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METHOD FOR GENERATING A DECISION
SUPPORT SYSTEM AND ASSOCIATED
SYSTEMS

[0001] The present invention relates to a method for
generating a decision support system The present invention
further relates to decision support systems associated with
the generation method.

[0002] Decision support, and more precisely multiple-
criteria decision support, is a vast field the applications of
which belong to multiple and varied fields, such as air traffic
control, border surveillance or medicine.

[0003] Such an area consists of developing models aiming
to guide decision-makers (whether experts or not) to solve
various problems relating to the decisions the decision-
makers would have to make, and in particular how to deal
with the different alternatives suitable for the situation
considered.

[0004] Such problems include, in particular, classification
problems (arranging alternatives in classes each correspond-
ing to a level of satisfaction), sorting problems (sorting
alternatives in the order of the decision-maker’s prefer-
ences), choice problems (choice of the best alternative from
all alternatives) and evaluation problems (providing an
overall score to an alternative)

[0005] To be effective, the models developed are suitable
for reproducing the decision-making strategies of the deci-
sion-maker as faithfully as possible, and for providing the
decision-maker with indicators on the proposed choice in
order to justify the outputs thereof. Hereinafter, such models
are called preference models.

[0006] It is thus desirable to be able to determine param-
eters of a preference model using an elicitation step of the
preference model, knowing that this procedure is used for
solving a problem of classification, sorting or choice.
[0007] Usually, the development of preference model
parameters requires sustained interaction between the deci-
sion-maker (end user who will be helped by the model) and
the model designers. The designers ask the expert to give
so-called “preferential” information which will depend on
the preference model and the sets of possible parameters.
Questions are usually determined artificially by designers in
order to extract the maximum amount of information.
[0008] Such information, which can be of various natures
(preferences between two alternatives, relative importance
of two criteria), is used in parallel with the interaction
through linear programming or optimization techniques so
as to determine the optimal parameters of the preference
model.

[0009] Such an ideal situation is not however, always
possible in practice, in particular because of the limited time
the decision-maker has, and there are cases where, the
designer has data for determining the preference model.
[0010] Such data is e.g. derived from a collection of
feedback from a system operator, on the recommendations
made to the system operator. One of the problems is that the
data can be vitiated by uncertainty (noise on the data e.g.)
and can contain errors (e.g. in the labelling of the data).
[0011] A method for generating a decision support system
is thus needed, which would allow a quality decision support
system to be obtained with very little intervention from the
decision-maker, ideally only using training data.

[0012] To this end, the present description proposes a
method of generating a multiple-criteria decision support
system, the method of generation comprising the provision
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of an initial problem and training data solving the initial
problem for particular cases, since the initial problem is a
problem of evaluating the quality of the existing system or
of the system to be created, the initial problem being a
problem chosen from the choice of the best alternative
among a set of alternatives, the distribution of alternatives
among classes of preferences, the ordering of alternatives in
an order of preference, and providing an evaluation score of
an alternative. The generation method further comprises the
transcription of the initial problem in the form of a neural
network and a set of constraints the neural network has to
satisfy in order to obtain a transcribed neural network, the
training of the neural network which is transcribed using the
training data, so as to obtain a trained neural network solving
the initial problem, the determination of the function per-
formed by the trained neural network, and the physical
implementation of the determined function for obtaining the
decision support system.

[0013] According to particular embodiments, the genera-
tion method comprises one or a plurality of the following
features, when technically possible:

[0014] the transcribed neural network comprises a set of
neural sub-networks, the transcription step comprising
the formulation of the set of constraints to be satisfied
by the neural network in the form of sub-constraints to
be satisfied by each neural sub-network.

[0015] each neural sub-network includes hidden layers,
the number of hidden layers being less than or equal to
5, preferentially less than or equal to 3.

[0016] the sub-constraints to be satisfied by a neural
sub-network are chosen from the list consisting of the
monotonicity of the variation of the output of the neural
sub-network as a function of the inputs of the neural
sub-network, of the output of the neural sub-network
which is comprised between a minimum value and a
maximum value, the output of the neural sub-network
being equal to the minimum value when all inputs of
the neural sub-network are equal to the minimum
value, and the output of the neural sub-network being
equal to the maximum value when all the inputs of the
neural sub-network are equal to the maximum value,
and of each sub-network which is suitable for imple-
menting weights, one constraint being that the weights
have to be positive and that the sum of the weights has
to be equal to 1.

[0017] the transcribed neural network includes a set of
neural sub-networks arranged in a tree structure, each
neural sub-network being a first neural sub-network or
a second neural sub-network, each first neural sub-
network performing a respective aggregation function,
the aggregation function preferentially being an aggre-
gation function with variables selected from the list
consisting of a weighted sum of variables, a Choquet
integral, a 2-additive Choquet integral, a weighted sum
of combinations of min and max functions between k
variables, for k at least equal to 2, of a multi-linear
model, of a generalized additive independence func-
tion, and of the ordered weighted average, and each
second neural sub-network performing a respective
marginal utility function, the marginal utility function
preferentially being a monotone function or a function
having three parts, a monotone first part, a constant
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second part, and monotone third part, the monotonicity
of'the first part being different from the monotonicity of
the third part.

[0018] training includes a first training with the set of
constraints of the transcription, for training an inter-
mediate neural network, a second training of the set of
constraints by setting the neural network at the inter-
mediate neural network, so as to obtain a learned set of
constraints, and an adjustment of the trained neural
network according to the difference between the set of
constraints of the transcription and the learned set of
constraints, so as to obtain an adjusted neural network,
the trained neural network being the adjusted neural
network.

[0019] training includes the use of at least one technique
chosen from the list consisting of batch gradient
descent, stochastic gradient descent and mini-batch
gradient descent.

[0020] training comprises the use of a weighted sum of
sigmoids.

[0021] The present description further relates to a decision
support system, in particular a multiple-criteria decision
support system, generated by implementing a generation
method as described hereinabove.

[0022] The present description further relates to a decision
support system, in particular a multiple-criteria decision
support system, the support system comprising a physical
implementation of a neural network comprising a set of
neural sub-networks arranged in a tree structure, each neural
sub-network being a first neural sub-network or a second
neural sub-network, each first neural sub-network perform-
ing a respective aggregation function, the aggregation func-
tion preferentially being a variable aggregation function
selected from the list consisting of a weighted sum of the
variables, a Choquet integral, a 2-additive Choquet integral,
a weighted sum of combinations of min and max functions
between k variables, fork at least equal to 2, of a multi-linear
model, of a generalized additive independence function, and
of the ordered weighted average, and each second neural
sub-network performing a respective marginal utility func-
tion, the utility function preferentially being a monotone
function or a function having three parts, a monotone first
part, a constant second part, and monotone third part, the
monotonicity of the first part being different from the
monotonicity of the third part.

[0023] Other features and advantages of the invention will
appear upon reading hereinafter the description of the
embodiments of the invention, given only as an example,
and making reference to the following drawings:

[0024] FIG. 1, a schematic representation of a computer
and computer program product suitable for implementing a
method for generating a decision support system,

[0025] FIG. 2 is a flowchart of an example of implemen-
tation of a method for generating a decision support system,
[0026] FIG. 3, a schematic representation of an example of
a neural network used in the generation method shown in
FIG. 2,

[0027] FIG. 4, a schematic representation of an example of
a neural sub-network which could be used in the generation
method shown in FIG. 2, and

[0028] FIG. 5, a schematic representation of another
example of a neural sub-network which could be used in the
generation method shown in FIG. 2.
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[0029] A computer 10 and a computer program product 12
are shown in FIG. 1.

[0030] The interaction between the computer 10 and the
computer program product 12 a method for generating a
decision support system to be implemented. The generation
method is thus a method implemented by a computer.
[0031] The computer 10 is a desktop computer. In a
variant, the computer 10 is a computer mounted on a rack,
a laptop, a tablet, a personal digital assistant (PDA) or a
smartphone.

