
USOO7506315B1

(12) United States Patent (10) Patent No.: US 7,506,315 B1
Kabadiyski et al. (45) Date of Patent: Mar. 17, 2009

(54) SYSTEMAND METHOD COMBINING 2002/0073063 A1* 6/2002 Faraj............................. 707/1
APPLICATION TRACING AND DISTRIBUTED 2002/017.0036 A1 11, 2002 Cobb et al.
STATISTICAL RECORDS 2004/0031020 A1 2/2004 Berry et al.

2004/O123279 A1 6/2004 Boykin et al.
(75) Inventors: Mario Kabadiyski, Walldorf (DE): 2005/0039171 A1 2/2005 Avakian et al.

Nikolai G. Nikolov, Sofia (BG) 2005/0039.187 A1 2/2005 Avakian et al.

(73) Assignee: SAP AG, Walldorf (DE)
OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Ian Welch, et al., “Kava—A Reflective Java Based on Bytecode
patent is extended or adjusted under 35 Rewriting SpringerLink-Verlag Berling Heidelberg 2000. Chapt U S C 154(b) b 660 da S ewriting pringer K-We ag erling fleidelberg ap er,

M YW- y yS. Lecture Notes in Computer Science, W. CaZZola, et al. Editors,
Reflection and Software Engineering, LNCS, pp. 155-167.

(21) Appl. No.: 10/750,044
(Continued)

(22) Filed: Dec. 30, 2003
Primary Examiner Chuck O Kendall

(51) Int. Cl. (74) Attorney, Agent, or Firm Blakely, Sokoloff, Taylor &
G06F 9/44 (2006.01) Zafman LLP
G06F 9/45 (2006.01)

(52) U.S. Cl. 717/128; 717/130, 717/131; (57) ABSTRACT
717/148

(58) Field of Classification Search None A system and method for coupling a distributed Statistical
See application file for complete search history. records (“DSR) collection system with a tracing system

(56) References Cited utilizing bytecode modification techniques. In one embodi

U.S. PATENT DOCUMENTS

5,748,963 A 5, 1998 Orr
6,026,237 A 2/2000 Berry et al.
6,118,940 A 9, 2000 Alexander et al.
6,260,187 B1 7/2001 Cirne
6,381,735 B1 4/2002 Hunt
6,631,515 B1 10/2003 Berstis
6,658,600 B1 12/2003 Hogdalet al.
6,662,359 B1* 12/2003 Berry et al. 717/130
6,895,578 B1 5, 2005 Kolawa et al.
6,934,942 B1* 8/2005 Chilimbi 717,158
6,961,918 B2 * 1 1/2005 Garner et al. T16/18
6,968,540 B2 11/2005 Becket al.
7,093,234 B2 8, 2006 Hibbeller et al.

Application Server Bytecode
1110 Modifier

452

101

Request

Response
Client
1100

1102

... Application a
Components

Dispatch Unit
430

ment, a distributed statistical records (“DSR) module ini
tially identifies one or more application components within
the application server to be traced. A bytecode modification
module responsively modifies the bytecode of the one or
more application components. The modifications are directed
to a particular set of methods of the application components
(e.g., methods which are relevant to DSR data). A dispatch
unit registers the method invocations and method-related
information associated with the particular set of methods and
provides the method-related information to the DSR module.
Finally, a DSR interface module translates the method-related
information to a format employed within a DSR system and
forwards the translated information to the DSR system.

33 Claims, 38 Drawing Sheets

1103

External System
1130

DSR Plugin
830 DSR System 1055

DSRInterface
1040

DSR Files
1050

US 7,506,315 B1
Page 2

OTHER PUBLICATIONS

Wily Technology, Inc., Wily Solutions “How Introscope(R)
Works' Enterprise Application Management, http/www.wilytech.
com/solutions/products/how Works.html, 1999-2004, printed Jul. 2,
2004 (1 page).
Ben Stephenson, et al., “Characterization and Optimization of Java
Applications' Department of Computer Science, Abstractin Western
Research Forum Program & Abstracts, p. 20, 2003.
Wily Technology, Inc., Wily Solutions “Wily
Introscope R' Enterprise Application Management. http://www.
wilytech.com/solutions/products/Introscope.html, 1999-2004,
printed Jul. 2, 2004 (2 pgs.).
Sun Microsystems, Java J2EE 14 Application Server Developer's
Guide, “Debugging J2EE Applications' Chapter 4, http://java. Sun.
com/2ee/14/docs/devguide/dgdebug.html, 2003, printed Jul. 2,
2004 (11 pgs.).
Wily Technology, Inc., Wily Technology, Inc., Wily Solutions “The
Wily5 Solution—Enterprise Applications are Your Business'. http://
www.wilytech.com/solutions/ibm family.html, 1999-2004, printed
Jul. 2, 2004 (2 pgs.).
Ajay Chander et al., “Mobile Code Security by Java Bytecode Instru
mentation”. Proceedings of the DARPA Information Survivability
Conference & Exposition DISCEX-II 2001, Jun. 12-14, 2001,
Stanford University and University of Pennsylvania, Partially Sup
ported by DARPA contract N66001-00-C-8015 and ONR grant
N00014-97-1-0505 (14pgs.).
Mobile-Code Security Mechanisms for Jini "Mobile-Code Secu
rity Mechanisms for Jini' Download code, DISCEX 2001 Paper,
http://theory. Stanford.edu/people/jcm/software/inifilter.html,
printed Jul. 2, 2004—(3 pgs.).
Allen Goldberg, et al., “Instrumentation of Java Bytecode for
Runtime Analysis”. Fifth ECOOP Workshop on Formal Techniques
for Java-like Programs, Jul 21, 2003, Kestrel Technology, NASA
Ames Research Center, Moffett Field, California USA, (9 pgs.).
Algis Rudys, et al., “Enforcing Java Run-Time Properties Using
Bytecode Rewriting”, International Symposium on Software Secu
rity (Tokyo, Japan), Nov. 2002, Rice University, Houston, TX 77005,
USA (16 pgs.).
Han Bok Lee, et al., “BIT: A Tool for Instrumenting Java Bytecodes'.
originally published in the Proceedings of the USENIX Symposium
on Internet Technologies and Systems, Monterey, California, Dec.
1997, www.usenix.org/ (11 pgs.).
Reinhold Plösh, Johannes Kepler University Linz, Austria, “Evalua
tion of Assertion Support for the Java Programming Language’, JOT:
Journal of Object Technology, vol. 1,No. 3, Special issue: Tools USA
2002 Proceedings, pp. 5-17. http://www.jot.fm/issues/
issue 2002 08/article 1.
Etienne Gagnon, et al., “Effective Inline-Threaded Interpretation of
Java Bytecode Using Preparation Sequences', Sable Research
Group, Université du Québec a Montréal and McGill University,
Montreal. Canada, Jan. 2003 (15 pgs.).
Geoff A. Cohen, et al., Software-Practice and Experience, Version:
Mar. 6, 2000 v2.1 "An Architecture for Safe Bytecode Insertion'.
Department of Computer Science, Duke University (27 pgs.).
Reynald Affeldt, et al., “Supporting Objects in Run-Time Bytecode
Specialization'. Department of Graphics and Computer Science,
University of Tokyo, ASIA-PEPM '02, Sep. 12-17, 2002, ACM, pp.
50-60.
Nathan Macrides, Security Techniques for Mobile Code "SANS
Security Essentials (GSEC) Practical Assignment Version 1.4”. Jul.
11, 2002, (11 pgs.).
Dylan McNamee et al., “Specialization Tools and Techniques for
Systematic Optimization of System Software”. Oregon Graduate

Institute of Science & Technology, and University of Rennes/IRISA.
ACM Transactions on Computer Systems, 2001 (30 pgs.).
Wen Li, et al., “Collaboration Transparency in the DISCIPLE Frame
work”. CAIP Center, Rutgers The State University of New Jersey,
Piscataway, NJ. USA, Proceedings of the ACM International Con
ference on Supporting Group Work (Group '99) Nov. 14-17, 1999,
Phoenix, AZ., (10 pgs).
Jonathan Davies, et al., Proceedings of the 2nd international confer
ence on "An Aspect Oriented Performance Analysis Environment”.
10 pgs., 2003, Boston, Massachusetts Mar. 17-21, 2003.
Peter W. Gill, “Probing for a Continued Validation Prototype', a
Thesis Submitted to the Faculty of the Worcester Polytechnic Insti
tute, May 2001, (111 pages).
Alan Snyder, “The Essence of Objects: Concepts and Terms”, Jan.
1993, pp. 31-42, Sunsoft, Mountain View.
Duke University, “The Java Object Instrumentation Environment”.
www.cs.duke.edu/ari joief, last updated May 2003, printed Sep. 28,
2006, 2 pages.
Ralph Keller et al., “Supporting the Integration and Evolution of
Components Through Binary Component Adaptation', www.cs.
ucsb.edu/oocsb. Sep. 9, 1997, Technical Report TRCS97-15, 12
pageS.
Han Bok Lee, “BIT: Bytecode Instrumenting Tool” University of
Colorado, Department of Computer Science 1997. 51 pages.
Markus Dahm, “Welcome to the Byte Code Engineering Library
4.4.1. http://bcel.sourceforge.net/main.html, last updated Apr. 12,
2002, 2 pages, printed Sep. 28, 2006.
Alphaworks, "Jikes Bytecode Toolkit: Overview. www.alphaworks.
ibm.com/techikesbt, postedMar. 31, 2000, 2 pages, printed Sep. 28.
2006.

Geoff A. Cohen et al., “Automatic Program Transformation with
JOIE”. Department of Computer Science, Duke University, 12 pages.
www.w3.org/TR/DOM-Level-2-Core introduction.html What is
Document Object Model?, Nov. 13, 2000, pp. 1-7.
www.cafeonleche.orge books/xmljava/chapters/ch09.html Chapter
9. The Document Object Model, 2001, 2002, pp. 1-2.
www.cafeonleche.org/books/xmljava/chapters/ch09s04.html Chap
ter 9, The document Object Model, Trees, 2001, 2002, pp. 1-10.
www.cafeonleche.org/books/xmljava/chapters/ch09s05.html Chap
ter 9, The Document Object Model DOM Parsers for Java, 2001,
2002, pp. 1-3.
www.cafeonleche.org/books/xmljava/chapters/ch09x06.html Chap
ter 9, The Document Object Model Parsing documents with a DOM
Parser, 2001, 2002, pp. 1-10.
www.caseonleche.org/books/xmljava/chapters/ch09s09.html Chap
ter 9, The Document Object Model JAXP Serialization, 2001, 2002,
pp. 1-3.
Ingo Kegel, “JCLASSLIB Bytecode Viewer Help”. EJ-Technologies
GmBH, Aug. 20, 2003.
Alexander G. Shvets, “CafeBabe', 1999.
Alexander Keller, et al., “Measuring Application Response Times
with the CIM Metrics Model', IBM e-Business, DSOM 2002, Ses
sion 2: Measuring Quality of Service, Montreal, Canada, Oct. 22.
2002.
Nikolai G. Nikolov, “Execution of Modified Byte Code For Debug
ging, Testing And/Or Monitoring Of Object Oriented Software'. U.S.
Appl. No. 10/749,617, filed Dec. 30, 2003, Office Action mailed Jul.
10, 2007.
Nikolai G. Nikolov, “Registration Method For Supporting Bytecode
Modification”, U.S. Appl. No. 10/749,686, filed Dec. 30, 2003,
Office Action mailed Jul. 3, 2007.

* cited by examiner

U.S. Patent Mar. 17, 2009 Sheet 1 of 38 US 7,506,315 B1

SOurce Code 101 a

102
COMPLE

byte Code 103a

INTERPRETBYTE
CODE INTO MACHINE

SPECIFIC INSTRUCTIONS

104

machine specific instructions 105

EXECUTE MACHINE 106
SPECIFIC

INSTRUCTIONS

F.G. 1A
(PRIOR ART)

U.S. Patent Mar. 17, 2009 Sheet 2 of 38 US 7,506,315 B1

103B

PN field info structure

QTY field info structure

field info structure

CUSTOMER field
info structure

GetMax
info structure

101B

110

class Sales { sfield info structure
string PN
int QTY
double $
string CUSTOMER

void GetMax {

} COMPLE
UPDATEACCOUNTING

void UPDATEACCOUNTING { info structure

3

void UPDATE BILLING {
UPDATE BILLING
info structure

(PRIOR ART)

U.S. Patent Mar. 17, 2009 Sheet 3 of 38 US 7,506,315 B1

"GetMax" "GetMax"
SOUrce COde text: equivalent byte Code:

120A 120B

iload 2 140B
140A if (a > b) { iload 1
141A return a icmp

} else { COMPLE iFeqL 2)
142A -D iload 2

ireturn 141B

: iload 1
ireturn

return b;

142B

141 142

FIG. 1C
(PRIOR ART)

U.S. Patent Mar. 17, 2009 Sheet 4 of 38 US 7,506,315 B1

210
object 2
202

is a mile as a as as object 3

203

method 3
2O7

object 4
204

method 4
208

runtime flow

FIG. 1D
(PRIOR ART)

US 7,506,315 B1 U.S. Patent

US 7,506,315 B1

*= = = = = = • • ? = * * * = = = = = * - - -, ? = = = = = = = = = = = =

U.S. Patent

US 7,506,315 B1

N 199N L99

Sheet 7 Of 38

Z 180

| 180k Lºº

Mar. 17, 2009 U.S. Patent

LINTEGIOOE. LÅ8
T?G5 EGOOE_1)\8 JSETI-HSSWTO

U.S. Patent Mar. 17, 2009 Sheet 8 of 38

SOurce COde

451
COMPLE

byte Code

INSERT BYTECODE THAT 452
NVOKES RECORDING
FUNCTIONTREATMENT
ATMETHOD ENTRY
AND EXIT POINTS

modified byte code

453
EXECUTE MODIFIED

BYTE CODE

FIG. 4A

US 7,506,315 B1

US 7,506,315 B1 Sheet 9 Of 38 Mar. 17, 2009 U.S. Patent

463

TRACING
HANDLER

COVERAGE
HANDLER

PLUG-NB

TRACING
HANDLER

PLUG-INA

dispatch unit
----- F runtime flow

FIG. 4B

invOCation to

US 7,506,315 B1 Sheet 10 of 38 Mar. 17, 2009 U.S. Patent

909 NI-90Tld

US 7,506,315 B1 Sheet 11 of 38 Mar. 17, 2009 U.S. Patent

NI-90Tc

NI-90Tc] EXIOANI

US 7,506,315 B1 Sheet 12 of 38 Mar. 17, 2009 U.S. Patent

£79 ?

