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(57) ABSTRACT

A method for processing an out-of-order data stream
includes inserting a new data stream element into a segment
list according to a timestamp of the new data stream ele-
ment. It is identified whether there are missing data stream
elements between segments in the segment list. The seg-
ments which have no missing data stream elements between
them are merged. Values of the data stream elements are
aggregated using a sliding window over out-of-order data
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EFFICIENT STREAM PROCESSING WITH
DATA AGGREGATIONS IN A SLIDING
WINDOW OVER OUT-OF-ORDER DATA
STREAMS

CROSS-REFERENCE TO PRIOR APPLICATION

[0001] Priority is claimed to U.S. Provisional Patent
Application No. 62/924,709, filed on Oct. 23, 2019, the
entire disclosure of which is hereby incorporated by refer-
ence herein.

FIELD

[0002] The present invention relates to a method and
system for processing streams of data elements having
out-of-order data elements.

BACKGROUND

[0003] Data, which is often machine generated nowadays,
e.g., by the devices and components of an information
technology (IT) system, is often and must often be processed
and analyzed in real time. Continuous decisions are made
based on the outcome of these analyses. Various stream
processing frameworks, engines, and services exist for car-
rying out the analyses in real time by processing data
streams online. For instance, APACHE FLINK is a state-
of-the-art framework for stateful computations over data
streams. The technical areas of application of these frame-
works, engines, and services are numerous: (1) system
monitoring, (2) system verification and debugging, (3) intru-
sion, surveillance, and fraud detection, (4) data mining, e.g.,
for advertising and electronic trading systems, and so on.

[0004] Jonas Traub, et al., “Scotty: Efficient Window
Aggregation for out-of-order Stream Processing,” 34th
IEEE International Conference on Data Engineering (2019)
in Section V, and in particular FIG. 3, provide an overview
of an architecture/method for data aggregation which
requires a stream slicer and uses watermarks to control how
long one must wait for out-of-order elements before output-
ting results. Because a stream slicer is required, it is also
required to have communication with an aggregate store.

SUMMARY

[0005] In an embodiment, the present invention provides
a method for processing an out-of-order data stream. A new
data stream element is inserted into a segment list according
to a timestamp of the new data stream element. It is
identified whether there are missing data stream elements
between segments in the segment list. The segments which
have no missing data stream eclements between them are
merged. Values of the data stream elements are aggregated
using a sliding window over out-of-order data stream ele-
ments in the merged segment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention will be described in even
greater detail below based on the exemplary figures. The
invention is not limited to the exemplary embodiments. All
features described and/or illustrated herein can be used alone
or combined in different combinations in embodiments of
the invention. The features and advantages of various
embodiments of the present invention will become apparent

Apr. 29, 2021

by reading the following detailed description with reference
to the attached drawings which illustrate the following:
[0007] FIG. 1 illustrates a system for the online checking
of system behavior against system and security policies;

[0008] FIG. 2 illustrates element ordering of stream ele-
ments;

[0009] FIG. 3 illustrates a data stream processing pipeline;
[0010] FIG. 4 illustrates a system and method for receiv-

ing, processing and outputting data streams;

[0011] FIG. 5 illustrates a sliding window over an ordered
and complete data stream;

[0012] FIG. 6 illustrates core building blocks of a com-
positional framework to design and implement a stream
processing pipeline according to an embodiment;

[0013] FIG. 7 illustrates examples of a filter and a condi-
tional transformer;

[0014] FIG. 8 illustrates an example stream processing
pipeline;
[0015] FIG. 9 illustrates a skip list for data aggregations on

out-of-order data streams;

[0016] FIG. 10 illustrates a segment with its components;
[0017] FIG. 11 illustrates merging of segments;

[0018] FIG. 12 illustrates a tree construction for reusable
subtrees;

[0019] FIG. 13 illustrates a stream processing pipeline

with filtering and data aggregation stages;

[0020] FIGS. 14A-14C show a graphical presentation of
matrices for an automation, in particular, FIG. 14A is
deterministic finite automation (DFA), FIG. 14B is the
matrices and FIG. 14C is their combination;

[0021] FIG. 15 shows transition profiles;

[0022] FIG. 16 shows transition profiles in a segment list
of an out-of-order pattern matching algorithm;

[0023] FIG. 17 schematically illustrates a gap between
segments;

[0024] FIG. 18 schematically illustrates pattern automata;
[0025] FIG. 19 graphically shows out-of-orderness for

~=0.01 (left) and =0:1 (right) of event streams spanning over
one second and with an event rate 10,000, together with the
number of segments; and

[0026] FIG. 20 shows out-of-orderness for A=0.01 (left)
and =0.1 (right) of event streams spanning over one second
and with an event rate 50,000.

DETAILED DESCRIPTION

[0027] In an embodiment, the present invention provides
a method for processing out-of-order data streams effi-
ciently. Out-of-order data streams include elements which
are not necessarily ordered according to their creation time.
The method provides a framework for processing out-of-
order data streams in a pipeline, possibly with parallelized
stages, and also provides for data aggregations in a sliding
window over out-of-order data streams.

[0028] For generally illustrating the processing of data
streams in real time for decision making, consider the
following simple example, which falls into the technical
areas (1) monitoring and (2) system verification and debug-
ging mentioned above, to continuously count the number of
failure events within a given time window (e.g., 30 seconds)
and promptly trigger countermeasures whenever a given
threshold (e.g., 10) is exceeded. A countermeasure could be
the blocking, termination, or reconfiguration of certain sys-
tem components.
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[0029] For example, FIG. 1 depicts a log analyzer 12 of a
security information and event management (SIEM) tool
that 10 checks incoming system events generated by system
components C1, C2, C3 . . ., which produce data and also
typically interact with one another to produce further data.
The events are checked in real time against system and
security policies 14. In case of policy violations like the one
of exceeding the threshold of failure events within a given
time window, the log analyzer 12 triggers countermeasures,
or indicates policy violations and/or pattern matches to a
system administrator or system component 16 for triggering
the countermeasures. These countermeasures can be prede-
termined based on the type of policy violation and/or pattern
match, and therefore provided in real time and in an auto-
mated fashion.

[0030] In general, it is advantageous for data streams to be
analyzed continuously and efficiently. In particular, it is
advantageous for the elements of data streams to be pro-
cessed in real time in the rate they are generated. Further-
more, irrespective of the application area, almost every data
stream processing application requires some form of data
aggregation, often the aggregation of data items within a
sliding window. Cf also M. Stonebraker, U. Cetintemel, and
S. Zdonik: “The 8 Requirements of Real-Time Stream
Processing,” SIGMOD Record 34(4), 2005. In this respect,
the data aggregation in the simple example above is to
continuously count the failure events within the given time
window of 30 seconds.

[0031] The efficient processing of data streams is further
complicated by the fact that stream elements may not be
necessarily received in the order they are generated. For
illustration, FIG. 2 shows, on the left-hand side, the format
of'a stream element 20 including a timestamp r and data item
d and, on the right-hand side, how a stream element e, can
appears out-of-order within a data stream 22 of stream
elements 20 as its timestamp of 1.7 is greater than the
timestamp 1.2 of the later stream element e,. Network
delays and retransmissions of network packets are one
reason that stream elements 20 may not be ordered linearly
according to their timestamps in a data stream 22. Buffering
and reordering the stream elements 20 delays the outcome of
an analysis, thereby adversely affecting the latency of the
output of the processed data stream. Furthermore, buffering
and reordering may result in a huge memory and computa-
tional overhead, which can quickly become the bottleneck.
Embodiments of the present invention overcome these prob-
lems by being able to efficiently process out-of-order data
streams without having to buffer and reorder, thereby saving
computational resources and memory, while reducing
latency and providing for faster computational processing,
and thus quicker implementations of actions and counter-
measures.

[0032] For efficiency reasons, data streams can be pro-
cessed in a pipeline, which is not necessarily linear since a
pipeline stage can have multiple predecessor and successor
stages. Each pipeline stage performs a certain operation on
the stream elements and continuously produces output (i.e.,
another data stream), which is forwarded to a next pipeline
stage. For illustrating this concept using the example
depicted in FIG. 1, it is possible that the log analyzer 12
processes the stream of logged system events by the fol-
lowing pipeline: After receiving the stream elements they
are first sanitized before the data items of the relevant stream
elements are aggregated in a separate stage. Some stages in
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turn may be carried out in parallel. For instance, when the
sanitization of one of the stream elements is computationally
expensive (e.g., due to regular expression matching) and
thereby presents a potential bottleneck for the pipeline, it is
possible to implement this stage by several computation
nodes that run in parallel, each sanitizing stream elements
separately.

[0033] For example, as illustrated in the exemplary pipe-
line 30 in FIG. 3 which receives stream elements at an input
node 32, a sanitization stage 34 can straightforwardly be
parallelized with multiple computation nodes 34a, 345,
since there are no dependencies between the stream ele-
ments (the sanitization is a stateless operation). While this
allows the computation nodes 34a, 345 to carry out saniti-
zation in parallel, carrying out a stage in parallel/concur-
rently is another reason why stream elements can become
out-of-order. For example, the computation nodes 34a, 345
may have different loads and may run at different speeds and
hence, the next stage may receive the stream elements in a
different order. Providing buffering and reordering stages for
the data elements from the sanitization stage 34 before a data
aggregation stage 36 would be a potential bottleneck in the
pipeline 30. After the data aggregation stage 36, the aggre-
gations can be emitted by an output node 38.

[0034] Since embodiments of the present invention are
able to efficiently process out-of-order data streams online,
it is not only possible to avoid or reduce buffering and
reordering stages, which result in the technical improve-
ments to the computational systems described above, but
also possible to carry process the data streams faster. In
particular, embodiments of the present invention provide a
framework for processing data streams in a pipeline in
which stages may be carried out concurrently/in parallel
since it is not necessary for the stream elements to remain
ordered prior to aggregation, which can be performed over
a sliding window according to embodiments of the present
invention. Moreover, sorting and buffering can be avoided,
which results in faster processing, reduced computational
resources and memory and reduced latency for later pro-
cessing stages.

[0035] In an embodiment, the present invention provides
a method for processing an out-of-order data stream. A new
data stream element is inserted into a segment list according
to a timestamp of the new data stream element. It is
identified whether there are missing data stream elements
between segments in the segment list. The segments which
have no missing data stream clements between them are
merged. Values of the data stream elements are aggregated
using a sliding window over out-of-order data stream ele-
ments in the merged segment.

[0036] Inan embodiment, each of the segments includes a
left-most sliding window and a right-most sliding window,
wherein the values of the data stream elements are aggre-
gated by moving the right-most sliding window of a first one
of'the segments to the right and computing data aggregations
in each window until a left bound of the right-most sliding
window of the first one of the segments matches with a left
bound of the left-most sliding window of a second one of the
segments, the second one of the segments spanning a time
window that is later than the first one of the segments, and
wherein the computed data aggregations for each of the
windows are output.

[0037] In an embodiment, the method further comprises
removing data stream elements between a right bound of the
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left-most sliding window of the first one of the segments and
the left bound of the right-most sliding window of the
second one of the segments.

[0038] In an embodiment, a plurality of pairs of segments
are merged in parallel.

[0039] In an embodiment, the segment list is a skip list
which stores partial data aggregations, the segments being
ordered ascendingly by timestamps of their stream elements,
and wherein the new data stream element is inserted into the
skip list as a new singleton segment. In an embodiment, the
skip list includes a plurality of buckets into which data
stream elements of the data stream are insertable in parallel.
[0040] In an embodiment, the method further comprises
inserting a gap element for an identified missing data stream
element. In an embodiment, the gap element has meta-
information which includes a timestamp of a singleton
interval and a sequence number of the missing data element
having the timestamp together with an end marker.

[0041] In an embodiment, the method further comprises
annotating each data stream element of the data stream from
a plurality of data producers with sequence numbers so as to
provide a lexicographical ordering of the data stream ele-
ments.

[0042] In an embodiment, the method further comprises
filtering some of the data stream elements out of the data
stream and inserting gap elements annotated with the same
sequence numbers as the data stream elements which were
filtered out.

