
United States Patent (19)
Pan et al.

III III
US00553.5213A

11 Patent Number: 5.535,213
(45) Date of Patent: Jul. 9, 1996

(54) RING CONFIGURATOR FOR SYSTEM
INTERCONNECTION USING FULLY
COVERED RINGS

(75. Inventors: Shien-Tai Pan, Travis County, Tex.;
Ting Cheng, Putnam County; Christos
J. Georgiou, Westchester County, both
of N.Y.; George W. Nation, Olmsted
County, Minn.; Chung-Sheng Li,
Westchester County, N.Y.

73 Assignee: International Business Machines
Corporation, Armonk, N.Y.

(21) Appl. No.: 355,862
22 Filed: Dec. 14, 1994

(51) Int. Cl. ... H04, 15/00
52 U.S. Cl. 370/85.15; 370/54; 370/85.12;

370/85.2; 370/85.5; 370/85.1
58) Field of Search 370/54, 55, 85.15,

370/941, 94.3, 85.12, 85.5, 85.2, 85.1

56 References Cited

U.S. PATENT DOCUMENTS

4,621,362 11/1986 Sy .. 370/85.14
5,04,963 8/1991 Ebersole et al. 395/2002
5,093,824 5/1992 Coan et al. 370/16
5,216,670 6/1993 Ofek et al. 370/85.14
5,297,137 5/1994 Ofek et al. 370/60

OTHER PUBLICATIONS

Balliet, et al., "Bus Architecture for Passive Fault–Tolerant
Command/Response System”, Aug. 1986, IBM Technical
Disclosure Bulletin V29 N3, pp. 1313-1317.
Christian, "Atomic Broadcast Protocol for Redundant
Broadcast Channels', Mar. 1990, IBM Technical Disclosure
Bulletin V32 N10B, pp. 319-321.

as

Ring 1 1-2 areas

Ring 2 1 - 5 -
Ring 3 1 - 4 -

seas

Ring 4 1-5 wes

Ring 5 1-6 -

Ring 6 1 - 7 --

wire arwinia Hits

Dixon, "Group Address Structure for Network Service
Nodes', Aug. 1983, IBM Technical Disclosure Bulleting
V26 N3A, pp. 1198-1200.
Lanier, et al., "Bandwidth Usage in Peer-to-Peer Closed
Rings', Sep. 1983, IBM Technical Disclosure Bulletin V26
N4, pp. 1865–1869.
Volk, "Multiplex Interface Control in a Closed-Ring Net
work', Oct. 1983, IBM Technical Disclosure Bulletin V26
N5, pp. 2272-2275.
Chen, et al. "Auxiliary Lookup Register for Switches in
Multi-Ring Networks', Feb. 1994, IBM Technical Disclo
sure Bulletin V37 N02A, pp. 355-356.
Primary Examiner-Douglas W. Olms
Assistant Examiner Melissa Kay Carman
Attorney, Agent, or Firm-Whitham, Curtis, Whitham &
McGinn; Volel Emile
57 ABSTRACT

A ring configurator for interconnection of data processing
and communication systems uses fully covered rings. The
ring configuration mechanism can be used to construct a set
of covering rings preserving full connectivity for system
interconnect. The mechanism can also be used for establish
ing the routing table for each interconnected system during
the system initialization time. To generate a set of edge
disjoint rings, a rotational mechanism is used. The rings are
considered stretching along a horizontal direction with
nodes aligned in columns across all the rings. With a proper
relabeling of the nodes, nodes appearing in the same column
position of each ring can be obtained by a simple rotation of
the nodes from the previous column of the rings. Once the
rotational position is determined for each column, a set of
N-1 edge-disjoint rings can be constructed. To find an extra
ring so that when combined with the N-1 rings thus found
the ring constraints are satisfied, a node reduction technique
is invoked. The procedure can be repeated until a set of N
edge-disjoint rings satisfying the constraints are found.

9 Claims, 11 Drawing Sheets

d
-- Loop Bock

- 2 - Loop Back

- 5 - Loop Back

-- Loop Back

- 5 -- Loop Back

-- 6 - Loop Back

--

ass

Edge-Disjoint Rings

U.S. Patent Jul. 9, 1996 Sheet 1 of 11 5,535,213

FIG.1
PRIOR ART

4

2

4. 4.

3

FIG.2
PRIOR ART

U.S. Patent Jul. 9, 1996 Sheet 2 of 11 5.535,213

FIG.3
PRIOR ART

U.S. Patent Jul. 9, 1996 Sheet 3 of 11

/
1.

