US 20220171638A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0171638 A1

Paraschivescu

43) Pub. Date: Jun. 2, 2022

(54)

(71)

(72)

@

(22)

(63)

(60)

DATA STRUCTURES FOR VISUALIZATION
OF HIERARCHICAL DATA

Applicant: Quick Eye Technologies Inc., Chicago,
IL (US)

Andrei Paraschivescu, Chicago, 1L,
us)

Inventor:

Appl. No.: 17/675,883

Filed: Feb. 18, 2022

Related U.S. Application Data

Continuation of application No. 14/769,041, filed on
Aug. 19, 2015, now Pat. No. 11,256,524, filed as
application No. PCT/US2014/017209 on Feb. 19,
2014.

Provisional application No. 61/766,531, filed on Feb.
19, 2013.

Publication Classification

(51) Int. CL
GOGF 9/451 (2006.01)
GOGF 3/0482 (2006.01)
GOGF 3/04842 (2006.01)
HO4L 67/10 (2006.01)
(52) US.CL
CPC oo GOGF 9/451 (2018.02); HO4L 67/10
(2013.01); GOGF 3/04842 (2013.01); GO6F
3/0482 (2013.01)
(57) ABSTRACT

To provide visualization data to a client device, a server
generates a plurality of display objects for selectively dis-
playing at the client device to a user. Each display object
includes at least one of a data portion and a graphics portion.
The plurality of display objects is assigned to a plurality of
vertices organized as a logical display tree. A mask speci-
fying visual characteristics of the plurality of vertices is
created. The visual characteristics of a given vertex simul-
taneously controls display attributes of all display objects
assigned to the given vertex. The server transmits a descrip-
tion of the plurality of display objects, the logical display
tree and the mask in a payload format.

’/' 200

generate a plurality of display objects that can be displayed
by the client device to a user, wherein cach display object
compriscs at least one of a data portion and a graphics
portion

Y

assign the plurality of display objects to a plurality of
vertices organized as a display tree

Y

create a mask specifying visual characteristics of the
plurality of vertices, wherein the visual characteristics of a
given vertex simultancously controls display attributes of
all display objects assigned to the given vertex

Y

transmit a description of the plurality of display objects, the
logical display tree and the mask in a payload format

Patent Application Publication Jun. 2, 2022 Sheet 1 of 35 US 2022/0171638 A1

FIG. 1

US 2022/0171638 Al

Jun. 2,2022 Sheet 2 of 35

Patent Application Publication

FIG. 2

Patent Application Publication Jun. 2, 2022 Sheet 3 of 35 US 2022/0171638 A1

-

.
N
O

3 2
S
R
iaEE
R

S \

N

N
na RN

§\\\\« .
0 Nhh

=

N

R
N
-

L

FIG.3

Patent Application Publication Jun. 2, 2022 Sheet 4 of 35

US 2022/0171638 Al

N
R

NS

AR
NN
AN

~
e

X

3 RN : 3 “'i\\
\\% AR Nt
3 —

FIG. 4

.

R
R

-
\\w

N f‘%“

Patent Application Publication Jun. 2, 2022 Sheet 5 of 35 US 2022/0171638 A1

= }%;:\\\\\&%\::\;\ S

O

\\\\\%\\\‘v&

R
-
N

N
X

L

N L -~

FIG. 5

Patent Application Publication Jun. 2, 2022 Sheet 6 of 35

US 2022/0171638 Al

. .
.

RN
.
L 3

.

R

@

.

NS

FIG. 6

Patent Application Publication Jun. 2, 2022 Sheet 7 of 35 US 2022/0171638 A1

FIG.7

Patent Application Publication Jun. 2, 2022 Sheet 8 of 35 US 2022/0171638 A1

FIG.8

Patent Application Publication Jun. 2, 2022 Sheet 9 of 35 US 2022/0171638 A1

Patent Application Publication Jun. 2, 2022 Sheet 10 of 35 US 2022/0171638 A1

FIG. 10

Patent Application Publication Jun. 2, 2022 Sheet 11 of 35 US 2022/0171638 A1

N RS

N

N

FIG. 11

Patent Application Publication Jun. 2,2022 Sheet 12 of 35 US 2022/0171638 A1

FIG. 12

Patent Application Publication Jun. 2, 2022 Sheet 13 of 35 US 2022/0171638 A1

FIG. 13

Patent Application Publication Jun. 2, 2022 Sheet 14 of 35 US 2022/0171638 A1

FIG. 14

US 2022/0171638 Al

Jun. 2,2022 Sheet 15 of 35

Patent Application Publication

FIG. 15

Patent Application Publication Jun. 2, 2022 Sheet 16 of 35 US 2022/0171638 A1

e § s
SR E W

ACKRQEGRT [t _py

]
CipackageGRT{ _resources.py
SO packageGiT fomemn el oy
srgfpackageGRT fcomm/ _rasoureal
seo/packageGRT foormmfdireciTr

erverfauin
Y

FIG. 16

US 2022/0171638 Al

Jun. 2,2022 Sheet 17 of 35

Patent Application Publication

7
.

FIG. 17

Patent Application Publication Jun. 2, 2022 Sheet 18 of 35 US 2022/0171638 A1

Patent Application Publication Jun. 2, 2022 Sheet 19 of 35 US 2022/0171638 A1

FIG. 19

Patent Application Publication Jun. 2, 2022 Sheet 20 of 35 US 2022/0171638 A1

N T)

-

\\\\\
R

D
2N

N s

Patent Application Publication Jun. 2, 2022 Sheet 21 of 35 US 2022/0171638 A1

N

\ =
\t\\\\\._\x : \\m:\\‘\ ‘t\\\\\\\\§§\ T
.

i

AR

L

FIG. 21

Patent Application Publication Jun. 2, 2022 Sheet 22 of 35 US 2022/0171638 A1

s

FIG. 22

Patent Application Publication Jun. 2, 2022 Sheet 23 of 35 US 2022/0171638 A1

-

.
e

N

N &%\\\\\ ‘}
N

N
N \\\\\\\“\\\é* :
Tl N
X Nkae
NN

FIG. 23

Patent Application Publication Jun. 2, 2022 Sheet 24 of 35 US 2022/0171638 A1

SRR

.

FIG. 24

Patent Application Publication Jun. 2, 2022 Sheet 25 of 35 US 2022/0171638 A1

RS
o

.

&
NN

N
%\®
\:

X

R
N
N

FIG. 25

Patent Application Publication Jun. 2, 2022 Sheet 26 of 35 US 2022/0171638 A1

FIG. 26

Patent Application Publication

Jun. 2,2022 Sheet 27 of 35

US 2022/0171638 Al

=
3 N

R

SN RRRR L

7
i

i

i

FIG. 27

Patent Application Publication Jun. 2, 2022 Sheet 28 of 35 US 2022/0171638 A1

FIG. 28A

FIG. 28B

FIG. 28C

US 2022/0171638 Al

Jun. 2,2022 Sheet 29 of 35

Patent Application Publication

6¢ Old

806¢
aseqejeq

7062

£06¢
Jaindwo) s

SHOMBN

uoneslunWwo?

9062 \
Janeg

¢06¢
Jandwon usi)

US 2022/0171638 Al

Jun. 2,2022 Sheet 30 of 35

Patent Application Publication

0€ 'Old

90 S

yeun1oj peojAed ur ysew o) pur a1 Ae[dsip [vo130]
A “s102fqo Aejdsip jo Aypeanid oy Jo uonduosap e jwsuen

+

X104 UOAIS a1y 03 pousisse $102(qo Ar[dsip [
Jo samnquriie Ae|dsip sj01u00 K[SNOdUR)NMUIS X01OA USAIT
€ JO SONISLIOJORIBYD [BNSIA Y} UIDIAYM ‘S01IdA Jo Ajeanyd
o} JO SONISTIONRIBYD [eNSTA SUIAJI0adS SSBW B 2)8ID

1

001 Ar|dsIp © Se PAZIURFIO SAONIA
Jo Anyeanid e 03 103[qo Kedstp jo Ajeanyd oy uSisse

i

uoiod
soydesd e pue uontod vep ® JO U0 1589] B $ASLIdWOD
109[qo Ae[dsTp Yoro UIOIOYA ‘1OSN B 0 IOTAP JUDI[O o) Aq
pakerdsip 2q ueo yeyy s100[qo Aejdsip jo Lreanyd e ojesoundd

00c |\

US 2022/0171638 Al

Jun. 2,2022 Sheet 31 of 35

Patent Application Publication

1€ "Old

TewI0) projAed v Ul yseW
oy} pue 921 Aepdsip 201301 2y ‘s303[qo Aejdsip jo
Anpemd oy Jo vonduosop v SumIwISURI) 10J ANPOIN

90¢ S |

X0J9A U2AIF 2 0) pousisse
§120[qo Arjdsip |[e Jo sanque AvdsIp SjORU0d
A[STIOOUB)NTUTS XOJIOA UOAIS © JO SOISTIAJORIBYD [ENSIA
O} UIRIOYM ‘$2013A Jo Ajfean|d oy JO SONSLINORIBYD
[ensia Suikjroads ysew v Ju1palo 10J ANPON ,

pog S

0a11 Ae[ds1p ® se poziuesio 201104 Jo Ajeanyd e 03
s100[qo Aedsip Jo Anjeanyd oy Sutudisse 10§ SNPON

z0e S|

uorizod sorgdesd e pue uonaod eyep
8 JO 0u0 1589 18 $0s11dwoo 199[qo Aejdsip goro mdaoym
“JOSN B 03 J1AP JUTO Ay £q paAr[dsIp 9q uBd JRY)
s100[qo Aejdsip jo Apeinyd v Furjeiouad 10f 9Mpo

00€ I\

US 2022/0171638 Al

Jun. 2,2022 Sheet 32 of 35

Patent Application Publication

¢t "Old

NSBW OYJ UT POGLIOSIP SINSLIOBIRYD [BNSIA
Y} YIIM JUSISUOD Joutrew! B Ul uondiiosop ay) ul paqrasap
UOT}RULIOJUL [BNSTA ‘Q0BJIOIUT JaSN 3} U0 ‘FurArdsip

!

XOJOA UQAIT dY) YIIM POJRId0SSe $)02[qo Aejdsip
1[B 03 X0JJOA UQAIS B JO OIISLIIORIEYD [ensiA dyj 3uljdde

}

$201330A JO Aj1eanyd oy} ur Xa)0A
B2 JO O1)SLIDIOBIRYD [BNSIA B SUIULAP JSeW B SUIAL00A]

!

$300[qo Aejdsip pajeroosse
QIO IO QUO SeY XOLOA OB UIAIOUM ‘Sd011IdA Jo Anpeanyd
& Smsudwod 3on Arjdsip v Jo uondiosop v SurA10001

)

US 2022/0171638 Al

Jun. 2,2022 Sheet 33 of 35

Patent Application Publication

€€ Old

JSEW Y

Ul PIQLIOSIP SOLSTINORIRYD [BOSIA OY) YIM JU)STSUOD

Jouuew e ul uordLIdsdp Ay} Ul PAQLIOSIP UOLBULIOJU
[eNSTA “00B}I0IUL 1SN 24} U0 ‘FurAr[dsIp 1o} dNPO

XOJAA UIAIS
o P PAJBIOOSSE §190[q0 ARTASIP [1B 0 X0110A UAATS
© JO olsLIdORIBYD [enSIA oY) uik|dde 10 S[npojAl

$001194 Jo AJ1[ern|d 9y} Ul XOJIOA OB JO O1SIIOIOBIBYD
[eNSIA & UIULJOP JSeW B FUIATIOI JOJ J[NPOIA

$100[qo Ae[dSIp poreIdOsSE 910W JO JUO SBY
XO1I0A OB UTRIOYA ‘$2011004 JO Aiem)d & uistidwoo
dan Aejdsip & Jo uondrosap e JulA10031 10§ S[NPOIA

00S I\

Patent Application Publication Jun. 2, 2022 Sheet 34 of 35 US 2022/0171638 A1

[_ 600

generate a plurality of display objects that can be displayed

by the first and the second client devices, wherein each
display object comprises at least one of a data portion and a By 602
graphics portion

v

organizing the plurality of display objects into a plurality of
groups, with display objects in a group sharing a common
display characteristics

¥

transmitting a description of the plurality of display objects
and the plurality of groups to the first and the second client | § 606
devices

v

selectively updating a first display object based on the 608
common display characteristics of the first display object S
selectively transmitting, based on the common display

characteristics of the an updated description to the first | § 610
client device and the second client device

v

transmitting an updated description to the first client device
and the sccond client device by including information about | §~ 612
the updated first display object

iy 604

FIG. 34

Patent Application Publication Jun. 2, 2022 Sheet 35 of 35 US 2022/0171638 A1

/" 700

Module for generating a plurality of display objects that can
be displayed by the first and the second client devices,
wherein cach display object comprises at least one of a data By 702

portion and a graphics portion

Module for organizing the plurality of display objects into a
plurality of groups, with display objects in a group sharing a S 704
common display characteristics

Module for transmitting a description of the plurality of
display objects and the plurality of groups to the firstand | § 706
the sccond client devices

Module for selectively updating a first display object based
on the common display characteristics of the first display | § 708
object

Module for selectively transmitting, based on the common
display characteristics of the an updated description to the | § 710
first client device and the second client device

Module for transmitting an updated description to the first
client device and the second client device by including | § 712
information about the updated first display object

FIG. 35

US 2022/0171638 Al

DATA STRUCTURES FOR VISUALIZATION
OF HIERARCHICAL DATA

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This patent document is a continuation of and
claims the benefit of priority to U.S. patent application Ser.
No. 14/769,041 entitled “DATA STRUCTURES FOR
VISUALIZATION OF HIERARCHICAL DATA,” filed on
Aug. 19, 2015, which is a 35 U.S.C. § 371 National Stage
application of PCT Application No. PCT/US2014/017209
entitled “DATA VISUALIZATION TECHNIQUES,” filed
on Feb. 19, 2014, which further claims the benefit of priority
of U.S. Provisional Patent Application No. 61/766,531
entitled “DATA VISUALIZATION TECHNIQUES,” filed
on Feb. 19, 2013. The entire content of the aforementioned
patent applications are incorporated by reference as part of
the disclosure of this application.

BACKGROUND
[0002] This application relates to data management and
display.
[0003] The amount of data that can be processed and

stored by one or more computers has grown multi-fold over
the last few years. The explosive growth in the data managed
and processed by computers can be witnessed in application
areas such as web servers, e-commerce servers, financial
databases, multimedia content servers, and so on.

SUMMARY

[0004] The present document describes techniques for
organizing display of large, complex data to a user. A user
is able to navigate through data by applying various data
classification criteria. After the application of a category, the
data display can be updated in vertical or horizontal direc-
tions to display an attribute of the data that meets the applied
criterion.

[0005] In one aspect, techniques are provided for provid-
ing visualization data to a client device. A server is con-
trolled to generate a plurality of display objects for selec-
tively displaying at the client device to a user, wherein each
display object comprises at least one of a data portion and a
graphics portion. Using the server, the plurality of display
objects are assigned to a plurality of vertices organized as a
logical display tree. The server is controlled to create a mask
specifying visual characteristics of the plurality of vertices,
wherein the visual characteristics of a given vertex simul-
taneously controls display attributes of all display objects
assigned to the given vertex. The server is controlled to
transmit a description of the plurality of display objects, the
logical display tree and the mask in a payload format.

