a9 United States

US 20150121066A1

a2y Patent Application Publication o) Pub. No.: US 2015/0121066 A1

Nix 43) Pub. Date: Apr. 30, 2015
(54) SET OF SERVERS FOR (52) US.CL
"MACHINE-TO-MACHINE" CPC HO4L 9/321 (2013.01); HO4L 9/3247
COMMUNICATIONS USING PUBLIC KEY (2013.01); HO4L 9/006 (2013.01)
INFRASTRUCTURE (57) ABSTRACT
S . A set of servers can support secure and efficient “Machine to
(71) Applicant: John A. Nix, Evanston, IL (US) Machine” communications using an application interface and
. : a module controller. The set of servers can record data for a
(72) Inventor: John A. Nix, Evanston, IL (US) plurality of modules in a shared module database. The set of
servers can (i) access the Internet to communicate with a
. . o 5 -
(21) Appl. No.: 14/064,618 module using a module identity, (i) receive server instruc
tions, and (iii) send module instructions. Data can be
o encrypted and decrypted using a set of cryptographic algo-
(22) Filed: Oct. 28, 2013 rithms and a set of cryptographic parameters. The set of
servers can (i) receive a module public key with a module
Publication Classification identity, (ii) authenticate the module public key, and (iii)
receive a subsequent series of module public keys derived by
(51) Int.ClL the module with a module identity. The application interface
HO4L 9/32 (2006.01) can use a first server private key and the module controller can
HO4L 9/00 (2006.01) use a second server private key.
199
User Application 171
1583 P — > Service Controller 171x

Server - A

Module

101

Module

1
1
!
108 !
1
1
1

105 105k Shared
< Module >
R Database el
e i D el N b
181 pplial
LT 182 Sse
£r e %
Module Al Module Module Module
w01 | **° 101 101 w01 | **®

101

US 2015/0121066 A1

Apr. 30,2015 Sheet 1 0of 19

Patent Application Publication

£ay| oljand Jenleg
PIL

= Jopinold

0L
Q0IeS NN

Qg8e¥:ppodiire0:cael

$S8IPPY dI
901

Aey d%01
SlBALd JenIes

g0 Jonleg

__ fey 91RAL
=7 Y dvo
Y
T oM oIand v
~— fwoyny
8L sreoynen

001

Koy a1eAlld JOPIACIH

[¥{3
0zL £ay 2lgnd Japinoid
erll
[]
Aey| dland sinpoy
601 18pIACId 8|NPoj

L POE —
: : 611
o= ZL1 foy
m Q1eAlld “PON
T I —
b ! 10l
H : s|INpo wn
m ' paJolUOA
i I
(1)
Y, B
Pog
LD m goL
o= MIOMIDN SSOI8JIM
P2 —
R) P71}

el ainbi4

US 2015/0121066 A1

Apr. 30,2015 Sheet 2 of 19

Patent Application Publication

M T Koy 21|qnyg "ddy
il > L)) aleAly ddy
el aoeLIBU| [BASAUY
abreliols le » NdD
wrzl qill
PLLL
A A
8L Wwd
yrli g waisAs Buneiad _
Ll _v swiyob|y
oydeiboydAin
NiLiL v_ aseqele(uoneo)ddy _
XLlL p| 19]|0,1UOD) BOIAIBS
no b modeem |
1L uoreolddy

17T ‘enieg uoneolddy

pL inbi4

e504 aoepaU| [RAISAY
afriolg le » NdD
wsoL q%01

PSOL 1

9G0L ¥ Wvd

Bgoy 19ALIQ 80IAS(

4sol walsAg Bunelsd

¥o0L aseqeleq aiNPow

X501 19]|011U0D) BNPO
160, v_ goBIBIU| UoiBoNddy

= leAlegS

91 ainbi4

eL0L aoelIoIU| [BoISAUd
AL0L ||4 10lenioy _.Iuv_ losues _Al 1104
L0} NOY —» NdO | +1— qL0}
PLOL I\G
3.0, 1" WNvd
B0 1aAlg 8o1ne(
Yol waisAg Buneiedo
1ol sdelg
Buniodey eleQg X101
welbold o|npoly
flor 1+ 80BJIBIU| J9SN
B|NPON 101

gl ainbi

US 2015/0121066 A1

Apr. 30,2015 Sheet 3 of 19

Patent Application Publication

I3 eoo JO1eNOY
— Yy
z - Aoy oLl BBzl z - koy o11and o >
O%EE% g-Amuepl | | z- feyjem0eg | | @INpo ssslaim
BINPON pareys(aid) | |IFE FEL poD Aoyl —
— 181083 paleys-aid E errl
_ £€L _ 0IT 2621 | - A&y ogngd fay| :

L - Aoy |-Anuepy | | 1- Asy 1em0eg | | SINPOIN SSSIDIIM ; oLeWWAS e
omewuwiAs || einpop peieys(aig) | |TIZ Aieyeg Lot Zz1 74
Zzr —

aseqeIeQ 9|NPON ¥101 SOELR| Anusp)
301 asn SINPOR
13
swiyobly ko3| o1eAld
g- swyilobly - Swyobly aiydesBoidkin DOJ SOOI
olydesbordAin olydesbordhin — — :
(771 (173 ot ctl
Z - koy| o1eAllg | - ko3 oleAld £ Aoy dland
JEINERS Janleg A 191953 — 19MSS
3501 5501 paseys (eud) | olpey FII
B621 ZT0T 157 MOWSIN
19AI9S -QNS 18MIBS -ONS
mGo1 MGOT oAU [& |e [77 |
nNdo IOAUOD lojelausr) losuag
MM NdO || 4 wopuey i
losseooudald GIoL nror T JIoI
obessaly
7501 — =
or || gz1
= []
____J8AIBS SINPO mm%w__ IOWS yseld
S01L (] mio
} 9D a1 2.nbi4

61 2inbi

—
«
&
&
S
—
o
=
> Roy) 181095 [z | [&7 || | szt
m paieys J0jeJBUSE) J8gqUINN WopUey
(g paauag
5 @ |
q62l —
| & Hao3 | eoeXISNY ||
S uonoung uonealaq Aey

=)
) —
S EL
© sisloweied| | —>| swuiobly uoneisusy ured Aay aTvT
T 003
~N
53
=
wn __ g VvSao3 PIHT
\ 8EL swyioBy simeubis (eudig
= anny
[\ plepuels
< 003 T o 52T 992-
= |Z7_svns || @ ssewms ||
m swyiobly yseH e.noes
«

—> G§5f_ S3v 9I51
m swyiobly Bunsydin oeWWAS
ﬁ
S sigloweled
_.M aydeibordlin] — per 003 £st vsd OTHT
= swiypoBy BunsydiD oud WWwASY
~ ozt
=
2
= swylob)y oiydeiboidAin
= IFL
—
>
«
~N
=
o
~N
&
[~W

US 2015/0121066 A1

Apr. 30,2015 Sheet 5 of 19

Patent Application Publication

see Lot

SINPON

66!

or or eoe
8INPOIN 8|INPON

8L > -7
P S

aseqgele(

— 8INPON

[7s]] paieys ¥eor
g - JonISS N

1ol

v SINPOW

or
SINPON

or
SINPOWN

v - Joneg

N

v8l

XIZL 19||0JJU0D) SOIAISS

TIZT uojed|ddy

€81

Jasn

Yl ainbi

US 2015/0121066 A1

Apr. 30,2015 Sheet 6 of 19

Patent Application Publication

e60c

abessall U]

Bie)
s0z il :H0d

Q8e¥:pPIyED:cae|
901 SS8Ippy dI

yriib:[ager:ppooiiyenzae]

10d: <-es
202 Hod:dI

LOIPAIBS-IOHUON-INGIN Al
902

gor

lonieg

BOT 19PIACId B0IAISS INZIN

Server Network Firewall

paAlgdal Lod: 4| €24n0S
0110d:d| Jonleg
Wi uss 19x98d 4dn/dOL

A

\ 602 esuodsey J

obessapy
80c

01z

OL/E:6cepB0a)eR Lo
$S8IPPY dI

€0c G¥ec) Mod
P3/G GG 1::80P0 8402

c0e $S3.PPY dI
-
Gpeel:[posG:5G1 1 80pR0:8102]
voc Hod:dl
BOLL

8UzyA1LO8PYPro :Bung Ainuep

0Lt
004498vvez | | :Auusp|

0L °InPonw

3IOMIBN SSOISIIM

col

00!

2 2inbi

US 2015/0121066 A1
J

0607 10d: 4| wouj asuodssy puag _‘
T
q/1e Ao
dleAlld JenleS yim asuodsey ubig
T
iy Aoy oLBWWAS Jo Aey o11gnd
- s|npoy Buisn uononnsu| 1dAioug
— _,
s
g 9I¢ 8SBQRIB(Ul BIRQ I0SUSS pI0daY
= STE A8 211aNd "POIN SS8I2JIM
«x BuIsn 8INPOW 4o Auap] AjiaA
v T
Yo
m bTE A8Y DLIBWIWAS IO A8 8lBAld
< lanieg Buisn ebesse |y 1dA10eQg
N 1
m.. £TE a|npoy wol) ebessapy aale0ay
< T
216 S8[NPON WOJj sebessa
Buiwoou| 10§ 110d:d| JOHUO _
T
— aseqgelep
ul sAay a1gnd ajnpojy pioday

¢ a4nbi4

Patent Application Publication

US 2015/0121066 A1

Apr. 30,2015 Sheet 8 of 19

Patent Application Publication

TagpT Aoy 91eALId!
1 N 1
90F 1 JaAlaS /Mo UBIS 1 905 208
IIIII | S AU S | _—— e e ==
| 8uipod 1 “ uoJINIIsu| “
I jpuueys _%<_ ' anpoN
L ———— pos R 4
1= ————— = 4
60z i 1oeled e
ssuodsay | € 7 ! pardAioug “\ r“\ Juswaspamowoy| Log
A [INT-Y WE T A W
1 | [- 1 //
1 1 hY
1 1 zETETEEEEEE S 3
1 1 N 1
H H ﬁ uaoL ANINI3S “
|||||| ! -———— |||II_I|||||I | F S ——
8uissadold | 90z Mnuspl | | ZEZT Ao TIT | Lop
dan 1 Jaalas puaddy 1 1 Aey /madAioug 1
L e d U d
L0¥ G0s £09

qie asuodsay subis Janieg PUB p,jpliONONASU] s1dAIoug Jeales

.............. oLy
4% 4 “ gil ¥o m QQV
i mhey ang ! TII fomm o .
I 8|npol Yoeuo | A3y 211and ‘poN I Bupod
(R <> e BAn1EUS | 1auueys !
Sty riy /M 508 SIMEUAIS | nonag |
POW LYIET lm e
Buissasoid uo(3anJisu| eieq /—\ 80z
uoNIIsU| < JETVEIN < pardAioug sjiqoiN < /—\ adessay
£2T 10250T 0¥ 0IT Anuap| Juissanold
A3y /madAag dINPOIAl peay dan
4
60¢ 0¥
1473 GlE

ofessop sldhioag pue Aluep| SSULIBA 19AISS

eg ainbiy

¥ 2inbi4

-
«
N=3
=3
=
-
~ ipalinbay
e
S BlE(J0SUSS /M Sabessa|y LEL \%x ollANd MON S|
v BUILIOdU| 10 1B 10 peaidx3 gz a1BouILeD
o~
2 zie
- ozs [#1p UORBWILUOD ULM 80z BOBSSOIN o€ BB0eH |
\—/
615 Z0S UoIoNIISU| 8NPoN /M pog Bleq peldAiou] Jeales
w sepn|ou| esuodsey aisum ‘8INPOIA 01 602 esuodsey pues
o ™
0 Y
o > gor ere perdAious ajnpop
= 815 ‘011 Aluep| 8NPON /m gog ebeSS8|N pug aaledey
= T
=
2] 18 80z 90BSSON || S1RINUBLINY
H T
=) — LLL A8} 011QNd PUB ‘921 SIsi8WERIRY
~ X601 91§ .
. 011 Auap| 8INPON /m goz abessa 1Sl aAledaYy
4 T
o
o 1 Mot AIOWSN 3|IIBIOALUON Ul IIRd SPI0D8Y pue
= ‘lled zLL Aoy 81eAld PUB LLL A8) 01|0Nd SaAlIaQ SINPOW
< T
vIs alempleH wouy gLt AllUsp| 8INPOW SpeaY SINPoON
\7
TT0L 15 /0Z SeSSelppy Jeniag ‘9z1 sieleWrlied ‘016 Aa)
) 101098 pa.teys mioL AIOWAN 3[I1B|OAUON Ul PI0d3Y
_ﬂ
419 _ Hun paloluoy ylim uche|elsu| pue uoingulsiq s|inpon _
\—/
TS 2/empieH 0} USHUAA
oL1 Anusp| 8iNPoA yum Bulinioeinue 8npo

qg @inbi4

Patent Application Publication

US 2015/0121066 A1

Apr. 30,2015 Sheet 10 of 19

Patent Application Publication

....................... eleg popodjeuueyd eor -)
Aoy ouIBWIWAS /m Buusydip oulewWAS - eleq paidAioug JoAleg
yr4s qirs vos

TIL 399m T ‘TILRZIVDS 94IND ‘9GZVHS
baup gAITUY

rgxsowered 9L

gog 1Ted A2y TMd4 MeN SATISJ :UOTIDONIFSUT BTNPOK z0¢

1
1
1
1
1
“
1
SUSYOL &— L0t “
1
1
1
1
i
1

- gp +04SMBS-IOUUON-INZIN A1up)
gezeelol/e6zepeayeR | glol vibiiagerippodiye0:cge|] woly
mam SN “oe giog 12"1%8d dan/dOL

01¢ SS3IpPY d|

—>

60z asuodsay

Z

I~
3y

<€

PP [08er:ppov:iye0gaet]

