
US007949765B2

(12) United States Patent (10) Patent No.: US 7,949,765 B2
Tsyganskiy (45) Date of Patent: May 24, 2011

(54) DATASTRUCTURE FOR ANALYZING USER 2002/0063735 A1 5/2002 Tamir et al. 345,745
SESSIONS 2002/0156756 A1 10/2002 Stanley

2003/0204581 A1* 10, 2003 Adar et al. 709,223

(75) Inventor: Igor Tsyganskiy, Los Gatos, CA (US) OTHER PUBLICATIONS

(73) Assignee: SAP Aktiengesellschaft, Walldorf (DE) International Search Report, International Application No. PCT/
IB03/06401, Jun. 25, 2004, pp. 1-2.

(*) Notice: Subject to any disclaimer, the term of this Official Action issued in corresponding German Application No.
patent is extended or adjusted under 35 10393809.5-53; Jan. 21, 2008; 4 pages.
U.S.C. 154(b) by 2726 days. * cited by examiner

21) Appl. No.: 10/307,906
(21) Appl. No 9 Primary Examiner — Kenneth R Coulter
(22) Filed: Dec. 2, 2002 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(65) Prior Publication Data (57) ABSTRACT

US 2004/O1 O7243 A1 Jun. 3, 2004 Methods and apparatus, including computer program prod
ucts, for providing a data structure for analyzing user ses

(51) Int. Cl. sions. A computer-implemented method, for processing
G06F I3/00 (2006.01) information exchanged between a client and server, includes

(52) U.S. Cl. 709/228; 709/203; 709/224 receiving information characterizing requests and responses
(58) Field of Classification Search 709/224, exchanged between a clientanda server. The method includes

709/223, 203, 228 extracting field names and field values from the information.
See application file for complete search history. The method includes, for each hit, creating a name-value

element for each field of the display page of the hit. Each
(56) References Cited name-value element includes a field name of the correspond

U.S. PATENT DOCUMENTS

5,796,952 A * 8/1998 Davis et al. TO9,224
5.999,975 A 12/1999 Kittaka et al.
6,112.238 A * 8/2000 Boyd et al. TO9,224
6,182,066 B1 1/2001 Marques
6,286,030 B1 9/2001 Wenig et al.
6,295,559 B1 9, 2001 Emens et al.
6,502,131 B1* 12/2002 Vaid et al. TO9,224
6.988,109 B2 * 1/2006 Stanley et al. 1f1

2O2
Receive http requests and
responses of user session

Extract http header, put, and get
information from requests and

responses

Convert extracted information
into elements offield name and

field values

For each hit, define a vector

Define sequence of vectors

ing field and all the field values of the field found in the
request and the one or more responses of the hit. The method
includes creating, for each hit, a vector of the name-value
elements created for the hit. The method includes, if the
requests and responses include multiple hits, specifying an
order of the vectors of the respective hits to define a sequence
of vectors.

25 Claims, 5 Drawing Sheets

212
Update Sequence

214
Analyze sequence

U.S. Patent May 24, 2011 Sheet 1 of 5

y 1OO

Receive requests and
responses

Extract information from
requests and responses

Process extracted information
and place into data structure

Analyze information

F.G. 1

US 7,949,765 B2

U.S. Patent May 24, 2011 Sheet 2 of 5 US 7,949,765 B2

Receive http requests and
responses of usef Session

212
Update Sequence

Extract http header, put, and get
information from requests and

responses

214
Analyze sequence

Convert extracted information
into elements of field name and

field values

For each hit, define a vector

Define sequence of vectors

FIG. 2

U.S. Patent May 24, 2011 Sheet 3 of 5

For each vector, identify which
fields are used

For each vector, identify which
fields are changed

For each vector, identify which
fields are used and changed

Add derived information to sets

FG. 3

US 7,949,765 B2

302

304

306

U.S. Patent May 24, 2011 Sheet 4 of 5 US 7,949,765 B2

Vector Vector Vector

502

504

Association

506
Filtration

FIG. 5

US 7,949,765 B2 Sheet 5 of 5 May 24, 2011 U.S. Patent

| NOISSES (EST)

089

079

099

999 999

049 ----INEITO GZ9

029

US 7,949,765 B2
1.