[0043] In an embodiment, the method further comprises
inserting a gap element for an identified missing data stream
element, the inserted gap element being annotated with
meta-information including a timestamp of a time window
of the segments, a data producer and a sequence number. In
an embodiment, the data producer is a data producer of a first
data stream element in the time window, and wherein the
sequence number comprises two parts, a first part having a
sequence number of the first data stream element and a
second part having a counter value of a number of time
windows that start at the timestamp.

[0044] Inan embodiment, a tree is stored for each segment
in the segment list, wherein the data stream elements of the
segments are aggregated using an associative operator from
left to right, and wherein the subtrees of the trees of the
segments are reused during the aggregation.

[0045] In another embodiment, a system comprises one or
more processors which, alone or in combination, are con-
figured to provide for execution of the method for process-
ing an out-of-order data stream according to any embodi-
ment of the invention.

[0046] In a further embodiment, a tangible, non-transitory
computer-readable medium has instructions thereon which,
upon being executed by one or more processors, alone or in
combination, provide for execution of the method for pro-
cessing an out-of-order data stream according to any
embodiment of the invention.

[0047] In the following, an underlying system model
according to an embodiment of the present invention is first
described. Before providing particular details of different
embodiments of the present invention, the terminology is
explained according to the following description.

[0048] FIG. 4 illustrates a data stream processing system
40. According to embodiments of the present invention, it is
assumed that a system producing a data stream is composed
of multiple components. These components could be, for
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example, software components of a cloud-based IT system
or Internet-of-Things (IoT) devices or a mixture of both.
Some of the system components produce data. Such a
component is referred to herein as a data producer 42. For
instance, an IoT sensor may measure the temperature every
second, which it continuously sends to a platform 44, for
example, comprising one or more servers or central pro-
cessing units (CPUs) connected to memory which provide
stages of a processing pipeline between a receiver node for
the unprocessed data stream and an emitter node for the
processed data stream. The platform 44 hosts a service for
processing and analyzing the measurements from multiple
components in the processing pipeline. Processing the data
usually includes aggregations of some sort. The processed
data, possibly aggregated, is again a data stream that is
emitted to a data consumer 46, which may just collect the
data, process it further, or may make decisions based on the
processed data.

[0049] The examples given above and illustrated in FIGS.
1 and 3 can be reformulated to be an instance of this system
model according to an embodiment of the present invention.
In particular, the SIEM’s log analyzer 12 is an instance of
the data stream processing engine of the platform 44 and the
data consumer 46, which likewise can be implemented in
hardware, takes countermeasures like terminating or isolat-
ing a system component when the failure events exceed a
given threshold, for example, in an automated manner in real
time.

[0050] As used herein, a data stream a is a possibly infinite
sequence eg; €,; €,; . . . , where the e;s are called stream
elements. In practice, stream elements are often structured,
e.g., JavaScript Object Notation (JSON) objects. Further-
more, they often contain meta-information like the
element’s producer or a timestamp when the element was
generated. In the following, it is assumed that each stream
element is timestamped. It is also assumed that the time-
stamps are linearly ordered and unique (i.e., there are no two
stream elements with the same timestamp). First, note that
for a single data producer, the uniqueness of timestamps is
usually fulfilled in practice, since the data producer cannot
generate multiple stream elements at the same time. When
there are multiple data producers, the uniqueness of the
timestamps can be achieved according to embodiments of
the present invention by including additional information to
a timestamp. For example, one can include the data pro-
ducer, define a linear order over all data producers, and
combine both orderings (i.e., the lexicographical combina-
tion orderings).

[0051] Data streams are usually given incrementally. In
each iteration, the next stream element of the data stream is
provided. However, as already discussed, the stream ele-
ments of a data stream o might appear out-of-order. For
instance, it can be the case that the timestamp of a stream
element e; is larger than the timestamp of another stream
element e, although the stream element e, appears in the data
stream O before the stream element e, ie. i<j. If the
elements appear in the order of their timestamps, it can be
said that the data stream o is ordered. Furthermore, the data
stream O can be referred to as incomplete if not all stream
elements are contained in the data stream a; otherwise, the
data stream o can be referred to as complete. An ordered
data stream can be incomplete. On the other hand, in a
complete data stream, each stream element eventually
appears. However, in general, it is not known how long it is
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necessary to wait until all stream elements with a timestamp
smaller than a given upper bound have appeared. Analo-
gously, in general, it cannot be inferred whether all stream
elements between two given stream elements have already
been received.

[0052] Data aggregation combines the data items of mul-
tiple stream elements. Typically, the combinations involve
the data times of stream elements over some period of time.
An example of a data aggregation is the number of failure
events within 10 seconds, where the data stream consists of
timestamped, logged system events.

[0053] In the following, it is possible to refer to o=e,; e;;
e,; . . . as an ordered and complete data stream that is
complete and the stream elements are ordered by their
timestamps. A time window I is a nonempty interval over the
timestamps. The data aggregation (with respect to an opera-
tor op) over the time window I is defined as op (e, e, ;, - -
-5 €y, €;), where i is the smallest index of a stream element
with a timestamp in the time window I and j is the largest
index of a stream element with a timestamp in the time
window I. For ease of explanation, the notation used here is
simplified to identify the data item of a stream element with
its stream element. Finally, it is noted that, since the data
stream o is ordered and complete, the data aggregation over
a time window [T, K| can be computed when receiving a
stream element with a timestamp equal to or greater than x.

[0054] The operator op is often defined as op(e,, e, ;, - - -
e €)ee,, @ ... Qe Qe, where @: DxD—D is
associative. When (D, ®) is a monoid, then the “empty” data
aggregation is also well defined, namely, op( ) is the
monoid’s neutral element. Instances of & are integer addi-
tion, string concatenation, set union, and matrix multiplica-
tion. Note that, since & is associative, it is irrelevant how the
parentheses are placed in the term ¢,®e,, | ® . . . Qe,_,Qe,.
However, the order of the elements matters when & is not
commutative.

[0055] Sliding windows are time windows that move
together with a data stream. More formally, a sliding win-
dow is given through a sequence of pairwise distinct time
windows 1,; 1,5 1,; . . ., with 1=[,, ], T,;=x,, T,;<T,,, and
K,=K,,, for all i=0, as illustrated in FIG. 5. As exemplarily
shown therein, time windows 50 always move to the right.
Furthermore, the number of stream elements within different
time windows 50 may differ. The time windows 50 can be
specified by a duration (e.g., 10 seconds) or by dedicated
start and end tags. The data aggregation over the sliding
window Iy; 1;; 1,; . . . is the data stream that consists of the
data elements of the time windows together with their data
aggregations. The linear order on timestamps extends to a
linear order on the time windows (lexicographic ordering).
Hence, the stream elements of the obtained data stream are
also timestamped.

[0056] Data aggregation over complete, out-of-order data
streams can be analogously provided as in the case of data
aggregation over complete, ordered data streams according
to embodiments of the present invention. However, in con-
trast to the setting where stream elements are received
ordered by their timestamps, the computation of the aggre-
gation can either be (i) postponed until the delayed stream
elements have also been received, (ii) approximated, or (iii)
recomputed when new stream clements within the time
window are received. Similarly, when the data stream is
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incomplete, it is possible to either not compute all aggrega-
tions or compute aggregations that approximate the missing
data items.

[0057] In the following, a compositional framework to
design and implement a stream processing pipeline accord-
ing to an embodiment of the present invention is described.
The basic building blocks of the framework are shown in
FIG. 6 and described in the following list:

[0058] Source: The node generates a data stream in
which its elements are timestamped.

[0059] Sink: The node drops all stream elements. This
node is also used for marking the end of processing a
data stream and where elements are submitted some-
where else.

[0060] Sorter: The node buffers stream elements and
outputs them ordered by their timestamps. The node
requires the identification of neighboring stream ele-
ments, for example, using annotations of the stream
and/or gap clements.

[0061] Scrambler: The node outputs the stream ele-
ments in any order. This node is used, e.g., to represent
the network, which does guarantee to preserve the
element ordering.

[0062] Annotator: The node annotates stream elements
with a component and sequence numbers. The node
assumes that the stream elements are ordered by their
timestamps with no gaps between them.

[0063] Renamer: The node renames or removes a com-
ponent and its sequence numbers from the stream
elements.

[0064] Splitter: The node splits the data stream into
substreams.

[0065] Merger: The node merges multiple data streams
into a single data stream.

[0066] Transformer: The node applies a function to each
stream element. The elements’ data item is trans-
formed.

[0067] Aggregator: The node aggregates the data items
of the stream elements over a sliding window. The node
requires the identification of neighboring stream ele-
ments.

[0068] Each of the foregoing nodes of FIG. 6 can be
implemented in the cloud, for example, by processors or
cloud servers configured by software to perform the respec-
tive operations. Likewise, the different nodes could be
implemented using one or more CPUs using a scheduler to
provide computational time/resources to the respective
operations of the different nodes. Further, the nodes could be
separate computers or virtual machines.

[0069] FIG. 7 provides two examples for obtaining more
complex pipeline stages from combining the core building
blocks. Namely, the left-hand side shows a filter stage 70
that filters out certain data stream elements and the right-
hand side shows a conditional transformer stage 72, i.e., a
transformer that is only applied to some stream elements. In
both examples, a splitter node decides for a given condition
where to forward a received stream element. The filter 70
can send some data elements to a sink node depending on the
presence of the condition. The filter 70 can result in an
incomplete data stream and the conditional transformer 72
can produce an out-of-order stream, depending on its imple-
mentation. If the splitter node, the transformer node, and the
merger node run concurrently in the conditional transformer,
then there is no guarantee that the incoming order of the
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stream elements is preserved. In contrast, if each incoming
stream element is processed separately, the ordering of the
stream elements is preserved.

[0070] FIG. 8 illustrates an example data processing pipe-
line 80 which uses the framework’s core building blocks
from FIG. 6, for example, to build a pipeline such as that
shown in FIG. 3, which also includes the data producers as
separate stages. The reason for their inclusion is to make the
data producers’ guarantees on the data stream explicit.
Namely, it is assumed that their substreams are complete and
ordered, and their stream elements are annotated. Annota-
tions can be used to infer whether two stream elements are
direct neighbors as discussed in further detail below. The
stages for the sending and the receiving of stream elements
are also included to the pipeline. Both stages may result in
out-of-order data streams. From these observations, it is
inferred that the aggregation stage must handle out-of-order
data streams. If, however, the implementation of the aggre-
gation stage does not meet this requirement, it is necessary
to add a sorting stage before the aggregation stage. Adding
a sorting stage directly after the receiving stage would be
pointless, since the sanitization stage is carried out by two
nodes that run in parallel and the merging of the two
substreams may produce an out-of-order data stream. Thus,
in order to be effective, the sorting state must be placed
directly in front of the aggregating stage. According to an
embodiment of the present invention, a sorting stage is not
necessary since any gaps can be accounted for in the
aggregation stage, and aggregation can occur on out-of-
order data streams. This improves the computation of the
data stream since sorting is requires buffering and high
computer processing power, and also causes latency to later
stages of the processing pipeline. Depending on the imple-
mentation of the sending stage (in particular, the protocol
used for transmitting data), it can be assumed that the data
stream is complete for the aggregation stage. For example,
transmission control protocol/internet protocol (TCP/IP)
guarantees that no stream elements are lost; in contrast,
stream elements can be lost when using user datagram
protocol (UDP).

[0071] As already discussed above, and discussed further
below, embodiments of the present invention allow for the
aggregating of out-of-order data streams and/or with gaps
such that a sorting stage is not necessary. As shown in the
example data processing pipeline 80, the data producer stage
can, for each data producer, include a source node followed
by an annotator node which, for example, can provide for the
ability to provide serial numbering for all the data elements
from the data producers. The sending stage can include a
scrambler node for each of the data producers which direct
their output to a receiving stage having a merger node to
merge the respective data streams. Changing the order of
ordered events is usually not desirable. However, when, for
example, sending events from one destination to another
destination, it cannot guarantee that the event order is
preserved. There are multiple reasons for this: network
packets might take different routes, network latency, etc. The
scrambler node in this example corresponds to the transmis-
sion of the events and provides that events can be arbitrarily
reordered. The loss of event ordering in many situations is
not desirable, but cannot be avoided. Accordingly, the
scrambler node in this example can be seen as symbolizing
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the physical transmission over the internet from one com-
puter to another computer where event can become unor-
dered.

