupled to a memory unit 2870. The core
2890 may be a reduced instruction set computing (RISC)
core, a complex instruction set computing (CISC) core, a
very long instruction word (VLIW) core, or a hybrid or
alternative core type. As yet another option, the core 2890
may be a special-purpose core, such as, for example, a
network or communication core, compression engine,
coprocessor core, general purpose computing graphics pro-
cessing unit (GPGPU) core, graphics core, or the like.

[0320] The front-end unit 2830 includes a branch predic-
tion unit 2832 coupled to an instruction cache unit 2834,
which is coupled to an instruction translation lookaside
buffer (TLB) 2836, which is coupled to an instruction fetch
unit 2838, which is coupled to a decode unit 2840. The
decode unit 2840 (or decoder) may decode instructions, and
generate as an output one or more micro-operations, micro-
code entry points, microinstructions, other instructions, or
other control signals, which are decoded from, or which
otherwise reflect, or are derived from, the original instruc-
tions. The decode unit 2840 may be implemented using
various different mechanisms. Examples of suitable mecha-
nisms include, but are not limited to, look-up tables, hard-
ware implementations, programmable logic arrays (PLAs),
microcode read only memories (ROMs), etc. In one embodi-
ment, the core 2890 includes a microcode ROM or other
medium that stores microcode for certain macroinstructions
(e.g., in decode unit 2840 or otherwise within the front-end
unit 2830). The decode unit 2840 is coupled to a rename/
allocator unit 2852 in the execution engine unit 2850.

[0321] The execution engine unit 2850 includes the
rename/allocator unit 2852 coupled to a retirement unit 2854
and a set of one or more scheduler unit(s) 2856. The
scheduler unit(s) 2856 represents any number of different
schedulers, including reservations stations, central instruc-
tion window, etc. The scheduler unit(s) 2856 is coupled to
the physical register file(s) unit(s) 2858. Each of the physical
register file(s) units 2858 represents one or more physical
register files, different ones of which store one or more
different data types, such as scalar integer, scalar floating-
point, packed integer, packed floating-point, vector integer,
vector floating-point, status (e.g., an instruction pointer that
is the address of the next instruction to be executed), etc. In
one embodiment, the physical register file(s) unit 2858
comprises a vector registers unit, a write mask registers unit,
and a scalar registers unit. These register units may provide
architectural vector registers, vector mask registers, and
general-purpose registers. The physical register file(s) unit
(s) 2858 is overlapped by the retirement unit 2854 to
illustrate various ways in which register renaming and
out-of-order execution may be implemented (e.g., using a
reorder buffer(s) and a retirement register file(s); using a
future file(s), a history buffer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.).
The retirement unit 2854 and the physical register file(s)
unit(s) 2858 are coupled to the execution cluster(s) 2860.
The execution cluster(s) 2860 includes a set of one or more
execution units 2862 and a set of one or more memory
access units 2864. The execution units 2862 may perform

Jun. 2, 2022

various operations (e.g., shifts, addition, subtraction, multi-
plication) and on various types of data (e.g., scalar floating-
point, packed integer, packed floating-point, vector integer,
vector floating-point). While some embodiments may
include a number of execution units dedicated to specific
functions or sets of functions, other embodiments may
include only one execution unit or multiple execution units
that all perform all functions. The scheduler unit(s) 2856,
physical register file(s) unit(s) 2858, and execution cluster(s)
2860 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar
floating-point/packed integer/packed floating-point/vector
integer/vector floating-point pipeline, and/or a memory
access pipeline that each have their own scheduler unit,
physical register file(s) unit, and/or execution cluster—and
in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 2864).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0322] The set of memory access units 2864 is coupled to
the memory unit 2870, which includes a data TLB unit 2872
coupled to a data cache unit 2874 coupled to a level 2 (L2)
cache unit 2876. In one exemplary embodiment, the memory
access units 2864 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 2872 in the memory unit 2870. The instruc-
tion cache unit 2834 is further coupled to a level 2 (L2)
cache unit 2876 in the memory unit 2870. The [.2 cache unit
2876 is coupled to one or more other levels of cache and
eventually to a main memory.