[0006] In another aspect, techniques are provided for
displaying data on a user interface. A description of a display
tree comprising a plurality of vertices, wherein each vertex
has one or more associated display objects is received. A
mask defining a visual characteristic of each vertex in the
plurality of vertices is received. The visual characteristic of
a given vertex is applied to all display objects associated
with the given vertex. Visual information described in the
description is displayed on a user interface screen in a
manner consistent with the visual characteristics described
in the mask.

Jun. 2, 2022

[0007] In yet another aspect, a method of providing visu-
alization data to a first client device and a second client
device includes generating a plurality of display objects that
can be displayed by the first and the second client devices,
wherein each display object comprises at least one of a data
portion and a graphics portion, organizing the plurality of
display objects into a plurality of groups, with display
objects in a group sharing a common display characteristics,
transmitting a description of the plurality of display objects
and the plurality of groups to the first and the second client
devices, selectively updating a first display object based on
the common display characteristics of the first display
object, selectively transmitting, based on the common dis-
play characteristics of the an updated description to the first
client device and the second client device, and transmitting
an updated description to the first client device and the
second client device by including information about the
updated first display object.

[0008] The details of above aspects and their implemen-
tations are set forth in the accompanying drawings, the
description and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is an example screen shot of a data browsing
graphical user interface (GUI).

[0010] FIG. 2 is an example screen shot of a menu for data
browsing.
[0011] FIG. 3 is another example of a data browsing GUI.

[0012] FIG. 4 is another example of a data browsing GUI.
[0013] FIG. 5 is another example of a data browsing GUI.
[0014] FIG. 6 is another example of a data browsing GUI.
[0015] FIG. 7 is another example of a data browsing GUI.
[0016] FIG. 8 is another example of a data browsing GUI.
[0017] FIG. 9 is another example of a data browsing GUI.
[0018] FIG. 10 is another example of a data browsing
GUL

[0019] FIG. 11 is another example of a data browsing
GUL

[0020] FIG. 12 is another example of a data browsing
GUL

[0021] FIG. 13 depicts a GUI control widget.

[0022] FIG. 14 depicts a GUI control widget.

[0023] FIG. 15 depicts a GUI control widget.

[0024] FIG. 16 depicts a GUI that provides visual menu
indication to a user.

[0025] FIG. 17 is another example of a data browsing
GUL
[0026] FIG. 18 is another example of a data browsing
GUL
[0027] FIG. 19 is another example of a data browsing
GUL
[0028] FIG. 20 is another example of a data browsing GUI

expanded along multiple directions.
[0029] FIG. 21 is another example of a data browsing GUI
expanded along multiple directions.
[0030] FIG. 22 is another example of a data browsing GUI
expanded along multiple directions.

[0031] FIG. 23 is another example of a data browsing
GUL
[0032] FIG. 24 is another example of a data browsing GUI

expanded along multiple directions.
[0033] FIG. 25 is another example of a data browsing GUI
expanded along multiple directions.

US 2022/0171638 Al

[0034] FIG. 26 is another example of a data browsing
GUL
[0035] FIG. 27 is another example of a data browsing
GUL
[0036] FIGS. 28A, 28B and 28C depict example relation-

ships among data attributes.

[0037] FIG. 29 shows a system for data organization and
presentation.
[0038] FIG. 30 is a flow chart representation of a method

of providing visualization data to a client device.

[0039] FIG. 31 is a block diagram of an apparatus for
providing visualization data to a client device.

[0040] FIG. 32 is a flow chart representation of a method
of displaying data on a user interface.

[0041] FIG. 33 is a block diagram representation of an
apparatus for displaying data on a user interface.

[0042] FIG. 34 is a flow chart representation of a method
of providing visualization data to a first client device and a
second client device.

[0043] FIG. 35 is a block diagram of an apparatus for
providing visualization data to a first client device and a
second client device.

DETAILED DESCRIPTION

[0044] Traditional data visualization programs such as
Microsoft Excel provide a functionality-rich software appli-
cation for users to store, manipulate and visualize data.
However, these techniques are typically designed for use by
a single user and do not generally allow simultaneous
read/write access by multiple users. New document and data
sharing techniques such as GoogleDocs, on the other hand,
provide a solution for data viewing/editing by multiple users
but often are provided limited functionality.

[0045] Furthermore, shared data viewing techniques such
as GoogleDocs do not provide for mechanisms that provide
multiple views of the same data to multiple users. For
example, when users A and B are editing a GoogleDocs
document, another user C can either participate or observer
the changes, but cannot independently be working on the
same data. In addition, the data sharing experience is not
typically adjusted to be specific to a user’s hardware plat-
form.

[0046] The techniques disclosed in this document address
the above-discussed limitations and others. In one exem-
plary aspect, a data transfer format called ROST (reference/
optimistic/screen/typed value) is disclosed. Example advan-
tages offered by the ROST format include reduction of data
bandwidth when transferring a data view from a server to a
client, the ability to perform fast refreshes at the server-side,
supporting data view sharing by multiple users, resolving
conflicts among data edits when multiple users attempt to
concurrently change value of a given data field at the server,
and so on.

[0047] The techniques disclosed in this document further
facilitate viewing of data by multiple users based on syn-
chronized views. The synchronized views may be used by
one set of users while another set of users may be indepen-
dently able to work on the same data.

[0048] In yet another example, the disclosed techniques
allow for synchronized viewing by multiple users using
client devices having different display capabilities. The
ROST format, e.g., allows for client device-specific viewing
of data to each user. These, and other, aspects are further
disclosed below.

Jun. 2, 2022

[0049] The techniques described in the present document
can be implemented on a user’s client devices using a
Javascript or AJAX or similar platform. For example, the
disclosed functionalities may be downloadable to a user
device as a web browser plug-in or may be installed at a user
device as an application (e.g., a Python application). In some
implementations, no special installation or download at the
user device is performed, with the functionalities simply
relying on user device’s HTMLS or Javascript compatibility.
[0050] Examples and implementations of techniques are
provided for organizing data that includes multiple related
records, and presenting the data according to a user’s
viewing choices are described. In some disclosed embodi-
ments, data is classified using two or more hierarchical
classifications. A user is presented with data based on a first
level of break down, or data classification, specified by the
user. The data thus presented can be further broken down
into a second level of break down. In some disclosed
implementations, the second level of break down can be
accomplished either in a horizontal direction on a graphical
user interface (GUI) or in a vertical direction on the GUIL.
The software tool that enables the above functions for
browsing large sets of data based on multiple criteria is
referred to as an Organizer.

[0051] Techniques are disclosed to simplify the task of
browsing through large sets of data items. The disclosed
graphical tool combines the visual and interactive advan-
tages of tree and table displays. Visual cues are provided to
a user to help with browsing of data on a computer platform
that includes a processor and a display.

[0052] Large quantities of data, including text and num-
bers, can be presented as expandable lists (sometimes called
trees) in which a list can be condensed to a top level headers
(e.g., for a Microsoft Word file in the “document map”
format). The top level headers can be individually expanded
to reveal additional data, which is further expandable to
additional levels. While the expandable lists offer a conve-
nient way to manage data complexity by allowing a user to
selectively zoom into data, such data expansion is limited to
opening/closing additional data underneath a level in a
single direction (typically vertical). Furthermore, there is no
provision to apply multiple different classifications to
achieve expansion of a list. When a user action desires
expanding/collapsing data below a certain level, the addi-
tional data includes data that fits one category only. It is not
possible in various existing, conventional or other software
systems to achieve the expansion/collapsing based on mul-
tiple data attributes.

[0053] Complex data can also be presented to a user using
a technique that is sometimes called “a pivot table.” A pivot
table can automatically sort, count, total or give the average
of'the data stored in one table or spreadsheet and display the
results in the form of a second table called a pivot table.
However, the depth of data sorting, or the level to which a
user can dive into data, is only one layer deep in the pivot
table technology.

[0054] With the emergence of complex computer systems
and storage devices that can store large amounts of data,
there is an ever-growing need for data classification, sorting
and presentation to a user. The traditional tree/pivot table
techniques fall short of addressing today’s needs to be able
to classify and present large quantities of data efficiently.
[0055] In the present document, examples of implemen-
tations of the described techniques are disclosed for orga-

US 2022/0171638 Al

nizing, categorizing and displaying data to a user. The
disclosed techniques can be implemented on a user’s com-
puter, at a web server, or any other user device such as a
tablet, a smartphone, a notebook computer, etc. In some
implementations, the techniques may be used to transfer
data between a server and client device and used to provide
views of the data to a user.

[0056] As a non-limiting example, in some implementa-
tions, the disclosed technology could be used at a e-com-
merce server that offers thousands of catalog items for sale.
Using the disclosed techniques, e.g., a user accessing the
e-commerce server over the Internet, may be able to quickly
sort through available merchandise using applying multiple
classifications.

[0057] As another non-limiting example, in some imple-
mentations, an individual investor, or an investment profes-
sional, may be able to sort through financial data using
various search criteria (e.g., price to earnings ratio, closing
stock price, profit growth, market cap value etc.), by apply-
ing these criteria to a database of financial data.

[0058] Visually browsing large sets of data items is com-
monly performed. Just a few examples are: files on a
computer, articles for sale on an online retailer’s web-site, a
person’s credit card transactions for the past year, a factory’s
inventory. While database systems are a common solution
for storing and querying data, presenting information in
human readable form is a different task.

[0059] Two common ways to visualize data items are
“tree+filter” and table. An example of “tree+filter” is brows-
ing items on an online store: products are grouped by nested
categories, and the view can be restricted by using various
criteria. For a table display, each line and column represents
a category, and the table shows some information regarding
the items that match each line and column combination.
Both ways can be unsatisfactory, particularly for large,
complex sets of items.

[0060] Many limitations of current displays stem from
giving some criteria preferential treatment, which often
leads to relying primarily on one visual format. Computer
files e.g. are easier to see by location than by other charac-
teristics, and are not commonly shown as a table: it is not
known in advance which attributes should be used for rows
and columns.

[0061] Specifically, a graphical tool is provided for brows-
ing data sets subject to any number of criteria. In one aspect,
the graphical tool combines the visual and interactive advan-
tages of tree and table displays, and allows the user to break
down data by prioritizing criteria himself, with none privi-
leged a priori. Aggregate measures for sets of items match-
ing desired combinations of characteristics are easy to
obtain. The disclosed examples for implementing the Orga-
nizer pertain to visually browsing data items and include,
among others, the following aspects or features, (1) the
techniques for data the Organizer works with; (2) user
interaction including features of what a display user inter-
face look like, and commands that can be given, and effects
of such commands; (3) how a state of the display user
interface is represented, either for volatile (memory) or
permanent storage (disk or equivalent); and (4) the effect of
commands on the display representation.

[0062] In the following sections, section numbers are used
for the ease of understanding and cross-referencing.

Jun. 2, 2022

[0063]
Criteria
[0064]
insights:
[0065] Many classification criteria can be manipulated in
a uniform way by regarding them as directed graphs, a
generalization of tree graphs.

[0066] A display composed of nested tables can be kept
intelligible with proper formatting (colors, borders, align-
ment, etc.).

[0067] The interaction between data items and visualiza-
tions can be simplified by using aggregate measures for
subsets of data.

[0068] Nested arrays are suitable for representing combi-
nations of directed graphs.

[0069] 1.1 Criteria and Categories

[0070] For understanding the disclosed techniques, one
start by analyzing characteristics independently of particular
data sets. As it is not practical to enumerate all potential
uses, it makes sense to look at a characteristic’s intrinsic
properties, with the understanding that data may or may not
have it. For example, zip codes are applicable primarily to
addresses, but things like parks or average daily tempera-
tures possess locations as well; it would be incorrect to
assume that zip codes are a characteristic of addresses only.
If technically needed, an N/A category can be added to
handle items for which the characteristic does not apply.
[0071] Zip codes exhibit a common problem: at approxi-
mately 43,000 of them, it is hard to make use of one without
some looking up. However, zip codes are not random
numbers; grouping of them into regions, states, counties,
cities etc. can be used to make sure that at every level there
are sufficiently few categories. This is helped by the fact that
someone who is looking at the sub-categories of Chicago is
likely to know what River North is.

[0072] Another example of a human-usable characteristic
is time. With 2000 years being approximately 63 billion
seconds, referring to event times by second alone is feasible
for computers, but not humans. The solution is calendars and
clocks, based on groupings into centuries, years, months etc.
With no group too big, everyone can easily read and
understand dates and times.

[0073] This grouping approach can be formalized by using
directed graphs, a well understood mathematical notion with
many applications to computing. A directed graph is a set of
vertices, some of them connected by arrows.

[0074] For example FIG. 28A, represents a 2012 calendar
as a directed graph. The vertices of the graph are referred to
as categories and arrows join sub-categories to each parent
category. If' y can be reached by arrows (perhaps 0) from x,
x is said to be narrower than y, and that y is said to be
broader than x (by convention x is narrower/broader than
itself). For example, Jan 1st is narrower than 2012, without
being its sub-category. Finally, the depth of a category is the
minimum number of arrows needed to reach the top cat-
egory.

[0075] Throughout this description a criterion will refer to
a classification characteristic that has been organized as a
directed graph. A directed graph has a top category conven-
tionally named all, and that it contains no cycles. Graphs like
(FIG. 28B) are disallowed, as they do not model progres-
sively narrower categories useful for classification.

[0076] The reader already knows many examples, as tree
graphs fit the above requirements, and have the additional
property that every category belongs to a unique parent
category. Files organized by directory, dates and times, and

1. Examples of Browsing Data Using Multiple

The approach relies on combining a number of

US 2022/0171638 Al

zip codes as above, are all trees. Not every criterion is a tree.
Consider the classification of users of a website illustrated in
FIG. 28C: with Joe both an administrator and a reader, this
criterion is not a tree.

[0077] Turning a characteristic into a good criterion may
benefit from an understanding of its intended use. A repre-
sentative example is the calendar, which is not just an
arbitrary breakdown of seconds, but also relates months to
seasons, days to daylight etc. In many cases criteria incor-
porate domain knowledge and significant work; the Orga-
nizer derives value from allowing that work to be easily
shared.

[0078] 1.2 Multi-Descriptions

[0079] Some presently disclosed techniques use criteria in
combination. A choice of one category from each criterion
under consideration will be called a multi-description, and
be denoted {crit,: cat, crit,: cat,, . . . }.

[0080] Multi-descriptions delimit subsets of data. In FIG.
11, the 59 files that are directories, sit under GUIkit and were
last changed in 2012, share the multi-description {dir:
GUIKit, type: /, user: all, last: 2012}. Another use of multi-
descriptions is specifying changes to the display. The tran-
sition FIG. 10—FIG. 11 breaks down the multi-description
{dir: GUIkit, type: all, user: all, last: all} by the last criterion.

[0081] A multi-description x will be said to fit another
multi-description y if every criterion’s category appearing in
x is narrower than the same criterion’s category appearing in
y. Equivalently, x is narrower than y and y is broader than
X. The depth of a multi-description will be the sum of the
depths of the categories comprising it.

[0082] 1.3 Nested-Table Displays

[0083] A nested-table display can be structured to include
rectangular arrays and each array includes a total and a
breakdown. The breakdown can be 1-dimensional (vertical
or horizontal) or 2-dimensional. Numbers and labels can be
arranged and formatted in a way that makes obvious what is
a total and what is a breakdown, even when there are quite
a few arrays.

