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57 ABSTRACT 
A speech coding apparatus and method for use in a 
speech recognition apparatus and method. The value of 
at least one feature of an utterance is measured during 
each of a series of successive time intervals to produce 
a series of feature vector signals representing the feature 
values. A plurality of prototype vector signals, each 
having at least one parameter value and a unique identi 
fication value are stored. The closeness of the feature 
vector signal is compared to the parameter values of the 
prototype vector signals to obtain prototype match 
scores for the feature value signal and each prototype 
vector signal. The identification value of the prototype 
vector signal having the best prototype match score is 
output as a coded representation signal of the feature 
vector signal. Speaker-dependent prototype vector sig 
nals are generated from both synthesized training vec 
tor signals and measured training vector signals. The 
synthesized training vector signals are transformed ref 
erence feature vector signals representing the values of 
features of one or more utterances of one or more speak 
ers in a reference set of speakers. The measured training 
feature vector signals represent the values of features of 
one or more utterances of a new speaker/user not in the 
reference set. 

39 Claims, 3 Drawing Sheets 
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SPEECH COOING APPARATUS HAVING 
SPEAKER DEPENDENT PROTOTYPES 

GENERATED FROM NONUSER REFERENCE 
DATA 

BACKGROUND OF THE INVENTION 

The invention relates to speech coding, such as for 
computerized speech recognition. Speech coding in 
volves the generation of an electrical signal represent 
ing at least some information about an utterance. 
Speech coding devices and speech recognition sys 

tems may be either speaker-independent, or speaker 
dependent. Speaker-independent speech recognition 
systems have parameters whose values are fixed for all 
speakers who use the system. Speaker-dependent 
speech recognition systems have at least some parame 
ters whose values for one speaker differ from the pa 
rameter values for other speakers. 
By choosing suitable parameter values for each indi 

vidual speaker, the speaker-dependent speech recogni 
tion system generally achieves a higher word recogni 
tion rate (or a lower word error rate) than a speaker 
independent speech recognition system. However, a 
relatively large amount of training data is required from 
each new speaker in order to obtain speaker-dependent 
parameter values which will yield a suitably high word 
recognition rate. 

SUMMARY OF THE INVENTION 

It is an object of the invention to reduce the amount 
of training data required from a new speaker to obtain 
speaker-dependent parameter values for speech coding 
for a speech recognition system, while obtaining a suit 
ably high word recognition rate. 

According to the invention, a speech coding appara 
tus comprises means for measuring the value of at least 
one feature of an utterance during each of a series of 
successive time intervals to produce a series of feature 
vector signals representing feature values. A plurality of 
prototype vector signals are stored. Each prototype 
vector signal has at least one parameter value, and has a 
unique identification value. The closeness of the feature 
value of a feature vector signal is compared to the pa 
rameter values of the prototype vector signals to obtain 
prototype match scores for the feature vector signal and 
each prototype vector signals. At least the identification 
value of the prototype vector signal having the best 
prototype match score is output as a coded representa 
tion signal of the feature vector signal. 
The speech coding apparatus according to the inven 

tion further comprises means for storing a plurality of 
reference feature vector signals and means for storing a 
plurality of measured training feature vector signals. 
Each reference feature vector signal represents the 
value of at least one feature of one or more utterances of 
one or more speakers in a reference set of speakers 
during each of a plurality of successive time intervals. 
Each measured training feature vector signal represents 
the value of at least one feature of one or more utter 
ances of a speaker not in the reference set during each of 
a plurality of successive time intervals. At least one 
reference feature vector signal is transformed into a 
synthesized training feature vector signal. Thereafter, 
the prototype vector signals are generated from both 
the measured training vector signals and from the syn 
thesized training feature vector signal. 
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2 
In one aspect of the invention, the transforming 

means applies a nonlinear transformation to the refer 
ence feature vector signal to produce the synthesized 
training feature vector signal. The nonlinear transfor 
mation may be, for example, a piecewise linear transfor 
mation. The piecewise linear transformation may, for 
example, map the reference feature vector signals to the 
training feature vector signals. 

In another aspect of the invention, a first subset of the 
reference feature vector signals has a mean, and a first 
subset of the training feature vector signals has a mean. 
The nonlinear transformation maps the mean of the first 
subset of the reference feature vector signals to the 
mean of the first subset of the training feature vector 
signals. 
The first subset of the reference feature vector signals 

and the first subset of the training feature vector signals 
also have variances, respectively. The nonlinear trans 
formation may, for example, map the variance of the 
first subset of the reference feature vector signals to the 
variance of the first subset of the training feature vector 
signals. 
The prototype vector signals may be stored in, for 

example, electronic read/write memory. The means for 
measuring the value of at least one feature of an utter 
ance may comprise a microphone. 
A speech recognition apparatus according to the 

invention comprises means for measuring the value of at 
least one feature of an utterance during each of series of 
successive time intervals to produce a series of feature 
vector signals representing the feature values. A plural 
ity of prototype vector signals having parameter values 
and identification values are stored. The closeness of the 
feature value of each feature vector signal to the param 
eter values of prototype vector signals are compared to 
obtain prototype match scores for each feature vector 
signal and each prototype vector signal. At least the 
identification values of the prototype vector signals 
having the best prototype match score for each feature 
vector signal are output as a sequence of coded repre 
sentations of the utterance. 
A match score is generated for each of a plurality of 

speech units. Each match score comprises an estimate of 
the closeness of a match between a model of the speech 
unit and the sequence of coded representations of the 
utterance. One or more best candidate speech units 
having the best match scores are identified, and at least 
one speech subunit of one or more of the best candidate 
speech units is output. 
The speech recognition apparatus further comprises 

means for storing a plurality of reference feature vector 
signals and means for storing a plurality of measured 
training feature vector signals. Each reference feature 
vector signal represents the value of at least one feature 
of one or more utterances of one or more speakers in a 
reference set of speakers. Each measured training fea 
ture vector signal represents the value of at least one 
feature of one or more utterances of a speaker not in the 
reference set. At least one reference feature vector sig 
nal is transformed into a synthesized training feature 
vector signal. Thereafter, the prototype vector signals 
are generated from both the measured training vector 
signals and from the synthesized training vector signal. 

