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(57) ABSTRACT

The present disclosure provides systems and methods for
estimating an orientation of an implanted deep brain stimu-
lation (DBS) lead. Such methods include generating an
initial image dataset, down-sampling a respective image or
adding noise to images of the subset of the initial image
dataset, and re-slicing at least a subset of the modified image
dataset along an alternative primary imaging axis, to gen-
erate an integrated image dataset. The method also include
partitioning the integrated image dataset into a preliminary
training image dataset and a testing image dataset, and
re-sizing at least a subset of the preliminary training image
dataset with a localized field of view around a depicted DBS
lead, to generate a training image dataset. The method
further includes training a machine-learning model using the
training image dataset, and executing the trained machine-
learning model to estimate, during a DBS implantation
procedure, an orientation of a subject implanted DBS lead.
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SYSTEMS AND METHODS FOR
ELECTRODE ORIENTATION
DETERMINATION IN DEEP BRAIN
STIMULATION (DBS)

BACKGROUND OF THE DISCLOSURE

A. Field of the disclosure

[0001] The present disclosure relates generally to neuro-
stimulation systems, and, more particularly, to determining
implanted electrode orientation in neurostimulation systems.

B. Background Art

[0002] Deep brain stimulation (DBS) is an established
neuromodulation therapy for the treatment of movement
disorders, and has been shown to improve cardinal motor
symptoms of Parkinson’s Disease (PD), such as bradykine-
sia, rigidity, and tremors. DBS is also used to essential
tremor (ET). DBS is performed by placing a neurostimulator
including a lead with embedded electrodes into the patient’s
brain, and selectively activating the electrodes to send
electrical pulses to specific target tissues in the brain.
[0003] The success of DBS therapy is highly dependent
upon correct placement of the neurostimulator, including
both the location and orientation of the electrodes, to ensure
stimulation of the desired target tissues. Typically, place-
ment of the DBS lead is informed by micro-electrode
recordings and can be time consuming for the physician and
burdensome for the patient. Additionally, brain shift due to
cerebrospinal fluid (CSF) leakage during surgery may con-
tribute to uncertainty regarding final lead position. Various
imaging methods, such as fluoroscopy and CT imaging, are
used intra-operatively and post-operatively, to attempt to
more precisely identify or confirm the location of the lead.
However, none of these imaging techniques enables full
identification or confirmation of the lead placement, includ-
ing precise location and orientation of electrodes. Fluoros-
copy imaging enables identification of lead rotation in two
dimensions, but not the precise location due to a lack of
depth information. In contrast, CT imaging includes depth
information but lacks the appropriate resolution to detect
orientation. Additionally, clinical-level CT imaging, which
prioritizes scanning time, to the detriment of image quality,
is vulnerable to artifacts that make interpretation of CT
imaging difficult.

[0004] One known attempted solution for the deficiencies
of conventional imaging techniques is an algorithm that
leverages shadow patterns in CT imaging to approximate an
orientation of the lead. However, this algorithm suffers from
high levels of variance—up to 30° to 45° of variance—that
limits its clinical utility. The variance increases further as CT
image quality degrades.

BRIEF SUMMARY OF THE DISCLOSURE

[0005] In one embodiment, the present disclosure is
directed to a computing device for estimating an orientation
of an implanted deep brain stimulation (DBS) lead. The
computing device includes a processor, and a memory
device communicatively coupled to the processor. The
memory device includes instructions that, when executed,
cause the processor to: (i) generate an initial image dataset
from a plurality of clinical images and a plurality of phantom
images, each image in the initial image dataset including a
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depiction of an implanted DBS lead and a label of an
orientation of the implanted DBS lead; (ii) modify the initial
image dataset by duplicating and modifying at least a subset
of the initial image dataset, the modifying including at least
one of down-sampling a respective image or adding noise to
a respective image of the subset of the initial image dataset,
to generate a modified image dataset; (iii) modify the
modified image dataset by duplicating and re-slicing at least
a subset of the modified image dataset, the re-slicing includ-
ing re-slicing a respective image along an alternative pri-
mary imaging axis, to generate an integrated image dataset;
(iv) partition the integrated image dataset into a preliminary
training image dataset and a testing image dataset; (V)
modify the preliminary training image dataset by duplicating
and re-sizing at least a subset of the preliminary training
image dataset with a localized field of view around the
respective depiction of the implanted DBS lead, to generate
a training image dataset; (vi) train a machine-learning model
using the training image dataset, including training the
machine-learning model to associate one or more image
artifacts with the orientation of the implanted DBS lead; and
(vii) execute the trained machine-learning model to esti-
mate, during a DBS implantation procedure, an orientation
of a subject implanted DBS lead.

[0006] In another embodiment, the present disclosure is
directed to a computer-implemented method for estimating
deep brain stimulation (DBS) lead orientation. The method
includes: (i) generating an initial image dataset from a
plurality of clinical images and a plurality of phantom
images, each image in the initial image dataset including a
depiction of an implanted DBS lead and a label of an
orientation of the implanted DBS lead; (ii) modifying the
initial image dataset by duplicating and modifying at least a
subset of the initial image dataset, the modifying including
at least one of down-sampling a respective image or adding
noise to a respective image of the subset of the initial image
dataset, to generate a modified image dataset; (iii) modifying
the modified image dataset by duplicating and re-slicing at
least a subset of the modified image dataset, the re-slicing
including re-slicing a respective image along an alternative
primary imaging axis, to generate an integrated image
dataset; (iv) partitioning the integrated image dataset into a
preliminary training image dataset and a testing image
dataset; (v) modifying the preliminary training image dataset
by duplicating and re-sizing at least a subset of the prelimi-
nary training image dataset with a localized field of view
around the respective depiction of the implanted DBS lead,
to generate a training image dataset; (vi) training a machine-
learning model using the training image dataset, including
training the machine-learning model to associate one or
more image artifacts with the orientation of the implanted
DBS lead; and (vii) executing the trained machine-learning
model to estimate, during a DBS implantation procedure, an
orientation of a subject implanted DBS lead.