[0084] One possible formatting scheme is used in the
figures. Labels, rather than sub-aggregates, are aligned with
the total, and different colors insure labels and values cannot
be confused. When a child array is created, rows and
columns are enlarged appropriately to maintain the align-
ment of parent arrays.

[0085] To make breakdowns visually distinct, they are
enclosed in a border and given a different background color,
with the exception of a breakdown that has no data, in which
case a dash is displayed with no border, using the parent’s
background color. The breakdown background color loops
through 4 shades of gray, which keeps adjacent areas dis-
tinct, without using too many colors. Labels, values and the
hide/include category colors (see Section 3.2) seen clearly
on these 4 shades of gray; light blue, white, orange and black
work well.

[0086] Besides the rectangular array, the nested-table dis-
play generalizes the tree display, which can be simulated
using 1-dimensional vertical breakdowns alone. That can be
seen in FIG. 27, albeit with different formatting.

[0087] 1.4 Data Items and Aggregate Measures

[0088] The purpose of working with criteria is to apply
them to data sets. The two are linked via a computer-
performed calculation that, for each criterion and data item,
provides the category the data item belongs to. For unifor-

Jun. 2, 2022

mity, if a data item is not related to a criterion, a simple
function that returns all or N/A can be used.

[0089] Given a data item X, a multi-description m, can be
obtained by performing this calculation for every criterion
under consideration. m, can be used to decide whether the
item belongs to a set defined by a multi-description d, by
checking if m, fits d. This can be done via known algorithms
for directed graphs.

[0090] Insome cases a data item belongs to more than one
category, e.g. a rain jacket sold under both casual and
mountaineering wear. In that case, what is obtained is not
one multi-description m,, but a set of multi-descriptions, one
for each combination of the several categories the item
belongs to for each criterion. In this case, the item fits a
multi-description d if at least one of its associated multi-
descriptions fits d.

[0091] When working with large sets of data, a user tends
to be interested in an overall characteristic of the set rather
than individual items. Such overall characteristics are
referred to as aggregate measures. Related to e.g. invento-
ries, some familiar aggregate measures are total cost, total
weight, and average time since purchased. Given a multi-
description d, a data item set and an aggregate measure, an
aggregate can be computed for the items whose multi-
description fits d. All display values are aggregates.

[0092] Some aggregate measures are applicable to all data
sets. The number of items in the set is an important one,
often of interest. Another is whether the set is empty or not.
While more abstract, it helps better reproduce tree displays
with nested-table displays. Tree displays often show a

HH when there are items underneath, but not otherwise.
This can be replicated using the empty-or-not aggregate

measure, and displaying Ho [J appropriately.
[0093] 1.5 Putting it Together

[0094] Nested-table displays are suited to working with
multiple criteria. This is easiest shown on a concrete case,
e.g., the transition FIG. 9—FIG. 10. For that transition, the
type criterion was dropped onto the 426 files under the
GUIkit and devel categories, i.e. the files that fit the multi-
description d={dir: GUIKit, type: devel, user: all, last: all}.
As they are all devel files, breaking down again by type
shows the sub-categories of devel: C/C++, python and hg
(which can be seen in FIG. 27). For each sub-category, a new
multi-description can be obtained from d by replacing devel,
and an aggregate measure computed. The display is updated
by adding a 1-dimensional, horizontal breakdown.

[0095] Generalizing, a state of the display is represented
by a tree with one vertex for each aggregate shown. For
example, the tree that generates FIG. 2 has a root vertex with
33 children, one for each line in the breakdown. Each vertex
can contain:

[0096] The aggregate’s multi-description.

[0097] Criteria assigned to the horizontal and vertical
directions, if any. There are 3 possibilities:

[0098] The vertex has no criteria associated with it. Such
a vertex will have no further breakdowns, and will be a leaf
of the tree (no descendants).

[0099] The vertex has exactly one criterion associated
with it. Such a vertex will have a 1-dimensional array of
child vertices indexed by the sub-categories of the category
of the assigned criterion appearing in the multi-description
of the vertex. Geometrically, the child aggregates will be
arranged along the direction the criterion was assigned to.

US 2022/0171638 Al

Child multi-descriptions are obtained by replacing the
appropriate sub-category in the multi-description of the
vertex.

[0100] The vertex has both a horizontal (C,) and a vertical
criterion (C,) assigned. Denote by d the multi-description of
the vertex. The child vertices will form a 2-dimensional
array indexed by pairs of subcategories (s, s,), where sh
spans the sub-categories of the category ¢, of C,; appearing
in d, and s, spans the sub-categories of the category ¢, of C,
appearing in d. Geometrically the new aggregates are dis-
played in a 2-dimensional array, with column labels pro-
vided by s, and row labels provided by s,. Child multi-
descriptions are obtained from d by replacing c,, ¢, with s,
and s,.

[0101] Whenever a criterion is assigned or unassigned, the
vertex is recomputed and all child vertices are discarded.
Any breakdowns in child vertices will be lost. If one
criterion of a 2-dimensional breakdown is unassigned, the
breakdown becomes 1-dimensional.

[0102] To interact with the display, commands to assign a
criterion to a direction of an aggregate, and to undo a prior
assignment, are needed. For some sample interface
examples, described herein, this functionality consists of the
D+ and D-commands, with the limitation that a drop only
works if the desired breakdown direction is free. To avoid
confusion regarding figures, the sample interface may incor-
porate the features described with respect to “resolving drop
conflicts.”

[0103] 2. Additional Example Refinements

[0104] While the discussion above describes some imple-
mentation examples, a number of variations are possible,
each requiring some degree of work and insight. The sample
interface described herein incorporates some, but not all of
the features below.

[0105] 2.1 Displaying Item Lists

[0106] Besides displaying aggregate measures, it may be
useful to display the items comprising an aggregate. An
example interface for this are the L+ and L-commands, with
effects occurring in FIG. 15, FIG. 16, FIG. 17 and FIG. 18.
A way to store this information is given by “aggregates
currently displayed list” feature disclosed below.

[0107] 2.2 Simplifying the Display

[0108] By design, the number of sub-categories of a
category in a criterion should be kept small for the display
to be easily read.

[0109] Even so, not all the data may be of interest. A
solution to simplify the display is to designate categories as
included or hidden. A hidden category will not be shown,
and its items will be excluded from aggregates and item lists.
[0110] To be precise, for aggregates below the breakdown
where the hiding takes place, the display should behave as
if the arrow in the directed graph, going from the hidden
category to its parent category appearing in the breakdown’s
multi-description, has been severed. While for a tree, items
fitting the hidden category will no longer be tallied in the
aggregate, for a general directed graph that is not true;
narrower categories can be reached more than one way.
[0111] A possible user interface for managing included/
hidden categories consists of the editing commands in
Section 3.2. For examples, refer to FIG. 3, FIG. 4, FIG. 5,
FIG. 6, FIG. 7, FIG. 8 and FIG. 9.

[0112] Another way to reduce the complexity of the dis-
play is provided by restrictions, which allow the display to
behave as if the set of items was reduced to those matching

Jun. 2, 2022

a multi-description. Any visible aggregate can be used to
restrict; the relevant Section 3.2 commands are R+ and R—,
put at work in FIG. 12, FIG. 13, FIG. 14, FIG. 15, FIG. 16,
FIG. 17, FIG. 18 and FIG. 19.

[0113] To implement these two features, the editing and
restriction information can be be stored as part of the display
state. For one convenient way see Section 2.5.

[0114] 2.3 Resolving Drop Conflicts

[0115] It can be desirable to perform more than one
breakdown with a single command. As an example, look at
the D+ command used to reach FIG. 11. Its intent is to break
down all the aggregates on the GUIkit line using the last
criterion. This requires 3 break-downs, resulting in a 1-di-
mensional array for the first two columns, and in converting
a horizontal 1-dimensional array into a 2-dimensional one
for the third.

[0116] If one command can result in multiple breakdowns,
a feature is to be able to revert. For D-to accomplish the
transition FIG. 24—FIG. 25, it becomes desirable to repre-
sent how breakdowns are related.

[0117] Complex cases can occur. If the breakdown into
C/C++, python and hg in FIG. 11 had been vertical, the
additional last breakdown could not have been done directly,
as the vertical direction is already occupied. Passing it down
to children works, but creates further complications. Should
the C/C++, python and hg breakdown be removed, the
conflict disappears and child breakdowns would have to be
consolidated. It is not clear how that should be detected.
[0118] One way of avoiding representing such complex
relationships is to keep track only of desired drops, which
are breakdown commands by the user, and translate them
into applied drops, corresponding to displayed breakdowns.
A desired drop can result in several applied drops, as seen
above (FIG. 11). No applied drops is also possible, when the
desired drop was based on the results of another desired drop
that was later removed (e.g. FIG. 25—FIG. 26).

[0119] A desired drop can be characterized by the follow-
ing:
[0120] target: The multi-description of the aggregate or

label onto which the criterion was dropped.

[0121] direction: Horizontal or vertical.
[0122] criterion: The criterion that was dropped.
[0123] index: A unique integer number for every drop;

earlier drops have lower numbers.

[0124] The relationship between desired drops and applied
drops can is defined by 3 aspects:

[0125] No desired drop is applied above its target.
[0126] Every desired drop is applied once to data that fits
its target. More precisely, every aggregate that is not broken
down, and whose multi-description fits the target of a
desired drop, have one applied drop coming from that
desired drop, above it in the tree.

[0127] A desired drop is passed on to children only if it
conflicts with a higher priority drop. Two desired drops
conflict if they have the same direction or the same criterion,
as they cannot be displayed correctly by a rectangular table
of values with labels on the outside. Preference is given to
drops with low target depths; for equal depths, a lower index
will be applied first, i.e., the earlier drop.

[0128] Based on the desired drops, a tree in which every
vertex corresponds to a displayed aggregate can be con-
structed iteratively. A vertex will have its own breakdown
and child vertices if it has any applied drops. Visually the
result looks the same as for Section 1.5; the difference is, in

US 2022/0171638 Al

essence, that in Section 1.5 applied drops are managed by
the user interface directly, while here they are computed
from desired drops.

[0129] Each vertex in the tree is characterized by:

[0130] content: A multi-description. Data items that fit the
content are tallied in its aggregate.

[0131] applied drops: O, 1 or 2 drops. They determine if
the vertex is a single aggregate, a 1-dimensional breakdown,
or a 2-dimensional breakdown. If there are two drops, they
cannot conflict (see requirement (B) above).

[0132] For each vertex v in the tree, the following sets of
drops are computed:

[0133] I(v): The set of inherited drops that children of v
tries to accommodate.

[0134] P(v): The set of potential drops that might be
needed below v. These are desired drops, for which v’s
content does not fit the target. As such, by requirement (A)
these drops cannot be applied yet.

[0135] F(v): The set of found drops, potential drops of the
parent which, absent conflicts, could be applied at v. Found
drops are a subset of the required drops.

[0136] R(v): The set of desirable drops that are to be
applied to v or all its children.

[0137] U(v): The set of redundant drops, which have not
been applied yet but have become redundant at v or below.
[0138] A(v): The set of applied drops, which will be used
for the break-down at v.

[0139] The calculation starts with a single vertex root,
whose content consists of criteria’s all categories. For each
vertex v, the above sets are computed from the sets P(p) and
1(p) belonging to its parent p; in the case of root, the set of
desired drops and the empty set are used instead of P(p) and
I(p). The iteration rules are:

[0140] F(v) will consist of the drops in P(p) with target
broader than the content of v.

[0141] R(v) will be I(p) together with F(v).

[0142] U(v) will consist of the drops in R(v) for which the
category in the content of v corresponding to the drop
criterion has no sub-categories.

[0143] A(v) will consist of however many drops from
R(v), not in U(v), can be accommodated without conflicts,
taken in the priority order (see requirements (B) and (C)
above).

[0144] I(v) will consist of the drops in R(v) that are not in
A(v) or U(v).

[0145] P(v) will consist of the drops in P(p) not in F(v).
[0146] After computing the above sets for a vertex v, its

children are computed based on A(v). With no conflicts
among them, there can be at most two drops. The cases
mimic those of Section 1.5:

[0147] A(v) is empty. The vertex has no children.

[0148] A(v) consists of exactly one element. The children
will form a vector indexed by the sub-categories of the
category in v’s content corresponding to the drop criterion.
[0149] A(v) consists exactly of two elements. The children
will form a 2-dimensional array.

[0150] This construction meets requirements (A), (B) and
(C) above, and it can be shown that any other calculation
satisfying (A), (B) and (C) will produce the same results.
[0151] With this approach, reverting a drop is accom-
plished by simply deleting it from the desired drop set, and
the consequences are figured out by the calculation above.

Jun. 2, 2022

[0152] 2.4 Mixing Aggregate Measures

[0153] It is desirable to be able to mix more than one
aggregation measure in the same display. For example, after
isolating a number of files by looking at file counts, the user
could see how much the disk space they occupy by switch-
ing the aggregate to show disk space.

[0154] Aggregate measure drops can be represented by a
triplet (target, aggregation measure, priority), similar to the
description of desired criterion drops. The calculation of
Section 2.3 can be adapted as follows:

[0155] Measure drops do not conflict with each other, or
with criteria drops.

[0156] Measure drops do not cause the creation of child
vertices.
[0157] Applied measure drops are left in the set of inher-

ited drops, as they need to be applied to all child vertices.
[0158] Of the measure drops applied to a vertex, the
display will use the one with least priority. This means the
measure with the deepest target, or in the case of equal
depths, the most recent one. Switching an aggregation
measure will change child vertices, unless they have aggre-
gate measure drops of their own.

[0159] The user interface could have a list of aggregation
measures at the top of the display, and allow aggregate
measures to be dropped wherever a criterion can be.
[0160] 2.5 Adapting the Display to Changing Data
[0161] In most realistic situations data is dynamic. Con-
sider a tool to browse the articles available on an online
store. When a display is saved for later use, if available
articles or their categorizations change, the display will be
lost unless it can be adjusted. The purpose of this section is
to present a storage format that, in addition to supporting the
features discussed so far, can be adjusted after changes in the
data set, among the categories within criteria, and of the
criteria list itself.

[0162] An instance of the storage format, called a display
state, is comprised of the following:

[0163] Desired drops: For each drop, the following are
stored:

[0164] target: A multi-description, see Section 2.3.
[0165] criterion: The breakdown criterion.

[0166] direction: The breakdown direction, one of hori-

zontal or vertical.

[0167] index: A unique integer. Earlier criterion drops
have lower numbers.

[0168] hiding data: Information about included/hidden
categories. All occurrences of a category produced by a
desired drop are hidden together. An example would be
hiding one of the three 2012’s in FIG. 11, making all 3

disappear.

[0169] Aggregate measure drops: Each consists of:
[0170] target: A multi-description, see Section 2.4.
[0171] measure: The aggregate measure.

[0172] index: A unique integer. Farlier measure drops

have lower numbers.

[0173] Aggregates currently displaying item lists: Identi-
fied by the aggregate’s multi-description.

[0174] Sets of categories currently under edit: Identified
by the brake-down’s multi-description, and the set’s geo-
metric direction.

[0175] Restrictions: Represented similarly to aggregate
measure drops, each consists of:

[0176] target: A multi-description.

