US 20210124499A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0124499 A1

Bert

43) Pub. Date: Apr. 29, 2021

(54)

(71)

(72)
@
(22)

(1)

(52)

QUALITY OF SERVICE FOR THE
MULTIPLE FUNCTIONS IN MEMORY
DEVICES

Applicant: Micron Technology, Inc., Boise, ID
(US)

Inventor: Luca Bert, San Jose, CA (US)

Appl. No.: 16/663,025

Filed: Oct. 24, 2019

Publication Classification

Int. CL.
GO6F 3/06
GO6F 9/48
U.S. CL
CPC ... GO6F 3/0613 (2013.01); GOG6F 3/0611
(2013.01); GO6F 9/4881 (2013.01); GO6F

(2006.01)
(2006.01)

3/0679 (2013.01); GO6F 3/0665 (2013.01);
GO6F 3/0659 (2013.01)

&7

A processing device, operatively coupled with the memory
device, is configured to provide a plurality of functions for
accessing the memory device, wherein a function of the
plurality of function receives input/output (I/O) operations
from a host computing system. The processing device fur-
ther determines a quality of service level of each function of
the plurality of functions, and assigns to each function of the
plurality of functions a corresponding function weight based
on a corresponding quality of service level. The processing
device also selects, for execution, a subset of the I/O
operations, the subset comprising a number of /O opera-
tions received at each function of the plurality of functions,
wherein the number of 1/O operations is determined accord-
ing to the corresponding function weight of each function.
The processing logic then executes the subset of /O opera-
tions at the memory device.

ABSTRACT

HOST SYSTEM
120

MEMORY SUB-SYSTEM 11

MEMORY SUB-SYSTEM CONTROLLER 11

QoS Levels
PROCESSOR 117 Management
MODULE
113
LOCAL MEMORY
119
MEMORY MEMORY
DEVICE DEVICE(S)
140 u u 130
LOCAL MEDIA
CONTROLLER
135




Patent Application Publication  Apr. 29,2021 Sheet 1 of 8 US 2021/0124499 A1

HOST SYSTEM
120

i

MEMORY SUB-SYSTEM 11

MEMORY SUB-SYSTEM CONTROLLER 11

QoS Levels
PROCESSOR 117 Management

MODULE
113

LOCAL MEMORY
119

Y Y

MEMORY MEMORY
DEVICE DEVICE(S)
140 E B = 130
LOCAL MEDIA
CONTROLLER
135

FIG. 1



Apr. 29,2021 Sheet 2 of 8 US 2021/0124499 A1

Patent Application Publication

¢ 'Old

01T wasAg-gng Alows|y

T 8olAe Alows|y
e e ge gee 14 e
Jublem sjlIp WO PESY  jam e Blam peay  yyBiom ojup I\biom peey]

Fee ananp| |ZEZ enanp PZC ananp|  {Zee ansnpy ¥IZ enanp! [Z1Z snanpd

SIM pesy S pesy SIM pesy

_ _ f f 4 f

T€Z wbiam AT T2Z wbiam === Tz wbiem| ==

uoloung Oec uonoung ¢cd uoloung ¢ 4




Apr. 29,2021 Sheet 3 of 8 US 2021/0124499 A1

Patent Application Publication

| 0ce |
€ swiL >
| Aejag _
<@ @ & & —
Ll gL Zl Ll oL
uonelado uonesado uonesado uonelado ssaJlboud
BJlIM peal OlIM peal ur uonelado
awnsay wiopad puadsng aAI909Y BIUAA
8le 9l¢ 1429 N N
AR ]2

00¢ swnsay-puadsng 3/d




Patent Application Publication  Apr. 29,2021 Sheet 4 of 8 US 2021/0124499 A1

400

R}

PROVIDE A PLURALITY OF FUNCTIONS FOR ACCESSING THE MEMORY
DEVICE, THE PLURALITY OF FUNCTIONS RECEIVES 10 OPERATIONS FROM
A HOST COMPUTING SYSTEM
410

!

ASSIGN TO EACH FUNCTION OF THE PLURALITY OF FUNCTIONS A
CORRESPONDING FUNCTION WEIGHT
420

Y

SELECT A FIRST FUNCTION OF THE PLURALITY OF FUNCTIONS TO SERVICE
BASED ON THE CORRESPONDING FUNCTION WEIGHT ASSIGNED TO THE
FIRST FUNCTION
430

!

ASSIGN A FIRST OPERATION WEIGHT TO A FIRST 10 OPERATION TYPE OF
THE FIRST FUNCTION AND A SECOND OPERATION WEIGHT TO A SECOND 10
OPERATION TYPE OF THE FIRST FUNCTION
440

l

SELECT A FIRST NUMBER OF OPERATIONS OF THE FIRST 10 OPERATION
TYPE OF THE FIRST FUNCTION ACCORDING TO THE FIRST OPERATION
WEIGHT AND A SECOND NUMBER OF OPERATIONS OF THE SECOND IO

OPERATION TYPE OF THE FIRST FUNCTION ACCORDING TO THE SECOND
OPERATION WEIGHT FOR EXECUTION
450

FIG. 4



Patent Application Publication  Apr. 29,2021 Sheet 5 of 8 US 2021/0124499 A1

500

X

START WEIGHTED ROUND ROBIN ALGORITHM TO SELECT
IO OPERATIONS FOR EXECUTION
210

SELECT A FUNCTION OF THE MEMORY DEVICE MULTI FUNCTIONS TO
SERVICE <«
520

Y

DETERMINE A NUMBER OF OPERATIONS ALLOCATED TO THE FUNCTION
BASED ON THE FUNCTION WEIGHT
530

'

RETRIEVE, FROM A READ QUEUE, A NUMBER OF READ OPERATIONS BASED
ON THE READ OPERATION WEIGHT AND THE NUMBER OF OPERATIONS
ALLOCATED TO THE FUNCTION
540

!

RETRIEVE, FROM A WRITE QUEUE, A NUMBER OF WRITE OPERATIONS
BASED ON THE WRITE OPERATION WEIGHT AND THE NUMBER OF
OPERATIONS ALLOCATED TO THE FUNCTION
550

ALL FUNCTIONS HAVE BEEN
SERVICED? 555

EXIT WEIGHTED ROUND ROBIN ALGORITHM 560

FIG. 5



Apr. 29,2021 Sheet 6 of 8 US 2021/0124499 A1

Patent Application Publication

099 NOLLVYHdO ANODHS dHL ANNSTA

9 'Old

A

879 NOILVYddO LSdld dHL 4LN0dXH

t

059
NOILLVYddO LS¥Id HHL HLODHXH

979 NOLLVYHdO ANOOHS dHL ANHJSI1S

. a

1

€9 SHLATdNOD
NOILLVYddO ANOJHES TILN LIVM

9 AO™dd HNLL AVTdA V 404 LIVM

ON

029 (4d1NDEXH DNIFE SI
NOILVYddO ANODIS V

ON

$C9 (THHOVHY NOLLOOHAXH
NOLLVYddO ANOJHFS 40
NOILLIANOD d'TOHSHYH.L

S3dA

019 AdAL NOILVYAdO O/1 LS9l HL 40 NOLLVYddO LS¥IA V ‘NOLLNDAXH Y04 AAIHOTY

009



Patent Application Publication  Apr. 29,2021 Sheet 7 of 8 US 2021/0124499 A1

700

R}

PROVIDE A PLURALITY OF FUNCTIONS FOR ACCESSING THE MEMORY
DEVICE, THE PLURALITY OF FUNCTIONS RECEIVES I/0 OPERATIONS FROM
A HOST COMPUTING SYSTEM
710

!

