US 20160117226A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0117226 A1l

Hetrick et al. 43) Pub. Date: Apr. 28, 2016
(54) DATA RECOVERY TECHNIQUE FOR (52) US.CL
RECOVERING DATA FROM AN OBJECT CPC GO6F 11/1451 (2013.01); GOGF 11/1464
STORE (2013.01); GO6F 2201/835 (2013.01)
(71) Applicant: NetApp, Inc., Sunnyvale, CA (US) 57) ABSTRACT
A system, method, and computer program product for a
(72) Inventors: William Hetrick, Eastborough, KS block-based backing up a storage device to an object storage
(US); Dennis James Hahn, Wichita, KS service is provided. This includes the generation of a data
(US); Russell Winkler, Sunnyvale, CA object that encapsulates a data of a data extent. The data
(US) extent covers a block address range of the storage device. The
data object is named with a base name that represents a logical
. block address (LBA) of the data extent. The base name is
21) Appl. No.: 14/521,053
(1) Appl. No ’ appended with an identifier that deterministically identifies a
_ recovery point that the data object is associated with. The base
(22) Filed: Oct. 22,2014 name combined with the identifier represents a data object
name for the data object. The named data object is then
Publication Classification transmitted to the object storage service for backup ofthe data
extent. At an initial backup, the full storage device is copied.
51) Int.CL In incremental backups afterwards, only those data extents
p y
GOG6F 11/14 (2006.01) that changed are backed up.
100
Storage 102
System —
Cloud 106
Processor| | Memory Storage ——
108 110
Host — —
104 Network (| Xy T
- Interf: e A N
Backup n (131 g ce
Module =
] Storage
Controller
18 114

Storage Device
116

ilil

US 2016/0117226 Al

Apr. 28,2016 Sheet1 of 7

00l

Patent Application Publication

lllll

- ~

-

— obelolg
90l pnoiD

V1'SOld

100

9Ll
a2lAa(abelioig

:

1425
Ja[|ou0D
abelolg

8Ll

./

[

Th
aoeleU|
HIOMISN

8|NpPOo
dnmyoeg

oLl 801
Aows| | [r0ss90014

volL
JSOH

—— WaIsAg
col abelolg

US 2016/0117226 Al

Apr. 28,2016 Sheet 2 of 7

Patent Application Publication

001

- -~

- -

- PR

— 9belois
0F pnopg

a1'Dld

000

9Ll
a01na(q abelolg

_

4%
J3]|04uU0)
abe.o)g

cll
aoepaU|
NICINEIN]

vor
JSOH

8Ll
SINPON
dnmyoeg

oLl 801
Kows | iosseo0.g

—— Wa)sAg
c0l abelo)g

US 2016/0117226 Al

Apr. 28,2016 Sheet 3 of 7

Patent Application Publication

—— abelolg

90!

- -~

- ~

llllll

pPnoIo

a

T
201N
abelo)s

ccl

US 2016/0117226 Al

Apr. 28,2016 Sheet4 of 7

Patent Application Publication

€ Old
80¢ 90¢ 14015
4 A A\ 4 A Y A Y

0)/008€0/V

03/00020/V

u3/00810/v

0¥/0081L0/V 0¥/008€0/V

u3/0001 0V 03/00020/V

100010/ 0¥/00810/V 03/008€0/V
0¥/0001L0/V 100010/ 03/00020/V
0¥/00800/V 0¥/00010/V 03/00810/V
u3/00000/v 03/00800/V 03/000L0/V
13/00000/VY 11/00000/VY 03/00800/V
03/00000/V 03/00000/V 03/00000/V

N dnjoeg [ejuswaloul | dnyoeg |eluswauou| | dnyoeg |eniu| oﬁm

~

c0¢

r

0}

/]

\\

S

9l viE <ZlE 0ce 8IE

Patent Application Publication Apr. 28,2016 Sheet S of 7 US 2016/0117226 A1

400

402
I

Generate configuration metadata object
describing block device being backed up

i I4O4
Divide up block device into one or more data
extents

i J—406

Package and name the one or more data extents
into corresponding one or more data objects

i J—408

Transmit the one or more data objects to cloud
storage

i J—410

Incrementally back up any one or more
extents that change with new recovery point
indentifiers

l J—412

Prune data objects in cloud storage with
recovery points that are no longer supported

FIG.4

Patent Application Publication

502
1

Take first data extent

!

504
1

Compress data extent ———————————

!

5061

Encrypt data extent

!

508
1

Generate data object
from encrypted data extent

!

5101

Add metadata to
data object

!

512
1

Name data object with
starting LBA of data extent

!

514
1

Append volume prefix

!

5161

Append recovery point
identifier to name

518

Next data

Apr. 28,2016 Sheet 6 of 7

US 2016/0117226 Al

500

520

/_J

Get next extent

A

extent?

Patent Application Publication Apr. 28,2016 Sheet 7 of 7 US 2016/0117226 A1

600

602
S

Access all recovery point
metadata objects (old & current)

¢ I604

Compare number of recovery
point metadata objects to number
of supported recovery points set for
system

* I 606

Identify recovery point metadata
objects that are older than number
of supported recovery points
for deletion

¢ I 608

Determine whether data objects

listed with identified old recovery

points are still required to support
remaining recovery points

¢

610
Delete identified data objects that I
are not still required for
remaining recovery points

FIG.6

US 2016/0117226 Al

DATA RECOVERY TECHNIQUE FOR
RECOVERING DATA FROM AN OBJECT
STORE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to U.S. application Ser.
No. , filed on even date herewith, by William Hetrick,
et al., entitled “DATA RECOVERY TECHNIQUE FOR
RECOVERING DATA FROM AN OBJECT STORE”, which
is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present description relates to data backup and,
more specifically, to systems, methods, and machine-read-
able media for a block-level backup of data to an object
storage service.

BACKGROUND

[0003] A storage device is an entity, such as a hard drive,
directly connected to a computer or a volume provisioned
from a storage system and mapped to a computer. Storage
devices may be accessed using a block storage protocol, such
as SCSI or SATA, where commands identify data using an
address representing a physical or virtual location on the
storage device. A typical block-level command includes an
operation code (e.g. READ or WRITE), an address, and a
length argument.

[0004] When storing data, one or more backup copies are
highly recommended. By keeping an independent copy of the
data stored on the storage device, in the event of device
failure, unavailability, or user error, the underlying data stored
on the device can still be retrieved. Often, the backup data is
stored in a different physical location than the block storage
device so that if the physical location of the block storage
device is compromised, the backup data can still be retrieved
and restored Maintaining a backup repository service at a
second physical site can be prohibitively expensive, however.
[0005] Cloud services have become prevalent in recent
years as a readily available and affordable data storage ser-
vice. A typical service offered by a cloud storage provider is
an object storage service. Object storage services generally
charge a small transaction fee to write and read data as well as
a fee for the amount of data stored. Object storage services
typically utilize multiple replicas to guard against data loss to
increase reliability. Object storage services are accessed
through Internet Protocol methods, such as embedding
requests in an HTTP request. The HTTP request is sent to a
host server of the object storage along with the request action
(e.g. PUT or GET) and the payload of the request. Objects are
written to the object store similar to a file system in that when
an object is written to the object storage service, the object is
an accessible entity. The whole object is written as part of a
single command, and retrieved as a single command.