FIG.4
Columns: 2 5 4

- pas

1 - 2 - 5 - 5 - Loop Back

1 - 5 - 4 - 2 - Loop Back

Loop Bock

1 - 5 - 2 - 4 -- Loop Back

FIG.5
PRIOR ART

e e2

Loop Back

Loop Back

Loop Bock

Loop Back

5,535,213

5.535,213 Sheet 4 of 11 Jul. 9, 1996 U.S. Patent

SapOU Z-N}

10?Dunfigu00 fiu!!!

|

U.S. Patent Jul. 9, 1996 Sheet 5 of 11 5,535,213

N = 7
initiatization :

-3-7-5-
FG.8A Two Rings! Return to Phase

U.S. Patent Jul. 9, 1996 Sheet 6 of 11 5,535,213

- 2-6-4-
-3-7-5-

FIG.8B Two Rings! Return to Phase

U.S. Patent Jul. 9, 1996 Sheet 7 of 11 5,535,213

2 - 7 - 6 - 5-4-3

Single Ring! Stop. Other Rings Are :

- 1-2-3-7-4-6-
-1-3-4-2-5-7-
- 1-4-5-3-6-2-
--5-6-4-7-3-

1 - 6 - 7 - 5 - 2 - 4

FIG80 (1726-35)

U.S. Patent Jul. 9, 1996 Sheet 8 of 11 5.535,213

Ring 1 1-2-3 - 5 - 4 -- 7 - Loop Back
Ring 2 1-3 - 4 - 6 - 5 - 2 - Loop Back
Ring 3 - 4 - 5 - 7 - 6 - 3 - Loop Back
Ring 4 1-5 - 6 - 2 - 7 - 4 - Loop Back
Ring 5 1-6 - 7 - 3 - 2 - 5 - Loop Back
Ring 6 1 - 7 - 2 - 4 - 3 - 6 - Loop Back

Edge-Disjoint Rings

FIG.9A

From Ring 4

|
From Ring 5 re-m ma-Herman- From Ring

From Ring 6
Nodes ReQchable from Node 2

FIG.9B

U.S. Patent Jul. 9, 1996 Sheet 9 of 11 5,535,213

FIG.10

U.S. Patent Jul. 9, 1996 Sheet 10 of 11 5,535,213

The Permutations for 4 Rings are : A - B - C - Loopback
B-A-D - LOOpb.Gck
D - A - C - LOOpback
D - C-- B- LOOpbOck

N

N s
13

14

FIG.11

5.535,213 Sheet 11 of 11 Jul. 9, 1996 U.S. Patent

[] O

[] |- ZZ

9?

K) „_|LI,LI
LZ | 17 Ç?Z

5,535,213
1.

RNG CONFIGURATOR FOR SYSTEM
INTERCONNECTION USING FULLY

COWERED RINGS

BACKGROUND OF THE INVENTION

E. Field of the Invention

The present invention generally relates to the intercon
nection of nodes in data processing and communication
systems and, more particularly, to a fast ring configuration
mechanism that can be used to adaptively generate a con
sistent set of routing tables in each node of the network to
facilitate passing data packets via a shortest path and/or a
least congested path in the network.

2. Description of the Prior Art
There are many applications, including distributed sys

tems, message passing clustering systems, loosely-coupled
multi-processor systems, packet-switched networks, and the
like which may be broadly described as a network of nodes
interconnected by communication links. These applications
tend to be very complex in practice. For the proper routing
of data packets in the network, each node must have
knowledge of its interconnection in the network relative to
other nodes in the network. With this knowledge, a node can
determine the shortest path to any other node in the network.
In some cases, however, the shortest path may not be the
fastest path to a destination node if that path is congested
with other traffic. In such case, it is desirable to be able to
determine at any node an alternative path which will result
in the fastest transmission of a data packet to a destination
node, given a current level of traffic in the network. Fur
thermore, when a node or nodes are added to or removed
from the network, it is necessary to update the information
at each node. A closely related problem involves fault
tolerance of the network, as when a link between two nodes
is broken, it is also necessary to provide the nodes with
sufficient information necessary to choose an alternate path.

Various techniques are known for routing data packets
over a multi-node data processing or communications net
work, and more specifically for routing each packet from an
entry node to a destination node. It is common to represent
the connectivity of nodes in a network by means of an
undirected (fully duplex) graphs or a directional (simplex)
graph. An undirected graph (or simply a graph) of N nodes
is called “fully connected” if there is an edge (link) between
every pair of nodes, or a directed edge (link) from every
node to every other node, when the graph is directed
(digraph).

FIG. 1 shows a fully connected digraph with N=4 nodes.
Theoretically, a fully connected graph is attractive because
it gives the best connectivity (since nodes are directly
connected) with the minimum delay (since there is only one
hop between nodes). However, it becomes less attractive
when the design complexity and fault-tolerance are taken
into consideration. To achieve the full connectivity for an
undirected graph, a total of N(N-1)/2 connections is
required. Obviously, for large N, the number of connections
becomes unacceptably large, leading to a very complex
interconnection system. When the edge joining a pair of
nodes breaks, the communication between these two nodes
is basically blocked (unless hopping through other nodes is
allowed).