DETERMINE A QUALITY OF SERVICE LEVEL OF EACH FUNCTION OF THE
PLURALITY OF FUNCTIONS
720

Y

ASSIGN TO EACH FUNCTION OF THE PLURALITY OF FUNCTIONS A
CORRESPONDING FUNCTION WEIGHT BASED ON A CORRESPONDING
QUALITY OF SERVICE LEVEL
730

!

SELECT, FOR EXECUTION, A SUBSET OF THE I/O OPERATIONS, THE SUBSET
COMPRISING A NUMBER OF I/O OPERATIONS RECEIVED AT EACH FUNCTION
OF THE PLURALITY OF FUNCTIONS, WHEREIN THE NUMBER OF I/O
OPERATIONS IS DETERMINED ACCORDING TO THE CORRESPONDING
FUNCTION WEIGHT OF EACH FUNCTION
740

Y

EXECUTE THE SUBSET OF I/O OPERATIONS AT THE MEMORY DEVICE.
750

FIG. 7



Patent Application Publication  Apr. 29,2021 Sheet 8 of 8 US 2021/0124499 A1

00
PROCESSING DEVICE 802 .
Y
INSTRUCTIONS
826
QOS LEVELS aset O 1 ATIC MEMORY
MANAGEMENT 806
MODULE
113
LY
BUS
MAIN MEMORY 804 s? 020
o
INSTRUCTIONS
826
QOS LEVELS
MANAGEMENT
MODULE DATA STORAGE SYSTEM
113 818
h MACHINE-READABLE
MEDIUM 824
NETWORK INTERFACE 5 .
DEVICE INSTRUCTIONS
308 826
QOS LEVELS
MANAGEMENT
MODULE
113
NETWORK
820

FIG. 8



US 2021/0124499 Al

QUALITY OF SERVICE FOR THE
MULTIPLE FUNCTIONS IN MEMORY
DEVICES

TECHNICAL FIELD

[0001] The present disclosure generally relates to a
memory system, and more specifically, relates to the assign-
ment of quality of service levels to the multiple functions in
memory devices.

BACKGROUND

[0002] A memory sub-system can include one or more
memory components that store data. The memory compo-
nents can be, for example, non-volatile memory components
and volatile memory components. In general, a host system
can utilize a memory sub-system to store data at the memory
components and to retrieve data from the memory compo-
nents.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present disclosure will be understood more
fully from the detailed description given below and from the
accompanying drawings of various embodiments of the
disclosure.

[0004] FIG. 1 illustrates an example computing environ-
ment for the assignment of quality of service levels to the
multiple functions in memory devices, in accordance with
some embodiments of the present disclosure.

[0005] FIG. 2 illustrates function weight and operation
weight assignment in memory sub-system 110 for quality of
service (QoS) levels management, in accordance with some
embodiments of the present disclosure.

[0006] FIG. 3 illustrates an example of a program/erase
(P/E) suspend/resume policy timeline in support of QoS
levels management, in accordance with some embodiments
of the present disclosure.

[0007] FIG. 4 is a flow diagram of an example method of
assigning function weights and operation weights in support
of QoS levels management in a memory sub-system, in
accordance with some embodiments of the present disclo-
sure.

[0008] FIG. 5 is a flow diagram of an example method of
an execution cycle of I/O operations supporting QoS levels
management in a memory sub-system, in accordance with
some embodiments of the present disclosure.

[0009] FIG. 6 is a flow diagram of an example method of
a suspend and resume policy in support of QoS levels
management in a memory sub-system, in accordance with
some embodiments of the present disclosure.

[0010] FIG. 7 is a flow diagram of an example method of
assigning function weights in support of QoS levels man-
agement in a memory sub-system, in accordance with some
embodiments of the present disclosure.

[0011] FIG. 8 is a block diagram of an example computer
system in which embodiments of the present disclosure can
operate.

DETAILED DESCRIPTION

[0012] Aspects of the present disclosure are directed to the
assignment of quality of service levels to the multiple
functions in memory devices of a memory sub-system. A
memory sub-system can be a storage device, a memory
module, or a hybrid of a storage device and memory module.

Apr. 29, 2021

Examples of storage devices and memory modules are
described below in conjunction with FIG. 1. In general, a
host system can utilize a memory sub-system that includes
one or more memory components, such as memory devices
that store data. The host system can provide data to be stored
at the memory sub-system and can request data to be
retrieved from the memory sub-system.

[0013] The evolution of server architecture and the avail-
ability of multi-core processors has encouraged significant
changes to server design. Most notably, servers running a
single operating system (OS) have been replaced by multi-
tenants servers, where a number of “owners” (e.g., guest
operating systems running in virtual machines (VMs), con-
tainers, or microservices) share the same physical server
platform, unaware of the existence of each other.

[0014] Connecting input/output (I/O) devices to each VM
can be problematic and resource intensive, so special archi-
tectures have evolved to simplify the connection process and
maximize performance. Certain conventional memory-sub-
systems utilize the single root input/output virtualization
(SR-IOV) specification. SR-IOV is a specification that
allows the isolation of peripheral component interconnect
(PCI) Express (PCle) resources among various hardware
functions for manageability and performance reasons, while
also allowing single physical PCle devices to be shared in a
virtual environment. SR-IOV offers different virtual func-
tions (VFs) to different virtual components (e.g., a network
adapter) on a physical server machine. SR-IOV also allows
different virtual machines in a virtual environment to share
a single PCle hardware interface. Alternatively, an equiva-
lent capability can be offered by a number of parallel
Physical Functions, called “Multi-PF.” The Multi-PF archi-
tecture maps each physical function (PF) to a VM. A
physical function allows enumeration of a number of physi-
cal functions and a hypervisor can then assign those physical
functions to one or more virtual machines. These solutions
require both a Host OS in charge of doing enumeration and
resource assignment, and a set of Guest OSs, running on
virtual machines, which will be in charge of the regular data
flow. The Host OS can be aware of such capabilities and
identify special functions to be added to the Host OS. In
addition, most hypervisor environments do not support
SR-IOV, making that solution inapplicable to many situa-
tions. Furthermore, in many circumstances, each VM can
have a Service Level Agreement (SLA) defining a certain
level of service, including quality, availability, responsibili-
ties, etc. that is to be provided. In certain circumstances,
meeting the SLA of the memory sub-system can be chal-
lenging when each VF and/or PF is expected to provide the
same level of quality of service.