[0177] index: A unique integer. Earlier restrictions have
lower numbers. The above restriction data can be processed

US 2022/0171638 Al

as the tree of aggregates is constructed, and a sequence of
multi-descriptions, each narrower than its predecessor, com-
puted. The display can be adjusted based on this sequence.
[0178] As the display state does not reference data items,
it can be updated for changes in data by simply recomputing
it. For criteria and category changes, the adjustment is as
follows:

[0179] Add a criterion: All multi-descriptions used
throughout the display state representations can be extended
with the all category of the new criterion. This creates a
display state compatible with the new criterion list.

[0180] Remove a criterion: Any criterion drop, measure
drop, restriction, edit, or item list expansion, that contains a
multi-description referencing any category of the deleted
criterion other than all, is deleted.

[0181] Add categories: A new category can not appear in
existing multi-descriptions. It does however need a choice of
hidden or included, and either is valid.

[0182] Remove categories: Again, display state compo-
nents containing multi-descriptions that reference a category
that no longer exists are deleted.

[0183] Importantly, the above adjustments produce a cor-
rect display state because there are no constraints among
components. This is a key feature of the display state format,
and of the calculations that render the display based on it.
[0184] 2.6 Minimizing Clutter

[0185] With many nested tables, the display can get com-
plicated, and it helps to keep buttons and other non-essential
features to a minimum. A system of drag-and-drops and
context sensitive cursors makes the interface intuitive, visu-
ally simple and less error prone. The same drag-and-drop
works with both horizontal and visual breakdowns, and the
user knows which will occur before a drop is performed (see
Section 3.2). Likewise, distinct cursors for restriction and
undoing drops make things easier.

[0186] 2.7 Filtering

[0187] Range filtering is useful when browsing data. For
example, one could be interested in files changed from
March 2009 through February 2012. While this can be
accomplished by hiding sub-categories, it is tedious.
[0188] While in general a criterion does not have a natural
order, trees in which every category’s sub-categories are
ordered can be used to define ranges. This is the case for
numerical criteria, such as time. The order is not entirely free
of convention, as for example one has to decide whether a
year comes before its January sub-category, after its Decem-
ber sub-category, or somewhere in between. While before is
quite reasonable, the user will have to remember that 2009
date 2012 means 1/1/2009, . . ., 12/31/2011. Ordering trees
is a well understood topic in the prior art.

[0189] Filters can be stored similar to included/hidden
category choices.

[0190] 3. Example User Interfaces

[0191] Example user interfaces are described through a
file browsing example.

[0192] 3.1 Display Elements

[0193] Visually the display is composed of one or more of
the following elements:

[0194] criterion: Available criteria are shown at the top.
[0195] category: Labels for rows and columns. Shown in
light-blue if not being edited, and orange/black in edit mode.
[0196] aggregate: The aggregate value of items that match
a combination of categories. Shown in white. For the file
example, it is the number of files (see Section 1.4).

Jun. 2, 2022

[0197] total: The aggregate for all data items under con-
sideration. It is the very top-left value.

[0198] item list: A list of the data items comprising an
aggregate.

[0199] 3.2 Summary of Commands

[0200] Here are the commands supported by the sample

interface, with a mnemonic in parenthesis:

[0201] (D+) Drop: Drag and drop a criterion on a aggre-
gate or category. When hovering over the drop area, the
cursor will change to 4 or showing the direction that will be
used for the breakdown.

[0202] (D-) Undo Drop: Drag and drop a category to any
aggregate. The cursor will be x

[0203] (L+)/(IL-) See/hide item list: Click on aggregate.
[0204] (R+) Restrict total: Clicking in the upper-left area
of an aggregate causes the aggregate to become the new
total. The hovering cursor is [].

[0205] (R-) Undo restrict: Press Escape key. Removes the
most recent restrict.

[0206] Editing categories: Each category can be excluded
from aggregates and hidden from view. Included categories
are shown in orange, hidden ones in black. Items from
excluded categories are filtered out of any item lists.
[0207] (E) Edit: Click on a category. Aligned categories
will be edited as well.

[0208] (Q) End edit: Press Enter. Saves include/hide selec-
tions for the entire display.

[0209] (i)/(h) Include/hide one category: Click on cat-
egory.
[0210] (I)/(H) Include/hide all categories: Press Equal/

Minus key. Affects all categories under edit.
[0211]

[0212] The sequence will demonstrate browsing files
organized by four criteria: location (dir), type of file (type),
owner of file (user), and date when the file was last accessed
(last). The aggregation measure in this case is the number of
files matching a combination of categories. At the start, the
display shows the criteria and the total number of files:
[0213] To see the breakdown of files by directory, the dir
criterion can be dragged and dropped over the total (D+
command). If the drop is towards the left/lower corner of the
total, the cursor will show 4, and the breakdown will be
displayed vertically, as seen below:

[0214] To add a breakdown by file type, the type criterion
is dragged and dropped towards the right/upper corner of the
total (D+ command). The cursor changes to =. The display
becomes a table with directories as lines, and file type
categories as columns:

[0215] The user might not be interested in all sub direc-
tories. Sub directories (categories in general) can be hidden.
The first step is to click on a category, e.g., econBoost (E
command). This will put econBoost and its sister categories
in edit mode; categories will be shown in orange or black,
depending on whether they are included or hidden. In this
case all categories are included:

[0216] Ifonly a few sub-categories are of interest, the user
can hide all sub-categories first by pressing the minus key (H
command). Excluded categories show up in black:

[0217] To add individual categories back, the user can
click on them (i command) in turn. The total will update
after every change:

3.3 Screen-Shot Sequence

US 2022/0171638 Al

[0218] The Enter key exits the edit mode (Q command).
The display now shows only the included categories:
[0219] Columns also can be hidden. After clicking on any
column label, e.g. exe (E command), clicking on any
included category hides it (h command). In this example
N/A, docs and media were hidden:

[0220] The Enter key again exits the edit mode (Q com-
mand).

Drops (D+ command) can be applied to any aggregate, not
just the total. Applying type horizontally to the files that
match both the GUIKkit location and the devel file type (the
number 426) will expose the sub-categories of the devel.
[0221] Drops (D+ command) can also be applied to a
label, in which case a breakdown will be performed for all
aggregates under that label. Here the last criterion was
applied to GUIkit vertically:

[0222] Tt is possible to restrict the total to an aggregate. In
this case the 103 python files last changed in 2012 were
chosen, by clicking in the upper left corner of the aggregate
(R+ command). While hovering around the upper-left cor-
ner, the cursor becomes \. The display simply shows that
aggregate as a total, maintaining the coloring:

[0223] Drops can be performed after restricting. Here the
user criterion was applied (D+ command):

[0224] Successive restrictions are possible. Here the total
was again restricted to the 103 files belonging to the user
andrei (R+ command):

[0225] Drops can still be performed after successive
restrictions. Here the last criterion is applied again to the 103
files (D+ command), showing months as the sub-categories
of 2012:

[0226] The list of items comprising an aggregate can be
displayed at any time by clicking on the aggregate (L+
command). The list is shown with a scroll bar, and the
surrounding display is expanded to make room for it. In this
example the 19 files for November are shown:

[0227] Restrictions can be undone, starting with the most
recent one (R-command), by pressing the Escape key. The
display maintains all other properties, e.g., the item lists
displayed.

[0228] The list of items for an aggregate can be hidden by
clicking again on the aggregate (I.-command).

[0229] Undoing restrictions can continue as long as there
are any remaining. Here Escape removes the first restriction
(R-command), showing the full display:

[0230] The visual layout constructed for a category is
remembered if a category is hidden.

[0231] The first step to demonstrate that is putting GUIkit
and its sister categories in edit mode, by clicking on GUIkit
(E command). Both hidden and included categories are
shown:

[0232] Clicking on GUIkit again hides it, and the color
turns black (h command):

[0233] Hitting the Enter key (Q command) exits the edit
mode, and the line corresponding to GUIkit disappears:
[0234] GUIkit can be restored by clicking on any of its
sister categories, e.g., econBoost (E command) and then on
GUIkit (i command):

[0235] Enter again exits the edit mode (Q command), and
hidden categories disappear:

[0236] As it can be seen, the visual details of the GUIkit
line have been preserved.

[0237] Drops can be undone (D-command). This is done
by dragging any category that resulted from that drop onto

Jun. 2, 2022

any aggregate. For example, dragging the 2012 under
GUIkit and/onto the 59 to its right removes the drop of last
over GUIkit that led to FIG. 11. That drop caused break-
downs in 3 places (see FIG. 11), and all those break-downs
are now removed together. This is important, as it would be
tedious to revert all break-downs caused by a single drop one
by one. The breakdown of 103 by user also disappears, as
that relied on the category 2012 which became visible as a
result of the drop now being reversed. The same applies to
the breakdown by months resulting from applying last to the
103 files belonging to andrei.

[0238] The breakdown of GUIkit and devel by type sur-
vives, as it did not rely on the breakdown by last which was
just reverted. A further D-command by dragging utils onto
the aggregate 9 to its right leaves the display with a
breakdown by type (some categories still hidden):

[0239] Another D-command returns the display to the
initial state of FIG. 1.

[0240] An Example Remote Visualization Framework
[0241] The present document also describes a remote
visualization framework that allows for visualization of
hierarchically complex data. Only for the ease of explana-
tion, the framework is referred to as “QE View.” However,
it is to be understood that different embodiments that mix
and match the disclosed features are possible.

[0242] Insome embodiments, the visualization framework
may focus on multi-user interaction and provide a highly
responsive user interface. Web pages do not naturally fit this
task, and any good solution faces data consistency and
hardware differentiation challenges.

[0243] QE View separates visualization data into the hard-
ware-specific and hardware-independent portions. The latter
permits asynchronous updates, enabling real-time interac-
tion among users, as well as handling many client events
optimistically. The result is a responsive, real-time user
interface, even with communication delays.

[0244] While the concepts behind QE View are not web-
specific, they can be used in conjunction with web tech-
nologies such as AJAX and HTMLS. This affords familiar
advantages, such as sharing views as links and eliminating
software downloads.

[0245] For some data, complexity stems from nested com-
ponents, with each component relatively simple. Examples
abound: investment portfolio, engineering designs, store and
plant inventory, many scientific models. By contrast, other
types of data, e.g., video content, have no identifiable
components. Yet another possibility is exhibited by Wiki-
pedia: while there are components, there is no natural
hierarchy.

[0246] Not surprisingly, different types of information
require different tools. Web pages are not naturally suited to
hierarchical data, but fit Wikipedia extremely well. QE View
is similar: while it is intended for hierarchical information,
it can work with other data, albeit providing with fewer
benefits.

[0247] A revealing example is Google Earth. Determining
the content of a map fits under the mask concept (Section
7.1), and QE View could be used to provide multiple users
with real-time interaction. However, whatever the demand
for such a feature, it represents only a small fraction of the
overall usefulness of the product.

[0248] Hierarchical data has specific visualization needs.
Even more so than complex information in general, the
screen layout is important, and should not be discarded when

US 2022/0171638 Al

an application quits. Many applications (e.g., Bloomberg
Launchpad and the Eclipse IDE) go beyond one step further,
and provide different layouts for various tasks.

[0249] Handling visual information becomes more diffi-
cult in a multi-user setting, as asynchronous changes can
cause inconsistencies. Supporting different hardware adds to
the challenge; window positions acquired from one com-
puter are not useful on a smaller monitor or mobile device.
As a result, retaining visual information is uncommon for
web applications, despite their having acquired many of the
advantages of stand-alone applications via technologies
such as AJAX.

[0250] QE View handles these difficulties. Its features are,
among others, to:

[0251] (1) Provide a highly responsive user interface.
[0252] (2) Allow saving display layouts.

[0253] (3) Enable real-time, multi-user interaction.
[0254] (4) Work with different hardware.

[0255] (5) Be efficient with respect to network traffic,

memory requirements, and compute time (there are

tradeoffs).
[0256] The benefit for using QE View in an application is
proportional to its hierarchical complexity and degree of
interactivity. While these requirements are more common in
the commercial sector, many retail concepts fit to consider-
able degree. On-line store’s inventory and product informa-
tion, airline reservations, managing personal information,
credit card statements are a few examples.
[0257] Concretely, QE View is a development framework.
It exposes a set of classes that can be customized, and
provides a client-server application for conforming data.
The intent is that most complex aspects are isolated by the
framework, resulting in a straightforward development pro-
cess. Terminology-wise, the methods of a provided class that
are to be implemented by any derived class, or likely to be
customized, will be called the inteface of the class.
[0258] 4.2 Example Ideas Behind QE View
[0259] QE View’s basic approach to hierarchical complex-
ity is expanding and collapsing objects. This is both simple
and not new; what is original is realizing that by using a
suitable storage format and adequate event handling, it can
be made scalable, efficient and highly interactive, as well as
compatible with small-screen devices, thus becoming an
effective alternative to web-page navigation.
[0260] A fundamental concept introduced by QE View is
that of mask/link tree (ML-tree). It is a view storage format
that allows associating any view to any data, preempting
inconsistencies (see Sections 6.3 and 6.2). ML-trees provide
a common abstraction for expanding/collapsing sub-objects,
scrolling large arrays, and conditional displaying of sub-
components, such as showing features based on a map’s
resolution.
[0261] QE View’s responsiveness relies on handling cer-
tain events optimistically, using update managers (Sections
7.2 and 7.3). By maintaining a cache of information on the
client, and delaying updates from the server, it is possible for
commands to take effect without waiting for a server
response, with differences subsequently reconciled. The
ROST update manager (Section 7.5) provides an original
solution to editing scalars (single values) asynchronously
without locking the interface, even with lengthy server
delays.
[0262] Hardware differentiation can be done by isolating
exactly which part of a view’s description is hardware-

Jun. 2, 2022

dependent. QE View’s notion of detachment data, stored
locally, (Sections 6.1 and 8), addresses window position
concerns, and provides a navigation method for mobile
devices.

[0263] 4.3 A Brief Overview

[0264] Section 5 describes, among other things, features
for data QE View works with. The mask and payload
concepts are introduced, and the DisplayObject class
detailed.

[0265] Section 3 follows the steps to render a client
display:
[0266] (1) Constructing a tree of display items: Section 6.1

describes the view storage format, Section 6.2 the infor-
mation ML-trees transport, while 6.2.1 details some tech-
nical aspects of shared views.

[0267] (2) Sending client updates: Section 6.3 describes
ML -trees, the key concept behind the client-server com-
munication used.

[0268] (3) Updating widgets: Section 6.4 describes the
Widget class and the various steps involved in patching
widgets.

[0269] Events are covered in Section 7. QE View’s mes-

saging system is discussed first, followed by optimistic

events and update managers. A specific example of optimis-
tic mask update shows the interaction between events and

ML-trees.

[0270] Section 8 discusses hardware differentiation using

detachment data, for both desktop and mobile devices.

Shared views are covered in Section 8.2, and the need for the

DI-server of Section 6.2.1 explained.

[0271] Finally, the development framework is outlined

describing the general approach and specific packages pro-

vided, with their additional requirements for display objects.

[0272] 5 Example Features for Data

[0273] QE View works with items of data called display

objects, each corresponding to a client-side widget; widgets

are organized as a tree. Their interaction with QE View is
mediated by masks and payloads:

[0274] 5.1 Masks
[0275] Masks
[0276] Masks are a way to limit which descendants of a

vertex are visible. A mask is a boolean function mask(link),

returning True if, given mask is in effect for the parent, a

descendant characterized by link is visible. A few examples:

[0277] (1) Expansion mask: True/False for an expanded/
collapsed object. For an expanded object, all descendants
are visible, for a collapsed one, none.