[0032] In the above sense, the computer 10 can be seen as
a system and can be designated interchangeably as such
hereinafter.

[0033] In specific embodiments, the computer is suitable
for operating in real time and/or is in an on-board system, in
particular in a vehicle such as an aircraft.

[0034] In the case shown in FIG. 1, the computer 10
comprises a calculation unit 14, a user interface 16 and a
communication device 18.

[0035] More generally, the computer 14 is an electronic
computer suitable for handling and/or transforming data
represented as electronic or physical quantities in registers
of the computer 10 and/or memories into other similar data
corresponding to physical data in the register memories or
other types of displays, transmission devices or storage
devices.

[0036] As specific examples, the computing unit 14 com-
prises a single-core or multi-core processor (such as a
central processing unit (CPU), a graphics processing unit
(GPU), a microcontroller and a digital signal processor
(DSP)), a programmable logic circuit (such as an application
specific integrated circuit (ASIC), an array of field program-
mable gates (FPGAs), a programmable logic device (PLD)
and programmable logic arrays (PLAs), a state machine, a
logic gate, and discrete hardware components.

[0037] The computing unit 14 comprises a data processing
unit 20 suitable for processing data, in particular by per-
forming calculations, memories 22 suitable for storing data
and a reader 24 suitable for reading a computer-readable
medium.

[0038] The user interface 16 comprises an input device 26
and an output device 28.

[0039] The input device 26 is a device which allows the
user of the system 10 to enter information or commands into
the system 10.

[0040] In FIG. 1, the input device 26 is a keyboard. In a
variant, the input device 26 is a pointing device (such as a
mouse, a touchpad and a graphics tablet), a voice recogni-
tion device, an eye sensor or a haptic device (movement
analysis).

[0041] The output device 28 is a graphical user interface,
i.e. a display unit designed for supplying information to the
user of the computer 10.

[0042] In FIG. 1, the output device 28 is a display screen
for a visual presentation of the output. In other embodi-
ments, the output device is a printer, an augmented and/or
virtual display unit, a loud-speaker, or other sound generat-
ing device for presenting the output in an audio form, a unit
producing vibrations and/or odors or a unit suitable for
producing an electrical signal.

[0043] In a specific embodiment, the input device 26 and
the output device 28 are the same component forming
human-machine interfaces, such as an interactive display.
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[0044] The communication device 18 can be used for
unidirectional or bidirectional communication between the
components of the computer 10. The communication device
18 is e.g. a bus communication system or an input/output
interface.

[0045] The presence of the communication device 18
allows in certain embodiments the components of the com-
puting unit 14 to be spaced apart from each other.

[0046] The computer program product 12 comprises a
computer-readable medium 32.

[0047] The computer-readable medium 32 is a tangible
device readable by the reader 24 of the computing unit 14.
[0048] In particular, the computer-readable medium 32 is
not a transient signal per se, such as radio waves or other
freely propagating electromagnetic waves, such as light
pulses or electronic signals.

[0049] Such a computer-readable storage medium 32 is
e.g. an electronic storage device, a magnetic storage device,
an optical storage device, an electromagnetic storage device,
a semiconductor storage device, or any combination thereof.
[0050] As anon-exhaustive list of more specific examples,
the computer-readable storage medium 32 is a mechanically
encoded device, such as punched cards or relief structures in
a groove, a diskette, a hard disk, a read-only memory
(ROM), a random-access memory (RAM), an erasable read-
only memory (EROM), an electrically erasable and readable
memory (EEPROM), a magneto-optical disk, a static ran-
dom-access memory (SRAM), a compact disk (CD-ROM),
a digital versatile disk (DVD), an USB key, a floppy disk, a
flash memory, a solid state drive (SSD) or a PC card such as
a PCMCIA memory card.

[0051] A computer program is stored on the computer-
readable storage medium 32. The computer program
includes one or a plurality of sequences of stored program
instructions.

[0052] Such program instructions, when executed by the
data processing unit 20, lead to the execution of steps of the
generation method.

[0053] The form of program instructions is e.g. a source
code form, a computer-executable form, or any intermediate
form between a source code and a computer-executable
form, such as the form resulting from the conversion of the
source code via an interpreter, an assembler, a compiler, a
linker, or a locator. In a variant, the program instructions are
a microcode, firmware instructions, state definition data,
integrated circuit configuration data (e.g. VHDL), or an
object code.

[0054] Program instructions are written in any combina-
tion of one or a plurality of languages, e.g. an object-
oriented programming language (FORTRAN, C++, JAVA,
HTML), a procedural programming language (C e.g.).
[0055] Alternatively, the program instructions are down-
loaded from an external source via a network, as is the case,
in particular, for applications. In such case, the computer
program product comprises a computer-readable data carrier
on which the program instructions are stored or a data carrier
signal on which the program instructions are encoded.
[0056] In each case, the computer program product 12
comprises instructions which can be loaded into the data
processing unit 20 and are suitable for triggering the execu-
tion of the generation method when same are executed by
the data processing unit 20. According to the embodiments,
the execution is entirely or partially performed either on the
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computer 10, i.e. a single computer, or in a system distrib-
uted between a plurality of computers (in particular via the
use of cloud computing).

[0057] The operation of the computer 10 is now described
with reference to FIG. 2 which is a flowchart illustrating an
example of the implementation of the method for generating
a decision support system, in particular a multiple-criteria
decision support system.

[0058] The generation method is a method for developing
or manufacturing a decision support system.

[0059] On the basis of a multiple-criteria decision prob-
lem, the generation method allows a decision support system
to be obtained for providing a solution to the problem, the
system being apt to be used by a decision-maker.

[0060] The work of the decision support system designer
is to transform the data of the problem into a physical system
which is a decision support system.

[0061] The decision support system is often a computer 10
or part of the latter.

[0062] Such a decision support system can be used in
many industrial applications.

[0063] In particular, the decision support system is a
system for evaluating the operational quality of an existing
physical system.

[0064] The decision support system is e.g. a system for
evaluating the operation of an air traffic tracking system. The
criteria relate herein to measures of the quality of tracking,
such as aircraft location error. The decision support system
is then suitable for providing an overall evaluation, or a class
(level of quality of service).

[0065] In another example, the decision support system is
a system which assists in evaluating the operation of a
transport infrastructure, such as a train line or a metro line.
In the event of a major incident involving delays, the
decision support system allows the best solution to be
proposed among all possible solutions such as changing
train schedules or creating loops on the line.

[0066] According to another example, the decision sup-
port system is a design system of a physical system to be
developed.

[0067] As an illustration, the decision support system is a
design system of a set of a plurality of parts, such as a radar.
Starting from the preferences of the designer of the radar, the
decision support system then seeks to identify the best
compromise between a plurality of criteria such as measures
of the overall quality of the radar, the performance, the
weight or the cost of the radar.

[0068] Thereafter, it is assumed that an initial problem to
be solved has been defined.

[0069] The decision support system is intended to help the
decision-maker find the best solution to the initial problem.
[0070] Hereinafter, such a solution is called an alternative,
so that an alternative is an answer to the initial problem.
[0071] Thus, the decision support system is a physical
implementation of a decision model suitable for the situation
targeted by the initial problem, the decision model taking
inputs for obtaining an output.

[0072] The initial problem is e.g. defined in two phases.
[0073] The first phase consists of a discussion with the
decision-maker. The purpose is to fully characterize the
problem to be solved from a “high level” point of view.
[0074] In such a phase, three points are identified, namely
the form of the criteria, the nature of the problem and the
available data.
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[0075] The first point determined is the form of the criteria
on which each of the alternatives will be evaluated.