[0015] Aspects of the present disclosure address the above
and other deficiencies by having a memory sub-system that
provides a mechanism so that each function (VF and/or PF)
can be serviced at a different Quality of Service (QoS) level
so as to meet the conditions of the system SLA. When
providing such QoS levels in a memory sub-system utilizing
NAND-based memory and similar devices, there are certain
considerations to address. For example, NAND writes (pro-
grams) are slow and asynchronous and can interfere with
incoming system IOs, potentially impacting the QoS. In
addition, on NAND devices, data is often moved around as
part of wear leveling operations and conflicts with incoming
data are generally unpredictable. Also, the memory sub-
system can perform certain background operations (e.g.,



US 2021/0124499 Al

garbage collection, media scans, wear leveling) that may
impact 1/O on unpredictable levels. NAND erase and pro-
gram operations are both high impact operations, as they
lock down the entire die when active, and are also very slow
(e.g., 10x-30x slower than reads) so 10s that impact such die
can be considerably delayed. Furthermore, NAND erase and
program operations have a suspend/resume capability, but
that will impact all other 10s. Therefore, a scheme can be
utilized to prioritize the various functions as well as the
different types of /O and background operations of each
function in order to support a predictable QoS of the
memory sub-system.

[0016] In one implementation, the memory sub-system
defines a function weight representing a quality of service
level assigned to each function in the memory sub-system.
The memory sub-system can further define a certain opera-
tion weight for read type operations and a different operation
weight for write type operations received at the function,
such that different QoS capabilities can be assigned to read
versus write operations. The memory sub-system can also
define a policy for program/erase (P/E) suspend and resume
operations that incorporates the operation weight of the P/E
operation as well as the operation weight of a waiting
operation (i.e., a subsequent operation to be performed), as
explained in more details herein below.

[0017] The assignment of quality of service levels to
multiple functions techniques described herein allow a
memory sub-system to provide a different level of quality of
service (QoS) to each function (VF or PF) of the memory
sub-system by providing function wright, operation weight,
and suspend/resume policy features. The use of function
weight assigned to each function allows for a more predict-
able QoS level from each function because each function
can have a predictable processing time that is based on its
function weight. The function weight of each function can
also provide a more deterministic latency of the function as
the memory sub-system can adjust the latency of each
function to be relative to its function weight (e.g. the higher
the function weight the lower its average latency). Further,
by assigning operation weights to each I/O operation type,
the memory sub-system can prioritize the fast /O operations
(e.g. read operations) over the slow [/O operations (e.g.
write operations) such that the fast operations are not
excessively delayed due to the execution of numerous
lengthy operations. Furthermore, the ability to suspend
lengthy operations in order to execute fast /O operations
after a calculated delay of time can provide for a more
predictable impact of background operations (erase, garbage
collection, wear leveling, etc.) on the execution time of [/O
operations. In this manner, the significant delay the can
impact 1/O operations due to the execution of background
operations can be reduced and further predicted based on the
suspend/erase policy of the memory sub-system that can
define how to handle I/O operations arriving at the memory
device while a background operation is being executed.
Additional details of these techniques are provided below
with respect to FIGS. 1-7.

[0018] FIG. 1 illustrates an example computing environ-
ment 100 that includes a memory sub-system 110 in accor-
dance with some embodiments of the present disclosure. The
memory sub-system 110 can include media, such as one or
more volatile memory devices (e.g., memory device 140),
one or more non-volatile memory devices (e.g., memory
device 130), or a combination of such.

Apr. 29, 2021

[0019] A memory sub-system 110 can be a storage device,
a memory module, or a hybrid of a storage device and
memory module. Examples of a storage device include a
solid-state drive (SSD), a flash drive, a universal serial bus
(USB) flash drive, an embedded Multi-Media Controller
(eMMC) drive, a Universal Flash Storage (UFS) drive, and
a hard disk drive (HDD). Examples of memory modules
include a dual in-line memory module (DIMM), a small
outline DIMM (SO-DIMM), and a non-volatile dual in-line
memory module (NVDIMM).

[0020] The computing environment 100 can include a host
system 120 that is coupled to one or more memory sub-
systems 110. In some embodiments, the host system 120 is
coupled to different types of memory sub-system 110. FIG.
1 illustrates one example of a host system 120 coupled to
one memory sub-system 110. The host system 120 uses the
memory sub-system 110, for example, to write data to the
memory sub-system 110 and read data from the memory
sub-system 110. As used herein, “coupled to” generally
refers to a connection between components, which can be an
indirect communicative connection or direct communicative
connection (e.g., without intervening components), whether
wired or wireless, including connections such as electrical,
optical, magnetic, etc.

[0021] The host system 120 can be a computing device
such as a desktop computer, laptop computer, network
server, mobile device, embedded computer (e.g., one
included in a vehicle, industrial equipment, or a networked
commercial device), or such computing device that includes
a memory and a processing device. The host system 120 can
be coupled to the memory sub-system 110 via a physical
host interface. Examples of a physical host interface include,
but are not limited to, a serial advanced technology attach-
ment (SATA) interface, a peripheral component interconnect
express (PCle) interface, universal serial bus (USB) inter-
face, Fibre Channel, Serial Attached SCSI (SAS), etc. The
physical host interface can be used to transmit data between
the host system 120 and the memory sub-system 110. The
host system 120 can further utilize an NVM Express
(NVMe) interface to access the memory components (e.g.,
memory devices 130) when the memory sub-system 110 is
coupled with the host system 120 by the PCle interface. The
physical host interface can provide an interface for passing
control, address, data, and other signals between the
memory sub-system 110 and the host system 120.

[0022] The memory devices can include any combination
of the different types of non-volatile memory devices and/or
volatile memory devices. The volatile memory devices (e.g.,
memory device 140) can be, but are not limited to, random
access memory (RAM), such as dynamic random access
memory (DRAM) and synchronous dynamic random access
memory (SDRAM).

[0023] Some examples of non-volatile memory devices
(e.g., memory device 130) include negative-and (NAND)
type flash memory and write-in-place memory, such as
three-dimensional cross-point (“3D cross-point™) memory.
A 3D cross-point memory device is a cross-point array of
non-volatile memory cells that can perform bit storage based
on a change of bulk resistance, in conjunction with a
stackable cross-gridded data access array. Additionally, in
contrast to many flash-based memories, cross-point non-
volatile memory can perform a write-in-place operation,



US 2021/0124499 Al

where a non-volatile memory cell can be programmed
without the non-volatile memory cell being previously
erased.