[0323] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 2800 as follows: 1) the instruction
fetch 2838 performs the fetch and length decoding stages
2802 and 2804; 2) the decode unit 2840 performs the decode
stage 2806; 3) the rename/allocator unit 2852 performs the
allocation stage 2808 and renaming stage 2810; 4) the
scheduler unit(s) 2856 performs the schedule stage 2812; 5)
the physical register file(s) unit(s) 2858 and the memory unit
2870 perform the register read/memory read stage 2814; the
execution cluster 2860 perform the execute stage 2816; 6)
the memory unit 2870 and the physical register file(s) unit(s)
2858 perform the write back/memory write stage 2818; 7)
various units may be involved in the exception handling
stage 2822; and 8) the retirement unit 2854 and the physical
register file(s) unit(s) 2858 perform the commit stage 2824.
[0324] The core 2890 may support one or more instruc-
tions sets (e.g., the x86 instruction set (with some extensions
that have been added with newer versions); the MIPS
instruction set of MIPS Technologies of Sunnyvale, Calif';
the ARM instruction set (with optional additional extensions
such as NEON) of ARM Holdings of Sunnyvale, Calif.),
including the instruction(s) described herein. In one embodi-
ment, the core 2890 includes logic to support a packed data
instruction set extension (e.g., AVX1, AVX2), thereby allow-
ing the operations used by many multimedia applications to
be performed using packed data.

[0325] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-

US 2022/0171627 Al

threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0326] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 2834/2874
and a shared L2 cache unit 2876, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0327] FIGS. 29A-B illustrate a block diagram of a more
specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores
of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect
network (e.g., a ring network) with some fixed function
logic, memory I/O interfaces, and other necessary I/O logic,
depending on the application.

[0328] FIG. 29A is a block diagram of a single processor
core, along with its connection to the on-die interconnect
network 2902 and with its local subset of the Level 2 (L2)
cache 2904, according to embodiments. In one embodiment,
an instruction decoder 2900 supports the x86 instruction set
with a packed data instruction set extension. An L1 cache
2906 allows low-latency accesses to cache memory into the
scalar and vector units. While in one embodiment (to
simplify the design), a scalar unit 2908 and a vector unit
2910 use separate register sets (respectively, scalar registers
2912 and vector registers 2914) and data transferred
between them is written to memory and then read back in
from a level 1 (LL1) cache 2906, alternative embodiments
may use a different approach (e.g., use a single register set
or include a communication path that allow data to be
transferred between the two register files without being
written and read back).

[0329] The local subset of the .2 cache 2904 is part of a
global 1.2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct
access path to its own local subset of the 1.2 cache 2904.
Data read by a processor core is stored in its [.2 cache subset
2904 and can be accessed quickly, in parallel with other
processor cores accessing their own local L2 cache subsets.
Data written by a processor core is stored in its own L2
cache subset 2904 and is flushed from other subsets, if
necessary. The ring network ensures coherency for shared
data. The ring network is bi-directional to allow agents such
as processor cores, [.2 caches and other logic blocks to
communicate with each other within the chip. Each ring
data-path is 1012-bits wide per direction.

[0330] FIG. 29B is an expanded view of part of the
processor core in FIG. 29A according to embodiments. FI1G.
29B includes an L1 data cache 2906A part of the L1 cache
2904, as well as more detail regarding the vector unit 2910

Jun. 2, 2022

and the vector registers 2914. Specifically, the vector unit
2910 is a 16-wide vector processing unit (VPU) (see the
16-wide ALLU 2928), which executes one or more of integer,
single-precision float, and double-precision float instruc-
tions. The VPU supports swizzling the register inputs with
swizzle unit 2920, numeric conversion with numeric convert
units 2922 A-B, and replication with replication unit 2924 on
the memory input. Write mask registers 2926 allow predi-
cating resulting vector writes.

[0331] FIG. 30 is a block diagram of a processor 3000 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments. The solid lined boxes in FIG. 30
illustrate a processor 3000 with a single core 3002A, a
system agent 3010, a set of one or more bus controller units
3016, while the optional addition of the dashed lined boxes
illustrates an alternative processor 3000 with multiple cores
3002A-N, a set of one or more integrated memory controller
unit(s) 3014 in the system agent unit 3010, and special
purpose logic 3008.