[0007] In yet another embodiment, the present disclosure
is directed to non-transitory computer-readable media hav-
ing computer-executable instructions thereon. When
executed by a processor of a computing device communi-
catively coupled to a memory device, the computer-execut-
able instructions cause the processor of the computing
device to: (i) generate an initial image dataset from a
plurality of clinical images and a plurality of phantom
images, each image in the initial image dataset including a
depiction of an implanted DBS lead and a label of an
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orientation of the implanted DBS lead; (ii) modify the initial
image dataset by duplicating and modifying at least a subset
of the initial image dataset, the modifying including at least
one of down-sampling a respective image or adding noise to
a respective image of the subset of the initial image dataset,
to generate a modified image dataset; (iii) modify the
modified image dataset by duplicating and re-slicing at least
a subset of the modified image dataset, the re-slicing includ-
ing re-slicing a respective image along an alternative pri-
mary imaging axis, to generate an integrated image dataset;
(iv) partition the integrated image dataset into a preliminary
training image dataset and a testing image dataset; (V)
modify the preliminary training image dataset by duplicating
and re-sizing at least a subset of the preliminary training
image dataset with a localized field of view around the
respective depiction of the implanted DBS lead, to generate
a training image dataset; (vi) train a machine-learning model
using the training image dataset, including training the
machine-learning model to associate one or more image
artifacts with the orientation of the implanted DBS lead; and
(vii) execute the trained machine-learning model to esti-
mate, during a DBS implantation procedure, an orientation
of a subject implanted DBS lead.

[0008] The foregoing and other aspects, features, details,
utilities and advantages of the present disclosure will be
apparent from reading the following description and claims,
and from reviewing the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a schematic view of one embodiment of
a stimulation system.

[0010] FIG. 2 is a block diagram of one embodiment of a
computing device that may be used to determine an orien-
tation of lead electrodes.

[0011] FIG. 3 is a flow diagram of a method of determin-
ing an orientation of a DBS lead.

[0012] FIGS. 4A and 4B depict one embodiment of a DBS
lead.
[0013] FIGS. 5A-5C depict representations of fluoro-

scopic images identifying DBS lead orientation.

[0014] FIGS. 6A and 6B depict representations of CT
images identifying a depth of an implanted DBS lead.
[0015] FIG. 7 is a flow diagram of a processor for pre-
dicting the rotational orientation of an implanted DBS lead.
[0016] Corresponding reference characters indicate corre-
sponding parts throughout the several views of the drawings.

DETAILED DESCRIPTION OF THE
DISCLOSURE

[0017] The present disclosure provides systems and meth-
ods for estimating an orientation of an implanted deep brain
stimulation (DBS) lead, specifically during an implantation
procedure. A computing device trains a machine-learning
model using a set of training images that includes images
depicting implanted DBS leads and labels of the orientation
of the implanted DBS leads. The computing device pro-
cesses the training set of images to associate image features
of the training set of images with the labelled orientation.
The trained machine-learning model receives a subject
image of a subject implanted DBS lead with an unknown
orientation and outputs an estimation of the orientation of
the subject implanted DBS lead.
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[0018] As used herein, “location” of an implanted DBS
lead refers generally to a depth of the DBS lead or its relative
location along a z-axis taken longitudinally through a
patient’s body. “Location” may additional refer to the loca-
tion of the implanted DBS lead within an imaging plane
(e.g., a horizontal x-y plane, orthogonal to the z-axis, taken
through a patient’s head). “Orientation” of a DBS lead may
refer to a rotational orientation that can be defined in a
three-axis coordinate system (x-y-z/yaw-pitch-roll) or based
on a major or longitudinal axis of the DBS lead. The latter
approach may include information about the 3-axes to be
sufficiently usable. An origin angle in the three-axis coor-
dinate system may also be defined based on coordinate
context. For example, zero degrees would imply that the
DBS lead was placed orthogonal to an axial plane and
parallel to the sagittal and coronal planes, and an orientation
marker thereof, as described further herein, was facing true
anterior (e.g., towards the nose).

[0019] Neurostimulation systems generally include a
pulse generator and one or more leads. A stimulation lead
includes a lead body of insulative material that encloses
electrical conductors, or wires. The distal end of the stimu-
lation lead includes multiple electrodes, or contacts, that are
electrically coupled to the electrical conductors. The proxi-
mal end of the lead body includes multiple terminals (also
electrically coupled to the electrical conductors) adapted to
receive electrical pulses. In DBS systems, the stimulation
lead is implanted within the brain tissue to deliver the
electrical pulses. The stimulation leads are then tunneled to
another location within the patient’s body to be electrically
connected with a pulse generator or, alternatively, to an
“extension.” The pulse generator is typically implanted
within a subcutaneous pocket created during the implanta-
tion procedure.

[0020] The pulse generator is typically implemented using
a metallic housing that encloses circuitry for generating the
electrical pulses, control circuitry, communication circuitry,
a rechargeable battery, etc. The pulse generating circuitry is
coupled to one or more stimulation leads through electrical
connections provided in a “header” of the pulse generator.
Specifically, feedthrough wires typically exit the metallic
housing and enter into a header structure of a moldable
material. Within the header structure, the feedthrough wires
are electrically coupled to annular electrical connectors. The
header structure holds the annular connectors in a fixed
arrangement that corresponds to the arrangement of termi-
nals on a stimulation lead.

[0021] Referring now to the drawings, and in particular to
FIG. 1, a stimulation system is indicated generally at 100.
Stimulation system 100 generates electrical pulses for appli-
cation to tissue of a patient, or subject, according to one
embodiment. System 100 includes an implantable pulse
generator (IPG) 150 that is adapted to generate electrical
pulses for application to tissue of a patient. IPG 150 typi-
cally includes a metallic housing that encloses a controller
151, pulse generating circuitry 152, a battery 153, far-field
or near-field communication circuitry 154, and other appro-
priate circuitry and components of the device. Controller
151 typically includes a microcontroller or other suitable
processor for controlling the various other components of
the device. Software code is typically stored in memory of
IPG 150 for execution by the microcontroller or processor to
control the various components of the device.
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[0022] IPG 150 may comprise one or more attached
extension components 170 or be connected to one or more
separate extension components 170. Alternatively, one or
more stimulation leads 110 may be connected directly to
IPG 150. Within IPG 150, electrical pulses are generated by
pulse generating circuitry 152 and are provided to switching
circuitry. The switching circuit connects to output wires,
traces, lines, or the like (not shown) that are electrically
coupled to internal electrical conductors (not shown) of a
lead body 172 of extension component 170. The electrical
conductors, or wires, are electrically coupled to electrical
connectors (e.g., “Bal-Seal” connectors) within a connector
portion 171 of extension component 170. The terminals of
one or more stimulation leads 110 are inserted within
connector portion 171 for electrical connection with respec-
tive connectors. Thereby, the pulses originating from IPG
150 and conducted through the conductors of lead body 172
are provided to stimulation lead 110. The pulses are then
conducted through the conductors of lead 110 and applied to
tissue of a patient via electrodes 111. Any suitable known or
later developed design may be employed for connector
portion 171.