[0072] In the following, a method to efficiently aggregate
data in a sliding window over an out-of-order data stream
according to an embodiment of the present invention is
described. In particular, an efficient implementation for the
“aggregator” core building block in FIG. 6 is provided,
under the assumption that the received data stream is out of
order. The following description begins with a high level
description before providing particular details of embodi-
ments of the present invention.

[0073] The proposed method according to embodiments
of the present invention maintains a list of segments. Each
segment contains stream elements, ordered ascendingly by
the elements’ timestamps, with no gaps between them. Two
data structures are maintained within each segment. These
data structures correspond to pointers to the left-most and
right-most sliding window within the segment’s stream
elements. The reason for keeping the two sliding windows is
that some intermediate results of the aggregated data may be
reused later as discussed in further detail below. As dis-
cussed above, the sliding windows are time windows that
move together (in increasing timestamps) with a data
stream. The window corresponds to a functional require-
ment for data aggregation that is pre-specified. For example,
such a requirement could be to compute the number of failed
login attempts of a given user within a five minute interval.
This translates to a sliding window of a five minute width.
[0074] The left-most sliding window contains the first
elements of the segment and the right-most window contains
the last elements of the segment. If no window fits entirely
within a segment, then no windows are created.

[0075] Within each sliding window, data is partially aggre-
gated. Then, the window is shifted to the right, entirely
meeting the right-most window (or until a gap is reached).
For example, one possible method to aggregate data would
be to rely on a tree structure. In this case, whenever the
sliding window is shifted to the right, the tree of the partial
computations is updated with the data of the next segment
(e.g., using the algorithm described in D. Basin, F. Klaedtke,
and E. Zalinescu, “Greedily computing associative aggre-
gations on sliding windows,” Information Processing Letters
(IPL), 115(2):186-192 (2015), which is hereby incorporated
herein in its entirety).

[0076] When a new element arrives, it is placed in a
singleton segment. Then, the right-most sliding window of
the previous segment can be shifted to the right, if possible,
to include the newly inserted element.

[0077] According to an embodiment of the present inven-
tion, skip lists are used (see, e.g., W. Pugh: “Skip Lists: A
Probabilistic Alternative to Balanced Trees,” Communica-
tions of the ACM 33(6), (1990), which is hereby incorpo-
rated herein in its entirety), as the underlying data structure.
An advantage of using skip lists over lists is that skip lists
have better complexity bounds. For instance, the average
complexity of inserting a node is logarithmic in the length of
the skip list. In contrast, for lists, the complexity is linear in
the length of the list.

[0078] Alternatively to skip lists, other embodiments of
the present invention use self-balancing search trees like
AV -tress, red-black trees, or B-trees. Some operations on
skip lists are simpler to describe and to implement (for
example, the merging of nodes) than their counterparts for
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self-balancing search trees. Furthermore, on the one hand,
skip lists have also the advantage that no rebalancing steps
are necessary. On the other hand, most self-balancing search
trees have the advantage that most operations (lookup,
insertion, deletion) have the amortized worst case complex-
ity O(log n) whereas for skip lists the average complexity is
O(log n), but the worst case complexity for degenerated
cases, which are very unlikely, is O(n).

[0079] As shown in FIG. 9, the elements in a skip list 90,
which are also referred to herein as segments, store partial
aggregations. The segments s, -s, are ordered ascendingly by
the timestamps of the stream elements.

[0080] According to an embodiment of the present inven-
tion, a newly received stream element is processed in
accordance with the following steps:

1. The new element is inserted in the skip list 90 as a new
singleton segment, according to the element’s timestamp.
2. Starting from the new singleton segment, adjacent seg-
ments are merged if there is no gap between them (i.e., no
missing stream elements between the respective left and
right frontiers of the adjacent segments).

3. The resulting merged segment is updated. This includes
the computation of partial data aggregations and the output
of data aggregations over the sliding window. There can be
no or multiple outputs. For each window, a value is com-
puted and output. When two segments are merged, it can be
the case that the merged segment does not contain a new
window. Thus, in this case, there will be no output when
merging the two segments. It can also be the case that the
merged segment contains several new windows. For each of
these windows, the output is computed as the data aggre-
gation of the respective window. It is noted that the sliding
window does not always have to be moved by one element
to the right in all embodiments. Rather, the steps of the
window can be by multiple elements, or fractions thereof, or
could be time-based such that each step of sliding the
window can cover different amounts of data elements.
[0081] Step 1 is self-explanatory. Before providing further
details on step 2 and step 3, the components of a segment in
addition to the interval [T, K] it covers are described. The
segment contains a list of stream elements, ordered ascend-
ingly by the elements’ timestamps. Furthermore, the ele-
ments are contained in some partial sliding window within
the segment. Furthermore, the list includes the stream ele-
ments contained in the left-most (complete) sliding window
and in the right-most (complete) sliding window. In addi-
tion, the segment has markers for these two sliding win-
dows. If no complete sliding window is contained in the
segment, then the markers are nil. The two complete sliding
windows may overlap, as is the case in FIG. 10. The reason
for keeping the two complete sliding windows is that some
intermediate results of the aggregated data may be reused
(see below).

[0082] If there is an upper bound on the maximal delay of
stream elements, adjacent segments are merged, whenever
the delay is exceeded between the right frontier and the left
frontier of the respective adjacent segments. Alternatively, if
there is no maximal delay or the maximal delay is not
known, the stream elements’ annotations can be used to infer
whether there is no gap between two given stream elements.
In the setting where the stream elements originate from a
single data producer with sequence numbers, it can easily be
inferred whether there are no missing stream elements
between two given stream elements: There is no gap if and
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only if the elements’ sequence numbers are i and i+1. This
generalizes to multiple data producers, where each data
producer maintains a counter and annotates its stream ele-
ments with sequence numbers, which are provided by the
counter (see also D. Basin, F. Klaedtke, and E. Zalinescu,
“Runtime verification over out-of-order Streams” ACM
Transactions on Computational Logic (TOCL), 21(1):5
(2019), which is hereby incorporated by reference herein in
its entirety, in particular section 7.2.1). Other alternatives
like dedicated stream elements for closing gaps between
segments are possible, e.g., so-called low watermarks (see T.
Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haber-
man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S.
Whittle, “MillWheel: Fault-tolerant stream processing at
internet scale,” Proceedings of the VLLDB Endowment 6(11)
(2013), which is hereby incorporated by reference herein in
its entirety). The different alternatives can also be combined.
[0083] For example, the two adjacent segments s, and s, ;
are merged in step 2. The resulting segment t (see top of FIG.
11) is as described in the following, provided that the
markers of the sliding windows of's, and s, ; are not nil. Note
that t covers the smallest interval that contains the union of
the intervals that the segments s, and s,,; cover. The left-
most sliding window of t is the left-most sliding window of
s, and the right-most sliding window oft is the right-most
sliding window of s, ;. The data aggregations for the sliding
window within the segment t and t’s list are obtained as
follows (see also FIG. 11).

1. The list of the segment s,, , is appended to the list of the
segment s,.

2. The right-most sliding window of's, is moved to right and
the data aggregations of the new complete sliding windows
are computed until the left bound of the right-most sliding
window of s, matches with the left bound of the left-most
sliding window of's,, ;. It is also possible to compute the data
aggregations in parallel by starting from the right-most
window of s; (by sliding to the right) and also from the
left-most sliding window of s,,, (by sliding to the left).
Furthermore, when merging more than two segments, it is
possible to compute the data aggregations of each two
adjacent segments in parallel. The data aggregations are
made by adding together the stream elements as the window
moves to the right. How the window moves is different
according to different embodiments and can be application
dependent. For example, the window could move element-
by-element or each time by ten elements to the right. It is
also possible, for example, to move right bound of the
window to the element before the element with a timestamp
that starts a new minute. In this case, the number of elements
that are contained in the window is not fixed.

3. The stream elements strictly between the left-most and
right-most sliding windows (see hollow dots at the bottom of
FIG. 11) of the merged segment t are removed from t’s list
since these elements will never be part of a window follow-
ing the computation of the data aggregations for all windows
during the sliding of the window from the left to the right.
[0084] The corner cases in which the sliding windows of
at least one of the segments s, or s, , are nil are variations of
the above case. Namely, it is started with left-most stream
element as a bound for the sliding window or it is stopped
when sliding the right-bound of the sliding window over the
right-most stream element.

[0085] In the following, two optimizations are described
for aggregating the data items of the received stream ele-
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ments more efficiently in certain cases. The first one con-
cerns the skip lists and the second one provides the data
aggregation when merging segments.

[0086] With respect to an optimization of an embodiment
of the present invention using skip lists, it is noted that in
practice, it is often the case that new stream elements are
either added near the front or near the back of the skip list.
To account for this practical relevant case, skip-list-based
data structure is refined according to an embodiment of the
present invention. In particular, the skip list is split into
preferably three skip lists F, B, and M: The skip list F
consists of the segments that belong to the front, the skip list
B list consists of the segments that belong to the back, and
the skip list M consists of the middle segments, which are
updated less frequently as fewer stream elements are
inserted into this skip list. These skip lists are referred to
herein as buckets. If one of the buckets contains too many
or too few segments (in comparison to the other buckets),
the buckets are rebalanced, e.g., by stealing segments from
one of the other skip lists (front or back). This optimization
of splitting the skip list into three buckets offers similar
advantages as the use of B-trees with fingers as described in
K. Tangwongsan, M. Hirzel, and S. Schneider, “Optimal and
general out-of-order sliding-window aggregation,” Proceed-
ings of the VLDB Endowment (PVLDB), 12(10):1167-1180
(2019), which is hereby incorporated by reference herein in
its entirety, and presents a sub-O(log n) algorithm for data
aggregation in out-of-order data streams. However, there are
various parameters that can be fine-tuned easily when using
skip lists. The rebalancing of the buckets F, B, and M may
vary between applications or data streams. Several heuristics
can be implemented when the rebalancing should take place.
Furthermore, rebalancing skip lists is easier than rebalancing
trees, which may propagate all the way up to the tree’s root.
The splitting of the buckets can be generalized. Instead of
three skip lists, the skip list can be split into m=1 buckets.
For example, if stream elements are more likely to be
inserted in the middle part, the M bucket can be split further.
It is possible to insert elements in different buckets in
parallel. For merging segments, it is provided, however, to
look at the adjacent segments, which may be in a different
bucket. Appropriate locks can be used when merging seg-
ments from different segments.

[0087] With respect to an optimization of an embodiment
of the present invention for providing for the data aggrega-
tion when merging segments, the data aggregation is done
by combining the stream elements in a sliding window by an
associative operator & from left to right. The data aggrega-
tion of the stream elements e,, e,,;, . . . , €,,,, in a sliding
window can be represented as a term, which in turn corre-
sponds to a tree. Neither the term nor the tree is unique.
Results of subterms or subtrees may be reusable for later
data aggregations. The sliding window algorithm presented
in Section 2 of D. Basin, F. Klaedtke, and E. Zalinescu,
“Greedily computing associative aggregations on sliding
windows,” Information Processing Letters (IPL), 115(2):
186-192 (2015) is based on this setup for ordered data
streams. This algorithm can be extended to out-of-order data
streams according to an embodiment of the present inven-
tion. In addition to the left-most and the right-most sliding
window in a segment, a segment also stores their corre-
sponding trees for computing the data aggregations. When
merging two segments, the sliding algorithm is started from
the tree for the right-most sliding window of the left seg-
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ment. To this end, the initialization step of the algorithm is
adapted so that the maximal subtrees from this tree within
the next sliding window are reused. Furthermore, when the
sliding window overlaps with the left-most sliding window
of the right segment, the largest possible subtrees of that
respective tree are reused. These subtrees need to be deter-
mined at the beginning and whenever moving the sliding
window to the right.