#7779 V

• U099

20Z9 :3p00 00/nos

U.S. Patent Mar. 17, 2009 Sheet 13 of 38 US 7,506,315 B1

modified byte Code
Classfile 650b

raw unmodified
byte Code

Class file 650a

COnStructOr
method info
Structure

MODIFY
-D

constructor method
info structure

GetMax method
info structure

GetMax method info
Structure

62Ob

643b

644b.

645b.
646b

FIG. 6B

U.S. Patent Mar. 17, 2009 Sheet 14 of 38 US 7,506,315 B1

701

NWOKING METHOD PLUG IN MODULE

(method 1) C1, M1, argS 11

(method 2) C1, M2, argS 12

(method 3) C2, M1, argS21

(method 4) C3, M1, argS 31

FIG. 7

US 7,506,315 B1

096

U.S. Patent

US 7,506,315 B1 Sheet 18 of 38 Mar. 17, 2009 U.S. Patent

US 7,506,315 B1 Sheet 20 of 38 Mar. 17, 2009 U.S. Patent

US 7,506,315 B1 Sheet 21 of 38 Mar. 17, 2009 U.S. Patent

? JSC)

OZO

Z00!, - –

asuodsau s?n?3.13.Au3S

US 7,506,315 B1

900!). – – – – – – – – – – + – – – – – – – – – – – – – – –|-

?(z) au?} aseqeqeq+
51700), – – – – – – – – – – + – – – – – – – – – – – – – – –- - (ZO(!) au? aseqeqeq?uu?? ç00? –=====• ??suodsæ>}

= ----------|-

>

kººk -------------------------------
?sønbau saa?aoaa manuas

uonoesuen sv???T?s? -

U.S. Patent

US 7,506,315 B1 Sheet 23 of 38 Mar. 17, 2009 U.S. Patent

088 u?finld HSQ

US 7,506,315 B1 Sheet 25 of 38 Mar. 17, 2009 U.S. Patent

90Z), 8C]

US 7,506,315 B1 Sheet 26 of 38 Mar. 17, 2009 U.S. Patent

(6 '91-' 33s)

U.S. Patent Mar. 17, 2009 Sheet 27 Of 38 US 7,506,315 B1

FOREACH CLASSFILE HAVING
A METHOD TO BE MODIFIED:

CREATE A COLLECTION
OF OBJECTS ORGANIZED 1401

TO REFLECT THE CLASSFILE'S
ORGANIZATION

1402

MODIFY THE COLLECTION
OF OBJECTS TO REFLECT
BYTE CODEMODIFICATION

1403

CONVERT OBJECTS
INTO CLASSFILE

FIG. 14

U.S. Patent Mar. 17, 2009

FIELDS
1501

1502 METHODS
15021 UPDATEACCT.

15022 UPDATE BILLING

15023 GET MAX

FIG. 15A

S2

Sheet 28 of 38 US 7,506,315 B1

FIELDS

GD
GS)
(US
METHODS

C -UPDATEACCT.
O UPDATE BILLING

C GET MAX

ireturn

Gload 2
3. 1- 1505

Greturn)

(load)
Matoské 1506 (S)-

FIG. 15B (2)"

U.S. Patent Mar. 17, 2009 Sheet 29 Of 38 US 7,506,315 B1

AAPOSITION IN THE COLLECTION
OF OBJECTS THAT CORRESPOND TO

A METHOD ENTRYPOINT: 1601
INSERT MODIFICATION REPRESENTATIVE
OF ADDITIONAL INSTRUCTIONS THAT

INVOKE THE DISPATCHUNIT

ATA POSITION IN THE COLLECTION 1602
OF OBJECTS THAT CORRESPOND TO

A METHODEXIT POINT
INSERT MODIFICATION REPRESENTATIVE
OF ADDITIONAL INSTRUCTIONS THAT

INVOKE THE DISPATCH UNIT

ATA POSITION IN THE COLLECTION 1603
OF OBJECTS THAT CORRESPOND TO

THE END OF AMETHOD'S INSTRUCTIONS:
INSERT MODIFICATION REPRESENTATIVE
OF ADDITIONAL INSTRUCTIONS THAT

INVOKE THE DISPATCHUNIT

FIG 16

U.S. Patent Mar. 17, 2009 Sheet 30 of 38 US 7,506,315 B1

CLASSID INFO

DISPATCHUNIT
REGISTRATION
METHOD INFO
STRUCTURE

CLASSID
i

1706

CLASS NAME,
METHOD NAMES

CLASS 1 17011. 8, ARG TYPES
1705 DISPATCH UNIT

CLASSID 1702
i ---

CLASSID INFO 17062

DISPATCH UNIT
REGISTRATION
METHOD INFO CLASS NAME
STRUCTURE METHOD NAMES

8, ARG TYPES
17052

CLASSID
i

1706N
2

CLASS NAME,
METHOD NAMES

DISPATCH UNIT & ARG TYPES
REGISTRATION 1705N
METHOD INFO
STRUCTURE

FIG. 17

US 7,506,315 B1 Sheet 32 of 38 Mar. 17, 2009 U.S. Patent

US 7,506,315 B1 Sheet 34 of 38 Mar. 17, 2009 U.S. Patent

00811Taw () –~~~~

US 7,506,315 B1 Sheet 36 of 38 Mar. 17, 2009 U.S. Patent

US 7,506,315 B1 U.S. Patent

US 7,506,315 B1
1.

SYSTEMAND METHOD COMBINING
APPLICATION TRACING AND DISTRIBUTED

STATISTICAL RECORDS

BACKGROUND

1. Field of the Invention
The field of invention relates generally to testing and moni

toring of program code; and, more specifically, to an appli
cation tracing service which employs bytecode modification
techniques for testing and monitoring of program code.

2. Description of the Related Art
1. Bytecode
Certain software technologies. Such a Java, emphasize the

use of a special interpreter, referred to as a “virtual machine.”
that allows generic processor instructions to be executed on a
particular type of processor. Here, each hardware platform
(e.g., each computer) that the generic instructions are
expected to “run on typically includes a virtual machine
interpreter that is responsible for converting the generic pro
cessor instructions, referred to generally as “interpreted
code' or “bytecode” in the case of Java, into code that is
specially targeted for the hardware platforms particular pro
cessor. Software technologies that embrace the execution of
bytecode on a virtual machine may be referred to as “virtual
machine-based' software.
As a classic instance of the benefit of the Java virtual

machine with respect to Internet usage, a first PC that is
powered by an Intel processor may download from the Inter
net the same Java bytecode instructions as a second PC that is
powered by a PowerPC processor. Here, the first PC's Java
virtual machine converts the Java bytecode into instructions
that are specific to an Intel processor while the second PCs
Java virtual machine converts the same Java bytecode into
instructions that are specific to a PowerPC processor. Thus,
through the use of Java bytecode and processor specific Java
virtual machines, an Internet server is able to maintain only a
single type of code (the Java bytecode) without concern of
client compatibility.

FIG. 1a demonstrates the standard compilation flow for
generating instructions 105 targeted for a specific processor
(“machine specific instructions' 105) from source code 101a,
written according to a virtual machine-based language.
According to the compilation flow of FIG.1a, the source code
101a is converted into bytecode 103a by way of a first com
piling process 102. The virtual machine then interprets 104
the bytecode into machine-specific instructions. The
machine-specific instructions are then executed 106 to imple
ment the methods originally articulated by the Source code.

2. Object Oriented Programming and Classfiles
Certain Software technologies, including Java, are “object

oriented. According to an object oriented approach, the Sub
ject matter that is processed by a computer program is orga
nized into classes of likeness. For example, the Software used
to sell items to customer X might belong to the same class of
software (i.e., the class: “sales') that is used to sell items to
customer Y. Here, given that a significant degree of overlap is
expected to exist regarding the methods and data types used to
process sales for both customers X and Y (e.g., Part Nuumber
(PN), Quantity (QTY) “update billing about sale.” “update
accounting about sale.' ... etc) it is deemed more efficient to
organize Such methods and data types into a generic "sales'
class from which specific instances of the class (e.g., an
instance for selling to customer X and an instance for selling
to customer Y) can be defined and created.

Each specific instance of a class is referred to as an object;
and, each object assumes the characteristics of the class from

10

15

25

30

35

40

45

50

55

60

65

2
which it is defined. Thus, a first object could be created from
the generic sales class to create a “sell to customer X object;
and, a second object could be created from the generic sales
class to create a “sell to customer Y” object. Both objects
would be able to execute the methods defined by the class. For
example, the “sell to customer X object could execute the
“update accounting about sale method to update an account
ing department about a sale to customer X; and, the “sell to
customery' object could also execute the “update accounting
about sale method to update an accounting department about
a sale to customer Y.

In general, the runtime execution of any computer program
can be viewed as the execution of a sequence of methods.
With respect to an object-oriented approach, such a sequence
of methods can be implemented by calling upon a sequence of
objects and invoking one or more methods at each object. In
order to invoke the method of an object, a representation of
the object must first be created. In virtual machine-based
object-oriented software environments, classfiles are byte
code level data structures from which such representations
are created. A classfile can be viewed as a bytecode level
description of a class; and, therefore, a classfile can be used as
a template for the formation of an object, at the bytecode
level, that is a member of the class. As specific methods can be
attributed to specific classes, each classfile is made to contain
the sequence of bytecode instructions that correspond to each
of the class’s specific methods.
FIG.1b shows an embodiment of both a source code level

class description 101b and a bytecode level class description
(i.e., a classfile) 103b for the exemplary “sales’ class referred
to above. The class description 101b of FIG. 1b corresponds
to an embodiment of a segment of the source code level 101a
of FIG. 1a; and, the classfile 103b of FIG. 1b corresponds to
an embodiment of a segment of the bytecode level 103a of
FIG. 1a. Referring to FIG. 1b, the source code level descrip
tion of the "sales' class identifies the class's variables 107,
such as part number (PN), quantity (QTY), per unit cost (S)
and the customer's identity (CUSTOMER), and includes the
class’s methods such as GetMax 130, UPDATE
ACCOOUNTING 108, UPDATE BILLING 109, which are
articulated as Source code Software routines.

Compilation 102 of the source code level class description
101b results in the formation of the bytecode level classfile
103. Among other possible items not shown in FIG. 1b (e.g.,
rev codes, constant pools. . . . etc), a classfile 103b may
contain field information structures 110 for each of the class’s
variables and method information structures 130, 111, 112
that contain the bytecode level instructions 120b, 113, 112 for
each of the class’s methods. Both the source code level com
mands and bytecode level instructions for the class’s methods
are illustrated in FIG. 1b as simple lines for illustrative con
Venience.
Over the course of discussion of various inventive aspects

set forth in the detailed description that follows, comparisons
will be made against each of FIGS. 1c and 1d. FIG. 1c illus
trates, in more detail, exemplary Java source code level com
mands 120a and corresponding Java bytecode level instruc
tions 120b for the exemplary “GetMax' method that was first
presented in FIG. 1b. The “GetMax' method is designed to
return the greater of two variables a and b (i.e., if a is
greater, 'a' is returned; if b is greater, b is returned).

Note that both the source code level and bytecode level
implementations for the “GetMax' method have a single
entry point 140a, 140b (i.e., the method starts at locations
140a, 140b) and a pair of exit points 141a, 142a and 141b,
142b (i.e., the method can end at locations 141a, 142a and
141b, 142b noting that a “return' command/instruction

US 7,506,315 B1
3

causes an output to be presented; which, in turn, can be
viewed as the completion of the method). Those of ordinary
skill will be able to recognize that: (1) the source code level
depiction 120a of the GetMax method observed in FIG. 1c
articulates a method written in Java source code language that
returns the greater of two values (i.e., a and b); and, likewise,
(2) the bytecode level depiction 120b of the GetMax method
observed in FIG. 1c articulates a corresponding method writ
ten in Java bytecode language that returns the greater of two
values (i.e., the values a and b which are respectively loaded
on the top of an operand stack by the initial “iload 0 and
“iload 1’ instructions).
A method having a single entry point 140 and a pair of exit

points 141, 142, like the “GetMax' method, can be repre
sented by depiction 150 where the top surface 140 corre
sponds to an entry point of the method and side edges 141 and
142 correspond to exit points. FIG. 1d shows a schematic
representation of the process flow for an exemplary object
oriented process. The exemplary process flow of FIG. 1d
depicts four methods 205,206,207,208 depicted similarly to
the representation 143 observed in FIG. 1c (noting that
method 3 207 has a structure that is identical to the structure
143 of FIG. 1c).