In one aspect of the invention, the transformation is a 
nonlinear transformation, such as a piecewise linear 
transformation. The nonlinear transformation may, for 
example, map the mean and/or the variance of a subset 
of the reference feature vector signals to the mean and 
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/or the variance of a subset of the training feature vec 
tor signals. 
The speech subunit output means may be, for exam 

ple, a video display such as a cathode ray tube, a liquid 
crystal display, or a printer. Alternatively, the speech 
subunit output may be an audio generator such as a 
speech synthesizer containing a loudspeaker or a head 
phone. 

By generating the parameters of the prototype vector 
signals from both the measured training vector signal 
(corresponding to utterances by the new speaker/user 
who is training the speech recognition system) and from 
the synthesized training vector signal (corresponding to 
utterances by speakers other than the new speaker 
Auser) the training data required from the new speaker 
Muser can be reduced, while achieving a suitably high 
word recognition rate. 

BRIEF DESCRIPTION OF THE DRAWING 

FIG. 1 is a block diagram of an example of a speech 
recognition apparatus according to the present inven 
tion containing a speech coding apparatus according to 
the present invention. 

FIG. 2 schematically shows an example of the nor 
malization of feature vectors for generating a partial 
transformation. 

FIG. 3 schematically shows an example of the pairing 
of subsets of feature vectors for generating a further 
partial transformation. 

FIG. 4 schematically shows an example of a transfor 
nation of reference feature vectors to form synthesized 
training feature vectors. 

FIG. 5 is a block diagram of an example of an acous 
tic feature value measure. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Referring to FIG. 1, a speech coding apparatus com 
prises means 10 for measuring the value of at least one 
feature of an utterance during each of a series of succes 
sive time intervals to produce a series of feature vector 
signals representing the feature values. The feature may 
be, for example, either the amplitude or the energy of 
the utterance in one or more frequency bands. A proto 
type vector store 12 stores a plurality of prototype 
vector signals. Each prototype vector signal has at least 
one parameter value and has a unique identification 
value. 
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A comparison processor 14 compares the closeness of 50 
the feature value of a feature vector signal to the param 
eter values of the prototype vector signals to obtain 
prototype match scores for the feature vector signal and 
each prototype vector signal. The comparison proces 
sor 14 outputs at least the identification value of the 
prototype vector signal having the best prototype 
match score as a coded representation signal of the 
feature vector signal. 
A reference feature vector store 16 stores a plurality 

of reference feature vector signals. Each reference fea 
ture vector signal represents the value of at least one 
feature of one or more utterances of one or more speak 
ers in a reference set of speakers during each of a plural 
ity of successive time intervals. The speakers in the 
reference set of speakers are not the current user of the 
speech coding apparatus. The reference feature vector 
signals may have been produced, for example, by the 
acoustic feature value measure 10. 
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4. 
A measured training feature vector store 18 stores a 

plurality of measured training feature vector signals. 
Each measured training feature vector signal represents 
the value of at least one feature of one or more utter 
ances of a speaker not in the reference set during each of 
a plurality of successive time intervals. The speaker not 
in the reference set is the current user of the speech 
coding apparatus. The measured training feature vector 
signals may be produced, for example, by the acoustic 
feature value measure 10. 
A feature vector transformer 20 is provided for trans 

forming at least one reference feature vector signal into 
a synthesized training feature vector signal. Thereafter, 
a prototype vector generator 22 generates prototype 
vector signals (for prototype vector store 12) from both 
the measured training feature vector signals and from 
the synthesized training feature vector signal. 
By generating the parameters of the prototype vector 

signals from both the measured training vector signal 
(corresponding to utterances by the new speaker/user 
who is training the speech recognition system) and from 
the synthesized training vector signal (corresponding to 
utterances by speakers other than the new speaker 
/user) the training data required from the new speaker 
Muser can be reduced, while achieving a suitably high 
word recognition rate. 
According to one aspect of the invention, the feature 

vector transformer 20 applies a nonlinear transforma 
tion to at least one reference feature vector signal to 
produce the synthesized training feature vector signal. 
The nonlinear transformation may be, for example, a 
piecewise linear transformation. 
Table 1 shows a hypothetical example of a nonlinear 

transformation of reference feature vectors to produce 
synthesized feature vectors. 

TABLE 1. 
Reference 
Feature Elementary Synthesized 
Wector Acoustic Feature 
(RFV) Model Transformation Vector 

0.67 E1 1.5(RFV - 1.2) - 1.10 
0.82 E3 0.1(RFV + 1) 0.18 
0.42 E5 1.8(RFV + 1.6) 3.64 
0.82 El 1.5(RFV - 1.2) -0.87 
0.85 EA 1.3(RFV -- 1.8) 3.45 
0.07 E3 0.1(RFV + 1) 0.11 
0.45 E2 0.7(RFV + 0.2) 0.46 
0.07 E6 0.9(RFV - 2) -1.74 
0.08 E6 0.90RFV - 2) -1.73 
0.01 E2 0.70RFV -- 0.2) 0.15 
0.35 E9 1.1(RFV - 1.2) -0.94 
0.8 E2 0.7(RFV -- 0.2) 0.70 
1 E8 0.40RFV -- 1.8) 1.12 
0.51 E3 0.1(RFV - 1) 0.1S 
0.22 E6 0.9(RFV - 2) - 1.60 