[0006] Because of the differences between object-level and
block-level protocols, object storage services do not offer
block-based backup services. Accordingly, while conven-
tional data backup techniques have been generally adequate,
backup techniques that bridge the incompatibilities between
block-based devices and object storage systems may present
new possibilities. They may leverage the low-cost, large
capacities, and world-wide availability of object storage ser-
vices for data preservation and restoration. Using an object

Apr. 28,2016

storage service for a backup application would free the con-
sumer from investing in the equipment and physical location
of a remote site. Accordingly, despite the widespread use of
conventional data backup techniques, the potential remains
for further improvements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present disclosure is best understood from the
following detailed description when read with the accompa-
nying figures.

[0008] FIGS. 1A and 1B are organizational diagrams of
data storage architectures according to aspects of the present
disclosure.

[0009] FIG. 2isadiagram of arelationship between a block
storage device’s data and storage of that data in an object
storage service according to aspects of the present disclosure.
[0010] FIG. 3 is a diagram illustrating a relationship over
time of data objects stored at different times with an object
storage service according to aspects of the present disclosure.
[0011] FIG. 4 is a flow diagram of a method of backing up
a block storage device to an object storage service according
to aspects of the present disclosure.

[0012] FIG. 5 is a flow diagram of a method of backing up
a block storage device to an object storage service according
to aspects of the present disclosure.

[0013] FIG. 6 is a flow diagram of a method of pruning
objects stored with an object storage service according to
aspects of the present disclosure.

DETAILED DESCRIPTION

[0014] All examples and illustrative references are non-
limiting and should not be used to limit the claims to specific
implementations and embodiments described herein and
their equivalents. For simplicity, reference numbers may be
repeated between various examples. This repetition is for
clarity only and does not dictate a relationship between the
respective embodiments Finally, in view of this disclosure,
particular features described in relation to one aspect or
embodiment may be applied to other disclosed aspects or
embodiments of the disclosure, even though not specifically
shown in the drawings or described in the text.

[0015] Various embodiments include systems, methods,
and machine-readable media for block-based backing up of a
storage device and for storing the data in an object storage
service. The techniques herein bridge the otherwise incom-
patible protocols used in block storage devices and object
storage devices to encapsulate data blocks in data objects in a
manner that allows for fast and efficient data recovery. In an
example, a backup service converts data on a device to be
backed up into a set of data objects and transmits the data
object block to an object storage service over a network such
as the Internet.

[0016] Intheexample, the backup service divides the block
storage device into multiple data extents (address ranges) that
are sized to facilitate efficient and cost-effective transmission
over a network of the data to the object storage service. The
backup service then may compress and encrypt the data
stored within each data extent to increase transmissibility and
security of the data. The backup service converts each data
extent to a corresponding data object. Each data object is
assigned a name that includes a starting logical base address
of'its corresponding data extent. Appended to this name may
be a prefix that uniquely identifies the volume where the

US 2016/0117226 Al

corresponding data extent is located (where there are multiple
volumes on the block storage device). A recovery point iden-
tifier is also appended (such as in the form of a suffix to the
base name), e.g., a timestamp, that can be used to determin-
istically distinguish what point in time the copy of the data
corresponds to.

[0017] Once named, the data objects are transmitted to the
object storage service for storing. Concurrently, a configura-
tion metadata object may be generated that contains a
description of the storage device being backed up. A recovery
point metadata object may also be generated that lists the data
objects corresponding to the current recovery point.

[0018] For a comprehensive backup, data objects may be
created, named, and transmitted for each of the data extents in
the address space (the entire range of addresses) of the vol-
ume (or volumes where applicable) across the storage device.
The backup service may also perform an incremental backup.
In some such examples the backup service tracks the data
extents to identify those that change in some way over a set
period oftime. After the set period of time, the backup service
may implement an incremental backup where only those data
extents that have changed are backed up. When the changed
data extents are backed up, they are again converted to data
objects. These changed data extents keep the same base name
(using the starting Logical Block Address (LBA) of each data
extent) but have an updated suffix corresponding to the new
recovery point. A new recovery point metadata object may
also be generated at this time that lists the data objects asso-
ciated with the new recovery point, which may often include
a mix of the recently changed data objects as well as “older”
data objects that did not change in the time period.

[0019] Over time, many recovery points may accumulate.
Embodiments of the present disclosure also include the prun-
ing of outdated recovery points and associated outdated data
objects to maintain a manageable and affordable amount of
data at the object storage service. For example, the backup
service may have a policy that defines how many recovery
points should be supported for any given time. Any data
objects with a suffix that identifies them with recovery points
older than the supported amount are marked for deletion as
part of the pruning. Before deleting any of these marked data
objects, the backup service may check whether they are listed
in the supported recovery points, indicating that they are still
in use. Those data objects still listed with supported recovery
points are removed from candidacy for deletion, while the
backup service proceeds with causing the remaining marked
data objects to be deleted.

[0020] A data storage architecture is described with refer-
ences to FIG. 1A and FIG. 1B. As discussed in more detail
below, the data storage architecture may include a backup
module, and FIGS. 1A and 1B show the backup module being
incorporated into different computing systems. Referring
first to FIG. 1A, illustrated is an organizational diagram of the
data storage architecture 100 according to aspects of the
present disclosure. The data storage architecture 100 includes
a storage system 102 that processes data transactions on
behalf of other computing systems including one or more
hosts, exemplified by host 104, as well as a cloud storage
service 106 that can provide remote backup services to the
storage system 102. Although there could be a plurality of
hosts, FIG. 1A is described with respect to one host 104 for
simplicity of discussion, though it will be recognized that the
same will apply when there are more hosts. The storage
system 102 may receive data transactions (e.g., requests to

Apr. 28,2016

read and/or write data) from the host 104, and take an action
such as reading, writing, or otherwise accessing the requested
data. For many exemplary transactions, the storage system
102 returns a response such as requested data and/or a status
indictor to the host 104. The storage system 102 is merely one
example of a computing system that may be used in conjunc-
tion with the systems and methods of the present disclosure.
[0021] The storage system 102 is a computing system and,
in that regard, may include a processing resource 108 (e.g., a
Microprocessor, a microprocessor core, a microcontroller, an
application-specific integrated circuit (ASIC), etc.), a transi-
tory and/or non-transitory computer-readable storage
medium 110 (e.g., a hard drive, flash memory, random access
memory (RAM), optical storage such as a CD-ROM, DVD,
or Blu-Ray device, etc.), and a network interface device 112
(e.g., an Ethernet controller, wireless communication con-
troller, etc.) operable to communicate with the host 104 over
a network or without using a network (e.g., directly con-
nected) as well as with the cloud storage service 106 over the
same or a different network.