Entry points are depicted at the top surfaces 209, 210, 211,
212 of methods 205, 206, 207, 208; and, exit points are
depicted as side ports of methods 205,206, 207,208 (i.e., side
ports 213,214, 215 for method 1205; side ports 217, 218 for
method 2 206; side ports 220, 225 for method 3 207; and,
side ports 221, 222, 223, 224 for method 4208) and bottom
ports of methods 205, 206 and 208 (i.e., bottom port 216 for
method 1205; bottom port 219 for method 2206; and, bot
tom port 226 for method 4208).

According to the object oriented process flow depiction of
FIG. 1d, a first object 201 is called in order to execute
method 1205; then, a second object 202 is called in order to
execute method 2 206; then, a third object 203 is called in
order to execute method 3 207; then, a fourth object 204 is
called in order to execute method 4208. Each of the methods
commence at their respective entry points 209, 210, 211,212.
Method 1 exits at a exit point 215, method 2 exits at exit
point 217, method 3 exits at exit point 220; and, method 4
exits at exit point 221 endeavors.

3. Enterprise Systems
Traditional client-server systems employ a two-tiered

architecture such as that illustrated in FIG.2a. Applications
231 executed on the client side 230 of the two-tiered archi
tecture are comprised of a monolithic set of program code
including a graphical user interface component, presentation
logic, business logic and a network interface that enables the
client 230 to communicate over a network 233 with one or
more servers 234. A database 232 maintained on one of the
servers 234 provides non-volatile storage for the data
accessed and/or processed by the application 231.
As is known in the art, the “business logic' component of

the application represents the core of the application, i.e., the
rules governing the underlying business process (or other
functionality) provided by the application. The “presentation
logic” describes the specific manner in which the results of
the business logic are formatted for display on the user inter
face. The “database' 232 includes data access logic used by
the business logic to store and retrieve persistent data.

The limitations of the two-tiered architecture illustrated in
FIG. 2a become apparent when employed within a large
enterprise. For example, installing and maintaining up-to
date client-side applications on a large number of different
clients is a difficult task, even with the aid of automated
administration tools. Moreover, a tight coupling of business

10

15

25

30

35

40

45

50

55

60

65

4
logic, presentation logic and the user interface logic makes
the client-side code very brittle. Changing the client-side user
interface of Such applications is extremely hard without
breaking the business logic, and vice versa. This problem is
aggravated by the fact that, in a dynamic enterprise environ
ment, the business logic may be changed frequently in
response to changing business rules. Accordingly, the two
tiered architecture is an inefficient solution for enterprise
systems.

In response to limitations associated with the two-tiered
client-server architecture, a multi-tiered architecture has been
developed, as illustrated in FIG. 2b. In the multi-tiered sys
tem, the presentation logic 242, business logic 244 and data
base 246 are logically separated from the user interface 240 of
the application. These layers are moved off of the client 230
to one or more dedicated servers on the network 233. For
example, the presentation logic 242, the business logic 244.
and the database 246 may each be maintained on separate
servers, 241, 243 and 245, respectively.

This separation of logic components and the user interface
provides a more flexible and scalable architecture compared
to that provided by the two-tier model. For example, the
separation ensures that all clients 230 share a single imple
mentation of business logic 244. If business rules change,
changing the current implementation of business logic 244 to
a new version may not require updating any client-side pro
gram code. In addition, presentation logic 242 may be pro
vided which generates code for a variety of different user
interfaces 240, which may be standard browsers such as Inter
net Explorer(R) or Netscape Navigator R.
The multi-tiered architecture illustrated in FIG.2b may be

implemented using a variety of different object-oriented
application technologies at each of the layers of the multi
tiered architecture, including those based on the Java 2 Enter
prise Edition (“J2EE). In a J2EE environment, the business
layer 244, which handles the core business logic of the appli
cation, is comprised of Enterprise Java Bean (“EJB) com
ponents with support for EJB containers. Within a J2EE envi
ronment, the presentation layer 242 is responsible for
generating servlets and Java Server Pages (“JSP) interpret
able by browsers at the user interface layer 240 (e.g., browsers
with integrated Java virtual machines).

Although the multi-tiered system illustrated in FIG. 2b
provides a more flexible and scalable architecture, it also
results in significant additional complexity. For example,
monitoring, testing and/or debugging multiple clusters of
presentation layer servers, business layer servers and data
bases, and the dependencies between them requires a signifi
cant amount of management overhead. As such, the ability to
efficiently monitor, testand/or debug object-oriented, virtual
machine-based enterprise software, such as the Software
employed in a J2EE environment, is critical for efficient soft
ware development and/or implementation.

SUMMARY

A system and method for coupling a distributed Statistical
records (“DSR) collection system with a tracing system
utilizing bytecode modification techniques. In one embodi
ment, a distributed statistical records (“DSR) module ini
tially identifies one or more application components within
the application server to be traced. A bytecode modification
module responsively modifies the bytecode of the one or
more application components. The modifications are directed
to a particular set of methods of the application components
(e.g., methods which are relevant to DSR data). A dispatch
unit registers the method invocations and method-related

US 7,506,315 B1
5

information associated with the particular set of methods and
provides the method-related information to the DSR module.
Finally, a DSR interface module translates the method-related
information to a format employed within a DSR system and
forwards the translated information to the DSR system.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc
tion with the following drawings, in which:

FIG. 1a shows a compilation process that involves byte
code level coding:

FIG.1b shows an embodiment of a source code level class
description and an embodiment of a bytecode level class
description;

FIG.1c shows an embodiment of coding for a method at the
Source code level and an embodiment of coding for a method
at the bytecode level;

FIG. 1d shows an exemplary depiction of the runtime
execution of an object oriented programming language;

FIG.2a illustrates a traditional two-tier client-server archi
tecture.

FIG. 2b illustrates a multi-tier client-server architecture
implemented on an enterprise network.

FIG.3 illustrates a system architecture that embraces byte
code modification;

FIG. 4a shows a method that modifies bytecode in order to
Support Software debugging and/or monitoring;

FIG. 4b shows an example of the runtime execution of
object oriented software having modified bytecode for pur
poses of application tracing or debugging or “application
coverage' monitoring:

FIG. 5a shows a runtime depiction of debugging/monitor
ing Software having bytecode modification at a method entry
point;

FIG.5b shows a runtime depiction of debugging/monitor
ing Software having bytecode modification at a method exit
point;

FIG. 6a shows an embodiment of coding, at the source
code and bytecode levels, for a method that has been modified
for debugging and/or monitoring purposes;

FIG. 6b shows an embodiment of a classfile that has been
modified for debugging and/or monitoring purposes;

FIG. 7 shows an embodiment of an architectural perspec
tive for dispatch unit software that interfaces between byte
code modified methods and plug in handlers;

FIG. 8 illustrates an exemplary set of bytecode modifica
tion plugins employed in one embodiment of the invention;

FIG. 9a illustrates an invocation tree for displaying byte
code modified method invocations employed in one embodi
ment of the invention;
FIG.9b-e illustrate one embodiment of a graphical user

interface for viewing information related to modified byte
code;

FIGS. 10a-b illustrate one embodiment of the invention
used to implement a distributed statistical records (“DSR)
service;

FIGS. 11a-b illustrate another embodiment of the inven
tion used to implement a distributed statistical records
(“DSR) service;

FIG. 12 illustrates one embodiment of the invention for
collecting method invocation data related to a specific com
ponents of a Web server;

FIG. 13 illustrates a markup language converter for con
Verting a method invocation tree into a markup language
format (e.g., such as XML or HTML).

5

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 14 shows a methodology for modifying bytecode for

purposes of Software debugging and/or monitoring;
FIG. 15a shows a depiction of an “object tree' that is

representative of a bytecode level method prior to its modifi
cation;

FIG. 15b shows a depiction of an “object tree' that is
representative of a bytecode level method after its modifica
tion;

FIG.16 shows a method for modifying an object tree that is
representative of a bytecode level method so as to reflect the
bytecode modification to be made to the bytecode level
method;

FIG. 17 shows a plurality of classsfiles registering with a
dispatch unit;

FIG. 18 shows specific methodologies that can be executed
when a classfile registers with a dispatch unit.

FIGS. 19a-g illustrate different user interfaces and tech
niques for modifying bytecode.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

1.0. Architectural Overview
FIG. 3 and FIGS. 4a–b describe techniques that can be

directed to the testing, debugging and/or monitoring of
sophisticated object-oriented virtual machine-based soft
ware. Throughout the description, for the purposes of expla
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that the
present invention may be practiced without some of these
specific details. For example, while the embodiments
described below focus on a Java environment in which Java
“bytecode' is processed by a Java “virtual machine.” various
underlying principles may be implemented in interpreted
code and non-interpreted-code environments as well as object
oriented and non-object oriented environments.

FIG. 3 illustrates an embodiment of a service 355 capable
of testing, debugging and/or monitoring the bytecode 350 of
a sophisticated “enterprise software platform. The service
includes a bytecode modifier module 352 for inserting func
tion calls at entry points and exit points of certain specified
methods of the bytecode 350, to generate modified bytecode
353. As described in greater detail below, the bytecode modi
fier module 352 may modify the bytecode 350 prior to runt
ime (see, e.g., FIG. 4a and associated text). In this embodi
ment, each function call inserted into the modified bytecode
353 invokes a dispatch unit 330; which, in turn, is responsible
for directing the direction of the runtime process flow to one
or more appropriate plug-in modules (e.g., any one or more of
plug-in modules 360, through 360). In an embodiment, the
plug-in modules 360 through 360 each include correspond
ing plug-in handlers 331-331. The handlers 331-331 can
often be viewed as grains of executable code that output
information 381-381 related to the operation of the original
software 350. Plug-in modules can be viewed as wrappers for
the grains of handler code.

Developers, based on their particular testing, debugging
and/or monitoring needs, may customize design and imple
ment plug-in modules. This modular plugin architecture pro
vides a flexible and Scalable solution for evaluating program
code, and may be particularly useful for evaluating program
code on large enterprise platforms (e.g., Such as J2EE-based
platforms).
One particular type of function performed by a plug-in

handler is an output function that records one or more prop
erties about the method and/or causes one or more properties

US 7,506,315 B1
7

associated with the method to be recorded. For example, one
type of output function performed by a plug-in handler (e.g.,
plug-in handler 331) involves recording the time that each
method started at an entry point and/or exited at an exit point.
Developers may use this recorded timing information to
determine, for example, the sequence of methods just prior to
a “crash” of the software. Similarly, if a particular method or
sequence of methods take an inordinate amount of time to
complete, the developer may determine the reasons why and/
or change the program code to operate more efficiently. As
Such, the recording of when method entry points and method
exit points are reached allows a precise method history
sequence to be reconstructed.

In addition to timing information, the parameters that are
passed to a method when it starts (e.g., its input parameters)
and/or the parameters that are passed by a method when it
exits (e.g., its output/returned values) may also be recorded by
a plug-in handler to enhance the recorded history of the
execution flow (e.g., a returned value or a thrown exception).
For example, applications may often crash because of an
incorrect or incompatible parameter value. By recording
parameter values that are passed in and out of the applica
tion's methods over the course of the application’s execution
flow, the appearance and/or source of an incorrect/incompat
ible parameter value can be readily flagged.

Thus, not only can start/stop times be recorded on a
method-by-method basis; but also, parameters can be
recorded on a method-by-method basis. Of course, the iden
tity of the methods themselves may also be recorded. A plug
in handler that records the start and/or end times of a method
and/or records the parameter flow in and/or out of a method
may be referred to as a “tracing plug-in handler because
aspects of the method history of a software routine can be
“traced through the recordation of its method start/end times
and its method parameter values.

Another type of output function that may be performed by
a plug-in handler (e.g., plug-in handler 331) involves main
taining a counter for each bytecode modified method and
incrementing the counter each time its corresponding method
is used (e.g., incrementing the counter for a bytecode modi
fied method each time the bytecode modified method makes
a function call to the dispatch unit 330 from its entry point).
As applications (and, in particular, enterprise applications)
involve complicated “logic, cross-method interdependen
cies, etc., it is possible that certain sections of code are never
executed (i.e., are “dead' or “unreachable') or are almost
never executed because of a flaw in the design of the appli
cation.

Counting each time a method is used allows dead/unreach
able or hardly used regions of the software to be readily
identified. In addition, for monitoring purposes, counting
each time a method is used allows a Software manager to
comprehend “usage” rates of the software's individual meth
ods. A plug-in handler that is capable of maintaining a counter
for an individual method may be referred to as a “coverage'
plug-in handler because the frequency of usage of various
regions of the Software can be gauged by counting each time
a method is used. In related embodiments, a single coverage
plug-in handler may be designed to maintain separate
counters for a plurality of methods.

In the examples described herein, the various functional
components illustrated in FIGS. 3 and 4b operate together as
a service (e.g., a J2EE service) which may be used by pro
grammers and/or developers to test, debug and/or monitor
program code on an enterprise network using bytecode modi
fication techniques.