In this hypothetical example, the reference feature 
vectors are one-dimensional and the synthesized feature 
vectors are one-dimensional. The sequence of reference 
feature vectors corresponds to a sequence of one or 
more words uttered by one or more speakers in the 
reference set of speakers. An acoustic word model is 
associated with each of the uttered words. Each acous 
tic word model comprises one or more elementary 
acoustic models from a finite set of elementary acoustic 
models (in this example, a set often elementary acoustic 
models). 
Each elementary acoustic model may be, for exam 

ple, a Markov model having at least two states, at least 
one transition from one state to the other state, a proba 
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bility of occurrence of the transition, and output proba 
bilities of producing one of the prototype vector signals 
at the occurrence of a transition. By finding the path 
through the acoustic model of the reference utterance 
which is most likely to produce the sequence of refer 
ence feature vector signals, each reference feature vec 
tor signal can be "aligned' with the elementary model 
which most likely produced the reference feature vec 
tor signal. Such a path can be found, for example, by the 
Viterbialgorithm. (See, for example, F. Jelinek, "Con 
tinuous Speech Recognition By Statistical Methods.” 
Proceedings of the IEEE, Volume 64, No. 4, pages 
532–556, April 1976.) The second column of Table 1 
identifies the hypothetical elementary acoustic model 
which most likely corresponds to each hypothetical 
reference feature vector. 
The nonlinear transformation shown in the example 

of Table 1 is piecewise linear. That is, for each elemen 
tary acoustic model there is a linear transformation of 
the associated reference feature vectors to produce 
corresponding synthesized training feature vectors. 
However, the parameters of the linear transformations 
differ in dependence on the associated elementary 
acoustic model. Consequently, the transformation of the 
reference feature vectors as a whole is nonlinear. 
The comparison processor 14, the feature vector 

transformer 20, and the prototype vector generator 22 
of the speech coding apparatus according to the present 
invention may be suitably programmed special purpose 
or general purpose digital signal processors. The proto 
type vector store 12, the reference feature vector store 
16, and the measured training feature vector store 18 
may be electronic computer memory such as read/write 
memory. 
The form and the parameters of the nonlinear trans 

formation of reference feature vectors into synthesized 
training feature vectors can be obtained, for example, in 
the following manner. In this example, the pronuncia 
tion of each word represented by an acoustic hidden 
Markov model. (See, for example, L. R. Bahl, et al., "A 
Maximum Likelihood Approach to Continuous Speech 
Recognition,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Volume PAMI-5, No. 2, 
pages 179-190, Mar. 1983.) Each Markov word model 
in this example is composed of one or more subword 
acoustic models from a finite set of subword acoustic 
models. Each subword acoustic model may represent, 
for example, an allophone, a phoneme, a syllable or 
some other speech unit. (See, for example, F. Jelinek, 
"The Development of An Experimental Discrete Dic 
tation Recognizer,” Proceedings IEEE, Volume 73, No. 
11, pages 1616-1624, Nov. 1985; L. R. Bahl et al, 
"Acoustic Markov Models Used In The Tangora 
Speech Recognition System,” Proceedings 1988 Interna 
tional Conference on Acoustics, Speech, and Signal Pro 
cessing, New York, N.Y., pages 497-500, April, 1988.) 
Further, in this example each subword model comprises 
a sequence of one or more elementary acoustic models 
from a finite alphabet of elementary acoustic models. 
Typically, the size of the subword acoustic model al 
phabet is approximately 2,000, while the size of the 
elementary acoustic model alphabet is approximately 
300. 
As a first step in obtaining the nonlinear transforma 

tion, reference feature vectors are obtained from utter 
ances of known words by one or more speakers in the 
reference set of speakers. Measured training feature 
vectors are obtained from utterances of known words 
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6 
by the speaker who is not in the reference set of speak 
ers. The feature vectors are obtained from the utter 
ances by an acoustic feature value measure such as 
block 10 shown in FIG. 1. 

Using an initial set of prototype vectors, the reference 
feature vectors and the measured training feature vec 
tors are labelled with the identification values of the 
closest initial prototype vectors. Since the words corre 
sponding to the training utterances are known, and 
since each word has a known corresponding acoustic 
Markov model, each feature vector is associated with 
an acoustic word model, an acoustic subword model 
within the word model, and an elementary acoustic 
word model within the subword model to which the 
feature vector most likely corresponds. This "align 
ment' can be obtained, for example, by finding the path 
through each utterance model which is most likely to 
produce the reference feature vectors or the measured 
training feature vectors, respectively. Such paths can be 
found, for example, by the Viterbialgorithm described 
above. 

For each elementary acoustic Markov model, the 
corresponding reference feature vectors and the corre 
sponding measured training feature vectors are identi 
fied. For each elementary acoustic Markov model, the 
mean vector M and the covariance matrix S are ob 
tained for all of the reference features vectors corre 
sponding to that elementary acoustic Markov model. 
Similarly, the mean vector M and the covariance ma 
trix S are obtained for all measured training feature 
vectors corresponding to that elementary acoustic Mar 
kov model. 
From the mean vectors and covariance matrices, 

each reference feature vector X corresponding to the 
elementary acoustic Markov model is transformed by 
the equation 

=S(X-M) l 

so that the vectors X have a mean vector of zero and a 
covariance matrix I (the identity matrix). 

Similarly, each measured training feature vector Y 
corresponding to the elementary acoustic Markov 
model is transformed by the equation 

Y S (Y-M) 2 

so that the vectors Y also have a mean vector of zero 
and a covariance matrix I. 

FIG. 2 schematically shows the normalization of the 
reference feature vectors X, and the measured training 
feature vectors Y. For the purpose of Equations 1 and 2, 
the inverse square root of the covariance matrix can be 
given by 

S-i-QA-QT (3) 

where Q is the eigenvector matrix of the covariance 
matrix S, where A is the diagonal matrix of correspond 
ing eigenvalues, and where QTis the transpose of matrix 
Q. 
Moreover, to insure that the covariance matrix is full 

rank, if either the number of reference feature vectors 
or the number of measured training feature vectors is 
less than one plus the number of dimensions in each 
feature vector, then both covariance matrices are re 
duced to diagonal matrices. Further, if either the num 
ber of reference feature vectors or the number of nea 
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sured training feature vectors is less than a selected 
minimum number, such as 5, then both covariance ma 
trices are set equal to the identity matrix. (As will be 
further discussed below, in one example of the inven 
tion each feature vector has 50 dimensions.) 

Each normalized reference feature vector X is now 
tagged with (a) the identity of the associated subword 
acoustic Markov model to which it most likely corre 
sponds, (b) the location within the subword acoustic 
Markov model of the corresponding elementary acous 
tic model, and (c) the location of the feature vector 
within the sequence of feature vectors corresponding to 
the subword acoustic Markov model. Each normalized 
measured training feature vector Y is tagged with the 
same information. 