[0022] The storage system 102 also includes one or more
storage controllers 114 in communication with a storage
device 116. The storage device 116 may be a block storage
device and may include any number of suitable storage
devices using any suitable storage medium including electro-
magnetic hard disk drives (HDDs), solid-state drives (SSDs),
flash memory, RAM, optical media, and/or other suitable
storage media. The storage device 116 may include devices of
single type (e.g., HDDs) or may include a heterogeneous
combination of media (e.g., HDDs with built-in RAM
caches).

[0023] Inanembodiment, the storage device 116 includes a
plurality of HDDs arranged in a Redundant Array of Inde-
pendent Disks (RAID) configuration. In another embodi-
ment, the storage device 116 includes a plurality of solid state
drives (SSDs) and/or random-access memory configured as a
RAM disk. This is a common configuration for a storage
system 102 in part because of the increased performance of
SSDs with respect to HDDs. In a further embodiment, the
storage device 116 includes a combination of RAID HDDs,
RAM disk(s), and SSDs. As will be recognized, these con-
figurations are merely exemplary and the storage device 116
may include any suitable storage device or devices in keeping
with the scope and spirit of the present disclosure. The storage
device 116 may be arranged into one or more logical volumes
that may range from one or more volumes on a single physical
device to ranging across multiple physical devices.

[0024] The storage system 102 receives memory transac-
tions from the host 104 directed to the data of the storage
device 116. During operation, the storage system 102 may
also generate memory transactions independent of those
received from the host 104. Memory transactions are requests
to read, write, or otherwise access data stored within a com-
puter memory such as the storage device 116, and are often
categorized as either block-level or file-level. Block-level
protocols designate data locations using an address within the
storage device 116. Suitable addresses include physical
addresses, which specify an exact location on a storage
device, and virtual addresses, which remap the physical
addresses so that a program can access an address space
without concern for how it is distributed among underlying
storage devices 116. Exemplary block-level protocols
include iSCSI, Fibre Channel, and Fibre Channel over Eth-
ernet (FCoE). iSCSI is particularly well suited for embodi-

US 2016/0117226 Al

ments where data transactions are received over a network
that includes the Internet, a Wide Area Network (WAN),
and/or a Local Area Network (LAN). Fibre Channel and
FCoE are well suited for embodiments where host 104 is
coupled to the storage system 102 via a direct connection. A
Storage Attached Network (SAN) device is a type of storage
system 102 that responds to block-level transactions.

[0025] In contrast to block-level protocols, file-level proto-
cols specify data locations by a file name. A file name is an
identifier within a file system that can be used to uniquely
identify corresponding memory addresses. File-level proto-
cols rely on the storage system 102 to translate the file name
into respective memory addresses. Exemplary file-level pro-
tocols include SMB/CFIS, SAMBA, and NFS. A Network
Attached Storage (NAS) device is a type of storage system
102 that responds to file-level transactions. It is understood
that the scope of present disclosure is not limited to either
block-level or file-level protocols, and in many embodiments,
the storage system 102 is responsive to a number of different
memory transaction protocols.

[0026] The cloud storage service 106 is a type of data
storage that is provided on the cloud, e.g., an enterprise-class
cloud storage array provided by a cloud storage provider with
multiple copies of data distributed throughout the world, pro-
viding distributed resources that are fault tolerant and
durable. In an embodiment, the cloud storage service 106
provisions resources on demand without regard for the under-
lying hardware wherever distributed throughout the world.
Storage capacity with the cloud storage service 106 may be
purchased or leased and may be provided by off-premises
(e.g., physically remote) or on-premises services. The cloud
storage service 106 may provide a hosted object storage ser-
vice to subscribers, for example storage system 102 in FIG.
1A.

[0027] A backup module 118 provides a backup service to
the storage system 102 that interfaces between the storage
system 102 and the cloud storage service 106, thereby
enabling the storage system 102 to back up data to the object
storage service of the cloud storage service 106. The backup
module 118 may be composed of hardware, software, or some
combination of the two. In the embodiment illustrated in FIG.
1A, the backup module 118 is located with the host 104,
remote from the storage system 102. In further embodiments,
the backup module 118 is located within any other computing
system including the storage system 102 in the embodiments
of FIG. 1B.

[0028] The backup module 118 is used to divide the storage
device(s) 116 of the storage system 102 and/or the hosts 104
into one or more data extents. A data extent is a contiguous
area of storage in the block storage device, and may be inde-
pendent of the logical-block size of the block storage device
(s) and be of varying size, as will be discussed in more detail
below with respect to subsequent figures. The backup module
118 then takes the data extents, converts them to data objects,
uniquely names them, and includes metadata that, together,
are used to assist in recovering the data in the data objects at
a later time. For example, a suffix appended to the name
assigned to each data object may be used to identify the
recovery point associated with the given data object’s under-
lying data extent.

[0029] Thebackup module 118 may perform this backup of
the data in the storage system 102 and/or host 104 as a full
backup, meaning that all the data stored is initially backed up
at the cloud storage service 106. Over time, the backup mod-

Apr. 28,2016

ule 118 may monitor the storage system 102 and incremen-
tally back up the data at the storage device 102 and/or host 104
by initiating backup for only those data extents that have
changed since a prior backup time (e.g., the initial backup). At
these times, the backup module 118 also updates the names of
the changed data extents’ corresponding updated data objects
to reflect a new recovery point for the changed data. At certain
intervals, the backup module 118 may additionally prune the
existing backed-up data objects at the cloud storage service
106 to remove older data objects (that correspond to data
extents that have since been updated) that are outdated and no
longer supported.

[0030] In an embodiment, the backup module 118 causes
the above-noted operations to be performed at the storage
system 102, including transmitting the data objects via the
network interface 112 to the cloud storage service 106. Alter-
natively, the backup module 118 may perform the above-
noted operations where it is located, in the host 104 in FIG.
1A, including transmitting the data objects to the cloud stor-
age service 106 from the host 104 via the same or a different
network as that used to communicate with the storage system
102.

[0031] Turning to FIG. 1B, an organizational diagram of
the data storage architecture 100 is presented according to
alternative aspects of the present disclosure. For simplicity of
discussion, only those aspects in FIG. 1B that are different
from FIG. 1A will be addressed. In FIG. 1B, the backup
module is shown as integrated with the storage system 102,
instead of being located with the host 104 as in FIG. 1A. As an
additional alternative, the backup module 118 may be inte-
grated with a separate computing system from either the host
104 or the storage system 102.

