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SYSTEM AND METHOD FOR PREDICTING
AND INTERPRETING DRIVING BEHAVIOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part of U.S.
patent application Ser. No. 16/836,129 filed Mar. 31, 2020.
This application claims the benefit of U.S. Provisional
Application No. 62/926,873 filed Oct. 28, 2019 and U.S.
Provisional Application No. 62/934,828 filed Nov. 13, 2019.
The entire disclosures of the applications referenced above
are incorporated by reference.

FIELD

[0002] The present disclosure relates to systems and meth-
ods for predicting and interpreting the driving behavior of
road vehicles such as cars and trucks.

BACKGROUND

[0003] The background description provided here is for
the purpose of generally presenting the context of the
disclosure. Work of the presently named inventors, to the
extent it is described in this background section, as well as
aspects of the description that may not otherwise qualify as
prior art at the time of filing, are neither expressly nor
impliedly admitted as prior art against the present disclo-
sure.

[0004] Conventional systems and methods for predicting
driving behavior may use supervised deep learning neural
networks (i.e., supervised deep learning based on artificial
neural networks) to predict the driving behavior of road
vehicles such as cars and trucks. While such conventional
systems and methods may be used to predict the driving
behavior of cars and trucks, such conventional systems and
methods may be limited in function. Accordingly, conven-
tional systems and methods for predicting driving behavior
are subject to improvement.

SUMMARY

[0005] In one example, a system for predicting and inter-
preting bad driving behavior of a vehicle is provided that
may include a first edge computing device configured to
acquire spatial-temporal data for the vehicle from one or
more sensors that are part of traffic infrastructure and the
first edge computing device arranged as a stationary com-
ponent of traffic infrastructure. The first edge computing
device may include a processor and a non-transitory com-
puter-readable medium including instructions that are
executable by the processor of the first edge computing
device. The instructions included on the non-transitory com-
puter-readable medium of the first edge computing device
may include: executing one or more unsupervised deep
learning methods with aggressiveness intention and predic-
tion algorithms on the spatial-temporal data acquired by the
one or more sensors to cluster the spatial-temporal data into
segments; integrating a language model with the unsuper-
vised deep learning method to output a bad driving behavior
in natural language; normalizing the spatial-temporal data of
the vehicle; processing the normalized spatial-temporal data
of the vehicle with a first artificial neural network to output
a spatial-temporal data vector; processing the clustered
spatial-temporal data segments using a second artificial
neural network to output a behavior feature vector; concat-
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enating the spatial-temporal data vector and the behavior
feature vector into a concatenated vector; and processing the
concatenated vector with a third artificial neural network
with aggressiveness intention and prediction algorithms to
output a predicted bad driving behavior of the vehicle in
natural language.

[0006] Further areas of applicability of the present disclo-
sure will become apparent from the detailed description, the
claims, and the drawings. The detailed description and
specific examples are intended for purposes of illustration
only and are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present disclosure will become more fully
understood from the detailed description and the accompa-
nying drawings.

[0008] FIG. 1 is a schematic diagram of road side infra-
structure and vehicle infrastructure in a system for predict-
ing and interpreting driving behavior;

[0009] FIG. 2 illustrates an example operating environ-
ment for the system for predicting and interpreting driving
behavior;

[0010] FIG. 3 is a process flow for predicting and inter-
preting driving behavior;

[0011] FIG. 4 illustrates a symbolic representation of a
segment,
[0012] FIG. 5 is another process flow for predicting and

interpreting driving behavior;
[0013] FIG. 6 illustrates another symbolic representation
of a segment; and

[0014] FIG. 7 illustrates a record of bad driving behavior
in natural language.

[0015] In the drawings, reference numbers may be reused
to identify similar and/or identical elements.

DETAILED DESCRIPTION

[0016] In conventional systems and methods for predict-
ing driving behavior, such conventional systems and meth-
ods use deep learning trained by large amounts of labeled
data to calculate prediction results. However, the deep
learning neural networks used by such conventional systems
and methods may have problems. For example, if such
conventional systems and methods use driving behavior
interpretation algorithms to provide a better understanding
of driving behavior, such algorithms may lead to poor
driving behavior prediction results. The prediction times of
conventional deep learning prediction systems may also be
limited. That is, while conventional deep learning prediction
systems may be able to make accurate predictions for road
vehicles one to two seconds in advance (i.e., one to two
seconds into the future), the accuracy of the driving behavior
predictions for vehicles greatly diminishes for predictions
more than two seconds into the future.

[0017] Example embodiments are described with refer-
ence to the accompanying drawings.

[0018] With reference to FIG. 1, a block schematic of a
system 1 for predicting and interpreting driving behavior is
shown. The driving behavior and interpretation system 1
includes a first edge computing device 10 and a second edge
computing device 60. Both the first edge computing device
10 and the second edge computing device 60 may have
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similar components. Accordingly, like components may use
the same reference numbers and repeat descriptions of like
components may be omitted.

[0019] Portions of the first edge computing device 10 may
be configured as a roadside unit (RSU) 20 that is integrated
into existing roadside infrastructure. For example, with
reference to FIG. 2, the RSU 20 may be integrated into the
existing infrastructure at an intersection 200 and housed in
a traffic cabinet 21. As such, the first edge computing device
10 is intended to be a stationary component of the traffic or
intersection infrastructure. In other words, the RSU 20
portion of the first edge computing device may be arranged
as a stationary component of the traffic infrastructure.
[0020] With reference again to FIG. 1, the first edge
computing device 10 and the RSU 20 may be referred to as
the “infrastructure side” to differentiate the first edge com-
puting device 10 from the second edge computing device 60.
[0021] Parts of the second edge computing device 60 may
be an on-board unit (OBU) 70 that is integrated together
with the various electronic and computer systems and sub-
systems in a vehicle 71. For example, the OBU 70 may be
configured to communicate with other electronic control
units (ECUs) in the vehicle using a Controller Area Network
(CAN) bus communication standard. The second edge com-
puting device 60 and the OBU 70 may be referred to as the
“vehicle side” to differentiate the second edge computing
device 60 and the OBU 70 from the infrastructure side.
[0022] In addition to the first edge computing device 10,
other components on the infrastructure side may include one
or more sensor arrays 50 with one or more cameras 52 and
detection and ranging sensors 54 connected to the first edge
computing device 10. In an example embodiment, the one or
more sensor arrays 50 may be an optional component
[0023] While the first edge computing device 10 and the
second edge computing device 60 of the driving behavior
prediction and interpretation system 1 are described in the
singular, the driving behavior prediction and interpretation
system 1 is not limited to having one first edge computing
device 10 and one second edge computing device 60. For
example, each intersection having traffic infrastructure such
as traffic control signals may include an RSU 20. In other
example, a plurality of RSUs 20 may be disposed along the
side of the road and spaced apart from each other based on
the sensing range of their sensor arrays 50. In even another
example, a plurality of vehicles 71 may be equipped with
OBUs 70. Similarly, the driving behavior prediction and
interpretation system 1 may include a singular edge com-
puting device, for example, either the first edge computing
device 10 or the second edge computing device 60. In
instances where the driving behavior prediction and inter-
pretation system 1 includes the second edge computing
device 60 as a singular computing device, the second edge
computing device may be referred to generally, for example,
as the edge computing device 60. The first edge computing
device 10 may likewise be referred to in the singular, for
example, as the edge computing device 10.

[0024] As compared to conventional computing systems
used in conventional driving behavior prediction systems,
the first and second edge computing devices 10 and 60 have
enhanced processing capabilities, lower latency, and faster
response times.

[0025] For example, with respect to the first edge com-
puting device 10, based on the enhanced computing capa-
bilities, the first edge computing device 10 can better cluster
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the data acquired from the sensor array 50 into segments
using artificial intelligence (Al) algorithms. Aggressiveness
intention and prediction algorithms may be applied to the Al
algorithms to identify and predict aggressive and bad driving
behavior. The segments can then be used to generate sym-
bolic representations and natural language interpretations to
better interpret bad driving behavior, in addition to process-
ing the data acquired from the sensor array 50 to predict bad
driving behavior of vehicles 71 within the sensing range of
the sensor array 50. By using the Al algorithms, the first
edge computing device 10 of the driving behavior prediction
and interpretation system 1 can increase the confidence level
of the calculated predictions.

[0026] The first edge computing device 10 is configured as
a distributed computing system that includes the RSU 20
that networks and communicates with a distributed cloud
networking system 40 (i.e., “the cloud”). The RSU 20
includes a graphics processing unit (GPU) 22, a central
processing unit (CPU) 24, storage 26, and a communications
module 30. The RSU 20 may be housed inside a traffic
cabinet 21 at an intersection. The traffic cabinet 21 may
include other hardware in addition to the RSU 20 for
controlling the traffic signals at an intersection. The RSU 20
of'the first edge computing device 10 and the sensor array 50
may be powered directly and/or indirectly from the grid
powerutility power used for powering the other electric
components at the intersection such as the control signals,
pedestrian signals, street lights, electric signage, traffic con-
trol signal hardware, and the like. That is, the RSU 20
portion of the driving prediction and interpretation system
may be powered by the electric infrastructure already in
place at the intersection. While the RSU 20 of the first edge
computing device 10 may be part of a vehicle-to-infrastruc-
ture (V2I) system, the RSU 20 of the present disclosure
differs from conventional RSUs, in that the RSU 20 includes
enhanced computational abilities for executing parallel com-
putations using Al algorithms.

[0027] The GPU 22 is a processor that includes various
interfaces such as a bus interface and a display interface, a
video processing unit (VPU), a graphics memory controller
(GMC), a compression unit, and a graphics and computer
array (GCA), among other components (all not shown). The
GPU 22 supports massive threading and parallel computing
and is a CUDA-enabled GPU. CUDA is an abbreviation for
Compute Unified Device Architecture and is a registered
trademark of the Nvidia Corporation. CUDA is a parallel
computing platform and application programming interface
that allows the GPU 22 to be used for general purpose
parallel processing. While CUDA is used as an example to
support parallel computing, the GPU 22 may use an alter-
native platform and application programming interface
(AP]) for parallel processing.