[0332] Thus, different implementations of the processor
3000 may include: 1) a CPU with the special purpose logic
3008 being integrated graphics and/or scientific (through-
put) logic (which may include one or more cores), and the
cores 3002A-N being one or more general purpose cores
(e.g., general purpose in-order cores, general purpose out-
of-order cores, a combination of the two); 2) a coprocessor
with the cores 3002A-N being a large number of special
purpose cores intended primarily for graphics and/or scien-
tific (throughput); and 3) a coprocessor with the cores
3002A-N being a large number of general purpose in-order
cores. Thus, the processor 3000 may be a general-purpose
processor, coprocessor or special-purpose processor, such
as, for example, a network or communication processor,
compression engine, graphics processor, GPGPU (general
purpose graphics processing unit), a high-throughput many
integrated core (MIC) coprocessor (including 30 or more
cores), embedded processor, or the like. The processor may
be implemented on one or more chips. The processor 3000
may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0333] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 3006, and external memory (not shown) coupled to the
set of integrated memory controller units 3014. The set of
shared cache units 3006 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 3012 interconnects the special pur-
pose logic 3008 (integrated graphics logic is an example of
and is also referred to herein as special purpose logic), the
set of shared cache units 3006, and the system agent unit
3010/integrated memory controller unit(s) 3014, alternative
embodiments may use any number of well-known tech-
niques for interconnecting such units. In one embodiment,
coherency is maintained between one or more cache units
3006 and cores 3002A-N.

[0334] In some embodiments, one or more of the cores
3002A-N are capable of multi-threading. The system agent
3010 includes those components coordinating and operating
cores 3002A-N. The system agent unit 3010 may include for
example a power control unit (PCU) and a display unit. The

US 2022/0171627 Al

PCU may be or include logic and components needed for
regulating the power state of the cores 3002A-N and the
special purpose logic 3008. The display unit is for driving
one or more externally connected displays.

[0335] The cores 3002A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 3002A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set.

[0336] Exemplary Computer Architectures

[0337] FIGS. 31-34 are block diagrams of exemplary
computer architectures. Other system designs and configu-
rations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0338] Referring now to FIG. 31, shown is a block dia-
gram of a system 3100 in accordance with one embodiment
of the present invention. The system 3100 may include one
or more processors 3110, 3115, which are coupled to a
controller hub 3120. In one embodiment the controller hub
3120 includes a graphics memory controller hub (GMCH)
3190 and an Input/Output Hub (IOH) 3150 (which may be
on separate chips); the GMCH 3190 includes memory and
graphics controllers to which are coupled memory 3140 and
a coprocessor 3145; the IOH 3150 couples input/output
(I/O) devices 3160 to the GMCH 3190. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 3140
and the coprocessor 3145 are coupled directly to the pro-
cessor 3110, and the controller hub 3120 in a single chip
with the IOH 3150.

[0339] The optional nature of additional processors 3115
is denoted in FIG. 31 with broken lines. Each processor
3110, 3115 may include one or more of the processing cores
described herein and may be some version of the processor
3000.

[0340] The memory 3140 may be, for example, dynamic
random-access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 3120 communicates with
the processor(s) 3110, 3115 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 3195.
[0341] In one embodiment, the coprocessor 3145 is a
special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 3120 may include an integrated graphics accel-
erator.

[0342] There can be a variety of differences between the
physical resources 3110, 3115 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0343] In one embodiment, the processor 3110 executes
instructions that control data processing operations of a

Jun. 2, 2022

general type. Embedded within the instructions may be
coprocessor instructions. The processor 3110 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 3145. Accordingly,
the processor 3110 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 3145.
Coprocessor(s) 3145 accept and execute the received copro-
cessor instructions.

[0344] Referring now to FIG. 32, shown is a block dia-
gram of a first more specific exemplary system 3200 in
accordance with an embodiment of the present invention. As
shown in FIG. 32, multiprocessor system 3200 is a point-
to-point interconnect system, and includes a first processor
3270 and a second processor 3280 coupled via a point-to-
point interconnect 3250. Each of processors 3270 and 3280
may be some version of the processor 3000. In one embodi-
ment, processors 3270 and 3280 are respectively processors
3110 and 3115, while coprocessor 3238 is coprocessor 3145.
In another embodiment, processors 3270 and 3280 are
respectively processor 3110 coprocessor 3145.