SEINES
gor

B9 ainbi4

Bleq pepog [suueyy 9oy

O1LE16ZEP BOOSBEIZ ot rioinsf el it~ butvinietieln et !
012 SSBIPPY di

riririlagey:ppoo:pe0:eae Lo L
V14 roc

1 1

1 1

1 1
' 1 1
, 1 1
' ' Aoy olBWWAS /m BuaydiD oulewwWAg — eleq paidAloug anpo '
m ' i) vl 0 “
m “ 0 sosxbsg Gz-eanjeasdusl elRg I0SULSE— P09 :
m “ GOT:FE:GOETIET0C/20/82 2300 €«— EP09 “
; : bAupgAITUY USYOL&— LOF !
" : 001499¥vYZZTT ‘wolde— (04 !
m “ TOIBAIDS—IOITUCK-WNZIN :OL < 902 “
: , pLp U1¥AdN !
H 1 —
“ ;) out [6ums Anuep ainpo] :Aiuap] |

£09 992V ¥EQT 1UNSHI3YD
Gr€ZL[:p0/5:G5F 1::89P0:8)02] ‘W0l

7705 19%98d dan/doL

gregl:[Posg:96Y 1:8ap0:8102]

J1/€:6CEP"BOGLBE S

Hod:dl

voc

80z abessap

SInpPony
1or

US 2015/0121066 A1

Apr. 30,2015 Sheet 11 of 19

Patent Application Publication

Z

o
N

Yy (887 pROIFE0:2ae L]

dl/E6SEp BOaLER | C
0LZ SSOIPDY d|

lan1eg
Sor

916

LZI0XToMOoyUBbag LOADNIWAYIZHZ IZHA,,

ElEJ PSPOD [BUUBYD 90F
(01s Aoy 181008 pateys (1) 1o gLt A8y areaud sinpow Joud (1) Buisn paubig)

:oan31eub TS dT “POW SOF

CRELOFCSLPERCYFOORP9LdUII0qT

TIIL ek T

/TIEQZIODS BDAIND

bauy g AT TUY
Z00

T0I2ATISG~T0F TUOK-WZI

FIF XEM OITdAd MEIN

‘9GZVYHS

IUDYOL &¥— L0V
:Roy otrand b
1 Ao oTTAndell)
:sxslsweaey€— 97)
oL «—— 902

v iyiagerippodye0:gael ol

20

pry 1BUMS Auspy sinpon] :Amusp

voc

Ge2L[:p/GiSSY 1:80P0:8J02] WO

gy 'oMoed dan/dol

S¥E21:[P02G:56% 1::80P0:8102]

Hoddl

roc

80z obesso|

qo ainbi-

SINPON
Ior

Yo
«
N=3
=3
=
Yo
H [lemalld
e YOl yiomioN
= MOV
W <
m .
Q “ S0z
wn " (uonew.yuon) o
- 1 — obessapy co_ymo__o_a,qV
1
q 1 (Uoewlyuon) — abessap Loz
= ' iy 802
Yo
cm MOV “
a < : (90 Bue
H bumas - Jojemay _Lo BMoY) oitwcm. mwcm
@ 902 <« 1EMOV) TOnAISul PO ((gro9 ereq
= ! 60g 9suodsay 10susg) — oz erepdn)
[90] | Cat
1 — abessa uoneolddy
" ' 102
— (e1epdn) - ebessey
K V' ey eoz €0z
2., 1 [easgy|
= 1
- > | Vem
o Bleq Josues I >
Ml av09 I ONIAHL
! (902 Buipes J01eNoY)
“ __ Z0SYonAsu| PO
111 A8y D11gNd @INPo - sbesssapy uoneolddy cos
€ > 102 YEEEE Y 262 89
8lBdlUBYINY pUB BAIBOSY uod: 4|
§kS 25 91§

[7727 voneoyddy |

ZeT losusg _ Ttor sor —
3

IOTENIOY weJiboid SET VTS JoAI8S UoI1eolddy

| p ompon [7T] aneon (][]
- / @Inbi4

002

Patent Application Publication

US 2015/0121066 A1

Apr. 30,2015 Sheet 13 0of 19

Sls

g ainbi4

Patent Application Publication

< (STLEA
AoV N 121 Jon1eg uoleoddy
Z0g Uononisu| 8inpoy UoIBULUOD 8S0|D 01 g$09 BlR(Q I0SUSS
ssuodsay spuss 5ot Jonas "69)
602 o8 MOV
alepdn - ebessepy ddy / Jajsuel]
b (1V4 102 Bled uondauuo) alndss
B co8
paysiulg
Jaydip ebueyn
pousiuly g
Jaydin ebueyn "
Alluap o1eolIllen i’ Amv_mr_wUC.mI
s08 > R
oBUELoxT Aoy 1UB1D uoneonusyiny §1.1°6°9)
DS - dnjeg
Uoq OlloH JoNIS UoIYBUUOY 8INJ3Z
108
1sonbay sjeoylien
abueyox3 Aoy laales
MLLL 1" (fey ang m) steoymien | 2CH
ar09 o||eH Jonlag
(ereq Josuasg) >
> OlIeH uslo _J
—obesss\ goz HTI
g0. uﬂ.
111 A9 2119nd SINPOW [eAISIUI IIBA goz
SIBONUSUINY PUB 8AI808Y
sASy 21|gng pue L1 9Is
BlRALId SBALIB(Q 8INPON
T 19]]011UCD IS0T oorUdU| ILZ1 uoneoddy
SINPOIN xgpp uonealddy
— | Pue 114 _
T0F | 921 0 N = CH] et
BINPON [H] s0+ 9zI Joasog uoneoyddy

008

US 2015/0121066 A1

Apr. 30,2015 Sheet 14 of 19

Patent Application Publication

FO0S Eleq paidAiou] Jealeg

Bumeg 101eNOY 902
- uonaNIISU| 9|NPONZ0S

eToMpreleg usyOL LOF

€09 992YEST (UNSHOIYD
voz 1/8VeEcL 'Ol 0L
£0¢ 88./2:01'€91°¢9'9le wold

q109 Weibereq 4an
80z osuodsay

£ay 211and Jealas uonedlddy Buisn
MLLL jzisuBl] BIBQ UOIDBULION 8IN08S
208

Buileg Jojenioy90s
- uondNIISU| BINPON 205

703 004489gvveel L Amuspl ggy

106 SYETHOL'E9L'2S'912 101
€06 YESES 2 62’89 (W01 M
z06 Weibeeqg dol

10z obessapy uoneoddy o2

gop eleq paidiioug sinpoly

ar09
Do GZ —J§L ¥ IOSUDS eiBeg

biwpgATTUY :USIOL pop

pip 2LYA4N

[Bung Amnusp| einpopy] ro6

A9y 21|aNnd Joaias uoneolddy Buisn
MLLL gisuel] BlR(UONOBUUOY) 8IN08S

cog ar09
Do GZ -I6L ¥ I0susg ieleq

004498vvee k1 -Anuepl it
poz HL¥A4N uorieorTddy

voz g0z H0OMOS-IONON-WEN :Anuep £06
20z 882/2:01'€91°25'912 01 ¢ €06 VEEEE ¥ C G2 89:01 ¢ 2
.H ppz H48YEECLTL0LL JWolS 106 SPECL01'€91°2G9lC wol4 % _
=) 1 - v 05
N v_ v elgg weibereq 4an zo6 Weibereq 401 B
RE ! 5 E
W - 80z SLESSON T0Z obesso uoneo|ddy s| ®
@
poL jlemaily 88//Z:01°€91°25'912 Lod: d| SPEZLI01'E91'25'91E ‘Hod:d]
OUIBWIWAS
20C 106
19]|0U0D iS0L eoela| TTZT uoneoyddy
SINPOA SINPO Xgor uolesl|ddy
10T 1
_ PISTVIS] 17| | o5 JanIag uoneolddy
6 Inbi m s [[

US 2015/0121066 A1

Apr. 30,2015 Sheet 15 of 19

Patent Application Publication

£00T

9001

S00T

00T

€001

2001

TOOT

\7

20 UOION.ISU| 8INPON UlM 602 9SUOASeY ,,2 PUSS

_/

o011 Alluap| SINPOW Ylm goZ oBessa|y 1XaN 8AIe08Y

o~

o011 Anusp| 8INPON YIIM Zog UONONIISU| 8|NPOJN 8AI8D8Y

\7

oLL Anusp| anpol
10} 111 SAB3 21|GNd BINPOY 10 $8118S 8AI8d8Y

\7

921 S19joWRIed |0 19S 2 UM 60Z 95U0dsaY | puss

_/

014 AUSp| 8INPOIA UM g0z oBeSSEIN (5| 9AI808Y

o~

921 S18)8WeIRd JO 18S | /MoLL Ausp)
9INPON 10} LLL A8y 21|gnd 8INPOW AlLUBA PUB BAI908Y

0} @inbi-

US 2015/0121066 A1

Apr. 30,2015 Sheet 16 of 19

Patent Application Publication

60TT

80TT

L0TT

90TT

SOTT

YOTT

€0TT

<OTT

TOTT

9601 Ao} B1BAl4 I8AIBS | Byl buisn
LZ1 18nleS uoneolddy 01 grog Ble(JOSUSS pussg

T

111 K3y 011aNd SINPON 2
Buisn gor B1RQ paldAious ainpoly 1dAIoeq

\7

111 Aoy o1gng
BINPOW s | Buisn AgLioA pue LLg Aoy 11N BINPOW & BAIB0DY

\7

921 SlalaWeled UM 60z 9SU0dsay 2 PUSS

T

o011 Auep| sinpoly sepnjoul 1ey) goz ebessei g eAeoeY

1T

agoL Koy s1eAlld JaAIsg 2 Buisn pessanold
905 einreulis eNbiq Jeales sepnjoul 1Bul 60z esuodsey | pues

T

Lt Ay olland 8INPOIA ;51
Buisn ot Aynuap| anpoy Joj sar aineubis [eubiq anpoy Ajep

T

011 Ausp) 8INPo SePNIoUl JBU) 802 9BESSBIN < | BAI808Y

T

9501 Aoy BJBAld 18AIOS |
B Buisn 1z 18A18S UONBDddy ylim LORO8ULOD 8108 Us!qeisT

L} 8Inbi4

—
«
o
o
<
~
609 110d
m 01/€:6CEL"B0QLRBE | g:SS8IPRY dI EZV lEme.1d
5 oiz rOI MIOMISN
m - epog dweisaw | |“
1 - o
M “ epgg dwelsswi | P 60c! vos OV “
@ | rLy MOV i
I “
I 508:012 110d.d| ©24N0S pug !
I oL Juss H
w 1 ZOg uonon.isu| 9NPo 8021 :
rm N “ 60¢ osuodsay i
~ _ “
—_ _ 609:01Z 1od: d] 82108 pug i
b 5 p €— L0CL v0L Buprep] Jajsuel] eleq
3 “ g0z SPFSSIN pug cos 102 obessey ddy "1 UOoI0BUUODY) 8INJ8G
7 “ rem | zos m e08
| """ uononysul sinpoly
v | 9021 —> i
= 1 L0/ ofiessa|y doy !
1
M,] 221 A8y DLIBWWAS H
»> B
..D.._ 1 £Z1 A8)| DB WIWAS '
< “m% ainpeudis reubig m_:uoz‘gv voct]
1
“ 90¢ a.neubis eubiq Jlenlag 44— €024 444 Aoy onand SINPON “ e
m 1 104 ghessspy ddy - cozt
1
= “ 609:012 1)0d: 4] 80IN0G 5| _H ozt :
= mmmmmomssmsmooesoooooe . i » L Log d
k> ! shoy| 211qnd pue T Iy A&y 211aNd 8INPOW 10zt r mes
= | ejeAud senusq eINPO L_ I 80z °BesseiN 1 H uondsuUU) 8INdsg
£ sie T 1o !
= p0Z 1od:d| 609:0Lz 1od.d| 20e 1od.d| 106 1od:d| 202 vodd)
.m
5 OIT oI5 138||0)1U0D) TS0T ooyl TIZT uoneaddy
= _ SINPON xgor uoneadd —
W g 101 RN rE
2 o0zt SINPOW . 1aMIS — — Jonies uoneo|ddy
: m oves [2} 2anbi
)
~N—
&
[~

—
«
o
&
<
~
509 '10d m
m 01/E:6CEP"BO0LBE | Z:SSBIPPY dI EZV Iema.id
s olz toL >JOMIBN
— . epog dweisawi | -
= - g B
P~ 1 erog dwejsswi | 602! MOV 1
w “ iy MOV < o "
1
= " i
| $09:01Z 110d:d| 82IN0S puZ H
1 o] Juas | Jajsuel] eleq
w 1 Z0g uoionAsy| 8|NPOR goct ' uondvuUUoY 8INdag
- 1
[“ 602 @suodsay — co8
M 1 c0S “
® “ g0gL —P UonoNASU 2INPO !
S I 10Z — obessepy ddy :
-] 1 !
= | I
wn “ 2081 —» |l0d — obessay "ddy !
509:01Z 1100: 4| 92IN0S pu2 1174 1
H " abessa|\ g - <202 -
S | 8oz P
] _ Ea
S " E?H_
on I 221 A8y DUl WWAS
= |60y omEUbS 210/ m_zuos_‘u_v rozk o
< « !
“ 906 aineubis [eNbig Jenies €— £0TL m dnieg
I 1 uolosuuo) aindes
g i _H zozi _ ~- 108
= “ €09:012 1100:d]| 80IN0G 5| H
< Rt bl :
8 U skey ongnd pue ! U L1 Asy oand 81npow ;v !
2 _ i Lozt _
= 1 eleAld SeAeq 8NP I g0z °Pessol sl !
£ s !)
= $0Z 1100:d] 609:0ig 11od.d| 20g vod:d| 106 1od.d| 20/ 1odd]
.m
m oIt 0is J8[|0uU0D 1S0L adeLa| ITZT uoneonddy
o= . SINPOIN Xcor uolyeol|dd =T
lw o 107 eV rt
oot aINPo ___ Jemne — Jonies uoned|ddy
2 mr oves o] [ow] €1 aunbi
=
Q@
~N—
&
[~W

US 2015/0121066 A1

Apr. 30,2015 Sheet 19 of 19

Patent Application Publication

co e 101 101 101 eoe 101 101 101
8INPOW 8INPOW a|npon V 9INPOW 8INPO sinpoly
N
YixIs
(er0g dwersewnl /M) piy —) 80 Iremaui
(puoosgs)
(208 uononisu| 8INPO /M) 602 01
(i) Yy 1 V¥
S0L S01
oee g - JoAISS V- 19MSS
_ 1601 9oe}I81U| uoieo)ddy _
(zos uononasu; (YUno<) 7

m_%o_\,:éna&|\ \|A__o&

2081

Y01 (pa1y.1)
osegele
SINPON PaIEUS <« (epog dweisswil /m) Loz
(4ausnes)
(zog uonoNNSU| 8INPOW /M) 90ZL —»
(1s114)
TTZT uoneoiddy _ _ TIZT uoiedyddy _
'Y X ZT 7T _ 1001
g - Joassg uoneoddy V - JaAI8g uoneolddy

00r!