[0088] The tree construction is optimized in the case when
it is known whether a stream element is never (or very
unlikely) the first element of a time window. In particular, it
is possible to apply the following heuristic to increase the
“reusable” subtrees (i.e., the intermediate results of the data
aggregations). As an example, assume that both markers in
a segment s, are nil. Furthermore, assume that the left-most
sliding window of the segment s, comprises the stream
elements e, e,,;, . . . , e,,, For these elements, the data
aggregation is computed as eQe,, ® . . . Qe,,,,, which the
sliding-window algorithm from Section 2 of D. Basin, F.
Klaedtke, and E. Zalinescu, “Greedily computing associa-
tive aggregations on sliding windows,” Information Process-
ing Letters (IPL), 115(2):186-192 (2015) computes from
right to left by constructing the tree 120 shown on the
left-hand side of FIG. 12. The reason for the right-to-left
construction for this initial tree is that it maximizes the
reusable subtrees when shifting the sliding window to the
right. However, since prefixes of e, e,,, . . ., €;,,, can also
be at the right frontier of a time window (when merging the
segment s, with the segment on its lef, i.e., the segment
1), it can be beneficial to combine elements from left to
right. For instance, when it is known that the stream element
e,,,_; 1s never the first element of a time window, then the
tree 122 on the right-hand side in FIG. 12 would allow to
reuse the subtree for e,,, ,®e,,, , when e, , is the last
element and e,,, , the second to last element of a time
window, which is not possible for the tree 120 on the
left-hand side of FIG. 12. The general heuristic is to combine
stream elements “leftwards” and not “rightwards” when it is
known (or very unlikely) that they are never the first element
of'a time window. How to combine elements can depend on
how the window is moved to the right. If the window always
by one element and the window contains always two or more
elements, an element will always be combined leftwards and
rightwards. However, if the window is always moved to the
next element with a timestamp that starts a new second and
covers a minute, then an element with a timestamp with a
fractional part of 500 milliseconds is very unlikely to be at
the beginning of a window. In contrast, an element with a
timestamp with a fractional part of 1 millisecond, is fairly
likely at the beginning of a window. This also depends how
the events’ timestamps are distributed.

[0089] For operators that fulfill additional conditions, it is
possible to compute the aggregations even more efficiently.
For instance, if each element also has a matching inverse
element, shifting the sliding window by one position to the
right, the aggregation of the shifted sliding window can be
computed by e,”'®d®e,, ., ,, where d is the aggregation for
the sliding window consisting of the elements e, e,,,, . . . ,
e, 1.e., &=eRe,, ® ... Re,,.

[0090] For some pipelining stages, it may be beneficial to
insert extra elements that carry additional information for
identifying gaps/no gaps. Assume a data processing pipeline
130 as depicted in FIG. 13 that has a filter stage 132 which
filters stream elements and a later data aggregation stage 134
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which performs some data aggregation over the non-filtered
stream elements. The filtering by the filter stage 132 may
result in a data stream for which the data aggregation stage
134 may not anymore infer that there is no gap between two
received stream elements.

[0091] One option is to sort the data stream directly before
the filtering stage. Furthermore, directly after the filter stage
132, the non-filtered stream elements can be annotated by
new sequence numbers. However, this is a costly operation
in terms of computational resources and memory, and would
most likely cause a bottleneck of the whole pipeline. Fur-
thermore, it would also increase the latency of the filter stage
132. Alternatively, the filter stage 132 may introduce gap
elements that allow the later data aggregation stage 134 to
infer whether there is a gap between two stream elements.
Even adding gap elements with the same meta-information
(e.g., timestamp, producer, and sequence number) as the
dropped stream elements is usually more efficient and cost-
effective than sorting the data stream. Notably, gap stream
elements can be identified quickly. Furthermore, gap ele-
ments can be filtered out, when they are not needed anymore
in later stages.

[0092] One way to identify gaps is using annotations and
sequence numbers. Another way to identify gaps would be
to identify, based on past processing, the number of stream
elements which should be obtained per unit time, and to use
a counter and determine if there are any differences. If so, a
gap can be inferred. Additionally, it may be expected that
certain data producers produce a stream element regularly
such that gaps may be identified by timestamps showing that
a measurement or data item may be missing.

[0093] As an optimization to reduce the number of stream
elements, the filter stage 132 can collect meta-information
from the filtered stream elements and add gap elements
using the collected meta-information. For example, when
filtering out ten consecutive stream elements from the same
producer, the filtering stage could introduce a single gap
element that informs the later aggregation stage that those
ten stream elements were filtered out.

[0094] A related problem occurs when splitting a data
stream in non-disjoint data streams and merging them again
later on. To ensure that a stream element is uniquely iden-
tified by its meta-information, an embodiment of the present
invention uses the renamer core building block shown in
FIG. 6 and described above.

[0095] A data aggregation stage over a sliding window
combines the data items from several consecutive stream
elements. When the incoming data stream is ordered, the
data aggregation stage can maintain a counter and attach to
each computed data aggregation the corresponding meta-
information. In particular, where the aggregated data stream
is ordered, the counter provides the sequence number for
each data aggregation. If, however, the incoming data stream
is out-of-order, it may not be possible for later stages to infer
whether there are no missing data elements between two
given data elements of the aggregated data stream. The
reasons for this are that (1) the sliding window might be
shifted by more than one position to the right, and (2) the left
position of the sliding window might not be shifted at all,
i.e., the sliding window is enlarged to the right.

[0096] The following embodiment uses meta-information
of the incoming data elements for later pipelining stages to
infer whether there are no missing data elements between
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two data elements of the aggregated data stream. For each
aggregated data element spanning over [, k], the following
meta-information is attached:

[0097] The timestamp is the time window [T, k] of the
aggregated data. A timestamp is specified for the start
and for the end of the time window. Usually, time-
stamps are clock values consisting of day and time and
these are totally ordered. However, according to an
embodiment of the present invention, the domain of
timestamps is changed. In particular, timestamps are
intervals of the form [, k]. These enriched timestamps
can again be ordered. A time window of these enriched
timestamps is of the form [[z, ], [T, ¥']].

[0098] The data producer is the identifier for the aggre-
gation stage together with the data producer of the first
data element within the time window of the aggregated
data. In particular, data is aggregated in aggregator
nodes (see FIG. 6). The data producer of the aggregated
value includes the identifier of the node that computed
the aggregation.

[0099]

[0100] 1. the sequence number of the first data ele-
ment of the time window, and

[0101] 2. a counter value ¢, where ¢ counts the
number of time windows that start at time T plus an
endmarker, when the data aggregation is the last
aggregation of a time window that starts at time 7.

The sequence number is composed of two parts:

[0102] Similar to the filtering stage above, the data aggre-
gation stage adds gap stream elements for this stage when
shifting the sliding window by more than one position to the
right. The meta-information of a gap element is a special
case of the meta-information for an aggregated data element
of the time window [, k]. In particular, the timestamp is the
singleton interval {t} and the sequence number is the
sequence number of the “skipped” data element with time-
stamp T together with the endmarker. These gap elements
can be distinguished from aggregated data elements over a
singleton interval, since their sequence number does not
include a counter value.

[0103] In other words, according to an embodiment of the
present invention, a first aggregator outputs for each window
an aggregation. Since the aggregator can receive the ele-
ments in any order, the aggregations are not necessarily
ordered. For instance, the aggregation for the window [1, 2]
may be output after the aggregation for the window [6, 10].
In the case that a later pipeline stage would aggregate data
based on these previously aggregated values, it would be
advantageous for such a later aggregator to be able to
identify whether there is a gap between two received aggre-
gated values. To this end, the first aggregator inserts the gap
elements (dummy elements) discussed above with the
described timestamps and sequence numbers.

[0104] The new timestamps are also linearly ordered by
extending the timestamp ordering of the incoming data
stream lexicographically. Furthermore, the linear and dis-
crete ordering of the sequence numbers for each component
within the incoming data stream extends to a linear and
discrete ordering with a least element, or the smallest
element according to the ordering. For example, zero is the
least element over the natural numbers, which are ordered by
<. With this meta-information at hand, the same approach as
in Section 7.2.1 of D. Basin, F. Klaedtke, and E. Zalinescu,
“Runtime verification over out-of-order Streams” ACM
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Transactions on Computational Logic (TOCL), 21(1):5
(2019) can be used to identify gaps at later pipeline stages.

[0105] Embodiments of the present invention provide for
one or more of the following improvements and advantages

[0106] 1) Grouping received stream elements with no
gaps between them into segments and maintaining two
data structures (right-most and left-most sliding win-
dow) per segment to ensure an efficient data aggrega-
tion process. This also allows to reuse intermediate data
aggregation results when possible.

[0107] Advantage 1: For a newly received (out-of-
order) stream element, its neighboring, already-re-
ceived stream elements can be determined more
efficiently. In other words, inserting stream elements
into the data structure for data aggregation is faster.
This results in more efficient data stream processing,
saving computational resources and memory and/or
allowing for faster processing.

[0108] Advantage 2: Efficient data aggregation in a
sliding window over an out-of-order data stream, in
particular, when the combination of data items (by
the given associative operator) is costly. Thus, this
approach, compared to known approaches saves
computational resources and memory, and reduces
latency of later processing pipeline stages.

[0109] 2) Adding gap stream eclements (e.g., dummy
elements) to identify gaps between stream elements.

[0110] Advantage: The added gap stream elements
can make it unnecessary to buffer and sort an out-
of-order data stream before aggregating the stream
elements’ data. As discussed above sorting and buft-
ering are computationally costly and burdensome,
and causes latency. The added gap elements also
allow to parallelize pipeline stages. Gap elements
can be processed quickly in a pipeline stage without
causing latency to later pipeline stages and therefore
allow for significant improvements over solutions
based on buffering and sorting stream elements. Gap
stream elements are also different from low water-
marks. In particular, low watermarks are based on
heuristics that no late stream elements will arrive
with a smaller timestamp than the low watermark.

[0111] 3) Adjusting meta-information of stream ele-
ments (in particular, their sequence numbers) for a later
pipelining stage. For example, it is possible to include
a producer id of data aggregation and extend sequence
numbers with sliding window counters.

[0112] Advantage: Similar to improvement 2) by
providing for more efficient stream processing using
the meta-information

[0113] 4) Providing the composition of core building
blocks for processing out-of-order data streams in a
pipeline.

[0114] Advantage: Designing and implementing a
pipeline is easier and more efficient using these core
building blocks. For example, potential bottlenecks
are easier to identify. Likewise, assumptions on the
pipeline stages are easier to identify and verify, in
particular, assumptions on the ordering of stream
elements. Additionally, the core building blocks are
well-defined and can be implemented separately to
optimize the pipeline and its respective stages.
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[0115] 5) Avoiding sorting of stream elements as a
potential bottleneck.

[0116] Advantage: Computational resource and
memory savings, reduced latency and faster process-
ing.

[0117] 6) Reusing at least some partial data aggrega-
tions when possible. This is especially advantageous to
reduce computational cost when the operator for data
aggregation is computationally complex, such as
matrix multiplication.

[0118] Advantage: Computational resource and
memory savings, reduced latency and faster process-
ing

[0119] 7) Computing actual data aggregations, as
opposed to approximating data aggregations.

[0120] Advantage: Increased accuracy.

[0121] In an embodiment, the present invention provides
a method for out-of-order data aggregation comprising:

[0122] 1) Inserting a newly received stream element
according to its timestamp into a segment list.

[0123] 2) Identifying gaps between adjacent segments
in the segment list.

[0124] 3) Merging adjacent segments with no missing
stream elements:

[0125] Initializing the left-most and right-most slid-
ing window of left segment (if they do not exit).
Referring to FIG. 10, the pointers for the left-most
window and the right-most window are shown.
However, there is a special case: “small” segments
do not include yet any window. In this case, the
pointers are nil. In this case, segments are merged in
which these pointers are nil, they could remain nil (if
there is still no window within the merged segment)
or they must be initialized (if there are windows that
are now contained in the merged segment).

[0126] Computing (partial) data aggregations of the
merged segments, and outputting their data aggre-
gations. The data aggregation is preferably done
starting from the right-most sliding window of the
left segment to the left-most sliding window of the
right window.

[0127] Updating the left-most and right-most sliding
window of the merged segment.

[0128] Removing irrelevant stream elements from
the merged segment between the updated sliding
windows.