In practice, the location of the feature vector within 
the sequence of feature vectors corresponding to the 
subword acoustic Markov model may be thresholded 
away from the boundaries of the subword model. For 
example, a reasonable threshold is four feature vectors. 
For each tag k which corresponds to both reference 

feature vectors and measured training feature vectors, 
the number rk of normalized reference feature vectors 
corresponding to that tag, and the centroid Xk of the 
normalized reference feature vectors corresponding to 
that tag are obtained. Similarly, the number tk of mea 
sured training feature vectors corresponding to that tag, 
and the centroid Yk of the normalized measured training 
feature vectors corresponding to that tag are obtained. 
Thus, for each tag k, a pair of matched vectors (X, Y) 
is obtained, as schematically shown in FIG 3. 
From the pairs of matched vectors (X, Y), for each 

elementary acoustic model, the weighted least squares 
estimate T of the transformation Y=TX is obtained by 

Ir=G(GTG)- 4) 

where 

kik (5) 
- T G - i. Ykk 

It should be noted that when the number of measured 
training feature vectors from the new speaker corre 
sponding to a single elementary acoustic Markov model 
is small, the estimation of the transformation I may not 
be accurate. In this case, the feature vectors corre 
sponding to two (or more, if necessary) different ele 
mentary acoustic Markov models may be combined to 
generate a single transformation for both elementary 
acoustic Markov models. 
From the previously obtained mean vectors, covari 

ance matrices, and transformation I, synthesized train 
ing feature vectors X associated with an elementary 
acoustic Markov model may be obtained from reference 
feature vectors X corresponding to that model accord 
ing to the transformation 

Equation 6 represents a linear transformation of refer 
ence feature vectors corresponding to a given elemen 
tary acoustic Markov model into synthesized training 
feature vectors corresponding to that elementary 
model, and is schematically illustrated in FIG. 4. The 
resulting synthesized training feature vectors will have 
the same mean vector as the measured training feature 
vectors corresponding to that elementary model, and 
will have the same covariance matrix as the measured 
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training feature vectors corresponding to that elemen 
tary model. 

Moreover, the resulting synthesized training feature 
vectors corresponding to a subgroup Xk of reference 
feature vectors having the tag k, will have nearly the 
same mean vector as the measured training feature vec 
tors corresponding to the subgroup Yik having the same 
tag k. 

Since the transformation of reference feature vectors 
into synthesized training feature vectors will differ, 
depending on the elementary acoustic Markov model to 
which the reference feature vectors correspond, the 
overall transformation is piecewise linear. Therefore, 
the overall transformation is nonlinear. 

Having obtained the piecewise linear transformation 
of reference feature vectors into synthesized training 
feature vectors, the prototype vector signals may, for 
example, be generated from the measured training fea 
ture vectors and from the synthesized training feature 
vectors in the following manner. 
Each synthesized training feature vector x is tagged 

with (a) the identification of its corresponding elemen 
tary acoustic Markov model, (b) the identification of its 
corresponding subword acoustic Markov model, (c) the 
location of the corresponding elementary acoustic Mar 
kov model within the subword acoustic Markov model, 
and (d) the location of the corresponding reference 
feature vector within the sequence of reference feature 
vectors corresponding to the subword model. Starting 
with an initial clustering of the synthesized training 
feature vectors X according to these tags, K-means 
Euclidean clustering is performed to obtain preliminary 
subprototypes for each elementary acoustic Markov 
model. (See, for example, J. A. Hartigan, "The K-means 
Algorithm," Clustering Algorithms, pages 84-105. John 
Wiley & Sons. 1975.) At this stage, each preliminary 
subprototype corresponds to the mean vector of a clus 
ter of synthesized training feature vectors correspond 
ing to the elementary acoustic Markov model. Each set 
of preliminary subprototypes corresponding to an ele 
mentary acoustic Markov model forms a preliminary 
prototype vector signal. 

Starting with the preliminary subprototypes obtained 
by K-means Euclidean clustering of the synthesized 
training feature vectors, K-means Gaussian clustering is 
performed on merged data consisting of the corpbina 
tion of the synthesized training feature vectors X, and 
the measured training vectors Y corresponding to each 
elementary acoustic Markov model so as to obtain final 
Gaussian subprototypes for each elementary acoustic 
Markov model. 
Each Gaussian subprototype corresponds to the 

mean vector and covariance matrix of a cluster of syn 
thesized training feature vectors and measured training 
feature vectors corresponding to an elementary acous 
tic Markov model. Each covariance matrix is preferably 
simplified by setting the off-diagonal terms to zero. 
Each subprototype is weighted by its conditional proba 
bility, given the occurrence of the elementary acoustic 
Markov model. This conditional probability is esti 
mated as the number of synthesized and measured train 
ing feature vectors corresponding to the subprototype, 
divided by the number of synthesized and measured 
training feature vectors corresponding to the elemen 
tary acoustic model. 
From the measured training vectors corresponding to 

the new speaker training data, the prior probability of 
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each elementary acoustic Markov model is estimated as 
the number of measured training feature vectors corre 
sponding to each elementary acoustic Markov model, 
divided by the total number of measured training fea 
ture vectors. For each subprototype, the conditional 
probability estimated above is multiplied by the proba 
bility of the corresponding elementary acoustic Markov 
model so as to obtain the probability of the sub 
prototype. 
Each set of Gaussian subprototypes corresponding to 

an elementary acoustic Markov model forms a proto 
type vector signal. 

In one example of an alternative method of clustering 
the merged synthesized training feature vectors and 
measured training feature vectors, the training feature 
vector signals may be clustered by specifying that each 
cluster corresponds to a single elementary model in a 
single location in a single word-segment model. Such a 
method is described in more detail in U.S. patent appli 
cation Ser. No. 732,714, filed on Jul. 16, 1991, entitled 
"Fast Algorithm for Deriving Acoustic Prototypes for 
Automatic Speech Recognition.' 