[0032] FIG. 2isadiagram of arelationship between a block
storage device’s data and storage of that data in an object
storage service according to aspects of the present disclosure.
In an embodiment, the block storage device of FIG. 2 repre-
sents the storage device 116 of FIGS. 1A and 1B, demonstrat-
ing an exemplary manner in which to convert the data stored
with the storage device 116 to a format compatible for backup
storage at the cloud storage service 106.

[0033] The backup module 118 may divide up the storage
device 116 into a plurality of data extents, visualized in FIG.
2 as extent matrix 122. As can be seen, the extent matrix 122
includes a plurality of data extents. In an embodiment, the
backup module 118 may divide up the data storage device 116
so that the data extents are all the same size (e.g., number of
bytes). Each data extent in the extent matrix 122 has a logical
block address (LBA) that represents the starting LBA of the
given data extent. The data extents are sized to obtain optimal
performance when uploading the corresponding data objects
to the cloud storage service 106 while still being sized appro-
priately to manage copying redundant data for subsequent
uploads to the cloud storage service 106. Further, the data
extents are sized small enough to assure that the correspond-
ing data objects may upload with sufficient speed to the often
remote cloud storage service 106. As just one example, the
data extents may be sized between 512 KB to 5 MB, though
other sizes smaller or larger are possible as well, depending
upon the bandwidth available for transmitting data objects
and the amount of memory usage available or desired at the
controller controlling backing up, such as the backup module
118 located separately or integrated with the storage system
102.

US 2016/0117226 Al

[0034] The backup module 118 then converts the smaller
data extents into corresponding data objects, illustrated by the
exemplary data objects 124a-124m in FIG. 2. Although not
shown in FIG. 2 for purposes of illustrative clarity, it will be
appreciated that there would be a separate data object corre-
sponding to each of the data extents defined by the backup
module 118. For purposes of simplicity of discussion, the
following will discuss what occurs with respect to data object
124a in particular, with the understanding that the same pro-
cess applies to the other data objects.

[0035] In some embodiments, prior to conversion to the
data object 124a, the data extent may have its data com-
pressed and/or encrypted, for example by the AES-256 algo-
rithm to name just one example. Other algorithms/hashes
may be used in the alternative or in addition that can be
decrypted back to the original data, as will be recognized. In
further embodiments, such as where the compression and/or
encryption algorithms do not include it already, the backup
module 118 may also perform a checksum on the resulting
data object 124a. Information regarding the compression and/
or encryption algorithms used may be inserted as a metadata
tag into the data object 124a. The checksum may also be
included as a metadata tag in the data object 124a, either as a
separate tag or together with the compression and/or encryp-
tion tag.

[0036] Once the data object 124a has been created to house
the underlying raw data of the corresponding data extent, the
backup module 118 names the data object 124a. In embodi-
ments ofthe present disclosure, the data object 1244 is named
with a base name that represents the LBA of the correspond-
ing data extent. For example, if the data object 124a corre-
sponds to the first data extent of the storage device 116, which
starts with an address of 00000, the base name of the data
object 124a would be assigned to be 00000.

[0037] The backup module 118 then appends a recovery
point identifier to the base name that represents the recovery
point that the data object 124a is associated with. The recov-
ery point identifier may be a value that can be sorted so that a
later recovery point can be deterministically distinguished
from an earlier recovery point. Thus, the value of the identifier
could be any sortable value. One example would be a times-
tamp, which is the example that the following discussion will
use as its basis, though other values are possible as well. In an
exemplary embodiment, the recovery point identifier is
appended to the base name as a suffix separated from the base
name by a delimiter.

[0038] In embodiments where there are multiple volumes,
either logical or otherwise, that need to be backed up in the
storage device 116, a volume identifier may also be appended
to the base name of the data object 1244, separated by another
delimiter, either of the same kind or a different kind as the
delimiter separating the base name from the suffix. In an
embodiment, the volume identifier is a direct copy of the
volume identifier used by the storage controller 114 to track
volumes in the storage device 116. In embodiments where
there is only one volume to be backed up, the volume identi-
fier may still be included, using either the volume name or a
default name. As just one simple example, the storage device
116 may be separated into two volumes A and B, where the
data object 124a corresponds to the first data extent in volume
A. The volume identifier may be appended as a prefix sepa-
rated by a delimiter from the base name, i.e., “A/00000/t0”.
[0039] In an alternative embodiment, the backup module
118 may divide up the storage device 116 into variable-sized

Apr. 28,2016

data extents, such that two different data extents may have
different sizes from each other. In this alternative, the backup
module 118 may additionally insert a range size of the given
data extent into the name, such as between the base name and
the suffix. This may assist any system that may need to recon-
struct the backed up data in the future.

[0040] After the data object 124a has been created and
named, the data object 124a is transmitted to and stored with
the cloud storage service 106. For example, in FIG. 1A the
backup module 118 may instruct the storage system 102 to
transmit the proper command (according to the protocol used
by the cloud storage service 106), along with the data object
124a, to the cloud storage service 106. For example, where
the cloud storage service 106 utilizes the representational
state transfer (REST) protocol to embed a request into an
HTTP request, the backup module 118 may cause the storage
system 102 to embed a PUT request into an HTTP request,
and cause the storage system 102 via the network interface
112 to transmit the HTTP request with the payload (the data
object 1244). In the alternative embodiment of FIG. 1B, the
storage system 102, via the backup module 118, embeds the
request into the HTTP request and transmits the request
together with the payload from the network interface 112 to
the cloud storage service 106.

[0041] Inaddition to the data object 1244, the backup mod-
ule 118 additionally generates a configuration metadata
object that contains a description of the block device being
backed up, for example one for each volume of the storage
device 106 that is being backed up to the cloud storage service
106. The configuration metadata object may include such
attributes as storage system name, volume name, capacity of
the block device or volume, and block size of the block
device, among other things. The configuration metadata
object is also transmitted to the cloud storage service 106 for
storage, for example via the network interface 112.

[0042] Once the cloud storage system 106 receives the data
object 1244 (again, exemplary of all of the data objects 124a-
124m), the cloud storage system 106 stores the received data
object 124a in container 120. In an embodiment, the cloud
storage system 106 may maintain a separate container for
each volume that is backed up from the storage system 102.
Alternatively, the cloud storage system 106 may maintain
more containers in a pre-configured hierarchy for backing up
the storage system 102. The cloud storage service 106 also
stores the configuration metadata object corresponding to the
block device being backed up in the same container 120
where the underlying data is backed up. In this manner, all of
the data objects 124a-124m, corresponding to the plurality of
data extents in the extent matrix 122, may be backed up in the
cloud storage system 106 in container 120 together with
metadata that describes the block device that was backed up.