[0278] (2) Range mask: Scrolling a window of size s over
a vector is represented by masks m, (i)=n=i<n+s, for n€N;
the link of an entry is its position.

[0279] (3) Map mask: (long, lat, width, height, scale), with
links (x, y, maxScale); it evaluates to True if (x,y) belongs
to the viewed rectangle and scalesmaxScale. It is a
3-dimensional range mask.

[0280] Masks and links can be serializable.
[0281] 5.2 The Payload Class
[0282] A payload carries the information useful to build

client side widgets. To minimize network traffic, only dif-

ferences are sent. The approach is similar to using the

diff/patch utilities for UNIX files, relying on the guarantee

that patch (x, diff (y, x))=y.

[0283] The Payload interface consists of:

[0284] (1) pl_diff (other): Raising an error causes the
corresponding widget to be rebuilt.

US 2022/0171638 Al

[0285] (2) pl_patch (diff): Should not raise an exception;
if the patch cannot be done, pl_diff fails on the server.

[0286] Payload classes is serializable.

[0287] 5.3 The DisplayObject Class

[0288] Display objects are derived from DisplayObject:
[0289] (1) id: Unique identifier for each object, used to

recover top objects in a view.

[0290] (2) stamp: An integer describing when the object
was last modified, analogous to database timestamps. If
the stamp hasn’t changed, it is assumed all methods below
would produce the same results. (descendants(mask) will
be run only if the mask has changed).

[0291] (3) oneValue(): A scalar and/or icon, to visually
reference the object, e.g. when it is detached or in window
titles.

[0292] (4) Widget(): The type of the widget to be con-
structed on the client; see Section 6.4.

[0293] (5) payload(): Data useful to build the object’s
widget, exclusive of descendants.

[0294] (6) descendants(mask): The visible descendants
given mask, indexed by link. For each descendant the
following information is provided:

[0295] a. object: The descendant display object.

[0296] b. placing: Describes how to place the child widget
in its parent, e.g., grid coordinates and labels.

[0297] c. mask: Initial mask of descendant; use None to
revert to the descendant’s defaultMask.

[0298] d. format: Initial format of child widget.

[0299] e. detach: Detachment data for child widget; see
Section 8.

[0300] (7) Top object initialization: When an object is

opened (added as a top object of the view), there is no
parent to provide the mask, format and detachment data.
defaultMask(), defaultDetach() and defaultFormat() are
used instead.

[0301] (8) Static methods:

[0302] a. calls(): Returns a dictionary of callable objects
providing access to application logic. The arguments are
provided by widgets when the client generates events.

[0303] b. getObject(objectld): Recovers the display object
with id=objectld.

[0304] 6. Rendering a Client Image
[0305] In broad terms, the steps are as follows:
[0306] (1) The display item tree (containing the last-used

visualization) and the display object tree (current data to
be displayed) are combined into a new tree, with display
items created or deleted as needed.

[0307] (2) The result T is compared against a synchronized
copy S of widget information, kept both on the client and
on the server. The difference T-S is sent to the client.

[0308] (3) S is patched with T-S, resulting in an S, both
on the client and on the server. It is not true that S'=T; S'
is a superset of T, with S'-T consisting entirely of invis-
ible vertices. S acts as a cache, by reducing network traffic
from the server to the client, and allowing certain events
to be anticipated on the client.

[0309] (4) Widgets are updated on the client based on the
new S.

[0310] 6.1 The View Storage Format

[0311] A view consists of a set of top objects, which

appear in a window of their own. Each top object is
associated a unique display item, which describes which
sub-objects are to be displayed, and how. A display item
consists of the following:

Jun. 2, 2022

[0312] (1) id: Unique integer across all display items.

[0313] (2) link: Link to be used with the parent’s mask.

[0314] (3) parent: The parent display item, or None for top
objects.

[0315] (4) mask: The current mask to be applied to descen-
dants.

[0316] (5) format: Formatting information, interpreted by
the widget.

[0317] (6) detach: Default detachment data, per device

class. See Section 8.
[0318] Given the parent field, display items represent a
tree. When rendering a client image, the display object and
display item trees are reconciled, using existing display
items as much as possible. Changes in object’s descendants
dictionaries result in adding or deleting display items.
[0319] Display items and their association to top objects
are persistent; links, masks, formats and detachment data are
serializable.
[0320] The application can open objects by the openOb-
ject(objectld) function provided by the framework. The
effect will be to recover the object using DisplayObject.
getObject, create a new display item with link=parent=None
and mask, format and detachment data provided by the
object’s defaultMask, defaultFormat and defaultDetach
methods, and insert the new pair in the view’s list of top
objects.
[0321] 6.2 Generating a Payload Tree
[0322] The payload tree consists of a vertex for each
client-side widget (instance of Widget) to be displayed; each
vertex also corresponds to a display object. A vertex appear-
ing in the payload tree is visible according to the masks.
[0323] To generate it, a queuing algorithm may be used.
The queue consists triples (displayObject, displayltem, plac-
ing), and is initialized with the top objects of the view, using
placing=None. Processing a queue entry (obj, di, plc) is done
according to the following steps:
[0324] (1) Add a vertex to the payload free: Each payload

tree vertex contains an instance of the class VertexState.

Following fields and values may be used:

[0325] a. id: Set to di.id.

[0326] b. mask: Set to di.mask.

[0327] c. link: Set to di.link.

[0328] d. oneValue: Set to obj.oneValue(), or from cache

retrieve from cache if obj.stamp is not changed (see
below).

[0329] e. payload: Set to obj.payload(), or from cache.
[0330] f. Widget: Set to obj.Widget (), or from cache.
[0331] g. format: Set to di.format.

[0332] h. detach: Set to di.detach.

[0333] 1. placing: Set to plc.

[0334] j. message. Get messages addressed to di.id from
the mailbox. See Section 7.1.

[0335] (2) Generate descendants: The following steps may
be followed:

[0336] a. The descendants dictionary descObject is
obtained by calling obj.descendants (di.mask), or
retrieved from cache.

[0337] b. A dictionary descDI of display items with
parent=di.id is constructed based on the permanent stor-
age.

[0338] c. For every link in descObject such that di.mask
(link)=True, do:

[0339] 1. If link appears in descDI, let childDI:=descDI
[link].

US 2022/0171638 Al

[0340] 1ii. Otherwise, let childDI be a new display item
with link:=link, parent:=di.id, mask:=descObject[link].
mask (replace with obj.defaultMask() if None), format:
=deskObject[link|.format, detach: =deskObject[link].de-
tach. Add childDI to permanent storage (see Section
3.2.1).

[0341] iii. Add (descObject [link].object, childDI, descOb-
ject[link].placing) to the queue.

[0342] d. For every link in descDI which is not in descOb-
ject, such that di.mask (link)=True, mark the display item
as obsolete (see Section 6.2.1).

[0343] (3) Remove triple from queue.

[0344] The payload tree is complete when the queue is
empty.

[0345] To speed up calculations, a cache stores a reference

to the object, the mask last used, the stamp of the object, and
the results of calling payload, descendants etc. If the stamp
and the mask have not changed, cached results are used.
[0346] 6.2.1 The Display Item Server

[0347] Ideally, generating a view were a read-only opera-
tion, especially to deliver multi-user views. That is however
not the case, as display items are added to permanent storage
when they are first used, and deleted when they are no longer
needed.

[0348] This can be solved by routing these operations
through a display item server (DIS). Whenever a display
item is needed, an in-memory representation is created to be
used for that one tree construction, and an event is sent to the
DIS. The DIS will create (or restore an obsolete one) or mark
obsolete a display item only once. Importantly, it is not
necessary to change a display item during payload tree
generation.

[0349] Some cases require care. Suppose an object has d,,
d,, d, as descendant dictionaries for stamps 0, 1, 2 (in the
sense of the DisplayObject field stamp, Section 5.3), and
there is a link 1 such that 1€d,,,d,, 1&d, . Two refreshes R}, R,
are started, based on stamps 1 and 2, but R, finishes after R,.
R, finds I obsolete and requests the DIS to mark it so. The
DIS knows the request should be ignored.

[0350] This may be accomplished by including the stamp
the of the object in the request to the DIS. The DIS can
compare the received stamp with the current stamp of the
object, and ignore the request if the two are different. In this
case 1=2.

[0351] Only requests to mark as obsolete may be refused.
Creating or restoring should be done all the time, as it has
minimal costs. In the case of fast-changing objects, this
avoids the potential problem of rejecting too many create
requests.

[0352] 6.3 Diff/Patch for Mask/Link Trees

[0353] Sending a full payload tree to the client every time
any change has occurred is impractical for large displays.
Updates may be limited to visible changes that have
occurred since the last client refresh, using the mask/link
mechanism.

[0354] 6.3.1 ML-Trees

[0355] It is clearer to first describe the approach in an
abstract setting. Let 0EICN be a set of positive integers,
thought of the set of all display item IDs used by the
application. Let L. an arbitrary set of links, and 1: [—=L the
link of each display item (links are immutable). A mask will
is any subset MCL, i.e. MEP(L), where P(X) denotes the set
of subsets of a given set X.

Jun. 2, 2022

[0356] The set of possible items may be denoted by V (in
practice V=VertexState). If V has diff/patch operations of its
own, it may be possible to reduce network traffic by com-
puting differences of elements of V. The term v'-v may
represent the result of V-diff.

[0357] An ML-tree will be a set 0&TCI, together with
functions p: T—T, M:T—P(L) and v:T—V. p(x) is the parent
of the vertex x; the root is always 0, and p(0)=0. v(x) is the
useful value of the vertex, and M(x) its mask.

[0358] A tree T" will be a subtree of T, and this may be
written as T'<T, if T'CT and p=p', M=M', v=v' on T". For a
set 0€XCI and functions p: X—1, and m, v as above (which
is not a tree asp(x)EX is not guaranteed), the set of vertices
reachable from O forms a tree T[X]. Thus, T[X]={xEXIp"
(X)EX, YneEN].

[0359] For any ML-tree T its visible part T*may be
defined to be equal to T[{xETIX)EM(p(x))}]; it consists of
vertices for which none its parents are masked. In this case,
T* is an ML-tree and T*<T.

[0360] While only vertices in T* are displayed on the
client, it is useful to keep track of more than visible vertices.
Consider scrolling a large array of size N. Let I={0, 1, . . .
, N} and 1(1)=, p(i)=0 for i=1, . . ., N. Define ML-trees T,
T using M={1, . . ., 100}, M'={51, . . . , 150} as masks at
0€&L. The transition T to T' corresponds to scrolling down 50
entries. After the scroll, the client has to wait for entries 101
through 150 to be received from the server. However, it is
useful to be able to scroll back and display the old values for
entries 1 through 50 right away, and receive updates only for
changed values.

[0361] Consider construction of operations, ©, & (diff and
patch), such that for T,, T, ML-trees with T*,=T, give:

I =TT OT)* M
[0362] A sequence of ML-trees T,=T*, can then be dis-

played by iteratively constructing S,=T, and S,=S,
(T,S8,,.1), which satisfy S* =T,.. Synchronized copies of S,
are kept both on the server and the client. The construction
also makes sure updates changes are only sent to visible
vertices.

[0363] The approach can be thought of as a cache strategy.
The server cache reduces network traffic, while the client
cache allows some events to be handled optimistically. The
identity S* =T, allows the client to rely on the mask to
determine what vertices should be displayed.

[0364] The ©, @ operations below are one possible cache
strategy. The S, ’s can be limited in size by retaining vertices
most recently visible. The client cache can be different, as
long as it includes all vertices in the server cache; if the
server assumes the client already has a vertex, it possibly
still exists on the client. As memory and CPU constraints are
likely more stringent on the server, a larger client cache can
be beneficial.

[0365] To define ©, D letT,, T, be ML-trees with T, *=T .
Define A,=T,-T,, A~to consist of x&T,NT, for which at
least one of py(x)=p,(x), v,(X)=v,(x), or My(x)=M,(x) is
true, and A_={xET,-T, Ip, X)ET,, Ix)EM(p,(x))}. A, con-
sists of new vertices, and A=of changed vertices. The
vertices of A_ do not appear in the new tree, yet their parent
does, and the link is visible according to the new mask, and
will be deleted.

[0366] Define T,OT;=((plass Vlae Mla,), ®lass Vi-Vo,
Mi,.), A_). For patching, let X,=(T,—A_)UA,UA =by patch-

US 2022/0171638 Al

ing pe, Vo, M, with the functions in T,ST,, giving prefer-
ence to the latter whenever there is an overlap. Define TP
(T, ST =TIX, .

[0367] It may be seen that T[X,] is an ML-tree, T <T[X]
and T,=T* <T [X,]*. To see that T[X,]*=T,, notice that if
that weren’t the case, any element of T[X,]*-T, of minimal
distance from 0 would be in A_, contradicting the definition

of X,.

[0368] 6.3.2 Using ML-Tree diff/patch for Client/Server
Interaction

[0369] The above operations translate into the following

algorithm for updating a client display:

[0370] (1) Generate a payload tree, as in Section 6.2. The
result Tn is an ML-tree with V=Vertex State.

[0371] (2) Compute dn=Tn Sn-1. This is done by parsing
Tn, and checking the conditions for A+, A/= and A-.
Relying on the Payload interface, VertexState implements
methods diff and patch, thus vn-vn-1 can be used.

[0372] (3) Send dn to the client.

[0373] (4) Compute Sn=Sn-1 dn on both the server and
the client. This includes deleting vertices no longer reach-
able from O.

[0374] (5) (optional on the server) Check that Tn=S. This
should always be true if, have been implemented cor-
rectly, but it does not hurt to verify during testing.

[0375] Notice the client response is not delayed by steps 4

and 5 on the server.

[0376] 6.3.3 Features of an Underlying Transport Layer

[0377] QE View uses objects sent between the server and

the client. The patch mechanism above relies on a sequence

of the updates, therefore data sent by the server arrives in
order. This is not required for client-generated events.

[0378] In some embodiments, the above can be imple-

mented by establishing an ssh encrypted tunnel over TCP/IP,

and using Python’s pickle as a serialization tool.

[0379] For a web-based solution, AJAX/Comet provide

the tools to establish asynchronous communication. Long

events can be used to accomplish the ordered queue going
from the server to the client. POST http requests can be used
for sending events from the client to the server.

[0380] 6.4 Updating the Client Display

[0381] The first step is patching the client ML-tree, as per

above. Vertices that appear in the diff tree are marked as

“touched”.

[0382] Once the ML-tree is correct, widgets are updated or

build as needed. The process relies on the Widget class,

exposing the following:

[0383] (1) Constructor: Takes two arguments:
[0384] a. parent: The parent vertex in the tree.
[0385] b. vertexState: The vertex information in the ML-

tree, which includes the Payload instance associated with
the vertex. See Section 6.2.
The constructor of a widget is run before those of its
children. For operations that is to be done after the children
have been constructed, w_afterChildren can be used.
[0386] (2) w_patch(dif): Corrects the widget based on the
result of pl_diff. It can raise an exception, causing the
widget to be rebuilt. The um_update methods of update
managers used by the widget are be called here.

[0387] (3) Geometric placement methods:
[0388] a. w_place(placing): Place a widget.
[0389] b. w_remove: Remove a widget, forgetting its

position; reverts w_place.