[0024] Each of the memory devices 130 can include one or
more arrays of memory cells such as single level cells
(SLCs), multi-level cells (MLCs), triple level cells (TLCs),
or quad-level cells (QLCs). In some embodiments, a par-
ticular memory component can include an SL.C portion, and
an MLC portion, a TLC portion, or a QLC portion of
memory cells. Each of the memory cells can store one or
more bits of data used by the host system 120. Furthermore,
the memory cells of the memory devices 130 can be grouped
to form pages that can refer to a unit of the memory
component used to store data. With some types of memory
(e.g., NAND), pages can be grouped to form blocks. Some
types of memory, such as 3D cross-point, can group pages
across die and channels to form management units (MUs).
[0025] Although non-volatile memory components such
as NAND type flash memory and 3D cross-point are
described, the memory device 130 can be based on any other
type of non-volatile memory, such as read-only memory
(ROM), phase change memory (PCM), magneto random
access memory (MRAM), negative-or (NOR) flash memory,
electrically erasable programmable read-only memory (EE-
PROM).

[0026] The memory sub-system controller 115 can com-
municate with the memory devices 130 to perform opera-
tions such as reading data, writing data, or erasing data at the
memory devices 130 and other such operations. The
memory sub-system controller 115 can include hardware
such as one or more integrated circuits and/or discrete
components, a buffer memory, or a combination thereof. The
hardware can include a digital circuitry with dedicated (i.e.,
hard-coded) logic to perform the operations described
herein. The memory sub-system controller 115 can be a
microcontroller, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA), an application specific
integrated circuit (ASIC), etc.), or other suitable processor.
[0027] The memory sub-system controller 115 can include
a processor (processing device) 117 configured to execute
instructions stored in local memory 119. In the illustrated
example, the local memory 119 of the memory sub-system
controller 115 includes an embedded memory configured to
store instructions for performing various processes, opera-
tions, logic flows, and routines that control operation of the
memory sub-system 110, including handling communica-
tions between the memory sub-system 110 and the host
system 120.

[0028] In some embodiments, the local memory 119 can
include memory registers storing memory pointers, fetched
data, etc. The local memory 119 can also include read-only
memory (ROM) for storing micro-code. While the example
memory sub-system 110 in FIG. 1 has been illustrated as
including the memory sub-system controller 115, in another
embodiment of the present disclosure, a memory sub-system
110 may not include a memory sub-system controller 115,
and may instead rely upon external control (e.g., provided by
an external host, or by a processor or controller separate
from the memory sub-system).

[0029] In general, the memory sub-system controller 115
can receive commands or operations from the host system
120 and can convert the commands or operations into
instructions or appropriate commands to achieve the desired
access to the memory devices 130. The memory sub-system

Apr. 29, 2021

controller 115 can be responsible for other operations such
as wear leveling operations, garbage collection operations,
error detection and error-correcting code (ECC) operations,
encryption operations, caching operations, and address
translations between a logical block address and a physical
block address that are associated with the memory devices
130. The memory sub-system controller 115 can further
include host interface circuitry to communicate with the host
system 120 via the physical host interface. The host interface
circuitry can convert the commands received from the host
system into command instructions to access the memory
devices 130 as well as convert responses associated with the
memory devices 130 into information for the host system
120.

[0030] The memory sub-system 110 can also include
additional circuitry or components that are not illustrated. In
some embodiments, the memory sub-system 110 can include
a cache or buffer (e.g., DRAM) and address circuitry (e.g.,
a row decoder and a column decoder) that can receive an
address from the memory sub-system controller 115 and
decode the address to access the memory devices 130.
[0031] In some embodiments, the memory devices 130
include local media controllers 135 that operate in conjunc-
tion with memory sub-system controller 115 to execute
operations on one or more memory cells of the memory
devices 130. In some embodiments, the memory devices 130
are managed memory devices, which is a raw memory
device combined with a local controller (e.g., local control-
ler 135) for memory management within the same memory
device package. An example of a managed memory device
is a managed NAND (MNAND) device.

[0032] The memory sub-system 110 includes QoS levels
management module 113 that can be used to assign a QoS
level to each function in the memory sub-system. In certain
implementation, QoS levels management module 113 can
assign to each function of the multiple functions provided by
the memory sub-system, a corresponding function weight
representing a level of QoS associated with the function. In
one implementation, the function weight can be a value
relative to the average latency of the memory device such
that, for example, a given function can be served at a lower
latency than the average latency of the memory device (thus
providing a high level of QoS). In another example, the
function weight of another function can indicate that the
other function can be served at a higher latency rate than the
average latency of the memory device (thus providing a low
level of QoS). In certain implementations, the level of
quality of service associated with a function can be config-
ured and adjusted via parameters including input/output
operations per second (IOPS) received at the function and a
throughput dedicated to the function. The memory sub-
system can configure these parameters, thus modifying the
level of QoS, by setting a minimum (i.e., “Reserve”) and a
maximum (i.e., “Limit”) to each parameter.

[0033] QoS levels management module 113 can then
service each function based on the corresponding function
weight assigned to the function as well as operation weights
assigned to each 1/O operation type of operations received at
the function. In implementations, QoS levels management
module 113 can assign a first operation weight to the read
type operations of the function and a second operation
weight to the write type operations of the function. The
function weight and operation weights can then be used
together to determine the number of operations of each type



US 2021/0124499 Al

that can be executed per one unit of time. For example, the
function weight assigned to a given function can translate to
a number of I/O operations that can be executed per one unit
of'time. The number of operations can be a subset of the [/O
operations received at the function. Additionally, the first
operation weight can indicate how many of the number of
operations can be assigned to the read type operations and
the second operation weight can indicate how many of the
number of operations can be assigned to the write type
operations.

[0034] When an operation is selected for execution, QoS
levels management module 113 further support the level of
QoS assigned to the operation (e.g. in the form of an
operation weight) by executing a suspend/resume policy
according to the operation weight of the operation. In some
implementations, when a read operation is received at the
memory device for execution, QoS levels management
module 113 can check whether a write operation is currently
being executed by the memory device. If so, QoS levels
management module 113 can suspend the write operation
after a calculated delay time period that is proportionate to
the operation weight of the read operation and the operation
weight of the write operation. The higher the ratio of the
operation weight of the read operation to the operation
weight of the write operation the longer the delay time
period can be. After the delay time period elapses, QoS
levels management module 113 can execute the read opera-
tion and then when the read operation is complete, resume
the write operation. Further details with regards to the
operations of QoS levels management module 113 are
described below.

[0035] FIG. 2 illustrates function weight and operation
weight assignment in memory sub-system 110 for quality of
service levels management in accordance with some
embodiments of the present disclosure. Memory sub-system
110 can provide multiple virtual and physical functions F
210-230 for accessing memory device 130. In certain imple-
mentations, memory sub-system 110 provides multiple func-
tions in order to serve multiple virtual machines (VMs) in a
virtualized environment, with each VM utilizing one or
more function to access memory device 130. Functions F
210-230 can receive /O operations (e.g. read operations,
write operations) from the host computing system for
accessing memory device 130. Since all of these 1/O opera-
tions from the various functions need to access memory
device 130, and since functions can vary in the level of QoS
assigned to it by memory sub-system 110, each function can
have a different priority for accessing memory device 130
that is consistent with its QoS level. The priority of each
function can be represented by function weights 211-231.
Further, for a given function, each operation type (e.g. read
operation type, write operation type) can have a different
priority for accessing memory device 130, which can be
expressed as read weights 216-236 and write weights 218-
238.