[0023] For implementation of the components within IPG
150, a processor and associated charge control circuitry for
an implantable pulse generator is described in U.S. Pat. No.
7,571,007, entitled “SYSTEMS AND METHODS FOR
USE IN PULSE GENERATION,” which is incorporated
herein by reference. Circuitry for recharging a rechargeable
battery of an implantable pulse generator using inductive
coupling and external charging circuits are described in U.S.
Pat. No. 7,212,110, entitled “IMPLANTABLE DEVICE
AND SYSTEM FOR WIRELESS COMMUNICATION,”
which is incorporated herein by reference.

[0024] An example and discussion of “constant current”
pulse generating circuitry is provided in U.S. Patent Publi-
cation No. 2006/0170486 entitled “PULSE GENERATOR
HAVING AN EFFICIENT FRACTIONAL VOLTAGE
CONVERTER AND METHOD OF USE,” which is incor-
porated herein by reference. One or multiple sets of such
circuitry may be provided within IPG 150. Different pulses
on different electrodes may be generated using a single set
of pulse generating circuitry using consecutively generated
pulses according to a “multi-stim set program” as is known
in the art. Alternatively, multiple sets of such circuitry may
be employed to provide pulse patterns that include simul-
taneously generated and delivered stimulation pulses
through various electrodes of one or more stimulation leads
as is also known in the art. Various sets of parameters may
define the pulse characteristics and pulse timing for the
pulses applied to various electrodes as is known in the art.
Although constant current pulse generating circuitry is con-
templated for some embodiments, any other suitable type of
pulse generating circuitry may be employed such as constant
voltage pulse generating circuitry.

[0025] Stimulation lead(s) 110 may include a lead body of
electrically insulative material about a plurality of conduc-
tors within the material that extend from a proximal end of
lead 110 to its distal end. The conductors electrically couple
a plurality of electrodes 111 to a plurality of terminals (not
shown) of lead 110. The terminals are adapted to receive
electrical pulses and the electrodes 111 are adapted to apply
stimulation pulses to tissue of the patient. Also, sensing of
physiological signals may occur through electrodes 111, the
conductors, and the terminals. Additionally or alternatively,
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various sensors (not shown) may be located near the distal
end of stimulation lead 110 and electrically coupled to
terminals through conductors within the lead body 172.
Stimulation lead 110 may include any suitable number and
type of electrodes 111, terminals, and internal conductors.

[0026] An external controller device 160 permits the
operations of IPG 150 to be controlled by user after IPG 150
is implanted within a patient. Controller device 160 can be
implemented by utilizing a suitable handheld processor-
based system that possesses wireless communication capa-
bilities. Software is typically stored in memory of controller
device 160 to control the various operations of controller
device 160, including stimulation operations and operations
for charging IPG 150. For example, to charge IPG 150, a
“wand” 165 including a coil 166 may be electrically con-
nected to controller device 160. The patient places the
primary coil 166 against the patient’s body immediately
above a secondary coil (not shown), i.e., a coil of the
implantable medical device. Controller device 160 generates
an AC-signal to drive current through coil 166 of wand 165.
The current induced in the coil of the implantable pulse
generator is rectified and regulated to recharge battery of
IPG 150. The charging circuitry may also communicate
status messages to controller device 160 during charging
operations using pulse-loading or any other suitable tech-
nique. For example, controller device 160 may communicate
the coupling status, charging status, charge completion sta-
tus, etc.

[0027] Also, the wireless communication functionality of
controller device 160 can be integrated within the handheld
device package or provided as a separate attachable device.
The interface functionality of controller device 160 is imple-
mented using suitable software code for interacting with the
user and using the wireless communication capabilities to
conduct communications with IPG 150.

[0028] Controller device 160 preferably provides one or
more user interfaces to allow the user to operate IPG 150
according to one or more stimulation programs to treat the
patient’s disorder(s). Each stimulation program may include
one or more sets of stimulation parameters including pulse
amplitude, pulse width, pulse frequency or inter-pulse
period, pulse repetition parameter (e.g., number of times for
a given pulse to be repeated for respective stim set during
execution of program), etc. In the methods and systems
described herein, parameters may include, for example, a
number of pulses in a burst (e.g., 3, 4, or 5 pulses per burst),
an intra-burst frequency (e.g., 130 Hz), an inter-burst fre-
quency (e.g., 3-20 Hz), and a delay between a first and
second burst.

[0029] IPG 150 modifies its internal parameters in
response to the control signals from controller device 160 to
vary the stimulation characteristics of stimulation pulses
transmitted through stimulation lead 110 to the tissue of the
patient. Neurostimulation systems, stim sets, and multi-stim
set programs are discussed in PCT Publication No. WO
2001/093953, entitled “NEUROMODULATION
THERAPY SYSTEM,” and U.S. Pat. No. 7,228,179,
entitled “METHOD AND APPARATUS FOR PROVIDING
COMPLEX TISSUE STIMULATION PATTERNS,” which
are incorporated herein by reference. Example commercially
available neurostimulation systems include the EON
MINI™ pulse generator and RAPID PROGRAMMER™
device from Abbott Laboratories.
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[0030] The systems and methods described herein enable
identifying, or estimating, the location and/or orientation of
stimulation lead 110 to improve therapeutic outcomes. That
is, by improving accuracy in the estimated location of DBS
lead 110 within the patient’s tissue, the stimulation pulses
may be more precisely directed to the target tissue. More-
over, the overall procedure time may be significantly
reduced, by reducing or eliminating the “trial and error”
methods conventionally undertaken by the physician to
locate and orient stimulation lead 110.

[0031] FIG. 2 is a block diagram of one embodiment of a
computing device 200 that may be used to estimate the
orientation of an implanted DBS lead (e.g., stimulation lead
110) using minimal input image data (e.g., a single input
image, such as a clinical-level CT image), as described
further herein. Computing device 200 may include any
suitable computing device, including a computing device
operable in a clinical setting (e.g., as part of a DBS lead
implantation procedure). In some embodiments, computing
device 200 is operated, at least in part, by a user 205, such
as a clinician, physician, or other clinical entity.

[0032] In this embodiment, computing device 200
includes at least one memory device 210 and a processor 215
coupled to memory device 210 for executing instructions. In
some embodiments, executable instructions are stored in
memory device 210. In the illustrated embodiment, com-
puting device 200 performs one or more operations
described herein by programming processor 215. For
example, processor 215 may be programmed by encoding an
operation as one or more executable instructions and by
providing the executable instructions in memory device 210.
Memory device 210 is also configured to store additional
and/or alternative data, including, for example, image data.

[0033] Processor 215 may include one or more processing
units (e.g., in a multi-core configuration). Further, processor
215 may be implemented using one or more heterogeneous
processor systems in which a main processor is present with
secondary processors on a single chip. In another illustrative
example, processor 215 may be a symmetric multi-processor
system containing multiple processors of the same type.
Further, processor 215 may be implemented using any
suitable programmable circuit including one or more sys-
tems and microcontrollers, microprocessors, reduced
instruction set circuits (RISC), application specific inte-
grated circuits (ASIC), programmable logic circuits, field
programmable gate arrays (FPGA), and any other circuit
capable of executing the functions described herein.