DATASTRUCTURE FOR ANALYZING USER
SESSIONS

BACKGROUND OF THE INVENTION

The present invention relates to data processing, and more
particularly to analyzing user sessions of network applica
tions.
A network such as the Internet usually includes client

computers (“clients') and server computers (“servers'). A
client and server are generally remote from each other and
typically communicate through connections of the network.
The relationship of client and server arises by virtue of com
puter programs running on the respective computers and hav
ing a client-server relationship to each other.

Computer programs that run in a network environment are
generally referred to as network applications. A network
application can run on either a client, a server, or both a client
and a server. One example of a network application is a Web
browser, or, simply, a browser. A browser is a program that
runs on a client and uses Hypertext Transfer Protocol
(“HTTP) or Secure Hypertext Transfer Protocol (“S-
HTTP) to exchange information with servers. Another
example of a network application is an enterprise application
hosted by a server. The enterprise application provides infor
mation or performs some function in response to interaction
with one or more clients.

In running a network application, a client usually requests
information from a server. In response to each request, the
server usually provides information to the client. A client
being operated by a human operator can, for example, use a
browser to access a Web page of a site hosted by a server. In
response to input from the human operator, the client usually
sends a request for the Web page to the server. In response to
the request, the server accesses the requested Web page and
sends a response that includes the requested page. When the
client receives the response from the server, the client can
display the Web page for the human operator to view. In
response to further input from the human operator, the client
can send another request to the server.
The information exchanged between a server and a client

usually includes field names and field values. When the Web
page includes one or more fields, for example, the request and
response can each include field names and field values of the
fields.

In general, a particular set of communications between a
server and a client will be referred to in this specification as a
user session. The set can be defined in different ways. A user
session generally includes a series of request sent by a client
to a server, and a series of responses sent from the server to the
client in response to the requests. Generally, requests and
responses of a user session are prompted by some human
interaction but need not be so.
Some user sessions can use a disconnected protocol. That

is, the client and server are not in active communication after
the server responds to a particular request from the client.
They are disconnected after each pair of request and corre
sponding response. The client must establish a new connec
tion with the server after each hit. HTTP/1.0 is one example of
a disconnected protocol.

SUMMARY

The present invention provides data structures and tech
niques for analyzing user sessions.

In general, in one aspect, a computer-implemented
method, for processing information exchanged between a

10

15

25

30

35

40

45

50

55

60

65

2
client and a server, includes receiving information character
izing requests and responses exchanged between a client and
a server. The requests and responses include at least one hit.
Each hit includes one or more responses that collectively
specify a display page presented to a user. The one or more
responses include all fields of the display page. Each hit
further includes a request sent to the server that corresponds
to the responses of the hit. The request optionally includes
fields. All the fields of the request are fields of the display
page. The method includes extracting field names and field
values from the information characterizing the requests and
responses. The method includes, for each hit, creating a
name-value element for each field of the display page of the
hit. Each name-value element includes a field name of the
corresponding field and all the field values of the field found
in the request and the one or more responses of the hit. The
method includes creating, for each hit, a vector of the name
value elements created for the hit. The method includes, if the
requests and responses include multiple hits, specifying an
order of the vectors of the respective hits to define a sequence
of vectors.

In general, in another aspect, a computer program product,
for processing information, includes instructions operable to
cause a programmable processor to receive information char
acterizing request and responses exchanged between a client
and a server. The requests and responses include at least one
hit, wherein each hit includes one or more responses that
collectively specify a display page presented to a user, the
responses including all fields of the display page, and wherein
each hit further includes a request sent to the server that
corresponds to the responses of the hit. The request optionally
includes fields, the fields of the request all being fields of the
display page. The product includes instructions to extract
field names and field values from the information character
izing the requests and responses. The product includes
instructions to create, for each hit, a name-value element for
each field of the display page of the hit. Each name-value
element includes a field name of the corresponding field and
all the field values of the field found in the request and the one
or more responses of the hit. The product includes instruc
tions to create, for each hit, a vector of the name-value ele
ments created for the hit. The product includes instruction to
specify, if the requests and responses include multiple hits, an
order of the vectors of the respective hits to define a sequence
of vectors. The product is tangibly stored on a computer
readable medium.
The invention can be implemented to realize one or more of