In another example of an alternative method of clus 
tering the merged synthesized training feature vectors 
and measured training feature vectors, all of the training 
feature vectors generated by the utterance of a training 
text and which correspond to a given elementary model 
may be clustered by K-means Euclidean clustering fol 
lowed by K-means Gaussian clustering, without regard 
to the subword or elementary models to which the 
training feature vectors correspond. Such a method is 
described, for example, in U.S. patent application Ser. 
No. 673,810, filed on Mar. 22, 1991 entitled "Speaker 
Independent Label Coding Apparatus', now U.S. Pat. 
No. 5,182,773. 

Returning to FIG. 1, a speech recognition apparatus 
according to the present invention includes an acoustic 
feature value measure 10, for measuring the value of at 
least one feature of an utterance during each of a series 
of successive time intervals to produce a series of fea 
ture vector signals representing the feature values. Pro 
totype vector store 12 stores a plurality of prototype 
vector signals. Each prototype vector signal has at least 
one parameter value and has a unique identification 
value. Comparison processor 14 compares the closeness 
of the feature value of each feature vector signal to the 
parameter values of the prototype vector signals to 
obtain prototype match scores for each feature vector 
signal and each prototype vector signal. Comparison 
processor 14 outputs at least the identification values of 
the prototype vector signals having the best prototype 
match score for each feature vector signal as a sequence 
of coded representations of the utterance. 
The speech recognition apparatus further includes a 

match score processor 24 for generating a match score 
for each of a plurality of speech units comprising one or 
more speech subunits. Each speech unit may be, for 
example, a sequence of one or more words. Each speech 
subunit may be, for example, a single word. Each match 
score comprises an estimate of the closeness of a match 
between a model of the speech unit and the sequence of 
coded representations of the utterance. 
A best candidates identification processor 26 identi 

fies one or more best candidate speech units having the 
best match scores. A speech subunit output 28 outputs 
at least one speech subunit of one or more of the best 
candidate speech units. 
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As described in connection with the speech coding 

apparatus according to the invention, the speech recog 
nition apparatus further includes reference feature vec 
tor store 16, measured training feature vector store 18, 
feature vector transformer 20, and prototype vector 
generator 22. 
The speech units may, for example, be modelled as 

probabilistic Markov models. In this case, each match 
score may be, for example, either (a) the total probabil 
ity for all paths through the Markov model of produc 
ing the sequence of coded representations of the utter 
ance, or (b) the probability of producing the sequence of 
coded representations of the utterance for the most 
probable path through the Markov model. (See, for 
example, L. R. Bahl et al, "A Maximum Likelihood 
Approach to Continuous Speech Recognition," IEEE 
Transactions on Pattern Analysis and Machine Intelli 
gence, Volume PAMI-5, Volume 2, pages 179-190, 
March 1983.) 

If all of the candidate speech units comprise sequen 
ces of two or more words, and if the word sequences of 
all of the best candidate speech units begin with the 
same word, then the speech subunit output 28 may, for 
example, output that one word which forms the begin 
ning of all of the best candidate speech units. 
The match score processor 24 may, in addition to 

estimating the probability that the probabilistic model 
of a speech unit would output a series of model outputs 
matching the sequence of coded representations of the 
utterance, also estimate the probability of occurrence of 
the speech unit itself. The estimate of the probability of 
occurrence of the speech unit may be obtained by a 
language model. (See, for example, F. Jelinek, "Contin 
uous Speech Recognition. By Statistical Methods,” Pro 
ceedings of the IEEE, Volume 64, No. 4, pages 532-556, 
April 1976.) 

In the speech recognition apparatus, the match score 
processor 24 and the best candidate identification pro 
cessor 26 may be made by suitably programming either 
a special purpose or a general purpose digital computer. 
The speech subunit output 28 may be, for example, a 
video display, such as a cathode ray tube, a liquid crys 
tal display, or a printer. Alternatively, the output may 
be an audio output device such as a speech synthesizer 
having a loudspeaker or headphones. 
One example of an acoustic feature value measure is 

shown in FIG. 5. The measuring means includes a mi 
crophone 30 for generating an analog electrical signal 
corresponding to the utterance. The analog electrical 
signal from microphone 30 is converted to a digital 
electrical signal by analog to digital converter 32. For 
this purpose, the analog signal may be sampled, for 
example, at a rate of twenty kilohertz by the analog to 
digital converter 32. 
A window generator 34 obtains, for example, a 

twenty millisecond duration sample of the digital signal 
from analog to digital converter 32 every ten millisec 
onds (one centisecond). Each twenty millisecond sam 
ple of the digital signal is analyzed by spectrum analyzer 
36 in order to obtain the amplitude of the digital signal 
sample in each of, for example, twenty frequency bands. 
Preferably, spectrum analyzer 36 also generates a 
twenty-first dimension signal representing the total am 
plitude or total power of the twenty millisecond digital 
signal sample. The spectrum analyzer 36 may be, for 
example, a fast Fourier transform processor. Alterna 
tively, it may be a bank of twenty band pass filters. 
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The twenty-one dimension vector signals produced 
by spectrum analyzer 36 may be adapted to remove 
background noise by an adaptive noise cancellation 
processor 38. Noise cancellation processor 38 subtracts 
a noise vector N(t) from the feature vector F(t) input 
into the noise cancellation processor to produce an 
output feature vector F(t). The noise cancellation pro 
cessor 38 adapts to changing noise levels by periodically 
updating the noise vector N(t) whenever the prior fea 
ture vector F(t-1) is identified as noise or silence. The 
noise vector N(t) is updated according to the formula 

N(t - 1) + kFt - 1) - Fp(t - 1)) 
( ; ) as , N(t) = (7) 

where N(t) is the noise vector at time t, N(t-1) is the 
noise vector at time (t-1), k is a fixed parameter of the 
adaptive noise cancellation model, F(t-1) is the feature 
vector input into the noise cancellation processor 38 at 
time (t-1) and which represents noise or silence, and 
Fp(t-1) is one silence or noise prototype vector, from 
store 40, closest to feature vector F(t-1). 
The prior feature vector F(t-1) is recognized as 

noise or silence if either (a) the total energy of the vec 
tor is below a threshold, or (b) the closest prototype 
vector in adaptation prototype vector store 42 to the 
feature vector is a prototype representing noise or si 
lence. for the purpose of the analysis of the total energy 
of the feature vector, the threshold may be, for example, 
the fifth percentile of all feature vectors (corresponding 
to both speech and silence) produced in the two seconds 
prior to the feature vector being evaluated. 