[0028] By using the GPU 22, large blocks of data can be
used in calculations with AT algorithms more effectively and
efficiently than the same calculations using the CPU 24.
Such Al algorithms may include, for example, dynamic time
warping (DTW), hidden Markov models (HMM), and the
Viterbi algorithm. In other words, using the GPU 22 allows
the first edge computing device 10 to more quickly execute
parallel calculations using Al algorithms to analyze and
process measurements from the sensor array 50 into seg-
mentations and to predict driving behavior for vehicles 71
based on sensor data from the sensor array 50. The GPU 22
may be used with Al algorithms to process and analyze
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measurement data from the sensor array 50, as well as other
data, to determine spatial-temporal data of the vehicles 71,
cluster the spatial-temporal data into segmentations, and
predict, for example, the paths, trajectories, intent, and
behaviors for the vehicles 71 (i.e., predicting the driving
behavior of the vehicles 71), in addition to interpreting the
driving behavior. The predictions and interpretations deter-
mined by the GPU 22 for each of the vehicles 71 may be
stored in the storage 26. The predictions and interpretations
by the GPU 22 may be sent to the distributed cloud net-
working system 40 via the communication module 30 for
further processing, such as modeling, simulation, and pre-
diction training.

[0029] The CPU 24 may be a processor for executing less
computational intensive programs and instruction sets than
the GPU 22. The CPU 24 may also be configured as a
microcontroller or as a System on Chip (SoC). For example,
the CPU 24 may execute programs and instruction sets for
transferring data between the storage 26, the GPU 22, and
the communication module 30. The CPU 24 may also be
used for controlling the communication module 30 to trans-
fer and receive data from the distributed cloud networking
system 40.

[0030] The CPU 24 may also be used as an input/output
for receiving and transmitting data to/from the sensor array
50. Alternatively, the communication module 30 may be
used for communications between the RSU 20 and the
sensor array S0.

[0031] The storage 26 may be a memory such as random-
access memory (RAM), read-only memory (ROM,) and
flash memory, and/or a storage device such as a magnetic
hard drive (HDD) or a solid-state drive (SSD) using flash
memory. The storage 26 may be used to store driving
behavior predictions and interpretations for the vehicles, in
addition to pre-trained models used by the Al algorithms
executed by the GPU 22. The storage 26 may also store
driving behavior prediction and interpretation data from the
GPU 22 for further processing by the distributed cloud
networking system 40 to generate trained prediction models
and run simulations. The storage 26 may also store pro-
grams, instruction sets, and software used by the GPU 22
and the CPU 24. The storage 26 storing programs, instruc-
tion sets, and software that can be executed by the proces-
sors, such as the GPU 22 and the CPU 24, is an example of
the storage 26 being a non-transitory computer-readable
medium. The storage 26 may also be referred to generally as
a non-transitory computer-readable medium.

[0032] The communication module 30 allows the RSU 20
of'the first edge computing device 10 to transmit and receive
signals and data with external systems, devices, and net-
works. Generally, the communication module 30 may be
used to input and output signals and data to and from the
RSU 20. The communication module 30 may be used to
receive messages from other connected infrastructure such
as signal phase and timing (SPaT) messages from traffic and
pedestrian control signals, basic safety messages (BSMs)
from vehicles having dedicated short-range communication
(DSRC) and connected to a vehicle-to-everything (V2X)
system, and personal safety messages (PSMs) from pedes-
trians and cyclists connected to the V2X system (e.g., by a
mobile phone). The communication module 30 may also be
used to broadcast SPaT messages and intersection Map Data
(MAP) messages to connected road users.
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[0033] The communication module 30 may include a
wireless access point (WAP) 32, gateway, or like networking
hardware to wirelessly connect the RSU 20 to an external
network such as a wireless local area network (WLAN) or
local area network (LAN). For example, the WAP 32 may be
configured to communicate wirelessly using an IEEE 802.11
protocol. Alternatively, or in addition to the WAP 32, the
communication module 30 may include a transmitting and
receiving device 34 that is configured to communicate either
wirelessly or by wire with external devices. The transmitting
and receiving device 34 may be, for example, a transceiver,
a modem, and a network switch. For example, the transmit-
ting and receiving device 34 may be a cellular transceiver 34
configured to transmit and receive cellular signals at cellular
allocated frequencies. As such, the cellular transceiver 34
may be configured for mobile telecommunication and cel-
Iular network technologies such as 2G, 3G, 4G LTE, and 5G
for transmitting and receiving data to provide mobile broad-
band capabilities to the RSU 20. A cellular transceiver 34
can connect the RSU 20 to a wireless wide area network
(WWAN) or WAN. Generally, the communication module
30 may be configured for wired and wireless communica-
tions using common communication standards and technol-
ogy such as IEEE 802.3, IEEE 802.11, Bluetooth, mobile
broadband, and the like.

[0034] The communication module 30 may be connected
by wired connection or wirelessly with the sensors of the
sensor array 50. The communication module 30 may also
include one or more antennas 36 for transmitting radio
signals from the communication module 30 and receiving
radio signals at the communication module 30. Alterna-
tively, both the WAP 32 and the transmitting and receiving
device 34 may respectively include one or more individual
antennas.

[0035] The distributed cloud networking system 40 (i.e.,
“the cloud”) is one or more cloud computing elements that
is part of the first edge computing device 10. The distributed
cloud networking system 40 provides additional resources
like data storage and processing power to the first edge
computing device 10. Because the distributed cloud net-
working system 40 is accessible over the Internet, the
distributed cloud networking system 40 is configured to
communicate with the RSU 20 of the first edge computing
device 10 via the communication module 30.

[0036] The distributed cloud networking system 40 may
include any number or different services such as infrastruc-
ture as a service (laaS), platform as a service (PaaS),
software as a service (SaaS), backend as a service (BaaS),
serverless computing, and function as a service (FaaS). The
distributed cloud networking system 40 may be a commer-
cial cloud computing service such as Amazon Web Services
(AWS), Microsoft Azure, Google Cloud Platform (GCP), or
Oracle Cloud, all registered trademarks.

[0037] In addition to the Al algorithms used by the GPU
22 to calculate driving behavior predictions and driving
behavior interpretations for vehicles, the distributed cloud
networking system 40 may be used to calculate trained
prediction models and run simulations that can be used by
the GPU 22 and applied to the Al algorithms to better predict
and interpret driving behavior. Trained prediction models
calculated by the distributed cloud networking system 40
may be stored in the storage 26 of the RSU 20 for use by the
GPU 22.
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[0038] While the description may describe specific com-
ponents of the first edge computing device 10 performing a
function or process, the first edge computing device 10
generally performs the same function or process described
as being performed by the subsystem or sub-component of
the first edge computing device 10. That is, higher level
components can also be described as performing the same
functions as their subsystems and sub-components. For
example, while the GPU 22 is described as performing
calculations using Al algorithms, both the first edge com-
puting device 10 and the RSU 20 can also be described as
performing calculations using Al algorithms.

[0039] The processes and functions performed by both the
first edge computing device 10 and the second edge com-
puting device 60 may be based on the execution of a
program or instruction set (i.e., “instructions”) stored on a
non-transitory computer read-able medium (e.g., RAM,
ROM, flash memory as storage 26) by a processor (e.g.,
GPU 22, CPU 24). The execution of the instructions by the
processor cause the processor, or more generally the first
edge computing device 10 and the RSU 20, or the second
edge computing device 60 and the OBU 70, to perform the
instructions as processes/functions, for example, to perform
the example processes shown in FIGS. 3 and 5.

[0040] The sensor array 50 includes sensors that are used
to acquire spatial-temporal data from vehicles around the
intersection. The sensor data from the sensor array 50 can be
used by the GPU 22 to predict (i.e., calculate predictions) the
driving behavior of the vehicles 71 around the intersection
200. Relative to the vehicles 71, the sensor array 50 is both
external to the vehicles 71 (i.e., outside of the vehicles 71)
and remote from the vehicles (i.e., disposed at a distance
away from the vehicles 71). The sensor array 50 is also a
stationary component that is part of the trafficintersection
infrastructure.

[0041] With reference again to FIG. 2, the driving behav-
ior prediction and interpretation system 1 may include one
or more sensor arrays 50 at different locations around the
intersection 200 to obtain a 360 degree (°) view and sensing
area of the intersection 200. The one or more sensor arrays
50 at the intersection 200 may provide a viewing and sensing
area, for example, with a two hundred meter radius centered
at the intersection. That is, the camera 52 and detection and
ranging sensors 54 in the sensor array 50 have a range of
about two hundred meters from the intersection.

[0042] With reference again to FIG. 1, each sensor array
50 may include one or more cameras 52 and one more
detection and ranging sensors 54. While the camera 52 and
the detection and ranging sensor 54 are described as being
part of a sensor array 50, the camera 52 and the detection and
ranging sensor 54 are not necessarily limited to this con-
figuration and may be disposed separately and in different
locations around the intersection 200. Alternatively, instead
of the sensor array 50 having a combination of cameras 52
and detection and ranging sensors 54, the sensor array 50
may be limited to either (i) an array of one or more cameras
52 oriented at different angles and different directions, or (ii)
an array of one or more detection and ranging sensors 54
oriented at different angles and different directions. In this
alternative configuration, camera array 50 and ranging sen-
sor array 50 are used to distinguish between sensors arrays
having only one type of sensor.

[0043] The camera 52 may be a normal optical device
relying on natural light to capture images. The camera 52
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may be configured to capture individual images or a video
stream. For example, the camera 52 may be configured to
capture sequential images or real-time video of vehicles 71
at a predefined interval or frame rate with the captured
images/video being used by the GPU 22 to determine
spatial-temporal data for each vehicle 71.