the following advantages. The data structure described in this
specification facilitates analysis of multiple aspects of a user
session. The same set of data can be used for different analy
ses. For example, a same set of data arranged into the data
structure can be analyzed for page specific patterns and field
specific patterns. There is no need to store multiple structures
of the collected data. The data structure can be easily and
quickly changed. For example, when the data structure is a
multidimensional matrix, a simple transformation can change
the data structure into a form appropriate for a particular
analysis. When arranged into the data structure, data collected
from a first user session can be compared to data collected
from other user sessions. When user sessions involve retrieval
of Web pages from a Web site, data collected from a first user
session can be compared to data collected from a second user
session, even when the structure of the Web site has been
altered between the first and second user sessions.
The details of one or more embodiments of the invention

are set forth in the accompanying drawings and the descrip

US 7,949,765 B2
3

tion below. Other features and advantages of the invention
will become apparent from the description, the drawings, and
the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a method for analyzing a user session of a
network application.

FIG. 2 shows an implementation of the method of FIG. 1.
FIG.3 shows a method for updating a matrix.
FIG. 4. shows an example of an updated matrix.
FIG. 5 shows a method for analyzing the updated matrix.
FIG. 6 shows an example of a computer system in which

user sessions can be analyzed as described herein.
Like reference numbers and designations in the various

drawings indicate like elements.

DETAILED DESCRIPTION

As shown in FIG. 1, a system performing method 100
receives requests and responses (step 102). At least one of the
requests or at least one of the responses includes one or more
fields. The requests and responses can be those exchanged
between a client and server connected by a network, one
example of which is the Internet. The client and server can use
HTTP to communicate. The requests and responses can
include content that is expressed in a page description lan
guage or a markup language, e.g., hypertext markup language
(“HTML'), extensible markup language (XML), standard
ize general markup language (SGML), or in any combina
tion of them. The requests and responses can include content
express in any other language that includes information of the
kind normally included in HTML tags.
The requests and responses are exchanged during a user

session of a network application. A user session can be iden
tified based on an HTTP session model. A session can start
and end, for example, upon an issuance of a server cookie and
a closure of a browser instance, respectively. A user session
can also be identified by the network application itself. For
example, a network application can include a login and logout
function that starts and terminates, respectively, a user ses
Sion. In general, a user session is a “delimited set of user
clicks across one or more Web servers' (definition of the
World Wide Web Consortium (W3C) in Web Characteriza
tion Terminology & Definitions Sheet, W3C Working Draft
24-May-1999).
The system can receive the requests and responses from

client or server or both during the user session, or it can
receive recorded requests and responses later from a log or
other memory.
The system extracts information from the requests and

responses (step 104). The system parses the requests and
responses to extract field and page information. Field infor
mation includes attributes of the fields such as a field name
and a corresponding field value. Other information extracted
can include the time the request or response was sent. Receiv
ing and extracting field information are further described in
commonly owned U.S. Pat. No. 6,286,030, which is hereby
incorporated by reference in its entirety.
The system processes the extracted information and places

the processed information into a data structure (step 106).
Processing can include, for example, grouping, comparing,
and updating the information. In particular, the system
extracts and organizes field information from the requests and
responses. For this reason, the data structure in which the
extracted information is stored will be referred to generically
as a field vector table, although in any particular implemen

10

15

25

30

35

40

45

50

55

60

65

4
tation the field information need not be organized in vector
(one-dimensional array) form and the data structure as a
whole need not be organized in a multi-dimensional array
form; other data structures can be used. However, as will be
seen, the use of arrays to organize the data does have discern
able advantages.

Field information can be grouped by hits. A hit can be
defined to include one or more responses and a request. The
one or more responses specify a Web page and the request is
sent by a client in response to a user interacting with the Web
page. A Web page can be specified by a single response or
multiple responses. In the latter case, each response can
specify a different portion and include different fields of the
Web page. Each response can also have content expressed in
a different markup language. Alternatively, a hit can be
defined to include a request for a Web page and one or more
responses that specify the Web page.
Comparing information can include, for example, compar

ing the field values included in the one or more responses of
a hit with the field values included in the request of the hit. By
performing Such a comparison, the system can, for example,
identify the fields that are used, changed, or used and
changed. Optionally, the system can derive other information
from the extracted information.