Jun. 2, 2022

[0390] c. w_withdraw: Make a widget invisible, but
remember its placement.

[0391] d. w_restore: Restore a withdrawn widget.

[0392] (4) Optional methods (provided but can be over-
ridden):

[0393] a. w_afterChildern: A function to perform tasks

that use information from children. This is run whenever
the vertex or its children change, or the widget is con-
structed.

[0394] b. w_showAlert: A function to update event alerts.

[0395] c. w_setMask: Withdraws/restores child widgets
according to the mask. It relies on w_withdraw and
w_restore, and is exposed so that additional actions can be
taken.

[0396] d. w_updateMask: Processes a change of mask in
the client ML-tree. As optimistic mask events are used, it
calls the mask update manager’s um_update method. The
call to w_setMask may be delayed. See Sections 7.2 and
7.3.

[0397] e. w_setPlacing(placing): Places the widget
according to placing. It relies on w_place and w_remove,
and is exposed so that additional actions can be taken.

[0398] f. w_updatePlacing: Processes a changed place-
ment by calling the widget’s placing update manager, as
widgets allow placing to be changed optimistically.

[0399] g. w_destroy: Destructor.

[0400] For each vertex that was touched in the patch

process, or whose widget is to be built, the following steps

are followed (recursively):

1. Patch the widget, unless:

[0401] (a) It is a new vertex.

[0402] (b) A parent widget was destroyed, causing the
vertex’” widget to be destroyed.

[0403] (c) pl_diff failed on the server.
[0404] (d) The widget type has changed.
[0405] (e) w_patch fails. An existing widget that cannot be

patched is destroyed along with its children.
2. If desired, build the widget.
3. Update the mask by calling the widget’s w_updateMask.
4. Update the placement by calling the widget’s w_up-
datePlacing.
5. Delete vertices that have disappeared from the tree.
6. Build widgets for new children.
7. Update child vertices that were touched by ML-tree patch.
8. Call event messages. Doing this step after w_patch and
child updates insures um_update calls have already run, as
required by update managers (see Sections 7.1 and 7.3).
9. Run w_afterChildren.
10. Run w_showAlert.
[0406] The update is complete once every new or touched
vertex has been processed.

[0407] 7. Event Handling
[0408] 7.1 Sending and Tracking Events
[0409] While the server distinguishes between events that

affect display items only, such as mask and format changes,
from running callable objects provided by the application,
on the client the mechanism is the same.

[0410] The Widget class provides the putEvent(event,
handler) method for sending events. A unique ID is returned,
and the event is registered with the vertex. The server
provides an outcome message, and when received the client
calls the handler with the message as argument. Which
vertex an event is registered to affects when it is delivered,
as only visible vertices receive messages; this insures visual

US 2022/0171638 Al

alerts are seen as they occur, e.g flashing value updates. To
avoid delays, an event can be registered to the root or a
parent (but not child, see Step 8 in Section 6.4).

[0411] Messages resulting from processing events are con-
veyed to the payload tree generation thread via a message
box server, which stores messages by display item id and
event id.

[0412] 7.2 Optimistic Events

[0413] A display can be made more responsive by per-
forming some changes before events are sent. While in
general it is not possible to know what the effect of an event
will be, in many cases there is a likely outcome that is worth
displaying.

[0414] This makes sense for events altering the view, for
example collapsing an object. Even in the unlikely case the
event fails, the effect is easily reverted. When re-expanding
a collapsed object, if child vertices are cached, the old
information can be initially displayed. It should be possible
for sequences of expand/collapse to proceed with no server
delay.

[0415] QE View accomplishes this by distinguishing
information received from the server, called reference data,
from screen data that is actually displayed. The two are
reconciled using event messages. A number of schemes are
possible; the corresponding QE View concept is the update
manager.

[0416] 7.3 Update Managers

[0417] Update managers encapsulate the logic of what to
display and how to handle server updates. The SetAndSus-
pend manager used for mask events (expand/collapse,
scrolls) blocks updates when a vertex has pending events
(Section 7.4). The more complex case of inputting values
uses the ROST manager (Section 7.5). Finally, non-optimis-
tic events can use JustAlert to perform no visual changes but
keep track of pending events.

[0418] Update managers share a simple interface:

1. A constructor that takes the following arguments:

[0419] (a) scrGet. A function to read the current display
value.

[0420] (b) scrSet. A function to set the current screen
value.

[0421] (c) val. The initial value.

2. um_update(val) Changes the reference value. Should be
called from w_patch. The messaging system guarantees it is
called before handlers, as long as events are registered with
the vertex or one of its parents.

3. um_pending() Returns True whenever an alert should be
displayed, typically when pending events are present.
[0422] Update managers are quite self-contained. Aside
from expecting handlers to always run after um_update, the
only feature is that any method that involves communication
with the server, e.g. saving a value, is passed a function
putEvent(event,handler) that returns a unique event ID.
[0423] From an allocation standpoint, update managers
should be members of the ML-tree vertex rather than the
widget, as to not be lost should the widget be destroyed (see
Section patch-client).

[0424] 7.4 The SetAndSuspend Update Manger

[0425] Used by mask and format events, this manager is
suitable for values that can be changed instantaneously (e.g.,
expand/collapse), but not inputting values. It is essentially a
counter of events, and changing the reference value is
ignored as long as the count is positive. The screen value can

Jun. 2, 2022

be changed at any time by calling set(value,putEvent),

whether events are in progress or not.

[0426] To clarify how update managers interact with ML-

trees, here are the steps of an optimistic expansion of an

object:

[0427] (1) A bound action (e.g. a mouse click) calls
SetAndSuspend.set(True,widget.putEvent). This results
in an immediate visual update, showing the children of the
previously collapsed vertex. The screen mask is changed,
but the reference mask is not.

[0428] (2) Visual mask updates are suspended until the
event returns. If another user toggles the object, the effect
is not shown, and similarly for a quick sequence of
expand/collapse by the same user. The latter eliminates
the object seeming to toggle “by itself”.

[0429] (3) The event is processed on the server, and the
mask is updated.

[0430] (4) The new mask is picked up by ML-tree diff,
sent to the client, and the client tree is patched. um_update
is called, but as the event’s handler has not been called
yet, the counter is still positive, and there is no visual
effect. The order of calling w_patch and handlers is
important here (Step 8 in Section 3.4 and Section 4.1).

[0431] (5) The event handler is called. Assuming only one
mask event, this will end update suspension, and the
screen will show the reference value. If the event suc-
ceeded, the screen is already correct and no update is
performed.

[0432] 7.5 The ROST Update Manager

[0433] The ROST update manager (an acronym of the

reference/optimistic/screen/typed values used) is designed

for editing a single scalar value. An important application of

is the formEditor package (Section 9.2).

[0434] Inputting values raises problems not presented by

mask events. Updates while typing is in progress, attempts

to edit while saving, and error values are be handled. ROST
has the following properties:

[0435] 1. Editing can always be started instantaneously.
[0436] 2. Unfinished edits are never accidentally lost.
[0437] 3. The display can always display the most up-to-

date server value, as well as recent optimistic values.

[0438] 4. Values resulting an error are displayed in a
visually distinct way, and can be re-edited.

[0439] One property of the messaging system may be that

a message is generated after the event has been run. It is not

assumed that processing events finishes in the order they

were sent; the server can handle long events asynchronously.

[0440] ROST is a generalization of SetAndSuspends,

whose set method can be replicated by an “edit+typing+

save” sequence.

[0441] 7.5.1 Display State Representation

[0442] The display state consists of the following:

R Reference Value: The last scalar value received from the

server. At any time, there is exactly only one reference value.

H History: A stack of triples, each consisting of:

[0443] 1. value: Either a reference value, or a value for
which an attempt to save has been made (successful or
not). Typed but unsaved values do not appear in the stack.

[0444] 2. id: For optimistic values, the id of the save event
sent; None otherwise.

[0445] 3. message: The message received from the server.
<OK> signifies success. A stack entry with a non-None id,
and None message is a pending save, i.e. a response has

US 2022/0171638 Al

not been received from the server yet. If a save fails, the
history retains the error message.
[0446] The stack obeys the constraint:
(SC) If the top entry is not pending, H[TOP].value=R, and
H[top].message is either None or <OK>.
The message restriction insures that when a save event fails,
but the saved value is equal to R (can happen if a value was
resent, but the server rejects redundant updates), the client is
not stuck with an error message.
[0447] T Typed value: A value that was typed in and not
saved, but is currently not on the screen.
[0448] C Cursor: A token describing what the screen
shows:
[0449] REF The reference information.
[0450] TYPING The the display shows an unsaved
value. T=None in this case.
[0451] TOP The top of the history stack, which is
either the last save sent (pending or not), or the
reference value.

[0452] int An integer pointing to a stack entry that is
not top.
[0453] S The screen value. Whenever the cursor

changes, S is updated accordingly.
[0454] 7.5.2 Events
[0455] The user interaction is provided by events. Follow-
ing is their description and effect on the display state:
(E) Edit. Accepted whenever C=TYPING. The state changes
to C=TYPING, T=None, with R, H, S unchanged.
[0456] (D)Discard typing. Allowed only when the
C=TYPING. The effect is C:=TOP, S:=H [TOP].value.
[0457] (S) Save. Receives putEvent. Allowed only
when C=TYPING. The value to save is S, and the
following steps are followed:

[0458] 1. An instance event=ROST.SaveEvent(S) is
created.
[0459] 2. An eventld is obtained by calling putEvent

(event,handler). Calling handler triggers the (M)
event below.

[0460] 3. The triple (id=eventld,
message=None) is added to H.

[0461] 4. C:=TOP.

[0462] (U) Update. Receives val. Can occur for any
cursor. The reference value is updated R:=val. (SC)
may no longer hold. If that is the case, a triple
(value=R, id=None, message=None) is added at the top
of H, and an int cursor is replaced with TOP.

[0463] (M) Message return. The handler receives even-
tld and message. Can occur for any cursor. The (M)
event has an effect on both H and C:

value=S,

[0464] The stack is changed in 3 steps:
[0465] 1. The unique integer i such that H[i].id=eventld
is found.
[0466] 2. H[i].message:=message.
[0467] 3. Ifi points to the top of the stack, i.e., H[i]=H

[TOP], (SC) may no longer hold. If that is the case a
triple (value=R, id=None, message=None) is added at
the top of H.
[0468] The cursor is updated according to the following
rules:

[0469] 1. If C=TOP, H[i]=H[TOP] and
message=<OK>, C:=i. This has the effect of showing
the error value (perhaps in a different format); i is no
longer the top of H.

Jun. 2, 2022

[0470] 2. If a new entry has been added to the stack to
satisfy (SC), and C is int, then C:=TOP. This discards
looking at old values in favor of showing an updated
reference value.

[0471] (R) Switch to reference. Accepted when C=REF.
The effect is C:=REF.

[0472] (B) Go backwards. Always accepted. The new
cursor depends on the initial cursor as follows:
[0473] TY TOP.

[0474] PING:

[0475] RE TOP.

[0476] F:

[0477] TO Index of the stack item right bellow top.
[0478] P:

[0479] n: n-1, or no change if at the bottom of H.

[0480] (F) Go forward. Acceptable when the cursor is

not TYPING. The new cursor depends on the initial
cursor as follows:

[0481] RE TYPING if T None.
[0482] F:
[0483] TO TYPING if T None
[0484] P:
[0485] n: n+1 or TOP.
[0486] (C) Clear history. If T=None, C:=TYPING and

C:=TOP otherwise.

[0487] If desirable for memory limitations, the stack can
be trimmed at the bottom, limiting the history, with appro-
priate changes in event implementations.

[0488] 7.5.3 Visual Alerts

[0489] The display can be made more user friendly using
visual alerts. The following system works well:

[0490] 1. When the concerned value is on screen, show
a hard flash (strong colors):

[0491] (a) A hard/normal flash, to show a value being
updated, e.g. R changes and there are no events
pending; the new value is visible immediately.

[0492] (b) A hard/error flash, to show an error has
occurred when C=TOP and H[TOP] is pending; the
error-causing value remains visible.

[0493] 2. When C=TYPING, and an event concerns a
value not currently on screen, show a soft flash (pale
colors) without leaving edit mode:

[0494] (c) A soft/normal flash, to alert the user the
H[TOP].value value has changed.

[0495] (d) A soft/error flash, to alert the user the
pending save at H[TOP] failed.

[0496] 8. Hardware Differentiation

[0497] QE View is intended as a portable framework. The
ability to support different hardware has become increas-
ingly important, driven by the desire to access information
from work, home and mobile devices. A lot of industry effort
is devoted into this issue, and resulting technologies like
HTMLS5 and Javascript can be used by QE widgets.
[0498] Handling different monitor sizes (or multiple moni-
tors), however, is not solved by the above technologies. This
issue is particularly relevant for hierarchical data: expanding
an object “in-place” is useful on a large monitor, but
awkward on a smaller device as it requires too much
scrolling. Web design runs into this problem as well, and
web-sites dedicated to mobile are common.

[0499] QE View addresses differences in display size by
separating detachment data from view storage. Every dis-
play item can be toggled between two modes:

US 2022/0171638 Al

[0500] 1. Embedded: The parent display item is enlarged
to accommodate it.

[0501] 2. Detached: Shown as a separate window.

[0502] Detachment data consists of the mode and the
window coordinates, and is stored on the client machine. QE
View has a concept of installation, each tied to one device
only, and containing a device class characterization. Detach-
ment data is stored keyed by display item and installation,
thus different installations on the same machine do not
interact.

[0503] Each display item is constructed with default
detachment data, one per device class. An expansion can be
in-place for a desktop or tablet, but detached on a phone.
When a view is first opened by an installation, the default
detachment data is downloaded; subsequent changes are
stored locally.

[0504] Local detachment data can be uploaded to the
server to replace the device class defaults, or conversely, the
defaults reloaded. A local setup can be replicated on a device
in the same class by combining the two, without affecting
other device classes.

[0505] 8.1 Small Devices

[0506] The meaning of detachment coordinates is for each
device class to decide; any string, and by extension any
serializable object can be used. For a small enough device,
window coordinates make no sense, as each window takes
up the whole screen. While a phone will never have the same
capability as a large monitor to show complex information,
detachment data can provide a way to organize and access
objects via a navigation map and shortcuts.

[0507] The navigation map consists of an icon for each
object, viewed similarly to apps on a smart phone. The grid
position of the object’s icon is stored as detached data, along
with shortcuts and priority in the object stack (determines
which object is on top). Detachment data translates into an
icon configuration and shortcuts; customizing and sharing
configurations works similarly to window positions for the
desktop class.

[0508] Bear in mind a view’s masks and formats are
shared among installations. The navigation map visually
differentiates collapsed and expanded objects, and touching
a collapsed object expands it. A synchronized desktop will
see the toggle as well.

[0509] Finally, the notion of activation provided by the
selection package (Section 9.2), which on a desktop has the
effect of changing the color of the object’s top bar, is
interpreted on a small device as raising the object to the top
of the stack; users can show objects to one another.

[0510] 8.2 Shared Views

[0511] Shared views rely on a number of design features
presented so far. Display items are stored in a database,
allowing concurrent updates. The DIS (Section 3.2.1) rec-
onciles create/delete display item requests from multiple
sources, while changes are distributed automatically via
ML-trees. Finally, storing detachment data locally allows
masks and formats to be shared among users, while adapting
the views to specific hardware.