[0044] Images and videos captured by the camera 52 may
be further processed by the GPU 22 with machine vision
algorithms to identify and track all vehicles 71 within the
viewing range of the camera 52 (e.g., 200 meters).

[0045] The camera 52 may include additional enhance-
ments to reduce the camera’s reliance on natural light. For
example, the camera 52 may include artificial lights and
flashes to provide better image capturing capabilities. The
camera may also include advanced sensors such as a
complementary  metal-oxide-semiconductor  field-effect
transistor (CMOS) sensor for better capturing images in
poor or low lighting conditions. Such sensors may be
combined with artificial light such as infrared lighting for
low light imaging and night vision capabilities. Alterna-
tively, the camera 52 may be a thermographic camera such
as an infrared camera or a thermal imaging camera for
capturing images of the vehicles by using the heat signatures
of the vehicles.

[0046] While the RSU 20 may use machine vision algo-
rithms on the image data captured by the camera 52 to
identify and track the vehicles 71 around the intersection
200, sequential still images and video streams of vehicles 71
captured by the camera 52 may be processed by the GPU 22
to generate spatial-temporal data for all road users around an
intersection. Spatial-temporal data acquired by the camera
52 may include the trajectory, path, direction, bearing, and
azimuth for all the tracked vehicles 71. For example, image
data captured by the camera 52 may be used to identity the
trajectories of the vehicles 71 and the changes in the
trajectories of the vehicles 71. The GPU 22 may also use
image and video data from the camera 52 to calculate speed
and acceleration of the vehicles 71, but this data may be
better acquired by the detection and ranging sensor 54. The
spatial-temporal data can be further processed by the GPU
22 with Al algorithms to predict the driving behaviors of the
vehicles around the intersection 200.

[0047] In addition to tracking the movement of the
vehicles 71 to generate spatial-temporal data of the vehicles
71, the camera 52 may be used to capture other data around
the intersection 200. For example, the camera 52 may be
used to monitor the road condition and detect objects in the
road such as pedestrians, cyclists, animals, potholes, road-
kill, lost loads, refuse, and the like, all of which may cause
vehicles 71 to swerve or brake to avoid the object. That is,
the camera 52 may correlate the detected object to the
trajectories, speeds, and accelerations of the vehicles to
calculate driving behavior patterns for the vehicles 71. For
example, if vehicles 71 in the road are swerving to avoid a
pothole, the GPU 22 may correlate the pothole to changes in
the trajectories of the vehicles 71 when determining the
predicted trajectories of the vehicles 71. Such data can be
used by the GPU 22 and applied to the Al algorithms to
better predict the driving behavior of the vehicles 71 in view
of such objects.

[0048] Likewise, the camera 52 may be used to monitor
weather conditions to determine if the weather may affect
the driving behavior of the vehicles 71. For example, rain
and snow may affect the road surface causing a more
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slippery road surface and requiring extra time for vehicles
71 to slow to a stop or necessitating extra care in driving on
such weather-affected road surfaces. Such information can
be used by the GPU 22 to detect changes in the trajectories,
speeds, and accelerations of the vehicles 71 to predict
driving behaviors. The GPU 22 may correlate such weather
conditions to the trajectory, speed, and acceleration data
acquired by the sensor array 50 and factor these conditions
into the driving predictions by the GPU 22. That is, the
weather data acquired by the camera 52 can be used by the
GPU 22 and applied to the Al algorithms to better predict the
driving behaviors of the vehicles 71 in view of such weather
conditions.

[0049] The sensor array 50 may also include one or more
detection and ranging sensors 54. The detection and ranging
sensor 54 may be configured to output a radio wave, receive
the reflected radio wave, and measure a time from outputting
the radio wave to receiving the reflected radio wave. The
time measurement from the sensor 54 can be used as a basis
for detecting a vehicle 71 and calculating the speed and
acceleration of the vehicle 71. For example, the detection
and ranging sensor 54 may output a radio wave toward the
vehicle 71 and receive the radio wave reflected from the
vehicle 71 to detect and measure the speed and acceleration
of the vehicle 71. As such, the detection and ranging sensor
54 may be a radar sensor 54. The detection and ranging
sensor 54 may also be configured to output a light, such as
infrared laser light, receive the reflected light, and measure
a time from outputting the light to receiving the reflected
light. By measuring a time to receive the reflected light, the
detection and ranging sensor 54 can use the time measure-
ment as the basis for detecting a vehicle 71 and measuring
the speed and acceleration of the vehicle 71. As such, the
detection and ranging sensor 54 may be a light detection and
ranging (lidar) sensor. The sensor array 50 may include one
or more lidar and radar sensors 54 or a combination of lidar
and radar sensors 54. The speeds and accelerations detected
by the detection and ranging sensor 54 may be used by the
GPU 22 using Al algorithms to predict the driving behaviors
of the vehicles 71 around the intersection 200.

[0050] The sensor array 50, or individual cameras 52 and
detection and ranging sensors 54, may be statically mounted
at intersections to acquire a 360° view around the intersec-
tion. For example, at a four-way intersection, a sensor array
50 or individual cameras 52 and/or detection and ranging
sensors 54 may be installed to acquire data for each of the
four junction roads approaching the intersection (i.e., each
junction road having a dedicated sensor array 50). In this
example, each sensor array 50 (or camera 52 and detection
and ranging sensor 54) may be configured to have a 90
degrees (°) or greater field of view for each of the junction
roads approaching the intersection. Additional sensors
arrays 50 or individual cameras 52 and/or detection and
ranging sensors 54 may be installed to provide a 360° view
within the intersection itself.

[0051] With reference again to FIG. 2, while a four-way
intersection 200 is shown, the driving behavior prediction
and interpretation system 1 may also be used at more
complex intersections with a greater number of junction
roads, at roundabouts, and at intersections with less junction
roads (e.g., three-way intersections).

[0052] The RSU 20 can determine the status of the traffic
control signals 202 and the pedestrian control signals 204
through a wired or wireless connection. That is, the RSU 20
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is configured to receive SPaT messages from the traffic
control signals 202 and 204 to determine the status of the
traffic control signals 202 and 204. Alternatively, the RSU 20
may determine the status of the traffic control signals 202
and 204 by the cameras 52.

[0053] The image and motion data acquired by the sensor
arrays 50 is used by the RSU 20 with AI algorithms to
predict the driving behaviors of the vehicles 71 around the
intersection 200. That is, the sensor arrays 50 collect data to
detect, localize, and track the vehicles 71 in and around the
intersection 200. The RSU 20 may use image processing and
machine vision to identify and track the vehicles 71. The
RSU 20 can then use the detection and ranging sensors 54
to acquire measurements for determining the spatial-tempo-
ral data of the vehicles 71 such as trajectory, path, direction,
speed, and acceleration.

[0054] The data acquired by the sensor arrays 50 can be
used by the RSU 20 to compute proxy BSMs from the
vehicles 71. That is, the RSU 20 can compute proxy spatial-
temporal data for the vehicles 71 in lieu of, or in addition to,
sensors on the vehicle side gathering spatial-temporal data to
compute a BSM for the vehicle 71. The RSU 20 can then use
the proxy spatial-temporal data (i.e., proxy BSMs) alone or
with BSMs from the vehicle with Al algorithms to predict
the driving behaviors of the vehicles 71.

[0055] The proxy BSMs calculated by the RSU 20 may
include a subject vehicle’s speed and acceleration in addi-
tion to the subject vehicle’s distance to the stop line 206, the
distance from the subject vehicle to a lead vehicle (i.e., a
vehicle traveling in front of the subject vehicle), the velocity
and acceleration of the lead vehicle, the heading or steering
wheel angle of the subject vehicle, and the status of the
traffic control signals 202. The proxy BSMs for the vehicles
71 can be processed by the GPU 22 with Al algorithms to
predict the driving behaviors of the vehicles 71.

[0056] With reference again to FIG. 1, on the vehicle side,
the vehicles 71 may include the OBU 70 in addition to other
sensors and systems such as a camera 80, a navigation ECU
81 (i.e., vehicle navigation system), a throttle sensor 83, a
speed sensor 84, a brake sensor 85, and a steering wheel
angle sensor 86.

[0057] The driving behavior prediction and interpretation
system 1 may include vehicles that are enabled for DSRC as
to communicate with V2X systems. For example, a vehicle
71 enabled for DSRC may use communication module 30 to
communicate with the communication module 30 of the
RSU 20. DSRC-enabled vehicles 71 may transmit BSMs to
the RSU 20 for processing with the proxy BSMs calculated
by the RSU 20 to predict the driving behaviors of the
vehicles 71. Similarly, DSRC-enabled vehicles 71 may
receive the proxy BSMs from the RSU 20 via the commu-
nication module 30.

[0058] However, the driving behavior prediction and inter-
pretation system 1 is not limited to DSRC-enabled vehicles
71. For vehicles lacking OBUs 70, the RSU 20 may calcu-
late proxy BSMs for the vehicles lacking OBUs 70. The
proxy BSMs alone can be used by the driving behavior
prediction and interpretation system 1 to predict and inter-
pret the driving behavior of vehicles without an OBU 70.
[0059] For DSRC-enabled vehicles 71, the vehicles 71
may transmit CAN data from vehicle sensors such as the
throttle sensor 83, speed sensor 84, brake sensor 85, and
steering wheel angle sensor 86 to respectively transmit the
throttle opening rate, velocity, brake pressure, and steering
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wheel angle of the vehicle in a BSM to the RSU 20 via the
communication module 30. The CAN data from DSRC-
enabled vehicles 71 can be used in addition to the proxy
BSMs calculated by the RSU 20 to predict the driving
behaviors of the DSRC-enabled vehicles 71. That is, DSRC-
enabled vehicles 71 may transmit BSMs to the RSU 20 for
the RSU 20 to use as the basis for predicting and interpreting
the driving behavior of the DSRC-enabled vehicle 71. The
CAN data (i.e.,, vehicle sensor data) acquired from the
sensors 83, 84, 85, and 86 can also be used to interpret the
driving behavior of the vehicle 71.