Statement of the Problem Solved

One way of solving the problem, described above, is to
use a set of edge-disjoint covering rings (the union of the

5

10

15

25

30

35

40

45

50

55

65

2
rings covers the entire graph) as an implementation alter
native. FIG. 2 shows a set of four edge-disjoint covering
rings for the graph given in FIG. 1. FIG. 3 shows the
interconnection network for four processors using the rings
shown in FIG. 2. The major difference between FIGS. 1 and
3 is that the data packet is directly routed to its destination
in FIG. 1, whereas in FIG.3, the data packets must be routed
along the rings where they belong. There are many advan
tages of using the approach shown in FIG. 3. Full connec
tivity is still preserved. The degree of fault-tolerance is
increased because the knowledge about alternate paths is
known. The routing policy is predetermined. Packets must
be routed according to the orientation of the ring they are
placed. Data packets can be sent via the least congested path,
i.e., the hot spots can be avoided.
The rings described used for system interconnection must

satisfy the following constraints:
1. They must be edge-disjoint (as shown in FIG. 2).
2. Their union cover the fully connected graph of

(digraph) (the union of the rings in FIG. 2 covers the
graph in FIG. 1).

3. No two distinct rings go through the same set of nodes.
4. There are exactly N-1 nodes in each ring, where N is

the total number of nodes in the graph.
Although the approach proposed is appealing, it has some

difficulty in configuring a set of rings which satisfies the ring
constraints, especially when the number of nodes is large.
An experiment was conducted to show the significance of
this problem. The experiment used an exhaustive search to
find a set of rings satisfying the ring constraints described
above. More than four hours were required for an IBM
System/6000 Model 530 machine to find a ring configura
tion for N=10. This extraordinary long search time poses a
need for a fast ring configurator in order to realize the
advantages of edge-disjoint covering rings in a practical
network.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a fast ring configurator for interconnection of data process
ing and communication systems that can be used to adap
tively generate a consistent set of routing tables in each node
of the system.

It is a another object of the invention to provide a fast ring
configurator for adaptively generating a consistent set of
routing tables in each node of a network, facilitating the
addition or removal of a node or nodes from the network.

It is a further object of the invention to provide a fast ring
configurator which generates a minimum amount of data
that needs to be stored at each node in a network to define
routing information for the network and which, when
supplemented by a histogram of traffic on the network,
allows a node to send data packets via a least congested path.

According to the invention, there is provided a fast ring
configuration mechanism that can be used to construct a set
of covering rings preserving the full connectivity for system
interconnect. The mechanism can also be used for establish
ing the routing table for each interconnected system during
the system initialization time.
To generate a set of edge-disjoint rings satisfying the

constraints stated above, the invention uses a rotational
mechanism similar to the one depicted in FIG. 6. The rings
are considered stretching along the horizontal direction with
nodes aligned in columns across all the rings as shown in

5,535,213
3

FIG. 6. It has been observed that with a proper relabeling of
the nodes, nodes appearing in the same column position of
each ring can be obtained by a simple rotation of the nodes
from the previous column of the rings. Once the rotational
position (called the increment in the invention) is deter
mined for each column, a set of N-1 edge-disjoint rings can
be constructed.
To find an extra ring so that when combined with the N-1

rings thus found the ring constraints are satisfied, some node
reduction technique (described below) needs to be invoked.
The procedure can be repeated until a set of Nedge-disjoint
rings satisfying the constraints are found.
The fast ring configurator according to the invention

enables all users to generate a consistent set of routing tables
at each node within the network. The network can have any
number of nodes and any number (greater than two) of links
on each node. The only restriction is that the link must be
directional.

It is not necessary to store the routing tables generated at
each node. At a minimum, each node can run the same
configuration program to determine the next node for the
data packet. Since all nodes run the same program, all nodes
will get the same ring configuration; however, rather than
storing the routing tables generated by the program, each
node simply needs to store predefined ring identifications
(IDs) and increments (node position). This minimizes stor
age requirements at the nodes permitting the storage of
additional information relating to traffic, faults and the like,
allowing the nodes to select alternate paths.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 is a fully connected digraph with N-4 nodes;
FIG. 2 is a set of four edge-disjoint covering rings;
FIG. 3 is the interconnection network for four processors

using the rings shown in FIG. 2;
FIG. 4 is a graph showing a "rotation' operation for an

example of four rotational positions;
FIG. 5 is a diagram showing a set of rings satisfying the

ring constraints for N=5;
FIG. 6 is a diagram illustrating the rotation of nodes

according to a basic concept of the invention;
FIG. 7 is a block diagram showing the basic ring con

figurator according to the invention;
FIGS. 8A,8B and 8C are is a step by step illustrations for

the operation of the ring configurator for N=7;
FIGS. 9A and 9B illustrate the coverability (or reachabil

ity) of the rings generated from the phase I procedure
described in this invention for N=7;

FIG. 10 illustrates the node reduction technique men
tioned in this invention for N=7;

FIG. 11 is a block diagram, similar to FIG. 3, illustrating
a specific example of a switch matrix in a network imple
menting the fast ring configurator according to the inven
tion; and

FIG. 12 is a block diagram of the structure of a 6x6 switch
Imatrix as used in the network of FIG. 11.