[0345] Processors 3270 and 3280 are shown including
integrated memory controller (IMC) units 3272 and 3282,
respectively. Processor 3270 also includes as part of its bus
controller units point-to-point (P-P) interfaces 3276 and
3278; similarly, second processor 3280 includes P-P inter-
faces 3286 and 3288. Processors 3270, 3280 may exchange
information via a point-to-point (P-P) interface 3250 using
P-P interface circuits 3278, 3288. As shown in FIG. 32,
IMCs 3272 and 3282 couple the processors to respective
memories, namely a memory 3232 and a memory 3234,
which may be portions of main memory locally attached to
the respective processors.

[0346] Processors 3270, 3280 may each exchange infor-
mation with a chipset 3290 via individual P-P interfaces
3252, 3254 using point to point interface circuits 3276,
3294, 3286, 3298. Chipset 3290 may optionally exchange
information with the coprocessor 3238 via a high-perfor-
mance interface 3292. In one embodiment, the coprocessor
3238 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

[0347] A shared cache (not shown) may be included in
either processor or outside of both processors yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0348] Chipset 3290 may be coupled to a first bus 3216 via
an interface 3296. In one embodiment, first bus 3216 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present invention
is not so limited.

[0349] As shown in FIG. 32, various I/O devices 3214
may be coupled to first bus 3216, along with a bus bridge
3218 which couples first bus 3216 to a second bus 3220. In
one embodiment, one or more additional processor(s) 3215,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
mable gate arrays, or any other processor, are coupled to first
bus 3216. In one embodiment, second bus 3220 may be a

US 2022/0171627 Al

low pin count (LPC) bus. Various devices may be coupled to
a second bus 3220 including, for example, a keyboard and/or
mouse 3222, communication devices 3227 and a storage
unit 3228 such as a disk drive or other mass storage device
which may include instructions/code and data 3230, in one
embodiment. Further, an audio I/O 3224 may be coupled to
the second bus 3220. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 32, a system may implement a multi-drop bus
or other such architecture.

[0350] Referring now to FIG. 33, shown is a block dia-
gram of a second more specific exemplary system 3300 in
accordance with an embodiment of the present invention.
Like elements in FIGS. 32 and 33 bear like reference
numerals, and certain aspects of FIG. 32 have been omitted
from FIG. 33 in order to avoid obscuring other aspects of
FIG. 33.

[0351] FIG. 33 illustrates that the processors 3270, 3280
may include integrated memory and /O control logic
(“CL”) 3372 and 3382, respectively. Thus, the CL 3372,
3382 include integrated memory controller units and include
1/0 control logic. FIG. 33 illustrates that not only are the
memories 3232, 3234 coupled to the CL 3372, 3382, but also
that 1/0 devices 3314 are also coupled to the control logic
3372, 3382. Legacy 1/O devices 3315 are coupled to the
chipset 3290.

[0352] Referring now to FIG. 34, shown is a block dia-
gram of a SoC 3400 in accordance with an embodiment of
the present invention. Similar elements in FIG. 30 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 34, an interconnect
unit(s) 3402 is coupled to: an application processor 3410
which includes a set of one or more cores 3002A-N, which
include cache units 3004A-N, and shared cache unit(s)
3006; a system agent unit 3010; a bus controller unit(s)
3016; an integrated memory controller unit(s) 3014; a set or
one or more coprocessors 3420 which may include inte-
grated graphics logic, an image processor, an audio proces-
sor, and a video processor; an static random access memory
(SRAM) unit 3430; a direct memory access (DMA) unit
3432; and a display unit 3440 for coupling to one or more
external displays. In one embodiment, the coprocessor(s)
3420 include a special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, GPGPU, a high-throughput MIC processor,
embedded processor, or the like.

[0353] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

[0354] Program code, such as code 3230 illustrated in
FIG. 32, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

Jun. 2, 2022

[0355] The program code may be implemented in a high
level procedural or object-oriented programming language
to communicate with a processing system. The program
code may also be implemented in assembly or machine
language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular program-
ming language. In any case, the language may be a compiled
or interpreted language.