[0060] While the components of the OBU 70 function the
same as the components of the RSU 20, certain example
embodiments of the OBU 70 may not include all the
components of the RSU 20. For example, in one example
embodiment, the OBU 70 may not include the GPU 22. The
GPU 22 may be an optional component of the OBU 70. In
such an example embodiment, the driving behavior predic-
tions and interpretations may be calculated solely by RSU
20. In an alternative embodiment for vehicles 71 without a
GPU 22 in the OBU 70, these vehicles may use a distributed
communication network, for example, via vehicle-to-vehicle
(V2V) communications so that each vehicle 71 in the V2V
network shares the computational load for the driving pre-
dictions to put less of a computational burden on each
vehicle in the V2V network. In this way, each vehicle 71 in
the V2V network may use the CPU 24 in the OBU 70 and
the distributed cloud networking system 40 for processing
data and calculating driving predictions without using the
enhanced processing power of the GPU 22.

[0061] However, DSRC-enabled vehicles 71 may include
a GPU 22 in the OBU 70. In such cases, the GPU 22 in the
OBU 70 may calculate driving behavior predictions and be
used to interpret the driving behavior of the vehicle 71. For
example, the RSU 20 may send the proxy BSM associated
with the vehicle 71 to the vehicle 71 for the OBU 70 in the
vehicle 71 to predict and interpret the driving behavior of the
vehicle 71. In other example embodiments, the driving
behavior predictions and interpretations for vehicles having
GPUs 22 in the OBU 70 may be calculated by the RSU 20.
[0062] The camera 80 may be used to capture image data
for information that cannot be ascertained by a proxy BSM.
For example, the camera 80 may be a forward-facing camera
and be used to capture data related to a pedestrian passing in
front of the vehicle 71, traffic signs in front of the vehicle,
bicyclists in front of the vehicle, and the like. The informa-
tion from the image data captured by the camera 80 may be
either processed by the OBU 70 or transmitted to the RSU
20 for further processing. That is, such information may be
used by either the RSU 20 and/or the OBU 70 with other
data for predicting and interpreting the driving behavior of
the vehicle.

[0063] The navigation ECU 81 may include map data 82
for a map API and be configured to operate as the navigation
system for the vehicle 71. For example, the navigation ECU
81 can display a navigation map on a display in the vehicle
(not shown). Trajectory data from the navigation map may
be used as the basis for driving behavior prediction. For
example, upcoming turn information may be used to predict
the driving behavior of a vehicle. The trajectory data from
the map API can be used to determine the current location
of'the vehicle 71, predict the location of the vehicle 71 in the
next five meters, the next ten meters, the next fifteen meters,
the next twenty meters, and the like. In lieu of distance-
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based future predictions, time-based future predictions may
also be used. For example, the trajectory data from the map
API can be used to predict the location of the vehicle 71 in
the five seconds, ten seconds, and the like.

[0064] For vehicles equipped with an OBU 70, the proxy
BSM calculated by the RSU 20 may be transmitted to the
OBU 70 for onboard behavior interpretation and prediction
calculations. For vehicles without an OBU 70, only image
data from the camera 80 and trajectory data from the
navigation ECU 81 is available for onboard driving behavior
interpretation and prediction calculations.

[0065] The data processing from both the RSU 20 and the
OBU 70 allows for both driving behavior prediction and
interpretation, with longer prediction times than conven-
tional driving behavior predictions systems (e.g., accurate
driving predictions more than two seconds into the future).
The driving behavior prediction and interpretation system 1
allows for driving predictions for regular vehicles without
any on-board computational and connection capabilities
(e.g., vehicles without an OBU 70).

[0066] The driving behavior prediction and interpretation
system 1 uses an unsupervised learning method to cluster
data acquired by the vehicle sensors (i.e., BSM) and data
acquired by the sensor array 50 (i.e., proxy BSM) into
segments. The segments can then be used as the basis for
symbolic representation and natural language interpretation
to interpret the driving behavior.

[0067] The driving behavior prediction and interpretation
system 1 then uses deep learning with previous symbolic
representations to predict the next symbolic representations
for the next segments. Since segments usually last for
several seconds (e.g., ten seconds), the prediction results of
the driving behavior prediction and interpretation system 1
are for the next several seconds (e.g., ten seconds into the
future).

[0068] Since the driving behavior prediction and interpre-
tation system 1 uses unsupervised learning, unlimited data
can be generated to use for prediction training. As such, the
deep learning used by the driving behavior prediction and
interpretation system 1 is less prone to overfitting and other
random errors and noise, which improves the prediction
accuracy of the driving behavior prediction and interpreta-
tion system 1.

[0069] With reference to FIG. 3, a schematic diagram
illustrating a process flow of the driving behavior prediction
and interpretation system 1 for vehicle side computation is
shown. In FIG. 3, the process flow may be divided into an
interpretation process 300 and a prediction process 400.
[0070] In the driving behavior interpretation process 300,
at S301, the sensor data (i.e., CAN data) is first acquired
from the sensors 83, 84, 85, and 86. That is, at S301, the
OBU 70 acquires the sensor data from the sensors 83, 84, 85,
and 86 on the vehicle 71 and processes the sensor data
onboard the vehicle 71 using the OBU 70.

[0071] At S303, the OBU 70 uses unsupervised learning
clustering methods to cluster and segment the sensor data
(i.e. the CAN data or the vehicle data). Specifically, the GPU
22 of the OBU 70 may use one of the following unsuper-
vised learning clustering methods for clustering and seg-
menting the vehicle data: (1) a hidden Markov model (HMI),
(i1) a hidden semi-Markov model (HSMM), (iii) a beta
process autoregressive hidden Markov model (BP-AR-
HMM), (iv) a hierarchical Dirichlet process hidden Markov
model (HDP-HMM), (v) a sticky hierarchical Dirichlet
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process hidden Markov model (sHDP-HMM), and (vi) a
sticky hierarchical Dirichlet process hidden semi-Markov
model (sHDP-HSMM). While example hidden Markov
models are described as examples of unsupervised learning
clustering methods, the unsupervised learning clustering
methods are not limited to the example hidden Markov
models, and other deep learning methods and Al algorithms
may be used for clustering and segmenting the sensor data.
The hidden Markov models used for clustering and seg-
menting the sensor data can be integrated with one of the
following language models—that is, the GPU 22 of the OBU
70 can integrate one of the following, non-limiting, example
language models with the hidden Markov models: (i) a
double articulation analyzer (DAA), (ii) a nonparametric
Bayesian double articulation analyzer (NBP-DAA), (iii) a
DAA followed by latent Dirichlet allocation (LDA), (iv) a
like language model, or (v) another language model.

[0072] After integrating a language model with the hidden
Markkov model, the OBU 70 outputs the unsupervised
learning clustering as segmented driving data (i.e., sensor
data) at S305.

[0073] In FIG. 3, example symbolic representations are
given by outputs 310, 312, and 314, while outputs 320, 322,
and 324, show example natural language explanations. The
symbolic representations 310, 312, and 314, are merely
examples and do not correspond to the example natural
language explanations in 320, 322, and 324

[0074] A ground truth 316 and corresponding natural
language explanation 326 is bounded by a dashed line. The
ground truth 316 is described in greater detail below.

[0075] The symbolic representations given by output 310
are described with reference to FIG. 4. In FIG. 4, the
symbolization of the segmented vehicle data is shown by six
digits 330, 332, 334, 336, 338, and 340.

[0076] The first two digits 330 and 332 indicate the
vehicle’s acceleration and velocity, respectively. The first
digit 330 can have an integer value of 0, 1, or 2. When the
first digit 330 is O (zero), this is interpreted as the vehicle 71
having a constant speed—that is, zero acceleration. When
the first digit 330 is 1 (one), this is interpreted as the vehicle
71 slowing down. When the first digit 330 is 2 (two), this is
interpreted as the vehicle 71 speeding up.

[0077] The second digit 332 is a float value between zero
and one (i.e., 0-1) and is related to the velocity of the vehicle
71. A value of the second digit 332 close to 1 (one) means
that the vehicle 71 is traveling at high speed.

[0078] The third and fourth digits 334 and 336 represent
the pedal position for the throttle and brake pedals, respec-
tively, in the vehicle. The third digit 334 is a float value
between zero and one (i.e., 0-1) and is related to pressure on
the throttle pedal (i.e., accelerator pedal). The third digit 334
being close to 1 (one) means full throttle (i.e., the accelerator
pedal is completely depressed). The fourth digit 336 is a float
value between zero and one (i.e., 0-1) and is related to
pressure on the brake pedal. The fourth digit 336 being close
to 1 (one) means full braking (i.e., the brake pedal is
completely depressed).

[0079] The fifth digit 338 is a float value between negative
one and one (-1-1) and represents the steering wheel angle
of the vehicle 71. Values between —1 and 0 indicate a left
turn while values between 0 and 1 indicate a right turn—that
is, —1<x<0, where x is a float value, indicates a left turn, and
O<x=1, where x is a float value indicates a right turn. An
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absolute value near 1 (one) indicates a full turn by the
vehicle 71 (i.e., the steering wheel of the vehicle 71 is
completely turned).

[0080] The sixth digit 340 is a float value greater than 0
(zero) and indicates a duration of time in seconds of the
current segmentation.

[0081] The above-described values for the digits 330, 332,
334, 336, 338, and 340 can be the mean of time-series data
segmentation.

[0082] The driving behavior interpretation of the symbol-
ization of the vehicle data segmentation shown in FIG. 4 can
be interpreted as the vehicle 71 slowing down (i.e., decel-
erating) with a low speed, slight depression of the brake, and
turning right. This driving behavior lasts for 3.1 seconds.