[0129] If a later pipeline stage assumes complete data
streams, this data aggregation may also insert gap stream
elements, for example in the step of merging the segments
when outputting the data aggregations, and adjust the stream
elements’ meta-information so that the later stage can infer
whether there is a gap between two stream elements. Other
pipelining stages may use the same procedure, e.g., when
splitting a data stream into multiple streams.

[0130] In another embodiment, the present invention pro-
vides a method for data stream processing pipeline imple-
mentation comprising:

[0131] 1) Designing the pipeline, in particular, using the
core building blocks of the framework shown in FIG.
6.

[0132] 2) Analyzing the pipeline design. In particular,
potential bottlenecks (buffering and sorting where pos-
sible) are removed and/or stages are parallelized where
possible. Also, the assumptions on the pipelining stages
are identified and it is checked if the assumptions are
met or correct.
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[0133] 3) Implementing the pipeline, in particular,
implementing the different stages with their data opera-
tions from the analyzed and optimized pipeline design,
and linking the stages to each other. It can then be
ensured that the implementation of each data operation
meets the respective identified assumptions from the
analyzed pipeline design.

[0134] Embodiments of the present invention to improve
the efficiency and security of IoT platforms and security
operations centers which analyze data streams.

[0135] In the following, pattern matching over out-of-
order streams is discussed. Such pattern matching can used
in embodiment of the present invention, such as those
described above. Features described below can be combined
with features described above in different embodiments.
Reference is also made to U.S. Patent Application Publica-
tion No. 2019/0215340. Algorithms are presented to cor-
rectly reason about system behavior in real time even when
receiving system events in an order different from the
events’ occurrence. The presented online algorithms
promptly output the matches of patterns in out-of-order
streams, where the patterns are either given as finite-state
automata or formulas of a linear-time temporal logic. At the
algorithms’ core is a novel data structure for storing and
combining intermediate matching results. Findings of an
experimental evaluation of prototypes that implement the
presented algorithms are also reported.

[0136] Contributions provided by the following discussion
are the online algorithms for pattern matching and LTL trace
checking over out-of-order streams. Both are based on
transition profiles that store intermediate results of received
stream elements. Prototype implementations of the algo-
rithms are also presented, together with an experimental
evaluation.

[0137] First, standard notation and terminology used
throughout the following discussion are introduced.

[0138] Standard terminology and notions from automata
theory are used in the following discussion. In particular, &
denotes the empty word, 2* the set of all words over the
alphabet 2, and u-v the concatenation of the words u and v.
For brevity, it is sometimes just written as uv for uv. A
nondeterministic finite-state automaton (NFA) <A is a tuple
Q, Z, q,, 9, F), where Q is a finite set of states, £ an
alphabet, q,EQ the initial state, 8:QxZ—>2€ the transition
function, and FCQ the set of accepting states. The NFA
A is deterministic if 18(q,a)l=<1, for every q€Q and a€X. In
this case, the acronym DFA is used. The function d:
QxZ*—2¢2 is inductively defined for g€Q: S(q, £):={q} and
S$(q, au):=U 7E8( q,a)g‘)(q', u), for a== and u=x*. The language
of A is LA ):={wEZ*|0(qo, W)NF=D}.

[0139] Boolean matrices are used to reason about an
automaton’s behavior. Let A =(Q, Z, q,, 8, F) be an NFA

with Q={0, . . ., n}. For each a2, it is provided to associate
the Boolean 1QIxIQI matrix M,® defined as:

1 if ged(p, q).
3§ —
Mclp-ql = {0 otherwise.
[0140] Furthermore, define M,%=U and M, %=M_>M,2,

for a€X and uEX=*, where U denotes the unit 1QIxQ matrix
(i.e., U[p, p]=1 and U[p, q]=0 for p=q) and - denotes Boolean

10
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matrix multiplication. Note that - is associative on square
matrices. Finally, for LCX*, define M;%=2, ., M, °.
[0141] Example 1: As a running example in the following
discussion, the DFA is considered over the alphabet {a, b, ¢}
depicted in FIG. 14A. It accepts the words that end with the
letter a and do not contain the letter c. The boxes in FIG. 14B
correspond to the matrices (the matrices’ superscript with
the DFA’s transition function are omitted). M,,, M, and M_.
Abox’s left border lists the source states and the right border
lists the target states. There is a dashed line from a source
state p to a target state q iff M[p, q]=1, where M is the box’s
corresponding matrix. FIG. 14C shows the boxes for the
multiplication M,,"M,=M_,=M, and the matrix Mg..
[0142] The following lemma, which is straightforward to
prove by induction, links reachability in <A to Boolean
1QIxQ matrices.

[0143] Lemma 2: Let p, Q. For w&Z* it follows that:

qE8(p,w) if M, 2[p,q]=1

[0144] Moreover, for LCZ*, it is the case that qEd(p, w),
for some wEL iff M,%[p, q]=1. Let M be the set of all
Boolean 1QIxIQI matrices. Note that (M, -, U) is a monoid
with the submonoid (M®, -, U), where M® is the subset of M
that contains the matrices U and M2, for acZ, and is closed
under .

[0145] Streams are modelled as (infinite) timed words,
that is, a stream over the alphabet X is an infinite sequence
(Tos a) (T, 2;) . . ., where the T,s are timestamps and a,E2,
for all iIEN . It is assumed that the timestamps are elements
of ©@., and require that they are strictly increasing (i.e.,
T,<t,, for every i, JEN with i<j) and nonzeno (i.e., for every
KEQ ., there is some JEN with T>x).

[0146] The elements of a stream are received iteratively.
Its elements may however be received out of order; some
may not even be received at all. The order of the received
ones can be restored by the elements’ timestamps. The
following definition allows us to describe snapshots of the
received stream elements.

Definition 3

[0147] Let X be an alphabet with (J#X. The set of obser-
vations Obs(2) is inductively defined.

[0148] The word (JO, o), [) is in Obs(X).

[0149] If the word w is in Obs(X) then the word
obtained by one of the following transformations to w
is also in Obs(Z).

[0150] Transformation (T1): Some letter (I, () of w
is replaced by the three-letter word:

n[o,m), ) ({Th.auni=).0),

[0151] where ©€l, >0, and a €. For 1=0 with T&], the
letter (I, [J) is replaced by the two-letter word: ({t}, a)
(IN(z, «), 0.

[0152] Transformation (T2): Some letter (I, (1) of w,
with I bounded, is replaced by the empty word.

[0153] The letters of the form ({t}, a) in wEObs(Z) are the
received stream elements (T, a). Gaps between stream ele-
ments are made explicit in w by the letters of the form (I, [J)
with 111>1. Note that w’s last letter is always of the form (I,
), where I is unbounded. This corresponds to the fact that
the stream elements’ timestamps are non-zero. When receiv-
ing a new stream element one of the gaps in w is split by the
transformation (T1), which also inserts the newly received
element.
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[0154] The transformation (T2) removes gaps. Note that
the removal of gaps assumes that one can identify whether
there are no missing stream elements between two received
stream elements. When elements are never lost, one can
close gaps either (a) after enough time has elapsed or (b) by
so-called low watermark messages. Note that both (a) and
(b) are based on heuristics that over-approximate an
element’s maximal delay and ignore elements with time-
stamps within closed gaps. Alternatively, gaps can be iden-
tified by attaching additional information to the elements,
namely, the producer of an element with the element’s
sequence number. Furthermore, note that gaps are treated
uniformly to simplify matters, i.e., [] acts as a placeholder
for any number of stream elements. It is also possible to
introduce additional letters to differentiate between different
kinds of gaps. For instance, [y, 4; could represent a gap of
at most k>0 elements. However, this would require that to
obtain such additional information about the not-yet-re-
ceived elements. A gap’s interval 1 constraints the time-
stamps of the possible missing stream elements. With an
additional transformation, which is omitted to simplify
matters, it is possible to shrink a gap’s interval. This may be
reasonable when receiving a live message from system
components in addition to stream elements.

[0155] In the remainder of the following discussion, let
be an alphabet, with [J¢X. Furthermore, the following
additional notation is used.

Definition 4

[0156] (i) Sub (Z) is the set of all subwords of words in

Obs (2).

(i1) Ext(w)CX* is the set of all possible extensions of
wESub(2), that is, a letter of the form (J, b) with bEX in w
is replaced by b and a letter of the form (J, [J) is replaced
by some word in Z*.

(iii) The restriction of w&Sub(X) to the interval ICQ _,,
denoted by wy,, is w’s largest subword consisting of the
letters (J, b) with b&2U{[O} and INI=@.

[0157] Transition Profiles. To reason about an automaton’s
behavior over out-of-order streams, Boolean matrices (cf.
Lemma 2 above) are equipped with additional information
(this extension is also called “transition profiles”). Before
defining transition profiles in Definitions 6 and 8 below, the
following example provides some intuition with respect to
their connection to NFAs.

[0158] Example 5: The DFA is revisited with its Boolean
matrices from Example 1. FIG. 15 shows the transition
profiles t, s, and r for the stream elements (T, a), (k, b), and
(1, ), respectively. The boxes correspond to the matrices M,
M,, and M_, already shown in FIG. 14B. FIG. 15 also shows
on the right the combined transition profile t-$ , which
corresponds to (T, a)(i, b), assuming T<K.

[0159] A box’s target and source states are annotated by
timestamps of the stream elements. The annotations keep
track of (1) the states that are reachable by a nonempty suffix
from the initial state and (2) the states from which a
nonempty prefix reaches an accepting state. For instance, for
the combined transition profile, the target state O is annotated
with r, since it is reached from the initial state 0 when
reading the word ab. The target state 0 is also annotated with
K, since it is reached from the initial state 0 when reading the
suffix b. Analogously, the source states 0 and 1 are both
annotated with T since the accepting state 1 is reached by
both of them when reading the prefix a. Note that no source
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state is annotated with K, since there is no state that reaches
the accepting state 1 with ab.

Definition 6

[0160] Let Q={0, ..., n}, for some nEN.

T is the set of transition profiles of size 1Ql, i.e., the triples
(f, M, g) with MEM and f, g:Q—2%0. Recall that M is the
set of Boolean 1QIxIQI matrices.

The operation - over T is defined as:

Mgy (.M g)y=(f" MM g")
With f*(q)=f(QUU{f({p)IM [p, q]=1, for some pEQ} and
g" (@=g' (@UU{g®)IM [q, p]=1, for some pEQ}, for q=Q.
[0161] The size of transition profiles and also matrices is

omitted when clear from the context or irrelevant to simplify
terminology. Furthermore, for t=(f, M, g), it is written that

t[p, q] for M [p, q], t for the function g, and ¥ for the

function f. In particular, for q€Q, ?(q) and t (q) denote the
sets g(q) and m(q) of timestamps, respectively. Also, f is
called the backward annotation of t and g is forward anno-
tation. Finally, u denotes the transition profile with u[q, q]=1
and u[p, q]=0 and H(q):ﬁ (=0, for p, q=Q with p=q.
[0162] As expected, (T, -, u) is a monoid, as shown by the
following lemma.

[0163] Lemma 7: (T, -, u) is a monoid.

[0164] Proof of Lemma 7. It is shown that T is closed
under - and - is associative with neutral element u. In the
remainder of the proof, t, $, r range over elements in T and
let q=Q. Obviously, t-$ €T. It is shown next that t-u=t. The
case wt=t is symmetric and omitted. Since u’s matrix is the
unit matrix, the matrices of t-u and t are identical. For the

backward annotations: Teu )(q)=i(q), since U (p)=@, for
every pEQ. For the forward annotations: (¥4 )(q)=N{t(p)

lu[g, p]=1 for some pEQ}, since H(q):Q Since u[q, pl=1
only for p=q, it can be concluded that (¥i )(q)=t(q).
[0165] It remains to show that t-($ r)=(t-$ )r. Since
matrix multiplication on square matrices is associative, the
matrices of t($ r) and (t-$ )r are identical. For the back-
ward annotations, it holds that:

. Y
(to(sen) g) =H{g)U U {(s st(p) | i[p, g] = 1, for some p € Q} =
T@U UG (pU ULE (") | s[p’, pl =1, for some p’ € Q} |

i[p, g] = 1, for some p € Q} =
HOLAN] {§(p) | ‘t[p, gl =1, for some p Q}U U

< ’ ’ ‘ ’
{r(p)IS[p , pl=1lp, gl = 1, for some p’, pEQ}

[0166] The proof for the forward annotations is symmetric
and omitted.
[0167] Inthe following, the connection NFAs and Boolean

matrices are carried over. In particular, Lemma 9 below
extends Lemma 2 to transition profiles. Let A =(Q,, Z, qq,
3, F) be an NFA with Q={0, . . ., n}, for some nEN . Similar
to M®, T® is defined as the subset of T that is closed under
- and contains the transition profiles u and t with t[p,

qI=M.%[p, q], and ?(q) and t(q) are finite sets, for all aEX
and p, g€ Q,. Recall that for a&®, M, *EM°® denotes the



US 2021/0124746 Al

Boolean | Q,Ix| Q,| matrix as defined in Section 2. Obvi-
ously, (T®, -, u) is a submonoid of (T, -, u). Furthermore, (M,
-, U) is isomorphic to a submonoid in (T®, -, U).