71 @bl

US 2015/0121066 Al

SET OF SERVERS FOR
"MACHINE-TO-MACHINE"
COMMUNICATIONS USING PUBLIC KEY
INFRASTRUCTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The subject matter of this application is related to
the subject matter of U.S. patent application Ser. No. 14/023,
181, filed Sep. 10, 2013 in the name of John Nix, entitled
“Power Management and Security for Wireless Modules in
‘Machine-to-Machine’ Communications,” which is hereby
incorporated by reference in its entirety.

[0002] The subject matter of this application is also related
to the subject matter of U.S. patent application Ser. No.
14/039,401, filed Sep. 27, 2013 in the name of John Nix,
entitled “Secure PKI Communications for ‘Machine-to-Ma-
chine’ Modules, including Key Derivation by Modules and
Authenticating Public Keys,” which is hereby incorporated
by reference in its entirety.

[0003] The subject matter of this application is also related
to the subject matter of U.S. patent application Ser. No.
14/055,606, filed Oct. 16, 2013 in the name of John Nix,
entitled “Systems and Methods for ‘Machine-to-Machine’
(M2M) Communications Between Modules, Servers, and an
Application using Public Key Infrastructure (PKI),” which is
hereby incorporated by reference in its entirety.

BACKGROUND
[0004] 1. Technical Field
[0005] The present methods and systems relate to commu-

nications between a set of servers and a plurality of modules,
and more particularly, to methods and systems for supporting
secure, efficient, and flexible communications using Internet
Protocol networks, where a server can communicate with
both a “machine-to-machine” module and an application.
[0006] 2. Description of Related Art

[0007] The combination of “machine-to-machine” (M2M)
communications and using low-cost sensors, Internet con-
nections, and processors is a promising and growing field.
Among many potential benefits, M2M technologies allow the
remote monitoring and/or control of people, assets, ora loca-
tion where manual monitoring is not economic, or costs can
be significantly reduced by using automated monitoring as
opposed to manual techniques. Prominent examples today
include vending machines, automobiles, alarm systems, and
remote sensors. Fast growing markets for M2M applications
today include tracking devices for shipping containers or
pallets, health applications such as, but not limited to, the
remote monitoring of a person’s glucose levels or heartbeat,
monitoring of industrial equipment deployed in the field, and
security systems. Many M2M applications leverage either
wired Internet connections or wireless connections, and both
types of connections continue to grow rapidly. M2M appli-
cations may also be referred to as “the Internet of things”.
[0008] M2M communications can provide remote control
over actuators that may be connected to a M2M device, such
as, but not limited to, turning on or off a power switch, locking
or unlocking a door, adjusting a speed of a motor, or similar
remote control. A decision to change or adjust an actuator
associated with an M2M device can utilize one or a series of
sensor measurements. An M2M device may also be referred
to as a “wireless module” or also simply a module. As one

Apr. 30, 2015

example, if a building or room is too cold, then temperature
can be reported to a central server by an M2M device and the
server can instruct the M2M device to turn on a switch that
activates heat or adjusts a thermostat. As the costs for com-
puter and networking hardware continue to decline, together
with the growing ease of obtaining either wired or wireless
Internet access for small form-factor devices, the number of
economically favorable applications for M2M communica-
tions grows.

[0009] Many M2M applications can leverage wireless net-
working technologies. Wireless technologies such as, but not
limited to, wireless local area networks and wireless wide
area networks have proliferated around the world over the
past 15 years, and usage of these wireless networks is also
expected to continue to grow. Wireless local area network
(LAN) technologies include WiFi and wireless wide area
network (WAN) technologies include 3" Generation Partner-
ship Project’s (3GPP) 3™ Generation (3G) Universal Mobile
Telecommunications System (UMTS) and 4” Generation
(4G) Long-term Evolution (LTE), LTE Advanced, and the
Institute of Electrical and Electronics Engineers’ (IEEE) 802.
16 standard, also known as WiMax. The use of wireless
technologies with “machine-to-machine” communications
creates new opportunities for the deployment of M2M mod-
ules in locations without fixed-wire Internet access, but also
creates a significant new class of problems that need to be
solved.

[0010] First, many wireless wide-area networking stan-
dards were designed and optimized for mobile phones, which
may be continuously connected to the network during the day
(i.e. non-sleeping hours for most subscribers while they may
charge phones at night), in order to receive inbound phone
calls and messages. In this case, the radio may be in an idle
state but utilizing discontinuous reception, but the radio is still
active and drawing power in order to receive and process
incoming signaling from the network such as, but not limited
to, a Public Land Mobile Network (PLMN). A need exists in
the art to make wireless M2M communications efficient in
order to conserve battery life and radio-frequency spectrum
resources.

[0011] Since the packets transmitted and received by a
wireless module will likely traverse the public Internet for
many applications, a need exists in the art to (i) prevent
eavesdropping at intermediate points along the path of pack-
ets transmitted and received, (ii) allow endpoints to verify the
identity of the source of packets received. A need exists in the
art for a wireless module and a monitoring server to leverage
established public key infrastructure (PKI) techniques and
algorithms. A need exists in the art for communication to be
secured without requiring the established, but relatively pro-
cessing, bandwidth, and energy intensive security protocols,
such as, but not limited to, IPSec, Transport Layer Security
(TLS), and Secure Socket Layer (SSL) between a module and
a server. The establishment of theses links requires extra
overhead in the form of packet handshakes and/or key
exchanges at levels including the network and transport layer
of the traditional Open Systems Interconnection (OSI)
model.

[0012] MZ2M applications frequently require small, peri-
odic messages sent between a wireless module and a moni-
toring server, where the wireless module sleeps between the
messages. M2M applications may leverage wired modules as
well which can also sleep between messages. During rela-
tively long periods of sleep such as 30 minutes or more, the a

US 2015/0121066 Al

wireless or wired network with intermediate firewalls will
often tear down the network and/or transport layer connec-
tions, which means the wireless module would need to re-
negotiate or reestablish the secure tunnels each time the wire-
less module wakes and seeks to send a relatively small
message to a server. A need exists in the art for supporting
established security protocols with an external application,
without requiring them to be implemented on a module due to
the relatively long periods of sleep and other complexities
from inactivity in the module.

[0013] Next, a need exists in the art for the communication
between a module and a monitoring server to be highly
energy and bandwidth efficient in order to reduce energy
consumption over the operating lifetime of a module. A lim-
iting factor for a wireless module for M2M applications
deployed orinstalled into the field is the lifetime of the battery
of'the wireless module. If the transmission techniques for the
wireless module are not energy efficient, the system will
require more frequent manual intervention for the replace-
ment or recharging of batteries. The energy saving techniques
for transmitting and receiving data should leverage estab-
lished Internet protocols. For wired modules operating for
years or decades, a significant cost will be the power con-
sumed from land-line power.

[0014] Further, a need exists in the art for the secure, energy
efficient communications that support Internet protocols to
support intermediate firewalls that may exist along the path of
packets sent and received by both a wireless module and a
monitoring server. Without support for communication
through an intermediate firewall, packets may be blocked by
the firewall and the M2M application would not properly
function in this case. Currently, there are dozens of manufac-
turers and form-factors of modules, and this diversity will
continue to increase for the foreseeable future. By leveraging
standards such as the Internet and PKI technologies, an effi-
cient, secure, and highly scalable system of communicating
could support the wide variety of modules.

[0015] In addition, the utilization of PM technologies in
modules can increase security, but a number of technical
challenges must be addressed. These challenges increase if a
deployed module required updated private/public key pairs
after operation begins. The typical paradigm of “swapping
outa SIM card” (which also depend on a pre-shared secret key
Ki embedded in the card) with mobile phones may not be
applicable or cost effective with modules, where swapping
out the SIM card could be burdensome. A need exists in the art
to allow for a deployed module to securely and automatically
begin using new private and public keys (i.e. without human
intervention such as swapping out a SIM card). Newer PKI
technologies may offer a wide variety of algorithms for
ciphering with public keys, and a need exists in the art for the
utilization of new public and private keys to support the wide
variety of algorithms, even after a module has been installed.
A need exists in the art for a scalable and secure method of
associating a module identity with a module public key, when
the module begins utilizing a new public key. A need exists in
the art for a module to efficiently be able to utilize multiple
public/private key pairs at the same time, such as with differ-
ent service providers or different applications simulta-
neously.

[0016] Another desirable feature is for an M2M module to
efficiently and securely communicate with applications.
Applications can include a web-based interface for users to
view status or input settings for a plurality of modules, and the

Apr. 30, 2015

modules may be associated with an M2M service provider.
However, a set of PKI algorithms, keys, and communication
protocols within used by the module for efficient communi-
cations module may not be directly compatible with an appli-
cation. As one example, the application on a web server may
prefer to use a transport layer security (TLS) protocol with
transmission control protocol (TCP) datagrams, while for
energy efficiency and to conserve battery life, an M2M mod-
ule may prefer to use user datagram protocol (UDP). A need
exists in the art for an intermediate server to securely translate
secure communications to/from a module into secure com-
munication from/to an application. As another example, it
would be desirable for a module to support elliptic key cryp-
tography (ECC), while the application may support RSA-
based cryptography, and therefore a need exists in the art for
a server to securely translate between the two cryptographic
methods, thereby allowing the M2M module to communicate
with the application.

[0017] And other needs exist in the art as well, as the list
recited above is not meant to be exhaustive but rather illus-
trative.

SUMMARY

[0018] Methods and systems are provided for secure and
efficient communication using a server to communicate with
modules and an application. The modules and application can
support “Machine to Machine” communications. The meth-
ods and systems contemplated herein can also support other
applications as well, including mobile phone handsets con-
necting to a wireless network. An objective of the invention is
to address the challenges noted above for securing the deploy-
ment of modules that utilize PKI algorithms and keys, as well
as increasing efficiency in order to reduce power consump-
tion, including extending the battery life of a module, if
present. More efficient communication can also conserve
valuable radio-frequency spectrum, among other benefits.
Using a server for secure and reliable communication of data
between an application and a module can increase the value
and usefulness of modules for a user.

[0019] An exemplary embodiment may take the form of
methods and systems for a server to securely receive data
from a module and forward the data to an application server,
and an application may operate on the application server. The
application can include a graphical user interface for a user to
visually see reports and/or control modules. The module,
server, and application can preferably include a set of cryp-
tographic algorithms for use in sending and receiving data.
The cryptographic algorithms can include asymmetric
ciphering algorithms, symmetric ciphering algorithms,
secure hash algorithms, digital signature algorithms, key pair
generation algorithms, a key derivation function, and/or a
random number generator.

[0020] The module can utilize the set of cryptographic
algorithms to securely generate or derive a module private key
and a module public key. The module private key and module
public key can be generated either (i) upon initial use or
installation of the module, or (ii) at a subsequent time after
initial use such as when a new set of key pairs are required or
are useful for continued operation of the module. After deriv-
ing the module public key and module private key, the module
private key is preferably recorded in a secure or protected
location in a nonvolatile memory within the module. In one
embodiment, the module may then utilize a recorded pre-
shared secret key to authenticate with a server that also

US 2015/0121066 Al

records or has access to the pre-shared secret key and the
module identity. The authentication could comprise either
using message digest with the pre-shared secret key, or using
the pre-shared secretkey in processing a symmetric ciphering
key, and the authentication may also utilize a second key
derived by both the module and the server using the pre-
shared secret key. After authentication, the server can authori-
tatively record the derived module public key with the module
identity in a database. Thus, the use of a pre-shared secret key
can ensure the submitted module public key is validly asso-
ciated with the module and module identity.

[0021] The server can (i) include a private key associated
withthe server, and (ii) receive the derived module public key.
The server public key can leverage established public key
infrastructure (PKI) standards, such as, but not limited to,
X.509 v3 certificates and RSA or elliptic curve cryptography
(ECC) algorithms and include a digital signature from a cer-
tificate authority. The server can use a module controller and
an operating system plus a connection to the Internet to moni-
tor a socket for incoming messages from a module. After
receiving the module public key, including potentially after a
period of sleep or dormancy by the module, the server can
receive a message, where the message includes a module
identity and a module encrypted data. The module encrypted
data can include a server instruction, a security token, and
additional data such as, but not limited to, a sensor measure-
ment. The server can decrypt the module encrypted datausing
the received module public key and extract plaintext data
from the module encrypted data.