[0076] The form of a criterion is the variation of the
monotonicity of the model with respect to the criterion.
[0077] Within such context, monotonicity is the direction
of evolution of the output in relation to one of the input
criteria, all things otherwise being equal. Let us take the
model M(a)=M(al, . . ., an), with al to an, being the values
of the alternative a over the n criteria. It is assumed that M
is increasing (decreasing respectively, or increasing then
decreasing, or decreasing then increasing) with respect to
criterion 1. If criteria 2 to n are then set to arbitrary values,
the function F which associates a real x with M(x, a2, . . .
, an), is increasing (decreasing respectively, or increasing
then decreasing, or decreasing then increasing).

[0078] In the example of the design of a radar system, the
overall satisfaction is increasing with respect to the perfor-
mance criterion such as the range of the radar (the farther the
radar sees, the better, all things otherwise being equal), and
the overall satisfaction is decreasing with respect to the
electrical consumption (the less electricity the radar con-
sumes, the better, all things otherwise being equal).

[0079] Otherwise formulated, the first point consists of
asking whether the output of the model is increasing,
decreasing, increasing then decreasing, or decreasing then
increasing with respect to the value based on said criterion.
[0080] In certain cases, the way the criteria are represented
is modified so to have inputs that are compatible with the
decision model.

[0081] An example of modification is the elimination of
superfluous criteria or criteria too noisy to be exploitable or
the application of a transformation based on certain criteria
in order to ensure the monotonicity of the output of the
decision model.

[0082] The second point determined is the nature of the
problem to be solved.

[0083] The initial problem is one of the following prob-
lems: choosing the best alternative from a set of alternatives,
distributing alternatives among preference classes, ranking
alternatives in an order of preference, and providing an
evaluation score for an alternative. The nature of the prob-
lem to be solved is thus the choice, the distribution, the
storage or the evaluation.

[0084] The problem of distributing alternatives among
preference classes is a sorting problem.

[0085] The problem of arranging alternatives in an order
of preference is an automatic ranking problem.

[0086] The problem of providing an evaluation score to an
alternative or of choosing the best alternative from a set of
alternatives is a problem consisting of giving each alterna-
tive a satisfaction score. Such a problem is often referred to
as a scoring problem. When a scoring problem is solved, it
is possible to address a ranking problem without needing
further information, since the calculated score can be used
for ranking alternatives from the best to the worst.

[0087] Similarly, when a scoring problem is solved, it is
possible to solve a sorting problem, provided there is further
information on the threshold value. An alternative then
belongs to a class when the score thereof is between two
thresholds.

[0088] The third point is to obtain the training data.

[0089] According to the example described, the training
data are data from sensors and are thus measurements.
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[0090] Training data are usually heterogeneous in the
sense that training data come from a plurality of sources
(herein, a plurality of sensors) and are of different natures.

[0091] Inparticular, the training data can be represented in
pairs.

[0092] Three types of pairs can be envisaged.

[0093] According to a first type, one pair is an (X, y) pair

where x is an alternative and y is the score that the
alternative is supposed to have (expected score).

[0094] According to a second type, one pair is a, (X, k) pair
where X is an alternative and k is the index of a preference
class (e.g. “good”, “bad” and “average”).

[0095] According to a third type, one pair is an (x1, x2)
pair where the two elements are alternatives, with x1 an
alternative which is preferred by the decision-maker to the
x2 alternative.

[0096] Because of the heterogeneous nature thereof,
obtaining training data in certain cases involves the use of
pre-processing which ensures that even if the data are
represented differently, the data represent reality in the same
way and use the same criteria for evaluating the alternatives.
[0097] Heterogeneity can come from the fact that such
training data can be collected at different times and come
from different people—each person providing a type of data.

[0098] In a second phase, the decision model as such is
defined.
[0099] With the help of the expert e.g. the designer hence-

forth focuses on defining the model per se. As a particular
example, the expert will build with the designer of the model
the hierarchy of criteria, define the artificial criteria resulting
from the aggregations, choose if he/she wants the aggrega-
tion class at each node and the nature of the utility functions
applied to each of the criteria, if the functions are necessary.
[0100] More specifically, in certain cases, the decision-
maker can have a priori certainties. The decision-maker e.g.
can consider that he/she knows in advance the utility func-
tion of a part of the native criteria, the parameters of certain
of the aggregations (or of the constraints on certain of said
parameters). It is then possible to efficiently implement such
constraints, and to set the utility functions so that same are
not learned, and on the contrary are defined “by hand”
depending on the wishes of the decision-maker.

[0101] Similarly, in certain cases, the way in which the
criteria are organized hierarchically is set in advance by a
decision-maker. The hierarchy can indeed correspond to a
logical organization according to a decision-maker—the
intermediate aggregation nodes between the criteria and the
final aggregation node then correspond to concepts which
make sense to a decision-maker.

[0102] It will be understood that the generation method
does not necessarily need as many elements of information
on the initial problem.

[0103] In certain cases, it is sufficient to know the criteria,
the nature of the initial problem and the training data.
[0104] The generation method includes a supply step E50,
a transcription step E52, a training step E54, a determination
step E56 and a physical installation ES8.

[0105] In the supply step E50, the initial problem and the
training data are supplied.

[0106] To this end, the system receives the information
which has, most often, been developed by interactions
between the decision-maker and the designer, although such
interactions are not mandatory.
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[0107] Moreover, in the example proposed, it is assumed
that, during the supply step E50, the system further receives
a hierarchy of criteria.

[0108] At the end of the supply step E50, the system thus
knows the initial problem and the hierarchy of criteria while
having a set of training data.

[0109] During the transcription step E52, the initial prob-
lem is transcribed in the form of a neural network and a set
of constraints to be satisfied by the neural network.

[0110] The transcription step E52 thus aims to convert the
initial problem and the hierarchy of criteria into a neural
network and a set of constraints to be satisfied by the neural
network.

[0111] In the present method, the neural network has a
specific architecture for which FIG. 3 illustrates a particular
example.

[0112] Thus, the transcribed neural network includes a set
of neural sub-networks.

[0113] More precisely, the neural network comprises a set
of neural sub-networks arranged according to a specific
structure, each neural sub-network being a first neural sub-
network or a second neural sub-network.

[0114] In the proposed example, a first neural sub-network
is an aggregation sub-network.

[0115] A first neural network is a sub-network implement-
ing an aggregation function.

[0116] An aggregation function A is a function defined by
a utility vector and returning a real aggregation value.
[0117] Let N={1, ..., n} be the set of criteria (attributes
in the vocabulary of the decision support field).

[0118] X is the domain of the i-th criterion.

[0119] An alternative is defined as an element of X=X, x
XX

[0120] A decision model is a function U: X->[0,1], which
is usually called a utility function inducing a total order on
X. Utility functions are often represented in a decomposable
form, namely U(x)=A(u,(x,), . . . 0,(x,)) with u, being the
marginal utility function, u; being a function of X, in the
interval [0,1].

[0121] In the present case, the above means that the
aggregation function A associates values of the set [0,1]”
with a value in the set R, and if normalized, in the interval
[0.1].

[0122] More precisely, the aggregation function is a func-
tion defined on a utility vector a=(a,, . . . , a,)) which returns
an aggregated value in the interval [0,1].

[0123] According to the proposed example, the aggrega-
tion function belongs to the family of Choquet integrals.
[0124] A Choquet integral is a generalization of the
weighted sum, which also takes interactions between criteria
into account.

[0125] The Choquet integral is parameterized by a fuzzy
measure p which is used for assigning a certain weight to
each of the coalitions of criteria (where a weighted sum has
only one weight per singleton).

[0126] By definition, a fuzzy measurement p on a set N is
a function of 2V in the set R satisfying a normalization
condition and a monotonicity condition.

[0127] The normalization condition is that p(@)=0 and
that p(N)=1.