[0034] In the illustrated embodiment, memory device 210
is one or more devices that enable information such as
executable instructions (e.g., instructions for performing
method 300 and/or process 700, shown in FIGS. 3 and 7,
respectively) and/or other data to be stored and retrieved.
Memory device 210 may include one or more (non-transi-
tory) computer readable media, such as, without limitation,
dynamic random access memory (DRAM), read-only
memory (ROM), electrically erasable programmable read-
only memory (EEPROM), static random access memory
(SRAM), a solid state disk, and/or a hard disk. Memory
device 210 may be configured to store, without limitation,
application source code, application object code, source
code portions of interest, object code portions of interest,
configuration data, execution events and/or any other type of
data.
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[0035] In one exemplary embodiment, computing device
200 further includes at least one media output component
220 for presenting information to user 205. Media output
component 220 may, for example, be any component
capable of converting and conveying electronic information
to user 205. In some embodiments, media output component
220 includes an output adapter (not shown), such as a video
adapter or an audio adapter, which is operatively coupled to
processor 215 and operatively couplable to an output device
(also not shown), such as a display device (e.g., a cathode
ray tube (CRT), liquid crystal display (LCD), light emitting
diode (LED) display, or “electronic ink™ display) or an audio
output device (e.g., a speaker or headphones). In some
embodiments, media output component 220 is configured to
include and present a graphical user interface such as a web
browser or a clinical programming application, to user 205.
[0036] In some embodiments, computing device 200
includes an input device 225 for receiving input from user
205. User 205 may use input device 225, without limitation,
to provide commands for operating computing device 200
and/or provide commands for operating one or more remote
devices (e.g., an imaging device) communicatively coupled
to computing device 200. Input device 225 may include, for
example, a keyboard, a pointing device, a mouse, a stylus,
a touch sensitive panel (e.g., a touch pad or a touch screen),
and the like. A single component such as a touch screen may
function as both an output device of media output compo-
nent 220 and input device 225.

[0037] Computing device 200, in the illustrated embodi-
ment, includes a communication interface 230 coupled to
processor 215. Communication interface 230 communicates
with one or more remote devices, such as a clinician or
patient programmer, an imaging device, controller device
160 (shown in FIG. 1), an external pulse generator, and the
like. To communicate with remote devices, communication
interface 230 may include, for example, a wired network
adapter, a wireless network adapter, a radio-frequency (RF)
adapter, and/or a mobile telecommunications adapter.
[0038] FIG. 3 is a flow diagram of a method 300 of
estimating an orientation of an implanted DBS lead. Method
300 may be implemented, for example, by computing device
200 (shown in FIG. 2). Method 300 includes generating 302
an initial image dataset from a plurality of clinical images
and a plurality of phantom images, each image in the initial
image dataset including a depiction of an implanted DBS
lead and a label of an orientation of the implanted DBS lead.
As described herein, the plurality of clinical images in the
initial image dataset may include at least one of intra-
operative or post-operative CT images. The plurality of
clinical images in the initial image dataset may further
include at least one of intra-operative fluoroscopy images or
post-operative fluoroscopy images. The initial image dataset
may further include pre-operative MRI images identifying
anatomical features of a brain in which the DBS lead is to
be implanted. Generating 302 the initial image dataset may
include, for example, generating 302 the initial image data-
set from received clinical and/or phantom images.

[0039] Method 300 also includes modifying 304 the initial
image dataset by duplicating and modifying at least a subset
of the initial image dataset, to generate a modified image
dataset. In some embodiments, therefore, modifying 304
may be alternatively referred to as expanding the initial
image dataset and/or generating a modified image dataset.
Modifying 304 includes at least one of down-sampling a
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respective image or adding noise to a respective image of the
subset of the initial image dataset.

[0040] Method 300 further includes modifying 306 the
modified image dataset by duplicating and re-slicing at least
a subset of the modified image dataset, to generate an
integrated image dataset. In some embodiments, therefore,
modifying 306 may be alternatively referred to as expanding
the initial and/or modified image dataset and/or generating
in integrated image dataset. The re-slicing of moditying 306
includes re-slicing a respective image (e.g., an original
image having an original primary imaging axis) along an
alternative primary imaging axis.

[0041] Method 300 includes partitioning 308 the inte-
grated image dataset into a preliminary training image
dataset and a testing image dataset, and modifying 310 the
preliminary training image dataset by duplicating and re-
sizing at least a subset of the preliminary training image
dataset with a localized field of view around the respective
depiction of the implanted DBS lead, to generate a training
image dataset. In some embodiments, modifying 310 may be
alternatively referred to as expanding the preliminary train-
ing image dataset and/or generating the training image
dataset.

[0042] Method 300 still further includes training 312 a
machine-learning model using the training image dataset.
Training 312 includes training the machine-learning model
to associate one or more image artifacts with the orientation
of the implanted DBS lead. Method 300 also includes
executing 314 the trained machine-learning model to esti-
mate, during a DBS implantation procedure, an orientation
of a subject implanted DBS lead.

[0043] It should be readily understood that method 300
may include additional and/or alternative steps to those set
forth above. For example, in some embodiments, method
300 may further include testing the trained machine-learning
model using at least a subset of the testing image dataset. In
some such embodiments, method 300 further includes refin-
ing the trained machine-learning model based on an out-
come of the testing of the trained machine-learning model
and, in some embodiments, validating the refined trained
machine-learning model using at least another subset of the
testing image dataset.

[0044] In some embodiments, method 300 includes (e.g.,
as part of executing 314) receiving, during the DBS implan-
tation procedure, a subject image including a depiction of
the subject implanted DBS lead with an unknown orienta-
tion, inputting the subject image to the trained machine-
learning model;, receiving, as output in response to the
executing of the trained machine-learning model, the esti-
mated orientation of the subject implanted DBS lead, and/or
outputting, to a user of the computing device, the estimated
orientation of the subject implanted DBS lead

[0045] FIGS. 4A and 4B depict a DBS lead 400 that may
be used in association with the systems and methods
described herein. DBS lead 400 includes a first electrode
402, a second electrode 404, a third electrode 406, and a
fourth electrode 408. In this embodiment, first electrode 402
and fourth electrode 408 are both ring electrodes. Further,
second electrode 404 includes three segmented electrodes
410, illustrated in the exploded view of FIG. 4B. Likewise,
third electrode 406 includes three segmented electrodes 410,
illustrated in the exploded view of FIG. 4B. In FIG. 4B, first
electrode 402 is designated “1”, the three segmented elec-
trodes 410 of second electrode 404 are designated “2A-2C”,
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the three segmented electrodes 410 of third electrode 406 are
designated “3A-3C”, and fourth electrode 408 is designated
“4”. Those of skill in the art will appreciate that DBS lead
400 may have any suitable electrode configuration, and that
the electrode configuration shown in FIGS. 4A and 4B is
merely an example. Notably, however, an electrode configu-
ration with rotationally asymmetric (e.g., having an odd
number of segmented electrodes forming, for example,
second electrode 404 and third electrode 406) is desirable
for improving determinability of the orientation of the DBS
lead 400 and, therefore, improving predictability of thera-
peutic application of stimulation using DBS lead 400.