[0022] The server can establish a secure connection with
the application server using a secure connection setup, which
could comprise the initial handshake messages for a trans-
port-layer security protocol such as, but not limited to, trans-
port layer security (TLS) or IPSec. The secure connection
setup can include the transfer of a server public key and an
application server public key. The server can send an appli-
cation message to the application server using a secure con-
nection data transfer, where the application message includes
data received from the module such as, but not limited to, a
sensor measurement or sensor data. The server can use (i) an
RSA-based asymmetric ciphering algorithm and first server
public key with the application server to securely transfer a
first symmetric key to the application server, and (ii) an ECC-
based asymmetric ciphering algorithm and second server
public key with the module to securely transfer a second
symmetric key to the module. In an exemplary embodiment
the server may also preferably use a transmission control
protocol (TCP) with the application server and a user data-
gram protocol (UDP) with the module. The application mes-
sage to the application server can include a server identity, an
encrypted update instruction, and the sensor data. The sensor
data may also include a sensor identity. The server can use a
first Internet protocol address and port (IP:port) number for
receiving the message from the module and a second IP:port
number for sending the application message to the applica-
tion server. The application server can record the sensor data
in an application database for subsequent processing and
analysis for a user or other business or commercial needs.

[0023] In another embodiment, the module may be
deployed within a wireless network such as, but not limited
to, a4G LTE network or a WiFi network, and the module may
comprise a wireless module. The module can change state
between a sleep state and an active state, wherein the sleep
state may utilize a few milliwatts or less and the active state,

Apr. 30, 2015

including transmission of radio signals, may utilize several
hundred milliwatts of power or more. After being installed
next to a monitored unit, the wireless module can wake from
a sleep or dormant state, utilize a sensor to collect data asso-
ciated with the monitored unit, connect to the wireless net-
work and the Internet, and send the sensor data to a server.
During an active period, the module can use a UDP IP:port
number to both send a message to the server and receive a
response to the server. The message as a UDP datagram can
be a UDP Lite datagram and with a checksum only applied to
the packet header. A UDP Lite datagram with sensor data can
include channel coding for the body of the datagram to miti-
gate the effect of bit errors. Or, a regular UDP packet could be
sent in multiple copies in order to provide forward error
correction.

[0024] Inanother embodiment of the present invention, the
application server may send an application message to the
server using a secure connection data transfer. The applica-
tion message could be encrypted using a first server public
key and could include a module identity and a module instruc-
tion. The module instruction can include an actuator setting,
and also optionally an actuator identity (since the module
may include multiple actuators). The server can decrypt
encrypted data within the application message and record the
module identity and module instruction in memory or a mod-
ule database. Since the module can transition between periods
of sleep and active states to conserve power, after receiving
the application message the server can wait until a next mes-
sage is received from the module with the module identity
before sending the module instruction in a response. After
waiting for the next message, the server can send the module
instruction to the module in a server encrypted data using a
second server public key. The first and second server public
keys can use different cryptographic algorithms that are not
directly compatible (i.e. the first server public key could be
RSA-based and the second server public key could be ECC-
based).

[0025] Inanotherembodiment, the server can securely send
the module a set of cryptographic parameters, where the set of
cryptographic parameters includes values to define an equa-
tion for an elliptic curve. The values could comprise constants
and variables such that the module can calculate a new elliptic
curve, and the elliptic curve can be different than standard,
published curves. The set of cryptographic parameters could
be sent from the server to the module in a server encrypted
data, where the server encrypted data was processed using
any of (i) a first module public key, (ii) a symmetric key, and
(iii) a shared secret key. The module can use the set of cryp-
tographic parameters, a random number generator, and a key
generation function within a cryptographic algorithms in
order to generate a new key pair, which could comprise a
second module public key and a second module private key.
The module can securely and/or authoritatively send the sec-
ond module public key to the server, where the security
includes the use of the first module public key and/or the
shared secret key.

[0026] Continuing with this embodiment, after the server
confirms the proper receipt of the second, derived module
public key in a response message, the server and the module
can begin secure communications between them using the
second module public key. By using this exemplary embodi-
ment, security can be further increased with the server and
module using an elliptic curve that can be unique, non-stan-
dard, or defined between them and security therefore

US 2015/0121066 Al

increased. In this exemplary embodiment, the parameters to
define the elliptic curve equation are sent securely to the
module, so an observer along the flow of data could not
observe the elliptic equation being used with a public key.

[0027] Inyet another embodiment, the server can receive a
first message with a module identity and a module encrypted
data, where the first module encrypted data includes a first
sensor measurement. The server can use a first module public
key associated with a first module public key identity to
decrypt the first module encrypted data. As one example, (a)
the first module encrypted data could be ciphered with a
symmetric key, and (b) the symmetric key could have been
communicated using the first module public key (including
using the first module public key to verify a module digital
signature in a session or flow of packets where the symmetric
key was transferred), and therefore (c) the module encrypted
data could be encrypted using the first module public key. The
server can also use a first server public key to decrypt the first
module encrypted data, such as, but not limited to, the sym-
metric key being derived using both the first module public
key and the first server public key and a key derivation func-
tion within a cryptographic algorithms. The server can extract
the first sensor measurement and send the data to an applica-
tion server in an application message. The application mes-
sage could be encrypted using a second server public key. The
first and second server public keys can be different because
they could each be associated with a different algorithm or
defining equation.

[0028] Continuing with this embodiment, the server can
send a module instruction and a set of cryptographic param-
eters to the module, where the module is instructed to derive
a new set of keys, and the module can subsequently derive a
second module public key and a second module private key
after receiving the module instruction. The module can then
send the second module public key, a second module public
key identity, and the module identity to the server. The server
can receive a second module encrypted data that includes a
second sensor data, where the second sensor data is encrypted
using the second module public key. As one example, (a) the
second module encrypted data could be ciphered with a sym-
metric key, and (b) the symmetric key could have been com-
municated using the second module public key (including
using the second module public key to verify a module digital
signature in a session where the symmetric key was trans-
ferred), and therefore (c) the module encrypted data could be
encrypted using the second module public key. The server can
extract the second sensor data using the second module public
key. The server can use the second server public key to send a
second application message with the second sensor data to the
application server. Note that the module public key can
change, but both (i) the second server public key used with the
application server and also (ii) keys associated with the appli-
cation server did not change. In this manner according to this
embodiment, a module can derive a new public and private
key while a server and application server can continue to
communicate using existing public and private keys.

[0029] In another embodiment, a system supporting M2M
communications can include a set of application servers, a set
of servers, and a set of modules. The set of servers can record
and query data from a shared module database. At least one of
the application servers can process or originate a module
instruction, and send the module instruction with a module
identity to the shared module database. A module with the
module identity may wake from a dormant state and send a

Apr. 30, 2015

message with a module identity and a module encrypted data
to a server, where the server was a member of the set of
servers. Upon receiving the message and verifying the mes-
sage originated from a module with the module identity, the
server can poll the shared module database using the module
identity. The shared module database can return the module
instruction that was recorded by the application server. The
server can send the module instruction to the module with the
module identity in a response. Upon executing the module
instruction, the module can send a confirmation with a times-
tamp to the server in a module encrypted data. The server can
then send the timestamp and a module identity in an applica-
tion message to the application server, and in this manner the
application server can determine a time when the module
instruction was processed by the module.

[0030] Inanexemplary embodiment, a module with a mod-
ule identity can derive its own public and private keys after
distribution of the module using a set of cryptographic param-
eters. A set of servers can receive a message that uses a
module identity, where the module identity can be verified
using at least one of a module digital signature and a shared
secret key. The set of servers can send the module with the
module identity the set of cryptographic parameters. Over
time, the module can use at least a subset of the cryptographic
parameters to derive multiple pairs of module public and
private keys. Over time, the server can receive a series of
module public keys with the module identity and use a pre-
vious module public key in the series to verify and/or authen-
ticate a message with a module public key.

[0031] These as well as other aspects and advantages will
become apparent to those of ordinary skill in the art by read-
ing the following detailed description, with reference where
appropriate to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] Various exemplary embodiments are described
herein with reference to the following drawings, wherein like
numerals denote like entities.

[0033] FIG. 1a is a graphical illustration of an exemplary
system, where a server and a module connect to the Internet,
in accordance with exemplary embodiments;

[0034] FIG. 1bis a graphical illustration of hardware, firm-
ware, and software components for a module, in accordance
with exemplary embodiments;

[0035] FIG. 1cis a graphical illustration of hardware, firm-
ware, and software components for a server, in accordance
with exemplary embodiments;

[0036] FIG. 1 d is a graphical illustration of hardware,
firmware, and software components for an application server,
in accordance with exemplary embodiments;

[0037] FIG. 1e is a graphical illustration of components
within a module, in accordance with exemplary embodi-
ments;

[0038] FIG. 1fis a graphical illustration of components
within a server, in accordance with exemplary embodiments;
[0039] FIG. 1 gis a graphical illustration of components in
a set of cryptographic algorithms, in accordance with exem-
plary embodiments;

[0040] FIG. 1/ is a graphical illustration of an exemplary
system that includes a user, an application, a set of servers,
and a set of modules, in accordance with exemplary embodi-
ments;

US 2015/0121066 Al

[0041] FIG. 2 is a graphical illustration of an exemplary
system, where a module sends a message to a server, and
where the server responds to the message, in accordance with
exemplary embodiments;

[0042] FIG.3isaflow chartillustrating exemplary steps for
a server to receive a message from a module, in accordance
with exemplary embodiments;

[0043] FIG. 4 a is a flow chart illustrating exemplary steps
for a server to process a message, including verifying a mod-
ule’s identity and decrypting data, in accordance with exem-
plary embodiments;

[0044] FIG. 5a is a flow chart illustrating exemplary steps
for a server to process a response for a module, including
sending and signing a module instruction, in accordance with
exemplary embodiments;

[0045] FIG. 56 is a flow chart illustrating exemplary steps
for a server to communicate with a module that has derived a
public key and private key, in accordance with exemplary
embodiments;

[0046] FIG. 6a is a simplified message flow diagram illus-
trating an exemplary message received by a server, and an
exemplary response sent from the server, in accordance with
exemplary embodiments;

[0047] FIG. 6b is a simplified message flow diagram illus-
trating an exemplary message received by a server, wherein
the message includes a derived module public key, in accor-
dance with exemplary embodiments;

[0048] FIG. 7 is a simplified message flow diagram illus-
trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments;

[0049] FIG. 8 is a simplified message flow diagram illus-
trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments;

[0050] FIG.9 is a simplified message flow diagram illus-
trating exemplary data transferred between (i) a server and an
application and between (ii) a server and a module, in accor-
dance with exemplary embodiments;

[0051] FIG. 10 is a flow chart illustrating exemplary steps
for a set of servers to communicate with a module, in accor-
dance with exemplary embodiments;

[0052] FIG. 11 is a flow chart illustrating exemplary steps
for a set of servers to communicate with a module and an
application server, in accordance with exemplary embodi-
ments;

[0053] FIG. 12 is a simplified message flow diagram illus-
trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments;

[0054] FIG. 13 is a simplified message flow diagram illus-
trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments;

[0055] FIG. 14 is a graphical illustration of an exemplary
system that includes a set of application servers, a set of
servers, and a set of modules, in accordance with exemplary
embodiments.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS OF THE INVENTION

[0056] FIG.1a
[0057] FIG. 1a is a graphical illustration of an exemplary
system, where a server and a module connect to the Internet,

Apr. 30, 2015

in accordance with exemplary embodiments. The system 100
includes a module 101 operating within a wireless network
102. System 100 can also include a module provider 109, an
Internet 107, and an M2M service provider 108, a certificate
authority 118, and a monitored unit 119. M2M service pro-
vider 108 can include a server 105. System 100 is illustrated
without specific packet transmissions between module 101
and M2M service provider 108. Examples of the communi-
cations and messages pertaining to the present invention will
be illustrated in later Figures. As contemplated herein,
machine-to-machine communications may comprise com-
munication between a module 101 and a server 105, such that
data can be transferred between the two with minimal manual
intervention, although manual intervention can be required to
set up system 100 and any occasional manual maintenance
required. As contemplated herein, machine-to-machine com-
munications may also be referred to as “the Internet of things™
(IoT). Also note that module 101 may comprise a wireless
module, such that module 101 can communicate with wire-
less network 102 using a radio and an antenna. A wireless or
a wired configuration for module 101 can be utilized in the
present invention.

[0058] If module 101 operates as a wireless module, mod-
ule 101 and wireless network 102 can communicate using a
base station 103. Module 101 and wireless network 102 can
utilize a variety of wireless technologies to communicate,
including WiFi, WiMax, a 2nd generation wireless wide area
network (WAN) technology such as, but not limited to, Gen-
eral Packet Radio Services (GPRS) or Enhanced Data rates
for GSM Evolution (EDGE), 3rd Generation Partnership
Project (3GPP) technology such as, but not limited to, 3G, 4G
LTE, or 4G LTE Advanced, and other examples exist as well.
A wired module 101 can connect to the Internet 107 via a
wired connection such as, but not limited to, an Ethernet, a
fiber optic, or a Universal Serial Bus (USB) connection (not
shown).

[0059] Generally, the communication techniques described
herein can be independent of the network technologies uti-
lized at the physical and data-link layers, so long as the
underlying network provides access to the Internet 107 and
supports Internet Protocols (IP). The Internet 107 can be an
IPv4 or an IPv6 packet-switched based network that utilizes
standards derived from the Internet Engineering Task Force,
such as, but not limited to, RFC 786 (User Datagram Proto-
col), RFC 793 (Transmission Control Protocol), and related
protocols. The Internet 107 can be the public Internet com-
prising globally routable IP addresses, or a private network
that utilizes private IP addresses. Although Internet 107 is
illustrated as the globally routable public Internet in FIG. 1,
Internet 107 could also be a private Internet that is (i) not
globally routable and (ii) only accessible to authorized mod-
ules and servers. As one example of a private Internet 107,
Internet 107 could use private IP addresses for nodes on the
network, and in this case Internet 107 could be referred to as
an intranet or private network. Alternatively, Internet 107
could be a private network layered on top of the publicly
routable Internet via secured and encrypted connections. The
specific numbers for IP addresses and port numbers shown in
FIG. 1 and other figures are illustrative and any valid IP
address or port number can be used, including an IPv4 and an
IPv6 address.