[0083] With reference again to FIG. 3, the driving behav-
ior prediction process 400 is described. At S401, the RSU 20
calculates the proxy BSM for the vehicle 71 using data
acquired by the sensor array 50.

[0084] Assuming the vehicle 71 is a DSRC-enabled
vehicle, at S403, the communication module 30 of the RSU
20 transmits the proxy BSM data to the OBU 70 of the
vehicle 71. The proxy BSM data is received by the com-
munication module 30 of the OBU 70. The proxy BSM data
from the RSU 20 includes (i) distances from the vehicle 71
to the stop line 206, (ii) distance from the vehicle 71 to a lead
vehicle traveling in front of the vehicle 71 in the same
direction, (iii) the velocity of the lead vehicle in front of the
vehicle 71, (iv) the acceleration of the lead vehicle in front
of the vehicle 71, and (v) traffic light status (i.e., from SPaT
data). For intersections without any traffic control signals
202, the traffic light status may be omitted from the proxy
BSM.

[0085] At S405, the OBU 70 normalizes the proxy BSM
data and then applies the normalized proxy BSM data to one
of'a plurality of layers in an artificial neural network (ANN).
If, for example, the ANN used by the OBU 70 at S405 is a
two-layer ANN with a hidden layer of sixty-four neurons
and an output layer of sixty-four neurons, the total number
of training parameters (assuming the five inputs from the
proxy BSM data) is 20,480 parameters, as given by Equation
1

5x64x64=20,480

[0086] At S407, the ANN at S405 outputs a multi-dimen-
sional feature vector of the proxy BSM surroundings. In
other words, the OBU 70 outputs a surrounding feature
vector at S407. The surrounding feature vector may also be
referred to as a spatial-temporal data vector, because the
proxy BSM is based on the spatial-temporal data of the
vehicle acquired by the camera 52 and the detection and
ranging sensor 54. For vehicles without a communication
module 30 as part of the OBU 70 for DSRC, the proxy BSM
data will not be an input for predicting the driving behavior
of the vehicle 71.

[0087] At S409, the OBU 70 acquires the map API data
from the navigation ECU 81. That is, the OBU 70 uses the
future trajectory data from the navigation map API as
another input for predicting driving behavior. As described
above, the map API data may include the current location of
the vehicle 71, the location of the vehicle 71 in the next 5
meters, 10 meters, 15 meters, 20 meters, and the like. This
map API data is converted to a vector. The vector may also
indicate if the vehicle 71 is turning or going straight.

(Equation 1)
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[0088] At S411, the vector with the map API data is
normalized and applied to one of a plurality of layers of a
fully connected ANN. Similar to the ANN used at S405 to
process the proxy BSM data, the ANN at S411 has tens of
thousands of parameters.

[0089] After the ANN processing at S411, at S413, a
multi-dimensional map feature vector is output. For vehicles
that do not have a navigation ECU 81 (i.e., vehicles without
a navigation system or map API), the driving behavior
prediction will not include map API data.

[0090] At S415, the OBU 70 acquires image data from the
vehicle camera 80 as input data for predicting the driving
behaviors of the vehicle 71. For vehicle OBUs 70 lacking a
communication module 30 (i.e., vehicles not enabled for
DSRC), image data from the camera 80 may be used as the
main information for detecting objects around the vehicle
71. For vehicles with a communication module 30 (i.e.,
DSRC-enabled vehicles) the image data from the camera 80
may be used to complement the proxy BSM data from the
RSU 20. For example, the image data from the camera 80
may include information related to pedestrians around the
vehicle 71, the number of lanes on a road, traffic signs, and
other information not included in the proxy BSM.

[0091] At S417 a convolutional neural network (CNN) is
used to process the image data. The CNN used at S417 may
include less training parameters than conventional CNNs
used for image processing. For the CNN used at S417, the
original image data from the camera 80 may first go through
an instance segmentations deep neural network that is
trained with fixed parameters—that is, a large, non-trainable
CNN. The large non-trainable deep neural network outputs
an instance segmented image of the image data in block
colors, and this instance segmented image is then sent to a
smaller CNN network with trainable parameters. In this way,
the CNN used to output the image feature vector at S419
keeps the total number of parameters small. Since the trained
instance segmentation already extracts useful information,
the system 1 is less prone to overfitting, random errors, and
noise.

[0092] The symbolic representation outputs 310, 312 and
314 used to generate natural language interpretations of the
driving behavior 320, 322, and 324, are used as inputs at
S421. The symbolic representation outputs 310, 312, and
314 represent interpretations of previous driving behaviors,
while the ground truth at 316 is the driving behavior to
predict. That is, the driving behavior outputs 310, 312, and
314 are input as data for the ANN at S421. The ANN at S421
can be any one of (i) a fully connected neural network, (ii)
a recurrent neural network for processing time-series data,
and (iii) a one-dimensional convolution neural network (1-D
CNN) for processing time-series data. If the ANN at S421
uses the fully connected neural network or 1-D CNN, the
number of previous segmentations (e.g., driving behavior
outputs 310, 312, and 314) are fixed. If the ANN at S421
uses the recurrent neural network, the number of previous
segmentations is flexible. When, for example, new driving
behavior is predicted after the output of the ground truth
316, the ground truth 316 becomes previous driving behav-
ior that is used to predict the new driving behavior.

[0093] At S423, the ANN at S421 outputs a behavior
feature vector for use in the driving behavior prediction
neural process.

[0094] At S425, the future vectors from the proxy BSM
(i.e., the surrounding feature vector at S407), the map
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trajectory (i.e., the map feature vector at S413), and the
image (i.e., the image feature vector at S419), as well at the
previous symbolic representation vector (i.e., the behavior
feature vector at S423) are concatenated into a single vector
(i.e., a concatenated vector). By the end of each segmenta-
tion, the network will predict the symbolic representation of
the next segmentation. The proxy BSM, image, and map
trajectory is the last frame at the end of each segmentation.
The concatenated vector at S425 is then output for additional
processing through an ANN.

[0095] The concatenated vector is processed with an ANN
at S427 and the ANN at S427 outputs a driving behavior
prediction at S429. The ground truth/labeled data at 316 is
a symbolic future representation of the next segmentation.
The ground truth 316 matches the driving behavior predic-
tion at S429. The driving behavior prediction may be output
in natural language, for example, as the natural language
explanation 326.

[0096] Returning again to the symbolic representation of
the output 310 shown in FIG. 4, the training has both
regression and classification problems. For example, the first
digit 330 is a classification problem, while the remaining
digits 332, 334, 336, 338, and 340 are regression problems.
The first digit 330 is a classification problem, because the
first digit 330 uses a value 0, 1, or 2—that is, a non-
continuous value. As such, because the first digit 330 is not
a continuous value, this is a classification problem in the
machine learning field. The remaining digits 332, 334, 336,
338, and 340 are regression problems, because these digits
use continuous values. For example, the digit 338 represent-
ing the steering wheel angle may use any value between -1
and 1. In the machine learning field, the use of continuous
values is a regression problem.

[0097] With reference again to FIG. 3, since the driving
behavior interpreted and predicted in the interpretation pro-
cess 300 and prediction process 400 is determined using an
unsupervised learning method, the training data is theoreti-
cally unlimited. Such unlimited training data ensures the
ANNs S405, S411, S417, S421, and S427 used in the
prediction process 400 are less prone to overfitting, random
errors, and noise. The driving behavior prediction at S429
includes both the duration of the segmentation and the
predicted driving behavior of the vehicle 71.

[0098] With reference to FIG. 5, a process flow for the
driving behavior interpretation process 500 and the driving
behavior prediction process 600 as determined by the infra-
structure side (i.e., by the RSU 20) is shown. The driving
behavior interpretation and prediction processes 500 and
600 by the RSU 20 are similar to those by the OBU 70 on
the vehicle side in FIG. 3, but the process flow in FIG. 5§
includes less inputs than what is shown in FIG. 3. That is, for
the infrastructure side computation, any data acquired from
the subject vehicle 71 itself is not used for the driving
behavior interpretation and prediction.

[0099] As shown in FIG. 5, the input is the proxy BSM for
the subject vehicle calculated by the RSU 20 using the data
from the sensor array 50. The proxy BSM data calculated by
the RSU 20 at S601 includes additional spatial-temporal
data for the subject vehicle as determined by the sensor array
50 such as (i) the speed of the subject vehicle 71 and (ii) the
acceleration of the subject vehicle 71. The speed and accel-
eration of the subject vehicle 71 may also be referred to as
the vehicle data. The proxy BSM data calculated by the RSU
20 at S601 additionally includes (iii) distances from the
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subject vehicle 71 to the stop line 206, (iv) distance from the
subject vehicle 71 to a lead vehicle traveling in front of the
subject vehicle 71 in the same direction, (v) the velocity of
the lead vehicle in front of the subject vehicle 71, (vi) the
acceleration of the lead vehicle in front of the subject vehicle
71, and (vii) the traffic light status (i.e., from SPaT data).
This other data in the proxy BSM may also be referred to as
surrounding data. For intersections without any traffic con-
trol signals 202, the traffic light status may be omitted from
the proxy BSM.

[0100] At S503, the vehicle data for the subject vehicle 71
including the speed of the subject vehicle 71 and the
acceleration of the subject vehicle 71 are used as the inputs
at S503. The algorithms used for the unsupervised learning
clustering at S503 are the same as those used at S303 in FIG.
3. For example, the RSU 20 may use the hidden Markov
models described above with reference to FIG. 3 to cluster
and segment the vehicle data. Likewise, the RSU 20 may
integrate a language model like those described above with
reference to FIG. 3 with the hidden Markov model. The
algorithms at S503 use different inputs and hyper-param-
eters for the unsupervised learning clustering than those
used at S303 in FIG. 3.

[0101] At S505, after integrating a language model with
the hidden Markov model, RSU 20 outputs the unsupervised
learning clustering as segmented driving data.