[0046] In addition, DBS lead 400 includes an orientation
marker 412, depicted in FIG. 4B with an “hourglass™ shape.
Orientation marker 412 is a radiopaque marker configured to
identify an orientation of DBS lead 400. Specifically, ori-
entation marker 412 is circumferentially aligned with the 2A
and 3A segmented electrodes 410. Accordingly, where the
direction or location of orientation marker 412 can be
identified, the rotational orientation of DBS lead 400 can be
readily estimated. For example, FIGS. 5A-5C depict repre-
sentations of fluoroscopic images of an example DBS lead.
These images readily reveal the relative rotational orienta-
tion of the orientation marker (e.g., similar to orientation
marker 412) at 0°, 45°, and 90°, respectively.

[0047] Notably, as described above herein, fluoroscopic
images do not convey depth information, and therefore CT
imaging is performed intra- and/or post-operatively to locate
the DBS lead. However, the orientation of an orientation
marker, such as orientation marker 412, cannot be readily
identified in clinical-level CT imaging. For example, as
shown in the representations of CT images depicted in FIGS.
6A and 6B, CT imaging may reveal useful imaging artifacts.
In particular, FIG. 6 A depicts a representation of a CT image
with artifacts from the orientation marker of an example
DBS lead. However, in FIG. 6A, to the naked human eye,
the orientation of the lead could be either diagonally anterior
or diagonally posterior, with some level of variance in either
such direction. The particular orientation of DBS lead can-
not be discerned. As another example, FIG. 6B depicts a
representation of a CT image with artifacts from the seg-
mented electrodes of such a DBS lead, which are rotation-
ally asymmetric. Moreover, these artifacts of the segments
electrodes are also laterally asymmetric (e.g., the left-hand
artifacts are different from the right-hand artifacts) due to
different lead trajectories, which is typical of DBS implan-
tation procedures. Although the combination of these images
(e.g., depictions of orientation marker artifacts and depic-
tions of electrode artifacts) enable estimation of the DBS
lead orientation, there remains ambiguity in these determi-
nations due to the geometry of the orientation marker and the
placement of the segmented electrodes. Accordingly, as set
forth herein, a single imaging method does not accurately
convey sufficient information to both locate the implanted
DBS lead, and identify and validate its orientation.

[0048] Turning to FIG. 7, a flow diagram of a process 700
for predicting the rotational orientation of an implanted DBS
lead is depicted. In one exemplary embodiment, one or more
steps of process 700 are implemented by a computing
device, such as computing device 200 (shown in FIG. 2).
Execution of process 700 enables extracting information
(otherwise unavailable or undiscernible by the human naked
eye) from a single input image (e.g., a clinical-level CT
image) to classify the information and detect and/or estimate
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the orientation of the implanted DBS lead. In particular, an
image dataset is used to train and test a machine learning
model to classify image features or artifacts that can be
readily correlated to (e.g., are indicative of) the orientation
of the DBS lead (e.g., of the orientation marker of the DBS
lead). Process 700 may be similar to method 300, set forth
above.

[0049] Process 700 includes generating 702 an initial
image dataset. The initial image dataset includes a plurality
of labelled training images of one or more imaging types.
Each of the labelled images includes labels of the location
and orientation of an implanted DBS lead depicts in the
respective image. In the exemplary embodiment, the initial
image dataset includes at least CT images depicting
implanted DBS leads, the CT images captured intra-opera-
tively and/or post-operatively. It is recognized that intra-
operative CT images tend to have more noise than post-
operative CT images; however, as described further herein,
varying image qualities and resolutions are desirable for
training the machine learning model. In some embodiments,
the initial image dataset additionally includes fluoroscopic
images, captured intra-operatively and/or post-operatively.
[0050] In some embodiments, the initial image dataset
additionally includes phantom images labelled with ground
truth data of the implanted DBS lead. Phantom images
depict a biophysical representation or model of a patient
with a DBS lead implanted in a representation of brain
tissue. The biophysical model has similar properties to a
human patient and real brain tissue. Notably, the biophysical
model offers significant control over various procedural
characteristics, such as relatively exact location and orien-
tation of the implanted DBS lead, as well as imaging
characteristics, such as quality and resolution. Accordingly,
the ground truth is readily identified and provided in labelled
phantom images. Various types of phantom images may be
included, such as fluoroscopic phantom images, CT phan-
tom images, and MRI phantom images.

[0051] In some embodiments, the initial image dataset
additionally includes MRI images, captured pre-operatively.
Notably, such images do not include a label of an implanted
DBS lead, because no such lead has yet been implanted
when the MRI images are captured. However, MRI images
depict anatomical details not available in other imaging
types. Anatomical information can have significant effects in
terms of DBS therapy. Specifically, activating different
regions of the target tissue may have differential effects on
the actual clinical outcome. Where MRI images are included
in the initial image dataset, the MRI images are labelled to
identify one or more anatomical details of tissue associated
with an implantation location (i.e., where the DBS lead is
eventually implanted). Accordingly, where these MRI
images are included and are associated with corresponding
intra-/post-operative CT and/or fluoroscopic images for the
same patient, anatomical details at the implantation location
can be accounted for in the machine learning model trained
on such MRI images.

[0052] Therefore, the initial image dataset includes origi-
nal images that are received from one or more sources,
including clinical images received from physicians as well
as phantom images received from, for example, model
testing sources. In the exemplary embodiment, the initial
image dataset includes the plurality of images having vari-
ous image qualities and/or resolution. In particular, at least
a subset of the images represents clinical-level image quality
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and/or resolution. Other subsets of the images represent
greater image quality and/or resolution (e.g., phantom
images).