[0128] The condition of monotonicity is expressed accord-
ing to the following relation:

ACBN=p(A)<u(B)<1
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[0129] Thus, the Choquet integral C,, parameterized by
the fuzzy measure p, of a vector of values a, is written:

C@)=L,_, ‘N‘(a‘c(i)_a‘c(ifl PTG+, .. ()}

[0130] wherein T is a permutation in the set N satisfying
two conditions a,;<a..,, and 0;=0, at the same time.
[0131] In the example described, the aggregation function
A is a Choquet integral which is a 2-additive integral.
[0132] In such a case, only an interaction between at most
two criteria is envisaged. In this way it is possible to obtain
a satisfactory representation of reality while limiting the
number of free parameters. Limiting the number of free
parameters facilitates training because the risk of overfitting
is limited.

[0133] When the aggregation function A is a 2-additive
Choquet integral, the aggregation function is written:

IN| Nl N IN NI

Cylw) = Zw,vu,v + Z Z W M TNy, U7) + Z Z Wi Max X (27, 1)
i=1

i=1 j=itl i=1 j=itl

[0134] Where:
[0135] w; is the weight of the i-th utility function u,,
[0136] w, ,;, is the weight of the minimum interaction
between the i-th utility function u,; and the j-th utility
function w, and
[0137] W o, Is the weight of the maximum interaction
between the i-th utility function u,; and the j-th utility
function u,.
[0138] As can be seen in the example shown in FIG. 4
which corresponds to such a first sub-network, the first
sub-network of neurons comprises an n-dimensional input
layer then a hidden layer and an output layer.
[0139] The neurons of the hidden layer each perform one
function amongst: identity (if the neural has only one input,
the neural returns the input thereof unchanged), min-pooling
(the neural has two inputs and returns the value of the
smallest of the inputs thereof), or max-pooling (the neural
has two inputs and returns the value of the largest of the
inputs thereof.) A linear regression on the outputs of all such
neurons makes it possible to learn the weights, w;, W, ,/.,
and Wy az,,
[0140] In a variant, the aggregation function A is a
weighted sum of the utility functions.
[0141] According to yet another embodiment, the aggre-
gation function A is an ordered weighted average.
[0142] Such an operation is often referred to as OWA
(Ordered Weighted Averaging).
[0143] In a variant, the aggregation function A is a gen-
eralized additive independence function.
[0144] Such a function is often called GAI (Generalized
Additive Independence) function.
[0145] Using such a function assumes that the problem is
modeled as a utility sum on subsets of criteria which can
intersect.
[0146] In a variant, the aggregation function A is a multi-
linear function.
[0147] Such a function is written mathematically accord-
ing to an expression similar to the previous expression for
the case of a 2-additive Choquet integral, the only modifi-
cation being to replace the functions min and max by a
product of the variables, and to add neurons for each of the
missing subsets. The use of such model requires the use of
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multi-dimensional utility functions which can be obtained
by a multi-linear interpolation, or by a logit function inte-
grating a multi-linear function of the different input vari-
ables.

[0148] It should be noted that it is not mandatory that all
first sub-networks perform the same aggregation function,
each aggregation function being specific to a first sub-
network.

[0149] The aggregation function is preferentially a vari-
able aggregation function selected from the list consisting of
a weighted sum of variables, a Choquet integral, a 2-additive
Choquet integral, a weighted sum of combinations of min
and max functions between at most k variables, for k being
an integer at least equal to 2, a multi-linear model, a
generalized additive independence function, and the ordered
weighted average.

[0150] A second sub-network implements a utility func-
tion such as the functions used in decomposable multiple-
criteria decision support models.

[0151] The role of a utility function is to take as input, the
raw value on one of the criteria, and to give as output, the
satisfaction provided by the value on said criterion, inde-
pendent of the values of the alternative on all the other
criteria.

[0152] The above means that a utility function takes a real
number at the input and outputs another real number.
[0153] In practice, as in the present example, a second
sub-network has as inputs, the raw values of the alternatives
on each of the criteria, and outputs the marginal satisfaction
that such a value gives to a decision-maker, more particu-
larly on said criterion.

[0154] The above means that the second sub-network
implements a marginal utility function.

[0155] According to the example described, the marginal
utility function is normalized between 0 and 1.

[0156] The above means that the minimum value of the
marginal utility function is 0 and the maximum value of the
marginal utility function is 1. In certain cases, the minimum
and/or maximum value is reached at the limits.

[0157] Thus, according to the example described, a mar-
ginal utility function u, is a function of X in the interval [0,1]
is a function ensuring a correspondence between the i-th
attribute domain X, over the interval [0,1].

[0158] An example of such a second neural sub-network is
illustrated in FI1G. 5 with a hidden layer comprising 3 nodes.

[0159] Generally, marginal utility functions are of two
different forms.
[0160] According to a first form, the marginal utility

function is monotone.

[0161] According to a second form, the marginal utility
function is a single-plateau function. Such second form is
often referred to as “single-plateau”.

[0162] By definition, a marginal utility function is accord-
ing to the second form when the marginal utility function
exhibits a single change in monotonicity. Otherwise formu-
lated, the marginal utility function has only two portions: a
first portion on which the function is monotone in one
direction and a second portion on which the function is
monotone in a different direction from the first portion.
[0163] With regard to the nature of marginal utility func-
tions according to the second form, it is possible to distin-
guish between marginal utility functions including a plateau
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(increasing then decreasing function) and marginal utility
functions including a valley (decreasing then increasing
function).

[0164] As in the case of the first sub-network, it is not
mandatory that all the second neural sub-networks perform
the same marginal utility function, each marginal utility
function being specific to a second neural sub-network.
[0165] The marginal utility function is preferentially a
monotone function or a function having three parts, a
monotone first part, a constant second part and a monotone
third part, the monotonicity of the first part being different
from the monotonicity of the third part.

[0166] According to the example described, the neural
network is thus an assembly of sub-networks, more pre-
cisely an assembly of sub-networks, each sub-network being
chosen from the first sub-network and the second sub-
network.

[0167] The neural network is an assembly according to a
specific structure.

[0168] Thus, the neural network includes a set of neural
sub-networks arranged in a tree structure, each neural sub-
network being a first neural sub-network or a second neural
sub-network.

[0169] The tree structure is a tree structure when there is
a single path between a particular vertex to all other vertices,
and each non-leaf vertex has at least two child nodes.
[0170] More specifically, in the case described, the tree
structure is a structure the leaves of which are the raw inputs
of the neural network (most often the available data from the
sensors when the decision support system is used under real
conditions) and the root is the output of the neural network.
[0171] With reference to FIG. 3, the neural network
includes at the input thereof, second neural sub-networks
followed by a first neural sub-network.

[0172] The neural network described includes three sec-
ond sub-networks followed by a first sub-network of neu-
rons. The outputs of the second sub-networks are three
marginal utility functions which are connected by the first
neural sub-network which implements a Choquet integral.
[0173] According to another example, the neural network
includes several first sub-networks.

[0174] In general, such a structure enables the neural
network to represent the hierarchy of the criteria.

[0175] It can be noted that such a structure can be repre-
sented mathematically as follows.

[0176] s(g) denotes the output of the node g. If g is a leaf,
then s(g) will be the image by a marginal utility function of
the criterion corresponding to the leaf. Otherwise, if g is a
non-leaf node, then g has a plurality of children {g1, g2, . .
., gf}. s(g) is then the image by the aggregation function in
g (e.g. a 2-additive Choquet integral) of the vector formed by
the outputs of all the children thereof: s(g)=A(gl, g2, . . .,
gf) where A is the aggregation function in question.
[0177] According to a first example, the structure of the
neural network is designed in collaboration with the deci-
sion-maker.

[0178] According to a second example, the structure of the
neural network is chosen by the designer.