[0036] Memory sub-system 110 can assign to each func-
tion 210-230 a corresponding function weight representing
a level of quality of service associated with the function. For
example, F 210 can be assigned a function weight 211, F 220
can be assigned a function weight 221, and F 230 can be
assigned a function weight 231. In one implementation, the
function weight can be a value relative to the average latency
of memory device 130. The average latency of memory
device 130 can refer to the average duration of time between

Apr. 29, 2021

the time an I/O operation has been received to the time the
execution of the I/O operation has been completed. In
implementations, the average latency can be calculated
using timers for measuring the timing of read operations that
have been services in one unit of time (e.g. one second), and
the timing of write operations that have been serviced in the
same unit of time. The average read latency of memory
device 130 can then be calculated as the average of the
measured times of the read operations. The average write
latency of memory device 130 can be calculated as the
average of the measured times of the write operations. The
total average latency of memory device 130 can also be
determined in terms of the average read latency and the
average write latency.

[0037] Given the average latency of memory device 130,
function weights 211-231 can be determined relative to the
average latency of memory device 130. In one implemen-
tation, function weight can be a value between 0 and 1000.
0 can indicate lowest possible latency and 1000 can indicate
10x longer than the average latency of memory device 130.
Intermediate values between 0 and 1000 can indicate a
corresponding percentage of the average latency of memory
device 130. For example, if function weight 211 equals 50,
it indicates that F 210 should be serviced with latency that
is twice as fast as the average latency of memory device 130
(i.e. 0.5xaverage latency), thus providing a higher than
average level of QoS. On the other hand, if function weight
221 equals 500, it indicates that F 220 should be serviced
with latency that is five times as slow as the average latency
of memory device 130 (i.e. Sxaverage latency), thus pro-
viding a lower than average level of QoS. In certain imple-
mentations, function weight can be translated to a number of
1/O operations received at the function that can be executed
in a given execution cycle. In an illustrative example, if
memory device 130 is able to process 12 operations during
an execution cycle, the 12 operations can be divided among
functions according to the weight of each function relative
to the weights of the other functions. Thus if function weight
211 is 50, function weight 221 is 500, and function weight
231 is 150, then the 12 operations per cycle can be assigned
as 8 operations to function F 210, 3 operations to F 220, and
1 operation to F 230 during each execution cycle. Memory
sub-system 110 can then determine how many of the opera-
tions assigned to each function can be read type operation
versus write type operations based on the operation weight
of each type.

[0038] Read weights 216-236 can determine the priority of
the read operations received at the respective function, in
relation to the priority of the corresponding write operations
received at the same function. The priority of operation
types can facilitate a more predictable QoS of the function
because it can allow fast operations to be prioritized over
time-consuming operations, for example, which can further
eliminate the random order of processing of operations of
different types. In an illustrative example, if read weight 216
is 3 and write weight is 1, then, following the example
above, if F 210 is assigned 8 operations per execution cycle,
the 8 operations can be apportioned 3:1 between read
operations and write operations respectively. Thus, the 8
operations can be allocated as 6 operations of read type
operations and 2 operations of write type operations. In
implementations, the 6 read operations can be retrieved from
read queue 212 and the two write operations can be retrieved
from write queue 214.



US 2021/0124499 Al

[0039] Read queues 212-232 are operation queues for
storing read operations received at functions 210-230. Write
queues 214-234 are operation queues for storing write
operations received at function 210-230. While read queues
212-232 and write queues 214-234 are shown as one read
queue and one write queue per function, each function can
have its own one or more read queues and one or more write
queues for storing /O operations received at the function.
The I/O operations are stored in a given queue according to
the operation type (e.g. read versus write). The /O opera-
tions can be stored in the queues until they are retrieved for
execution during one or more execution cycles. During an
execution cycle, read operations can be retrieved from a read
queue 212-232 of function 210-230 according to the func-
tion a read weight 216-236 and a function weight 211-231.
Similarly, write operations can be retrieved from a write
queue 214-234 of function 210-230 according to the func-
tion a write weight 218-238 and a function weight 211-231.
For example, if F 220 has a function weight 221 of 3, a read
weight 226 of 2, and a write weight 228 of 1, then memory
sub-system 110 can retrieve 2 read operations from read
queue 226 and 1 write operation from write queue 228 when
processing I/O operations from function 230. In implemen-
tations, if write queue 228 does not contain I/O operations
then memory sub-system 110 can retrieve all 3 operations
from the read queue 226 if available. Similarly, if read queue
226 does not contain I/O operations then memory sub-
system 110 can retrieve all 3 operations from the write queue
228 for processing if available.

[0040] FIG. 3 illustrates an example of a program/erase
(P/E) suspend/resume policy timeline in support of QoS
levels management, in accordance with some embodiments
of the present disclosure. A P/E suspend/resume policy can
prioritize certain types of /O operations over a currently
executing operation of another operation type, as explained
below. When an operation is selected for execution, memory
sub-system 110 can further support the level of QoS
assigned to the operation (e.g. in the form of an operation
weight) by executing a policy of suspend and resume
according to the operation weight of the operation.

[0041] At block 310, a write operation can be executing at
memory device 130 at time TO. The write operation can have
an assigned write weight indicating the priority of the write
operation. In implementations, the write weight can be a
function of the operation weight of the write operation and
the function weight of the function where the write operation
was received. In other implementations, the write weight can
be a function of a level of quality of service assigned to the
write type operations (e.g. a certain bandwidth value
assigned to write type operations). At block 312, a read
operation can be arrive at memory device 130 at time T1.
The read operation can have an assigned read weight indi-
cating the priority of the read operation. In implementations,
the read weight can be a function of the operation weight of
the read operation and the function weight of the function
where the read operation was received. In other implemen-
tations, the read weight can be a function of a level of quality
if service assigned to the read type operations (e.g. a certain
bandwidth value assigned to read type operations).

[0042] In some implementations, when a read operation is
received at memory device 130 while a write operation is
being executed, memory sub-system 110 can suspend the
write operation after a calculated delay time 320, in order to
execute the read operation. This is done to enable the fast

Apr. 29, 2021

read operation to execute without having to wait for a
lengthy write operation to fully complete execution, as
explained above.

[0043] Delay time 320 corresponds to the operation
weight of the incoming read operation and the operation
weight of the write operation in progress, such that the
higher the ratio of the operation weight or the read operation
to the operation weight of the write operation the longer the
delay time period can be. Delay time 320 can provide a way
to execute high priority read operations while allowing the
write operation to complete with minimum number of
suspend/resume interruptions as more read operations arrive
for execution. Further, delay time 320 can be defined as
increments of a predetermined period of time Tr. Tr can be
defined as the average read time of memory device 130 (e.g.
100 milliseconds). For example, if the operation weight of
the write operation is defined as 200 and the operation
weight of the read operation is 50, then the ratio of the read
weight to the write weight is 1:4, meaning that delay time
320 can be % (one fourth)xTr. If, on the other hand, the
operation weight of the write operation is 300 instead of 200,
then the ratio is 1/6, meaning the write operation is even
lower priority compared to the read operation, then the read
operation can wait for only Y (one sixth)xTr before execut-
ing, and so on.