[0053] Process 700 further includes generating 704 a
modified, expanded image dataset using the initial image
dataset. More specifically, at least a subset of the images in
the initial dataset (e.g., original images) are duplicated and
modified or augmented. Some of the plurality of images in
the initial dataset are down-sampled, blurred, or have noise
artificially added thereto, in order to generate additional
training images with varying image resolutions and image
qualities, respectively. By adding these uncertainties and
variability into the training image set, the machine-learning
model trained on the training image set will be capable of
accurately interpreting a wider variety of input images,
including low-quality clinical image data (e.g., intra-opera-
tive CT images), improving the generalizability of the
machine-learning model when implemented in a clinical
setting (e.g., during an implantation procedure).

[0054] Process 700 includes “re-slicing” or re-orienting
706 the modified image dataset. More specifically, at least a
subset of the images in the initial and/or modified dataset are
“re-sliced.” Re-slicing, or re-orienting, in the context of the
present disclosure refers to modifying a primary imaging
axis of an original (or modified) image. For example, in
typical clinical CT imaging, a primary imaging axis, or
z-axis, is taken as the longitudinal axis of the patient (e.g.,
parallel to a direction from head to foot). To re-slice an
image, the primary imaging axis is changed to an alternative
primary imaging axis—that is, a primary imaging axis other
than the conventional z-axis defined above. The tilt or
trajectory of the implanted DBS lead can vary; the longitu-
dinal axis of the implanted DBS lead is not always aligned
with the conventional z-axis. At least some of the images
(e.g., the phantom images) are re-sliced or re-oriented such
that the known axis of the DBS lead is the modified,
alternative primary imaging axis, which enables the machine
learning model trained on such image data to identify image
features associated with the tilt or trajectory of the DBS lead.
It is contemplated that original images (e.g., unmodified
images from the initial image dataset) and/or modified
images may be re-sliced during step 706. The plurality of
images from steps 702, 704, and 706 are collectively
referred to as an integrated image dataset. That is, the
integrated image dataset includes original images, modified
(e.g., down-sampled and/or noisy) images, and re-sliced
images.

[0055] Process 700 further includes partitioning 708 the
integrated image dataset into a preliminary training image
dataset (e.g., preliminary training data 750) and a test image
dataset (e.g., test data 752). Partitioning 708 is a pseudo-
random process step in that the process of dividing images
between preliminary training data 750 and test data 752 is
random but a representational portion of the integrated
image dataset must be included in test data 752, including a
representation portion of images of each imaging type,
varying image quality, varying image resolution, and re-
sliced image data. Test data 752 may represent a relatively
small portion of the integrated image dataset, such as
10-30% of the integrated image dataset.

[0056] Once the integrated image dataset is partitioned
708, image processing is performed on preliminary training
data 750, represented at step 710. During image processing
710, at least a subset of the images included in preliminary
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training data 750 are duplicated and re-sized to focus or
localize the field of view on the implanted DBS lead
depicted in the respective image. Thereby, image artifacts
unrelated to the location and/or orientation of the DBS lead
may be effectively ignored, for these re-sized images. More-
over, this resizing, focused specifically on fields of view of
interest, improves the signal-to-noise ratio for these re-sized
images, relative to their non-re-sized counterpart images.
The image dataset including preliminary training data 750
and the re-sized images is collectively referred to as a
training image dataset (e.g., training data 754).

[0057] Training data 754 is input to a machine learning
model to train 712 the machine learning model, also referred
to herein as a machine learning algorithm. Training 712
includes training the machine learning algorithm to associate
particular image artifacts or features with the labelled loca-
tion and/or orientation of the implanted DBS lead. For
example, where an image (e.g., a CT image) depicts a “‘slice”
of the implanted DBS lead corresponding to the orientation
marker, image artifacts reflect two potential rotational ori-
entations of the implanted DBS lead, with some amount of
variance. As another example, where an image (e.g., a CT
image) depicts a “slice” of the implanted DBS lead corre-
sponding to one of the segmented electrodes (e.g., the
second or third electrode, in the embodiment of a DBS lead
shown in FIGS. 4A and 4B), the rotational asymmetry of the
electrodes is represented, but (to the human naked eye) it
cannot be determined which electrode (e.g., 2A, 2B, 2C) is
facing in any direction.

[0058] During training 712, the machine learning algo-
rithm uses the image labels to identify features of the images
(unrecognized by the human naked eye) that more precisely
estimate the actual orientation of the DBS lead at any “slice”
or imaging depth. The machine learning model is also
trained 712 to identify those image features or artifacts that
are more (or most) indicative of DBS lead orientation and/or
location. Such image features or artifacts may include, for
example and without limitation, features related to intensity,
shade, gradient, spatial frequency (e.g., information from the
k-space before image reconstruction), including relative
and/or absolute values thereof, and/or relational features.
Image features or artifacts may be classified based on their
relative indicative effect. Those features that are classified as
relatively more indicative may weighed more heavily in
generating the output from the machine learning model—
that is, the estimation of the orientation and/or the location
of the implanted DBS lead depicted in an input subject
image. The variability in at least one of the imaging type,
image quality, image resolution, image orientation, and/or
image field of view of training data 754 improves the
estimating capability of the trained machine learning model.
[0059] In some embodiments, where MRI imaging data is
available in training data 754, training 712 also includes
training the machine learning model to associate particular
image artifacts representing anatomical features with the
labelled location and/or orientation of the implanted DBS
lead in related CT and/or fluoroscopic images.

[0060] In some embodiments, the machine learning
model, or machine learning model, is an artificial neural
network model (e.g., a convolutional neural network model)
trained 712 used transfer learning techniques. The transfer
learning techniques enable the “transfer” of relationship
learned using high-quality image data (e.g., phantom data
with labelled ground truth) to lower-quality image data (e.g.,
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clinical data). These techniques accelerate the training pro-
cess and also improve the generalizability and estimating
capability of the trained machine learning model. It should
be readily understood that additional and/or alternative
models and/or techniques may be applied during training
712, such as, but not limited to Deep Neural Networks
(DNN), Random forest (RF), K-nearest neighbor (KNN),
support vector machine (SVM), logistic regression,
ensemble learning, and multi-layer perception (MLP). The
specific models used may depend on the particular training
data 754 (e.g., the combination of image types) used to train
712 the algorithm.

[0061] The trained machine learning model is configured
to receive, as input thereto, a subject image including a
depiction of a subject implanted DBS lead with an unknown
orientation and/or an unknown location. The trained
machine learning model is configured to generate, as output
therefrom an estimation of the orientation and/or location of
the subject implanted DBS lead depicted in the subject
image.

[0062] Once the machine learning model is trained 712, a
model validation step 714 is implemented to test or validate
the trained machine learning model. Test data 752 is used as
input to the trained machine learning model, and the output
from the trained machine learning model is reviewed to
determine whether the output estimations match the labelled
(known) orientation and/or location of the DBS lead
depicted in images of test data 752. If necessary, based on
the outcome of testing 714, the trained machine learning
model is refined or adjusted to ensure accurate output
estimations. Where available in test data 752, phantom
images with ground truth labels may be used for a final test
or validated of the trained machine learning model, because
the output from the model can be precisely compared to the
ground truth labels.