[0043] Although the discussion above has been with
respect to the backup module 118 as a single operative entity,
it will be understood that several of the different operations
above may be performed by a different module in cooperation
with the backup module 118, such as a compression module
and an encryption module, to name just two examples. Any of
the modules may be composed of hardware, software, or
some combination of the two, integrated with, located with,
or under control at a remote location by, the backup module
118.

[0044] FIG. 3 is a diagram illustrating a relationship over
time of data objects, such as data objects 124a-124m of F1G.

US 2016/0117226 Al

2, stored at different times with object storage service 106
according to aspects of the present disclosure.

[0045] Table 302 in FIG. 3 illustrates the contents of a data
store at different points in time. Illustrated in FIG. 3 are an
initial time 304, a first time 306, and an n” time 308. At the
initial time 304 when the data is backed up for storage system
102, the backup module 118 causes the storage system 102 to
back up all of the data in the storage device 116. In embodi-
ments where the storage device 116 is a thin provisioned
volume, the initial backup at the initial time 304 limits backup
to copying address ranges of the storage device 116 that have
been provisioned, thereby reducing unnecessary resources
and time.

[0046] Ascanbe seen inthe example of FIG. 3, at the initial
time 304 a plurality of data objects have been stored that
correspond to a plurality of data extents at the storage system
102. Each data object has a name, as illustrated by exemplary
name 310. Exemplary name 310 includes base name 312,
which corresponds to the LBA of the data extent that was
copied for backup. Following the base name 312 is the delim-
iter 314, which is shown in FIG. 3 as a forward slash “/” by
way of example only. The suftix 316 follows the delimiter 314
and is a value that can be sorted so that a later recovery point
can be deterministically distinguished from an earlier recov-
ery point, shown here as a time stamp t0. In embodiments
where there are multiple volumes maintained by the storage
system 102, the exemplary name 310 may also include a
prefix 318 separated from the base name 312 by delimiter
320. The prefix 318 functions as a volume identifier to indi-
cate which volume a given data object is copied from, which
is useful in subsequent recovery efforts.

[0047] After the initial backup at initial time 304, subse-
quent backups at times 306 and 308 may be limited to incre-
mental backups. In other words, the backup module 118
causes only data extents with changed data to be backed up
again at the cloud storage service 106. The backup module
118 may track the data extents of the storage device 116 that
have been changed since the most recent backup. In one
embodiment, the backup module 118 may cause the storage
system 102 to sweep the entire address space(s) that has been
backed up to identify any changed data.

[0048] In an alternative embodiment, the backup module
118 may monitor commands sent to the storage device 116
over time that suggest that data has changed at the target of the
commands. As just one example, the backup module 118 may
track writes that have been sent to the storage device 116 and
record the results in a write log. The write log may be a
combination of two bitmaps. During a first time period the
backup module 118 may record observances of write events
in the first bitmap. When the time period ends and it is time for
an incremental backup, the backup module 118 may freeze
the first bitmap to facilitate the incremental backup. In con-
junction with this, the backup module 118 may cause the
storage system 102 to create a snapshot of the volume being
backed up so that the data is frozen during backup, thereby
avoiding any unknown states. For example, the storage con-
troller 114 may have snapshot functionality built in to per-
form this action.

[0049] During this frozen period and during the new time
period, the backup module 118 may track writes that have
been sent to the storage device 116 in the second bitmap. In
this manner, any changes that may occur to any data extents
during the frozen period are captured and taken care of at a
subsequent time. When the new time period closes, the sec-

Apr. 28,2016

ond bitmap may be frozen to facilitate a new incremental
backup, and the backup module 118 may again revert back to
the first bitmap. In this manner, the bitmap used may repeat-
edly alternate so that tracking may occur uninterrupted even
during times that incremental backup occurs. Though
described with respect to writes, other actions may addition-
ally or alternatively be monitored which are known to cause
changes to data that would need to be captured by a backup
event.

[0050] Focusing on first time 306 as an example, the
backup module 118 follows a similar process as with initial
backup for data extents that have changed and are in need of
an incremental backup. With the data extents already defined,
the backup module 118 proceeds with converting the changed
data extents, where changes to the underlying data have
occurred, into respective updated data objects (which may
include compression, encryption, and/or checksum as well or
for the first time). These updated data objects use the same
naming convention as their data object predecessors, except
that the suffix is changed to reflect that a new recovery point
has been set for the updated data object.

[0051] Continuing with the example name above intro-
duced with respect to FIG. 2, and assuming that the data
extent starting LBA 00000 has changed in some way, the
backup module 118 assigns the base name to again be 00000,
but assigns a new suffix corresponding to the new time at first
time 306, shown in FIG. 3 as t1. As a result, the updated data
object is named, in this example, “A/00000/t1”. As can be
seen in FIG. 3, the only other data extent that changed was
located at LBA 01000, causing the name to change to
“A/01000/t1”. Since the other data extents did not have any
changes occur to their underlying data, no incremental
backup occurs and so no new data objects with new suffixes
are stored at the cloud storage service 106 for the unchanged
data extents.

[0052] This can be again seen with respect to n” time 308,
where it can be seen in the example of FIG. 3 that at time n the
data extents located at LBAs 00000, 01000, and 01800 were
the only ones to change. Thus, the backup module 118 pro-
ceeds with converting the data extents where changes to the
underlying data have occurred into respective updated data
objects (which may include compression, encryption, and/or
checksum as well or for the first time). These updated data
objects again use the same naming convention as their prede-
cessors at initial time 304 and first time 306, except that the
suffix is changed to reflect that a new recovery point has been
set for the updated data object at time n. Looking to LBA
00000 as exemplary, the updated data object would be named,
in this example, “A/00000/tn”. Since the other data extents
did not have any changes occur to their underlying data, no
incremental backup occurs and so no new data objects with
new suffixes are stored at the cloud storage service 106 for the
unchanged data extents.

[0053] When each backup occurs, such as the initial time
304 or the incremental backup at first times 306 or 308 in FIG.
3, a (new) recovery point metadata object may be generated
that defines the set of recovery points supported for the cor-
responding time period. For example, at the initial time 304
the corresponding recovery point metadata object lists, as
data objects associated with the current recovery point for
initial time 304, all of the data objects shown in the column for
time 304. Further, at first time 306, a new recovery point
metadata object is created that lists, for the recovery point for
first time 306, all of the data objects listed with first time 306.

US 2016/0117226 Al

This recovery point metadata object is updated at the comple-
tion of each backup. Data objects with a new suffix (e.g.
timestamp) are written to the cloud storage service 106 for the
backup, but that timestamp may not be considered a recovery
point until the new recovery point metadata object has been
finalized. This is repeated for each new time that corresponds
to a new recovery point.