[0044] After the delay time period elapses, at block 314,
memory sub-system 110 suspend the write operation at T2.
When the suspend operation completes, the memory sub-
system 110 can execute the read operation at block 316, by
allowing the operation to access memory device 130 at T3.
Subsequently, when the read operation completes, memory
sub-system can resume the suspended write operation at
block 318. In implementations, the suspend/resume policy
explained herein can also apply when a background opera-
tion (e.g. erase) is being executed at memory device 130 and
a read operation arrives at memory device 130 for execution.
[0045] FIG. 4 is a flow diagram of an example method of
assigning function weights and operation weights in support
of QoS levels management in a memory sub-system, in
accordance with some embodiments of the present disclo-
sure. The method 400 can be performed by processing logic
that can include hardware (e.g., processing device, circuitry,
dedicated logic, programmable logic, microcode, hardware
of a device, integrated circuit, etc.), software (e.g., instruc-
tions run or executed on a processing device), or a combi-
nation thereof. In some embodiments, the method 400 is
performed by QoS levels management module 113 of FIG.
1. Although shown in a particular sequence or order, unless
otherwise specified, the order of the processes can be
modified. Thus, the illustrated embodiments should be
understood only as examples, and the illustrated processes
can be performed in a different order, and some processes
can be performed in parallel. Additionally, one or more
processes can be omitted in various embodiments. Thus, not
all processes are required in every embodiment. Other
process flows are possible.

[0046] At operation 410, the processing logic provides a
plurality of functions for accessing memory device 130. The
plurality of function receives I/O operations from a host
computing system for processing, as explained in more
details herein above. The plurality of function can be virtual
functions and/or physical functions that can receive read
operations and write operations of the memory device 130.
At operation 420, the processing logic can assign to each



US 2021/0124499 Al

function of the plurality of functions a corresponding func-
tion weight. As explained above, a function weight can
represent a level of quality of service associated with the
function, and can be a value relative to the average latency
of memory device 130.

[0047] At operation 430, the processing logic can select a
function of the plurality of functions to service based on the
corresponding function weight that is assigned to the func-
tion. In certain implementations, the function weight can be
translated into a number of /O operations that can be served
from each function during an execution cycle, as explained
above. At operation 440, the processing logic can assign a
first operation weight to a first I/O operation type of the
function and a second operation weight to a second I/O
operation type of the first function. For example, the first /O
operation type can be a read type operation and the first
operation weight can be a read weight. Similarly, the second
1/O operation type can be a write type operation and the
second operation weight can be a write weight.

[0048] At operation 450, the processing logic selects for
execution a first number of operations of the first /O
operation type of the function, according to the first opera-
tion weight, and a second number of operations of the
second /O operation type of the first function according to
the second operation weight. In implementations, the first
number of operations can be selected from a first queue
associated with the function, and the second number of
operations can be selected from a second queue associated
with the function, as explained in more details herein above.
[0049] FIG. 5 is a flow diagram of an example method of
an execution cycle of I/O operations supporting QoS levels
management in a memory sub-system in accordance with
some embodiments of the present disclosure. The method
500 can be performed by processing logic that can include
hardware (e.g., processing device, circuitry, dedicated logic,
programmable logic, microcode, hardware of a device, inte-
grated circuit, etc.), software (e.g., instructions run or
executed on a processing device), or a combination thereof.
In some embodiments, the method 500 is performed by QoS
levels management module 113 of FIG. 1. Although shown
in a particular sequence or order, unless otherwise specified,
the order of the processes can be modified. Thus, the
illustrated embodiments should be understood only as
examples, and the illustrated processes can be performed in
a different order, and some processes can be performed in
parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process flows are possible.
[0050] At operation 510, the processing logic starts a
weighted round robin selection scheme to select I/O opera-
tions for execution. Popular selection schemes include round
robin and weighted round robin. In round robin selection,
the memory sub-system visits each queue in order, executing
a single command from that queue on each visit (although
empty queues may be skipped). For example if there are two
queues, the memory system may execute one command
from the first queue, then one command from the second
queue, then one command from the first queue again, and so
on. With weighted round robin selection, one command
queue may be allocated some greater amount of bandwidth
than another command queue, such that a group of two or
more commands may be executed each time the command
queue with high weight is visited. For example, the memory
system may execute five commands from the first queue

Apr. 29, 2021

before switching to the second queue, and then execute two
commands from the second queue before switching back to
the first queue.

[0051] At operation 520, the processing device selects a
function of the memory device multi functions to service by
executing I/O operations received at the function according
to the function weight. In implementations, the function
weight can be a value relative to the average latency of
memory device 130, as explained in more details herein
above. In certain implementations, function weight can be
translated to a number of I/O operations of the function that
can be executed in a given execution cycle. Thus, at opera-
tion 530, the processing logic determine the number of
operations allocated to the function based on the function
weight.

[0052] At operation 540, the processing logic can retrieve,
from a read queue associated with the function, a number of
read operations based on the read operation weight and the
number of operations allocated to the function. At operation
550, the processing logic can retrieve, from a write queue
associated with the function, a number of write operations
based on the write operation weight and the number of
operations allocated to the function. In certain implementa-
tions, the write operation weight can be a value relative to
the average latency of the memory device (e.g. determined
by the level of quality of service assigned to the write-type
operations). Similarly, the read operation weight can be a
value relative to the average latency of the memory device
(e.g. determined by the level of quality of service assigned
to the read-type operations).

[0053] In certain implementations, if the read queue does
not contain I/O operations then the processing device can
retrieve all /O operations allocated to the function from the
write queue for processing if available. Similarly, if the write
queue does not contain I/O operations then the processing
device can retrieve all /O operations allocated to the func-
tion from the read queue for processing if available.
[0054] The processing logic continues to loop through
each function of the multiple functions of the memory
sub-system to execute 1/O operations from each function
according to the function weight of each. Thus, at operation
555, a decision is made as to whether all functions have been
serviced. At operation 560, if all functions have been ser-
viced, the processing logic can exit the weighted round robin
algorithm as all I/O operations for the current execution
cycle have been selected. If, on the other hand, the process-
ing logic determines that some functions have not been
services yet, the processing logic can loop back to operation
520 to select /O operations received at the next function for
execution.