[0060] When operating in a wireless network configura-
tion, module 101 can access the Internet 107 via the wireless
network 102. In the wireless network configuration, module

US 2015/0121066 Al

101 can be a wireless handset, a cellular phone, a smartphone,
atablet computer, a laptop, a computer with a radio, a tracking
device, or a circuit board with a radio that accesses wireless
network 102. Examples of wireless modules that utilize a
wireless WAN such as, but not limited to, 2G and 3G net-
working technologies include the Motorola® (G24-1 and
Huawei® MC323. Example manufacturers of wireless mod-
ules in 2012 include Sierra Wireless® and Telit®. In a wired
configuration (not shown), module 101 can be a computer,
security camera, security monitoring device, networked con-
troller, etc. A more detailed depiction of exemplary compo-
nents of a module 101 is included in FIG. 14 and FIG. 1e
below. Module 101 could also comprise a “point of presence”
payment terminal, such that a sensor 101/ associated with
module 101 could collect payment information such as, but
not limited to, an account number from a credit card or similar
payment card. Module 101 could communicate with the pay-
ment card via a magnetic reader or near-field wireless com-
munications, and in this case the magnetic reader or antenna
for near-field communications can function as a sensor. Mod-
ule 101 could also operate as a “smartcard” such that an end
user presents module 101 to merchants for payments.

[0061] Wireless network 102 may comprise either a wire-
less local area network (LAN) such as, but not limited to, an
802.11 WLAN, Bluetooth, or Zigbee among other possibili-
ties, and module 101 operating in wireless mode could com-
municate with a base station 103 of a wireless network 102
using a radio and an antenna. Wireless network 102 could
operate as a Mode II device according to FCC Memorandum
Opinion and Order (FC-12-36) and related white space regu-
lation documents. If module 101 supports IEEE 802.15.4,
then wireless network 102 could be a Zigbee network, an
ISA100.11a standards-based network, or a 6LoWPAN net-
work as described by IETF RFC 4944. Other possibilities
exist as well for the wireless technology utilized by a wireless
network 102 and module 101, operating in a wireless mode,
without departing from the scope of the present invention.

[0062] Module 101 can collect data regarding a monitored
unit 119 and periodically report status to an M2M service
provider 108 or a server 105. Examples of a monitored unit
119 can include a vending machine, an alarm system, an
automobile or truck, a standard 40-foot or 20-foot shipping
container, or industrial equipment such as, but not limited to,
a transformer on an electrical grid or elevator in a building.
Additional examples of a monitored unit 119 include can also
include a pallet for shipping or receiving goods, an individual
box of pharmaceuticals, a health monitoring device attached
to a person such as, but not limited to, a pacemaker or glucose
monitor, and a gate or door for opening and closing. Other
examples exist as well without departing from the scope of
the present invention. Module 101 can utilize a sensor to
measure and collect data regarding a parameter of monitored
unit 119 such as, but not limited to, temperature, physical
location potentially including geographical coordinates from
a Global Positioning System (GPS) receiver, radiation,
humidity, surrounding light levels, surrounding RF signals,
weight, vibration and/or shock, voltage, current, and/or simi-
lar measurements.

[0063] Asillustrated in FIG. 1a, wireless network 102 may
include a wireless network firewall 104 and M2M service
provider 108 may include a server network firewall 124.
These firewalls may be used to secure communication at the
data link, network, transport, and/or application layers of
communications using the Internet 107. Firewalls 104 and

Apr. 30, 2015

124 could perform network address translation (NAT) routing
or operate as symmetric firewalls, and selectively filter pack-
ets received through Internet 107 in order to secure system
100. The firewall functionality of firewalls 104 and 124 could
be of many possible types, including a symmetric firewall, a
network-layer firewall that filters inbound packets according
to pre-determined rules, an application-layer firewall, or a
NAT router, as examples. Although a single firewall 104 and
124 is illustrated in wireless network 102 (or a wired network
102 or simply “network 102”") and with M2M service pro-
vider 108, respectively, firewall 104 and 124 may each com-
prise multiple firewalls that operate in conjunction and the
combined operation may be considered a single firewall 104
and 124, respectively. Firewall 104 and/or firewall 124 can
include a firewall port binding timeout value 117 (illustrated
in FIG. 2), which can represent the time allowed for an
inbound packet from the Internet 107 to pass through firewall
104 or firewall 124 after module 101 or server 105, respec-
tively, sends a packet out. Firewall port binding timeout value
117 may be determined on a per-protocol basis, such as an
exemplary time of 60 seconds for UDP packets and 8 minutes
for TCP packets, although other time values for a firewall port
binding timeout value 117 are possible as well. Inbound pack-
ets from Internet 107 to module 101 may be dropped by
firewall 104 after a time exceeding firewall port binding tim-
eout value 117 has transpired since the last packet transmitted
by module 101.

[0064] According to a preferred exemplary embodiment,
module 101 may preferably record a module private key 112.
As described in additional figures below, module 112 can
generate a key pair comprising a module private key 112 and
a module public key 111, where module private key 112
resides within module 101 and may not be shared or trans-
mitted to other parties. Alternatively, the present invention
also contemplates that module 101 does not derive its own
module private key 112, and rather module private key 112 is
securely loaded or transmitted to module 101. Module 101
may also be associated with a module provider 109. Module
provider 109 could be a manufacturer or distributor of module
101, or may also be the company that installs and services
module 101 or associates module 101 with monitored unit
119. Module provider 109 can record a module public key
111 and a certificate 122 (illustrated below in FIG. 1 e) for
module 101. Module public key 111 may be associated with
a module public key identity 111a, which could be an iden-
tifier of module public key 111.

[0065] Inembodiments, a module 101 may utilize multiple
module public keys 111 over the lifetime of module 101
(including multiple corresponding module private keys 112),
and module public key identity 111a can be used to select
and/or identify the correct module public key 111. Module
public key identity 111a could be a string or sequence number
uniquely associated with module public key 111 for a given
module 101 (i.e. module public key identity 111a does not
need to be globally unique). As illustrated in FIG. 1a, module
public key identity 111a may preferably not be included in the
string or number comprising module public key 111, but
rather associated with the string or number comprising mod-
ule public key 111, and in this case the two together (module
public key identity 111a and the string or number for module
public key 111) can refer to module public key 111 as con-
templated herein.

[0066] The module public key 111 can optionally be signed
by a certificate authority 118 in order to confirm the identity

US 2015/0121066 Al

of module 101 and/or the identity of module provider 109.
Module provider 109 can also function as a certificate author-
ity 118 for module 101. Thus, the validity of module public
key 111, possibly recorded in a certificate 122 (illustrated in
FIG. 1e) could be checked with module provider 109, and the
wireless module provider’s 109 provider public key 120
could be checked against certificate authority 118. Other con-
figurations for signing public keys and using certificates with
public keys are possible as well without departing from the
scope of the present invention.

[0067] Public keys and private keys as contemplated in the
present invention, including module public key 111 and mod-
ule private key 112 and additional keys described herein, may
leverage established standards for Public Key Infrastructure
(PKI). Public keys may be formatted according to the X.509
series of standards, such as, but not limited to, X.509 v3
certificates, and subsequent or future versions, and these keys
may be considered cryptographic keys. The keys can support
standards such as, but not limited to, the International Orga-
nization for Standardization (ISO) ISO/IEC 9594 series of
standards (herein incorporated by reference) and the Internet
Engineering Task Force (IETF) RFC 5280 titled “Internet
X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile” (herein incorporated by ref-
erence), including future updates to these standards.

[0068] Module public key 111 and module private key 112,
as well as the other private and public keys described within
the present invention, could be generated using standard soft-
ware tools such as, but not limited to, Openssl, and other tools
to generate public and private keys exist as well. Public and
private keys as contemplated herein could be recorded in a file
such as, but not limited to, a *.pem file (Privacy-enhanced
Electronic Mail), a file formatted according to Basic Encod-
ing Rules (BER), Canonical Encoding Rules (CER), or Dis-
tinguished Encoding Rules (DER), or as text or binary file.
Other formats for public and private keys may be utilized as
well, including proprietary formats, without departing from
the scope of the present invention. As contemplated herein, a
key may also comprise either a public key or a private key. A
public key as contemplated herein may also be considered a
certificate or a public certificate. A private key as contem-
plated herein may also be considered a secret key.

[0069] Other configurations besides the one illustrated in
FIG. 1a are possible as well. Server 105 could reside within
wireless network 102 in a data center managed by wireless
network 102. Wireless network 102 could also operate as a
module provider 109. Although a single module 101 and
server 105 are illustrated in FIG. 1a, system 100 could com-
prise a plurality of each of these elements. Module 101 could
also record sensor data pertaining to a plurality of monitored
units 119. Module 101 could be mobile, such as physically
attached to a truck or a pallet, and module 101 could connect
to a series of different wireless networks 102 or base stations
103 as module 101 moves geographically. Other configura-
tions are possible as well without departing from the scope of
the present invention.

[0070] FIG.1b

[0071] FIG.1bis a graphical illustration of hardware, firm-
ware, and software components for a module, in accordance
with exemplary embodiments. FIG. 14 is illustrated to
include many components that can be common within a mod-
ule 101, and module 101 may also operate in a wireless
configuration in order to connect with a wireless network 102.
Module 101 may consist of multiple components in order to

Apr. 30, 2015

collect sensor data or control an actuator associated with a
monitored unit 119. In a wireless configuration, the physical
interface 101a of module 101 may support radio-frequency
(RF) communications with networks including a wireless
network 102 via standards such as, but not limited to, GSM,
UMTS, mobile WiMax, CDMA, LTE, LTE Advanced, and/or
other mobile-network technologies. In a wireless configura-
tion, the physical interface 1014 may also provide connectiv-
ity to local networks such as, but not limited to, 802.11
WLAN, Bluetooth, or Zigbee among other possibilities. In a
wireless configuration, module 101 could use a physical
interface 101a be connected with both a wireless WAN and
wireless LAN simultaneously. In a wired configuration, the
physical interface 101a can provide connectivity to a wired
network such as, but not limited to, through an Ethernet
connection or USB connection.

[0072] The physical interface 101a can include associated
hardware to provide the connections such as, but not limited
to, radio-frequency (RF) chipsets, a power amplifier, an
antenna, cable connectors, etc., and additional exemplary
details regarding these components are described below in
FIG. 1e. Device driver 101g can communicate with the physi-
cal interfaces 101a, providing hardware access to higher-
level functions on module 101. Device drivers 101g may also
be embedded into hardware or combined with the physical
interfaces. Module 101 may preferably include an operating
system 101/ to manage device drivers 101g and hardware
resources within module 101. The operating systems
described herein can also manage other resources such as, but
not limited to, memory and may support multiple software
programs operating on module 101 or server 105, respec-
tively, at the same time. The operating system 101/ can
include Internet protocol stacks such as, but not limited to, a
User Datagram Protocol (UDP) stack, Transmission Control
Protocol (TCP) stack, a domain name system (DNS) stack,
etc., and the operating system 101/ may include timers and
schedulers for managing the access of software to hardware
resources. The operating system shown of 101/ can be appro-
priate for a low-power device with limited memory and CPU
resources (compared to a server 105). An example operating
system 101/ for module 101 includes Linux, Android® from
Google®, Windows® Mobile, or Open AT® from Sierra
Wireless®. Additional example operating systems 101/ for
module 101 include eCos, uC/OS, LiteOs, and Contiki, and
other possibilities exist as well without departing from the
scope of the present invention.

[0073] A module program 101; may be an application pro-
grammed in a language such as, but not limited to, C, C++,
Java, and/or Python, and could provide functionality to sup-
port M2M applications such as, but not limited to, remote
monitoring of sensors and remote activation of actuators.
Module program 101/ could also be a software routine, sub-
routine, linked library, or software module, according to one
preferred embodiment. As contemplated herein, a module
program 101; may be an application operating within a smart-
phone, such as, but not limited to, an iPhone® or Android®-
based smartphone, and in this case module 101 could com-
prise the smartphone. The application functioning as a
module program 101; could be downloaded from an “app
store” associated with the smartphone. Module program 101/
can include data reporting steps 101.x, which can provide the
functionality or CPU 1015 instructions for collecting sensor
data, sending messages to server 105, and receiving responses
from server 105, as described in the present invention.

US 2015/0121066 Al

[0074] Many of the logical steps for operation of module
101 can be performed in software and hardware by various
combinations of sensor 101/, actuator 101y, physical inter-
face 101a, device driver 101g, operating system 101/, mod-
ule program 101, and data reporting steps 101x. When mod-
ule 101 is described herein as performing various actions such
as acquiring an [P address, connecting to the wireless net-
work, monitoring a port, transmitting a packet, sending a
message, receiving a response, or encrypting or signing data,
specifying herein that module 101 performs an action can
refer to software, hardware, and/or firmware operating within
module 101 illustrated in FIG. 16 performing the action. Note
that module 101 may also optionally include user interface
1017 which may include one or more devices for receiving
inputs and/or one or more devices for conveying outputs. User
interfaces are known in the art and generally are simple for
modules such as, but not limited to, a few LED lights or LCD
display, and thus user interfaces are not described in detail
here. User interface 101/ could comprise a touch screen if
module 101 operates as a smartphone or mobile phone. As
illustrated in FIG. 15, module 101 can optionally omit a user
interface 101, since no user input may be required for many
M2M applications, although a user interface 101; could be
included with module 101.

[0075] Module 101 may be a computing device that
includes computer components for the purposes of collecting
data from a sensor 101for triggering an action by an actuator
101y. Module 101 may include a central processing unit
(CPU) 1015, a random access memory (RAM) 101e, and a
system bus 1014 that couples various system components
including the random access memory 101e to the processing
unit 1015. The system bus 1014 may be any of several types
of'bus structures including a memory bus or memory control-
ler, a peripheral bus, and a local bus using any of a variety of
bus architectures including a data bus. Note that the computer
components illustrated for the module 101 in FIG. 15 may be
selected in order to minimize power consumption and thereby
maximize battery life, if module 101 includes a battery and is
not attached to external power. In addition, the computer
components illustrated for the module 101 in FIG. 15 may
also be selected in order to optimize the system for both long
periods of sleep relative to active communications and also
may be optimized for predominantly uplink (i.e. device to
network) communications with small packets or messages.
The computer components illustrated for the module 101 in
FIG. 156 may also be general-purpose computing components,
and specialized components are not required in order to uti-
lize many of the embodiments contemplated herein.