[0054] As can be seen, as time progresses, more and more
recovery points accrue, with corresponding recovery point
metadata objects and data objects 124, using up more and
more storage space in the cloud storage service 106. In an
embodiment, a policy decision may have been made to sup-
port only a limited number of past recovery points, for
example a few to several dozen or more (e.g., 3 past recovery
points or 30 past recovery points, just to name two examples).
To maintain the policy, the backup module 118 may check for
any older data objects 124 corresponding to old recovery
points that are no longer supported under the policy as new
backup data objects 124 are processed and uploaded to the
cloud storage service 106.

[0055] Since not every data extent changes leading up to
each backup time, each recovery point may include a mix of
updated data objects created at the current time, such as at first
time 306 or n time 308 in the example of FIG. 3, as well as
older data objects from prior times, including from initial
time 304 as well as first time 306 (when at n” time 308).
[0056] Using FIG. 3 for a simple example where two recov-
ery points are supported according to a policy decision, at n
time 308 the backup module 118 assesses the recovery point
data objects associated with prior times 304 and 306 to deter-
mine whether either fall outside of the policy. Where two
recovery points are supported, at n” time 308 the recovery
point associated with initial time 304 is no longer be sup-
ported, and therefore the data objects listed for initial time
304 is marked for deletion. Prior to deletion, however, the
backup module 118 checks to determine whether any of the
data objects listed with initial time 304 are still necessary for
supported recovery points. This occurs, for example, where
individual data objects were not updated every time, if at all.
For example, data object A/03800/t0 was not updated at any
of'the times 304, 306, or 308. Thus, even though it is listed in
the metadata recovery object associated with initial time 304
that is no longer supported generally, data object A/03800/t0
may not be deleted because it is still necessary for the two
recovery points that are still supported, at t1 and tn. As a
further example, data object A/01800/tn was first updated at
n™ time 308. As a result, since the policy in this example is for
two recovery points, A/01800/t0 may not be deleted because
it is still necessary under the policy as a valid recovery point
for the immediately prior recovery point tl at first time 306. A
dependency map may be maintained to facilitate checking
whether a data object marked for deletion is still associated
with a supported recovery point.

[0057] It is worth noting that, in embodiments of the
present disclosure where the suffix is a timestamp, the suffix
numbering does not reflect the number of supported recovery
points, but rather the time at which the particular recovery
point occurred. Thus, in the above simple example where only
two recovery points are supported, there may be a scenario
where for a given data object new recovery points occurred at
times t1, t3, and t5. In such an example, the backup module
118 identifies the two most recent recovery points to be at t3
and t5. As such, the backup module 118 marks the data object
at time t1 for deletion. This example is for illustration only.

Apr. 28,2016

[0058] Turning now to FIG. 4, a flow diagram is illustrated
of'amethod 400 of backing up a block storage device, such as
storage device 116 of storage system 102 of FIG. 2, to an
object storage service such as cloud storage service 106
according to aspects of the present disclosure. Itis understood
that additional steps can be provided before, during, and after
the steps of method 400, and that some of the steps described
can be replaced or eliminated for other embodiments of the
method.

[0059] At step 402, the backup module 118 may generate
the configuration metadata object that describes the block
device being backed up, as described above with respect to
FIG. 2. This may include such attributes as storage system
name, volume name, capacity of the block device or volume,
and block size of the block device, among other things.
[0060] At step 404, the backup module 118 may divide up
the storage device 116 into one or more data extents, for
example fixed-size data extents, where each data extent has a
starting L BA that identifies the data extents within the address
space of the given volume of the storage device 116.

[0061] At step 406, the backup module 118 packages and
names the one or more data extents into corresponding one or
more data objects, for example data objects 124a-124m of
FIG. 2. Atthis step or at step 408, the backup module 118 may
also generate a recovery point metadata object that identifies
all of the data objects associated with the current recovery
point. The names given to each data extent represents the
LBA of the given data extent, and includes a recovery point
identifier, for example as a suffix, that represents the recovery
point that the data objects are associated with. In an embodi-
ment, the backup module 118 may additionally hash the
names for the data objects before transmission for storage at
the cloud storage service 106 as an added security measure.
[0062] At step 408, the backup module 118 may transmit
the one or more data objects, such as data objects 124a-124m,
together with the configuration metadata object and the
recovery point metadata object, to the cloud storage service
106.

[0063] At step 410, after a period of time has passed the
backup module 118 may incrementally back up any one or
more of the data extents at the storage device 116 that have
been identified as having changed over the period of time.
This may occur as described above with respect to FIG. 3,
where the changed data extents are again packaged into data
objects and given the same base name (and prefix, where
applicable) with an updated recovery point identifier repre-
senting the new recovery point.

[0064] At step 412, which may occur simultaneously with
or directly after step 410, the backup module 118 may prune
the data objects with recovery point identifiers corresponding
to old recovery points that are no longer supported by a policy
that may have been set, for example as discussed above with
respect to FIG. 3. This may include determining whether any
data objects corresponding to unsupported recovery points
are still necessary as associated with still-supported recovery
points and removing those from candidacy for deletion.
[0065] In FIG. 4, the steps of incrementally backing up
changed data extents and pruning data objects may repeat for
as long as desired, which typically will continue over a long
period of time as the cloud storage service 106 is maintained
as a backup provider for the data on the storage system 102.
[0066] FIG.5isaflow diagram of a method 500 of backing
up a block storage device, such as storage device 116 of
storage system 102 of FIG. 2, to an object storage service such

US 2016/0117226 Al

as cloud storage service 106 according to aspects of the
present disclosure. For example, method 500 may be a spe-
cific example of step 406 of FIG. 400 above.

[0067] At step 502, after the storage device 116 has been
divided into data extents at step 404 of FIG. 4, the backup
module 118 takes the first data extent, for example shown as
the uppermost left box in the extent matrix 122 of FIG. 2.
[0068] At step 504, the backup module 118 may compress
the data extent taken at step 502. There are many different
algorithms and tools useful for compressing data which may
be used at step 504, as will be recognized by those skilled in
the relevant art(s).

[0069] At step 506, the backup module 118 encrypts the
data extent that was compressed at step 504. There are also
many different algorithms and tools useful for encrypting
data, including those that both compress and encrypt, which
may be used.

[0070] Atstep 508, the backup module 118 generates a data
object from the compressed and encrypted data extent.
[0071] At step 510, the backup module 118 adds metadata
to the newly generated data object from step 508. This may
additionally include generating a checksum of the newly
generated data object and including that checksum, together
with any information regarding the compression and encryp-
tion algorithms, in a metadata tag for the newly generated data
object.

[0072] At step 512, the backup module 118 names the
newly generated data object based on an address of the data
extent such as the starting LBA.