[0356] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0357] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritables (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase
change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0358] Accordingly, embodiments also include non-tran-
sitory, tangible machine-readable media containing instruc-
tions or containing design data, such as Hardware Descrip-
tion Language (HDL), which defines structures, circuits,
apparatuses, processors and/or system features described
herein. Such embodiments may also be referred to as pro-
gram products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

[0359] In some cases, an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0360] FIG. 35 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 35 shows a program
in a high-level language 3502 may be compiled using an x86

US 2022/0171627 Al

compiler 3504 to generate x86 binary code 3506 that may be
natively executed by a processor with at least one x86
instruction set core 3516. The processor with at least one x86
instruction set core 3516 represents any processor that can
perform substantially the same functions as an Intel proces-
sor with at least one x86 instruction set core by compatibly
executing or otherwise processing (1) a substantial portion
of the instruction set of the Intel x86 instruction set core or
(2) object code versions of applications or other software
targeted to run on an Intel processor with at least one x86
instruction set core, in order to achieve substantially the
same result as an Intel processor with at least one x86
instruction set core. The x86 compiler 3504 represents a
compiler that is operable to generate x86 binary code 3506
(e.g., object code) that can, with or without additional
linkage processing, be executed on the processor with at
least one x86 instruction set core 3516. Similarly, FIG. 35
shows the program in the high level language 3502 may be
compiled using an alternative instruction set compiler 3508
to generate alternative instruction set binary code 3510 that
may be natively executed by a processor without at least one
x86 instruction set core 3514 (e.g., a processor with cores
that execute the MIPS instruction set of MIPS Technologies
of Sunnyvale, Calif. and/or that execute the ARM instruction
set of ARM Holdings of Sunnyvale, Calif.). The instruction
converter 3512 is used to convert the x86 binary code 3506
into code that may be natively executed by the processor
without an x86 instruction set core 3514. This converted
code is not likely to be the same as the alternative instruction
set binary code 3510 because an instruction converter
capable of this is difficult to make; however, the converted
code will accomplish the general operation and be made up
of instructions from the alternative instruction set. Thus, the
instruction converter 3512 represents software, firmware,
hardware, or a combination thereof that, through emulation,
simulation or any other process, allows a processor or other
electronic device that does not have an x86 instruction set
processor or core to execute the x86 binary code 3506.

FURTHER EXAMPLES

[0361] Example 1 provides an exemplary processor com-
prising: fetch circuitry to fetch a compress instruction hav-
ing a format with fields to specity an opcode and locations
of decompressed source and compressed destination matri-
ces, decode circuitry to decode the fetched compress instruc-
tions, and execution circuitry, responsive to the decoded
compress instruction, to: generate a compressed result
according to a compress algorithm by compressing the
specified decompressed source matrix by either packing
non-zero-valued elements together and storing the matrix
position of each non-zero-valued element in a header, or
using fewer bits to represent one or more elements and using
the header to identitfy matrix elements being represented by
fewer bits, and store the compressed result to the specified
compressed destination matrix.

[0362] Example 2 includes the substance of the exemplary
processor of Example 1, wherein the execution circuitry is
further to perform an arithmetic or logical operation on
elements of the compressed result before storing the com-
pressed result to the specified compressed destination
matrix.

[0363] Example 3 includes the substance of the exemplary
processor of Example 1, wherein the specified decom-
pressed source and compressed destination matrices are each

Jun. 2, 2022

located in any of a collection of floating-point registers, a
collection of vector registers, a collection of tile registers,
and memory.

[0364] Example 4 includes the substance of the exemplary
processor of Example 1, wherein: the fetch circuitry is
further to fetch a decompress instruction specifying loca-
tions of compressed source and decompressed destination
matrices, wherein the compressed result is specified as the
compressed source matrix, the compressed result having
been generated by packing non-zero-valued elements
together and storing the matrix position of each non-zero-
valued element in the header; the decode circuitry is further
to decode the fetched decompress instruction, and the execu-
tion circuitry is further to respond to the decoded decom-
press instruction by writing each of the non-zero-valued
elements of the specified compressed source matrix to its
associated position within the specified decompressed des-
tination matrix, the associated position being determined by
the header.

[0365] Example 5 includes the substance of the exemplary
processor of Example 1, wherein when the compressed
result is generated by packing non-zero-valued elements
together, the header comprises a multi-bit value having a bit
for each element position of the specified decompressed
source matrix, the bit to identify non-zero-valued elements
of the decompressed source matrix.

[0366] Example 6 includes the substance of the exemplary
processor of Example 1, wherein when the compressed
result is generated by using fewer bits to represent one or
more elements, the header comprises a multi-bit value
having a bit for each element position of the specified
decompressed source matrix, the bit to identify elements of
the compressed result being represented by fewer bits.

[0367] Example 7 includes the substance of the exemplary
processor of Example 1, wherein when the execution cir-
cuitry is to generate the compressed result by using fewer
bits to represent one or more elements, the one or more
elements are replaced with a pointer to a dictionary of
values, the pointer using fewer bits than the specified
uncompressed source matrix element.