[0179] To make such a choice, the designer can rely on
obvious relationships between variables, tests on a plurality
of models to determine the most suitable model for the data,
or analyses on variables aimed at revealing particular rela-
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tionships which can be used (e.g. dimension reduction,
strong positive or negative correlations between two vari-
ables).

[0180] According to a third example, the structure of the
neural network is a parameter of the neural network which
is learned during the training step E54.

[0181] From a functional point of view, the neural network
with a tree structure is an aggregation of input criteria for
generating new criteria which will be, again, aggregated into
a new criterion and so on, until reaching an overall score for
the considered alternative.

[0182] Such a type of neural network thus implements a
decision model by small successive aggregations, which
makes it possible to represent certain complex decision
strategies, while pruning superfluous terms and parameters
which can appear in an overall aggregation of all the criteria.

[0183] Other structures are conceivable for the neural
network.
[0184] Thus, according to one example, the neural net-

work comprises only a first sub-network. In such a case, the
neural network implements a classical Choquet integral
regression model.

[0185] According to another example, the neural network
includes at the input thereof, a second neural network layer
performing utility functions. A model class can thus be
obtained, which authorizes the use of such functions.
[0186] The aggregation functions described hereinabove
are, for the most part, strongly constrained, in particular by
monotonicity. Thus, the Choquet integral is increasing with
respect to each of the inputs thereof, and each of the inputs
thereof has to be between 0 and 1 (symbolically, marginal
satisfactions are aggregated into an overall satisfaction. It is
thus necessary that, the higher the satisfaction on a given
criterion, the higher the overall satisfaction, all other things
otherwise being equal).

[0187] Therefore, a Choquet integral cannot be a model
compatible with certain raw data (i.e. upstream of the
application of a marginal utility). To take the example of the
radar, the overall satisfaction has to be decreasing compared
to the power consumption, all other things otherwise being
equal. The above means that, without the application of a
decreasing marginal utility on electricity consumption, the
Choquet integral will not be able to satisfactorily aggregate
such criterion. On the other hand, after an application of
such a decreasing function u which represents the satisfac-
tion on the electrical consumption p, the overall satisfaction
is indeed increasing with respect to u(p), all other things
otherwise being equal.

[0188] Similarly, the fact that the utilities are all at values
lying within [0,1], allows the model to have important
properties: the commensurability of the criteria (ability to
compare satisfactions on a plurality of distinct criteria) in
particular. Indeed, it is hard to compare the satisfaction
provided by criteria which live within different scales (e.g.
the radar range between 10 km and 1000 km, and the power
consumption between 1 kW and 1000 kW), and which can
be [given] in different units. The utilities thus can be used for
a renormalization of all the elements on the same satisfac-
tion scale [0,1]

[0189] Thereby, marginal utilities make the raw data
“compatible” with the model.

[0190] According to yet another example, the neural net-
work includes, at the input, other sub-networks aimed at
determining the values of the criteria from input data.
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[0191] In the proposed example, each sub-network has a
number of hidden layers less than or equal to 3.

[0192] More precisely, each sub-network is arranged in
the form of layers with an input layer grouping together the
input neurons and an output layer grouping together the
output neural(s). All the intermediate layers are hidden
layers which are only linked to the neurons of the layers
which are immediately downstream and the neurons of the
layer which is immediately upstream.

[0193] More generally, each sub-network has a number of
hidden layers less than or equal to 5.

[0194] As a particular example, each sub-network is a
multi-layer perceptron.

[0195] In the above sense, the neural network is a set of
simple neural networks, each representing a family of aggre-
gation functions or utility functions, which can be intercon-
nected for obtaining models for multiple-criteria decision
support.

[0196] According to a first example, during the transcrip-
tion step E52, the set of constraints to be satisfied by the
neural network is obtained implicitly. By choosing e.g. an
aggregation function, the constraints of the integration func-
tion are imposed on the model; an aggregation function e.g.
which is a Choquet integral, will be increasing with the
inputs thereof, continuous, bounded and idempotent.

[0197] According to a second example, the set of con-
straints is provided explicitly. As an illustration, a decision-
maker can decide to constrain the aggregation functions or
the utility functions even more, e.g. by forcing certain
parameters to be larger than others. The above then requires
additional constraints to be set on the aggregation function.

[0198] The set of constraints thus includes constraints of
monotonicity, derivability, idempotence, and continuity.

[0199] The transcription step E52 includes the formulation
of the set of constraints to be satisfied by the neural network
in the form of sub-constraints to be satisfied by each neural
sub-network.

[0200] According to the example described and as will be
described more precisely with reference to the training step
E54, the sub-constraints to be satisfied by a neural sub-
network are chosen from the list consisting of:

[0201] the monotonicity of the variation of the output of
the neural sub-network as a function of the inputs of the
neural sub-network,

[0202] the output of the neural sub-network being com-
prised between a minimum value and a maximum
value, the output of the neural sub-network being equal
to the minimum value when all inputs of the neural
sub-network are equal to the minimum value, and the
output of the neural sub-network being equal to the
maximum value when all the inputs of the neural
sub-network are equal to the maximum value, and

[0203] each sub-network being suitable for implement-
ing weights, one constraint being that the weights are
positive and that the sum of the weights is equal to 1.

[0204] In the above sense, with the specific sub-constraint
(s), each sub-network forms an autonomous calculation unit
independent of the other sub-networks.

[0205] At the end of the transcription step E52, a tran-
scribed neural network is thus obtained, such a neural
network being a complete network ready to be used for
training in order to solve the initial problem.
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[0206] During the training step E54, training of the tran-
scribed neural network is implemented using the training
data.

[0207] Otherwise formulated, the network being built and
the data being compatible with the implementation of train-
ing, it is possible to implement training of the network with
the training data.

[0208] According to the proposed example, the parameters
of the neural network are the weights connecting the neurons
of the neural networks and the biases applied to the input
value of certain neurons.

[0209] As indicated above, in certain cases, the parameters
of the neural network include the structure of the neural
network.

[0210] Inany case, even if a piece of information about the
neural network is not available, it is still possible to train the
neural network, although the network could be less precise.
[0211] Training includes the use of at least one technique
selected from the list consisting of batch gradient descent,
stochastic gradient descent, and mini-batch gradient descent.
[0212] Each of the above techniques is a technique or
algorithm for training the parameters of each neural sub-
network, in particular due to the fact that each sub-network
is a multi-layer perceptron.

[0213] In general, such techniques consist of reading the
training data several times, propagating each of the points
forward in the neural network, and propagating the gradients
backward (from the output to the input) so as to readjust the
parameters of the neural network.

[0214] More specifically, the batch gradient descent tech-
nique is also referred to as the batch gradient descent
algorithm.

[0215] The implementation of such a technique includes
an adjustment of the parameters in order to minimize a cost
function, which quantifies the error between the estimated
response and the correct response on training data. The
parameters are modified iteratively by subtracting the gra-
dient from the cost function which is calculated by a
composition of linear operators or of differentiable isolated
non-linearities by averaging over the whole batch, i.e. all the
calculated parameters. The implementation of such a tech-
nique thus involves successive multiplications of Jacobian
matrices.

[0216] Stochastic gradient descent (sometimes also called
the stochastic gradient algorithm) is an iterative gradient
descent technique used for the minimization of an objective
function that is written as a sum of differentiable functions.
Stochastic gradient descent is less computation-consuming
in the sense that same is performed on a single example per
iteration, the example being chosen randomly in the data-
base.

[0217] The mini-batch gradient descent is a compromise
between the two previous techniques by choosing a mini-
batch randomly at each iteration and by calculating the
gradients on the mini-batch.

[0218] In certain cases, the use of the aforementioned
techniques leads to training a neural network has no coher-
ence property.