[0063] After the trained machine learning model has been
fully tested and/or validated 714, the trained machine learn-
ing model is integrated 716 into a clinical application for use
in a clinical setting (e.g., during an implantation procedure).
The application may be implemented by the same comput-
ing device programmed to implement process 700. Alterna-
tively, the clinical application may be implemented by one
or more other computing devices.

[0064] In operation, as described above, a subject image,
such as in intra-operative CT image, is input to the trained
machine learning model. The subject image depicts an
implanted DBS lead for which the orientation and/or loca-
tion is unknown (e.g., to the operating physician). The
trained machine learning model processed the subject image
and outputs an estimation of the orientation and/or the
location of the implanted DBS lead.

[0065] Insome embodiments, the estimation is overlaid on
at least a portion of the subject image, such as an icon, one
or more words or numbers, and the like, overlaid on and/or
adjacent to the depicted DBS lead. In other embodiments,
the estimation is output in an alternative format. The esti-
mation may be output on a user interface of a computing
device (e.g., computing device 200), such as a screen visible
to the operating physician. Additionally or alternatively, the
estimation may be output in a physical format (e.g., as a
printed image or message). The estimation enables reducing
or eliminating the conventional “trial and error” procedures
for locating the DBS lead. Based on the estimation, the
operating physician may adjust the location and/or orienta-
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tion of the DBS lead in response to the estimation. This
process can be iterated until the desired orientation and/or
location of the DBS lead is achieved, at which point the
operating physician may, in some instances, initiate stimu-
lation therapy using the DBS lead.

[0066] In one exemplary implementation, the trained
machine learning model is integrated into an application
executed on a computing device (e.g., computing device
200) with a graphical user interface. The computing device
is communicatively coupled to an imaging device (e.g.,aCT
imaging device) configured to intra-operatively capture the
subject image depicting the implanted DBS lead. Once the
subject image is captured, the computing device is config-
ured to execute the trained machine learning model (e.g.,
automatically, in response to detecting a subject image has
been captured by the imaging device and/or received at the
computing device, and/or in response to a command). The
computing device also displays the captured subject image
on the graphical user interface. The trained machine learning
model generates the output—the estimation—and displays
the estimation as an overlay on the captured subject image,
conveying (through icons, animations, words, numbers, etc.)
to the operating physician the estimated orientation and/or
location of the implanted DBS lead.

[0067] The present disclosure provides systems and meth-
ods for estimating an orientation and/or location of a DBS
lead, which can be implemented in a clinical setting (e.g.,
during a DBS lead implantation procedure). In particular, an
initial image dataset is generated from a plurality of clinical
images and a plurality of phantom images, each image in the
initial image dataset including a depiction of an implanted
DBS lead and a label of an orientation of the implanted DBS
lead; the initial image dataset is modified by duplicating and
modifying at least a subset of the initial image dataset, the
modifying including at least one of down-sampling a respec-
tive image or adding noise to a respective image of the
subset of the initial image dataset, to generate a modified
image dataset; the modified image dataset is further modi-
fied by duplicating and re-slicing at least a subset of the
modified image dataset, the re-slicing including re-slicing a
respective image along an alternative primary imaging axis,
to generate an integrated image dataset; the integrated image
dataset is partitioned into a preliminary training image
dataset and a testing image dataset; the preliminary training
image dataset is modified by duplicating and re-sizing at
least a subset of the preliminary training image dataset with
a localized field of view around the respective depiction of
the implanted DBS lead, to generate a training image
dataset; a machine-learning model is trained using the
training image dataset, including training the machine-
learning model to associate one or more image artifacts with
the orientation of the implanted DBS lead; and the trained
machine-learning model is executed to estimate, during a
DBS implantation procedure, an orientation of a subject
implanted DBS lead.

[0068] In this way, an operating physician is informed of
this orientation and/or location in substantially real-time.
Therefore, the systems and methods of the present disclo-
sure represent a significant improvement over conventional
methods for determining the placement of an implanted
DBS lead (e.g., via “trial-and-error”).

[0069] Although certain embodiments of this disclosure
have been described above with a certain degree of particu-
larity, those skilled in the art could make numerous altera-
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tions to the disclosed embodiments without departing from
the spirit or scope of this disclosure. All directional refer-
ences (e.g., upper, lower, upward, downward, left, right,
leftward, rightward, top, bottom, above, below, vertical,
horizontal, clockwise, and counterclockwise) are only used
for identification purposes to aid the reader’s understanding
of the present disclosure, and do not create limitations,
particularly as to the position, orientation, or use of the
disclosure. Joinder references (e.g., attached, coupled, con-
nected, and the like) are to be construed broadly and may
include intermediate members between a connection of
elements and relative movement between elements. As such,
joinder references do not necessarily infer that two elements
are directly connected and in fixed relation to each other. It
is intended that all matter contained in the above description
or shown in the accompanying drawings shall be interpreted
as illustrative only and not limiting. Changes in detail or
structure may be made without departing from the spirit of
the disclosure as defined in the appended claims.

[0070] When introducing elements of the present disclo-
sure or the preferred embodiment(s) thereof, the articles “a”,
“an”, “the”, and “said” are intended to mean that there are
one or more of the elements. The terms “comprising”,
“including”, and “having” are intended to be inclusive and
mean that there may be additional elements other than the
listed elements.

[0071] As various changes could be made in the above
constructions without departing from the scope of the dis-
closure, it is intended that all matter contained in the above
description or shown in the accompanying drawings shall be
interpreted as illustrative and not in a limiting sense.

What is claimed is:

1. A computing device for estimating an orientation of an
implanted deep brain stimulation (DBS) lead, the computing
device comprising:

a processor; and

a memory device communicatively coupled to the pro-

cessor, the memory device including instructions that,

when executed, cause the processor to:

generate an initial image dataset from a plurality of
clinical images and a plurality of phantom images,
each image in the initial image dataset including a
depiction of an implanted DBS lead and a label of an
orientation of the implanted DBS lead;

modify the initial image dataset by duplicating and
modifying at least a subset of the initial image
dataset, the modifying including at least one of
down-sampling a respective image or adding noise to
a respective image of the subset of the initial image
dataset, to generate a modified image dataset;

modify the modified image dataset by duplicating and
re-slicing at least a subset of the modified image
dataset, the re-slicing including re-slicing a respec-
tive image along an alternative primary imaging
axis, to generate an integrated image dataset;

partition the integrated image dataset into a preliminary
training image dataset and a testing image dataset;

modify the preliminary training image dataset by dupli-
cating and re-sizing at least a subset of the prelimi-
nary training image dataset with a localized field of
view around the respective depiction of the
implanted DBS lead, to generate a training image
dataset;
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train a machine-learning model using the training
image dataset, including training the machine-learn-
ing model to associate one or more image artifacts
with the orientation of the implanted DBS lead; and

execute the trained machine-learning model to esti-
mate, during a DBS implantation procedure, an
orientation of a subject implanted DBS lead.