DETALED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

In a specific example, the invention is disclosed as a "fast
ring configurator' which is used to configure a set of

10

15

20

25

30

35

40

45

50

55

60

65

4
covering rings satisfying the ring constraints with N=5 to
illustrate the basic concept. The description for the operation
of the fast ring configurator for the general case is then
given.

For each fixed integer N, N24, let A={2, 3,..., Nand
D=1,2,...,N-2. Define a special add operator, €9, from
AxD to Aas follows: for any iea andjeD, iéj=i-j, if i-jsN;
otherwise, iéBj=i-j-(N-1). Notice that the operator €D is in
fact a rotation operation for the N-1 number in A with the
number of "rotational positions' given in D. This is illus
trated by the graph in FIG. 4 for N=5. For example: 36D1=4,
3692=5, and 5692=3, for N=5.

FIG. 5 shows a set of rings satisfying the ring constraints
for N=5. Concentrating on the first four rings in FIG. 5,
notice that we have arranged these rings in such a fashion
that all the rings are rooted at (i.e., started from) node 1 (see
column 1 in FIG. 5). By relabeling the nodes, we can make
the next node of each ring appear in the order 2, 3, 4, 5
(shown in column 2 of FIG. 5). This special arrangement
reveals a very interesting observation; to wit, the nodes in
column 3 are actually obtained by rotating the nodes in
column 2 one position up and the nodes in column 4 are
actually obtained by rotating the nodes in column 3 two
position up, as shown in FIG. 6. In fact, the nodes in column
3 and 4 are obtained by "adding' (using the operator, €9,
defined above) increments “1” and '2' to columns 2 and 3,
respectively. Again, this is illustrated in FIG. 6. It is clear
that the entire problem is now reduced to finding "appro
priate' increments. Once the increments are determined, the
four rings are uniquely determined, providing that four rings
are rooted at node 1 and the nodes next to the roots are 2, 3,
4, and 5 respectively. After the four rings are determined, the
rest of the graph needs to be checked to determine if it forms
a single ring after the removal of the four rings. If the answer
is yes, a set of edge-disjoint covering rings satisfying the
ring constraints is found; otherwise, new increments need to
be found again. In the example for N=5, the answer is yes.
The rest of the graph forms a single ring and is shown by the
ring below the dotted line in FIG. 5.
The fast ring configurator according to the invention

which leads to a set of N rings satisfying the ring constraints
is described below. Imagine that these N rings were found
and arranged in the same way as that in FIG. 5; i.e., the first
N-1 ring are all rooted in node 1 in column 1 and the next
nodes in column 2 are 2,3,..., N, respectively. The diagram
shown in FIG. 7 called the "ring configurator', will be used
as a vehicle for deriving those rings. Notice that the ring
configurator resembles the first ring and the corresponding
increments depicted in FIG. 6. Our objective is to find N-3
increments d, d, ..., d. 3 which can be used to construct
a set of N rings satisfying the ring constraints. In order to
guarantee this, it is obvious that all the increments must be
distinct and all the nodes derived from these increments in
the ring configurator must be distinct as well.
The operation of the fast ring configurator according to

the invention will be described with reference to FIGS. 7 to
10 (for N=7).

Notations:

D=1, 2, 3,..., N-2
A={2, 3, . . . , N}
€D=the special add operator defined above
\=set complement (e.g., E\F={element in E but not in F})

Notice that D is the set of all possible increments for those
d's shown in FIG. 7 and {d, d, ..., d is a subset of D.
A is the set of all possible nodes for those ns shown in FIG.
7 and n, n2, ..., n-2 is a Subset of A. As an example

5,535,213
S

for N=7, D=1, 2, 3, 4, 5 and A={2, 3, 4, 5, 6, 7}.
Initialization:

d=1
n=2
n-den
D={1}
D=2 for all k=2,3,...,N-3 (D contains the increments

that have been tried so far as candidates for d)
in-2
As an example, see the initialization portion of FIG. 8A

for N=7. In this case we have d=1, n=2, n=3 (refer to FIG.
7 for the relative positions of d, n, and n, respectively).
Since the only candidate for ds that has been considered so
far is d, D={d}={1}, D=2, D=2), and D=2. We now
proceed to search for d. Let i=2 and go to phase I of the
program:

Phase I:

(search for increments)
1) Let d=minD\({d,..., duD). If D\({d, ...,
d}UD)=2, let D=u, i=i-1, and repeat 1). Other
wise, let D=DU{d}. Go to 2).