[0219] In order to avoid the appearance of such inconsis-
tencies, in the example described, it is proposed to impose
constraints—which are the sub-constraints obtained before-
hand—to be satisfied locally, i.e. at each sub-network.
[0220] The sub-constraints to be satisfied locally are now
presented successively for the first sub-network and the
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second sub-network according to the two forms of marginal
utility function to which same corresponds.

[0221] For a first sub-network, the training consists of
training a fuzzy measurement satisfying the training data
and satisfying the two preceding conditions, namely the
normalization condition and the monotonicity condition.
[0222] According to the proposed example of an aggre-
gation function which is a 2-additive Choquet integral, to
learn the fuzzy measurement and in particular the monoto-
nicity property, it is sufficient to guarantee two training

sub-conditions, namely that all weights, w,, Wi ain and
W pae @€ positive and that the sum of all weights, w,
Wi arin A0d Wy 1p, 18 equal to 1.

[0223] The above actually corresponds to the fulfillment
of n? conditions.

[0224] The two training sub-conditions e.g. are obtained
by performing frequent renormalizations without using any
regularization.

[0225] Once the property is learned, the first sub-network
formally implements a 2-additive Choquet integral, with all
the properties expected (e.g. monotonicity, idempotence,
continuity).

[0226] For a second sub-network and more specifically, a
marginal utility function according to the first form, namely
a monotone function, the direction of monotonicity is
known.

[0227] According to the example described, the direction
of monotonicity is set by the initial problem, the decision-
maker knowing such a direction.

[0228] According to the example described, a marginal
utility function (monotone, or a monotone part of a single-
platean type marginal utility function) is learned as a
weighted sum of sigmoids. A sigmoid is written as the ratio
between 1 and the sum of 1 with an exponential.

[0229] Furthermore, the weighted sum is normalized so
that the sum of the weights is equal to 1, and all weights are
positive.

[0230] The above is written mathematically as:

Pi /

uia;) = Z o

i=1 1+ exp(”ﬁai _ﬂf)

[0231] With:
[0232] p,, a hyperparameter setting the maximum num-
ber of sigmoids involved in the previous formula,
[0233] 1/, the weight associated with the 1-th sigmoid,
[0234] /., a first constant associated with the 1-th sig-
moid, the first constant controlling the accuracy of the
I-th sigmoid, and
[0235] B/, a second constant associated with the 1-th
sigmoid, the second constant controlling the bias of the
1-th sigmoid.
[0236] Training for such a marginal utility function
according to the first form then consists of training each
weight and the two constants for each of the sigmoids with
two constraints with regard to the weights. According to the
first constraint, each weight is positive and according to the
second constraint, the sum of the weights is equal to 1.
[0237] To this end e.g. the weights of the last layer toward
the output are made positive by the use of hidden variables,
the weights of which are the image by a positive and
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increasing mathematical function, and wherein the sum of
said weights is made equal to 1 by a renormalization at each
iteration.

[0238] With such training, it is guaranteed that the mar-
ginal utility function is monotone (i.e. according to the first
form) and normalized.

[0239] For the case of a marginal utility function accord-
ing to the second form, the nature (plateau or valley) is
acquired from the decision-maker.

[0240] Thereafter, it is assumed that the marginal utility
function is a plateau function.

[0241] A transformation is applied to the training data so
as to have to learn only the plateaus.

[0242] Training then consists of training four values x1,
x2, x3 and x4 such that x1<x2<x3<x4 and such that the
marginal utility function has the value 0 over the intervals
]-o0; x1] and [x4; [, has the value 1 over [x2; x3] and be a
linear interpolation on the intervals [x1; x2] and [x3; x4].
[0243] Such training guarantees the form, normalization
and the continuity of the marginal utility function according
to the second form.

[0244] In a variant, the training of a marginal utility
function according to the second form is carried out by the
training of weighted sums of sigmoids in a direction of
monotonicity (as previously for the case of a marginal utility
function according to the first form) and then in the reverse
direction of monotonicity.

[0245] Note that the threshold x* value is also learned,
such that the first weighted sum is applied to the left of such
point, and the second weighted sum is applied to the right of
such point. The value in x* is necessarily O (in the case of
avalley) or 1 (in the case of a plateau). The above is ensured
by renormalizations.

[0246] Furthermore, such training can be used for obtain-
ing a function of marginal utility which is derivable. Such a
property makes it possible in particular, to facilitate training
since the problems of disappearance or explosion of the
gradient during training are avoided.

[0247] In the end, from an overall point of view, at each
iteration, training includes a propagation phase and a back-
propagation phase.

[0248] The propagation phase is a forward propagation
phase consisting of the injection into the leaves, of values on
each criterion. The values will then move from sub-network
to sub-network, over successive aggregations, until reaching
the root, or output node, which will give us the result.
[0249] The backpropagation phase consists of comparing
the result obtained with the expected result. The backpropa-
gation phase uses a so-called “loss” function which charac-
terizes the difference between prediction and truth. Such a
function is a function of the quadratic error which is written
L(x,y)=(M(x)-y)* where X is an input alternative, M(x) is
the score given to the alternative x by the model M, and y
is the expected score. The gradient of the function L is then
calculated at the output, then propagated throughout the
network, going out to the leaves. As a result, each of the
sub-networks calculates the gradients of the loss with
respect to its own parameters thereof and updates same
before transmitting the gradients to the upstream sub-net-
works.

[0250] It should also be noted that the type of error
function to be optimized depends on the type of data (mean
square error for regression e.g., or logistic error for binary
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classification). Any type of differentiable error function can
thus be minimized, at least locally.

[0251] As an illustration, in the case of training by pairs of
preferences, a Siamese architecture is preferred (the network
N is duplicated, in order to obtain two “clone” networks N1
and N2 identical to the network N). The error is then an
increasing function of (N2(x2)-N1(x1)), (e.g. an arctangent
function, i.e. herein a tan(N2(x2)-N1(x1)). The gradients
are calculated on the first clone network N1 and the second
clone network N2 and are then summed for obtaining the
total gradient. The latter is applied to the first clone network
N1, then the first clone network N1 is again copied to obtain
the new clone network N2.

[0252] The E54 training step can be used for obtaining a
network of trained neurons solving the initial problem.
[0253] The trained neural network performs a function.
[0254] During the determination step E56, the function
performed by the trained neural network is determined.
[0255] More precisely, an explicit form is determined in
the form of a compact mathematical formula, which keeps
the same parameters (and thus corresponds to exactly the
same function as the function the neural network represents).
[0256] The determined function is the function corre-
sponding to the compact mathematical formula.

[0257] As a particular example, in the case of the 2-addi-
tive Choquet integral, the network learns the weights w,,
Wy min @0d W, ... Once the network is trained, the weights
are extracted (ignoring all the rest of the parameters), and the
weights are used to set the parameters of an explicit 2-ad-
ditive Choquet integral function (see previous equation).
The determined function is thus completely characterized.
[0258] The network is thus only a support for training such
function, while keeping the explicit parameters thereof.
After training, the parameters can be saved, stored, or used
as such for parameterizing a function of the same type.
[0259] During the implementation step E58, the deter-
mined function is physically implemented for obtaining the
decision support system.

[0260] According to a particular example, the neural net-
work is implemented on an FPGA.

[0261] The generation method can be thus used for obtain-
ing an evaluation system implementing the function per-
formed by the trained neural network with a simplified
implementation (consuming little resources and memory) so
as to make the function compatible with an embedded
implementation.

[0262] Furthermore, the evaluation system will address
the initial problem and assist the decision-maker, especially
when the alternatives are modified too frequently to be
studied by a human (real-time implementation aspect) or by
issuing an alert when an acceptable alternative is, most of
the time, no longer acceptable (case of a monitoring appli-
cation).