[0076] Module 101 may include a read-only memory
(ROM) 101¢ which can contain a boot loader program.
Although ROM 101c¢ is illustrated as “read-only memory”,
ROM 101¢ could comprise long-term memory storage
chipsets or physical units that are designed for writing once
and reading many times. As contemplated within the present
invention, a read-only address could comprise a ROM 101¢
memory address or another hardware address for read-only
operations accessible via bus 1014. Changing data recorded
in a ROM 101¢ can require a technician have physical access
to module 101, such as, but not limited to, removing a cover
or part of an enclosure, where the technician can subsequently
connect equipment to a circuit board in module 101, includ-
ing replacing ROM 101¢. ROM 101¢ could also comprise a
nonvolatile memory, such that data is stored within ROM
101c¢ even if no electrical power is provided to ROM 101c.

Apr. 30, 2015

Although not illustrated in FIG. 14, but illustrated in FIG. 1e
below, module 101 could also include a flash memory 101w.
Module program 101:, data reporting steps 101x, operating
system 101/, or device driver 101g could be stored in flash
memory 101w within module 101 when the module is pow-
ered off. These components and/or instructions could be
moved from a flash memory 101w (not shown in FIG. 16 but
shown in FIG. 1e) into RAM 101e when the module is pow-
ered on. Note that ROM 101c¢ could be optionally omitted or
included in a memory unit within CPU 1015 (not shown).

[0077] Although the exemplary environment described
herein employs ROM 101¢ and RAM 101e, it should be
appreciated by those skilled in the art that other types of
computer readable media which can store data that is acces-
sible by a module 101, such as, but not limited to, memory
cards, subscriber identity module (SIM) cards, local minia-
turized hard disks, and the like, may also be used in the
exemplary operating environment without departing from the
scope of the invention. The memory and associated hardware
illustrated in FIG. 16 provide nonvolatile storage of com-
puter-executable instructions, data structures, program mod-
ules, module program 101, and other data for computer or
module 101. Note the module 101 may include a physical
data connection at the physical interface 101a such as, but not
limited to, a miniaturized universal serial bus adapter,
firewire, optical, or other another port and the computer
executable instructions such as, but not limited to, module
program 101;, data reporting steps 101x, operating system
1014, or device driver 101g can be initially loaded into
memory such as, but not limited to, ROM 101c or RAM 101e
through the physical interface 101a before module 101 is
given to an end user, shipped by a manufacturer to a distribu-
tion channel, or installed by a technician. In addition, the
computer executable instructions such as, but not limited to,
module program 1014, data reporting steps 101x, operating
system 101/ or device driver 101g could be transferred wire-
lessly to module 101. In either case (wired or wireless transfer
of computer executable instructions), the computer execut-
able instructions such as module program 1011, data reporting
steps 101x, operating system 101%, or device driver 101g
could be stored remotely on a disk drive, solid state drive, or
optical disk (external drives not shown).

[0078] A number of program modules may be stored in
RAM 101e, ROM 101¢, or possibly within CPU 1015,
including an operating system 101/, device driver 101g, an
http client (not shown), a DNS client, and related software.
Further, the module program 101/ and/or data reporting steps
101x can perform the various actions described in the present
invention for the module 101 through instructions the module
program 101/ and/or data reporting steps 101x provide to the
CPU 1015. A user may enter commands and information into
module 101 through an optional user interface 101/, such as a
keypad, keyboard (possibly miniaturized for a mobile phone
form-factor), and a pointing device. Pointing devices may
include atrackball, an electronic pen, or atouch screen. A user
interface 101 illustrated in FIG. 15 can also comprise the
description of a user interface 101; within U.S. patent appli-
cation Ser. No. 14/039,401, filed Sep. 27, 2013 in the name of
John Nix, which is herein incorporated in its entirety.

[0079] The module 101, comprising a computer, may oper-
ate in a networked environment using logical connections to
one or more remote computers, such as the server 105 illus-
trated in FIG. 1a. Server 105 can also function as a general
purpose server to provide files, programs, disk storage,

US 2015/0121066 Al

remote memory, and other resources to module 101 usually
through a networked connection. Additional details regarding
server 105 are provided in FIG. 1¢ below. Additional remote
computers with which module 101 communicates may
include another module 101 or mobile device, an M2M node
within a capillary network, a personal computer, other serv-
ers, a client, a router, a network PC, a peer device, a base
station 103, or other common network node. It will be appre-
ciated that the network connections shown throughout the
present invention are exemplary and other means of estab-
lishing a wireless or wired communications link may be used
between mobile devices, computers, servers, corresponding
nodes, and similar computers.

[0080] The module program 101; and data reporting steps
101x operating within module 101 illustrated in FIG. 16 can
provide computer executable instructions to hardware such as
CPU 10154 through a system bus 1014 in order for a module
101 to (i) collect data from a sensor, (ii) change the state of an
actuator 101y, and (iii) send or receive packets with a server
105, thus allowing server 105 to remotely monitor or control
a monitored unit 119. The module program 101; and/or data
reporting steps 101x can enable the module 101 to transmit or
send data from sensor 101/ or module 101 by recording data
in memory such as RAM 101e, where the data can include
sensor data, a destination IP:port number, a packet or packet
header value, an encryption or ciphering algorithm and key, a
digital signature algorithm and key, etc. The data recorded in
RAM 101e can be subsequently read by the operating system
101/ or the device driver 101g. The operating system 101/ or
the device driver 101g can write the data to a physical inter-
face 1014 using a system bus 1014 in order to use a physical
interface 101a to send data to a server 105 using the Internet
107. Alternatively, the module program 101; and/or data
reporting steps 101x can write the data directly to the physical
interface 101a using the system bus 101d.

[0081] The module program 101/ and/or data reporting
steps 101x, or operating system 101% can include steps to
process the data recorded in memory such as, but not limited
to, encrypting data, selecting a destination address, or encod-
ing sensor data acquired by (i) a sensor 101for (ii) through a
physical interface 101a such as, but not limited to, a thermo-
couple, shock or vibration sensor, light sensor, or global posi-
tioning system (GPS) receiver, etc. The module 101 can use
the physical interface 101a such as, but not limited to, a radio
to transmit or send the data from a sensor to a base station 103.
For those skilled in the art, other steps are possible as well for
a module program 101 or operating system 101/ to collect
data from a sensor 101f'and send the data in a packet without
departing from the scope of the present invention.

[0082] Conversely, in order for module 101 to receive a
packet or response from server 105, the physical interface
1014 can use a radio to receive data from a base station 103.
The received data can include information from a server 105
and may comprise a datagram, a source IP:port number, a
packet or header value, an instruction for module 101, an
acknowledgement to a packet that module 101 sent, a digital
signature, and/or encrypted data. The operating system 101/
or device driver 101g can use a system bus 1014 and CPU
10154 to record the received data in memory such as RAM
101e, and the module program 101; or operating system 101/
may access the memory in order to process the received data
and determine the next step for the module 101 after receiving
the data. The steps within this paragraph may also describe
the steps a module program 101 or data reporting steps 101x

Apr. 30, 2015

can perform in order to receive a packet or a response 209
below. For those skilled in the art, other steps are possible as
well for a module program 101;, data reporting steps 101x, or
module 101 to receive a packet or response from a server 105
within the scope of the present invention.

[0083] Moreover, those skilled in the art will appreciate that
the present invention may be implemented in other computer
system configurations, including hand-held devices, net-
books, portable computers, multiprocessor systems, micro-
processor based or programmable consumer electronics, net-
work personal computers, minicomputers, mainframe
computers, and the like. The invention may also be practiced
in distributed computing environments, where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing envi-
ronment, program modules may be located in both local and
remote memory storage devices. In addition, the terms
“mobile node”, “mobile station”, “mobile device”, “M2M
module”, “M2M device”, “networked sensor”, or “industrial
controller” can be used to refer to module 101 or its functional
capabilities of (i) collecting sensor data regarding a moni-
tored unit 119, (ii) changing state of an actuator 101y associ-
ated with monitored unit 119, and/or (iii) communicating the
data associated with a monitored unit 119 with a wireless
network 102. The function of module 101 and sensor 101/
could be integrated, and in this case module 101 could also be
referred to as a “sensor”, “intelligent sensor”, or “networked
sensor”. Further, the term “module” or “monitoring device”
can be used to refer to the module program 101/ when module
program 101/ provides functional capabilities such as report-
ing data from a sensor 101/ to a server 105 or receiving
instructions for an actuator 101y from a server 105. Other
possibilities exist as well for the configuration or combination
of components illustrated in FIG. 16 without departing from
the scope of the present invention.

[0084] TIG. 1c

[0085] FIG. 1cis a graphical illustration of hardware, firm-
ware, and software components for a server, in accordance
with exemplary embodiments. The illustrated components
for the server 105 in FIG. 1¢ include a central processing unit
(CPU) 1055, a random access memory (RAM) 105¢, a system
bus 1054, storage 105m, an operating system 105/, and a
module controller 105x. These elements can provide func-
tions equivalent to the central processing unit (CPU) 1015,
RAM 101e, system bus 1014, flash memory 101w, and an
operating system 101/ described above in FIG. 15, respec-
tively. In general, a server 105 can have higher-end compo-
nents such as, but not limited to, a larger CPU 1056 and
greater RAM 105¢ in order to support communications with
aplurality of modules 101. Server 105 can comprise a general
purpose computer such as, but not limited to, a rack mounted
server within a data center or rack, or could also comprise a
desktop computer or laptop. Server 105 could also be a spe-
cialized computer, with hardware and software selected for
supporting a plurality of modules 101 connecting and com-
municating simultaneously. Operating system 101/ can com-
prise an operating system appropriate for a server such as, but
not limited to, Linux, Solaris®, or Windows® Server. Server
105 can preferably include at least one wired Ethernet con-
nection with high bandwidth that is persistently connected to
the Internet 107, while the Internet 107 connection for mod-
ule 101 may be transient as module 101 changes between
sleep and active states. Module controller 105x can provide
the server-side logic for managing communications and con-

US 2015/0121066 Al

trolling module 101 using a module database 105%. Applica-
tion interface 105: can provide functionality for communicat-
ing with external servers or nodes, such as, but not limited to,
an application server 171 illustrated in FIG. 1d.

[0086] A module controller 101x and application interface
105 may be applications programmed in a language such as,
but not limited to, C, C++, Java, or Python and could provide
functionality to support M2M applications such as, but not
limited to, remote monitoring of sensors and remote activa-
tion of actuators. Module controller 105x and application
interface 105/ could also be software routines, subroutines,
linked libraries, or software modules, according to preferred
embodiments. Many of the logical steps for operation of
server 105, module controller 105x, and/or application inter-
face 105i can be performed in software and hardware by
various combinations of physical interface 1054, system bus
105d, device driver 105g, and operating system 105/. A mod-
ule controller 105x and application interface 105; can also
access a set of cryptographic algorithms 141 (in FIG. 1g
below) in order (i) to encrypt and decrypt data, and also (ii)
process or generate a digital signature and verify received
digital signatures. When server 105 is described herein as
performing various actions such as, but not limited to, acquir-
ing an IP address, monitoring a port, transmitting or sending
a packet, receiving a message, or encrypting or signing a
message, specifying herein that server 105 performs an action
can refer to software, hardware, and/or firmware operating
within server 105 performing the action. As contemplated
herein, when a server 105 is described as performing an action
such as, but not limited to, sending a response, receiving a
message, verifying a digital signature, decrypting data, etc.,
in some embodiments a set of servers 1057 can perform the
actions for the server 105. In this case, a server 105 could be
a member of the set of servers 1057

[0087] The server 105 may also include a user interface
105j such as a display (not shown) which could also comprise
any type of display devices such as a liquid crystal display
(LCD), a plasma display, and an organic light-emitting diode
(OLED) display, or a cathode ray tube (CRT). A user interface
105; for the server 105 may optionally be provided remotely
such as, but not limited to, (i) via a web browser or a secure
terminal such as, but not limited to, secure shell (SSH) with
(i) another computer operated by an administrator (not
shown). A user or administrator may enter commands and
information into server 105 through a user interface 105j,
such as, but not limited to, a keypad, keyboard, and a pointing
device. In addition, the server 105 may store computer
executable instructions such as, but not limited to, module
controller 105x or application interface 1057 on storage 105m.
Storage 105m may comprise a disk drive, a solid-state drive,
an optical drive, or a disk array. Module controller 101x (i)
can manage communications with module 101 or a plurality
of modules 101 and (ii) may be downloaded and installed on
the server 105. As noted previously and elsewhere herein,
module program 101/ and module controller 105x can pref-
erably interoperate with each other in order to collect sensor
data and control an actuator associated with a monitored unit
119.

[0088] The application interface 105; and/or module con-
troller 101x operating within server 105 illustrated in FIG. 1¢
can provide computer executable instructions to hardware
such as CPU 1055 through a system bus 1054 in order to (i)
receive a message from the module 101 and (ii) send a
response, wherein the message can include sensor 101/ data

Apr. 30, 2015

and the response can include an acknowledgement of the
message and/or an instruction to the module 101. The module
controller 105x can enable the server 105 to send a response
to a message from module 101 by recording data associated
with module 101 in memory such as RAM 105e, where the
data can include an instruction from module 101, a destina-
tion [P:port number, a packet or packet header value, and the
data can be processed using an encryption or ciphering algo-
rithm or key, a digital signature algorithm or key, etc.