Note that d, d, . . . , and d always represent the current
candidates for the increments.
As an example refer to the first phase I of FIG. 8A for i=2.

Since {d}UD={1}, D\({d}UD)={2,3,4,5 . Hence,
d=min {2, 3, 4, 5}=2. Now let D={2} and proceed to step
2:
2) Let n.1 Fn(Bd. If ne{n-1, ..
1). Otherwise, go to 3°).

Note that n, n, . . . , and n, always represent the current
candidates for the nodes.

Again, refer to the first phase I of FIG. 8A for i=2. Since
n=3 and d=2, n=5. Since node 5 has not shown up so far,
we will proceed to step 3 instead of step 1:
3) If i-1=N-2, go to phase II (keep all ds, Ds, ns, and

i unchanged). Otherwise, let i=1--1. Go to 1).
For our example in FIG.8A for i=2, we have i+1=3, which

is less than N-2=5. So let i=i--1=3 and repeat step 1. The rest
steps of the first phase I of FIG. 8A can be followed
according to the procedure described above.

Phase II: (check to see if the N-1 rings derived from
phase I leave the rest of the graph a single ring)

1) Let Ak=2+3+... N-k=(N°N-2)\2-k), for all k=2,
3, ...,N. (Ak) will be reduced in the next step, its last
value indicates the node not reachable from k via any
of the rings derived from phase I.)

2) Use the following nested loops to reduce the value of
Ak.

..,n-1, go to

3) If 2->A2-AA2)--> . . . -->A. . .A.2 forms a
ring of N-1 nodes, the we have found N rings satisfy
ing the ring constraints. Otherwise repeat phase I (use
the last values of ds, DS, ns, and i).

The phase II procedure of FIGS. 8A, 8B and 8C can be
best understood by referring to the example shown in FIGS.
9A and 9B (for N=7). As derived from FIG. 8A, the four
increments obtained at the completion of the first phase I are
dri, de-2, d-5, and d=3. As noted before, these incre

10

5

20

25

30

35

40

45

50

55

65

6
ments uniquely determine six edge-disjoint rings for the
digraph of N=7. These rings are shown in FIG. 9A.
The whole idea of the phase II procedure is to determine,

for each node k, the node which is not reachable ("reach
able' means "reachable in a single hop', hereafter) from
node k via any one of the rings generated from phase I
procedure which, in turn, will be used to determine whether
the graph, after the removal of all the rings, constitutes a
single ring. Because of our special naming convention and
the phase I procedure, the root node is always reachable
from any other node (due to the loop back), and vice versa.
Therefore, we only need to determine the unreachable node
from nodek, where kizl. Obviously, with this restriction, the
candidates for the unreachable node are all the nodes except
node 1 and node k itself. As an example for N=7, the
candidates for the unreachable nodes for k=2 are nodes 3, 4,
5, 6, and 7.
FIG.9B shows all the reachable nodes from node 2 based

on the rings depicted in FIG. 9A. Clearly, node 6 is not
reachable. Therefore, the link from node 2 to node 6 should
remain in the graph after the removal of all the rings.
One way of tracking down the unreachable node from

node k is to delete those reachable nodes from its candidate
list as we traverse along the rings. This can be achieved by
first computing the sum of the node numbers associated with
those nodes in the candidate list (this corresponds to the
value Ak defined in step 1 of phase II, for example A2
=3+4+5+6+7=25. Then subtract from this sum the node
number associated with each node which is reachable from
node which is reachable from node k as we traverse along
the rings (this corresponds to step 2 of phase II). We refer to
this technique the "node reduction' technique in the subse
quent discussions.
The method proposed in step 2 of phase II is just a

schematic procedure which implements the idea mentioned
above. The index k of the outer loop of the pseudocode
shown in step 2 indicates the ring that is currently being
traversed. For example, k=2 corresponds to the first ring
(e.g., ring 1 in FIG. 9A), k=3 corresponds to the second ring
(e.g., ring 2 in FIG.9A), and so forth. The inner loop of the
pseudocode corresponds to the node reduction technique
mentioned above. To understand its operation, let us con
sider the first ring in FIG. 9A (which corresponds to k=2 in
the outer loop). The directed edges appearing in this ring are
2-3, 3-5, 5-4, and 4-7 (note, ignoring 1-2 and 7-1).
Since node 3 is reachable from node 2, 3 should be sub
tracted off from AI2), i.e. A2=A2-3. Likewise, 5, 4, and
7 should be subtracted from A(3), A5), and A4, respec
tively. Specifically, the original values for A2), A3, A5),
and A4) are 25, 24, 22, and 23, respectively. After the first
round node reduction, the values become 22, 19, 18, and 16,
respectively. FIG. 10 shows the detailed steps of this node
reduction operation.