10

15

25

30

35

40

45

50

55

60

65

8
2.0. Modified Bytecode Runtime Flow
FIG. 4a shows one embodiment of a compilation and

execution methodology for the bytecode modification strat
egy outlined above. According to the methodology of FIG.
4a, the source code of an object-oriented virtual machine
based Software technology (e.g., Java) is compiled 451 into its
corresponding bytecode. The bytecode is then modified 452
by inserting additional bytecode instructions at method entry
and exit points. The additional bytecode instructions invoke
(e.g., make a function call to) a dispatch unit Such as the
dispatch unit 330, 430 illustrated in FIGS. 3 and 4b.
Once the methods to be modified have been modified 452,

the modified bytecode is executed 453 with the help of a
virtual machine interpreter. The execution of the bytecode
may also be referred to as “runtime'. During runtime 453, as
explained in more detail further below, the dispatch unit 330,
430 responds to each invocation from a modified method by
ensuring that the runtime execution process flows to the
appropriate plug-in(s) for the invoking method. As a conse
quence, the invocations made to the dispatch unit 330, 430
cause the appropriate plug-in handler(s) to perform their des
ignated functions (e.g., Such as the output functions described
above). Note that each plug-in handler can be viewed as
including a specialized body of instructions that, when
executed, cause the plug-in handler's particular function to be
performed.

For the purpose of illustration, one example of system
operation is set forth in FIG. 4b. Like FIG. 1d. FIG. 4b shows
a schematic representation of a process flow for an exemplary
object-oriented process. However, in contrast to FIG. 1d.
FIG. 4b graphically illustrates each of the bytecode modified
methods 405 through 408 invoking the dispatch unit 430 at
the their corresponding entry point (i.e., entry points 409
through 412) and exit point (i.e., exit points 413 through 426).

Thus, as a consequence of the bytecode modification, for a
process flow that performs the substantive equivalent of that
observed in FIG. 1d (i.e., from object 1/method 1401/.405 to
object 2/method 2 402/406 via exit point 415 of method 1
405; from object 2/method 2402/406 to object 3/method 3
403/407 via exit point 417 of method 2406; from object 3/
method 3 403/420 to object 4/method 4404/408 via exit
point 420 of method 3 407; and, exiting from exit point 421
of method 4 408), the process flow is directed from each
method entry and exit point to the dispatch unit 430. The
dispatch unit 430 then causes the runtime process flow to flow
to an appropriate plug-in handler for each method whose
corresponding handlers perform their designated function, as
described herein.

Note that asbytecode modifications are made at each entry
and exit point for each of methods 405-408, the associated
plug-in handlers may still record information for each of
methods 405-408 even if the runtime process flow were to
flow through a different set and/or sequence of method entry
and exit points than those observed in FIG. 4b.

In the particular example illustrated in FIG. 4b, methods
405, 406 and 408 have been configured to receive “tracing
treatment by plug-in module A 460; and, only method 407 is
configured to receive both “tracing treatment and “cover
age' treatment by plug-in module B 470. As such, the process
flow for methods 405, 406 and 408 involves from each of their
respective entry 409, 410, 412 and exit 415,417,421 points:
(1) invoking the dispatch unit 430; (2) dispatching the invo
cation to plug-in module A 460; (3) executing tracing
method(s) with the handler 461 of plug-in module A460 (e.g.,
record a start time and/or input parameters identified with the
invoking method if the invoking method is invoking from an
entry point; or, record an end time and/or output parameters

US 7,506,315 B1
9

and/or returned value identified with the invoking method if
the invoking method is invoking from an exit point); and, (4)
returning back to the entry or exit point that made the original
invocation.
By contrast, the process flow for method 407 involves from 5

its entry 411 and exit 420 points: (1) invoking dispatch unit
430; (2) dispatching the invocation to plug-in module B 470;
(3) executing tracing method(s) with handler 462 (i.e., record
a start time and/or input parameters if invocation is from entry
point 411; or, record an end time and/or output parameters if 10
invocation is from exit point 420); (5) executing coverage
method(s) with handler 463 (i.e., increment a counter main
tained for method 3 407) and, (5) return back to the entry or
exit point that made the original invocation.
The above example demonstrates that the embodiment of 15

the dispatch unit 430 referred to above is responsible for
being conscious of an appropriate plug-in module for each
invoking method and causing the runtime process flow to be
directed to the appropriate plug-in module for each invoking
method. As observed in FIG. 4b, the same plug-in module 20
(e.g., plug-in module 460) may be "re-used across a plurality
of methods (e.g., methods 405, 406 and 408); and, some
plug-in modules may contain only a single handler (such as
plug-in module 460) while others may contain more than one
handler (such as plug-in module 470). Moreover, as described 25
in more detail below, more than one plug-in module may be
associated and dispatched to from the entry point and/or exit
point of a single method.

Note that appropriate coverage monitoring may be gained
by the coverage plug-in handler 463 at either a methods entry 30
point or a methods exit point (e.g., rather than executing the
coverage plug-in handler 463 at both the methods entry and
exit points as Suggested by FIG. 4b). That is, as the coverage
plug-in handler 463 counts each time method 407 is used, a
proper count may be determined by incrementing the counter 35
maintained for method 407 only when method 407 starts (i.e.,
coverage is triggered at entry point 411); or, only when
method 407 ends (i.e., coverage is triggered at exit point 408).
In one embodiment, coverage is triggered at entry point 411 to
ensure that the count that is maintained for method 407 is 40
accurate even if the software happens to crash during execu
tion of method 407.

FIGS. 5a and 5b illustrate one embodiment of the interac
tion between the dispatch unit and an invoking method. Spe
cifically, FIG. 5a depicts an embodiment of an invocation 45
Stemming from a modification made at a methods entry point
and FIG. 5b depicts an embodiment of an invocation stem
ming from a modification made at a methods exit point.
According to the methodology of FIG.5a, a bytecode modi
fied method starts 501 (e.g., by having another method invoke 50
it) and an initial block of bytecode-level instructions 502
corresponds to the modification that invokes the dispatch unit.
Alternate embodiments may choose (for whatever reason) to
insert the block of instructions for invoking the dispatch unit
deeper down into the instructions that are inevitably executed 55
once the method starts.

In response to the invocation, the dispatch unit 430 identi
fies the appropriate plug-in module for the method through
recognition of the invoking method (e.g., by way of a class ID
and a methodID) and causes the process flow to be dispatched 60
to an appropriate plug-in module 503 by returning a reference
to the appropriate plug-in module for the invoking method
(e.g., a reference to an object that the plug-in module corre
sponds to). The invoking method uses the reference to call
upon the plug-in module; which, in turn, causes the plug-in 65
modules handler method(s) to be executed. The handler(s)
execute their recordation method(s) 504; and, the process

10
flow returns to the remainder of the invoking methods
instructions 505. In the case of FIG. 5a where the first block
of bytecode-level instructions 502 in the modified method are
for invoking the dispatch unit, the first instruction in the
remainder of the invoking methods instructions 505 may be
the first instruction generated for the method by the standard
Source code-to-bytecode compilation 451 process (i.e.,
the first instruction of the method prior to modification).

According to the methodology of FIG. 5b, a bytecode
modified method can exit 510 as a consequence of various
events (e.g., the method calculates a value to be returned, the
method invokes another method, etc.). In the particular
embodiment of FIG. 5b, the block of bytecode level instruc
tions 507 that correspond to the modification that invokes the
dispatch unit is located just prior to an instruction 510 that
corresponds to an exit from the method. Alternate embodi
ments may choose (for whatever reason) to insert the block of
instructions that invoke the dispatch unit at a point deeper up
into the methods sequence of instructions that are inevitably
executed if the method is to reach the exit point 510.

In response to the invocation at the methods exit, the
dispatch unit identifies the appropriate plug-in module for the
method through recognition of the invoking method and pro
vides back to the invoking method a reference to the appro
priate plug-in module. The invoking method uses the refer
ence to call the appropriate plug-in module 508. The plug-in
modules handler(s) execute their recordation method(s) 509;
and, the process flow returns to exit the method.

3.0. Example of Modified Bytecode
FIG. 6a illustrates a “bytecode modified” version 620b of

the bytecode level “GetMax' method 120b that was origi
nally shown in FIG.1c. That is, the bytecode modified version
620b of FIG. 6a can be viewed as a result of running the
instructions for the “GetMax' method 120b through the byte
code modification process 452 of FIG. 4a. Note that a sche
matic representation of the modified “GetMax' method 650
(where blocks 643b, 644b, 645b and 646b represent the addi
tional bytecode instructions) is also shown in FIG. 6a and
may be compared with the “GetMax' structure 150 originally
shown in FIG. 1c for the purpose of illustration.

For additional information and ease of understanding, an
equivalent source code method 620a that could be compiled
to directly produce the bytecode modified 620b version is also
shown in FIG. 6a. The equivalent source code method 620a
has been provided because source code syntax is generally
considered easier to follow than bytecode syntax. It should be
realized, however, that the equivalent source code 620a need
not be generated for complying with the underlying prin
ciples of the invention (i.e., only bytecode-level methods,
such as bytecode level method 620b, may be used for modi
fication purposes).
Comparing the pre-modification bytecode method 120b of

FIG. 1c with the post modification bytecode method 620b of
FIG. 6a, note that additional blocks of instructions 643b,
644b, 645b and 646b have been introduced by the bytecode
modification process 452. Recalling that the modification
process involves adding instructions that invoke the dispatch
unit 430, and that the code observed in FIG. 1c and FIG. 6a
are written in the Java language, each of the additional blocks
of instructions 643b, 644b, 645b and 646b correspond to
blocks of bytecode-level instructions that are designed to at
least invoke the dispatch unit 430.

FIG. 6a, as an example, shows an “invokestatic instruc
tion being associated with each block of additional instruc
tions. In the Java bytecode language, the “invokestatic'
instruction is used to invoke a static method of a particular
class. A static method is a method that belongs to a particular

US 7,506,315 B1
11

class but does not require an object of the class to be called
upon in order for the method to be executed. Accordingly, use
of the invokestatic instruction suggests that the dispatch unit
430 of FIG.4 may be constructed as a class (e.g., a “dispatch'
class) having static methods that are invoked by the modified 5
methods. Note that other approaches are possible so that the
dispatch unit methods need not be static methods while still
complying with the underlying principles of the invention.
For example, the invoked methods may be associated with
called upon objects (in which case, for Java applications, 10
“invokevirtual' or “invokespecial invoking instructions may
be used).

Blocks of instructions 643b through 646b are shown in
FIG. 6a because, typically, some instruction level processing
is performed prior to a jump to an invoked method. This 15
pre-processing helps 'set up the process flow jump. For
example, methods typically require input parameters (which
may also be referred to as “arguments') that are used as a
basis for execution. At the bytecode level, the arguments for
invoking the dispatch units methods should be suitably pre- 20
pared just prior to the actual invocation instruction (e.g., an
invokestatic instruction).

This may involve, for example, the placing of these argu
ments on top of an operand Stack. In a further embodiment,
because the dispatch unit 430 may also be geared to recognize 25
the invoking method based upon (at least in part) the invoking
methods own arguments, the additional instruction-level
processing that sets up the invocation to the dispatch unit may
also create an object made to contain the invoking methods
own arguments (note that this same object may then be used 30
by a plug-in modules handler to record the invoking meth
ods arguments at the time the method starts). Regardless of
how the arguments for the dispatch units methods are pre
pared, the procedures for doing so require the execution of
instructions; and, therefore, modifying a bytecode-level 35
method with invocations to another method typically requires
additional instructions, per invocation, beyond each specific
invocation instruction (e.g., beyond each added invokestatic
instruction).

Because invocations to the dispatch unit are made from 40
modified method entry and exit points, FIG. 6a shows the
bytecode modification as the insertion of instruction blocks at
the entry and exit points of the method 620b. With respect to
the exit points, instruction block 644b is placed at the exit
caused by the value “a” being returned; and instruction block 45
645b is placed at the exit caused by the value “b' being
returned (recalling that the method is designed to return
whichever of a and b is the greater value). Because (for
purposes of illustrative convenience) the variable stack values
for the bytecode level methodology 620b of FIG. 6b have not 50
been provided, the parameters associated with the inserted
instruction blocks 643b, 644b that invoke the dispatch unit are
better understood by referring to the equivalent source code
syntax 620a.

Note that two different methods of the dispatch unit are 55
invoked: dispatchunit.entry 643a and dispatchunit.exit 644a,
644b. Here, the dispatchunit.entry method 643a is invoked
for those invocations made from a method entry point; and,
the dispatchunit.exit method 644a is invoked for those invo
cations made from a method exit point. Invoking different 60
methods depending on whether the method is at an entry point
or exit point allows for different or customized dispatch unit
responses depending on whether the method resides at an
entry or exit.