Updating the information can include, for example, adding
derived information to the field information. Processing can
alternatively include other operations, including Substituting
field names with aliases.
As mentioned above, the system can arrange the field infor

mation in a two-dimensional array or matrix. The matrix can
include groups of field information, arranged as a sequence.
The rows of the matrix can, for example, represent a hit. Each
row can include fields information extracted from the one or
more responses and the request of the hit. Each row can
furthermore include information that the system derived by
processing the extracted information. The hits can be ordered
by chronological order. Alternatively, the data structure can
be a matrix of arrays, in which matrix each array includes field
information of a hit.
The system analyzes the information (step 108). Analysis

can include a page specific analysis, a field specific analysis,
or any combination of both. Analysis can further include
statistical analyses such as clusterization, association, and
filtration.
The data structure can be changed to facilitate each type of

analysis. For example, when the data structure is a matrix, any
database operation can be applied to the matrix. Database
operations can include, by way of example, index, sort, group
by, join, cluster, and order. When there is more than one user
session, a field vector table of one user session can be com
pared to a field vector table of another user session. Field
vector tables can furthermore be combined and the combina
tion can be compared with other field vector tables or other
combinations.
As shown in FIG. 2, a system performing a method 200

receives HTTP requests and responses of a user session of a
network application (step 202). The system can receive the
requests and responses during the user session or, alterna
tively, after the user session. The system can use any or a
variety of known techniques to identify and distinguish user
sessions. The system can, for example, use a session cookie to
identify requests and responses as being part of a user session.
The session cookie includes a globally unique identifier
(“GUID) that identifies the user session. The session cookie
expires when the browser being used is closed. Alternatively,
the system can use a GUID that is included in uniform
resource locators (“URLs”) included in Web pages sent to the

US 7,949,765 B2
5

user. The GUID changes when the user session ends. In this
case, the network applications determines when the user ses
sion starts and ends. Furthermore, if HTTP/1.1 persistent
connections are used, these can also be used to identify user
sessions.
The requests and responses are exchanged between a client

and server connected by a network Such as the Internet. A
human user operating the client accesses the network appli
cation through a dynamically generated screen. Based on
information provided by the human user, which information
are included in the requests, the server provides information
to update the dynamically generated screen. In one imple
mentation, the dynamically generated Screen is rendered by
the client based on information included in responses from
the server. The response can include material represented in a
markup language such as HTML, XML, and SGML. Alter
natively, the response can include information that is repre
sented in formats compatible with dedicated online environ
ments such as an SAP R/3 environment.
The system extracts HTTP header information, put infor

mation, and get information from the received requests and
responses (step 204), or equivalent information if other client
server protocols are used. The system parses the requests and
responses to locate and extract the described information.
The system converts the extracted information into pairs of

field names and field values (step 206). A field representing,
for example, a user name can have a field name of “u name
and a field value of “John Smith'. The pair for this field would
be: (u name, John Smith).

For each hit, the system defines a vector of field informa
tion that was included in the one or more responses and the
request of the hit (step 208). This can be implemented as a
one-dimensional array of name-value elements that option
ally carries further information, as will be described. The one
or more responses describes an entire Web page and includes
all fields of the Web page. The request of the hit may include
one or more fields of the Web page. For each field, the system
groups into a name-value element the field name, the field
value as indicated by the one or more responses, and the field
value as indicated by the request. The system groups the
name-value elements of the hit into a vector. The vector can
include a page name of the Web page. The vector can include
other information, such as the GUID for the user session and
a unique identifier for the human user. Each of these further
kinds of information can be stored as name-value pairs.

Optionally, the page name in the vector can be an alias. By
using aliases, the system can compare the use of the page
during one user session with the use of the page during
another user session, even when the page name of the Web
page has been changed. A table can be used to map the
different page names to the same alias.