Definition 8

[0168] (i) The transition profile g* is defined as g**:=(h,
M, h), with M=Mj..°> and h(q)=@, for q€Q,.

Fort€Q ., and acZ, the transition profile t# a is defined as
t4=(f, M, g), with M=M_® and f, g:Q—2%» are as
follows for q€Q,.

{r} if Mg[q, pl =1, for some pe P
flo=

(6] otherwise

{r} if Mlgo. ql=1
glg) =

(6] otherwise

For w&Sub(2), the transition profile ¥ is defined as fol-
lows.

uif w=e
£ = { g ot if w= (I, o)/, for some W & Sub(Z)

ot if w= ({7}, @)W, for some w' € Sub(Z)

where tz's matrix only depends on A ’s transition function
8, whereas the functions i and i# depend also on «A’s
accepting states F and <A ’s initial state q, respectively.
[0169] Lemma 9:

Let wESub(2), p, ¢€Q, and v€Q ..

(a) t [p, q]=1 iff g€8(p, v), for some VEEX(W).

(b) t€# () iff T is a timestamp in one of w’s letters and
qES(qy, 1), for some UEEX(Wifre ).

(c) 1€ (q) iff T is a timestamp in one of w’s letters and 8(q,
wNF=3, for some uEEXt( Wit ).

[0170] This part of the discussion ends with Lemma 11
below, which shows that transition profiles provide a means
to reason about the acceptance of certain words by an
automaton. In particular, for given transition profiles t; and
t5t, it can be inferred whether the NFA A accepts subwords
in Ext(uv) that start in u and end in v.

[0171] Proof of Lemma 9: (a) follows from Lemma 2. To
prove (b), this is done by an induction over w’s length. (c)
is proven analogously. The base case Iw|=0 trivially holds.
Note that tf =u in this case. For the step case, a case split is
made on w’s last letter. Recall that O is associative by
Lemma 7.

Case w=w' (I, (), with w'ESub(Z) and the interval ICQ _,.
Since tf ,-a? =t and g**(q)=0, it is the case that T€iZ (q)
iff t€U{ i (p)la” [, p]=1, for some pEQ }, that is, there is
some pE Q with € (p) and g [q, p]=1. By the induction
hypothesis, T€1% (p) iff T is a timestamp in one of w'’s letters
and pEd(qe, 1), for some WEEXH(W' Witeo )). Furthermore,
from (a), it follows that ¢ [q, p]=1 iff g€(p, ), for some
uex*, Thus, un'€Ext(Wrire ).

Case w=w'({k}, a), with w'ESub(Z), k=t, and acX. Since
4 -2 =¢ and &1 (QFQ, it is that T€¥ (q) iff T€U{
# (p)lt[q, p]=1, for some p=Q }. Similar as in the previous
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case, it is concluded that this is equivalent to that T is a
timestamp in one of w’s letters and q€0(q,, u), for some
uEExt( Wit ).

Case w=w'({t}, a), with w'ESub(Z) and acr. Since tf -1, =
t it is the case that T€ ¥ (Q)iff|#=E 4 (QQUU{ (p)I 14 [q,
p]=1, for some p= Q }. Since the timestamps are ordered in
w, it follows from the induction hypothesis that Tz (q) iff
TE & (q), which in turn is equivalent to that T is a timestamp
in one of w’s letters and qE0(q,, u), for some uEEXt(

WF[‘r,oo )

Definition 10

[0172]

(1) The outer match set of t is the set (U, qEF?(q))x? (90)-
(i) The inner match set between t and $ is the set U, <p(
Qx5 (Q)-

[0173] Lemma 11:

For the transition profiles # and !, with u, v&€Sub(X), let
O be the outer match set of 1 and I the inner match set
between ' and t*, respectively.

(1) Provided that T and t' are the timestamps of u’s first and
last letter,

Let t and $ be transition profiles.

wyeoy U SgomNF+d
(i1) Provided that uvESub(X),

Sgo, MNF £

[r.7']

(r,7) el if U

weExt| uv[

for all timestamps T and t' of some letter in u and v,
respectively.
[0174] Proofof Lemma 11: To first prove (i), by definition,

(T, THEO0 iff T€% (q) and TEH (q,), for some qEF. By
Lemma 9(b) and (c), this is equivalent to q€d(q,, w,) and
S(qo, w,)NF=Q, for some w,, w,EExt(u) and gEF. Note that
T and T are the timestamps of u’s first and last letter. The
equivalent statement is obtained that UweExt(u)S(qO,u)ﬁF;s@.
Next, to prove (ii, by definition, (t, ©)&l iff 1€ (q) and v'E
% (q), for some q€Q. By Lemma 9(b) and (c), this is
equivalent to qES(qO, w,) and 3(q, w,)NF=0, for some
w,EExt( U} [to) and w,EExt(v; [0,t']), where T is a time-
stamp of one of u’s letters and ' is a timestamp of one of v’s
letters. Since w,w,EExt(wn)y, ), the equivalent statement
U, e 1yégo, WNEF#D is obtained.

[0175] In the following, an online pattern-matching algo-
rithm is described. It receives stream elements iteratively,
possibly out of order, and outputs matches promptly.
[0176] Input and Output. Throughout this section, let
0=(Ty, 3,)(T;, a;) . . . be a stream over X and r:N >N an
injective function. The function r, which defines the order in
which o0’s elements are received, is not part of the algo-
rithm’s input; the algorithm only iteratively receives ele-
ments of o. Namely, the algorithm receives (Tr(z-1,
Ar(¢-1) ) at the beginning of its £ th iteration.

[0177] The pattern is given through a pair (J, A ), where
JCQ@ ., is an interval and A an NFA with e&L(A). In
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iteration € =1, 2, . . ., the algorithm outputs timestamp pairs
(T, T) with i, jE{r(k)lk<#} for which the pattern (J, )
matches o from i to j, that is, T-t,&J and a, . . . aEL(A).
Note that not all stream elements (t,, a,) with i<k<j must be
received for reporting the match. A timestamp pair is output
as soon as the stream elements received so far witness the
match.

[0178] For finding the matches the algorithm uses an NFA
€ that accepts the complement of the pattern NFA A | i.e.,
L(A)=Z*L(C). The NFA C may either be given directly to
the algorithm or it is obtained from the NFA A via the
powerset construction in a preprocessing step. Note that
using the powerset construction may result in an exponential
blowup. However, C’s construction is a preprocessing step
and it is possible to apply various state-based reduction
techniques to <A first and to the resulting DFA. Furthermore,
complementation is easy when A is a DFA. Also note that
when C is given directly, it can be exponentially more
succinct than A .

[0179] Observe that there is no match from T, to T, if
C witnesses the acceptance of a, . . . a,, where gaps caused
by stream elements that have not been received so far are
instantiated with words in 2*. Otherwise, there is a match,
since C accepts the complement of A . In this case,
C rejects any instantiation, no matter how the gaps are
instantiated. This explains why € was worked with, instead
of A : Checking that some instantiation is accepted by € is
easier than checking that all instantiations are accepted by
C.

[0180] For the remainder of this part of the discussion, the
pattern (J, A) and an NFA C=(Q, Z, q,, 9, F) with I(
AN=ZHL(C) is fixed. It is assumed that € is complete (i.e.,
for all p€Q and bEZ, there is q€Q with q&d(p, b)).
Furthermore, it is assumed that C is reverse complete (i.e.,
for all g€Q and bEZ, there is pEQ with g&3(p, b)) or € has
an accepting sink state (i.e., there is gF with g=(q, b), for
all b&2). These assumptions are without loss of generality.
They can always be met by adding extra states without
altering the automaton’s language.

[0181] Algorithm: The algorithm maintains a doubly-
linked list s that stores the segments of the received stream
elements, where a segment maintains information about the
received elements with no gaps between them. To simplify
notation, a segment is identified with its corresponding word
of the received stream elements. The segments in the list s
are ordered by the timestamp of their first stream element.
Note that each segment spans over an interval [T, T|CQ .,
where T is the smallest timestamp of the segment’s stream
elements and ' is the largest timestamp of the segment’s
stream elements. Concretely, a segment u has (1) the fields
prev and next that point to the previous and next segment,
respectively, (2) the field interval that stores the timestamps
of the first and last letter in u, and (3) the field profile stores

C’s behavior over u, i.e., the transition profile t;. The
following procedures are used for segments:

[0182] New(l, t) returns a new segment for the interval |
and the transition profile t.

[0183] Add(s, u) adds the segment u to the ordered list of
segments s and returns the new list head.

[0184] Merge(u, v) merges the segment u with the seg-
ment v. The updated fields of u are as follows. First, v is
removed from the segment list, i.e., u.prev remains
unchanged, u.next is set to v.next, and the previous pointer
of the segment v.next is updated by pointing to u, provided
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it is not nil. Furthermore, u.interval is enlarged to also
include u.interval. Finally, u.profile is multiplied by u.pro-
file.

[0185] Gap(u, v) returns true iff there is a gap between the
segments u and v. Note that the implementation of Gap
depends on how gaps are identified. The implementation of
the other procedures is straightforward and omitted.

[0186] The pseudocode of the pattern-matching algorithm
(also referred to below as PatternMatcher) is presented in
Listing 1. In line 2, the list s is initialized with the empty list.
After initialization, PatternMatcher enters a nonterminating
loop that continuously receives and processes stream ele-
ments. The loop body comprises three parts:

1. The first part (lines 4-7) first receives the new stream
element (v, a). It then checks the special case whether the
one-letter word a matches. Finally, it updates the list s by
inserting the newly created segment consisting of the single
stream element (T, a).

2. The second part (lines 8-14) iterates through the list s and
merges segments whenever there is no gap between them.
When merging two segments, the algorithm also checks for
matches between those.

3. The third part (lines 15-21) iterates again through the list
s. This iteration checks for matches spanning over multiple
segments with gaps between them.

Listing 1:

1 procedure PatternMatcher(o)

2 s « nil

3 loop

4 (v, @) < receive element from stream o

5 if 0 € J and (v, T) not in the outer match set of 54 then
6 output (v, T)

7 s < Add(s, New({t}, 12.4))

8 for v < s.next; v = nil; v < v.aext do

9 u < v.prev

0 if not Gap(u, v) then

1

foreach T € UJqEQu,pmﬁle(q) and k € U, cv.prolile(q)

withk - T e
and
12 (7, K) not in the inner match set between u.profile
and v.profile
do
13 output (T, K)
14 Merge(u, v)
15 t < s.profile
16 for v < s.next; v = nil; v < v.anext do
17 5 gc o v.profile
18 foreach v € quﬁi(q.) and k e U, -8q) with k and
19 (T, k) not in the inner match set between t and sdo
20 output (T, K)
21 te—tos
[0187] Example Run. For illustration, consider the pattern

((0, 3], A ), where A is the DFA from Example 1 and the
stream 0=(1, a)(2, b)(3, a)(4, ¢)(5, a) . . . . It is assumed that
the stream elements are received in the order given by the
function r:N>N with r(0)=1, r(1)=0, r(2)=2, r(3)=4, and
r(4)=3. Note that the automaton C is easily obtained from
A by swapping A ’s accepting and nonaccepting states.
FIG. 16 shows the segments stored in the list s in the
PatternMatcher’s first five iterations. The left-hand side of
FIG. 16 shows s after inserting the segment for the newly
received stream element and the right-hand side of FIG. 16
shows s after merging segments with no gaps between them.
Although PatternMatcher only uses €, FIG. 16 also shows
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the annotations of A ’s transition profiles. The forward
annotations are anyway identical to C’s forward annota-
tions.