[0055] FIG. 6 is a flow diagram of an example method of
a suspend and resume policy in support of QoS levels
management in a memory sub-system, in accordance with
some embodiments of the present disclosure. The method
600 can be performed by processing logic that can include
hardware (e.g., processing device, circuitry, dedicated logic,
programmable logic, microcode, hardware of a device, inte-
grated circuit, etc.), software (e.g., instructions run or
executed on a processing device), or a combination thereof.
In some embodiments, the method 600 is performed by QoS
levels management module 113 of FIG. 1. Although shown
in a particular sequence or order, unless otherwise specified,
the order of the processes can be modified. Thus, the
illustrated embodiments should be understood only as



US 2021/0124499 Al

examples, and the illustrated processes can be performed in
a different order, and some processes can be performed in
parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process flows are possible.
[0056] At operation 610, the processing logic receives, for
execution at memory device 130, a first operation of the first
1/O operation type. In implementations, the first operation
type can be a read type operation. As explained above, the
first type operation can have an assigned operation weight,
indicating the priority of the operation. At operation 620, the
processing logic determines whether a second operation of
a second /O operation type is being executed at memory
device 130. The second /O operation type can be a write
type operation. The second type operation can have an
assigned operation weight, indicating the priority of the
operation.

[0057] If the processing logic determines that there is no
1/O operation currently being process, the processing logic
can execute the first I/O operation at operation 650. If, on the
other hand, the processing logic determines that there is a
second operation of the second I/O operation type being
executed at memory device 130, the processing logic can
evaluate a threshold condition at operation 625, in order to
determine whether or not to suspend the second operation.
In implementations, the processing logic can determine that
if the second operation currently being executed has reached
a percentage of execution below a certain threshold (e.g. less
than 90% to completion), the processing logic can decide
that the second operation should be suspended for the first
operation to be executed. In other implementations, the
processing logic can determine that the remaining execution
time of the second operation is longer than the execution
time of the first operation, the processing logic can decide
that the second operation should be suspended.

[0058] At operation 644, the processing logic can deter-
mine that the second operation can be suspended, and can
cause the first operation to wait for a delay time period
before being executed. As explained above, the delay time
period corresponds to the operation weight of the incoming
first operation and the operation weight of the second
operation in progress, such that the higher the ratio of the
operation weight or the first operation to the operation
weight of the second operation the longer the delay time
period can be. The delay time period can be defined as
increments of a predetermined period of time Tr (e.g. the
average read time of memory device 130).

[0059] After the delay time period elapses, at operation
646, the processing logic can suspend the second operation
in order to free memory device 130 for executing another
operation. When the suspend operation completes, at opera-
tion 648, the processing logic can execute the first operation,
by allowing the operation to access memory device 130.
Subsequently, when the first operation completes, the pro-
cessing logic can resume the suspended second operation at
660.

[0060] At operation 632, if the processing logic deter-
mines that the threshold condition has not been satisfied, the
processing logic can decide that the second operation should
be allowed to complete its execution. In one implementa-
tion, the threshold criterion can be that the execution of the
second operation is less than 90% complete. In other imple-
mentations, the threshold criterion can be that the remaining
execution time of the second operation is longer than the

Apr. 29, 2021

execution time of the first operation. The processing logic
can then, cause the first operation to wait until the second
operation executes completely. At operation 650, when the
second operation completes its execution, the processing
logic can execute the first operation. In this case, the
suspend/resume policy has been avoided because the second
operation was close to completion, thus interrupting it may
not be beneficial to the overall system performance. FIG. 7
is a flow diagram of an example method of assigning
function weights and in support of QoS levels management
in a memory sub-system, in accordance with some embodi-
ments of the present disclosure. The method 700 can be
performed by processing logic that can include hardware
(e.g., processing device, circuitry, dedicated logic, program-
mable logic, microcode, hardware of a device, integrated
circuit, etc.), software (e.g., instructions run or executed on
a processing device), or a combination thereof. In some
embodiments, the method 700 is performed by QoS levels
management module 113 of FIG. 1. Although shown in a
particular sequence or order, unless otherwise specified, the
order of the processes can be modified. Thus, the illustrated
embodiments should be understood only as examples, and
the illustrated processes can be performed in a different
order, and some processes can be performed in parallel.
Additionally, one or more processes can be omitted in
various embodiments. Thus, not all processes are required in
every embodiment. Other process flows are possible.
[0061] At operation 710, the processing logic provides a
plurality of functions for accessing memory device 130. The
plurality of function receives I/O operations from a host
computing system for processing, as explained in more
details herein above. The plurality of function can be virtual
functions and/or physical functions that can receive read
operations and write operations of the memory device 130.
At operation 720, the processing logic can determine a
quality of service level for each function of the plurality of
functions. In implementations, the quality of service level of
a function can determine the level of service that the
function can receive so as to meet the conditions of service
level agreement of the memory subsystem (e.g. quality,
availability, responsibilities, etc. of the memory subsystem).
[0062] At operation 730, the processing logic can assign to
each function of the plurality of functions a corresponding
function weight. As explained above, a function weight can
represent a level of quality of service associated with the
function, and can be a value relative to the average latency
of memory device 130.

[0063] At operation 740, the processing logic can select a
set of /O operations for execution at memory device 130. In
implementations, the processing logic can select a subset of
the /O operations received at the functions of memory
device 130, according to the function weight of each func-
tion. For example, the processing logic can select a number
of /O operations received at each function of the plurality
of functions of memory device 130. The number of 1/O
operations selected at each function is determined according
to the corresponding function weight of each function, so as
to satisfy the quality of service level of each function, as
explained in more details herein above.

[0064] At operation 750, the processing logic executes the
selected subset of 1/O operations at the next execution cycle
of memory device 130, as explained in more details herein
above. In certain implementations, the subset of I/O opera-
tions can be executed according to method 600 of FIG. 6.



US 2021/0124499 Al

FIG. 8 illustrates an example machine of a computer system
800 within which a set of instructions, for causing the
machine to perform any one or more of the methodologies
discussed herein, can be executed. In some embodiments,
the computer system 800 can correspond to a host system
(e.g., the host system 120 of FIG. 1) that includes, is coupled
to, or utilizes a memory sub-system (e.g., the memory
sub-system 110 of FIG. 1) or can be used to perform the
operations of a controller (e.g., to execute an operating
system to perform operations corresponding to QoS levels
management module 113 of FIG. 1). In alternative embodi-
ments, the machine can be connected (e.g., networked) to
other machines in a LAN, an intranet, an extranet, and/or the
Internet. The machine can operate in the capacity of a server
or a client machine in client-server network environment, as
a peer machine in a peer-to-peer (or distributed) network
environment, or as a server or a client machine in a cloud
computing infrastructure or environment.

[0065] The machine can be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, a switch or bridge, or any machine capable
of executing a set of instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein.

[0066] The example computer system 800 includes a
processing device 802, a main memory 804 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)
or Rambus DRAM (RDRAM), etc.), a static memory 806
(e.g., flash memory, static random access memory (SRAM),
etc.), and a data storage system 818, which communicate
with each other via a bus 830.

[0067] Processing device 802 represents one or more
general-purpose processing devices such as a microproces-
sor, a central processing unit, or the like. More particularly,
the processing device can be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing
other instruction sets, or processors implementing a combi-
nation of instruction sets. Processing device 802 can also be
one or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
802 is configured to execute instructions 826 for performing
the operations and steps discussed herein. The computer
system 800 can further include a network interface device
808 to communicate over the network 820.