Other possible differences between the entry and exit 65
method embodiments referred to in FIG. 6a may be recog
nized by focusing on the differences in their arguments. Spe

12
cifically, note that the embodiment of the .entry method 643a
includes the following arguments:

1. classid:
2. methodid;
3. object this pointer, and,
4. object param.
By contrast, the embodiments of the exit methods 644a,

645a include the following arguments:
1. classid:
2. methodid;
3. returned value
4. thrown exception which is normally null, and becomes

non-null when the method has returned abruptly, i.e. by
throwing an exception
From the above note that both the entry and exit methods

include an identification of the class that the invoking method
620 belongs to (classid) and an identification of the invoking
method 620 itself (methodid). In an embodiment, the classid
and methodid parameters are sufficient to identify the invok
ing method. In other embodiment, however, the classid, the
methodid and a description of the invoking methods own
arguments (which are referenced through an object identified
by the “object II param” argument) are used by the dispatch
units entry method to identify the appropriate plug-in mod
ule treatment. As alluded to above with respect to FIGS. 5a
and 5b and as described in more detail below with respect to
FIG. 7, the dispatch unit 430 maintains information that cor
relates each method with the one or more plug-in modules
that are Supposed to treat it.
The .entry method and exit methods may differ, however,

in that the .entry method may also identify (e.g., via the
“object this pointer” argument) the object associated with the
invoking method (noting that if the invoking method is a class
(i.e. static) method the “object this pointer argument may be
represented as a null); yet, the exit method may make no Such
identification. As described above with respect to the embodi
ments of FIGS. 5a-b, a reference for an appropriate plug-in
module may be returned to an invoking method in response to
the invoking methods initial call of the dispatch units entry
method. In order to return the reference to the invoking
method, the identity of the object to which the invoking
method belongs should be known to the dispatch unit. Once
the identity is known by the dispatch unit, it need not be
repeated. Better said, the identity of the object to which the
calling method belongs can be grasped by way of the entry
method; and, therefore, can be thereafter used by the dispatch
unit for the subsequent exit method.
The “object this pointerparameter therefore does not need

to be provided for exit methods. The entry method and exit
methods may also differ in that the entry method may
describe the invoking methods own arguments as part of its
invocation to the dispatch unit (i.e., in the case of the “Get
Max' method, a and b as found in “objectparam'), whereas
the exit methods may only describe the returned output value
as part of the invocation. This allows for different plug-in
module treatment as between entry points and exit points of
the same method. In one embodiment of the invention, if a
method throws an exception, an exit method event may be
processed.

Referring back to the bytecode instruction level coding
620b, note that a third exit point and associated instruction
level coding is also depicted 646b. According to the approach
alluded to in FIG. 6a, the third exit point and associated
instruction level coding 646b corresponds to an additional
exit point that is added by the modification process 452 so as
to effectively installa "catchblock’ around the entire method.
A “catch block” is coding that automatically causes the soft

US 7,506,315 B1
13

ware process flow to jump to a section of the coding designed
to deal with errors (e.g., a location in the bytecode of a
method) if an error occurs in the execution of the coding
surrounded by the “try-catch' block (which, in the embodi
ment of FIG. 6a, corresponds to the entire GetMax method).

In Summary, the modification process 452 implemented by
bytecode modifier 352, besides installing blocks of instruc
tions 643b, 644b, 645b for dispatching unit invocations at
naturally existing method entry and exit points, may also be
configured to install an artificial exit (i.e., one that would not
exist were it not for the modification process) and associated
instructions that are tailored to respond to an error condition,
should one arise, during execution of the method. In Such a
case, the “i cmp” instruction (which is the instruction that
signifies whether 'a' is greater than “b’ or if “b' is greater
than “a”) triggers an error condition; which, in turn, would
cause instructions 646b to be executed.

Referring to both the bytecode level 620b and source code
level 620a codings of the GetMax method, note that the error
handling instructions 646b correspond to an invocation to the
dispatch unit 430. Here, an exit method is used to invoke the
dispatch unit. Note that a “thrown' value (i.e., an error indi
cation) is provided as part of the invocation. This allows a
unique plug-in module to be utilized to in the case of an error
condition. The error handling instructions 646b also include a
generic thrown command that, when executed, raises an error
state in the current thread, which can either be caught or
propagated up the execution stack.

FIG. 6b provides an overview of other bytecode-level
modifications that may be made by the modification process
452 of FIG. 4a. FIG. 6b shows a depiction of an unmodified
classfile (e.g., a classfile produced by the compilation process
451 of FIG. 4a). Here, it may be worthwhile to recall the
discussion of the classfile 103b provided in the Background
with respect to FIG. 1b. From this discussion, it should be
apparent that the raw classfile 650a may be made to include
other features that have been obviated from FIG. 6b for illus
trative convenience (e.g., field information structures, data
information structures, other method information
structures, ... etc).
The unmodified classfile 650a in FIG. 6b shows both an

unmodified constructor method information structure 651a
and a depiction of the unmodified information structure for
the “GetMax' method 652a. A constructor method is a
method which is always executed with the creation of an
object. In a typical application, a constructor method is
executed in order to initialize the other method (such as
setting variables to specific values). The constructor method
651a associated with unmodified classfile may be viewed as
being necessary to execute before the execution of the Get
Max method or another method found within classfile 650a.
The exemplary bytecode modified classfiile 650b includes

the following elements: (1) a “classid' field information
structure 657; (2) a method information structure 656 for a
method that registers with the dispatch unit when the modi
fied classfile 650b is loaded during runtime execution; (3) a
method information structure 651b for a modified version
653 of the constructor method; and (4) a method information
structure 652b for the modified version of the GetMax
method 620b that was discussed above with respect to FIG.
6a. A discussion of each follows immediately below.
The additional classid field information structure 657 and

the additional method information structure 656 (for the dis
patch unit registration method) will be discussed together.
Specifically, in an embodiment, when the modified classfile
650b is loaded it automatically registers with the dispatch
unit. In a further embodiment, the registration process entails

10

15

25

30

35

40

45

50

55

60

65

14
providing the dispatch unit with the name of the class that the
classfile 650b represents, the name of its methods and the
number and type of each methods arguments. In return, the
dispatch unit provides the classfile with a numeric “classid'
value that is to be used for invocations made to the dispatch
unit during a runtime invocation. The classid value then
becomes part of the classfile’s constant pool. Accordingly, the
additional method information structure 656 may include
instructions for the registration method described just above:
and, the classid information structure is used for the returned
numeric “classid' parameter provided by the dispatch unit.
Viewing the constructor method prior to modification as a

simple 'straight through' method having a single entry point
and a single exit point, FIG. 6b indicates that the instructions
653 for the method may be modified so as to include a block
of instructions 654 at its entry to invoke the dispatch unit; and,
a block of instructions 655 at its exit to invoke the dispatch
unit. Here, the handler(s) of the appropriate plug-in
module(s) (that are called upon as a consequence of invoca
tions made to the dispatch unit from additional instruction
blocks 654, 655) may be tailored to report the initialized
values for a method as determined by the constructor method.
The exit block of instructions 655 may also be followed by
another block of instructions that correspond to the placement
of a try-catch block around the constructor method. The
modified version of the GetMax method 620b has already
been discussed with respect to FIG. 6a.

4.0. Dispatch Unit, Plug-In Modules and Handlers
Recall from the background that, in general, the runtime

execution of any computer program can be viewed as the
execution of a sequence of methods; and that, with respect to
an object oriented approach, such a sequence of methods can
be implemented by calling upon a sequence of objects and
invoking one or more methods at each object. Referring back
to FIGS. 3 and 4b, implementing the bytecode modification
approach in an object-oriented environment may take on
many forms.

In one embodiment, the dispatch unit 330, 430 is imple
mented as a class whose entry and exit methods are static
methods of the dispatch unit class. In this same embodiment,
each of the plug-in modules 331 through 331, 431 through
431 are instantiated as separate objects from a “plug-in
class; and, the individual handlers of each plug-in module
object correspond to its operable methods.

4.1. Dispatch Unit Implementation
The dispatch unit 430 may be implemented to refer to, as

illustrated in FIG. 7, a dictionary, table or similar data struc
ture 701 (hereinafter "dictionary') to support the dispatch
unit in its central role of dispatching invocations made by
each of the modified bytecode methods to its appropriate one
or more plug-in modules. The dictionary 701 of FIG. 7
includes a listing of information Sufficient to uniquely iden
tity any potential invoking or calling method (methodid and
classid); and, an entry for each listing that includes a refer
ence to the appropriate plug-in module(s). Different dictio
nary's may be maintained for entry and exit methods. In
further embodiments (e.g., as Suggested by the Source code
representations of FIG. 6a), the information that is sufficient
to identify an invoking method may be made to further
include arguments of the invoking method (e.g., via the
“objectparam” for the entry method).

In response to the reception of the information, a method
responsible for accessing the dictionary (e.g., a entry or a exit
method) identifies the reference(s) that is listed for the invok
ing method; and, returns the reference(s) to the invoking
method. Thus, from the perspective of an invoking method, an
invocation is made to the dispatch unit 330, 430; which, in

US 7,506,315 B1
15

response, returns to the invoking method the reference to the
appropriate plug-in module 331-331, 431-431. The pro
cess flow then jumps to the plug-in module(s), causing the
corresponding handler instructions to be executed.

FIG. 7 shows an embodiment of a dictionary 701 that can
be viewed as being applicable at least to the four bytecode
modified methods 405, 406, 407, 408 of FIG. 4b; where,
methods 405, 406 belong to the same class (class “1”),
method 407 belong to a second class (class “2) and method
408 belongs to a third class (class “3’). The dictionary lists the
appropriate plug-in module for each bytecode modified
method. According to the depiction of FIG. 7, PIM A and
PIM B represent the references to plug-in modules A 460 and
B470. Note that, in the embodiment of FIG.7, each bytecode
modified method is identified by its classid and methodid
parameter set (c.m.). Again, in further embodiments, argu
ments of the invoking method could be included.

It is also worthwhile to point out that more than one plug-in
module may be used for any single invocation from a modi
fied method. For example, referring briefly back to FIG. 4b,
consider a situation where the same treatment is desired for
each of methods 405 through 408 as originally discussed (i.e.,
methods 405 and 408 are to receive only tracing treatment and
method 407 is to receive both tracing treatment and coverage
treatment), however, plug-in module 470 is configured so as
to only include the coverage handler 463 (i.e., tracing handler
462 simply does not exist in plug-in module 470).

In this case, method 407 could still receive both tracing and
coverage treatment by configuring the dictionary entry for
method 407 to list both plug-in module A 460 (PIM A) and
plug-in module B 470 (PIM B). By so doing, the process flow
of FIG. 4b would change so as to touch upon both of plug-in
modules A and B 460, 470 for each of the invocations stem
ming from bytecode modifications 411 and 420. Here, if the
approach of FIGS. 5a and 5b were being implemented, the
dispatch unit 430 would return references to both of the
plug-in modules 460, 470 to method 407 for each invocation
to the dispatch unit.

4.2. Extensions of Plugins and GUI Viewers
As mentioned above with respect to FIG. 4a, unique plu

gins may be developed based on the specific needs of each
user. By way of example, FIG. 8 illustrates an embodiment in
which three different plugins are used: an application trace
plugin 810; a user-configurable plugin 820; and a distributed
statistical records (“DSR) plugin.
The application trace plugin 810 of this embodiment iden

tifies a particular application to the bytecode modifier 452
(e.g., in response to user input). In response, the bytecode
modifier 452 modifies the entire application, by inserting
function calls at entry points and exit points of each of the
application’s methods (e.g., using the bytecode modification
techniques described herein).

Following modification, the application is executed, and
the application trace handler 811 collects the timing data and,
potentially, other method-related information, which it pro
vides to a graphical user interface (“GUI) 453. In one
embodiment, tree generation logic 840 within the GUI 453
generates a method invocation tree 900 such as that illustrated
in FIG. 9a, (which shows a method invocation tree 900 for a
simple calculator application.
The invocation tree 900 graphically displays information

related to each invoked method, such as the time that it takes
each method to complete and/or parameters used for each
method, in a structured hierarchy. For the calculator applica
tion, three separate headings 901, 910, and 920 are generated,
each of which identify a different thread of the calculator
application (e.g., “SAPEngine Application Thread 5').

10

15

25

30

35

40

45

50

55

60

65

16
Entries for methods associated with each application thread
are arranged beneath each respective thread heading. For
example, method entry902 is arranged directly beneath head
ing 901; method entries 911 are arranged directly beneath
heading 910; and method entry 921 is arranged beneath head
ing 920.
Method entries 902,911 and 921 represent “independent”

methods in that they are not tied to the execution of another
method (i.e., they are not invoked within the context of
another method). By contrast, several “dependent’ method
entries 903-905, i.e., representing methods that are dependent
on the method represented by entry 902, are graphically
arranged under entry 902 within the invocation tree 900. For
example, method entry 903 is dependent on method entry
902; method entry 904 is dependent on method entry903; and
method entries 905 are each dependent on method entry 904.
As is known in the art, a first method is “dependent’ on a
second method if the first method is executed within the
context of the second method. For example, the method rep
resented by entry 903 is only executed within the method
represented by entry 902. Thus, as indicated by dependency
arrow 931, the dependency of methods increases as one
moves towards the right within the invocation tree (i.e., meth
ods towards the right are dependent on entries which are
relatively further to the left).

In addition, as indicated by the time arrow 930 in FIG. 9a,
in one embodiment, the tree generation logic 840 generates
the invocation tree 900 so that entries towards the bottom of
the invocation tree occur relatively later in time in relation to
entries towards the top of the invocation tree. This graphical
representation of method invocations based on time and
dependency is a logical and useful way to display information
related to method invocations.
As mentioned above, various different types of information

may be displayed for each entry within the invocation tree
900. In the example shown in FIG. 9a, each entry includes an
indication of how long the method took to complete (i.e.,
based on the measured start/stop times). For example, an
indication that method “CalcProxy...GetResults() took
44,651 us to complete is provided in method entry 903. In
addition, an indication of certain input/output parameters
used in the method may also be provided (e.g., “3.”“423.” “1”
for method entry903). Various other types of method-related
information may be included within the invocation tree 900
while still complying with the underlying principles of the
invention (e.g., the counter value for the method).