[0089] The application interface 105; can enable (a) the
server 105 to send a datagram, packet, response to a module
101, or an application message to an application server 171
(b) recording data associated (i) a with module 101 or (ii)
other M2M service control information in memory such as
RAM 105¢, where the data can include information from
module 101, a destination IP:port number, a packet or packet
header value, and the information could be processed using
an encryption or ciphering algorithm or key, a digital signa-
ture algorithm or key, etc. The operating system 105/ or the
device driver 105g can write the data from RAM 105¢ to a
physical interface 105a using a system bus 1054 and an
Ethernet connection in order to send the data via the Internet
107 illustrated in FIG. 1a. Alternatively, the software program
105; and/or module controller 105x can write the data directly
to the physical interface 1054 using the system bus 1054.
[0090] The server 105 can utilize the physical interface
105a to receive data from a module 101 and/or application
171i using a local area network such as Ethernet, although the
physical interface 105a of server 105 could also utilize a
wireless connection. The server 105 can listen or monitor for
data from the Internet 107 using port number and/or a TCP/
UDP socket. The received data from a module 101 can be a
message formatted according to an Internet packet or data-
gram or series of datagrams inside Ethernet packets and
include information from a module 101 such as, but not
limited to, a source IP address and port number, an identity of
the module, sensor data that may be encrypted, and/or a
digital signature of the module. The received data from appli-
cation 171i can comprise a series of datagrams formatted
according to Internet Protocol and/or datagrams inside Eth-
ernet packets. The received data or message from application
171 can include information regarding application 171/ and/
or server 105, such as a source IP address and port number
associated with application 171/ and/or application server
171, an identity of the server, actuator instructions or com-
mands for a module 101 that may be encrypted, and a digital
signature associated with the application 171i.

[0091] When server 105 receives messages or data, the
operating system 105/ or device driver 105g can record the
received data from module 101 or application 171: via physi-
cal interface 1054 into memory such as RAM 105e¢. The
application interface 105/ or operating system 105/ may sub-
sequently access the memory in order to process the data
received. The application interface 105; and/or module con-
troller 105x, or operating system 105/ can include steps to
process the data recorded in memory and received from the
module 101 or application 1714, such as, but not limited to,
parsing the received packet, decrypting data, verifying a digi-
tal signature with a key, or decoding sensor data included in a
message from the module.

[0092] The server 105 and/or application interface 105/
may communicate with application 171; by sending and
receiving packets over a LAN or the Internet 107, using a
physical interface 105a and a wired connection such as Eth-

US 2015/0121066 Al

ernet or possibly a wireless connection as well. The server
105 can use the physical interface 105a such as an Ethernet
connection to send and receive the data from the Internet 107.
For those skilled in the art, other steps are possible as well for
an application interface 105; or operating system 105/ within
a server 105 to (i) send/receive a packet or message to/from a
module 101 and (ii) send/receive a packet or message to/from
an application 171/ without departing from the scope of the
present invention. Application interface 105/ and module
controller 105x may optionally be combined within a server
105, or alternatively distributed across different physical
computers and function in a coordinated manner using a
network.

[0093] The device drivers 105g, operating systems 105/,
and/or module controller 105x could also optionally be com-
bined into an integrated system for providing the server 105
functionality. Although a single physical interface 105a,
device-driver set 105g, operating system 105/, module con-
troller 105x, application interface 105, and user interface
105; are illustrated in FIG. 1c¢ for server 105, server 105 may
contain multiple physical interfaces, device drivers, operating
systems, software programs, module programs, and/or user
interfaces. Server 105 may operate in a distributed environ-
ment, such that multiple computers operate in conjunction
through a network to provide the functionality of server 105.
Also, server 105 may operate in a “virtualized” environment,
where server 105 shares physical resources such as a physical
CPU 1055 with other processes operating on the same com-
puter. And other arrangements could be used as well, without
departing from the invention.

[0094] FIG.1d

[0095] FIG. 1 d is a graphical illustration of hardware,
firmware, and software components for an application server,
in accordance with exemplary embodiments. Application
server 171 can include application 171i. Application 171i can
comprise a computer program or collection of computer pro-
grams, for managing a plurality of modules 101 using one or
more servers 105, including a set of servers 105z illustrated in
FIG. 1k below. Application 171i can include a web portal
171j, service controller 171x, an application database 171%,
and cryptographic algorithms 141. During operation, such as
when application 171/ processes data from/to modules 101
through server 105, application 171i may reside in RAM 171e
within an application server 171. Application 171/ and the
associated computer programs may be recorded in storage
171m so that they may be loaded by operating system 171/
upon the startup of application server 171. Web portal 1715
can comprise a web server such as, but not limited to, Apache
and can provide a user interface for a remote user accessing
application 171/ via an Internet 107. The web portal 1715
could include web pages for viewing reports from modules
101 and/or servers 105, and also inputting settings for mod-
ules 101 by a user. The web pages could include PHP, active
server pages, or Java components, in addition to other ele-
ments. Data input and stored by application 171/ can be
recorded in application database 171%. The data could be
inserted or queried using structured query language (SQL)
statements. Cryptographic algorithms 141 are depicted and
described in connection with FIG. 1 g below.

[0096] Application 171 may be processed by an applica-
tion server 171 using a CPU 1715. The illustrated compo-
nents for the application server 171 in FIG. 1 d include a
central processing unit (CPU) 1715, arandom access memory
(RAM) 171e, a system bus 1714, storage 171m, an operating

Apr. 30, 2015

system 171/, and an application 171i. These elements can
provide functions equivalent to the central processing unit
(CPU) 1055, RAM 105¢, system bus 1054, storage 105m, and
an operating system 105/ described above in FIG. 1¢, respec-
tively. Application server 171 can comprise a general purpose
computer such as, but not limited to, a rack mounted server
within a data center or rack, or could also comprise a desktop
computer or laptop. Application server 171 could also be a
specialized computer, with hardware and software selected
for supporting a plurality of servers 105 or modules 101
connecting and communicating simultaneously. Operating
system 171/ can comprise an operating system appropriate
for a server such as, but not limited to, Linux, Solaris®, or
Windows® Server. Application server 171 can preferably
have a wired Ethernet connection with high bandwidth that is
persistently connected to the Internet 107.

[0097] An application 171/ and/or service controller 171x
may be an application programmed in a language such as, but
not limited to, C, C++, Java, or Python and could provide
functionality to support M2M applications such as, but not
limited to, remote monitoring of sensors and remote activa-
tion of actuators. Application 171 can include a service con-
troller 171x. Application 1717 and/or service controller 171x
could also be a software routine, subroutine, linked library, or
software module, according to one preferred embodiment.
Application 171/ can include a service controller 171x, which
can provide the functionality or CPU 1715 instructions for the
service controller 171x described in the present invention.
Service controller 171x can include (i) logic for processing
alarms from a module 101 (such as, but not limited to, sending
out and email or text message to a user), (ii) logic for adjusting
actuator 101y settings based upon data from sensor 101/, (iii)
accepting user input (possibly via web portal 1715) and then
making an associated change in an actuator 101y setting.
Service controller 171x can also accept input from external
applications (not shown) in order to make decisions regarding
module 101, sensor 101/, and/or actuator 101y.

[0098] Service controller 171x could be included within an
enterprise resource planning (ERP) solution such as, but not
limited to, SAP® or Oracle® ERP. An external application
(not shown) can communicate with the application server
171. As one example, a group of modules 101 could be
installed within a manufacturing plant, and when a customer
order was entered into the external application such as ERP,
the service controller 171x could provide instructions for a
group of modules 101 to server 105, such as, but not limited
to, changing actuators 101y to operate a production line.
Other possibilities for service controller 171x exist as well
without departing from the scope of the present invention. In
general, service controller 171x can manage the overall func-
tion of a group of modules 101 through server 105. Service
controller 171x may operate at the “user layer” and/or “appli-
cation layer” of the traditional OSI model.

[0099] Many of the logical steps for operation of applica-
tion server 171 or application 171 can be performed in soft-
ware by various combinations of physical interface 171a,
device driver 171g, operating system 171/, and module con-
troller 105, where application 171/ communicates with mod-
ule controller 105; over a network. Application 171/ and
module controller 105/ can communicate using an applica-
tion message 701 (illustrated in FIG. 7 below). When appli-
cation 171i is described herein as performing various actions
such as, but not limited to, acquiring an IP address, monitor-
ing a port, transmitting or sending a packet or message, or

US 2015/0121066 Al

encrypting or signing a message, receiving a packet or mes-
sage, specifying herein that application 171/ and/or applica-
tion server 171 performs an action can refer to software,
hardware, and/or firmware operating within application
server 171 performing the action. Application server 171 or
application 171/ can send or transmit a message, packet, or
data using the steps depicted and described in connection
with FIG. 1c¢ for a server 105 to send or transmit a message,
packet, or data. Application server 171 or application 171i can
receive a message, packet, or data using the steps depicted and
described in connection with FIG. 1c¢ for a server 105 to
receive a message, packet, ordata. Application server 171 can
utilize hardware components similar to server 105, such as
storage 171m can be similar to storage 105m, CPU 1715 can
be similar to CPU 1055, and physical interface 171a can be
similar to physical interface 105a. Application server 171 can
use a system bus 1714 to connect the hardware components
shown within application server 171, and system bus 1714
can be similar to system bus 1054 depicted and described in
connection with FIG. 1¢ above.

[0100] Application server 171 may also comprise a collec-
tion of individual computers, where the individual computers
could be either centrally located or geographically dispersed,
but the individual computers may function in a coordinated
manner over a network to operate as an application server
171. In a similar manner, application 171/ may be distributed
across a plurality of computers, such as, but not limited to, in
a cloud computing configuration. Application server 171 may
be a “virtualized” server, with computing resources shared
with other processes operating on a computer.

[0101] FIG.1e

[0102] FIG. 1e is a graphical illustration of components
within a module, in accordance with exemplary embodi-
ments. FIG. 1e is illustrated to show a combination of com-
ponents useful for leveraging the efficient and secure com-
munication techniques described in the present invention. In
addition to the components illustrated in FIG. 15 above, mod-
ule 101 can include a battery 101£, a server public key 114, a
wireless module private key 112, a connection to an actuator
101y, a USB interface 101v, a CPU wake controller 101«, a
flash memory 101w, a symmetric key 127, a pre-shared secret
key 129a, a random number generator 128, cryptographic
algorithms 141, a radio 101z, and other components illus-
trated in FIG. 1 e. Not all of the components illustrated in F1G.
1e are required for many exemplary embodiments, and some
of the components illustrated in FIG. 1e may also be option-
ally omitted in exemplary embodiments.

[0103] The CPU 1015 can comprise a general purpose pro-
cessor appropriate for the low power consumption require-
ments of a module 101, and may also function as a microcon-
troller. A CPU 1015 and a CPU wake controller 101« are
depicted and described in connection with FIG. 15 of U.S.
patent application Ser. No. 14/055,606, filed Oct. 16, 2013 in
the name of John Nix, entitled “Systems and Methods for
‘Machine-to-Machine’ (M2M) Communications Between
Modules, Servers, and an Application using Public Key Infra-
structure (PKI),” which is hereby incorporated by reference in
its entirety.

[0104] Sensor 101f could be a device to collect environ-
mental data or data regarding a monitored unit 119. Sensor
101/ could collect data such as, but not limited to, tempera-
ture, humidity, pressure, visible light levels, radiation, shock
and/or vibration, voltage, current, weight, pH levels, orienta-
tion/motion, or the presence of specific chemicals. Sensor

Apr. 30, 2015

101/ could also be a microphone. Sensor 101f could be a
magnetic strip reader for credit cards and similar cards, or an
antenna for either near-field RF communications, such as, but
not limited to, reading an RF identity tag. An antenna for a
sensor 101/ could also collect longer-range RF signals, such
as, but not limited to, reading long-range radio frequency
identity tags. Sensor 101f could also collect biometric data
such as, but not limited to, heart rate, glucose levels, body
temperature, or other health measurements and in this case
monitored unit 119 could be a person. The sensor 101f can
provide data to the CPU 1015 in the form of analog or digital
data, which can be communicated via a system bus 1014 or
physical interface 101a and other electrical interfaces are
possible as well. A sensor measurement can comprise the
analog or digital data collected by CPU 1015 from sensor
101/ A sensor measurement can include processing of the
analog or digital data input CPU 1015 by sensor 1017, such as,
but not limited to, averaging over time, using mathematic
formulas to convert the raw data from sensor 101/ into a
usable form. Module 101 may also collect sensor data or
sensor values using a sensor 101f'and CPU 1015, where the
data or values are derived from electrical signals output by a
sensor 101f. A sensor measurement can comprise the sensor
data or sensor values. If module 101 comprises a “point of
presence” payment terminal, then a sensor measurement
could comprise data read from a payment card.

[0105] As contemplated herein, the terms “sensor measure-
ment” and “sensor data” can be used interchangeably, and can
also be considered functionally equivalent. Although a single
sensor 101fis shown in FIG. 1e, a module 101 could include
multiple sensors. Each of the multiple sensors 1017 could
include a sensoridentity 151, which could comprise a number
or string to identify the sensor 101f. A sensor 101fcould be
external to module 101, and also a plurality of sensors 101/
may be used and they also can connect to module 101 when
module 101 uses radio 101z as a base station for a WiFi
network. An exemplary embodiment where sensor 101f'con-
nects to module 101 using a radio 101z is also depicted and
described in connection with FIG. 1e of U.S. patent applica-
tion Ser. No. 14/055,606, filed Oct. 16, 2013 in the name of
John Nix, which is hereby incorporated by reference in its
entirety.

[0106] Actuator 101y could be a device to control a param-
eter or state for a monitored unit 119, such as, but not limited
to, changing a voltage or current, activating a switch or relay,
turning on or off a microphone or speaker, activating or deac-
tivating a light, and other examples are well known in the art.
Actuator 101y could also be a speaker. Actuator 101y could be
controlled by module 101 via a digital or analog output from
CPU 1015, which could also be transmitted or sent via system
bus 1014 or a physical interface 101a. Although actuator 101y
is illustrated as external to wireless module 101 in FIG. 1e,
actuator 101y could also be internal to module 101, and
module 101 could include multiple actuators 101y. The use of
multiple actuators 101y each with an actuator identity 152 is
also depicted and described in connection with FIG. 1e of
U.S. patent application Ser. No. 14/055,606, filed Oct. 16,
2013 in the name of John Nix, which is hereby incorporated
by reference in its entirety. Sensors and actuators are well
known to those of ordinary skill in the art, and thus are not
described in additional detail herein.