After all the rings are traversed, the last value in ADk)
indicates the node that is not reachable from node k. For
example, if Ak=n then the edge k-)n is not covered and
therefore should remain after all the rings are removed from
the graph. Step 3 of phase II is a recursive method of
checking to see if the edges left over actually constitute a
single ring. If they do, then the last edge-disjoint ring is
found and therefore all N edge-disjoint rings are found.
Otherwise, phases I and II should be repeated. For example,
by following the last values of Aks shown in FIG. 10,
A2=6, ALA2)=A(6-4, and AAA(2)=A(4}=2 (loop
back to 2). Hence, we have found a ring 2-6-4-2 which
does not cover all the remaining graph (in fact the other ring
is 3-)7->5->3). According to the criteria stated in step 3 of

5,535,213
11
-continued

12

1->10-11-13-16->2->7-14-4-15-93-99-18-12-8->17-9-36
1-11->12-14-17-3-8-15-95-16-4-2-19-13-9-8-10-7
1->2-13-15-918-94-9-16-6-17->5-3-2-14-10->19->1-8
1->3-914-16-19-5->10->17-7-18-6-4-3-15-11->2-12-39
-->4-15-17-92->6-11->18-98-99->7-5-4-16-12->3-13->10
->15->16-->18-3-7-12-19-9->2-8-6-)5->17-13-94-14-11
1-16-17-19-4-8-13-2-10-3-9-7-6-18-14-95-15-12
1->17-18->2-5-9-14-3-11-4-10-8-7-19-915-96-16-13
-18-19->3-6-10-15-4-12-5-11-9-8-92-16->7-17->14
1-19-92-94-97-11-16-95-13-96-12-12-99-3-17-8-18->15
2-15-10->5->8-13-8->3-16-11->6-19-914-9-4->17-92-7
i Nodes = 20

1->2-3-)5–8-12-17-4->11-19-99-20-14-13-10-6->18-16-97
1-3-4-6-9-13-18-95-12-20-10-2-15-14->11-7-19-17-98
1-94->5-7-10-14-9-6-3-2-11-3-16-15->2-8-20-18-9
1-95-96-8-11-15-20-7-14-3-12-4-17-16-13-9->2-19-10
1->6-7-9-2-16-2-8-5-94-13-95-18->7-14-10-3-20-1
1-7-98-910-13-17->3-9->16-5-4-96-19->8->5-11-4->2-2
1-98-9-11-14->18-94-> 0-917-26-15-97-20-19-916-12->5->3->13
1->9-10-12-15-19-5-11-18-97-16-8-2-320-17-3-6-4->14
1->10-11-13-16-20-6-12-19-8-917-9-3-2-18-14->7-)5-15
1-11->2-4-17-2-7-13-20-9-18-10-4-3-19-5-8-6-i6
1-12-13-15-18-3-8-14->2-10-19-11-5-94-20-16->9->7->7
1->13->14-16-19-4->9-15-3-11-20-12-6-5-2-17-10-8->18
-->4-15-17-320->5-10-16-4->12-92->13-7-6-93->18-11->9->19
1->5->16-18-2-6-11->17-95-13-3-14-8->7-4-19-92->i0-20
1-16-17-19-3-7-12-18-6-4-4-15-9-8-5-20->13->1->2
1->17-18-20-4-8-13-19-97-15->5-16-10-9->6-2-14->2->3
1-18-19-92->5-99-14-20-8-16-6-17-11-10-7-93-5-)-3-4
1-19-920-3-6-10-15-2-99-17-7->18-12-11-3-4-16-4-5
1-20-2-4-7-11-16-3->10->18-8-19-13-92-9-5-917-15-6
2-16-11-6-320-15-10-5-919-14-9-4->18-13-8-3-17-12-7

In some applications, a fully connected condition is
difficult to satisfy. In the practice of the invention, "fully
connected' is not a required condition. The procedure is to
assume a fully connected network and then apply the fast
ring configurator according to the invention to decompose
the fully connected network. For anonsaturated network, we
can select a subset of the set of edge-disjoint rings decom
posed by the fast ring configurator under the "fully con
nected” assumption and make sure the selected subset is
composed by (N-1)xR edges, where R is the number of
selected rings, is less than NXE edges, where 2E is the
number of edges on each node and E<N-1 for satisfying the
non-saturated condition. Furthermore, assuming Y=(NXE)-
((N-1)XR, then YCON-1). In other words, the remaining
edges can not be used to formulate another ring with
N-1 nodes.
When using the fast ring configurator according to the

invention, the resulting network topology looks like a fully
connected directed graph. No prior art has described a
method to systematically decompose a fully connected
digraph. A fully connected graph (with N nodes and 20N-1)
edges per node) is not trivial to produce to satisfy the four
conditions set out in the 'Statement of the Problem Solved'
above. In addition, the characteristics that make them dif
ferent is the packet routing. A packet in a fully connected
graph can be routed from one node to any other node in any
number of hops. This, however, makes the routing difficult
and the congestion is inevitable. The fast ring configurator of
the invention, on the other hand, simplifies routing. Once the
ring identification (ID) is assigned to a packet, its routing is
straightforward, as it can go only one direction along the
ring.
The routing tables are generated at each node, typically at

system initialization or boot. The necessary information for
running the fast ring configurator program at each node is
the node ID and the number of nodes. This information may
be stored at the node or downloaded from a master node in