2. The computing device of claim 1, wherein the machine-
learning model is an artificial neural network, and wherein
training the machine-learning model includes implementing
transfer learning techniques.

3. The computing device of claim 1, wherein the plurality
of clinical images in the initial image dataset includes at
least one of intra-operative or post-operative computed
tomography (CT) images.

4. The computing device of claim 3, wherein the plurality
of clinical images in the initial image dataset further
includes at least one of intra-operative fluoroscopy images
or post-operative fluoroscopy images.

5. The computing device of claim 3, wherein the initial
image dataset further includes pre-operative magnetic reso-
nance imaging (MRI) images identifying anatomical fea-
tures of a brain in which the DBS lead is to be implanted.

6. The computing device of claim 1, wherein the instruc-
tions further cause the processor to:

test the trained machine-learning model using at least a

subset of the testing image dataset.

7. The computing device of claim 6, wherein the instruc-
tions further cause the processor to:

refine the trained machine-learning model based on an

outcome of the testing of the trained machine-learning
model.

8. The computing device of claim 7, wherein the instruc-
tions further cause the processor to:

validate the refined trained machine-learning model using

at least another subset of the testing image dataset.

9. The computing device of claim 1, wherein the instruc-
tions further cause the processor to:

receive, during the DBS implantation procedure, a subject

image including a depiction of the subject implanted
DBS lead with an unknown orientation;

input the subject image to the trained machine-learning

model,;

receive, as output in response to the executing of the

trained machine-learning model, the estimated orienta-
tion of the subject implanted DBS lead; and

output, to a user of the computing device, the estimated

orientation of the subject implanted DBS lead.

10. A computer-implemented method for estimating deep
brain stimulation (DBS) lead orientation, the method com-
prising:

generating an initial image dataset from a plurality of

clinical images and a plurality of phantom images, each
image in the initial image dataset including a depiction
of an implanted DBS lead and a label of an orientation
of the implanted DBS lead;

modifying the initial image dataset by duplicating and

modifying at least a subset of the initial image dataset,
the modifying including at least one of down-sampling
a respective image or adding noise to a respective
image of the subset of the initial image dataset, to
generate a modified image dataset;

modifying the modified image dataset by duplicating and

re-slicing at least a subset of the modified image
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dataset, the re-slicing including re-slicing a respective
image along an alternative primary imaging axis, to
generate an integrated image dataset;

partitioning the integrated image dataset into a prelimi-

nary training image dataset and a testing image dataset;
modifying the preliminary training image dataset by
duplicating and re-sizing at least a subset of the pre-
liminary training image dataset with a localized field of
view around the respective depiction of the implanted
DBS lead, to generate a training image dataset;
training a machine-learning model using the training
image dataset, including training the machine-learning
model to associate one or more image artifacts with the
orientation of the implanted DBS lead; and
executing the trained machine-learning model to estimate,
during a DBS implantation procedure, an orientation of
a subject implanted DBS lead.

11. The method of claim 10, wherein training the
machine-learning model comprises training an artificial neu-
ral network by implementing transfer learning techniques.

12. The method of claim 10, wherein generating the initial
image data set includes receiving the plurality of clinical
images in the initial image dataset including at least one of
intra-operative or post-operative computed tomography
(CT) images.

13. The method of claim 12, wherein generating the initial
image data set includes receiving the plurality of clinical
images further including at least one of intra-operative
fluoroscopy images or post-operative fluoroscopy images.

14. The method of claim 12, wherein generating the initial
image data set includes receiving pre-operative magnetic
resonance imaging (MRI) images identifying anatomical
features of a brain in which the DBS lead is to be implanted.

15. The method of claim 10, further comprising:

testing the trained machine-learning model using at least

a subset of the testing image dataset.

16. The method of claim 15, further comprising:

refining the trained machine-learning model based on an

outcome of the testing of the trained machine-learning
model.

16. The method of claim 16, further comprising:

validating the refined trained machine-learning model

using at least another subset of the testing image
dataset.
17. The method of claim 10, further comprising:
receiving, during the DBS implantation procedure, a
subject image including a depiction of the subject
implanted DBS lead with an unknown orientation;

inputting the subject image to the trained machine-learn-
ing model;
receiving, as output in response to the executing of the
trained machine-learning model, the estimated orienta-
tion of the subject implanted DBS lead; and

outputting, to a user, the estimated orientation of the
subject implanted DBS lead.

18. Non-transitory computer-readable media having com-
puter-executable instructions thereon, wherein when
executed by a processor of a computing device communi-
catively coupled to a memory device, cause the processor of
the computing device to:

generate an initial image dataset from a plurality of

clinical images and a plurality of phantom images, each
image in the initial image dataset including a depiction
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of an implanted DBS lead and a label of an orientation
of the implanted DBS lead;

modify the initial image dataset by duplicating and modi-
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train a machine-learning model using the training image
dataset, including training the machine-learning model
to associate one or more image artifacts with the

orientation of the implanted DBS lead; and

execute the trained machine-learning model to estimate,
during a DBS implantation procedure, an orientation of
a subject implanted DBS lead.

19. The non-transitory computer-readable media of claim
18, wherein the computer-executable instructions further
cause the processor to:

test the trained machine-learning model using at least a

subset of the testing image dataset.

20. The non-transitory computer-readable media of claim
19, wherein the computer-executable instructions further
cause the processor to:

refine the trained machine-learning model based on an

outcome of the testing of the trained machine-learning
model; and

validate the refined trained machine-learning model using

at least another subset of the testing image dataset.

fying at least a subset of the initial image dataset, the
modifying including at least one of down-sampling a
respective image or adding noise to a respective image
of the subset of the initial image dataset, to generate a
modified image dataset;

modify the modified image dataset by duplicating and
re-slicing at least a subset of the modified image
dataset, the re-slicing including re-slicing a respective
image along an alternative primary imaging axis, to
generate an integrated image dataset;

partition the integrated image dataset into a preliminary
training image dataset and a testing image dataset;

modify the preliminary training image dataset by dupli-
cating and re-sizing at least a subset of the preliminary
training image dataset with a localized field of view
around the respective depiction of the implanted DBS
lead, to generate a training image dataset; L