[0188] In the first iteration, the singleton segment with the
stream element (2, b) is created and inserted into the list s.
This segment originates from the transition profile s from
Example 5 for A, where k=2. Note that the segment’s
transition profile for C is identical to $ with k=2, except
that all target states are also annotated with Kk=2. Since s only
contains one segment, both for loops (line 8 and line 16 of
Listing 1) are not executed at all.

[0189] In the second iteration, the singleton segment for
the stream element (1, a) is first created and inserted into the
list s. The segment’s transition profile originates from t also
from Example 5, where t=1. The transition profile for € is
identical to t, except that only the target state 2 is annotated
with t=1. Note that although a€L.(A ), no match is reported,
since the segment does not satisfy the pattern’s metric
constraint (0, 3]. The first for loop is executed once. It is
assumed that the procedure Gap returns false and the two
segments in s are merged. No match is output. The second
for loop is not executed at all.

[0190] In the third iteration, the stream element (3, a) is
received. Similarly to the previous iteration, no match is
output in line 6, since the pattern’s metric constraint is not
satisfied. The first for loop is executed once. It is assumed
again that Gap returns false and the two segments in s are
merged. This time however two matches are output, namely,
(1; 3) and (2; 3). As in the previous iterations, the second for
loop is not executed at all.

[0191] So far, the second for loop has not been executed.
This changes in the fourth iterations when receiving the
stream element (5, a). The first for loop does not merge any
segments. The second for loop is executed once. FIG. 17
shows the involved transition profiles. Note that (1, 5), (2,
5), and (2, 3) are inner matches for A . None of them is
output. The first one, e.g., does not satisfy the pattern’s
metric constraint. All three matches are also inner matches
for €. This means that depending on how the gap is filled
both A and C accept words with a suffix and a prefix of the
corresponding segments. Finally, in the fifth iteration, the
stream element (4, ¢) is received and the first for loop merges
the three segments in s. No matches are output.

[0192] Correctness. The following theorem establishes
PatternMatcher’s soundness (i.e., only matches are output).
It also establishes PatternMatcher’s completeness (i.e.,
every match is output) under the additional assumption that
each stream element is eventually received.

[0193] Theorem 13: If PatternMatcher(o) outputs (t,, T,)
then T-t,&J and a, . . . a,&L(A ). The converse also holds,
provided that r is suijective. Theorem 13 does not tell us in
which iteration PatternMatcher reports a match. In fact, the
algorithm’s completeness does not depend on the loop’s
third part (the lines 15-21 in Listing 1). This part is however
important in that matches are reported promptly, as estab-
lished by the next theorem. The stream o together with the
function r determine a sequence of observations w°, w', . .
. EO0bs(Z), with w°=([0, ), [J). For each ¢=1, 2, . . .,
w? is obtained from -1 by transformation (T1), which
inserts the stream element (7r(#-1), %r(-1)), and possibly
followed by (T2) transformations, which remove gaps
between received stream elements.
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[0194] Proof Sketch of Theorem 13: The algorithm’s
soundness is first proved. Obviously, if the output (z,, T))
originates from line 6 of Listing 1, then j=i, 0], and a,&L.(
€) and hence a,EL(A ). In the following, assume that the
output (T, T;) originates from line 13. Since u and v are
segments, Ext(UV [1,T,]) is a singleton set {w}, for some
wEZ*. By Lemma 11(ii), € rejects the subword w spanning
from , to T, Hence, wEL(A ). The metric constraint J is
obviously satisfied.

[0195] Finally, assume that the output (t,, T,) originates
from line 20. Observe that at the beginning of iteration £ >0
of'the for loop in the lines 16-21, it is the case that t=t; , with
u’ :=u,u, 0 . . . OUp, where the lists contains the seg-
ments Uy, Uy, . . ., Uu,. Note that for brevity, the interval for
the “gap” letters is omitted, i.e., the letters of the form (I, ().
Assume that iteration k>0 outputs (t;, T,). The timestamp T,
appears in the forward annotation of the transition profile t
and T, in the backward annotation of $, and hence also of
ug.profile. For t and $, it follows from Lemma 11(ii) that
there is no word wEExt ((¥*Dudiy,.; ) with wEL(C ). Since
C is the complement automaton of A , it is concluded that

Ext((ukﬂuk)F[Ti.f 1 W L(A). Again, the metric constraint J is
obviously satisfied.

[0196]
under the additional assumption that r is surjective. In the
» a8
A ). Let k be the iteration in which the last stream element

It remains to prove the algorithm’s completeness
remainder of the proof, assume thatt,-t&Jand a,, . . .

between T, and T, is received. If i=j then line 6 outputs (t,, T,).
It i< then after line 7 the list s contains at least two segments
u and v that cover intervals that contain T, and T,, respec-
tively. Since s is ordered, these segments appear next to each
other in s, starting with the one that contains T, and ending

with the one that contains t,. Line 13 outputs (t;, T;), when

merging these segments in the for loop in the lines 8-14.

[0197] Theorem 14: Let € >0 and i, j€{r(k)Ik<? }, with

T, <] and Ext(wi - DCL(A). PatternMatcher(G) outputs
(‘cl, ‘c) in iteration £, if has not output (v, T,) in a previous
iteration.

[0198] Proof Sketch of Theorem 14: Without loss of

generahty, it is assumed that w/ - ] contains at least one

“gap” letter. Otherwise, as in Theorem 13, line 6 or line 13
output (T,, T;) in one of the iterations 1, , €. It follows
that the lists contains at list two distinct segments after the
for loop in the lines 8-14 that span over intervals containing
T; and T, respectively. With a similar reasoning as in the
proof of Theorem 13, one shows that the for loop in the lines
15-21 outputs (t,, J)

[0199] Trace Checking: In the following discussion, the
pattern-matching algorithm discussed above is adapted to
handle specifications given in the linear-time temporal logic
(LTL). Industrial-strength extensions like the Property
Specification Language (PSL) are handled similarly. In fact,
the adaption carries over to any logic over infinite words that
(1) is closed under negation and (ii) admits a translation into
Buechi automata. Instances are, e.g., the linear-time p-cal-
culus and S18S. The resulting complexity may however differ
due to the respective translation into Buechi automata.
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[0200] Briefly recalling LTL’s syntax and semantics: Let
P be a finite, nonempty proposition set and  the alphabet 27
LTL’s syntax is given by the grammar ¢::=pl-qlgp\/plx
U, where p ranges over the propositions in P. LTL’s

semantics is defined as follows, where a o, . . . EZ.
aoy. . . 1=p iff p€ay
aoy. .. 1==@ iff apa; . . . 1=¢
agay. . . 1=/ \y iff apa; . .. I or agay . . . 1=P
aoy. . . 1=x@ iffaa, ... |=¢
aoy. . . 1=¢pUp iff there is some ieN such that
@y, ... =} and
aa;,y - - . =g, for all j& N with O=j<i

[0201] Furthermore, recall that an LTL formula ¢ of length
n can be translated into a Buechi automaton B , with at most
2909 gtates that accepts the infinite words weEX® with wl=g
[16].

[0202] In the following, let ¢ be an LTL formula. First, the
Buechi automata B _ o and B » 18 constructed from which
it is possible to then obtain the NFAs € and A as follows.
€ is identical to B _, except that C’s set of accepting
states consists of the states from which B _, accepts some
infinite word in X®. This set of states can be determined in
linear time in B _ @S number of states. The construction of
A from B @ is analogous. The overall construction is in the
worst case exponential in ¢’s length. It holds that:

L( c )=[wEZ*lwul=q, for some #€X, and
L( ‘A):{WEZ*\Wu\:(p, for some uE="}.

[0203] Furthermore, note that L({ € )UL( A )=2*, but not
necessarily L{ C)NL( A )=@. In the following, it is assumed
without loss of generality that both C and A are complete,
each with at most one rejecting state, which is a sink when
it exists.

[0204] Listing 2 below shows the adaption TraceChecker
of the pattern-matching algorithm PatternMatcher. Seg-
ments do not have the additional field complement, which
stores, similar to the field profile, transition profiles of the
NFA A . The procedure New is changed accordingly. Trace-
Checker additionally makes use of the auxiliary procedure
Output, which it calls in line 13 of listing 2 as follows:
[0205] Output (1, $) outputs the verdict T if T only occurs
in t’s forward annotation of C s sink state, provided the sink
exists.

[0206] Output (t, $) outputs the verdict T if T only occurs
in s s forward annotation of <A ’s sink state, provided the
sink exists.

[0207] Additionally, Output removes all timestamps in t’s

and s forward annotation for the respective automaton’s
sink state. Furthermore, when Output outputs a verdict T or
T then Output removes the timestamp T in the forward
annotation of the transition profiles of the segment in the list
s with the interval that contains t. The removal of the
timestamps ensures that verdicts are output at most once.

Listing 2:

1. procedure TraceChecker (0)
s « nil

N
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-continued
Listing 2:

3 loop

4. (T, o) receive element from stream ©
5. s < Add (s, New ({1}), £1¢h))

6 for v < s.next; v = nil; v < v.next do
7 u < v.prev

8. if not Gap(u, v) then

9. Merge(u, v)
10. t, ¢ < s.profile, s.complement

11. for v < s.next; v = nil; v < v.next do
12. gt ogC o vprofile, s o g‘fl o v.complement
13. Output(t, 5)

[0208] Theorem 15 below establishes TraceChecker’s
soundness and completeness. As above, let 0=(t,, a,) (T,a,)
... be a stream over 2 and r: N— N the injective function
that determined the order in which the stream elements are
received. Furthermore, let w°w!, . . . € Obs (Z) be the
sequence of observations, where w°([0, ), () and for each

£=1,2,..., w? is obtained from w?™? by a transforma-
tion (T1), which inserts o’s stream elements (Tr(¢-1),
Ar(¢-1)), and possibly followed by (T2) transformations,
which remove gaps between received stream elements.
[0209] Theorem 15:

Let £=1, 2, . .. and ©=T,,, for some i< .
TraceChecker(o) outputs the verdict T in its £ th iteration iff

. . . . ’
£ is the first iteration with vu |=g, for every v€Ext (Wrir,c) )
and uEZ”.
TraceChecker(o) outputs the verdict T in its € th iteration iff

£ is the first iteration with vuls=q, for every v&€Ext (Wf[r,oo) )
and uEZ”.

[0210] Proof Sketch of Theorem 15: The proof of (2) is
omitted as it is analogous to (1). Obviously, in the (i+1)st
iteration, the list s contains after line 5 a unique transition
profile r that contains the timestamp T in its forward anno-
tation. It is easy to see that the for loop in the lines 6-9
maintains r’s unique existence as an invariant, until the
verdict r is output in line 13 in some iteration k=i. Further-
more, as long as the transition profile r exists in the list s, the
transition profile t at the end of the for loop in the lines 11-12
also contains T in its forward annotation. Note that C is
complete by assumption.

[0211] Let k=i be any iteration before having output the
verdict T (including the iteration that outputs T, provided that
such an iteration exists). Furthermore, let w'* denote w*
without w*’s last letter (i.e., the letter of the form ([K, %),
[1)). Note that w'* corresponds to the concatenation of the
segments in the list s as done by the for loop in the lines
11-12. The following equivalences hold, from which (1)
easily follows. The verdict T is not output in the (k+1)st

iteration iff ‘tE?(q), for some of € ’s accepting states q iff
veLl(C), for some VEEXt(WIIF{]'T,m)) iff uvl=g, for some

VEEXt(er[r,oo)) and uEX". The first equivalence follows
from the procedure’s Output definition, the second equiva-
lence from Lemma 9(b), and the third from C’s construc-
tion.