[0368] Example 8 provides an exemplary processor com-
prising: fetch circuitry to fetch a decompress instruction
whose format has fields to specify an opcode and locations
of compressed source and decompressed destination matri-
ces, decode circuitry to decode the fetched decompress
instructions, and execution circuitry, responsive to the
decoded decompress instruction, to: generate a decom-
pressed result according to a decompress algorithm by, when
the specified compressed source matrix comprises packed
non-zero-valued elements, copying each element of the
specified source matrix to its associated position within the
specified decompressed destination matrix, the associated
position being identified by a multi-bit header having one bit
per element of the specified decompressed destination
matrix, with bits corresponding to non-zero-valued elements
being set, and store the decompressed result to the specified
decompressed destination matrix.

[0369] Example 9 includes the substance of the exemplary
processor of Example 8, wherein the execution circuitry is
further to perform an arithmetic or logical operation on
elements of the decompressed result before storing the
decompressed result to the specified decompressed destina-
tion matrix.

US 2022/0171627 Al

[0370] Example 10 includes the substance of the exem-
plary processor of Example 8, wherein the specified com-
pressed source and decompressed destination matrices are
each located in any of a collection of floating-point registers,
a collection of vector registers, a collection of tile registers,
and memory.

[0371] Example 11 includes the substance of the exem-
plary processor of Example 8, wherein: the fetch circuitry is
further to fetch a compress instruction specifying locations
of decompressed source and compressed destination matri-
ces; wherein the generated decompressed result is specified
as the decompressed source matrix, the decode circuitry is
further to decode the fetched compress instruction, and the
execution circuitry is further to respond to the decoded
compress instruction according to a compress algorithm by
compressing the specified compressed source matrix by
either packing non-zero-valued elements together and stor-
ing the matrix position of each non-zero-valued element in
a header, or using fewer bits to represent one or more
elements and using the header to identify matrix elements
being represented by fewer bits.

[0372] Example 12 includes the substance of the exem-
plary processor of Example 8, wherein when the execution
circuitry is to generate the compressed result by using fewer
bits to represent one or more elements, the one or more
elements are replaced with a pointer to a dictionary of
values, the pointer using fewer bits than the specified
uncompressed source matrix element.

[0373] Example 13 provides an exemplary method to be
performed by a processor, the processor to: fetch, using fetch
circuitry, a compress instruction having a format with fields
to specify an opcode and locations of decompressed source
and compressed destination matrices, decode, using decode
circuitry, the fetched compress instructions, and respond,
using execution circuitry, to the decoded compress instruc-
tion, by: generating a compressed result according to a
compress algorithm by compressing the specified decom-
pressed source matrix by either packing non-zero-valued
elements together and storing the matrix position of each
non-zero-valued element in a header, or using fewer bits to
represent one or more elements and using the header to
identify matrix elements being represented by fewer bits,
and storing the compressed result to the specified com-
pressed destination matrix.

[0374] Example 14 includes the substance of the exem-
plary method of Example 13, wherein the execution cir-
cuitry is further to perform an arithmetic or logical operation
on elements of the compressed result before storing the
compressed result to the specified compressed destination
matrix.

[0375] Example 15 includes the substance of the exem-
plary method of Example 13, wherein the specified decom-
pressed source and compressed destination matrices are each
located in any of a collection of floating-point registers, a
collection of vector registers, a collection of tile registers,
and memory.

[0376] Example 16 includes the substance of the exem-
plary method of Example 13, wherein: the fetch circuitry is
further to fetch a decompress instruction specifying loca-
tions of compressed source and decompressed destination
matrices, wherein the compressed result is specified as the
compressed source matrix, the compressed result having
been generated by packing non-zero-valued elements
together and storing the matrix position of each non-zero-

Jun. 2, 2022

valued element in the header; the decode circuitry is further
to decode the fetched decompress instruction, and the execu-
tion circuitry is further to respond to the decoded decom-
press instruction by writing each of the non-zero-valued
elements of the specified compressed source matrix to its
associated position within the specified decompressed des-
tination matrix, the associated position being determined by
the header.

[0377] Example 17 includes the substance of the exem-
plary method of Example 13, wherein when the compressed
result is generated by packing non-zero-valued elements
together, the header comprises a multi-bit value having a bit
for each element position of the specified decompressed
source matrix, the bit to identify non-zero-valued elements
of the decompressed source matrix.