[0512] Additional features can be added. Especially for a
large number of users, it is desirable to restrict user’s ability
to change a view. Three modes are provided:

[0513] 1. Free: Any user can act at any time.

[0514] 2. Grab: Only one user has focus, but anyone can
grab it at any time.

Jun. 2, 2022

[0515] 3. Conference: Only one user has focus, an he can
cede it at someone else’s request.

[0516] The user interface provides a share bar, showing
information about users currently on. It consists of:

[0517] 1. A left button, used to request control. Shows
own status. Grey=Idle, White=Focus, Flashing
White=Requesting.

[0518] 2. Middle buttons, for other user’s status. When
another user requests, the button splits in two. Top part
flashes white, bottom is solid red. Clicking the top
grants control, bottom denies.

[0519] 3. Right button. Deny all.

[0520] Every view has an owner who can set the mode,
and grab control for himself

[0521] 9. Development Framework

[0522] The framework is currently for Python. Using a
Django/jQuery/JavaScript stack to deploy as web technol-
ogy, the client side can be ported to JavaScript/HTMLS, to
run within the browser environment.

[0523] 9.1 Example Principles when Developing with QE
View
[0524] Data is separated into categories, reflecting how

QE View handles it:

1. Core data: Application data that makes sense absent
displays. Core data complies with the DisplayObject inter-
face, requiring Payload and Widget classes.

2. Display data: This is the part of the visual information
shared among users, and is represented in terms of masks
and formats.

3. Local adjustments: Can be either volatile or permanent,
e.g., using cookies or HTMLS5’s localStorage.

[0525] Secondly, optimistic events should be identified,
and an update manager decided upon. As with any concur-
rent problem, users can attempt conflicting things. A few
principles help:

[0526] 1. Make the information granular. This reduces
the number of collisions among events.

[0527] 2. Have events be incremental. If a format con-
sists of ordering a number of items, events should be
transpositions rather than the new permutation; this
prevents stale data from being reinstated.

[0528] 3. Events should commute whenever possible.
For example, expand/collapse is implemented as a
toggle rather than setting the mask to value, as toggles
commute, while sequences of set do not.

[0529] While for many applications the classes provided
eliminate the desire to write client-side scripts, QE View is
designed as a general purpose tool. In many cases it will be
useful to customize existing classes, or implement the inter-
faces from scratch.

[0530] New masks/links can be created, subject to being
serializable. The JustAlert, SetAndSuspend and ROST man-
agers cover a large number of situations, but new update
managers can be implemented based on the messaging
system; the principles described in Section 7.3 should be
followed.

[0531] 9.2 Packages

[0532] The framework provides a number of packages that
simplify common tasks. As expected, they impose require-
ments in addition to those of DisplayObject.

[0533] 1. sclection: Implements a copy/paste mechanism,
and a concept of active widget. Objects implement:

[0534] (a) pl_Type: A field within the payload class.
Used by the client to perform some type checking as

US 2022/0171638 Al

part of the copy/paste functionality. For example, an
integer should not be confused with an object id.

[0535] (b) set (link,value): For the paste event.

[0536] (c) choicePath() Returns a list of links. This
allows visually highlighting a sub-display item, e.g. a
choice in a drop-down list. Using a list of links as the
return, rather than just one link, allows handling cases
where the selection is not directly visible. An example
is making a selection within a tree, where the item
selected can belong to an unexpanded vertex; in that
case the object that is to be expanded to find the
selected item is highlighted instead.

[0537] 2. execution: Executing methods for visual objects.
Relies on selection. Objects implement a methods (mask)
method, returning a dictionary of methods with bindings as
keys, in a format understood by the corresponding widget.
Entries should expect the following arguments:

[0538] (d) mask: The object’s mask in the context
where the method is called. There is no way for the
object to recover this information independently.

[0539] (e) path: The succession of links to reach the
selection from the object whose method is being
executed, if within the object. One use is container
operations.

[0540] (f) selection: Selection on the client. Allows e.g.,
inserting a value into a list.

[0541] (g) pl_Type: The type of the selection.

[0542] The return can be either None or an object id. The
view will open the id as a top object, if it is not a top object
already, and bring its window to the foreground.

[0543] 3. formEditor: Implements optimistic form editing
using the SetAndSuspend and ROST update managers.
Relies on selection.

[0544] A form can be composed of scalars or sub-objects.
The Form class provides functionality to request editing
rights from the server; such requests are handled optimisti-
cally by a SetAndSuspend manager. Each individual scalar
has its own ROST manager. The interaction is linked:
attempting to edit a scalar causes a request to put the form
in edit mode, and a save command causes all sibling scalars
to be saved as well.

[0545] The combination of SetAndSuspend and ROST for
scalars provide a robust solution to a problem that otherwise
requires complex state diagrams. A fairly large number of
cases are covered, e.g., when a scalar edit resulted in an
error, but the user loses the right to edit the object. The
formEditor provides editing without delays in all situations,
difficult to achieve with state diagrams. Indeed, the ideas of
ROST were arrived at after repeated attempts at the problem
using state diagrams.

[0546] Implementation-wise, the package contains the
class ScalarWidget, which wraps a ROST manager, provid-
ing hooks the form can use to take actions when e.g., a scalar
is edited, allowing the above linkage between forms and
scalars.

[0547] 4. array: 1 and 2-dimensional arrays with optimis-
tic scrolling, using range masks.

[0548] FIG. 29 depicts an example system 2900 compris-
ing client computers 2902, 2903 communicatively coupled
over a communication network 2904 with a server 2906 and
a database 2908. The various techniques described in this
document can be implemented at the client computer 2902,
the server 2906 or partly between the client computer 2902
and the server 2906.

Jun. 2, 2022

[0549] The communication network 2904 can be a suitable
network, such as a wired or wireless network, e.g., the
Internet, Ethernet, wireless cellular network such as 3G,
Long Term Evolution (LTE) network, WiMax, etc. In vari-
ous embodiments, the client computer 2902 may be a
computer, a smartphone, a tablet device, using a suitable
operating system.

[0550] The server 2906 may include a processor, instruc-
tion memory and a suitable operating system. The database
2908 may be implemented using storage such as hard drive,
flash memory, etc. In various embodiments, the server 2906
and the database 2908 may be implemented on the same
hardware platform (e.g., sharing the same power source) or
may comprises two different platforms connected over a
local connection such as an SCSI interface.

[0551] Many systems provide database viewing access to
users using client devices via a server, while the underlying
data itself may also be changing. The changes may be caused
by other applications running on the server or by some users
of the system. One challenge is to provide the most current
or accurate data to a user, while the data may be changed.
Several techniques are possible. For example, in some
implementations, e.g., when a user is using a web browser
to view data, the user may be able to refresh the web page
loaded in the web browser (either manually or automati-
cally) to receive and view the latest data from a server. This
solution may be tedious to users and may be unacceptable
because of the constant user interaction required. In some
implementations, the server may “push” live data, e.g., stock
quotes, to the client device. However, scaling such a solu-
tions to millions of users may be run into operational issues
such as computational power and bandwidth. Furthermore,
streaming view of data may not allow a user to modify the
data and propagate the modifications to other users.

[0552] As a non-limiting example, consider the case of
viewing airlines seating chart while making flight reserva-
tions. Some airlines web sites allow users to click on a menu
item that opens up an airlines seating chart showing avail-
able/taken seats. Often, multiple users may be looking at the
same seating information from the airlines’ server database
and some users may be attempting to make bookings of their
seats. In some implementations, a server that provides a
view of the airlines seating chart to the client may need to
provide a way for the client to be able to view any updates
to the data in real time (e.g., within 1 to 10 seconds). It may
further be advantageous for the server to provide the data in
a format such that only data that is in current active view of
the user is refreshed with current values at the server. The
ROST data format and the display tree structure based
conveyance of viewable data provides a format that meets
these objectives, and others. While the above-discussed
airlines seating chart example is one example of an appli-
cation that may benefit from the disclosed viewable data
format, the applications of this format are easily scalable and
useful in many other situations, including but not limited to,
web browsing on an e-commerce web site, accessing finan-
cial data, etc.

[0553] While viewing data, certain data may not remain in
a user’s active view. For example, the user may scroll past
the data so that the data is outside the active display area that
is being viewed by the user. Another example may be that
the user may collapse the viewable data by clicking on a
“hide” control widget (e.g., a “+” mark in a listing). The
server may track a current state of the viewing session and

US 2022/0171638 Al

may either refresh slowly or not refresh at all the data values
that are not currently in the user’s active view, compared to
when the values are in the user’s active view. This hide/
refresh technique may be applied to all data values that can
be collectively navigated in or out of the user’s active view
and may therefore be treated similarly (e.g., all data objects
belonging to a vertex of a display tree).

[0554] FIG. 30 is a flowchart representation of a process
200 of providing visualization data to a client device. The
process 200 may be implemented, e.g., on the server 2906.

[0555] At202, a server is controlled to generate a plurality
of display objects for selectively displaying at the client
device to a user, wherein each display object comprises at
least one of a data portion and a graphics portion. For
example, in some embodiments, the display object may
include alpha-numerals such as stock values, or data entries.
In some embodiments, the display objects include icons,
images, an airlines seating chart, and such.

[0556] At 204, using the server, the plurality of display
objects are assigned to a plurality of vertices organized as a
logical display tree. As explained before, and in, e.g.,
sections 6 and 7, the logical display tree, organized as a
plurality of vertices, provides an advantageous way of
selectively refreshing or changing a subset of all display
objects.

[0557] At 206, the server is controlled to create a mask
specifying visual characteristics of the plurality of vertices,
wherein the visual characteristics of a given vertex simul-
taneously controls display attributes of all display objects
assigned to the given vertex. The visual characteristics may
specify whether or not each of the plurality of vertices are
visually occluded. In some implementation, the visual char-
acteristics may specify a transparency level, a font type, a
size of display of the vertices. In some implementations, the
visual characteristics of a vertex are automatically imposed
upon the data objects that are assigned to the vertex. For
example, when a vertex is hidden from a user’s view, all data
objects assigned to the vertex are also hidden from the user’s
view.

[0558] At 208, the server is further controlled to transmit
a description of the plurality of display objects, the logical
display tree and the mask in a payload format. For example,
in some implementations, the reference/optimistic/screen/
typed value (ROST) format disclosed in the present docu-
ment is utilized. In some implementations, the description is
transmitted as a difference from the previously transmitted
description. In one advantageous aspect, this transmission of
differences (“cliffs”) can reduce the amount of data trans-
mitted from the server 2904 to the client device 2902.

[0559] FIG. 31 is a block diagram representation of an
apparatus 300 for providing visualization data to a client
device. The module 302 (e.g., a generator module) generates
a plurality of display objects for selectively displaying at the
client device to a user, wherein each display object com-
prises at least one of a data portion and a graphics portion.
The module 304 (e.g., an assignment module) assigns the
plurality of display objects to a plurality of vertices orga-
nized as a logical display tree. The module 306 (e.g., a mask
creation module) creates a mask specifying visual charac-
teristics of the plurality of vertices, wherein the visual
characteristics of a given vertex simultaneously controls
display attributes of all display objects assigned to the given
vertex. The module 308 (e.g., a data transmission module)

Jun. 2, 2022

transmits a description of the plurality of display objects, the
logical display tree and the mask in a payload format.

[0560] As previously discussed, the ROST format pro-
vides a novel way for a server to provide views and updated
of views to data objects stored on the server to a client
device. From a client device’s perspective, the ROST format
provides the advantages, among others, that the received
data is in a compact format so that relatively lighter pro-
cessing of data is performed at the client device. Further-
more, in some implementations, changes to data objects
since the last refresh are organized as vertices that provide
a collective state of multiple data objects, thereby simplify-
ing rendering task. A mask may, e.g., provide information
about which vertices of a display tree are to be exposed to
a user’s view and which are not.

[0561] FIG. 32 is a flowchart representation of a method
400 of displaying data on a user interface. The method 400
may be implemented on a client device 2902.

[0562] At 402, the method 400 receives a description of a
display tree comprising a plurality of vertices, wherein each
vertex has one or more associated display objects. The
description may be received using the ROST format. The
description may be received at the client via a message
received over the network 2904.

[0563] At 404, a mask defining a visual characteristic of
each vertex in the plurality of vertices is received. Various
implementations of masks are disclosed in Sections 6, 7, 8
and 9.

[0564] At 406, the visual characteristic of a given vertex
are applied to all display objects associated with the given
vertex.

[0565] At 408, visual information described in the descrip-
tion is displayed on a user interface in a manner consistent
with the visual characteristics described in the mask.

[0566] FIG. 33 is a block diagram representation of an
apparatus 500 for displaying data on a user interface. The
module 502 is for receiving a description of a display tree
comprising a plurality of vertices, wherein each vertex has
one or more associated display objects. The module 504 is
for receiving a mask defining a visual characteristic of each
vertex in the plurality of vertices. The module 506 is for
applying the visual characteristic of a given vertex to all
display objects associated with the given vertex. The module
508 is for displaying, on the user interface, visual informa-
tion described in the description in a manner consistent with
the visual characteristics described in the mask.

[0567] The above-described use of the display tree struc-
ture and the ROST format may advantageously be used in
situations where multiple users share or view the same data
from a server. One example scenario is when user A in San
Diego may want a user B in Phoenix to be able to jointly
browse through a web site that sells toys so that user A can
choose a toy as a gift to user B’s daughter. Another example
scenario may be when a stockbroker may want a client to be
able to view data and graphs as the stock broker walks
through the client’s portfolio and provides explanation or
choices for making trades. Yet another example scenario
may include a joint collaborative research effort between
two researchers that are geographically separated and look-
ing at or charting certain data in a database, while a third
researcher, in an unrelated activity, may be either modifying
the data or copying the data for a research paper he is
editing.

US 2022/0171638 Al

[0568] In some implementations, the above-described dis-
play tree and ROST formats may be useful in providing a
shared view to data to multiple users. For example, in some
implementations, each display tree, at its root (e.g., the
starting point), may be identified by a unique id. This id may
be sent by the server to the first user when the first user
initiates a viewing session. The first user may then be able
to communicate the unique id to the second user. The second
user can then point his viewing application (e.g., web
browser) to the server using the unique id. At this time, the
server may become aware that two users are now sharing
view of the same data (e.g., session) and may therefore
provide views and view refreshes to the two users in a
contemporaneous manner. The previously discussed display
masks and vertexes can be advantageously used to reduce
the amount of refresh data to be sent to each viewer and also
provide a way in which views to multiple users are syn-
chronously managed (i.e., the state of a vertex—e.g., a one
byte information—may provide viewing status for hundreds
of data items in a compact and consistent manner to all
users).

[0569] FIG. 34 is a flowchart representation of a process
600 of providing visualization data to a first client device
and a second client device.

[0570] At 602, a server is controlled to generate a plurality
of display objects that can be displayed by the first and the
second client devices, wherein each display object com-
prises at least one of a data portion and a graphics portion.

[0571] At 604, the server is controlled to organize the
plurality of display objects into a plurality of groups, with
display objects in a group sharing a common display char-
acteristics. For example, one display characteristic may
include whether or not the group is in active view of a user.
Another display characteristic may include whether or not a
third user is able to edit or view the data. Yet another display
characteristic may include display aspects such as display
pixel dimensions, color, etc.