[0263] The generation method can thus be used for easily
and quickly training a complex preference model satisfying
strong formal constraints and corresponding to known
classes of preference models, or resulting from successive
aggregations of models belonging to said classes. Such a
preference model is thus a model suitable for assisting a
decision-maker in his/her decision-making on a given prob-
lem, in particular because the model stays transparent and
easy to interpret.

[0264] Such properties have been demonstrated experi-
mentally by the applicant during tests.
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[0265] Moreover, the generation method is a method of
neural training of a preference model, which means that the
generation method advantageously uses a representation of
a problem in the form of a neural network.

[0266] In particular, the method can be used for modifying
the neural network so as to easily switch from one type of
problem to another. It is e.g. easy to move from a regression
problem to a classification problem, or even of training
preferences from pairs of labeled alternatives, depending on
the input data, the nature of the input data, and the expected
nature of the output.

[0267] Furthermore, training a neural network is a task
that can be parallelized. It is thus possible to implement the
training step E54 with a hardware architecture suitable for
operations performed in parallel.

[0268] Thus, the training step E54 is advantageously
executed on processors such as CPUs or CPUs. A CPU
(Central Processing Unit) is a processor, whereas a GPU
(Graphic Processing Unit) is a graphics processor.

[0269] According to another variant, the training step E54
is performed on a server farm.

[0270] It follows from the previous elements that the
generation method can be used for benefiting from the best
of both worlds, the world of multiple-criteria decision sup-
port with the rigor thereof and the world of machine training
with the statistical approach thereof. The generation method
is thus part of the field of hybrid artificial intelligence, a field
which combines statistical methods of machine training and
strong expert constraints integrated into the training models.
[0271] The generation method puts to use, the advantages
provided by the use of neural networks, namely a high
modularity and the absence of the need for manual calcu-
lation of complex gradients, while providing strong con-
straints on the trained model, both due to the particular
architecture of the network, and due to the aforementioned
normalizations and procedures.

[0272] Otherwise formulated, the method hence puts to
use, the ability of multilayer perceptrons to regress model
parameters from data, and the formal guarantees provided by
multiple-criteria decision support aggregation models for
training subtle, yet strongly constrained models.

[0273] The method thus can be used for generating models
suitable for supporting multiple-criteria decision-making,
which provides the guarantees on the model that the deci-
sion-makers can require in operational frameworks. How-
ever, the method further provides the possibility of working
on noisy or even erroneous data.

[0274] The method further uses the fact that the neural
network is divided into two types of sub-networks.

[0275] In this way it is possible to obtain a generation
method with greater computational simplicity.

[0276] Indeed, the methods of the prior art involve calcu-
lating a local gradient for each of the possible configura-
tions, which leads in practice to limiting the aggregation in
order that the calculation can be performed in practice. In the
present method, on the other hand, the gradients are calcu-
lated only locally, i.e. aggregation by aggregation.

[0277] More precisely, during the training step E54, the
training data is propagated from sub-network to sub-network
during forward propagation and the gradients are then
propagated from sub-network to sub-network during back-
propagation. For each sub-network, a simple gradient is thus
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calculated independently of the complexity of the network
as a whole and the calculated gradient is then propagated to
the upstream sub-networks.

[0278] Such a method provides an easier implementation
of the constraints. The sub-networks are defined in such a
way so as to ensure that at any stage of the training step E54,
the sub-network formally satisfies all the constraints to be
satisfied for the function the sub-network performs. The use
of adjustments or checking calculations is thus avoided.
Constraints are easily fulfilled locally for each sub-network
and the fact that constraints are fulfilled by each trained
sub-network ensures that the entire trained network fulfills
the constraints in an overall manner.

[0279] The method further has the advantage of a high
modularity since each sub-network can be modified without
modifying the entire network. It is possible e.g. to replace a
first sub-network with another first sub-network which cor-
responds to a different aggregation function. A marginal
utility module can also be replaced by another. It is also
possible to rearrange the sub-networks. However, in such
case, it is necessary to re-train the network (or at least the
sub-part of the network which has been modified).

[0280] Such a possibility is, in particular, relevant in the
case of a hierarchy of aggregations. More particularly, it can
thus be assumed that, if a large number of classically
aggregated cell classes have been trained, finding the right
hierarchy is the only remaining problem for adapting the
neural network to the situation.

[0281] The method can be further used for simpler vali-
dations. Indeed, for each sub-network of the same type,
which belongs to the same class, it is sufficient to check that
the class meets the necessary conditions set out in the
training step E54, in order to validate all the sub-networks
of the same class. A greater ease of maintenance of the
physical implementation of the trained neural network
results therefrom.

[0282] Other embodiments of the present method are
conceivable.

[0283] According to a first example of another embodi-
ment, the training step E54 includes a validation of the
model.

[0284] More precisely, after implementing a training tech-
nique as previously proposed, a model is obtained to be
validated, the parameters of which are henceforth deter-
mined.

[0285] The designer then presents to the decision-maker
with the model to be validated, i.e. the function that the
neural network learns

[0286] Such a presentation is e.g. implemented using
indicators used in the field of decision support. Shapley
values or interaction indices are examples of such indicators.
As an illustration, the designer presents a graph plotting the
Shapley values of each criterion.

[0287] By definition, the Shapley value of each criterion
represents the relative importance of the criterion compared
to the other criteria. Given a fuzzy measurement p on a set
of criteria, the Shapley value of criterion i is calculated as:
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[0288] The interaction index characterizes the strength of
an interaction between two criteria (by the absolute value
thereof). The sign of the interaction index indicates whether
same is redundancy (negative) or synergy (positive). The
index of interaction between criteria i and j is written as:
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[0289] According to another example, machine training
indicators are used, such as sensitivity analyses, Sobol
indices or cross-validation errors.

[0290] Sobol indices are alternatives to Shapley values for
calculating the proportion of variance expressed by each
criterion (another way of defining the importance of each
criterion).

[0291] Cross-validation is a process aimed at quantifying
system performance: a network is trained on 80% of the
data, and tested on the remaining 20% (so as to evaluate
same on data which were not seen during training). Errors on
such data (in addition to the average value thereof, which is
already an indicator of the performance of the model),
provide information on the model. In particular, if all
examples of a certain area of the X-space are misclassified,
a weakness of the model in that particular area can be
indicated therefrom, which can illustrate a marginal poor
utility, or a poor choice of aggregation function.

[0292] With the inputs provided by the designer, the
decision-maker determines whether the model is valid in
light of his or her experience of the actual situation.
[0293] When the decision-maker considers that the model
is invalid because certain model outputs are wrong, the
designer determines how to make the appropriate correc-
tions so as to obtain a valid model.

[0294] Such a correction is, according to a first example,
a manual correction, i.e. a forced modification of certain
parameter values of the trained neural network.

[0295] According to a second example, which can be
implemented in combination with the first example or alone,
data is added to the training data and the training is imple-
mented with the training data thus completed. Such a
correction example can be used in particular for repairing
possible errors due to erroneous data, or at a zone of the
input space under-represented in the original training data.
[0296] The process presented (evaluation and correction)
can be iterated as many times as necessary until the decision-
maker is satisfied with the model obtained.

[0297] In certain cases, validation includes the use of
quantitative indicators such as cross-validation error instead
of the decision-maker satisfaction or in addition to the
decision-maker satisfaction via a weighting of the subjective
and quantitative evaluation.

[0298] According to such a first example of another
embodiment, the training comprises the implementation of a
supervised training technique.

[0299] According to a second example of another embodi-
ment, a training of the hierarchy of criteria is performed.
Such an embodiment is relevant in particular, when the
decision-maker is not available.

[0300] To this end, as an illustration, the training includes
a first training with the set of constraints of the transcription,
for training an intermediate neural network, a second train-
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ing of the set of constraints by setting the neural network at
the intermediate neural network, so as to obtain a learned set
of constraints, and an adjustment of the trained neural
network depending on the difference between the set of
constraints of the transcription and the learned set of con-
straints, so as to obtain an adjusted neural network, the
trained neural network being the adjusted neural network.