After noise cancellation, the feature vector F(t) is 
normalized to adjust for variations in the loudness of the 
input speech by short term mean normalization proces 
sor 44. Normalization processor 44 normalizes the 
twenty-one dimension feature vector F(t) to produce a 
twenty dimension normalized feature vector X(t). The 
twenty-first dimension of the feature vector F(t), repre 
senting the total amplitude or total power, is discarded. 
Each component i of the normalized feature vector X(t) 
at time t may, for example, be given by the equation 

X(t) = F(t)- Z() 8 

in the logarithmic domain, where F(t) is the i-th com 
ponent of the unnormalized vector at time t, and where 
Z(t) is a weighted mean of the components of F(t) and 
Z(t-1) according to Equations 9 and 10: 

and where 

M(t) = -- F(i) 10) 

The normalized twenty dimension feature vector X(t) 
may be further processed by an adaptive labeler 46 to 
adapt to variations in pronunciation of speech sounds. 
An adapted twenty dimension feature vector X'(t) is 
generated by subtracting a twenty dimension adaptation 
vector A(t) from the twenty dimension feature vector 
X(t) provided to the input of the adaptive labeler 46. 
The adaptation vector A(t) at time t may, for example, 
be given by the formula 
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Af(t - 1) -- k(t - 1) - Ap( - ) 
(1 + k) 

A(t) = 11) 

where k is a fixed parameter of the adaptive labeling 
model, X(t-1) is the normalized twenty dimension 
vector input to the adaptive labeler 46 at time (t-1), 
Xp(t-1) is the adaptation prototype vector (from adap 
tation prototype store 42) closest to the twenty dimen 
sion feature vector X(t-1) at time (t-1), and A(t-1) is 
the adaptation vector at time (t-1). 
The twenty dimension adapted feature vector signal 

X(t) from the adaptive labeler 46 is preferably provided 
to an auditory model 48. Auditory model 48 may, for 
example, provide a model of how the human auditory 
system perceives sound signals. An example of an audi 
tory model is described in U.S. Pat. No. 4,980,918 to 
Bahl et al entitled "Speech Recognition System with 
Efficient Storage and Rapid Assembly of Phonological 
Graphs'. 

Preferably, according to the present invention, for 
each frequency band i of the adapted feature vector 
signal X'(t) at time t, the auditory model 48 calculates a 
new parameter E(t) according to Equations 12 and 13: 

where 

N(t) = K3XN(1-1)-E(t-1) 13 

and where K1, K2, and K3 are fixed parameters of the 
auditory model. 
For each centisecond time interval, the output of the 

auditory model 48 is a modified twenty dimension fea 
ture vector signal. This feature vector is augmented by 
a twenty-first dimension having a value equal to the 
square root of the sum of the squares of the values of the 
other twenty dimensions. 

For each centisecond time interval, a concatenator 50 
preferably concatenates nine twenty-one dimension 
feature vectors representing the one current cen 
tisecond time interval, the four preceding centisecond 
time intervals, and the four following centisecond time 
intervals to form a single spliced vector of 189 dimen 
sions. Each 189 dimension spliced vector is preferably 
multiplied in a rotator 52 by a rotation matrix to rotate 
the spliced vector and to reduce the spliced vector to 
fifty dimensions. 
The rotation matrix used in rotator 52 may be ob 

tained, for example, by classifying into M classes a set of 
189 dimension spliced vectors obtained during a train 
ing session. The covariance matrix for all of the spliced 
vectors in the training set is multiplied by the inverse of 
the sample within-class covariance matrix for all of the 
spliced vectors in all M classes. The first fifty eigenvec 
tors of the resulting matrix form the rotation matrix. 
(See, for example, "Vector Quantization Procedure For 
Speech Recognition Systems Using Discrete Parameter 
Phoneme-Based Markov Word Models' by L. R. Bahl, 
et al, IBM Technical Disclosure Bulletin, Volume 34, 
No.7 December 1989, pages 340 and 341.) 
Window generator 34, spectrum analyzer 36, adapt 

ive noise cancellation processor 38, short term mean 
normalization processor 44, adaptive labeler 46, audi 
tory model 48, concatenator 50, and rotator 52, may be 
suitably programmed special purpose or general pur 
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pose digital signal processors. Prototype stores 40 and 
42 may be electronic computer memory. 
We claim: 
1. A speech coding apparatus comprising: 
means for measuring the value of at least one feature 5 
of an utterance during each of a series of successive 
time intervals to produce a series of feature vector 
signals representing the feature values; 

means for storing a plurality of prototype vector 
signals, each prototype vector signal having at least 10 
one parameter value, each prototype vector signal 
having a unique identification value; 

means for comparing the closeness of the feature 
value of a feature vector signal to the parameter 
values of the prototype vector signals to obtain 
prototype match scores for the feature vector sig 
nal and each prototype vector signal; and 

means for outputting at least the identification value 
of the prototype vector signal having the best pro 
totype match score as a coded representation signal 
of the feature vector signal; 

characterized in that the apparatus further comprises: 
means for storing a plurality of reference feature 

vector signals, each reference feature vector signal 
representing the value of at least one feature of one 
or more utterances of one or more speakers in a 
reference set of speakers during each of a plurality 
of successive time intervals; 

means for storing a plurality of measured training 
feature vector signals, each measured training fea 
ture vector signal representing the value of at least 
one feature of one or more utterances of a speaker 
not in the reference set during each of a plurality of 
successive time intervals; 35 

means for transforming at least one reference feature 
vector signal into a synthesized training feature 
vector signal; and 

means for generating the prototype vector signals 
from both the measured training vector signals and 40 
from the synthesized training vector signal. 