In one embodiment, a filtering module 841 is employed to
filter timing data and other method-related information,
based on the needs of the end user. For example, a user may
choose to filterall method invocations from the method invo
cation tree 900 except for those methods associated with a
particular application component, package or class. Simi
larly, in one embodiment, the filtering parameters may be
applied so that only specific types of method-related infor
mation are displayed within the invocation tree 900. For
example, the filtering parameters may specify that only each
methods timing information is to be displayed whereas other
information (e.g., the methods input/output variables, the
counter value, ... etc), is to be filtered out. Thus, the filtering
module 841 provides a more precise level of control over the
types of methods and the types of method-related informa
tion to be displayed within the graphical user interface 453.
An exemplary graphical user interface (“GUI) for view

ing information related to modified bytecode is illustrated in
FIG.9b-e. For the purpose of explanation, the GUI displays
different aspects of the modified calculator application
described above with respect to FIG. 9a. The exemplary GUI

US 7,506,315 B1
17

includes a first window 941 comprised of a list of services
which may be selected by the end user. As indicated, the
application tracing service 942 has been selected, thereby
generating information related to application tracing in a
second window 946.

Different information related to the bytecode modification
may be displayed in the second window via a set of tabs 944.
In FIG. 9b, for example, an “Applications” tab is selected,
thereby displaying a list of applications. For each application,
an indication is provided identifying whether the application
is started or stopped and, if started, whether the application is
running in bytecode modified mode. The highlighted entry
943 indicates that the calculator application is currently run
ning in bytecode modified mode. In addition, an action menu
945 is illustrated which includes entries for stopping the
highlighted application 943 or restarting the application nor
mally (i.e., in a non-modified mode). In one embodiment, the
action menu 945 includes an option for restarting the appli
cation in bytecode modified mode (not shown) if the high
lighted application is currently running in a non-modified
mode.

FIG.9c illustrates the invocation tree 900 (initially illus
trated in FIG. 9a) within the context of the exemplary GUI.
The invocation tree is shown within the second window 946 in
response to user selection of an “Invocations” tab from the set
of tabs 944. FIG. 9d illustrates information related to the
different classes affected by the bytecode modification of the
calculator application, arranged in a logical hierarchy 947 in
response to user selection of the “Classes” tab from the set of
tabs 94. Finally, FIG.9e provides an object view 948 of the
modified calculator application in response to user selection
of an "Objects” tab from the set of tabs 944.

It should be noted that the specific GUI-based features
described above are for the purpose of illustration only. Infor
mation related to bytecode modification may be displayed in
a variety of additional and/or different ways while still com
plying with the underlying principles of the invention.
As described above, the application tracing plugin 810

instructs the bytecode modifier to modify all of an applica
tions methods. While this may be sufficient for tracing/de
bugging a relatively small application, a higher level of pre
cision may be desirable, particularly when working with large
enterprise applications.

Thus, in contrast to the application tracing plugin 810
which causes the bytecode modifier 452 to modify all of the
methods within a particular application, the user-config
urable plugin 820 illustrated in FIG. 8 provides a finer level of
granularity for tracing program flow. An “application' may
be built from a plurality of packages (typically *-jar files in a
Java environment); each package may be built from a plural
ity of classes (i.e., class files); and each class include a plu
rality of methods. As indicated in FIG. 8, the user-config
urable plugin 810 allows the end-user to identify specific
packages, classes and/or individual methods to be modified
by the bytecode modifier 452, thereby providing significantly
greater precision for tracing and debugging operations. By
way of example, if a coding problem is isolated to within a
specific package, then only that package need be modified.
Similarly, if the problem can be isolated to within a particular
class or method, then only that class/method need be modi
fied. In one embodiment, the different packages, classes and/
or methods are selected and modified via one of the interfaces
described below with respect to FIGS. 19a-e.
The method timing data and/or other method-related infor

mation may then be displayed within a method invocation
tree 900 similar to that illustrated in FIG. 9a. For example, an
output handler 821 associated with the user-configurable plu

10

15

25

30

35

40

45

50

55

60

65

18
gin 820 may be designed to provide the method-related infor
mation to the invocation tree generation logic 840. Thus,
when the user-configurable plugin 820 is employed (as
opposed to the application tracing plugin 810), the method
invocation tree does not include entries for all of the methods
of an application. Rather, it only includes entries for methods
within the particular package or class, or the individual meth
ods selected by the end-user.

In addition, in one embodiment of the invention, a distrib
uted statistical records (“DSR) plugin 830 is employed to
collect statistical data related to program execution across
application servers, databases and/or external systems. Sev
eral specific examples of DSR tracing will now be described
with respect to FIGS. 10a-12, which shows how certain criti
cal entry/exit methods may be tracked to collect statistical
data.

FIG. 10a shows an exemplary system comprised of an
application server 1010 and a database server 1020. Applica
tion components 1011 executed on the application server
1010 may include, by way of example, presentation logic and
business logic components. Within a J2EE environment, the
presentation logic may contain servlets and JavaServer Pages
(“JSP) interpretable by browsers on clients 1000 (JSPs/
Servlets generate HTML which is interpreted by browsers),
and the business logic may include Enterprise Java Bean
(“EJB) components which are supported by EJB containers.
However, as previously mentioned, the underlying principles
of the invention are not limited to a Java implementation.

In the specific example shown in FIG.10a, certain specific
method invocations, identified graphically as blocks 1001
1006, within the application components 1011 are modified
to facilitate tracking of client requests and responses through
the system. The timing for each of the relevant method invo
cations is identified in the timing diagram illustrated in FIG.
10b.

The client's 1000's initial request triggers a first method
invocation 1001 within the application components 1011.
The request may be, for example, a request for a particular
record within the database. After additional application-layer
processing, the application components 1011 generate a data
base request via method invocation 1003 which is received
and processed by the database components 1021. A single
request/response transaction with a client may involve mul
tiple method-based interactions between the application
server 1010 and the database server 1020. Thus, another
method 1004 is invoked in response to a communication from
the database server 1020; a response to the database server is
generated as method invocation 1005 and a final response
from the database server 1020 is received as method invoca
tion 1006. Finally, the application responds to the client via
method invocation 1002 (e.g., which may provide a Web page
containing the requested data to the client).
As indicated in FIG.10a, throughout the request/response

transaction, each of the bytecode modified methods 1001
1006 reports statistical timing data and other method-related
information back to the dispatch unit 430, which forwards the
information to the DSR plugin 830. One or more DSR han
dlers 831 associated with the DSR plugin 830 formats the
information for the DSR system 1055 and/or provides the
information to the DSR system 1055 via a DSR interface
1040. In one embodiment, the DSR interface 1040 translates
the method-related information into a format usable by the
DSR system. The information may be stored within a set of
DSR files 1050 and/or viewed and analyzed via a DSR viewer
1060 (e.g., to determine whether the system is operating
correctly).

US 7,506,315 B1
19

The method-related information may also be provided to
the GUI 453 which then generates an appropriate method
invocation tree, and/or displays the method-related informa
tion in one or more additional ways (as described above).
Although not illustrated in FIG. 8, a different DSR handler
may be employed to format and forward the DSR-based
information to the GUI 453.

FIG.11a-b illustrate another embodiment of the invention
in which distributed statistical information is collected using
the bytecode modification techniques described herein. In
FIGS. 11a-b, the application components 1111 within the
application server 1110 communicate with and/or exchange
data with an external system 1120 (e.g., Such as an R3 system
designed by SAP AG) as opposed to a database server as in
FIGS. 10a-b. However, similar principles apply. In this
embodiment, For example, the client's 1100s initial request
triggers a first method invocation 1101 within the application
components 1111. The request may be, for example, a request
for a particular record within the database. After additional
application-layer processing, the application components
1111 generate an external request via method invocation
1103 which is received and processed by the external system
1130. The specific format used for the external request may be
based on the type of communication protocol Supported by
the external system 1130. Possible communication formats
include (but are not limited to) remote method invocations
(“RMI) or remote function calls (“RFC). RMI is a type of
remote procedure call which allows distributed objects writ
ten in Java (e.g., Java services/components) to be run
remotely. RFC is a communications interface which allows
external applications to communicate with R/3 systems. It
should be noted, however, that the underlying principles of
the invention are not limited to any particular communica
tions protocol for communicating with an external system
1130.
The external system 1130 then processes the request and

provides the results back to the application components via
method invocation 1104. Finally, the application components
respond to the client 1100 via method invocation 1002.
As in the examples shown in FIGS. 10a-b, each time a

bytecode-modified method is invoked, timing data and other
method-related information is provided to the dispatch unit
430, which forwards the method-related information to the
DSR plugin 830. The appropriate handlers (e.g., handler 831)
then format and/or forward the method-related information to
the DSR system 1055 via the DSR interface 1040. The DSR
interface 1040 may translate the information into a format
interpretable by the DSR system, if necessary. The informa
tion may then be stored within a set of DSR files 1050 and/or
viewed and analyzed via a DSR viewer 1060. In addition, as
in the embodiment shown in FIG. 10a, the method related
information may also be sent to the GUI 453 for viewing
within an invocation tree and/or may be displayed in any other
convenient manner.

FIG. 12 illustrates one embodiment of the invention in
which the bytecode modifier 452 modifies a particular set of
methods 1211-1232 to trace program flow within a J2EE
engine 1250. For example, HTTP requests transmitted by a
Web-based client 1200 (e.g., a client with a Web browser) are
processed by input/output method invocations 1227-1228 of
HTTP logic 1201. Communication between HTTP logic
1201 and servlet/JSP components 1202 is accomplished via
method invocations 1229, 1230 and 1231, 1232, respectively.
Other method invocations illustrated in FIG. 12 which repre
sent entry/exit points between different J2EE services include
method invocations 1213, 1214, 1216 and 1215 between
enterprise Java bean (“EJB) components 1203 and servlet/

10

15

25

30

35

40

45

50

55

60

65

20
JSP components 1202; method invocations 1233, 1234 and
1219, 1220 between servlet/JSP components 1202 and Java
connector (“JCo') components 1204; method invocations
1221 and 1222 between JCo components 1204 and an exter
nal system 1207; method invocations 1211, 1212 and 1223,
1224 between servlet/JSP components 1202 and Java data
base connectivity (JDBC) components 1205; and method
invocations 1225, and 1226 between the JDBC components
and a database 1206; and method invocations 1217 and 1218
between EJB components and a non-web client (e.g., via RMI
or RFC transactions).
The specific functions performed by each of the modules/

components illustrated in FIG. 12 are well defined and are not
necessary for an understanding of the underlying principles
of the present invention. For example, the JDBC component
1205 is a well known interface that allows Java applications to
access a database via the structured query language (SQL).
The JCo component 1204 is an interface that allows a Java
application to communicate with systems designed by SAP
AG (e.g., an R/3 system). As described above, HTTP logic
1201 and servlet/JSP components 1202 perform various well
defined presentation-layer functions and the EJB components
1203 perform various well define business layer functions.
Further details related to each of these modules/components
can be found from various sources including the Java website
(see, e.g. http://java. Sun.com/).

For the purpose of the present application, FIG. 12 is sig
nificant because it shows how specific entry/exit points
between the various services/components 1201-1205 may be
tracked using the bytecode modification techniques described
herein. For example, the individual methods highlighted in
FIG. 12 may be selected for modification via a plugin such as
the user-configurable plugin 820 illustrated in FIG.8. As the
methods are executed, timing data and other information
related to each of the methods (e.g., method parameters) are
collected by the dispatch unit 430 and forwarded to the appro
priate plugin handlers (e.g., handler 821). The handler(s) then
forward the information to a GUI 453 or other output desti
nations for analysis. If a DSR plugin 830 is used, the dispatch
unit 430 may forward the method information to an appro
priate the DSR handler 831 which, in turn, may format and/or
transmit the information to a specified DSRsystem via a DSR
interface (e.g., such as DSR system 1055, and DSR interface
1040, respectively).
Some end users may want to export the results of the

bytecode modification techniques described herein to a stan
dardized format, so that the results may be viewed and/or
analyzed on other systems. To this end, as illustrated in FIG.
13, one embodiment of the invention includes a markup lan
guage conversion module 1300 for converting the method
invocation tree generated by the tree generation logic 840 into
a markup language format 1301. For example, in one embodi
ment, the markup language conversion module 1300 converts
the method timing data and other method-related information
from the invocation tree into an extensible markup language
(XML) format. XML provides a similar tag structure as the
hypertext markup language (“HTML') used for standard
Web pages; however, while HTML defines how elements are
displayed, XML defines what those elements contain. In
addition, while HTML uses predefined tags, XML allows tags
to be defined by the developer of the page. Thus, all method
related data from the invocation tree (e.g., method execution
times, method parameters, counter values. . . . etc) may be
easily represented within an XML file using a set of hierar
chical data tags. The markup-formatted invocation data may
then be viewed, edited and/or analyzed via a GUI which

US 7,506,315 B1
21

Supports the specified markup language (e.g., current brows
ers, if the markup language used is XML).

Instead of converting the invocation tree generated by the
tree generation logic 840 into a markup language format, one
embodiment of the markup language conversion module
1300 receives the method-related data directly from the a
handler 811, 821, 831. This embodiment may be more effi
cient in that it circumvents the intermediate tree generation by
the invocation tree generation logic 840.

5.0. Implementing Bytecode Modification
The discussions presented above focus upon characteris

tics of modified bytecode and the runtime execution flow of
modified bytecode. The present section, by contrast, focuses
on techniques for actually modifying the bytecode. Better
said, referring back to FIG. 4a, whereas prior sections
focused upon what the “output of the bytecode modification
process 452 might look like and how modified bytecode
might execute 453 during runtime, the present section focuses
on methodologies that may be used to implement the actual
bytecode modification process 452. Specifically, Section 5.1
discusses techniques for modifying classfiles; Section 5.2
discusses dispatch unit configuration; and, Section 5.3 dis
cusses interfaces for specifying customized plug-in modules.