[0572] At 606, the server is controlled to transmit a
description of the plurality of display objects and the plu-
rality of groups to the first and the second client devices. In
some implementations the server is controlled to provide
autonomous periodic refreshes. For example, a one second
to 5 second periodic refresh rate may be satisfactory for
some applications. In some implementations, the server may
refresh based on a user activity (e.g., increase refresh rate
when a user is actively interacting with the data).

[0573] At 608, the server is controlled to selectively
update a first display object based on the common display
characteristics of the first display object. For example, the
update may include providing new or changed values of the
display object (e.g., in the above-described airlines reserva-
tion scenario, when a seat is purchased by someone else).

[0574] At 610, the server is controlled to selectively
transmit, based on the common display characteristics of the
an updated description to the first client device and the
second client device. In some implementations, each of the
multiple users sharing the same data view may receive the
updated description based on the display size of their
devices. For example, a user on a large screen device may
receive data updates more frequently (because there is a
greater amount of data visible on her screen) than another
user sharing the same view using a smaller screen sized
device.

Jun. 2, 2022

[0575] At 612, the server is controlled to transmit an
updated description to the first client device and the second
client device by including information about the updated
first display object. The server thus may provide synchro-
nized viewing updates to the multiple client devices.

[0576] FIG. 35 is a block diagram representation of an
apparatus for providing visualization data to a first client
device and a second client device. The module 702 is for
generating a plurality of display objects that can be dis-
played by the first and the second client devices, wherein
each display object comprises at least one of a data portion
and a graphics portion. The module 704 is for organizing the
plurality of display objects into a plurality of groups, with
display objects in a group sharing a common display char-
acteristics. The module 706 is for transmitting a description
of' the plurality of display objects and the plurality of groups
to the first and the second client devices. The module 708 is
for selectively updating a first display object based on the
common display characteristics of the first display object.
The module 710 is for selectively transmitting, based on the
common display characteristics of the an updated descrip-
tion to the first client device and the second client device.
The module 712 is for transmitting an updated description to
the first client device and the second client device by
including information about the updated first display object.

[0577] In some embodiments, a technique for facilitating
viewing of data by a user operating a client device includes,
opening a viewing session with the client device, wherein
the viewing session is identified with a unique identification.
The technique further includes transmitting an initial
description of data for viewing at the client device, wherein
the initial description comprises data organized as an infor-
mation tree having a plurality of vertices, with each vertex
comprising corresponding visual data that whose visual
characteristics are simultaneously manipulatable by a single
user action (e.g., simultaneously expand or collapse all
objects from the view using GUI control widget). The
technique further includes monitoring a visual state of the
viewing session, the visual state indicating which vertices of
the information tree are in active view and which vertices are
not in active view at the client device. The technique further
includes selectively updating a given visual data only when
visual state indicates that the given visual data is in active
view. The technique further includes communicating the
updated given visual data to the client device as a difference
from a previously sent description of data, wherein visual
data includes at least one of an alphanumeric character, a
graphical object or a graphical instruction.

[0578] In the above-discussed scenarios when a user is
viewing and possibly modifying data from a database at a
server, other users may also be simultaneously changing
value of certain data. One example is a scenario such as
GoogleDocs where multiple users can edit the same docu-
ment. However, unlike GoogleDocs, the document or data
may be being edited simultaneously. In these situations,
several actions may be happening to a data field at the same
time. For example, the server may have one value for a given
data field. A first user may be in the process of editing the
data field by editing a second value and may therefore be
viewing the data field as it is being edited by the first user.
Similarly, a second user may be in the process of editing the
same data field with a completely different third value and
may be seeing an entirely different data field during his
editing process. Without rules to streamline this process, a

US 2022/0171638 Al

race condition may arise in which both users or one of the
users may either overwrite each other or lose their edits
without becoming aware of the failure.

[0579] To overcome such situations, and other problems,
the present provides for techniques in which a behavior is
defined for local caches of a user’s edits to shared data. In
some implementations, the local memory includes a record
for all edits attempted by the user and the status of whether
these edits were successfully accepted by the server or not.
In some implementations, visual cues such as green/red
colors may be used to indicate to the user whether his edits
were successful or not. In some implementations, the user
can access the locally stored editing history stack to check
whether or not his edits were successful and, if not, why they
were not successful. For unsuccessful edits (e.g., when
another user beats the user to changing that data field), the
user may be able to recall his edit and attempt to re-edit the
field that has now been changed by another user.

[0580] In some embodiments, a method implemented at a
client computer for visual editing of a data item stored on a
server includes receiving a first value of the data item from
the server (e.g., a value of the data item that is stored in the
server’s record), displaying a second value of the data item
on a display (e.g., the value that is being edited by the
user—e.g., this value may have started as the first value but
the user may be mid-edit), receiving a third value input for
the data item from a user (i.e., when the user has finished
editing the value and indicates that he wishes to commit the
change), checking with the server whether or not the server
can commit to replacing the first value at the server with the
third value, receiving a response from the server indicating
success/failure in replacing the first value with the third
value, and updating a local memory stack based on the
response received from the server.

[0581] The local memory stack may be updated with an
error message, e.g., when the response indicates that the
replacing was unsuccessful. In some cases, while the user is
editing the field (i.e., while the second value is displayed in
the field), the user may receive a view refresh from the
server and a third value may overwrite the user’s mid-edit
value. In some implementations, the user device may, upon
this overwriting, provide a visual alert (e.g., flash the screen
or flash red color in the data field) to the user indicating that
the user’s edit was lost (i.e., the user was not able to
successfully replace the first value with his edited second
value).

[0582] Many real life examples of data sharing include
multiple users, having a mixed level of read/write authori-
zation to a database, sharing the same database. Some
example applications include traders sharing the same stock
or money data, users in a business organization sharing the
same files, data (e.g., payroll), medical practitioners sharing
patient data, e-commerce sellers and buyers using the same
inventory database, and so on. The client device 2904 used
by each user may have different display capabilities (e.g.,
screen size, graphics capabilities, etc.). It may be desirable
to provide a visual access to the shared data using techniques
that allow adaptation of database access based on client
device capabilities. For example, in some cases, new win-
dows or data viewing panes may be opened when a user
desires to zoom in or zoom out on data, or manipulate data
to draw graphs etc. This processed data, called detachment
data, could be displayed to the user on a full screen window,
or in a second window (e.g., a pop-up window) and so on.

Jun. 2, 2022

No techniques presently provide for a streamlined control of
shared view to the same data by multiple users operating
client devices with different capabilities.

[0583] In some embodiments, a technique for providing
access to a database includes receiving a display profile from
a client device, receiving a data view request from a user of
the client device, starting a data viewing session based on
the received data view request, associating the data viewing
session with the user, specifying to the client device a first
display property of data being viewed based on the display
profile of the client device, receiving another data view
request for the same session from the user using another
client device, and specifying to the another client device a
second display property of data being viewed based on a
second display profile of the another client device.

[0584] One of skill in the art will also appreciate that
several techniques for viewing of data are provided. In some
examples, a user using a client device receives views of a
database from a server in a compact format organized as a
display tree comprising vertices. At least some visual char-
acteristics of all data belonging to a given vertex are
controlled by simply specifying the visual characteristic at
the vertex level. In one advantageous aspect, the vertex level
specification is compact, because it makes it un-necessary to
individually list visual characteristics for possibly hundreds
of data objects under the vertex.

[0585] One of skill in the art will further appreciate that
techniques are provided for multiple users to share views of
the same data. A server provides synchronous updates to the
data to all the users sharing a same session, e.g., the same id
of a display tree.

[0586] It will further be appreciated that techniques are
provided for local storing of a user’s data edits so that no
data is lost when a user is unsuccessful to edit a shared data
field on the server.

[0587] It will further be appreciated that techniques are
disclosed for a server to provide data views to client devices
having different hardware/software capabilities.

[0588] The disclosed and other embodiments, modules
and the functional operations described in this document can
be implemented in digital electronic circuitry, or in computer
software, firmware, or hardware, including the structures
disclosed in this document and their structural equivalents,
or in combinations of one or more of them. The disclosed
and other embodiments can be implemented as one or more
computer program products, i.e., one or more modules of
computer program instructions encoded on a computer read-
able medium for execution by, or to control the operation of,
data processing apparatus. The computer readable medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a memory device, a composition of
matter effecting a machine-readable propagated signal, or a
combination of one or more them. The term “data processing
apparatus” encompasses all apparatus, devices, and
machines for processing data, including by way of example
a programmable processor, a computer, or multiple proces-
sors or computers. The apparatus can include, in addition to
hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database manage-
ment system, an operating system, or a combination of one
or more of them. A propagated signal is an artificially
generated signal, e.g., a machine-generated electrical, opti-

US 2022/0171638 Al

cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus.
[0589] A computer program (also known as a program,
software, software application, script, or code) can be writ-
ten in any form of programming language, including com-
piled or interpreted languages, and it can be deployed in any
form, including as a stand alone program or as a module,
component, subroutine, or other unit suitable for use in a
computing environment. A computer program does not
necessarily correspond to a file in a file system. A program
can be stored in a portion of a file that holds other programs
or data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub programs, or portions of code). A
computer program can be deployed to be executed on one
computer or on multiple computers that are located at one
site or distributed across multiple sites and interconnected
by a communication network.

[0590] The processes and logic flows described in this
document can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

[0591] Processors suitable for the execution of a computer
program include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read only
memory or a random access memory or both. The essential
elements of a computer are a processor for performing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Computer readable media suitable for storing com-
puter program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

[0592] While this patent document contains many specit-
ics, these should not be construed as limitations on the scope
of an invention that is claimed or of what may be claimed,
but rather as descriptions of features specific to particular
embodiments. Certain features that are described in this
document in the context of separate embodiments can also
be implemented in combination in a single embodiment.
Conversely, various features that are described in the context
of a single embodiment can also be implemented in multiple
embodiments separately or in any suitable sub-combination.
Moreover, although features may be described above as
acting in certain combinations and even initially claimed as
such, one or more features from a claimed combination can
in some cases be excised from the combination, and the

Jun. 2, 2022

claimed combination may be directed to a sub-combination
or a variation of a sub-combination. Similarly, while opera-
tions are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations
be performed in the particular order shown or in sequential
order, or that all illustrated operations be performed, to
achieve desirable results.

[0593] Only a few examples and implementations are
disclosed. Variations, modifications, and enhancements to
the described examples and implementations and other
implementations can be made based on what is disclosed.

1. A method of providing visualization data to a client
device, comprising:

receiving, by a client application on the client device, a

user input to change a visual characteristic of a display
object tree;

transmitting, to a server comprising a server cache and in

response to the user input, an event message compris-
ing an indication of the user input;

updating, using a client cache and based on the user input,

the display object tree on the client device;

receiving, from the server, a description of a difference

tree, wherein the server is configured to generate the
difference tree based on the user input and a display tree
stored in the server cache;

patching, based on the description of the difference tree,

the display tree in the client cache; and

selectively updating, subsequent to the patching and

based on the display tree, the display object tree on the
client device.

2. The method of claim 1, wherein updating the display
object tree using the client cache incurs no server delay.

3. The method of claim 1, wherein selectively updating
the display object tree on the client device comprises refrain-
ing from updating the display object tree upon a determi-
nation that the user input is a valid user input.

4. The method of claim 1, wherein a plurality of display
objects is assigned to each of a plurality of vertices of the
display object tree, wherein the user input comprises a mask,
wherein the mask specifies visual characteristics of the
plurality of vertices, and wherein the visual characteristics of
a given vertex simultaneously controls display attributes of
all display objects assigned to the given vertex.

5. The method of claim 4, wherein the mask comprises (i)
a screen mask corresponding to the visual characteristics of
the display object tree displayed on the client application,
and (i) a reference mask corresponding to the visual char-
acteristics of the display tree stored in a server cache.

6. The method of claim 5, further comprising:

updating, based on the user input, the screen mask; and

refraining, prior to receiving the description of the dif-

ference tree, from updating the reference mask.

7. The method of claim 5, further comprising:

updating, based on the user input prior to receiving the

description of the difference tree, the screen mask; and
updating, based on the description of the difference tree,
the reference mask.

8. The method of claim 5, wherein the screen mask and
the reference mask are Boolean functions.

9. The method of claim 1, wherein the visual character-
istics include information about whether or not each of the
plurality of vertices are visually occluded.

US 2022/0171638 Al

10. The method of claim 1, wherein the description of the
difference tree is transmitted using a reference/optimistic/
screen/typed value (ROST) data transfer format.

11. An apparatus for providing visualization data to a
client device, comprising:

a client application; and

a client cache coupled to the client application,

wherein the client application is configured to:

receive a user input to change a visual characteristic of
a display object tree,

transmit, to a server comprising a server cache and in
response to the user input, an event message com-
prising an indication of the user input,

update, using the client cache and based on the user
input, the display object tree on the client device,

receive, from the server, a description of a difference
tree, wherein the server is configured to generate the
difference tree based on the user input and a display
tree stored in the server cache,

patch, based on the description of the difference tree,
the display tree in the client cache, and

selectively update, subsequent to the patching and
based on the display tree, the display object tree on
the client device.

12. The apparatus of claim 11, wherein updating the
display object tree using the client cache incurs no server
delay.

13. The apparatus of claim 11, wherein selectively updat-
ing the display object tree on the client device comprises
refraining from updating the display object tree upon a
determination that the user input is a valid user input.

14. The apparatus of claim 11, wherein a plurality of
display objects is assigned to each of a plurality of vertices
of the display object tree, wherein the user input comprises
a mask, wherein the mask specifies visual characteristics of
the plurality of vertices, and wherein the visual character-
istics of a given vertex simultaneously controls display
attributes of all display objects assigned to the given vertex.

15. The apparatus of claim 14, wherein the mask com-
prises (i) a screen mask corresponding to the visual charac-
teristics of the display object tree displayed on the client

Jun. 2, 2022

application, and (ii) a reference mask corresponding to the
visual characteristics of the display tree stored in a server
cache.
16. The apparatus of claim 15, wherein the screen mask
and the reference mask are Boolean functions.
17. A computer program product comprising a computer
readable storage medium having code stored thereon, the
code, when executed by a processor, causing the processor
to implement a method of displaying data to a user, the data
comprising a plurality of data items, the method comprising:
receiving, by a client application, a user input to change
a visual characteristic of a display object tree;

transmitting, to a server comprising a server cache and in
response to the user input, an event message compris-
ing an indication of the user input;

updating, using a client cache and based on the user input,

the display object tree on the client device;

receiving, from the server, a description of a difference

tree, wherein the server is configured to generate the
difference tree based on the user input and a display tree
stored in the server cache;

patching, based on the description of the difference tree,

the display tree in the client cache; and

selectively updating, subsequent to the patching and

based on the display tree, the display object tree on the
client device.

18. The computer program product of claim 17, wherein
updating the display object tree using the client cache incurs
no server delay.

19. The computer program product of claim 17, wherein
selectively updating the display object tree on the client
device comprises refraining from updating the display object
tree upon a determination that the user input is a valid user
input.

20. The computer program product of claim 17, wherein
aplurality of display objects is assigned to each of a plurality
of vertices of the display object tree, wherein the user input
comprises a mask, wherein the mask specifies visual char-
acteristics of the plurality of vertices, and wherein the visual
characteristics of a given vertex simultaneously controls
display attributes of all display objects assigned to the given
vertex.