Field names in a vector can also be aliases, and a table can
be used to map aliases to field names. As with page names,
using aliases for field names allows the system to compare
fields even when the field names has been changed. Gener
ally, it will be the task of a human user to determine when the
Web pages having different page names are the same Web
page and when fields having different names are the same
field.
The system defines an ordering of the vectors, i.e., a

sequence (step 210). The vectors can be ordered, for example,
according to the time when a request was sent. Alternatively,
the vectors can be ordered based on other attributes that
indicate orderin which the hits occurred. For later processing,
it can be advantageous to arrange the vectors physically in
computer memory in sequence.

10

15

25

30

35

40

45

50

55

60

65

6
The sequence of vectors can be stored as a two-dimen

sional array in which the rows or columns can each represent
a hit.
The system updates the sequence of vectors (step 212).

Updating can include deriving information and then adding
the derived information to the vectors. The system can add the
derived information in additional dimensions of an array in
which the vectors are stored.

FIG. 3 shows how the system updates the sequence of
vectors in one implementation. The system identifies, for
each vector, which represents a hit, the fields of the Web page
that are used in the request of the hit (step 302). One way of
identifying such fields is to determine whether the field value
of the request is null. If it is, then the field has not been used.
If it is not, then the field has been used. For example, in a
name-value element in which field name u name:
field value response null; and field value request John
Smith, the system can determine that the field namedu name
has been used in the request of the hit. Another way of deter
mining whether a field is used is to check for a deletion of the
field value. If the field value in the field has been deleted, then
the field is not used. If the field value has not been deleted and
is either the same or has been changed, then the field is used.
An example of a deletion is the following field-value element:
field-name=u name: field-value response John Smith; and
field-value request=null.
The system can interpret any value of a field to be a null.

The system can interpret as a null, for example, all blank
spaces in a word-string field and all Zeros in a number-string
field. In general, the system can define an absence of input or
any field value as a null.
The system identifies, for each vector, the fields of the Web

page that have been changed by the request of the hit (step
304). One way of identifying such fields is to compare the
fields value of a response with the field value of a request. If
the field values are different, then the field has been changed.
Otherwise, the filed has not been changed. Given the name
value element described above, the field values have changed
from null to John Smith. The field is, hence, one that has been
changed.
The system identifies, for each vector, fields of the Web

page that have been used and changed (step 306). A field can
be used but not changed. For example, a field can have a
default value so that the field is used in the request. When the
default value is not changed, the field is still used but has not
been changed. The system can use the techniques described to
identify fields that are used and changed.

Alternatively, other information can be derived by the sys
tem by processing the sequence of vectors. For example, the
system can derive statistical information calculated from
information included in the sequence of vectors.
The system adds the derived information to the name-value

elements (step 308). In one implementation, the system can
add the derived information by adding additional dimensions
to the data structure. FIG. 4 shows an example of the updated
sequence of vectors.
The system can now use the updated sequence of vectors in

its analysis of the user session (step 214 of FIG. 2). If the data
is stored in a multi-dimensional array as has been described,
this can be transformed to facilitate the analysis. The system
can include Software to perform one or more of various kinds
of analysis, for example, sequence analysis, page field analy
sis, and path field analysis, which can be performed using
various statistical techniques.

FIG. 5 shows an example method 500 for analyzing a user
session. As shown, the system performs a clusterization
analysis (step 502), an association analysis (step 504), and a

US 7,949,765 B2
7

filtration analysis (step 506). Optionally, any of these analy
ses can be omitted and these analyses can be performed in any
order and combination. Clusterization analysis is generally
classification without appropriate information and can be
basic or include median and PAM (partitioning around 5
medoids) clusterization.

FIG. 6 shows an example of a computer system in which a
user session can be analyzed as described herein. The system
includes a client 620 and a server 640. A human user 610
accesses a network application that resides on the server 640 10
in a user session 630 that includes a first hit 635 and a second
hit 636. Each hit includes a request and one or more responses
that describe a Web page. For example, the first hit 635
includes a request 632 and a response 634. The responses and
request are exchanged over network connection 625. An audi- 15
tor capture filter 650 captures the user session 630 and stores
the session in an auditor storage 660. The auditor storage 660
can include data from other user sessions such as, for
example, user session 680. A computing device 670 includes
computer programs for extracting and arranging data as 20
described herein. As discussed the computing device can
perform these operations during the user session or after the
user session. In the former case, the computing device can
receive data from the auditor capture filter 650. In the latter
case, the computing device can received data from the auditor 25
storage 560. Optionally, the computer device can include
computer programs for analyzing the captures data as
described herein.