5.1 Processes For Modifying Classfiles
FIG. 14 presents a methodology that may be used to imple

ment the bytecode modification process 452 originally pre
sented in FIG. 4a. Recalling the notion of classfiles originally
presented in reference to the exemplary “sales' classfile 103b
of FIG. 1b, the methodology presented in FIG. 14 illustrates
that each classfile having at least one method to be modified
is converted 1401 into a collection of objects that are orga
nized to reflect the structure of the classfile. FIG. 15a, as an
example, illustrates how the “sales’ classfile embodiment
103b of FIG. 1b might be converted into such a collection of
objects.

Referring to the exemplary classfile 103b of FIG. 1b and
the corresponding collection of objects of FIG. 15a, note that
the “hierarchy of objects observed in FIG. 15a attempts to
mirror the hierarchy of the bytecode level classfile 103b illus
trated in FIG.1b. Objectoriented programming has an “inher
itance' property by which objects of a class inherit the prop
erties defined for a class (e.g., the types of variables that the
object can entertain specific values for). Given the existence
of the inheritance property, FIG. 15a attempts to demonstrate
an example of how the various features of the “sales' classfile
101b of FIG. 1b may be organized into specific classes of
objects were principles of inheritance are observed.

Specifically, FIG. 15a suggests the creation of a separate
class for each of the major features of the “sales' classfile
103b; and, the creation of specific instances (i.e., objects) of
these classes so as to create an object oriented representation
of the classfile. For example, a specific class 1501 may be
created for field information structures and a specific class
1502 may be created for method information structures. The
field information structure class 1501 can then be used as a
template to form separate “PN”, “QTY”, “S” and “CUS
TOMER'' objects 1501, 1501, 1501, 1501 that respec
tively represent the “PN”, “QTY”, “S” and “CUSTOMER”
field information structures 110 found in the "sales' classfile
103b.

Likewise, the method information structure class 1502 can
be used as a template to form separate “UPDATE
ACCOUNTING”, “UPDATE BILLING” and “GetMax”
objects 1502, 1502, 1502, that respectively represent the
“UPDATE ACCOUNTING”, “UPDATE BILLING” and
"GetMax' method information structures 111, 112, 131
found in the “sales’ classfile 103b. FIG. 15a also elaborates

10

15

25

30

35

40

45

50

55

60

65

22
on the content of the GetMax object 1502. Here, the method
information structure class 1502 is assumed to specify that
each of its object offspring (e.g., objects 1502,1502,1502)
are to be associated with objects that correspond to bytecode
level instructions for the method that it represents. Each of the
objects 1503 observed in FIG. 15a correspond to the listed
matter maintained by the GetMax object 1502. Note that the
listed matter observed in FIG. 15a corresponds precisely to
the bytecode level instructions for the GetMax method 120b
first depicted in FIG. 1c.

Referring back to FIG. 14, the collection of objects is then
modified 1403 to reflect the bytecode modifications. FIG. 15b
provides a corresponding example showing how the objects
associated with the GetMax object 1502, of FIG. 15a can be
modified 1403 to represent the modified GetMax bytecode
620b that has been provided in FIG. 6a. Specifically, note that
the listed objects has been expanded so as to include in their
proper locations—representations of the additional bytecode
instructions 1504, 1505, 1506, 1507 that invoke the dispatch
unit. For illustrative simplicity, FIG. 15b only shows the
insertion of a single invocation instruction (“invokestatic')
1504, 1505, 1506, 1507 for each of instruction blocks 643b,
6444b, 645b and 646b of FIG. 6a.

It should be recognized however that if blocks of multiple
instructions are to be inserted for each dispatch unit invoca
tion (e.g., as Suggested by instruction blocks 643b, 6444b,
645b and 646b of FIG. 6a); then, likewise, a corresponding
list of instructions would be inserted at each of locations
1504,1505, 1506, 1507. FIG.16 shows a method that can be
executed to make modifications to a collection of objects that
are representative of a classfile (such as the modifications
observed in FIG. 15b) so as to reflect the appropriate modi
fications to be made to a methods bytecode instructions.

According to the methodology of FIG. 16, modifications
are inserted that are representative of additional instructions
(e.g., a block of instructions) that invoke the dispatch unit at
positions in the collection of objects that represent the fol
lowing method locations: 1) a method entry point 1601 (e.g.,
as represented by modification 1504 of FIG. 15b); 2) a
method exit point 1602 (e.g., as represented by modifications
1505, 1506 of FIG. 15b); and, 3) the end of a methods
instructions for purposes of introducing try-catch block
instructions (e.g., as represented by modification 1507 of
FIG. 15c).
The example referred to in FIGS. 15a and 15b and the

methodology of FIG. 16 indicate that specific methods may
be represented by specific objects and their corresponding
bytecode instructions may be represented by other objects
that they are associated with. It is important to recognize that
a collection of objects configured to represent a classfile may
be modified in other aspects so as to fully represent a com
pletely modified classfile. For example, referring back to FIG.
6b, recall that other bytecode level modifications may be
made besides installing dispatch unit invocations at method
entry and exit points and besides installing try-catch blocks
around methods themselves.

Specifically, an entire method information structure may
be inserted into the classfile (such as a method information
structure 656 for a dispatch unit registration method); and, a
new field information structure may be inserted into the class
file (such as a field information structure 657 for a classid
value). In keeping with the approach outlined above with
respect to FIGS. 15a and 15b, where a separate object is
created for each method information structure and for each
field information structure, note that the insertion of an addi
tional method information structure would correspond to the
creation of a first object in the collection of objects (e.g., a

US 7,506,315 B1
23

“dispatch unit registration” object); and, the insertion of an
additional field information structure would correspond to the
creation of a second object in the collection of objects (e.g., a
“classid' object).

Thus, whereas the modifications to the class methods
themselves might involve modifying the collection of objects
associated with each object made to represent a method,
constructing a complete collection of objects that are repre
sentative of a completely modified classfile might involve the
creation of objects having no counterpart to the pre-modified
bytecode (e.g., the pre-modified bytecode has no “dispatch
unit registration' method information structure nor “classid
field information structure).

Referring back to FIG. 14, irrespective of how a collection
of objects are made to represent a modified classfile, the
collection of objects is converted into a bytecode level class
file 1403. As a consequence, a fully modified classfile is
created. The conversion of a classfile into a collection of
objects and the reconversion of a collection of objects into an
actual classfile is a well known process, also referred to as
parsing/serialization of a classfile.

5.2. Dispatch Unit Configuration
In one embodiment of the invention, in order for the dis

patch unit 330, 430 to properly dispatch an invocation from a
specific method to its appropriate plug-in during runtime, the
dispatch unit is configured beforehand with the appropriate
information. For example, before Supporting an actual runt
ime flow of modified bytecode, the dispatch unit 430 may run
through internal processes that "set up' information (e.g., a
dictionary) that correlates each bytecode modified method
with one or more appropriate plug-in modules. Recall that an
embodiment of such a dictionary that correlated each modi
fied bytecode method with an appropriate plug-in module has
already been discussed with respect to FIG. 7. FIGS. 17 and
18 describe some possible approaches that enable the dis
patch unit 430 to configure itself to support a runtime flow
invocation from a bytecode modified method.

FIG. 17 shows a plurality of modified classfiles 1701
through 1701 that each include, respectively, a “dispatch
unit registration” method information structure 1703
through 1703 and a classidfield information structure 1704
through 1704. Note again that a modified classfile format
having Such information structures has already been referred
to over the course of the discussion of FIG. 6b. According to
the depiction of FIG. 17, the method associated with each of
information structures 1703 through 1703 “registers' with
the dispatch unit 1702 by sending the dispatch unit 1702 its
class name, the names of each of its methods and the types of
arguments of its methods.
By way of example, as illustrated in FIG. 17, modified

classfile 1701 sends the dispatch unit 1702 its class name and
the names and argument types of each of its methods 1705
modified classfile 1701 sends the dispatch unit 1702 its class
name and the names and argument types of each of its meth
ods 1705; and modified classfile 1701 sends the dispatch
unit 1702 its class name and the names and argument types of
each of its methods 1705. Registration may invoke any
feature of the dispatch units class Such as a field, an object or
a method.

In an embodiment, registration occurs as a consequence of
a modified classfile being “loaded.” The loading of a classfile
can be viewed as the preparing of a class for Subsequent use.
In a typical case, a classfile is loaded before the classfile is
used as a template for creating an object that is a member of
the class that the classfile defines. In a further embodiment, a
registration process is executed for a classfile before any of
the classfile's modified methods are executed. So doing

10

15

25

30

35

40

45

50

55

60

65

24
causes the dispatch unit 1702 to be properly updated for any
Subsequent invocation that arises from the execution of any of
the class’s modified methods.
The dispatch unit 1702 uses the class name, method names

and method specific argument types received from any par
ticular classfile as a stimulus for updating its internal infor
mation that correlates specific methods to specific plug-in
modules (e.g., an internal dictionary). In various embodi
ments, the dispatch unit 1702 correlates class methods to their
appropriate plug-in strictly numerically (i.e., without the use
of character strings). For example, the dictionary of FIG. 7
may be configured to reference each classid (c), each meth
odid (m) as a number rather than its given character string
aC.

In order to reference classes and methods strictly numeri
cally, therefore, each character string based class name (e.g.,
“Sales') is converted into a number (e.g., integer 1); and, each
character string based method name (e.g., “GetMax'.
“UPDATEACCOUNTING”, “UPDATE BILLING”) is con
Verted into a corresponding number (e.g., integer 1, integer 2,
integer 3). FIG. 17 Suggests such an approach in that each
registering classfile 1701 through 1701 sends its class name
to the dispatch unit (e.g., in the form of its given character
string (e.g., “Sales' for classfile 1701)); and, in response, the
dispatch unit 1702 returns a numeric classid 1706 through
1706 to each of the registering classfiles, respectively.
The numeric classids are configured into the dispatch

units plug-in correlation dictionary; and, Subsequent invoca
tions made to the dispatch unit 1702 by way of a modified
method are made to use the numeric classsid value rather than
the given character string for the name. In further embodi
ments the numeric references are embodied as integers in
order to improve processing speeds. Moreover, the numeric
classid may be simply derived from the position at which a
registering classfile registers with respect to a consecutive
sequence of classfiles that register with the dispatch unit (e.g.,
the first classfile to register with the dispatch unit is given a
classid of “1”, the second classfile to register with the dis
patch unit is given a classid of '2', etc.).

With respect to the conversion of character string method
names into an appropriate number, in an embodiment, both
the registering classsfiles 1701 through 1701 and the dis
patch unit 1702 are made to understand that methods are
referred to numerically in a sequential order. For example,
according to one approach, the methods are referred to by the
order in which their corresponding information structures are
listed in the classfile. FIG. 1b helps to envision such an
approach. Referring to FIG. 1b (and assuming that the class
file of FIG.1b is modified as observed in FIG.6b) note that the
method information structures are listed in the following
order: “GetMax”, “UPDATE ACCOUNTING”, “UPDATE
BILLING”. One way to refer to the methods in the order of
their listing in the classfile is as follows: 1) “Get
Max'=integer 1: 2) “UPDATE ACCOUNTING'=integer 2:
3) “UPDATE BILLING'=integer 3. According to such an
approach, the same method names are used by different
classes (i.e., classid 1 has methods 1, 2 and 3; and, class 2 has
methods 1, 2, 3). Combining classid and methodid, however,
will still produce unique “per method’ identification.
By making the classfiles and the dispatch unit understand

the same ordered numeric naming scheme, methods can be
properly referenced between the classfiles and the dispatch
unit in a manner that is consistent with the method/plug-in
handler correlation entries that are maintained by the dispatch
unit. For example, if classfile 1701 corresponds to the
“Sales' classfile of FIG. 1b, and if the dispatch unit 1702
returns a classid value of “integer: 1 to the “Sales’ classfile

US 7,506,315 B1
25

1701, then: 1) the modified “GetMax” method will invoke
the dispatch unit 1702 with a classid.methodid set of 1,1: 2)
the modified “UPDATE ACCOUNTING.' method will
invoke the dispatch unit 1702 with a classid.methodid set of
12; and, 3) the modified “UPDATE BILLING” method will
invoke the dispatch unit 1702 with a classid.methodid set of
1.3. Likewise, the dispatch unit would correlate identical
numerical entries listed above to the proper plug-in handler
treatment for each of the three methods.

In an embodiment, during the registration process, a reg
istering classfile sends method names in character string form
to the dispatch unit 1702 in an order that allows the dispatch
unit 1702 to properly deduce the correct numeric methodid
values. For example, continuing with the above example, the
“Sales' classfile 1701 would send method character string
names in the following order: “GetMax”, “UPDATE
ACCOUNTING”, “UPDATE BILLING”. By sending the
character string names in the order listed above, both the
registering classfile and the dispatch unit could independently
recognize that the “GetMax' method is be given a methodid
value of 1; the “UPDATEACCOUNTING method is to be
given a value of 2; and, the “UPDATE BILLIG” method is to
be given a value of 3.