30

35

45

50

55

60

65

the initialization process. Likewise, if a node or nodes are
added to or removed from the network, an interrupt is sent
to all nodes in the network from a master node followed by
the new number of nodes and a reconfigure command to run
the fast ring configurator program.

It is not necessary to store the routing tables generated at
each node. At a minimum, each node runs the configurator
program (phase I and phase II) to determine the next node
for the packet. Since the same program is run at each node,
all nodes will generate the same ring configuration. A
predefined ring ID is assigned to each ring. With reference
again to FIG. 5, one possible ring ID assignment for N=5 is
to use the number in column 2 with the last number in the
column being changed to 1.
An alternative implementation is to have each node run

the fast ring configurator program during system boot. Only
the increments from phase I need to be stored by each node.
The next node for each packet can be determined from these
increments and the ring ID. As an example with continued
reference to FIG. 5, for N=5 with the ID determined as
above, a packet routed to node 4 on ring ID=3 has the next
node 4692=6-4=2. A packet with ring ID assignment equal
to 1 can get the next node assignment using the method
described in phase II.
The foregoing implementation example may require

excessive computations to identify all the nodes on the ring
identified by the ring ID. Another possible implementation
is to have each node also store its relative position on each
ring. For example, if the positions for N=5 are assigned as
0 to 3, as opposed to 1 to 4 as shown in columns of FIG. 5,
node 5 would store its relative position in each ring as
follows:

5,535,213
13

Ring ID Position

If a packet routed to node 5 has a ring ID of 2, then since the
position for node 5 in ring ID 2 is 3 (i.e., N-2), node 5 must
loop back to node 1. Thus, the packet will be routed to node
1. If the ring ID is 4, then since the position is 2, the next
node is 56Dd=5692=7-4-3. If the ring ID is 5, then since the
position is 1, the next node is 56Bd=5GD 1=6-4-2. From
these examples, it will be understood that for this imple
mentation, the routing information for a data packet may be
contained in its header as the ring ID and position informa
t1On.

Consider a specific example of an application of the
invention as illustrated in FIGS. 11 and 12. In FIG. 11, which
is similar to FIG. 3, there are four 6x6 matrix switches 11,
12, 13 and 14. The front end (left side in the drawing figure)
of each switch is dedicated for user interfaces and the
back-end is used for interswitch connections. The front-end
port design and the back-end port design are identical;
therefore, by adding extra ports or by redeploying the
number of front-end and back-end ports, the connectivity
and the bandwidth of the system can be adjusted. It is a
scalable system. The back-end connections are generated by
the fast ring configurator as described above.

In FIG. 12, there is shown a structural diagram of one of
the 6x6 switches. There six identical port interfaces 21 to 26
which are interconnected to a switch matrix 27. Since the
interfaces are identical, only the construction of interface 21
will be described in detail. The interface is connected to the
switch matrix 27 via a buffer 211 that provides temporary
storage for a data packet being routed to or from the switch
matrix. An incoming data packet may be routed by input
selector 212 to the buffer 211 by way of reception buffer 213
and routing logic 214. The routing logic 214 has access to
information in routing table lookup 215 in order to appro
priately modify the header in the data packet. Alternatively,
the incoming data packet may be passed by input selector
212 to bypass function 216 to output selector 217, thus
effectively bypassing the port. The determination to bypass
the port may be from a comparison of the data packet header
with local ID information. Data packets received from the
switch matrix 27 are passed by the routing logic 214 to an
insertion buffer 218. The contents of this buffer is selected
by the output selector 217.
The construction shown in FIG. 12 is based on the

assumption that the directional link is a buffer-insertion ring.
Upon receiving a packet, before the packet is stored in the
reception buffer 213, a decision must be made on whether to
keep the packet on the same ring (i.e., passed to bypass
function 215) or fetch it in. When the packet is fetched and
stored in the reception buffer 213, the routing logic 214
determines the shortest path or the least used path for the
packet to reach its destination port. The routing may be only
within a switch or a jump from one switch block to another
via the back-end connections.
The advantages of the fast ring configurator according to

the invention are threefold:
1. It is flexible, handling any combination of vertices and

edges (where the number of vertices>% the number of edges
per node).

2. A routing table generated at a node by the fast ring
configurator is the same as other tables generated at other
nodes.