In one implementation, the system described above is used
to analyze user sessions of a network application for selling 30
products, such as, for example, configurable products like
computers and automobiles. The network application pro
vides a Web site that describes the configurable product.
Human operators can, by accessing the Web site, interact with
the network application to, for example, configure the prod- 35
uct, get pricing information, purchase an instance of the con
figurable product, and track purchase orders.
The Web pages of the Web site can include, for example,

fields for indicating information about the human user. Name,
address, and credit information are examples of Such infor- 40
mation. The field values for these fields are generally alpha
numeric strings. Some of the fields can be implemented as a
pull down menu. For example, the field indicating a state of
residence can be implemented as a pull down menu that lists
all fifty states. 45
The Web pages can also include fields for describing the

configurable product. In the case when the configurable prod
uct is a desktop computer, the fields can indicate, for example,
processor type, non-persistent memory type and size, video
card type, hard drive type and size, monitor type and size, key 50
board type, as well as other hardware and Software options.
The field values for these fields can be implemented, for
example, as alpha-numeric strings, pull down menus, check
boxes, or any combination of these.

Implementing the above described methods and system 55
can provide useful feedback about the user sessions of the
example network application. Analysis can, for example, pro
vide information about which configuration of the config
urable product is most commonly purchased, the percentage
ofusers sessions that result in a purchase, and so forth. Analy- 60
sis can further provide, for example, information about the
use of the Web site. This information can include which fields
or Web pages are most commonly used, which fields or Web
pages are least used, and which fields are commonly used for
a given Web page. 65
The invention can be implemented in digital electronic

circuitry, or in computer hardware, firmware, Software, or in

8
combinations of them. Apparatus of the invention can be
implemented in a computer program product tangibly
embodied in a machine-readable storage device for execution
by a programmable processor, or embodied in a propagated
signal, or embodied in any combination of the machine-read
able storage device and the propagated signal. Method steps
of the invention can be performed by a programmable pro
cessor executing a program of instructions to perform func
tions of the invention by operating on input data and gener
ating output. The invention can be implemented
advantageously in one or more computer programs that are
executable on a programmable system including at least one
programmable processor coupled to receive data and instruc
tions from, and to transmit data and instructions to, a data
storage system, at least one input device, and at least one
output device. Each computer program can be implemented
in a high-level procedural or object-oriented programming
language, or in assembly or machine language if desired; and
in any case, the language can be a compiled or interpreted
language. Suitable processors include, by way of example,
both general and special purpose microprocessors. Generally,
a processor will receive instructions and data from a read
only memory and/or a random access memory. Generally, a
computer will include one or more mass storage devices for
storing data files; Such devices include magnetic disks. Such
as internal hard disks and removable disks; magneto-optical
disks; and optical disks. Storage devices suitable for tangibly
embodying computer program instructions and data include
all forms of non-volatile memory, including by way of
example semiconductor memory devices, such as EPROM,
EEPROM, and flash memory devices; magnetic disks such as
internal hard disks and removable disks; magneto-optical
disks; and CD-ROM disks. Any of the foregoing can be
Supplemented by, or incorporated in, ASICs (application
specific integrated circuits).
The invention has been described in terms of particular

embodiments. Other embodiments are within the scope of the
following claims. For example, the steps of the invention can
be performed in a different order and still achieve desirable
results. A hit can be defined to include a request for a Web
page and, furthermore, one or more responses that described
the Web page requested. The methods and system described
can be applied to any network application, and is not limited
to those shown as examples.
What is claimed is:
1. A computer-implemented method comprising:
receiving information characterizing a hit, wherein the hit

includes a request and one or more responses related to
the request, and wherein the response or responses
include all fields of a display page;

extracting all field names and all field values from the
information characterizing the hit; and

creating a name-value element for each field of the display
page wherein the name-value element includes a field
name and all field values of the field.