[0102] In FIG. 5, example symbolic representations are
given by outputs 510, 512, and 514, while outputs 520, 522,
and 524, show example natural language explanations. The
symbolic representations 510, 512, and 514 are merely
examples and do not correspond to the example natural
language explanations in 520, 522, and 524.

[0103] With reference now to FIG. 6, the symbolic rep-
resentations given by output 510 are described. In FIG. 6,
the symbolization of the segmented vehicle data is shown by
three digits 530, 532, and 534.

[0104] The first two digits 530 and 532 indicate the
vehicle’s acceleration and velocity. The first digit 530 can
have an integer value of 0, 1, or 2. When the first digit 530
is 0 (zero), this is interpreted as the vehicle 71 having a
constant speed—that is, zero acceleration. When the first
digit 530 is 1 (one), this is interpreted as the vehicle 71
slowing down. When the first digit 330 is 2 (two), this is
interpreted as the vehicle 71 speeding up.

[0105] The second digit 532 is a float value between zero
and one (i.e., 0-1) and is related to the velocity of the vehicle
71. A value of the second digit 532 close to 1 (one) means
that the vehicle 71 is traveling at high speed.

[0106] The third digit 534 is a float value greater than O
(zero) and indicates a duration of time in seconds of the
current segmentation.

[0107] In FIGS. 5 and 6, the symbolization and interpre-
tation by the infrastructure side computation is different than
the symbolization and interpretation by the vehicle side
computation. In FIGS. 5 and 6, the symbolization and
interpretation only have vehicle acceleration, vehicle speed,
and segmentation duration. The driving behavior interpre-
tation of the symbolization of the vehicle data segmentation
shown in FIG. 6 can be interpreted as the vehicle 71 slowing
down (i.e., decelerating) with a low speed. This driving
behavior lasts for 3.2 seconds.

[0108] With reference again to FIG. 5, at S601, the RSU
20 calculates the proxy BSM for the vehicle 71 using data
acquired by the sensor array 50.
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[0109] At S603, the RSU 20 normalizes the surrounding
data in the proxy BSM data and then applies the normalized
surrounding proxy BSM data to one of a plurality of layers
in an artificial neural network (ANN). For example, if the
ANN used by the RSU 20 at S603 is a two-layer ANN with
a hidden layer of sixty-four neurons and an output layer of
sixty-four neurons, the total number of training parameters
(assuming the five inputs from the proxy BSM data) is
20,480 parameters, for example, as given above by Equation
1.

[0110] At S605, the ANN outputs a multi-dimensional
surrounding feature vector of the surrounding proxy BSM
data. In other words, the RSU 20 outputs a surrounding
feature vector at S605. The surrounding feature vector may
also be referred to as a spatial-temporal data vector, because
the proxy BSM is based on the spatial-temporal data
acquired by the camera 52 and the detection and ranging
sensor 54.

[0111] The symbolic representation outputs 510, 512 and
514 used to generate natural language interpretations of the
driving behavior 520, 522, and 524, are used as inputs at
S607. The symbolic representation outputs 510, 512, and
514 represent interpretations of previous driving behaviors,
while the ground truth at 516 is the driving behavior to
predict. That is, the driving behavior outputs 510, 512, and
514 are input as data for the ANN at S607. The ANN at S607
can be any one of (i) a fully connected neural network, (ii)
a recurrent neural network for processing time-series data,
and (iii) a 1-D CNN for processing time-series data. If the
ANN at S607 uses the fully connected neural network or 1-D
CNN, the number of previous segmentations (e.g., driving
behavior outputs 510, 512, and 514) are fixed. If the ANN
at S607 uses the recurrent neural network, the number of
previous segmentations is flexible. When, for example, new
driving behavior is predicted after the output of the ground
truth 516, the ground truth 516 becomes previous driving
behavior that is used to predict the new driving behavior.
[0112] At S609, the ANN at S607 outputs a behavior
feature vector for use in the driving behavior prediction
neural process.

[0113] At S611, the future vectors from the proxy BSM
(i.e., the surrounding feature vector at S605) as well at the
previous symbolic representation vector (i.e., the behavior
feature vector at S609) are concatenated into a single vector
(i.e., a concatenated vector). By the end of each segmenta-
tion, the network will predict the symbolic representation of
the next segmentation. The proxy BSM is the last frame at
the end of each segmentation. The concatenated vector at
S611 is then output for additional processing through an
ANN.

[0114] The concatenated vector is processed with an ANN
at S613 and the ANN at S613 outputs a driving behavior
prediction at S615. The ground truth/labeled data at 516 is
a symbolic future representation of the next segmentation.
The ground truth 516 matches the driving behavior predic-
tion at S615. A natural language explanation of the driving
behavior prediction may be output, for example, as the
natural language explanation 526.

[0115] Since the driving behavior interpreted and pre-
dicted in the interpretation process 500 and prediction
process 600 is determined using an unsupervised learning
method, the training data is theoretically unlimited. Such
unlimited training data ensures the ANNs S603, S607, and
S613 used in the prediction process 600 are less prone to
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overfitting, random errors, and noise. The driving behavior
prediction at S615 includes both the duration of the seg-
mentation and the predicted driving behavior of the vehicle
71. With the infrastructure side computation, while the
computation may be similar to the computations in the
process flow of FIG. 3, with less input information, the
accuracy of the driving behavior prediction with the infra-
structure side computation may be lower than the vehicle
side computation.

[0116] In the example embodiments described herein, the
driving behavior prediction and interpretation system 1 can
use computational capabilities on both the vehicle side and
infrastructure side to make driving behavior predictions and
interpret driving behavior. As such, the driving behavior
prediction and interpretation system 1 can be used with
DSRC-enabled vehicles that can connect and communicate
with the system 1, and also be used with vehicles lacking
such computational and communication capabilities. 4
[0117] By using unsupervised learning methods to cluster
the driving data from various inputs into segmentations, a
symbolic representation of the driving behavior can be
generated and natural language interpretation for the sym-
bolic representation can then be made to output the driving
behavior in natural language. For example, insurance per-
sonnel may use the driving behavior prediction and inter-
pretation system 1 on vehicles to obtain a clear assessment
of the vehicle’s driving behavior for setting insurance rates.
Likewise, the predicted driving behavior result can also be
output in natural language for ease of understanding.
[0118] Because previous symbolic representation are
used, deep learning can be applied to the previous symbolic
representation to predict the next symbolic representation of
the next segmentation. Since the segmentations usually last
for several seconds, the prediction results predict future
driving behavior with a duration similar to the segmenta-
tions. On average, the driving behavior prediction and
interpretation system 1 can predict longer durations into the
future than conventional prediction systems.

[0119] The unsupervised learning used by the driving
behavior prediction and interpretation system 1 can generate
unlimited data for prediction training. As a result, the deep
learning used by the system 1 is less prone to overfitting,
random errors, and noise.

[0120] While the example embodiments describe process
flows for both infrastructure side and vehicle side compu-
tations, the driving behavior prediction and interpretation
system 1 may use a combination of computations from both
the vehicle side and the infrastructure side. In other words,
the driving behavior prediction and interpretation system 1
is not limited to the process flows of either the vehicle side
or the infrastructure side, but may use a combination of both.
[0121] Accelerated Behavior System and Method

[0122] In another example embodiment, the driving
behavior prediction and interpretation system 1 may be used
to predict, track, classify, and report aggressive and/or bad
driving behavior for purposes of determining behavior-
based auto insurance premiums.

[0123] Conventionally, auto insurance companies may use
a hardware device plugged into a vehicle’s on-board diag-
nostic II (OBDII) port as part of a voluntary discount
program, where drivers can share their driving habits with
the insurance company. Typically, these hardware devices
may benefit people who drive less, in safer ways, and during
safer times of the day. With this conventional hardware,
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drivers may be able to later interface with a software
program, app, or webpage through a computing device to
review the results of their driving behavior. A driver may be
able to review their driving habits to make changes to their
driving behavior over the course of using the conventional
hardware device. Typically, a driver’s habits are assessed
month-by-month over a six month policy period to deter-
mine if the driver will qualify for a discount during, or at the
end of, his insurance period.

[0124] One problem with conventional hardware-based
systems includes the limited identification of bad driving
behavior and lack of behavior interpretation. Conventional
systems may generally classify driving data based on pre-
determined rules or thresholds applied to sensor data without
any ability to interpret a driver’s behavior. For example,
such conventional systems may classify frequent, fast brak-
ing as a bad driving behavior. However, this conventional
system may not be able to distinguish between a safe driver
with good driving habits that is stuck in stop-and-go traffic
and braking frequently during rush hour and an unsafe driver
who frequently brakes on account of tailgating. The frequent
braking driving behavior data for both drivers may appear to
be similar. In another example, where a conventional system
may identify fast and sudden steering wheel movements as
bad driving behavior, a conventional system may not be able
to distinguish between a safe driver who suddenly jerks the
steering wheel to avoid an object in the road and an unsafe
driver who suddenly jerks the steering wheel to correct
trajectory due to distracted driving. That is, the OBDII data
used by conventional systems may incorrectly classify safe
drivers as unsafe drivers.

[0125] Conventional systems may also use the sensors on
a driver’s mobile device (e.g., smartphone) and accompa-
nying app to generally classify the sensor data into bad
driving behavior such as quick acceleration, hard braking,
fast cornering, speeding, and distracted driving. However,
these conventional systems also cannot interpret a driver’s
driving behavior to ensure that behavior identified as unsafe
is actually unsafe in view of the circumstances. Like other
conventional system, these systems also benefit people who
drive less, in safer ways, and during safer times of the day.
[0126] While many good drivers may avoid using con-
ventional safe driving and reward systems from insurance
companies due to inaccurate driving behavior assessments,
such systems may be avoided altogether by aggressive
drivers or drivers with bad driving habits. That is, such
systems may unfairly benefit a small number of drivers with
good driving habits, while unnecessarily punishing a larger
number of drivers with good driving habits by charging
higher insurance premiums. Higher insurance premiums
may also encourage people to forego paying for insurance,
which may raise the premiums for those with insurance.
[0127] As discussed above, the driving behavior predic-
tion and interpretation system 1 can translate symbolic,
numerical representation of clusters into natural language to
provide a better understanding and interpretation of a driv-
er’s behavior, as well as better identifying and classifying
bad driving behavior.