[0301] Certain implementations of such an example are
described hereinafter.

[0302] A first technique is to learn a single layer of
aggregation. However, such a layer is over-parameterized,
and carries greater risks of overfitting than a model designed
with an expert, yet is the most likely to adequately represent
the data.

[0303] A second technique is to study the data through
various unsupervised training algorithms. Interactions can
be seen e.g. on correlation/covariance matrices, the direc-
tions of utilities can be seen on partial dependency graphs,
artificial criteria can be the main components of a Karhunen-
Loeve transformation. More advanced techniques, such as
variational autoencoders, can be applied as well.

[0304] Finally, a third technique consists of training the
hierarchy via so-called structure learning techniques. The
above includes, but is not limited to, evolutionary or genetic
techniques, exploration or heuristic research techniques (e.g.
beam research). One of the preferred techniques, specific to
Choquet integrals, consists of starting from a “flat” model,
with a single aggregation and training until convergence.
Once convergence achieved, observing the values of inter-
actions between criteria makes it possible to group together
the criteria which interact in the same way with all the other
criteria, thus generating a new tree. A plurality of candidate
trees are thus created, and trained. Only a certain number of
best candidates (candidates who do not degrade perfor-
mance) can then be kept, and training continued until
satisfying a chosen stop criterion (e.g. if no new candidate
improves performance).

[0305] In yet another embodiment, the generation method
includes the application of a statistical technique for making
more robust, the model implemented by the neural network
or techniques of modification of characteristics (principal
component analysis, autoencoder, etc.).

[0306] According to another variant, the neural network
includes pre-processing stages on the inputs or post-pro-
cessing stages on the outputs.

[0307] In a variant or additionally, the neural network
includes one or more deep learning sub-networks.

[0308] In particular, networks involving training the rep-
resentation or the selection of features which could thus be
used for extracting, from data initially incompatible with the
model (an image e.g.), new features (or new criteria) which,
in turn, would support decisions made by the decision
models as described hereinabove. In such case, the first
sub-network or sub-networks serve as an “output block” and
thus take decisions on the information pre-processed
upstream by the deep networks.

[0309] A particular case is the calculation of marginal
utility functions which can be applied as “scaling” of native
criteria, within the framework of utility models, in order to
offer modified variables more suitable for the subsequent
aggregations. Hence the marginal utilities and the param-
eters of the aggregation functions can be learned in parallel
by stochastic descent of the gradient.
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[0310] A person skilled in the art well understands that the
generation method can comprise a combination of the pre-
ceding features when the features are technically compat-
ible.

1.-10. (canceled)

11. A method for generating a multiple-criteria decision
support system, the generation method comprising:

the provision of an initial problem and training data

solving the initial problem for particular cases, the
initial problem being a problem of evaluating the
quality of an existing system or of a system to be
created, where the initial problem is a problem chosen
from:

the choice of the best alternative among a set of alterna-

tives,

the distribution of alternatives among preference classes,

the storage of alternatives in order of preference, and

the provision of an evaluation score of an alternative,

the transcription of the initial problem in the form of a

neural network and of a set of constraints to be satisfied
by the neural network, so as to obtain a transcribed
neural network,

the training of the transcribed neural network using the

training data, so as to obtain a trained neural network
solving the initial problem,

the determination of the function performed by the trained

neural network, and

the physical implementation of the function determined to

obtain the decision support system.

12. The generation method according to claim 11, wherein
the transcribed neural network includes a set of neural
sub-networks, the transcribing step including the formula-
tion of the set of constraints to be satisfied by the neural
network in the form of sub-constraints to be satisfied by each
neural sub-network.

13. The generation method according to claim 12,
wherein each neural sub-network includes hidden layers, the
number of hidden layers being less than or equal to 5.

14. The generation method according to claim 13, the
number of hidden layers is less than or equal to 3.

15. The generation method according to claim 12,
wherein the sub-constraints to be satisfied by a neural
sub-network are selected from the list consisting of:

the monotonicity of the variation of the output of the

neural sub-network as a function of the inputs of the
neural sub-network,

the output of the neural sub-network being comprised

between a minimum value and a maximum value, the
output of the neural sub-network being equal to the
minimum value when all inputs of the neural sub-
network are equal to the minimum value, and the output
of the neural sub-network being equal to the maximum
value when all the inputs of the neural sub-network are
equal to the maximum value, and

each sub-network being suitable for implementing

weights, one constraint being that the weights are
positive and that the sum of the weights is equal to 1.

16. The generation method according to claim 11, wherein
the transcribed neural network includes a set of neural
sub-networks arranged in a tree structure, each neural sub-
network being a first neural sub-network or a second neural
sub-network,

each first neural sub-network performing a respective

aggregation function, and
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each second neural sub-network performing a respective
marginal utility function.

17. The generation method according to claim 16,
wherein the aggregation function is a variable aggregation
function selected from the list consisting of:

a weighted sum of the variables,

a Choquet integral,

a 2-additive Choquet integral,

a weighted sum of combinations of min and max func-

tions between k variables, for k at least equal to 2,

a multi-linear model,

a generalized additive independence function, and

the ordered weighted average.

18. The generation method according to claim 16,
wherein the marginal utility function is a monotone function
or a function having three parts, a monotone first part, a
constant second part and a monotone third part, the mono-
tonicity of the first part being different from the monotonic-
ity of the third part.

19. The generation method according to claim 11, wherein
the training includes:

a first training with the set of constraints of the transcrip-
tion making the training of an intermediate neural
network possible,

a second training of the set of constraints by setting the
neural network to the intermediate neural network, so
as to obtain a trained set of constraints, and

an adjustment of the trained neural network according to
the difference between the set of constraints of the
transcription and the trained set of constraints, so as to
obtain an adjusted neural network, the trained neural
network being the adjusted neural network.

20. The generation method of according to claim 11,
wherein the training comprises employing at least one
technique selected from the list consisting of batch gradient
descent, stochastic gradient descent and mini-batch gradient
descent.

21. The generation method according to claim 11, wherein
the training comprises the use of a weighted sum of sig-
moids.

22. A decision support system generated by implementing
a generation method according to claim 11.

23. A multiple-criteria decision support system compris-
ing a physical implementation of a neural network compris-
ing a set of neural sub-networks arranged in a tree structure,
each neural sub-network being a first neural sub-network or
a second neural sub-network,

each first neural sub-network performing a respective
aggregation function, the aggregation function prefer-
entially being a variable aggregation function selected
from the list consisting of:

a weighted sum of the variables,

a Choquet integral,

a 2-additive Choquet integral,

a weighted sum of combinations of min and max
functions between k variables, for k at least equal to
25

a multi-linear model,

a generalized additive independence function, and

the ordered weighted average, and

each second neural sub-network performing a respective
marginal utility function, the utility function preferen-
tially being a monotone function or a function having
three parts, a monotone first part, a constant second part
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and a monotone third part, the monotonicity of the first
part being different from the monotonicity of the third
part.

24. The multiple-criteria decision support system accord-
ing to claim 23, wherein the aggregation function is a
variable aggregation function selected from the list consist-
ing of:

a weighted sum of the variables,

a Choquet integral,

a 2-additive Choquet integral,

a weighted sum of combinations of min and max func-

tions between k variables, for k at least equal to 2,

a multi-linear model,

a generalized additive independence function, and

the ordered weighted average.

25. The multiple-criteria decision support system accord-
ing to claim 23, wherein the marginal utility function is a
monotone function or a function having three parts, a
monotone first part, a constant second part and a monotone
third part, the monotonicity of the first part being different
from the monotonicity of the third part.
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