O

15

20

25

30

35

45

50

55

65

14
3. The routing table generated by the fast ring configurator

provides multiple paths between two nodes. This feature
provides the mechanism to solve

a. the network congestion problem, i.e., an individual
node is overloaded, and

b. the network flow control issue, i.e., how to avoid an
overheated link (edge) between two nodes.

When problems a and b are solved, then the bandwidth
and other resources within a network are fully utilized.
These problems are solved because, in each node, it is
possible to have the full scope of the network with the ability
provided by the fast ring configurator; therefore, each node
can identify the optimized path between two nodes. Fur
thermore, it is not necessary to keep a routing table with all
alternate paths. The routing table can simply be generated by
the fast ring configurator only when it is needed. The by
product is the fault tolerant feature being automatically
introduced to the network where the fast ring configurator
resides.

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi
cation within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is as follows:

1. A ring configurator method for interconnection of
nodes by edges in a network wherein data packets are
transmitted from an origination node to a destination node,
said method comprising the steps of:

storing at each node information defining the number of
nodes and the number of edges on each node in the
network; and

generating at each node a consistent set of routing tables
for routing said data packets within said network only
when said tables are required to configure or reconfig
ure the network.

2. The ring configurator method recited in claim 1
wherein said step of generating including decomposing the
fully connected network into rings, assuming a fully con
nected network, to meet the following three constraints:

a. the rings are edge-disjoint,
b. the union of the rings covers a fully connected graph of

the network, and
c. no two distinct rings go through the same set of nodes.
3. The ring configurator method recited in claim 2 further

comprising the step of selecting a subset which is composed
of (N-1)XR edges (where N is the number of nodes and R
is the number of selected rings) is less than NXE edges
(where 2E is the number of edges on each node and E<N-1
for satisfying the non-saturated condition.

4. The ring configurator method recited in claim 1
wherein the step of decomposing meets the constraint that
there are exactly N-1 nodes in each ring, where N is the total
number of nodes in the graph.

5. A method for adaptively configuring a network com
posed of a plurality of nodes interconnected by a plurality of
edges wherein data packets are transmitted from an origi
nation node to a destination node, said method comprising
the steps of:

supplying to each node in the network information defin
ing the number of nodes, the number of edges on each
node and a unique identification number to each node
in the network;

at network initialization, running a program at each node
of the network to generate a consistent set of routing
tables for routing said data packets within said network;
and

5,535,213

storing at each node information from the generation of
said routing tables from which routing decisions can be
made for data packets received at the node.

6. The method for adaptively configuring a network as
recited in claim 5 wherein the network is reconfigured upon
a change in the number of nodes and edges in the network,
further comprising the steps of:

sending an interrupt to each node in the network;
supplying each node in the network with a new number of

nodes and edges on each node in the network; and
reinitializing the network by running said program at each

node of the network to generate a new consistent set of
routing tables for routing said data packets within said
network.

7. A method for adaptively configuring a network com
posed of a plurality of nodes interconnected by a plurality of
edges wherein data packets are transmitted from an origi
nation node to a destination node, said method comprising
the steps of:

supplying to each node in the network information defin
ing the number of nodes and the number of edges on
each node in the network, wherein said information
defining the number of nodes and the number of edges
on each node in the network is stored at each node;

at network initialization, running a program at each node
of the network to generate a consistent set of routing
tables for routing said data packets within said network;
and

storing at each node information from the generation of
said routing tables from which routing decisions can be
made for data packets received at the node.

8. A method for adaptively configuring a network com
posed of a plurality of nodes interconnected by a plurality of
edges wherein data packets are transmitted from an origi
nation node to a destination node, said method comprising
the steps of:

supplying to each node in the network information defin
ing the number of nodes and the number of edges on

10

15

20

25

30

35

16
each node in the network, wherein said information
defining the number of nodes and the number of edges
on each node in the network is supplied to each of said
nodes from a central source at network initialization;

at network initialization, running a program at each node
of the network to generate a consistent set of routing
tables for routing said data packets within said network;
and

storing at each node information from the generation of
said routing tables from which routing decisions can be
made for data packets received at the node.

9. A method for adaptively configuring a network com
posed of a plurality of nodes interconnected by a plurality of
edges wherein data packets are transmitted from an origi
nation node to a destination node, said method comprising
the steps of:

supplying to each node in the network information defin
ing the number of nodes and the number of edges on
each node in the network;

at network initialization, running a program at each node
of the network to generate a consistent set of routing
tables for routing said data packets within said network,
said program including the steps of
searching for increments by which nodes in the net
work may be rotated to define a plurality of rings in
said network,

checking rings in the network derived by the incre
ments to determine if one less than a total number of
rings when removed from the network leaves a
single complete ring,

if a single complete ring is left, storing the increments,
otherwise repeating the searching and checking
steps; and

storing at each node information from the generation of
said routing tables from which routing decisions can be
made for data packets received at the node.

; :k : k sk