[0378] Example 18 provides an exemplary non-transitory
computer-readable medium containing instructions when
executed by a processor, cause the processor to: fetch, using
fetch circuitry, a decompress instruction whose format has
fields to specify an opcode and locations of compressed
source and decompressed destination matrices, decode,
using decode circuitry, the fetched decompress instructions,
and respond, using execution circuitry, to the decoded
decompress instruction, to: generate a decompressed result
according to a decompress algorithm by, when the specified
compressed source matrix comprises packed non-zero-val-
ued elements, copying each element of the specified source
matrix to its associated position within the specified decom-
pressed destination matrix, the associated position being
identified by a multi-bit header having one bit per element
of the specified decompressed destination matrix, with bits
corresponding to non-zero-valued elements being set, and
store the decompressed result to the specified decompressed
destination matrix.

[0379] Example 19 includes the substance of the exem-
plary non-transitory computer-readable medium of Example
18, wherein the execution circuitry is further to perform an
arithmetic or logical operation on elements of the decom-
pressed result before storing the decompressed result to the
specified decompressed destination matrix.

[0380] Example 20 includes the substance of the exem-
plary non-transitory computer-readable medium of Example
18, wherein: the fetch circuitry is further to fetch a compress
instruction specifying locations of decompressed source and
compressed destination matrices; wherein the generated
decompressed result is specified as the decompressed source
matrix, the decode circuitry is further to decode the fetched
compress instruction, and the execution circuitry is further
to respond to the decoded compress instruction according to
a compress algorithm by compressing the specified com-
pressed source matrix by either packing non-zero-valued
elements together and storing the matrix position of each
non-zero-valued element in a header, or using fewer bits to
represent one or more elements and using the header to
identify matrix elements being represented by fewer bits.

What is claimed is:
1. A processor comprising:

fetch circuitry to fetch a single compress instruction
having a format with fields to specify an opcode and
locations of decompressed source and compressed des-
tination matrices;

decode circuitry to decode the fetched single compress
instruction; and

US 2022/0171627 Al

execution circuitry, responsive to the decoded single

compress instruction, to:

generate a compressed result according to a compress
algorithm by compressing the specified decom-
pressed source matrix by packing non-zero-valued
elements together;

store a matrix position of each non-zero-valued element
in a header; and

store the compressed result to the specified compressed
destination matrix.

2. The processor of claim 1, wherein the execution
circuitry is further to perform an arithmetic or logical
operation on elements of the compressed result before
storing the compressed result to the specified compressed
destination matrix.

3. The processor of claim 1, wherein the specified decom-
pressed source and compressed destination matrices are each
located in any of a collection of floating-point registers, a
collection of vector registers, a collection of tile registers,
and memory.

4. The processor of claim 1, wherein:

the fetch circuitry is further to fetch a single decompress

instruction specifying locations of compressed source
and decompressed destination matrices, wherein the
compressed result is specified as the compressed source
matrix;

the decode circuitry is further to decode the fetched single

decompress instruction; and

the execution circuitry is further to respond to the decoded

single decompress instruction by writing each of the
non-zero-valued elements of the specified compressed
source matrix to its associated position within the
specified decompressed destination matrix, the associ-
ated position being determined by the header.

5. The processor of claim 1, wherein the header comprises
a multi-bit value having a bit for each element position of the
specified decompressed source matrix, the bit to identify
non-zero-valued elements of the decompressed source
matrix.

6. A processor comprising:

fetch circuitry to fetch a single decompress instruction

whose format has fields to specify an opcode and
locations of compressed source and decompressed des-
tination matrices;

decode circuitry to decode the fetched single decompress

instruction; and

execution circuitry, responsive to the decoded single

decompress instruction, to:

generate a decompressed result according to a decom-
press algorithm by, when the specified compressed
source matrix comprises packed non-zero-valued
elements, copying each element of the specified
source matrix to its associated position within the
specified decompressed destination matrix, the asso-
ciated position being identified by a header; and

store the decompressed result to the specified decom-
pressed destination matrix.

7. The processor of claim 6, wherein the execution
circuitry is further to perform an arithmetic or logical
operation on elements of the decompressed result before
storing the decompressed result to the specified decom-
pressed destination matrix.