[0128] Once the driving behavior prediction and interpre-
tation system 1 is trained to predict and classify bad driving
behaviors, the driving behavior prediction and interpretation
system 1 can be adapted to uniquely identify a vehicle or
vehicle owner associated with the bad driving behavior. A
natural language description of the bad driving behavior
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along with a unique identifier of the wvehicle or driver
associated with the bad driving behavior may then be saved
to a server, spreadsheet, or database, and then accessed by an
insurance company for determining behavior-based premi-
ums for their customers.

[0129] The driving behavior prediction and interpretation
system 1 does not rely on hardware and in-vehicle telemetric
devices as the bases for determining and interpreting driver
behavior. As such, the driving behavior prediction and
interpretation system 1 can cluster and interpret driving
behavior for all drivers, as well as making the driving
behavior data to accessible to all insurance companies. That
is companies can access a database or spreadsheet with
driver behavior data without having to use company-specific
hardware/software for accumulating driver behavior data.

[0130] With reference again to FIG. 1, the infrastructure
side of the driving behavior prediction and interpretation
system 1, including the first edge computing device 10 and
sensor array 50 may be used for predicting and interpreting
driver behavior, and then uniquely identifying a vehicle
and/or driver associated with bad driving behavior. Vehicles
or drivers identified by the driving behavior prediction and
interpretation system 1 may then be transmitted to the
distributed cloud networking system 40 and/or a remote
server, database, and/or spreadsheet 90. The remote server,
database, and/or spreadsheet 90 may include, or be con-
nected to, both computational and communication hardware
(both not shown), so that the remote server, database, and/or
spreadsheet 90 can: (i) receive driving behavior and identi-
fication data from the communication module 30 of the first
edge computing device 10; (ii) store driving behavior and a
unique identifier associated with the driving behavior in a
database and/or spreadsheet 90; (iii) retrieve the driving
behavior and associated unique identifier from the database
and/or spreadsheet 90; and (iv) transmit and/or allow view-
ing access to the driving behavior and associated unique
identifier to an insurance company. The computational hard-
ware may be a computer having one or more processors;
memory such as RAM, ROM, or Flash memory; and input/
output /O devices and peripherals. The communication
hardware, may be, for example, wired or wireless commu-
nication devices such as transmitters, receivers, transceivers,
modems, and routers that are configured to receive driving
behavior and unique identifier data from the first edge
computing device 10 and transmit/send driving behavior and
unique identifier data to a database 90 and/or an insurance
company.

[0131] With reference again to FIG. 2, while example
embodiments of the driving behavior prediction and inter-
pretation system 1 may be applied to a single intersection
200, a plurality of driving behavior prediction and interpre-
tation systems 1 at a plurality of intersections 200 may be
networked together to form regions or micro-regions. For
example, a plurality of intersections along the same corridor
may be grouped together for predicting and interpreting
driver behavior along the corridor. In this example, the
driving behavior prediction and interpretation systems 1
may be networked together, that is, combined in a region or
micro-region for predicting and interpreting bad driving
behavior. For example, past data related to police reports
regarding driving behavior may be used to identify a plu-
rality of intersections 200 for predicting and interpreting the
driving behaviors of the vehicles 71. The data accumulated
and clustered at each intersection 200 may be further clus-
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tered to a time period and day of the week to identify the
times and days when intersections 200 within the network
may be at high risk—that is, more prone to bad behavior
from drivers. Representative time periods may include:
morning rush hour, noon lunch hour, an afternoon non-rush
period, evening rush hour, and a late evening non-rush
period. Days of the week may also be considered when
combining a plurality of intersections 200 into a region or
micro-region, for example, weekdays, weekends, holidays.
The times of special events occurring at intersections 200,
such as parades, construction, and emergencies, may also be
considered as representative time periods. In addition to
corridors, that is, stretches of a road that pass through
multiple intersections, other regions and micro-regions may
include school zones, residential areas, recreational areas,
downtown or urban areas, and arterial access points to
highways and interstates.

[0132] The driving behavior prediction and interpretation
system 1 may also be used to determine pedestrian intention
and predicted behavior for identifying risk and then corre-
lating this pedestrian risk to a vehicle driver risk.

[0133] Aggressiveness intention and prediction algo-
rithms may be applied to the spatial-temporal vehicle data
acquired by the sensor array 50 to evaluate vehicle/driver
behavior and identify bad driving behavior. For example,
with reference to FIG. 2, a vehicle 71a speeding through a
red control signal 202 at the intersection 200 may be
identified as bad/aggressive driver. In this example, one or
more of the sensor arrays 50, or more specifically the camera
52, may be used to photograph or record the license plate
information of the vehicle 71 (i.e., a unique identifier of the
vehicle 71a and/or the driver of the vehicle 71a), where the
bad driving behavior (e.g., running a red light) and unique
associated identifier (e.g., license plate number) are entered
into the spreadsheetdatabase 90. The information from the
spreadsheetdatabase 90 may be viewed by insurance com-
panies to determine behavior-based premiums for the
vehicle 71a and/or the driver of the vehicle 71a.

[0134] With reference to FIG. 7, a record 700 of bad
driving behavior may include the bad driving behavior 702
displayed in natural language and a unique identifier 704 to
associate a vehicle 71 and/or driver of the vehicle 71 to the
bad driving behavior. For example, under behavior 702a, the
driving behavior prediction and interpretation system 1 has
identified a vehicle 71 as failing to stop for a traffic control
signal 202 (e.g., a red traffic control signal). The sensor array
50 identifies the vehicle 71 using the license plate as a
unique identifier. In this example under 704q, the license
plate is a Michigan plate with tag number “CHK 4PL8.”
Insurance companies accessing the record 700 of the bad
driving behavior on server/database/spreadsheet 90 may be
able to identity their customers through the unique identifier
704 and adjust insurance premiums for the vehicle 71 and/or
driver based on the record 700 of bad driving behavior.
Using infrastructure already in place at the intersection 200
allows any insurance company to monitor a vehicle’s/
driver’s driving behavior without the need for company-
specific hardware/software for monitoring driving behavior.

[0135] Other examples of bad driving behavior include,
but are not limited to: driving over a speed limit in a
roundabout; driving too closely to a vulnerable road user
(VRU) on the road such as a cyclist; failure to stop at a stop
sign or yield the right of way; aggressive driving such as
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tailgating, changing lanes without signaling, cutting across
two or more lanes of traffic; and cutting off another vehicle.
[0136] While an example embodiment of the driving
behavior prediction and interpretation system 1 captures a
vehicle license plate to use as a unique identifier for asso-
ciation with aggressive or bad driving behavior, other unique
identifiers may be used. For vehicles 71 equipped for DSRC
and connected to a V2X system, and unique identifier in the
BSM may be used to uniquely identify a vehicle and/or a
driver of a vehicle associated with aggressive or bad driving
behavior

[0137] Example embodiments are provided so that this
disclosure will be thorough, and will fully convey the scope
to those who are skilled in the art. Numerous specific details
are set forth such as examples of specific components,
devices, and methods, to provide a thorough understanding
of embodiments of the present disclosure. It will be apparent
to those skilled in the art that specific details need not be
employed, that example embodiments may be embodied in
many different forms and that neither should be construed to
limit the scope of the disclosure. In some example embodi-
ments, well-known processes, well-known device struc-
tures, and well-known technologies are not described in
detail.

[0138] The terminology used herein is for the purpose of
describing particular example embodiments only and is not
intended to be limiting. As used herein, the singular forms
“a,” “an,” and “the” may be intended to include the plural
forms as well, unless the context clearly indicates otherwise.
The terms “comprises,” “comprising,” “including,” and
“having,” are inclusive and therefore specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. The method
steps, processes, and operations described herein are not to
be construed as necessarily requiring their performance in
the particular order discussed or illustrated, unless specifi-
cally identified as an order of performance. It is also to be
understood that additional or alternative steps may be
employed.

[0139] Spatial and functional relationships between ele-
ments (for example, between modules, circuit elements,
semiconductor layers, etc.) are described using various
terms, including “connected,” “engaged,” “coupled,” “adja-
cent,” “next to,” “on top of,” “above,” “below,” and “dis-
posed.” Unless explicitly described as being “direct,” when
a relationship between first and second elements is described
in the above disclosure, that relationship can be a direct
relationship where no other intervening elements are present
between the first and second elements, but can also be an
indirect relationship where one or more intervening ele-
ments are present (either spatially or functionally) between
the first and second elements.

[0140] As used herein, the phrase at least one of A and B
should be construed to mean a logical (A OR B), using a
non-exclusive logical OR. For example, the phrase at least
one of A and B should be construed to include any one of:
(1) A alone; (ii) B alone; (iii) both A and B together. The
phrase at least one of A and B should not be construed to
mean “at least one of A and at least one of B.” The phrase
at least one of A and B should also not be construed to mean
“A alone, B alone, but not both A and B together.” The term
“subset” does not necessarily require a proper subset. In
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other words, a first subset of a first set may be coextensive
with, and equal to, the first set. As used herein, the term
“and/or” includes any and all combinations of one or more
of the associated listed items.

[0141] In the figures, the direction of an arrow, as indi-
cated by the arrowhead, generally demonstrates the flow of
information (such as data or instructions) that is of interest
to the illustration. For example, when element A and element
B exchange a variety of information but information trans-
mitted from element A to element B is relevant to the
illustration, the arrow may point from element A to element
B. This unidirectional arrow does not imply that no other
information is transmitted from element B to element A.
Further, for information sent from element A to element B,
element B may send requests for, or receipt acknowledge-
ments of, the information to element A.