[0068] The data storage system 818 can include a
machine-readable storage medium 824 (also known as a
computer-readable medium) on which is stored one or more
sets of instructions 826 or software embodying any one or
more of the methodologies or functions described herein.
The instructions 826 can also reside, completely or at least
partially, within the main memory 804 and/or within the
processing device 802 during execution thereof by the
computer system 800, the main memory 804 and the pro-
cessing device 802 also constituting machine-readable stor-

Apr. 29, 2021

age media. The machine-readable storage medium 824, data
storage system 818, and/or main memory 804 can corre-
spond to the memory sub-system 110 of FIG. 1.

[0069] In one embodiment, the instructions 826 include
instructions to implement functionality corresponding to
QoS levels management module 113 of FIG. 1. While the
machine-readable storage medium 824 is shown in an
example embodiment to be a single medium, the term
“machine-readable storage medium” should be taken to
include a single medium or multiple media that store the one
or more sets of instructions. The term “machine-readable
storage medium” shall also be taken to include any medium
that is capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media, and magnetic media.
[0070] Some portions of the preceding detailed descrip-
tions have been presented in terms of algorithms and sym-
bolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quanti-
ties. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals capable of being
stored, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.
[0071] It should be borne in mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. The present disclosure can refer
to the action and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage systems.

[0072] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus can be
specially constructed for the intended purposes, or it can
include a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program can be stored in a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROM:s,
EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, each coupled to
a computer system bus.

[0073] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or it can
prove convenient to construct a more specialized apparatus
to perform the method. The structure for a variety of these



US 2021/0124499 Al

systems will appear as set forth in the description below. In
addition, the present disclosure is not described with refer-
ence to any particular programming language. It will be
appreciated that a variety of programming languages can be
used to implement the teachings of the disclosure as
described herein.

[0074] The present disclosure can be provided as a com-
puter program product, or software, that can include a
machine-readable medium having stored thereon instruc-
tions, which can be used to program a computer system (or
other electronic devices) to perform a process according to
the present disclosure. A machine-readable medium includes
any mechanism for storing information in a form readable
by a machine (e.g., a computer). In some embodiments, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium such as a read only memory (“ROM”), random
access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory components, etc.
[0075] In the foregoing specification, embodiments of the
disclosure have been described with reference to specific
example embodiments thereof. It will be evident that various
modifications can be made thereto without departing from
the broader spirit and scope of embodiments of the disclo-
sure as set forth in the following claims. The specification
and drawings are, accordingly, to be regarded in an illus-
trative sense rather than a restrictive sense.

What is claimed is:

1. A system comprising:

a memory device; and

aprocessing device, operatively coupled with the memory

device, to:

provide a plurality of functions for accessing the
memory device, wherein the plurality of functions
receives input/output (I/O) operations from a host
computing system;

determine a quality of service level of each function of
the plurality of functions;

assign to each function of the plurality of functions a
corresponding function weight based on a corre-
sponding quality of service level;

select, for execution, a subset of the /O operations, the
subset comprising a number of I/O operations
received at each function of the plurality of func-
tions, wherein the number of I/O operations is deter-
mined according to the corresponding function
weight of each function; and

execute the subset of I/O operations at the memory
device.

2. The system of claim 1, wherein for each function of the
plurality of functions, the corresponding function weight of
the respective function is a value relative to the average
latency of the memory device.

3. The system of claim 1, wherein the quality of service
level associated with each function of the plurality of
functions comprises at least one of a bandwidth dedicated to
the respective function or a number of /O operations
received at the respective function.

4. The system of claim 1, wherein the 1/O operations
comprise at least one of read operations or write operations.

5. The system of claim 1, wherein the corresponding
function weight of each function of the plurality of functions
corresponds to a number of /O operations from the plurality
of I/O operations received at the respective function.

Apr. 29, 2021

6. The system of claim 1, wherein each function of the
plurality of functions is at least one of a virtual function or
a physical function for accessing the memory device.

7. The system of claim 1, wherein to select the subset of
the I/O operations, the processing device is further to use a
weighted round robin selection scheme for selecting the I/O
operations.

8. A non-transitory computer-readable storage medium
comprising instructions that, when executed by a processing
device, cause the processing device to:

execute a selection scheme to select 1/O operations from

a plurality of functions for accessing a memory device
during an execution cycle;

select a function of the plurality of functions to execute

based on a corresponding function weight assigned to
the function;
determine a number of I/O operations allocated to the
function, wherein the number of I/O operations corre-
sponds to the function weight of the function; and

select the number of 1/O operations allocated to the
function from one or more operation queues associated
with the function; and

execute the number of 1/0 operations during the execution

cycle.

9. The non-transitory computer-readable storage medium
of claim 8, wherein for each function of the plurality of
functions, the corresponding function weight of the respec-
tive function is a value relative to the average latency of the
memory device.

10. The non-transitory computer-readable storage
medium of claim 8, wherein the /O operations comprise at
least one of read operations or write operations.

11. The non-transitory computer-readable storage
medium of claim 8, wherein the corresponding function
weight of each function of the plurality of functions corre-
sponds to a number of /O operations from the plurality of
1/O operations received at the respective function.

12. The non-transitory computer-readable storage
medium of claim 8, wherein each function of the plurality of
functions is at least one of a virtual function or a physical
function for accessing the memory device.

13. The non-transitory computer-readable storage
medium of claim 8, wherein the selection scheme is a
weighted round robin selection scheme for selecting the I/O
operations.

14. A method comprising:

providing a plurality of functions for accessing a memory

device, wherein the plurality of functions receives
input/output (I/O) operations from a host computing
system,

determining a quality of service level of each function of

the plurality of functions;

assigning to each function of the plurality of functions a

corresponding function weight based on a correspond-
ing quality of service level;

selecting, for execution, a subset of the I/O operations, the

subset comprising a number of I/O operations received
at each function of the plurality of functions, wherein
the number of /O operations is determined according
to the corresponding function weight of each function;
and

executing the subset of I/O operations at the memory

device.



US 2021/0124499 A1 Apr. 29, 2021
10

15. The method of claim 14, wherein for each function of
the plurality of functions, the corresponding function weight
of the respective function is a value relative to the average
latency of the memory device.

16. The method of claim 14, wherein the quality of service
level associated with each function of the plurality of
functions comprises at least one of a bandwidth dedicated to
the respective function or a number of /O operations
received at the respective function.

17. The method of claim 14, wherein the 1/O operations
comprise at least one of read operations or write operations.

18. The method of claim 14, wherein the corresponding
function weight of each function of the plurality of functions
corresponds to a number of /O operations from the plurality
of I/O operations received at the respective function.

19. The method of claim 14, wherein each function of the
plurality of functions is at least one of a virtual function or
a physical function for accessing the memory device.

20. The method of claim 14, wherein selecting the subset
of the /O operations further comprises using a weighted
round robin selection scheme for selecting the /O opera-
tions.