2. A speech coding apparatus as claimed in claim 1, 
characterized in that the transforming means applies a 
nonlinear transformation to the reference feature vector 
signal to produce the synthesized training feature vec- 45 
tor signal. 

3. A speech coding apparatus as claimed in claim 2, 
characterized in that the nonlinear transformation is a 
piecewise linear transformation. 

4. A speech coding apparatus as claimed in claim 3, 50 
characterized in that the nonlinear transformation maps 
the reference feature vector signals to the training fea 
ture vector signals. 

5. A speech coding apparatus as claimed in claim 3, 
characterized in that a first subset of the reference fea- 55 
ture vector signals has a mean, a first subset of the train 
ing feature vector signals has a mean, and the nonlinear 
transformation maps the mean of the first subset of the 
reference feature vector signals to the mean of the first 
subset of the training feature vector signals. 60 

6. A speech coding apparatus as claimed in claim 5, 
characterized in that the first subset of the reference 
feature vector signals has a variance, the first subset of 
the training feature vector signals has a variance, and 
the nonlinear transformation maps the variance of the 65 
first subset of the reference feature vector signals to the 
variance of the first subset of the training feature vector 
signals. 
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7. A speech coding apparatus as claimed in claim 5, 

characterized in that a subgroup of the first subset of the 
reference feature vector signals has a mean, a subgroup 
of the first subset of the training feature vector signals 
has a mean, and the nonlinear transformation maps the 
mean of the subgroup of the first subset of the reference 
feature vector signals to the mean of the subgroup of the 
first subset of the training feature vector signals. 

8. A speech coding apparatus as claimed in claim 5, 
characterized in that the means for storing a plurality of 
prototype vector signals comprises electronic read/- 
write memory. 

9. A speech coding apparatus as claimed in claim 8, 
characterized in that the measuring means comprises a 
microphone. 

10. A speech coding method comprising: 
measuring the value of at least one feature of an utter 
ance during each of a series of successive time 
intervals to produce a series of feature vector sig 
nals representing the feature values; 

storing a plurality of prototype vector signals, each 
prototype vector signal having at least one parame 
ter value, each prototype vector signal having a 
unique identification value; 

comparing the closeness of the feature value of a 
feature vector signal to the parameter values of the 
prototype vector signals to obtain prototype match 
scores for the feature vector signal and each proto 
type vector signal; and 

outputting at least the identification value of the pro 
totype vector signal having the best prototype 
match score as a coded representation signal of the 
feature vector signal; 

characterized in that the method further comprises: 
storing a plurality of reference feature vector signals, 

each reference feature vector signal representing 
the value of at least one feature of one or more 
utterances of one or more speakers in a reference 
set of speakers during each of a plurality of succes 
sive time intervals; 

storing a plurality of measured training feature vector 
signals, each measured training feature vector sig 
nal representing the value of at least one feature of 
one or more utterances of a speaker not in the 
reference set during each of a plurality of succes 
sive time intervals; 

transforming at least one reference feature vector 
signal into a synthesized training feature vector 
signal; and 

generating the prototype vector signals from both the 
measured training vector signals and from the syn 
thesized training vector signal. 

11. A speech coding method as claimed in claim 10, 
characterized in that the transforming step applies a 
nonlinear transformation to the reference feature vector 
signal to produce the synthesized training feature vec 
tor signal. 

12. A speech coding method as claimed in claim 11, 
characterized in that the nonlinear transformation is a 
piecewise linear transformation. 

13. A speech coding method as claimed in claim 12, 
characterized in that the nonlinear transformation maps 
the reference feature vector signals to the training fea 
ture vector signals. 

14. A speech coding method as claimed in claim 12, 
characterized in that a first subset of the reference fea 
ture vector signals has a mean, a first subset of the train 
ing feature vector signals has a mean, and the nonlinear 
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transformation maps the mean of the first subset of the 
reference feature vector signals to the mean of the first 
subset of the training feature vector signals. 

15. A speech coding method as claimed in claim 14, 
characterized in that the first subset of the reference 
feature vector signals has a variance, the first subset of 
the training feature vector signals has a variance, and 
the nonlinear transformation maps the variance of the 
first subset of the reference feature vector signals to the 
variance of the first subset of the training feature vector 
signals. 

16. A speech coding method as claimed in claim 14, 
characterized in that a subgroup of the first subset of the 
reference feature vector signals has a mean, a subgroup 
of the first subset of the training feature vector signals 
has a mean, and the nonlinear transformation maps the 
mean of the subgroup of the first subset of the reference 
feature vector signals to the means of the subgroup of 
the first subset of the training feature vector signals. 

17. A speech recognition apparatus comprising: 
means for measuring the value of at least one feature 
of an utterance during each of a series of successive 
time intervals to produce a series of feature vector 
signals representing the feature values; 

means for storing a plurality of prototype vector 
signals, each prototype vector signal having at least 
one parameter value, each prototype vector signal 
having a unique identification value; 

means for comparing the closeness of the feature 
value of each feature vector signal to the parameter 
values of the prototype vector signals to obtain 
prototype match scores for each feature vector 
signal and each prototype vector signal; 

means for outputting at least the identification values 
of the prototype vector signals having the best 
prototype match score for each feature vector 
signal as a sequence of coded representations of the 
utterance; 

means for generating a match score for each of a 
plurality of speech units, each match score com 
prising an estimate of the closeness of a match 
between a model of the speech unit and the se 
quence of coded representations of the utterance, 
each speech unit comprising one or more speech 
subunits; 

means for identifying one or more best candidate 
speech units having the best match scores; and 

means for outputting at least one speech subunit of 
one or more of the best candidate speech units; 

characterized in that the apparatus further comprises: 
means for storing a plurality of reference feature 

vector signals, each reference feature vector signal 
representing the value of at least one feature of one 
or more utterances of one or more speakers in a 
reference set of speakers during each of a plurality 
of successive time intervals; 

means for storing a plurality of measured training 
feature vector signals, each measured training fea 
ture vector signal representing the value of at least 
one feature of one or more utterances of a speaker 
not in the reference set during each of a plurality of 
successive time intervals; 

means for transforming at least one reference feature 
vector signal into a synthesized training feature 
vector signal; and 

means for generating the prototype vector signals 
from both the measured training vector signals and 
from the synthesized training vector signal. 
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18. A speech recognition apparatus as claimed in 

claim 17, characterized in that the transforming means 
applies a nonlinear transformation to the reference fea 
ture vector signal to produce the synthesized training 
feature vector signal. 