[0073] At step 514, the backup module 118 appends the
volume identifier to the base name given at step 512, sepa-
rated from the base name by a delimiter. This volume identi-
fier may be used to identify the volume that the data extent is
associated with, for example where multiple volumes exist at
the storage device 116, all of which are being backed up.
[0074] At step 516, the backup module 118 appends a
recovery point identifier to the base name given at step 512,
separated from the base name by a delimiter. This identifier
represents the recovery point at which the data object was
created. The identifier may be a value that can be sorted so that
a later recovery point can be deterministically distinguished
from an earlier recovery point, for example a time stamp.
[0075] With the data object named, the backup module 118
then determines whether there are any other data extents that
have not yet been processed at decision step 518. If there are
more data extents to process, the method 500 proceeds to step
520.

[0076] At step 520, the backup module 118 takes the next
data extent and loops back to step 504 to process the next data
extent as described above with respect to steps 504-516.
[0077] Returning to decision step 518, if there are no more
data extents to process, the method 500 proceeds with trans-
mitting the formed and named data objects to the cloud stor-
age service 106, for example continuing with step 408 of FIG.
4. In an embodiment, the backup module 118 processes all of
the data extents into data objects before transmitting the data
objects (and configuration metadata objects, and recovery
point metadata objects) to the cloud storage service 106 for
backup. In an alternative embodiment, the backup module
118 causes the network interface 112 to transmit objects to the
cloud storage service 106 on a rolling basis while data extents
are still being processed into data objects.

[0078] FIG. 6 is a flow diagram of a method 600 of pruning
data objects stored with an object storage service, such as

Apr. 28,2016

cloud storage service 106, according to aspects of the present
disclosure. For example, method 600 may be a specific
example of step 412 of FIG. 4 above. As noted, pruning may
occur simultaneously with or directly after an incremental
backup of changed data extents.

[0079] At step 602, the backup module 118 may access all
recovery point metadata objects stored at the cloud storage
service 106, including the recovery point metadata object
associated with the new incremental backup.

[0080] At step 604, the backup module 118 may compare
the number of recovery point metadata objects to a number of
supported recovery points that has been set according to a
policy. As discussed above with respect to FIG. 3, this may be
any number of points ranging from a few to several dozen or
more.

[0081] At step 606, the backup module 118 may identify
the recovery point metadata objects that are older than the
number of supported recovery points. For example, where the
policy supports two recovery points, and there are three
recovery point metadata objects stored with the cloud storage
service 106, the backup module 118 identifies the oldest
recovery point metadata object as a candidate for deletion.
Identifying a recovery point metadata object for deletion
means that the list of data objects in that recovery point
metadata object have been marked for deletion as correspond-
ing to a recovery point outside the scope set by the policy.
[0082] Atstep 608, the backup module 118 may check each
data object marked for deletion at step 606 to determine
whether any correspond to recovery points that are still sup-
ported. This is useful because, since not every data extent
changes leading up to each backup time, each recovery point
may include a mix of updated data objects created at the
current time as well as older data objects from prior times, as
described in an example above with respect to FIG. 3. For
those data objects that are still associated with a supported
recovery point, the backup module 118 may remove them
from the marked data objects for deletion.

[0083] At step 610, the backup module 118 instructs the
cloud storage service 106 to delete all of the data objects that
are still on the list for deletion, or in other words those data
objects that are not associated with any supported recovery
point.

[0084] The present embodiments can take the form of an
entirely hardware embodiment, an entirely software embodi-
ment, or an embodiment containing both hardware and soft-
ware elements. In that regard, in some embodiments, the
computing system is programmable and is programmed to
execute processes including those associated with backing up
ablock storage device such as the processes of method 400 of
FIG. 4. Accordingly, it is understood that any operation of the
computing system according to the aspects of the present
disclosure may be implemented by the computing system
using corresponding instructions stored on or in a non-tran-
sitory computer readable medium accessible by the process-
ing system. For the purposes of this description, a tangible
computer-usable or computer-readable medium can be any
apparatus that can store the program for use by or in connec-
tion with the instruction execution system, apparatus, or
device. The medium may include non-volatile memory
including magnetic storage, solid-state storage, optical stor-
age, cache memory, and Random Access Memory (RAM).
[0085] Thus, the present disclosure provides system, meth-
ods, and computer-readable media for backing up block stor-
age devices to object storage service that has different proto-

US 2016/0117226 Al

cols. In some embodiments, the method for backing up a
block storage device to an object storage services includes
identifying a data extent of an address space of a storage
device. A data object is generated that encapsulates data of the
data extent of the storage device and naming the data object
with a base name representing a logical block address (LBA)
of the data extent. The base name is appended with an iden-
tifier that deterministically identifies a recovery point that the
data object is associated with, where the base name and the
identifier comprise a data object name for the data object. The
data object with the corresponding name is provided to the
object storage service for backup of the data extent.
[0086] In further embodiments, the computing device
includes a memory containing machine readable medium
comprising machine executable code having stored thereon
instructions for performing a method of backing up a storage
device; and a processor coupled to the memory. The processor
is configured to execute the machine executable code to:
generate a data object that encapsulates a data extent com-
prising an address range of the storage device. The processor
is also configured to name the data object with a base name
representing a logical block address (LBA) of the data extent.
The processor appends the base name with an identifier that
deterministically identifies a recovery point that the data
object is associated with, the base name and the identifier
comprising a data object name for the data object. The pro-
cessor is also configured to transmit the data object and the
data object name to a cloud storage for backup of the data
extent.
[0087] In yet further embodiments the non-transitory
machine readable medium having stored thereon instructions
for performing a method of backing up a storage device
comprises machine executable code. When executed by at
least one machine, the code causes the machine to: divide the
storage device into a plurality of data extents; generate a
plurality of initial data objects that encapsulate and corre-
spond to the plurality of data extents; name each of the plu-
rality of initial data objects with a base name representing a
corresponding logical block address (LBA) of the respective
data extent; append the base names with corresponding iden-
tifiers that deterministically identify an initial recovery point
that the plurality of initial data objects are associated with, the
base names combined with the identifiers making up data
object names corresponding to the plurality of initial data
objects; and transmit the plurality of initial data objects to a
cloud storage for backup of the storage device.
[0088] The foregoing outlines features of several embodi-
ments so that those skilled in the art may better understand the
aspects of the present disclosure. Those skilled in the art
should appreciate that they may readily use the present dis-
closure as a basis for designing or modifying other processes
and structures for carrying out the same purposes and/or
achieving the same advantages of the embodiments intro-
duced herein. Those skilled in the art should also realize that
such equivalent constructions do not depart from the spirit
and scope of the present disclosure, and that they may make
various changes, substitutions, and alterations herein without
departing from the spirit and scope of the present disclosure.