[0212] TraceChecker does not make use of backward
annotations, i.e., a transition profile only needs to be com-
posed of a matrix and a forward annotation here. Second, the
NFAs € or A may not possess any sink state. In such case,
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TraceChecker does not need to compute the respective
NFA’s transition profiles as it never outputs any respective
verdict. In particular, when ¢ describes a liveness property,
L(C)=2* and € does not have a sink state as at any point
in time, it is possible to satisfy ¢, i.e., any prefix w&Z* can
be extended with a suffix uex® such that wul=g holds. Third, the

NFA C and its transition profiles suffice when only interested in @’s falsifi-
cation. Analogously, the NFA A and its transition profiles suffice when only
interested in @’s satisfaction.

[0213] Prototype implementations of PatternMatcher and
TraceChecker were made in the Go programming language
and evaluated, as discussed below.

[0214] Transition Profiles: The efficient composition of
transition profiles is important. To this end, cache efficient
data structures were used for transition profiles. More con-
cretely, the columns and rows of Boolean matrices were
represented as bit sets. For instance, and nxn Boolean matrix
with n=64 is represented by essentially 2n 64-bit integers.
Furthermore, for matrix multiplication, which follows the
native cubic matrix multiplication algorithm, bit operations
on 64-bit integers are used for computing the rows and
columns of the resulting matrix. Note that more sophisti-
cated sub-O(n®) matrix-multiplication algorithms exist.
They do, however, not necessarily perform better in practice.
Analogously, bit sets are used to represent the transition
profiles’ annotations. More concretely, the data structure for
annotations is composed of an ordered array of timestamps
and a bit set that represents the sets in which the annotation’s
timestamps occur. For instance, for an annotation g: Q—

290 with |Ql=64, there is a bit set with m 64-bit integers,
where m is the number of timestamps in g’s range.

[0215] The transition profiles’ annotations are minimized.
First, time-stamps are removed for which the metric con-
straint J is unsatisfiable. For instance, assume that the
transition profile t spans over an interval [t,x']. If J is
bounded with right bound r, then all timestamps k with

T-K=r are removed from the set ?(q), for each q€Q. As an
example, consider the transition profile spanning over the
interval [1,5] in FIG. 16: the timestamps 1 and 2 are
removed from its forward annotation, and 3-5 from its
backward annotation.

[0216] Second, only representative timestamps are kept

track of. For an annotation g: Q—2%0 | the representatives
are determined by the equivalence relation t~, x that is
defined as t€g(q) iff T€g(q), for all ¢=Q. As an example,
consider again the transition profile spanning over the inter-
val [1, 5] in FIG. 16: the timestamps 1-4 of its forward
annotation are equivalent, and 1-3 and 5 are equivalent in its
backward annotation. Observe that timestamps T, k¥ with T~
Kk have the same behavior with respect to a transition
profile’s matrix. Only the largest or smallest timestamp of an
equivalence class is kept. The others are output, which
resembles the output of equivalent verdicts in an almost
event-rate independent monitoring algorithm. Alternatively,
one could, e.g., maintain a union-find structure that keeps
track of all the timestamps and their equivalence classes.
The representatives can be efficiently computed and the
number of annotations becomes finite for a finite set of
timestamps.

[0217] Segments: To simplify matters, Listing 1 provides
for a doubly-linked list s to store segments. Furthermore, s
is traversed three times for each received stream element.
This is computationally wasteful. For instance, adding a
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newly created segment via the Add procedure in line 7 is in
the worst case linear in the length of s. In contrast, the
implementation according to an embodiment uses (doubly-
linked) skip lists. The time complexity of the Add procedure
reduces to 0 (log n) on average. Merging multiple segments
in the loop in the lines 8-14 of Listing 1 remains straight-
forward for skip lists, which would be more difficult when
using self-balancing search trees. (AVL trees, B-trees, etc.).
Furthermore, instead of iterating through all segments, the
merging starts from the newly added segment and iterates
leftwards and rightwards, until hitting a gap between seg-
ments.

[0218] Finally, the loop in the lines 16-21 of Listing 1 is
optimized for skip lists by storing and reusing intermediate
results from previous iterations. Stored at an element’s skip
list level is the transition profile obtained from the multi-
plication of the transition profiles strictly between this
element and the element’s next element at the same skip list
height. Note the skip lists have the advantage over self-
balancing search trees that no rebalancing steps are neces-
sary, which can validate some of the intermediate transition
profiles.

[0219] Variants: Observe that the lines 15-21 in Listing 1
are only needed to output matches that span over multiple
segments with gaps between them. If one is only interested
in matches within segments, these lines can be removed. If
every gap is eventually closed, completeness is not sacri-
ficed. However, matches may not be anymore reported
promptly. In this case, promptness is traded for less com-
putation. Note that without lines 15-21, one could also
directly work with the pattern NFA A instead of with its
complement automaton C (with minor modifications for
checking for matches), or could choose the one that is
smaller.

[0220] If there is additional information about a gap (e.g.,
at most n stream elements are missing or only stream
elements (T, )&Q _,xI" with 'CX are missing), it is possible
to precompute and use corresponding transition profiles

instead of gc in line 17 in Listing 1. This can result in the
earlier reporting of matches.

[0221] In practice, one may only be interested in matches
for certain positions in a stream o. For instance, to restrict
the output to certain starting positions, these can be marked
by extending the alphabet to Ex{start, nostart}. The NFA
C is extended correspondingly, i.e., alter the letters acX of
the transitions from its initial state to (a, start). The letters of
the other transitions are changed from a&X to (a, nostart).
Without loss of generality, it is assumed here that the initial
state has no incoming transitions.

[0222] An experimental evaluation was carried out using
prototype tools which implemented Listings 1 and 2 above,
and variants thereof. It was found that transition profiles
should be minimized for better performance. Without mini-
mization, one will quickly run out of memory as the sizes of
the annotations grows for each received stream element.
Furthermore, large annotations slow down the composition
of transition profiles and the computation of the inner
matches between transition profiles. It was also found that
promptness is costly, in particular, when streams are highly
unordered. Without promptness, fairly high throughputs are
achieved and scalability is good. Without promptness, the
compositions in an iteration are local to the element
received. In particular, the number of compositions is
bounded by a constant, namely, two in the setup which was
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evaluated. In contrast, with promptness, the compositions
are not locally bounded. Promptness requires to carry out
several compositions of transition profiles in each iteration
across the segments (around log n compositions, where n is
the number of segments). Although each composition is fast
(usually within a fraction of a millisecond), this still adds up.
It was also found that scalability seems fairly robust for
different patterns (e.g., automata structure, number of states,
and intervals). One reason for this is that the matrices are
encoded as 64-bit integer arrays and use bit operations on
this encoding. Note that for the considered pattern automata,
the sizes of the resulting matrix data structure are all equal.
Another reason is that composing transition profiles (e.g.,
matrix multiplication) shows fairly similar performance for
different automata.
[0223] FIG. 18 shows two families CNT (left-handed side)
and MUX (right handed side) of pattern automata used in
experiments for PatternMatcher.
[0224] FIG. 20 shows out-of-orderness for A=0.01 (left)
and A=0.1 (right) of event streams spanning over one second
and with an event rate 50,000. Thus, FIG. 20 shows the
“out-of-orderness” of event streams with a higher event rate
than in FIG. 19, namely, 50,000 instead of 10,000.
[0225] While the invention has been illustrated and
described in detail in the drawings and foregoing descrip-
tion, such illustration and description are to be considered
illustrative or exemplary and not restrictive. It will be
understood that changes and modifications may be made by
those of ordinary skill within the scope of the following
claims. In particular, the present invention covers further
embodiments with any combination of features from differ-
ent embodiments described above and below. Additionally,
statements made herein characterizing the invention refer to
an embodiment of the invention and not necessarily all
embodiments.
[0226] The terms used in the claims should be construed
to have the broadest reasonable interpretation consistent
with the foregoing description. For example, the use of the
article “a” or “the” in introducing an element should not be
interpreted as being exclusive of a plurality of elements.
Likewise, the recitation of “or” should be interpreted as
being inclusive, such that the recitation of “A or B” is not
exclusive of “A and B,” unless it is clear from the context or
the foregoing description that only one of A and B is
intended. Further, the recitation of “at least one of A, B and
C” should be interpreted as one or more of a group of
elements consisting of A, B and C, and should not be
interpreted as requiring at least one of each of the listed
elements A, B and C, regardless of whether A, B and C are
related as categories or otherwise. Moreover, the recitation
of “A, B and/or C” or “at least one of A, B or C” should be
interpreted as including any singular entity from the listed
elements, e.g., A, any subset from the listed elements, e.g.,
A and B, or the entire list of elements A, B and C.
What is claimed is:
1. A method for processing an out-of-order data stream,
the method comprising:
inserting a new data stream element into a segment list
according to a timestamp of the new data stream
element;
identifying whether there are missing data stream ele-
ments between segments in the segment list;
merging the segments which have no missing data stream
elements between them; and
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aggregating values of the data stream elements using a
sliding window over out-of-order data stream elements
in the merged segment.

2. The method according to claim 1, wherein each of the
segments includes a left-most sliding window and a right-
most sliding window, wherein the values of the data stream
elements are aggregated by moving the right-most sliding
window of a first one of the segments to the right and
computing data aggregations in each window until a left
bound of the right-most sliding window of the first one of the
segments matches with a left bound of the left-most sliding
window of a second one of the segments, the second one of
the segments spanning a time window that is later than the
first one of the segments, and wherein the computed data
aggregations for each of the windows are output.

3. The method according to claim 2, further comprising
removing data stream elements between a right bound of the
left-most sliding window of the first one of the segments and
the left bound of the right-most sliding window of the
second one of the segments.

4. The method according to claim 3, wherein a plurality
of pairs of segments are merged in parallel.

5. The method according to claim 1, wherein the segment
list is a skip list which stores partial data aggregations, the
segments being ordered ascendingly by timestamps of their
stream elements, and wherein the new data stream element
is inserted into the skip list as a new singleton segment.

6. The method according to claim 5, wherein the skip list
includes a plurality of buckets into which data stream
elements of the data stream are insertable in parallel.

7. The method according to claim 1, further comprising
inserting a gap element for an identified missing data stream
element.

8. The method according to claim 7, wherein the gap
element has meta-information which includes a timestamp
of'a singleton interval and a sequence number of the missing
data element having the timestamp together with an end
marker.

9. The method according claim 1, further comprising
annotating each data stream element of the data stream from
a plurality of data producers with sequence numbers so as to
provide a lexicographical ordering of the data stream ele-
ments.

10. The method according to claim 9, further comprising
filtering some of the data stream elements out of the data
stream and inserting gap elements annotated with the same
sequence numbers as the data stream elements which were
filtered out.

11. The method according to claim 1, further comprising
inserting a gap element for an identified missing data stream
element, the inserted gap element being annotated with
meta-information including a timestamp of a time window
of the segments, a data producer and a sequence number.

12. The method according to claim 11, wherein the data
producer is a data producer of a first data stream element in
the time window, and wherein the sequence number com-
prises two parts, a first part having a sequence number of the
first data stream element and a second part having a counter
value of a number of time windows that start at the time-
stamp.

13. The method according to claim 1, wherein a tree is
stored for each segment in the segment list, wherein the data
stream elements of the segments are aggregated using an
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associative operator from left to right, and wherein the
subtrees of the trees of the segments are reused during the
aggregation.

14. A system comprising one or more processors which,
alone or in combination, are configured to provide for
execution of a method for processing an out-of-order data
stream, the method comprising:

inserting a new data stream element into a segment list

according to a timestamp of the new data stream
element;

identifying whether there are missing data stream ele-

ments between segments in the segment list;

merging the segments which have no missing data stream

elements between them; and

aggregating values of the data stream elements using a

sliding window over out-of-order data stream elements
in the merged segment.
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15. A tangible, non-transitory computer-readable medium
having instructions thereon which, upon being executed by
one or more processors, alone or in combination, provide for
execution of a method for processing an out-of-order data
stream, the method comprising:

inserting a new data stream element into a segment list

according to a timestamp of the new data stream
element;

identifying whether there are missing data stream ele-

ments between segments in the segment list;

merging the segments which have no missing data stream

elements between them; and

aggregating values of the data stream elements using a

sliding window over out-of-order data stream elements
in the merged segment.
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