[0142] In this application, including the definitions below,
the term “module” or the term “controller” may be replaced
with the term “circuit.” The term “module” may refer to, be
part of, or include: an Application Specific Integrated Circuit
(ASIC); a digital, analog, or mixed analog/digital discrete
circuit; a digital, analog, or mixed analog/digital integrated
circuit; a combinational logic circuit; a field programmable
gate array (FPGA); a processor circuit (shared, dedicated, or
group) that executes code; a memory circuit (shared, dedi-
cated, or group) that stores code executed by the processor
circuit; other suitable hardware components that provide the
described functionality; or a combination of some or all of
the above, such as in a system-on-chip.

[0143] The module may include one or more interface
circuits. In some examples, the interface circuit(s) may
implement wired or wireless interfaces that connect to a
local area network (LAN) or a wireless personal area net-
work (WPAN). Examples of a LAN are Institute of Electri-
cal and Electronics Engineers (IEEE) Standard 802.11-2016
(also known as the WIFI wireless networking standard) and
IEEE Standard 802.3-2015 (also known as the ETHERNET
wired networking standard). Examples of a WPAN are the
BLUETOOTH wireless networking standard from the Blu-
etooth Special Interest Group and IEEE Standard 802.15.4.

[0144] The module may communicate with other modules
using the interface circuit(s). Although the module may be
depicted in the present disclosure as logically communicat-
ing directly with other modules, in various implementations
the module may actually communicate via a communica-
tions system. The communications system includes physical
and/or virtual networking equipment such as hubs, switches,
routers, and gateways. In some implementations, the com-
munications system connects to or traverses a wide area
network (WAN) such as the Internet. For example, the
communications system may include multiple LANs con-
nected to each other over the Internet or point-to-point
leased lines using technologies including Multiprotocol
Label Switching (MPLS) and virtual private networks
(VPNs).

[0145] In various implementations, the functionality of the
module may be distributed among multiple modules that are
connected via the communications system. For example,
multiple modules may implement the same functionality
distributed by a load balancing system. In a further example,
the functionality of the module may be split between a server
(also known as remote, or cloud) module and a client (or,
user) module.
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[0146] Some or all hardware features of a module may be
defined using a language for hardware description, such as
IEEE Standard 1364-2005 (commonly called “Verilog™) and
IEEE Standard 1076-2008 (commonly called “VHDL”).
The hardware description language may be used to manu-
facture and/or program a hardware circuit. In some imple-
mentations, some or all features of a module may be defined
by a language, such as IEEE 1666-2005 (commonly called
“SystemC”), that encompasses both code, as described
below, and hardware description.

[0147] The term code, as used above, may include soft-
ware, firmware, and/or microcode, and may refer to pro-
grams, routines, functions, classes, data structures, and/or
objects. The term shared processor circuit encompasses a
single processor circuit that executes some or all code from
multiple modules. The term group processor circuit encom-
passes a processor circuit that, in combination with addi-
tional processor circuits, executes some or all code from one
or more modules. References to multiple processor circuits
encompass multiple processor circuits on discrete dies,
multiple processor circuits on a single die, multiple cores of
a single processor circuit, multiple threads of a single
processor circuit, or a combination of the above. The term
shared memory circuit encompasses a single memory circuit
that stores some or all code from multiple modules. The term
group memory circuit encompasses a memory circuit that, in
combination with additional memories, stores some or all
code from one or more modules.

[0148] The term memory circuit is a subset of the term
computer-readable medium. The term computer-readable
medium, as used herein, does not encompass transitory
electrical or electromagnetic signals propagating through a
medium (such as on a carrier wave); the term computer-
readable medium may therefore be considered tangible and
non-transitory. Non-limiting examples of a non-transitory
computer-readable medium are nonvolatile memory circuits
(such as a flash memory circuit, an erasable programmable
read-only memory circuit, or a mask read-only memory
circuit), volatile memory circuits (such as a static random
access memory circuit or a dynamic random access memory
circuit), magnetic storage media (such as an analog or digital
magnetic tape or a hard disk drive), and optical storage
media (such as a CD, a DVD, or a Blu-ray Disc).

[0149] The apparatuses and methods described in this
application may be partially or fully implemented by a
special purpose computer created by configuring a general
purpose computer to execute one or more particular func-
tions embodied in computer programs. The functional
blocks and flowchart elements described above serve as
software specifications, which can be translated into the
computer programs by the routine work of a skilled techni-
cian or programmer.

[0150] The computer programs include processor-execut-
able instructions that are stored on at least one non-transitory
computer-readable medium. The computer programs may
also include or rely on stored data. The computer programs
may encompass a basic input/output system (BIOS) that
interacts with hardware of the special purpose computer,
device drivers that interact with particular devices of the
special purpose computer, one or more operating systems,
user applications, background services, background appli-
cations, etc.

[0151] The computer programs may include: (i) descrip-
tive text to be parsed, such as HTML (hypertext markup
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language), XML (extensible markup language), or JSON
(JavaScript Object Notation), (ii) assembly code, (iii) object
code generated from source code by a compiler, (iv) source
code for execution by an interpreter, (v) source code for
compilation and execution by a just-in-time compiler, etc.
As examples only, source code may be written using syntax
from languages including C, C++, C#, Objective C, Swift,
Haskell, Go, SQL, R, Lisp, Java®, Fortran, Perl, Pascal,
Curl, OCaml, JavaScript®, HTMLS (Hypertext Markup
Language 5th revision), Ada, ASP (Active Server Pages),
PHP (PHP: Hypertext Preprocessor), Scala, Eiffel, Small-
talk, Erlang, Ruby, Flash®, Visual Basic®, Lua, MATLAB,
SIMULINK, and Python®.

[0152] The foregoing description is merely illustrative in
nature and is in no way intended to limit the disclosure, its
application, or uses. The broad teachings of the disclosure
can be implemented in a variety of forms. Therefore, while
this disclosure includes particular examples, the true scope
of the disclosure should not be so limited since other
modifications will become apparent upon a study of the
drawings, the specification, and the following claims. Fur-
ther, although each of the embodiments is described above
as having certain features, any one or more of those features
described with respect to any embodiment of the disclosure
can be implemented in and/or combined with features of any
of the other embodiments, even if that combination is not
explicitly described. In other words, the described embodi-
ments are not mutually exclusive, and permutations of one
or more embodiments with one another remain within the
scope of this disclosure.

What is claimed is:

1. A system for predicting and interpreting bad driving

behavior of a vehicle, the system comprising:

a first edge computing device configured to acquire spa-
tial-temporal data for the vehicle from one or more
sensors that are part of traffic infrastructure, the first
edge computing device arranged as a stationary com-
ponent of traffic infrastructure, the first edge computing
device having:

a processor; and
a non-transitory computer-readable medium including

instructions that are executable by the processor of

the first edge computing device, the instructions

included on the non-transitory computer-readable

medium of the first edge computing device compris-

ing:

executing one or more unsupervised deep learning
methods with aggressiveness intention and predic-
tion algorithms on the spatial-temporal data
acquired by the one or more sensors to cluster the
spatial-temporal data into segments,

integrating a language model with the unsupervised
deep learning method to output a bad driving
behavior in natural language,

normalizing the spatial-temporal data of the vehicle,

processing the normalized spatial-temporal data of
the vehicle with a first artificial neural network to
output a spatial-temporal data vector,

processing the clustered spatial-temporal data seg-
ments using a second artificial neural network to
output a behavior feature vector,

concatenating the spatial-temporal data vector and
the behavior feature vector into a concatenated
vector, and
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processing the concatenated vector with a third arti-
ficial neural network with aggressiveness inten-
tion and prediction algorithms to output a pre-
dicted bad driving behavior of the vehicle in
natural language.

2. The system of claim 1, further comprising a database,
wherein

the first edge computing device is further configured to

acquire identification information for the vehicle from
the one or more sensors that are part of traffic infra-
structure, and

the instructions further comprise

outputting the bad driving behavior in natural language
to the database,

outputting the predicted bad driving behavior in natural
language to the database,

associating at least one of the bad driving behavior in
natural language and the predicted bad driving
behavior in natural language to the acquired identi-
fication information for the vehicle, and

saving the at least one of the bad driving behavior in
natural language and the predicted bad driving
behavior in natural language with the associated
identification information for the vehicle in the data-
base.

3. The system of claim 2, wherein the identification
information is license plate information.

4. The system of claim 2, wherein the identification
information is a unique identifier in a basic safety message
(BSM).

5. The system of claim 2, wherein the one or more sensors
includes a camera.
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6. The system of claim 1, wherein the unsupervised deep
learning method is a hidden Markov model.

7. The system of claim 1, wherein the language model is
one of a double articulation analyzer, a nonparametric
Bayesian double articulation analyzer, and a double articu-
lation analyzer followed by latent Dirichlet allocation.

8. The system of claim 1, wherein the bad driving
behavior in natural language includes exceeding a speed
limit in a roundabout, driving too closely to a vulnerable
road user on a road, failure to stop at a stop sign or yield the
right of way, tailgating, aggressive lane changing, and
cutting off another vehicle.

9. The system of claim 1, wherein the second artificial
neural network is one of a fully connected neural network,
a recurrent neural network for processing time-series data,
and a one-dimensional convolution neural network for pro-
cessing time-series data.

10. The system of claim 1, further comprising a plurality
of first edge computing devices arranged at a plurality of
intersections, the plurality of first edge computing device
configured in a regional network for identifying and pre-
dicting bad driver behavior within the regional network.

11. The system of claim 10, wherein the regional network
is a corridor, the corridor being a road having a plurality of
intersections through which the vehicle must drive.

12. The system of claim 10, wherein the regional network
is a school zone.

13. The system of claim 10, wherein the regional network
includes arterial roads around a highway or interstate.
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