What is claimed is:

1. A method comprising:

identifying a data extent of an address space of a storage

device;
generating a data object encapsulating data of the data
extent of the storage device;

Apr. 28,2016

naming the data object with a base name representing a
logical block address (LBA) of the data extent;

appending the base name with an identifier that determin-
istically identifies a recovery point that the data object is
associated with, the base name and the identifier making
up a data object name for the data object; and

providing the data object and the corresponding data object
name to a cloud storage for backup of the data extent.

2. The method of claim 1, further comprising:

designating a portion of the storage device as the data
extent.

3. The method of claim 1 further comprising:

dividing the address space of the storage device into a
plurality of data extents; and

repeating the generating, naming, appending, and provid-
ing for each of the plurality of data extents to back up the
storage device.

4. The method of claim 1, further comprising:

detecting, during a time interval, a command sent to the
storage device that indicates a change to the data extent
during the time interval;

generating, at the end of the time interval, an updated data
object that encapsulates data corresponding to the
changed data extent;

naming the updated data object with a base name repre-
senting an LBA of the changed data extent;

appending the base name with a second identifier that
deterministically identifies an updated recovery point
that the data object is associated with; and

providing the updated data object to the cloud storage.

5. The method of claim 4, further comprising:

generating a metadata object that defines a supported set of
recovery points for the data object; and

generating an updated metadata object that defines a sup-
ported set of updated recovery points for the updated
data object.

6. The method of claim 5, further comprising:

determining whether any metadata objects prior to the
updated metadata object are older than a supported num-
ber of recover points;

identifying any data objects associated with the older meta-
data objects for deletion in response to the determining;

determining which of the identified data objects do not
correspond to at least one of the set of updated recovery
points; and

instructing the cloud storage to delete an identified data
object that does not correspond to at least one of the
updated recovery points.

7. The method of claim 1, wherein the generating further

comprises:

compressing the data corresponding to the data extent
using a compression algorithm;

encrypting the compressed data using an encryption algo-
rithm; and

inserting, into the data object, metadata describing the
compression algorithm and the encryption algorithm
used.

8. The method of claim 1, further comprising:

generating a configuration metadata object that describes
the storage device, including at least one of system
name, storage device capacity, and block size of the
storage device; and

providing the configuration metadata object to the cloud
storage with the data object.

US 2016/0117226 Al

9. A computing device comprising:
a memory containing machine readable medium compris-
ing machine executable code having stored thereon
instructions for performing a method of backing up a
storage device;
a processor coupled to the memory, the processor config-
ured to execute the machine executable code to:
generate a data object that encapsulates a data extent
comprising an address range of the storage device;

name the data object with a base name representing a
logical block address (LBA) of the data extent;

append the base name with an identifier that determin-
istically identifies a recovery point that the data object
is associated with, the base name and the identifier
making up a data object name for the data object; and

transmit the data object and the data object name to a
cloud storage for backup of the data extent.

10. The computing device of claim 9, wherein the proces-
sor is further configured to execute the machine executable
code to:

designate a section of the storage device as the data extent.

11. The computing device of claim 9, wherein the proces-
sor is further configured to execute the machine executable
code to:

detect, during a time interval, a command sent to the stor-
age device that indicates a change to the data extent
during the time interval;

generate, at the end of the time interval, an updated data
object that encapsulates the changed data extent;

name the updated data object with a base name represent-
ing a logical block address (LBA) of the changed data
extent;

append the base name with an updated identifier that deter-
ministically identifies an updated recovery point that the
updated data object is associated with; and

transmit the updated data object to the cloud storage.

12. The computing device of claim 11, wherein the proces-
sor is further configured to execute the machine executable
code to:

generate a metadata object that defines a supported set of
recovery points for the data object; and

generate an updated metadata object that defines a sup-
ported set of updated recovery points for the updated
data object.

13. The computing device of claim 12, wherein the proces-
sor is further configured to execute the machine executable
code to:

determine whether any metadata objects prior to the
updated metadata object are older than a supported num-
ber of recovery points;

identify any data objects associated with the older meta-
data objects for deletion in response to the determina-
tion;

determine which of the identified data objects are associ-
ated with the set of updated recovery points; and

instruct the cloud storage to delete an object of the identi-
fied data objects that is not associated with the set of
updated recover points.

14. The computing device of claim 9, wherein the proces-
sor is further configured to execute the machine executable
code to:

compress the data extent using a compression algorithm;

encrypt the compressed data extent using an encryption
algorithm; and

Apr. 28,2016

insert, into the data object, metadata describing the com-

pression and encryption algorithms used.

15. The computing device of claim 9, wherein:

the storage device comprises a plurality of sections; and

the processor is further configured to execute the machine

executable code to:

divide the storage device into a plurality of data extents;
and

repeat the generation, naming, appending, and transmis-
sion for each of the plurality of data extents to back up
the storage device.

16. A non-transitory machine readable medium having
stored thereon instructions for performing a method of back-
ing up a storage device, comprising machine executable code
which when executed by at least one machine, causes the
machine to:

divide the storage device into a plurality of data extents;

generate a plurality of initial data objects that encapsulate

and correspond to the plurality of data extents;

name each of the plurality of initial data objects with a base

name representing a corresponding logical block
address (LBA) of the respective data extent;

append the base names with corresponding identifiers that

deterministically identify an initial recovery point that
the plurality of initial data objects are associated with,
the base names combined with the identifiers making up
data object names corresponding to the plurality of ini-
tial data objects; and

transmit the plurality of initial data objects to a cloud

storage for backup of the storage device.

17. The non-transitory machine readable medium of claim
16, comprising further machine executable code that causes
the machine to:

detect, during a time interval, a command sent to the stor-

age device that indicates a change to any one of the

plurality of data extents during the first time interval;
generate, at the end of the time interval, an updated data

object that encapsulates the changed data extent;

name the updated data object with a base name represent-

ing a logical block address (LBA) of the changed data
extent;

append the base name with an updated identifier that deter-

ministically identifies an updated recovery point that the
updated data object is associated with; and

transmit the updated data object to the cloud storage.

18. The non-transitory machine readable medium of claim
16, comprising further machine executable code that causes
the machine to:

compress each of the plurality of data extents using a

compression algorithm;

encrypt each of the compressed data extents using an

encryption algorithm; and

insert, into corresponding ones of the plurality of initial

data objects, metadata describing the compression and
encryption algorithms used.

19. The non-transitory machine readable medium of claim
16, comprising further machine executable code that causes
the machine to:

generate a configuration metadata object that describes the

storage device, including at least one of system name,
storage device capacity, and block size of the storage
device; and

transmit the configuration metadata object to the cloud

storage with the plurality of initial data objects.

US 2016/0117226 Al
10

20. The non-transitory machine readable medium of claim
16, comprising further machine executable code that causes
the machine to:

back up only address ranges that have been provisioned on

a thin provisioned volume of the storage device.

#* #* #* #* #*

Apr. 28,2016