Even though the dispatch unit 1702 can deduce the proper
numeric naming scheme simply from knowing the order of
the methods, explicit character strings are sent to the dispatch
unit 1702 to also assist the dispatch unit in the updating of its
method/plug-in module correlation scheme. FIG. 18 helps
explore this aspect in more detail. FIG. 18 shows a registering
classfile 1801 and a dispatch unit 1802. Consistent with the
preceding discussion concerning FIG. 17, note that the reg
istering classfile can be regardred as sending 1803 the class
names and method names 1805 in character string format
(e.g., “Sales”, “GetMax”, “UPDATE ACCOUNTING",
“UPDATE BILLING”). In response, the dispatch unit’s reg
istration method 1807 refers to a plug-in pattern 1811 to
identify which plug-in modules are to be applied to which
methods 1808. The plug-in pattern, in an embodiment,
includes a list, for each plug-in module, of every method (e.g.,
by class name and method name in character string format) it
is expected to treat.

For example, referring back to FIG. 4b, recall that plug-in
module A 460 was configured to treat methods 405, 406 and
408 while plug-in module B was configured to treat only the
third method 407. In such an instance, the substantive content
of the lists maintained by the plug-in pattern 1811 would be as
follows:

1) Plug In A (460):
1.1) character string name of class for method 1 (405),

character string name of method 1 (405):
1.2) character string name of class for method 2 (406).

character String name of method 2 (406);
1.3) character string name of class for method 4 (408),

character string name of method 4 (408):
2) Plugin B (470):
2.1) character string name of class for method 3 (407),

character string name of method 3 (407):
In an embodiment, the plug-in pattern 1811 is a body of

information maintained (e.g., by way of an object) by the
same class that the dispatch unit 1802 is associated with.
Once one or more appropriate plug-in modules have been

identified by the dispatch units registration methodology
1807, the scheme used to correlate specific methods to their
appropriate plug-in module(s) during runtime (e.g., dictio
nary 1812) is updated 1809 to account for all the methods of
the registering classfile. The argument types for each method
that are provided by a registering classfile can be added to the

5

10

15

25

30

35

40

45

50

55

60

65

26
classid and methodid in each listing. If strictly numeric ref
erences are to be used for the classids and methodids, the
character string-to-numeric conversion should be performed
prior to the actual update 1809. For example, numeric meth
odids should be assigned based on the order of reception of
method names from the registering classfile 1803; and, a
suitable numeric classid should be identified. In an embodi
ment, the numeric classid is determined simply by increment
ing a counter for each new registering classfile. The numeric
classsid is then sent 1810 to the registering classfile 1801.

Given that the embodiment of the plug-in pattern described
above identifies methods through their corresponding char
acter strings, the dispatch unit's registration method 1807
would need a registering classfile 1801 to identify its methods
with these same character strings so that the correct correla
tion between a modified method and its proper plug-in treat
ment could be carried out. Here, the use of character strings is
emphasized because some form of “user 1813 (e.g., a test or
development engineer or maintenance Information Science
(IS) personal) ultimately determines which methods are to
receive which treatment from which plug-in modules.

For example, in the case of Distributed Statistical Records
(DSR), typically, only a subset of eligible methods are
selected for modification (e.g., “the important ones'). The
intelligent selection of specific methods for modification ulti
mately boils down to their being listed by the plug-in pattern
1811. Accordingly, since methods and classes are most often
dealt with by a user at a source code level or higher (e.g., GUI)
with character strings—it is natural to expect that a “list of
methods to be treated as determined by a user would be listed
in a character string format. Of course, in alternate embodi
ments, an initial list of character string names could be pre
formulated prior to registration so as to be represented purely
in numeric form. This, in turn, may obviate registering with
character strings.

5.3 Interfaces
Bytecode modification may be accomplished using a vari

ety of different techniques and interfaces. As indicated in
FIG. 19a, in one embodiment, an application programming
interface (API) of the bytecode modifier 1900 is exposed,
thereby providing direct access to end users. As indicated in
FIGS. 19a and e, the API may be published, thereby provid
ing access the various classfiles of the API via a standard Web
browser 1940. Similarly, as illustrated in FIGS. 19a andf, the
API may be accessed and bytecode may be modified via a
standard command line interface 1901. The command line
interface 1901 is particularly suitable for batch files or envi
ronments in which running a graphical user interface (e.g.,
such as that described below) would be undesirable due to
weak hardware, for example, or an operating system which is
primarily console-oriented.
As illustrated in FIGS. 19a and g, in one embodiment,

extensions 1903 are provided to the Apache Ant builder appli
cation 1902. Apache Ant is a well known open-source build
tool for compiling, packaging, copying, etc.—in one word
“building Java applications (see, e.g. http://jakarta.apa
che.org/ant). The extensions 1903 to the Ant builder applica
tion 1902 allow the end user to generate modified bytecode as
part of the build process. For example, an ant task may be
particularly suitable for automatic build scripts in which it is
used to modify one or more classes after compilation (e.g.,
within a J2EE engine).

In addition, in one embodiment, a wizard-based GUI is
provided for simplifying the bytecode modification process.
Referring to FIG. 19b, the user is initially provided with a
source data field 1910 to identify a particular directory or file
containing packages, classes or methods to be modified; and

US 7,506,315 B1
27

a output data field 1911, to identify a destination directory or
file for the results of the bytecode modification process. In
one embodiment, a check box 1912 is provided to allow the
user to set the output directory or file to be the same as the
source directory or file. In the particular example illustrated in
FIG. 19b, the user selects the “util” package, identified by the
*jar file “id-lib.jar.”

FIG. 19C illustrates a second window 1920 which provides
a hierarchical representation of information related to the
“util” package. The “util” package is identified as such within
data field 1921. A specific element 1923 (e.g., classfile)
within the tree 1924 is highlighted. As a result, methods
associated with the highlighted element are displayed within
a table 1922. The table includes an “identifier” column for
identifying each method, and a “properties' column, contain
ing (among other properties) an indication as to whether the
method will be modified by the bytecode modification pro
cess. For example, if the parameter “modify” is set to a binary
1, then the bytecode modifier will modify the method. By

contrast, if “modify” is set to a binary 0, then the bytecode
modifier will not modify the method. Thus, the user may
specify whether the method is to be modified by setting the
value of the “modify parameter. Following the bytecode
modification process, FIG. 19d illustrates a completion win
dow 1930 which indicates the number of classfiles and
method which were modified and the length of time con
Sumed by the modification process.

Embodiments of the invention may include various steps as
set forth above. The steps may be embodied in machine
executable instructions which cause a general-purpose or
special-purpose processor to perform certain steps. Alterna
tively, these steps may be performed by specific hardware
components that contain hardwired logic for performing the
steps, or by any combination of programmed computer com
ponents and custom hardware components.

Elements of the present invention may also be provided as
a machine-readable medium for storing the machine-execut
able instructions. The machine-readable medium may
include, but is not limited to, hard-disk drives, flash memory,
optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs,
EEPROMs, magnetic or optical cards, propagation media or
other type of machine-readable media suitable for storing
electronic instructions. For example, the present invention
may be downloaded as a computer program which may be
transferred from a remote computer (e.g., a server) to a
requesting computer (e.g., a client) by way of data signals
embodied in a carrier wave or other propagation medium via
a communication link (e.g., a modem or network connection).

Throughout the foregoing description, for the purposes of
explanation, numerous specific details were set forth in order
to provide a thorough understanding of the invention. It will
be apparent, however, to one skilled in the art that the inven
tion may be practiced without some of these specific details.
Accordingly, the scope and spirit of the invention should be
judged in terms of the claims which follow.
What is claimed is:
1. A method for tracing program flow within an application

server comprising:
performing the following before loading classfiles of appli

cation components for processing at runtime:
identifying the application components to be traced

within the application server;
modifying bytecode associated with the identified appli

cation components, the modifications associated with
a particular set of methods of the application compo
nents related to program execution across application
servers, databases and/or external systems;

10

15

25

30

35

40

45

50

55

60

65

28
performing the following at runtime:

loading the respective classfiles of the identified appli
cation components, the loading including identifying
the names and methods of the respective classfiles
with a dispatcher;

executing the identified application components, the
executing including dispatching method invocations
to respective plug-ins:

with the plug-ins, registering the method invocations
and method-related information associated with the
particular set of methods; and

translating the method-related information to a format
employed within a distributed statistical records
(“DSR) system and forwarding the translated infor
mation to the DSR system.

2. The method as in claim 1 wherein one the application
components are Java application components.

3. The method as in claim 1 wherein the application servers
are Java 2 Enterprise Edition (“J2EE) servers and the appli
cation components are J2EE services within the J2EE servers.

4. The method as in claim 1 further comprising: storing the
method-related information within a plurality of DSR files
within the DSR system.

5. The method as in claim 1 wherein modifying the byte
code comprises:

inserting a start method invocation prior to each method of
the set of methods and inserting an end method invoca
tion following each method of the set of methods.

6. The method as in claim 1 wherein the method-related
information comprises an amount of time it takes for at least
one method within the set of methods to complete.

7. The method as in claim 1 wherein the method-related
information comprises a number times that at least one
method of the set of methods is executed.

8. The method as in claim 1 wherein the method-related
information comprises input and/or output parameters asso
ciated with at least one method of the set of methods.

9. The method as in claim 1 wherein the particular set of
methods comprise entry and/or exit points.

10. The method as in claim 9 wherein the entry/exit points
are entry and exit points between an application component
and an external system.

11. The method as in claim 9 wherein the entry/exit points
are between an application component and a database con
taining data usable by the application component.

12. A system including a processor for tracing program
flow within an application server comprising:

a distributed statistical records (“DSR) module to identify
application components within the application server to
be traced;

a bytecode modification module to responsively modify
the bytecode of the application components before their
respective classfiles are loaded for processing at runt
ime, the modifications associated with a particular set of
methods of the application components related to pro
gram execution across application servers, databases
and/or external systems;

a dispatch unit to, during runtime, receive the classfile
name and method name from each classfile of the
respective classfiles as part of its classloading process,
and, dispatch to a respective plug-in modules method
invocations from objects created from the respective
classfiles, the plug-in modules to register method invo
cations and method-related information associated with
the particular set of methods and to provide the method
related information to the DSR module; and

US 7,506,315 B1
29

a DSR interface module to translate the method-related
information to a format employed within a distributed
statistical records (“DSR) system and forward the
translated information to the DSR system.

13. The system as in claim 12 wherein the application
components are Java application components.

14. The system as in claim 12 wherein the application
server is a Java 2 Enterprise Edition (“J2EE) server and the
application components are J2EE services within the J2EE
SeVe.

15. The system as in claim 12 further comprising: a DSR
storage server to store the method-related information within
a plurality of DSR files within the DSR system.

16. The system as in claim 12 wherein, to modify the
bytecode, the bytecode modification module inserts a start
method invocation proximate to a respective start of each
method of the set of methods and inserting an end method
invocation proximate to a respective end of each method of
the set of methods.

17. The system as in claim 12 wherein the method-related
information comprises an amount of time it takes for at least
one method within the set of methods to complete.

18. The system as in claim 12 wherein the method-related
information comprises a number of times that at least one
method of the set of methods is executed.

19. The system as in claim 12 wherein the method-related
information comprises input and/or output parameters asso
ciated with at least one method of the set of methods.

20. The system as in claim 12 wherein the particular set of
methods comprise entry and/or exit points for each applica
tion component.

21. The system as in claim 20 wherein the entry/exit points
are entry and exit points between an application component
and an external system.

22. The system as in claim 20 wherein the entry/exit points
are entry and exit points between an application component
and a database containing data usable by the application
component.

23. An article of manufacture including a processor and
program code which, when processed by a machine, causes
the machine to perform the operations of

performing the following before loading classfiles of appli
cation components for processing at runtime:
identifying the application components to be traced

within the application server;
modifying bytecode associated with the one or more

identified application components, the modifications
associated with a particular set of methods of the
application components related to program execution
across application servers, databases and/or external
systems;

10

15

25

30

35

40

45

50

30
performing the following at runtime:

loading the respective classfiles of the identified appli
cation components, the loading including identifying
the names and methods of the respective classfiles
with a dispatcher;

executing the identified application components, the
executing including dispatching method invocations
to a plug-in;

with the plug-in, registering the method invocations and
method-related information associated with the par
ticular set of methods; and

translating the method-related information to a format
employed within a distributed statistical records
(“DSR) system and forwarding the translated infor
mation to the DSR system.

24. The article of manufacture as in claim 23 wherein one
the application components are Java application components.

25. The article of manufacture as in claim 23 wherein the
application server is a Java 2 Enterprise Edition (“J2EE)
SeVe.

26. The article of manufacture as in claim 23 comprising
additional program code to cause the machine to perform the
operations of

storing the method-related information within a plurality
of DSR files within the DSR system.

27. The article of manufacture as in claim 23 wherein
modifying the bytecode comprises:

inserting a start method invocation proximate to a respec
tive start of each method of the set of methods and
inserting an end method invocation proximate to a
respective end of each method of the set of methods.

28. The article of manufacture as in claim 23 wherein the
method-related information comprises an amount of time it
takes for each method within the set of methods to complete.

29. The article of manufacture as in claim 23 wherein the
method-related information comprises a number of times that
each method of the set of methods is executed.

30. The article of manufacture as in claim 23 wherein the
method-related information comprises input and/or output
parameters associated with each method of the set of meth
ods.

31. The article of manufacture as in claim 23 wherein the
particular set of methods comprise entry and/or exit points for
each application component, the entry/exit methods repre
senting entry and exit points to and from each component.

32. The article of manufacture as in claim 31 wherein the
entry and exit points are between an application component
and an external system.

33. The article of manufacture as in claim 31 wherein the
entry and exit points are between an application component
and a database containing data usable by the application
component.