19. A speech recognition apparatus as claimed in 
claim 18, characterized in that the nonlinear transforma 
tion is a piecewise linear transformation. 

20. A speech recognition apparatus as claimed in 
claim 19, characterized in that the nonlinear transforma 
tion maps the reference feature vector signals to the 
training feature vector signals. 

21. A speech recognition apparatus as claimed in 
claim 19, characterized in that a first subset of the refer 
ence feature vector signals has a mean, a first subset of 
the training feature vector signals has a mean, and the 
nonlinear transformation maps the mean of the first 
subset of the reference feature vector signals to the 
mean of the first subset of the training feature vector 
signals. 

22. A speech recognition apparatus as claimed in 
claim 21, characterized in that the first subset of the 
reference feature vector signals has a variance, the first 
subset of the training feature vector signals has a vari 
ance, and the nonlinear transformation maps the vari 
ance of the first subset of the reference feature vector 
signals to the variance of the first subset of the training 
feature vector signals. 

23. A speech recognition apparatus as claimed in 
claim 21, characterized in that a subgroup of the first 
subset of the reference feature vector signals has a 
mean, a subgroup of the first subset of the training fea 
ture vector signals has a mean, and the nonlinear trans 
formation maps the mean of the subgroup of the first 
subset of the reference feature vector signals to the 
mean of the subgroup of the first subset of the training 
feature vector signals. 

24. A speech recognition apparatus as claimed in 
claim 21, characterized in that the means for storing a 
plurality of prototype vector signals comprises elec 
tronic read/write memory. 

25. A speech recognition apparatus as claimed in 
claim 24, characterized in that the measuring means 
comprises a microphone. 

26. A speech recognition apparatus as claimed in 
claim 25, characterized in that the speech subunit output 
means comprises a video display. 

27. A speech recognition apparatus as claimed in 
claim 26, characterized in that the video display com 
prises a cathode ray tube. 

28. A speech recognition apparatus as claimed in 
claim 26, characterized in that the video display com 
prises a liquid crystal display. 

29. A speech recognition apparatus as claimed in 
claim 26, characterized in that the video display com 
prises a printer. 

30. A speech recognition apparatus as claimed in 
claim 25, characterized in that the speech subunit output 
means comprises an audio generator. 

31. A speech recognition apparatus as claimed in 
claim 30, characterized in that the audio generator com 
prises a loudspeaker. 

32. A speech recognition apparatus as claimed in 
claim 30, characterized in that the audio generator com 
prises a headphone. 

33. A speech recognition method comprising: 
measuring the value of at least one feature of an utter 
ance during each of a series of successive time 
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intervals to produce a series of feature vector sig 
nals representing the feature values; 

storing a plurality of prototype vector signals, each 
prototype vector signal having at least one parame 
ter value, each prototype vector signal having a 
unique identification value; 

comparing the closeness of the feature value of each 
feature vector signal to the parameter values of the 
prototype vector signals to obtain prototype match 
scores for each feature vector signal and each pro 
totype vector signal; 

outputting at least the identification values of the 
prototype vector signals having the best prototype 
match score for each feature vector signal as a 
sequence of coded representations of the utterance; 

generating a match score for each of a plurality of 
speech units, each match score comprising an esti 
mate of the closeness of a match between a model 
of the speech unit and the sequence of coded repre 
sentations of the utterance, each speech unit com 
prising one or more speech subunits; 

identifying one or more best candidate speech units 
having the best match scores; and 

outputting at least one speech subunit of one or more 
of the best candidate speech units; 

characterized in that the method further comprises: 
storing a plurality of reference feature vector signals, 

each reference feature vector signal representing 
the value of at least one feature of one or more 
utterances of one or more speakers in a reference 
set of speakers during each of a plurality of succes 
sive time intervals; 

storing a plurality of measured training feature vector 
signals, each measured training feature vector sig 
nal representing the value of at least one feature of 
one or more utterances of a speaker not in the 
reference set during each of a plurality of succes 
sive time intervals; 
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transforming at least one reference feature vector 

signal into a synthesized training feature vector 
signal; and 

generating the prototype vector signals from both the 
measured training vector signals and from the syn 
thesized training vector signal. 

34. A speech recognition method as claimed in claim 
33, characterized in that the step of transforming applies 
a nonlinear transformation to the reference feature vec 
tor signal to produce the synthesized training feature 
vector signal. 

35. A speech recognition method as claimed in claim 
34, characterized in that the nonlinear transformation is 
a piecewise linear transformation. 

36. A speech recognition method as claimed in claim 
35, characterized in that the nonlinear transformation 
maps the reference feature vector signals to the training 
feature vector signals. 

37. A speech recognition method as claimed in claim 
35, characterized in that a first subset of the reference 
feature vector signals has a mean, a first subset of the 
training feature vector signals has a mean, and the non 
linear transformation maps the mean of the first subset 
of the reference feature vector signals to the mean of the 
first subset of the training feature vector signals. 

38. A speech recognition method as claimed in claim 
37, characterized in that the first subset of the reference 
feature vector signals has a variance, the first subset of 
the training feature vector signals has a variance, and 
the nonlinear transformation maps the variance of the 
first subset of the reference feature vector signals to the 
variance of the first subset of the training feature vector 
signals. 

39. A speech recognition method as claimed in claim 
37, characterized in that a subgroup of the first subset of 
the reference feature vector signals has a mean, a sub 
group of the first subset of the training feature vector 
signals has a mean, and the nonlinear transformation 
maps the mean of the subgroup of the first subset of the 
reference feature vector signals to the mean of the sub 
group of the first subset of the training feature vector 
signals. 
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