8. The processor of claim 6, wherein the specified com-
pressed source and decompressed destination matrices are

Jun. 2, 2022

each located in any of a collection of floating-point registers,
a collection of vector registers, a collection of tile registers,
and memory.

9. The processor of claim 6, wherein:

the fetch circuitry is further to fetch a single compress

instruction specifying locations of decompressed
source and compressed destination matrices; wherein
the generated decompressed result is specified as the
decompressed source matrix;

the decode circuitry is further to decode the fetched single

compress instruction; and

the execution circuitry is further to respond to the decoded

single compress instruction according to a compress
algorithm by compressing the specified decompressed
source matrix by packing non-zero-valued elements
together and storing a matrix position of each non-zero-
valued element in a header.

10. The processor of claim 6, wherein the header com-
prises a multi-bit value having a bit for each element
position of the specified decompressed destination matrix,
the bit to identify non-zero-valued elements of the decom-
pressed destination matrix.

11. A method comprising:

fetching, using fetch circuitry, a single compress instruc-

tion having a format with fields to specify an opcode
and locations of decompressed source and compressed
destination matrices;

decoding, using decode circuitry, the fetched single com-

press instruction; and

executing, using execution circuitry, the decoded single

compress instruction by:

generating a compressed result according to a compress
algorithm by compressing the specified decom-
pressed source matrix by packing non-zero-valued
elements together;

storing a matrix position of each non-zero-valued ele-
ment in a header; and

storing the compressed result to the specified com-
pressed destination matrix.

12. The method of claim 11, wherein the executing further
comprises performing an arithmetic or logical operation on
elements of the compressed result before storing the com-
pressed result to the specified compressed destination
matrix.

13. The method of claim 11, wherein the specified decom-
pressed source and compressed destination matrices are each
located in any of a collection of floating-point registers, a
collection of vector registers, a collection of tile registers,
and memory.

14. The method of claim 11, further comprising:

fetching, using the fetch circuitry, a single decompress

instruction specifying locations of compressed source
and decompressed destination matrices, wherein the
compressed result is specified as the compressed source
matrix;

decoding, using the decode circuitry, the fetched single

decompress instruction; and

executing, using the execution circuitry, the decoded

single decompress instruction by writing each of the
non-zero-valued elements of the specified compressed
source matrix to its associated position within the
specified decompressed destination matrix, the associ-
ated position being determined by the header.

US 2022/0171627 Al

15. The method of claim 11, wherein the header comprises
a multi-bit value having a bit for each element position of the
specified decompressed source matrix, the bit to identify
non-zero-valued elements of the decompressed source
matrix.

16. A method comprising:

fetching, using fetch circuitry, a single decompress

instruction whose format has fields to specify an
opcode and locations of compressed source and decom-
pressed destination matrices;

decoding, using decode circuitry, the fetched single

decompress instruction; and

executing, using execution circuitry, the decoded single

decompress instruction by:

generating a decompressed result according to a
decompress algorithm by, when the specified com-
pressed source matrix comprises packed non-zero-
valued elements, copying each element of the speci-
fied source matrix to its associated position within
the specified decompressed destination matrix, the
associated position being identified by a header; and

storing the decompressed result to the specified decom-
pressed destination matrix.

17. The method of claim 16, wherein the executing further
comprises performing an arithmetic or logical operation on
elements of the decompressed result before storing the
decompressed result to the specified decompressed destina-
tion matrix.

Jun. 2, 2022

18. The method of claim 16, wherein the specified com-
pressed source and decompressed destination matrices are
each located in any of a collection of floating-point registers,
a collection of vector registers, a collection of tile registers,
and memory.

19. The method of claim 16, further comprising:

fetching, using the fetch circuitry, a single compress
instruction specifying locations of decompressed
source and compressed destination matrices; wherein
the generated decompressed result is specified as the
decompressed source matrix;

decoding, using the decode circuitry, the fetched single
compress instruction; and

executing, using the execution circuitry, the decoded
single compress instruction according to a compress
algorithm by compressing the specified decompressed
source matrix by packing non-zero-valued elements
together and storing a matrix position of each non-zero-
valued element in a header.

20. The method of claim 16, wherein the header com-
prises a multi-bit value having a bit for each element
position of the specified decompressed destination matrix,
the bit to identify non-zero-valued elements of the decom-
pressed destination matrix.

#* #* #* #* #*