2. The method of claim 1, further comprising:
creating a vector of the name-value elements, wherein a

vector is a one-dimensional array; and
specifying an order of the vectors.
3. A computer-implemented method for processing infor

mation exchanged between a client and a server, the method
comprising:

receiving information characterizing requests and
responses exchanged between a client and a server, the
requests and responses including at least one hit,
wherein each hit includes one or more responses that
collectively specify a display page presented to a user,

US 7,949,765 B2

the responses including all fields of the display page, and
wherein each hit further includes a request sent to the
server that corresponds to the responses of the hit, the
request optionally including fields, the fields of the
request all being fields of the display page;

extracting field names and field values from the informa
tion characterizing the requests and responses;

for each hit, creating a name-value element for each field of
the display page of the hit, each name-value element
including a field name of the corresponding field and all
the field values of the field found in the request and the
one or more responses of the hit, and creating for each hit
a vector of the name-value elements created for the hit;
and,

if the requests and responses include multiple hits, speci
fying an order of the vectors of the respective hits to
define a sequence of vectors.

4. The method of claim 3, wherein:
the display page is a Web page.
5. The method of claim 3, further comprising:
for each vector, identifying which fields have been used,

changed, or used and changed.
6. The method of claim 5, further comprising:
adding information to each vector to indicate whether a

field has been used, changed, or used and changed.
7. The method of claim 3, wherein:
receiving information characterizing requests and

responses includes receiving information characterizing
requests and responses sent during a first user session.

8. The method of claim 7 further comprising:
comparing the first sequence of vectors with a second

sequence of vectors that includes information from a
second user session.

9. The method of claim 8, further comprising:
assigning an alias to a field having different field names at

different times.
10. The method of claim 3, wherein the first sequence of

vectors is stored as a two-dimensional array, the method
further comprising:

performing a database operation on the array.
11. The method of claim 10, further comprising:
analyzing information in the array.
12. The method of claim 3, further comprising:
extracting a page name of a display page from the infor

mation characterizing the requests and responses; and
including the page name in a vector that includes field

information from the display page.
13. A computer program product, stored on a non-transi

tory computer-readable medium, for processing information,
the product comprising instructions operable to cause a pro
grammable processor to:

receive information characterizing requests and responses
exchanged between a client and a server, the requests
and responses including at least one hit, wherein each hit
includes one or more responses that collectively specify
a display page presented to a user, the responses includ
ing all fields of the display page, and wherein each hit
further includes a request sent to the server that corre
sponds to the responses of the hit, the request optionally
including fields, the fields of the request all being fields
of the display page;

10

15

25

30

35

40

45

50

55

60

10
extract field names and field values from the information

characterizing the requests and responses;
for each hit, create a name-value element for each field of

the display page of the hit, each name-value element
including a field name of the corresponding field and all
the field values of the field found in the request and the
one or more responses of the hit, and creating for each hit
a vector of the name-value elements created for the hit;
and,

if the requests and responses include multiple hits, specify
an order of the vectors of the respective hits to define a
sequence of vectors.

14. The product of claim 13, further comprising instruc
tions to:

determine whether a field has been changed.
15. The product of claim 14, further comprising instruc

tions to:
compare field values of a name-value element to determine

whether a field has been changed.
16. The product of claim 13, further comprising instruc

tions to:
determine whether a field has been used.
17. The product of claim 16, further comprising instruc

tions to:
compare field values of a name-value element to determine

whether a field has been used.
18. The product of claim 13, further comprising instruc

tions to:
store the vectors as a multi-dimensional array.
19. The product of claim 18, further comprising instruc

tions to:
perforin a database operation on the multi-dimensional

array.
20. The product of claim 18, further comprising instruc

tions to:
analyze information in the multi-dimensional array.
21. The product of claim 20, wherein:
analyzing includes comparing the information in the multi

dimensional array with information in a second multi
dimensional array that was created from a second user
session.

22. The product of claim 13, further comprising instruc
tions to:

assign an alias to a field having different field names at
different times.

23. The product of claim 13, further comprising instruc
tions to:

capture requests and responses during the user session.
24. The product of claim 13, further comprising instruc

tions to:
retrieve requests and responses from memory.
25. The product of claim 13, further comprising instruc

tions to:
extract a page name of a display page from the information

characterizing the requests and responses; and
include the page name in a vector that includes field infor

mation from the display page.