[0107] Module 101 can include a Universal Serial Bus
(USB) interface. In accordance with an exemplary embodi-
ment, module 101 can comprise a wireless module and

US 2015/0121066 Al

include a radio 101z. Note that the use of a radio 101z is not
required for module 101, which could also obtain a connec-
tion to the Internet 107 via a wired line such as Ethernet.
Although not illustrated, radio 101z could include antennas
for reception and transmission of RF signals, and even mul-
tiple antennas could be used. Although a single radio 101z is
illustrated in module 101, module 101 could also contain
multiple radios 101z. Radio 101z can support wireless LAN
standards such as, but not limited to, WiFi, Bluetooth, and
Zigbee, or similar wireless LAN standards. Radio 101z illus-
trated in FIG. 1e can comprise a radio 101z depicted and
described in connection with FIG. 1d of U.S. patent applica-
tion Ser. No. 14/039,401, filed Sep. 27, 2013 in the name of
John Nix, the contents of which are herein incorporated in
their entirety.

[0108] Note that module 101 may also operate as a base
station in a wireless LAN, such as, but not limited to, an
802.11 base station. When module 101 operates a wireless
LAN, radio 101z can function as either a client/node and/or a
base station 103 to support communication from other wire-
less nodes in physical proximity, such as, but not limited to,
other nodes within an exemplary 50 meters. The other wire-
less nodes could comprise a sensor 101fand/or actuator 101y,
and in this case a sensor could be referred to as a “networked
sensor” and an actuator could be referred to as a “networked
actuator”. Radio 101z functioning as a base station is depicted
and described as a base station 103 is depicted and described
in connection with FIG. 14 of U.S. patent application Ser. No.
14/039,401, filed Sep. 27, 2013 in the name of John Nix, the
contents of which are herein incorporated in their entirety.

[0109] In accordance with exemplary embodiments, mod-
ule 101 can store module private key 112, server public key
114, and module identity 110, and a symmetric key 127 in
memory/RAM 101e during operation, such as when CPU
1015 is active and the module 101 is connected to a network
such as a wireless network 102 during data transmissions.
Module private key 112 preferably is recorded in nonvolatile
memory such as, but not limited to, flash memory 101w, so
that module 101 has access to its private key 112 after the
private key has been derived or loaded, including times when
a battery 101% has been fully drained or removed from mod-
ule 101 (if module 101 does not utilize a persistent power
source such as land-line power).

[0110] Symmetric key 127 can be a secure, shared private
key for use with symmetric encryption or symmetric cipher-
ing algorithms 1415 (in FIG. 1g below). Symmetric key 127
can be derived by using module public key 111 and/or server
public key 114, possibly through the use of a key derivation
function 141/ (described in FIG. 1g below). Symmetric key
127 can be used for both encryption and decryption with
symmetric cryptographic algorithms 1415 described in FIG.
1g below, where a shared secret key can be used to encrypt/
cipher and/or decrypt/decipher. Symmetric key 127 may also
include an expiration time 133, such that symmetric key 127
may only be used by module 101 and/or server 105 during a
limited period of time, such symmetric key 127 remaining
only valid for a day, or a week, or during a session (where the
session comprises multiple messages and/or responses
between a module 101 and a server 105), etc. Module 101 can
also derive symmetric key 127 according the Elliptic Curve
Integrated Encryption Scheme (ECIES) and/or ECDH 159,
discussed in FIG. 1g below, using module public key 111,
server public key 114, and a random number 128a from
random number generator 128. ECIES could be included in

Apr. 30, 2015

cryptographic algorithms 141. A summary of ECIES shared
key derivation is described the Wikipedia article “Integrated
Encryption Scheme” from Sep. 18,2013 (herein incorporated
by reference). Other possibilities for shared key derivation
function using public keys are possible as well, including a
Diffie-Hellman key exchange. Using a derived symmetric key
from the exemplary key derivation function ECIES, module
101 and/or server 105 could derive a second symmetric key
127 after the expiration time 133 of the first symmetric key
127 had transpired. As contemplated herein, a symmetric key
127 can also comprise a session key, or the use of a “session
key” with a symmetric ciphering algorithm 1416 can com-
prise a symmetric key 127.

[0111] Notethat akey derivation function 141fusing public
keys is not required to generate a shared symmetric key 127,
and alternatively a shared symmetric key 127 could be gen-
erated by any of module 101, server 105, module provider
109, M2M service provider 108, or application server 171. If
module 101 generates shared symmetric key 127 for symmet-
ric ciphering 1415 within a cryptographic algorithms 141,
then module 101 can send shared symmetric key 127 to server
105 using an asymmetric ciphering depicted and described in
connection with FIG. 4 below. In accordance with a preferred
exemplary embodiment, module 101 preferably uses a ran-
dom number generator 128 to generate a random number
128a (illustrated in FIG. 1g) for input into cryptographic
algorithms 141, and the seed 129 in random number generator
128 could utilize data from a sensor 101fin order to generate
a random number 1284 with high entropy in the creation of
symmetric key 127. Random number generator 128 and ran-
dom number 128a are also depicted and described in connec-
tion with FIG. 14 of U.S. patent application Ser. No. 14/039,
401, filed Sep. 27, 2013 in the name of John Nix, the contents
of which are herein incorporated in their entirety.

[0112] Module identity 110 is preferably a unique identifier
of module 101, and could comprise a number or string such
as, but not limited to, a serial number, an international mobile
subscriber identity number (IMSI), international mobile
equipment identity (IMEI), or an Ethernet media access con-
trol (MAC) address. According to an exemplary embodiment,
module identity 110 can also comprise a serial number or
string that is written into hardware of module 101 upon manu-
facturing or distribution of module 101. In this case, module
identity 110 could be recorded in a read only memory 101c¢,
where read only memory 101¢ could not be easily erased or
otherwise tampered with. Read only memory 101¢ could also
comprise a protected memory. Or, module 101 could read
module identity 110, which could be written into hardware by
a manufacturer, distributor, or module provider 109, by using
adevice driver 101g that reads a hardware address containing
the module identity 110 using the system bus 101d. Module
101 can read the module identity 110 by accessing a read-only
address using the bus 1014. In either case, in one embodiment
module identity 110 may preferably be permanently or per-
sistently associated with the physical hardware of module
101, which can be helpful for the security procedures con-
templated herein. Module identity 110 can function as a basic
identifier for services from M2M service provider 108, server
105, and/or application 171/ in order to properly identify
module 101 among a plurality of modules. Module private
key 112 and module public key 111 could be unique to mod-
ule 101 and uniquely associated with module identity 110,
according to a preferred embodiment.

US 2015/0121066 Al

[0113] As contemplated herein, a module identity 110 can
also have more than one use. A first module identity 110 could
comprise a serial number for the physical hardware of module
101, as described in the paragraph above. A second module
identity 110 could also comprise a session identifier, for data
sessions between module 101 and server 105, where the ses-
sion identifier can be uniquely associated by a server 105 to
module 101. In the case where module identity 110 has more
than one use, format, or representation, the module identity
110 associated with or written into hardware of module 101
(and potentially read from a read-only address in module 101)
would preferably comprise the module identity 110 used in a
certificate 122. Since a module 101 may utilize multiple
module public keys 111 and module private keys 112 over its
lifetime, a certificate 122 for module 101 can preferably
include both (i) the module identity 110 (such as, but not
limited to, a serial number for the physical hardware of mod-
ule 101) and (ii) a module public key identity 111a in order to
specify the particular module public key 111 associated with
certificate 122. The use of a module public key identity 111a
in a certificate 122 is also depicted and described in connec-
tion with FIG. 12 of U.S. patent application Ser. No. 14/055,
606, filed Oct. 16, 2013 in the name of John Nix. Since a
module 101 may also have multiple public keys 111 for
different purposes (such as, but not limited to, one for creating
digital signatures, another for asymmetric ciphering, another
for use with a second wireless network 102, etc.), then mod-
ule 101 may also potentially have multiple valid certificates
122 concurrently each with different module public key iden-
tities 111a.

[0114] Further, as contemplated herein, a module identity
110 could also comprise more than one physical string or
number, such as, but not limited to, a first string when module
101 connects with a first M2M service provider 108 or first
wireless network 102, and module identity 110 could com-
prise a second string when module 101 connects with a sec-
ond M2M service provider 108 or second wireless network
102. The first M2M service provider 108 or first wireless
network 102 may have a first requirement or specification for
the format, length, structure, etc. of module identity 110, and
the second M2M service provider 108 or second wireless
network 102 may have a second requirement or specification
for the format, length, structure, etc. of module identity 110.

[0115] Server public key 114 in module 101 could be
obtained from downloading the key over the Internet 107, or
optionally also written into nonvolatile memory of module
101 upon manufacture or distribution. Server public key 114
could be obtained using a domain name or Internet address
that is recorded in nonvolatile memory upon the configuration
of module 101, such as, but not limited to, during installation
or distribution, and module 101 could fetch the server public
key 114 upon connecting to a wireless network 102 or other
connection to the Internet 107.

[0116] Module 101 may also contain cryptographic algo-
rithms 141, which may comprise a suite of algorithms or
subroutines that can be utilized for (i) deriving a pair of keys
comprising a public key and a private key, (ii) encrypting data
using public keys, (iii) decrypting data using private keys, (iv)
processing secure hash signatures using private keys, and (v)
verifying secure hash signatures using public keys, and
related software, firmware, or subroutines for implementing a
cryptographic system, including symmetric ciphering algo-
rithms. Cryptographic algorithms 141 (also described below
in FIG. 1g) could utilize publicly available software libraries

Apr. 30, 2015

within tools such as, but not limited to, OpenSSL maintained
by The OpenSSL Project (http://www.openssl.org/), lib-
gerypt maintained by The Free Software Foundation (http://
www.gnu.org/software/libgerypt/), and similar libraries such
as, but not limited to, libmerypt and Crypto++. Note that
cryptographic algorithms 141 could also use proprietary
cryptographic libraries as well. In addition to implementing
asymmetric encryption/ciphering, such as, but not limited to,
used with RSA and ECC cryptography, cryptographic algo-
rithms 141 can provide symmetric ciphering where a shared
private key is utilized to both encrypt and decrypt, such as, but
not limited to, with the Advanced Encryption Standard (AES)
cipher suite.

[0117] As illustrated in FIG. 1le, module 101 may also
contain a random number generator 128. Random number
generator 128 may contain a seed 129. The creation of ran-
dom numbers with a high degree of entropy may be important
the use of cryptographic algorithms 141. A plurality of the
data as a source for a random number seed 129 could be
appended together into a “module random seed file” 139
(illustrated in FIG. 1g) with a combined series or list of states
(i.e. a plurality of sensor 101f measurements, radio 101z
measurements, clock times, memory 101e or memory 101w
states, operating system 101/ states, actuator 101y states,
and/or hardware 101a or 1014 states). Note that values or data
for each of the elements listed in the previous sentence could
beutilized in a “module random seed file” 139 instead of or in
addition to a state. The “module random seed file” is also
depicted and described in connection with FIG. 1e of U.S.
patent application Ser. No. 14/055,606, filed Oct. 16, 2013 in
the name of John Nix, which is hereby incorporated by ref-
erence in its entirety

[0118] Note that the term “public key” as contemplated
herein includes a key that may be shared with other elements,
where the other elements may not be under the direct control
of the same entity that holds the corresponding private key.
However, the term “public key” as used herein does not
require that the public key is made available to the general
public or is publicly disclosed. An additional layer of security
may be maintained in the present invention by preferably only
sharing public keys on a confidential basis with other entities.
For example, module public key 111 may be created by
module 101 when generating module private key 112, and
module 101 may share module public key 111 with M2M
service provider 108 in order to record module public key 111
in server 105, but module 101 could choose to not share
module public key 111 with other entities, such as wireless
network 102 or provide a certificate 122 with module public
key 111 publicly available on the Internet 107. The benefits of
confidentially sharing module public key 111 with server 105
are also further described below.

[0119] Although a single public key and private key for (i)
module 101 and (ii) server 105 are illustrated in FIG. 1e and
also FIG. 1f'below, respectively, both module 101 and server
105 may each utilize several different pairs of public keys and
private keys. As one example, module 101 may record a first
private key 112 used for creating a digital signature and a
second private key 112 for decryption using asymmetric
ciphering algorithms 141qa. In this example, a server 105
could utilize a first module public key 111 to verity the digital
signature, and a second module public key 111 could be
utilized to encrypt messages sent to module 101. Similarly,
either module 101 or server 105 may use private key 112 or
105¢, respectively, to derive secondary shared keys such as,

US 2015/0121066 Al

but not limited to, a derived shared key 1296 below. Thus, one
key pair could be used with digital signatures, a second key
pair used for asymmetric ciphering, and a third key pair to
derive shared secret keys. Each of the three illustrated pairs of
keys could comprise a set of keys, and each of the illustrated
pairs of keys could also use a different set of cryptographic
parameters 126 (illustrated in FIG. 1 g below), although the
cryptographic parameters 126 for the various pairs of keys
could also be the same.

[0120] In addition, module 101 could utilize a first set of
keys to communicate with a first server 105 and a second set
otfkeys to communicate with a second server 105. The first set
of keys could use or be associated with a first set of crypto-
graphic parameters 126 and the second set of keys could use
or be associated with a second set of cryptographic param-
eters 126. According to exemplary embodiments, module 101
may also include a pre-shared secret key 1294. Pre-shared
secret key 129a can comprise a secret key that is shared
between module 101 and server 105 before module 101
begins (i) communicating with server 105 and/or a certificate
authority 118, (ii) or utilizing PKI-based encryption and
authentication to communicate with M2M service provider
108. As illustrated in FIG. 1f below, server 105 could also
record the pre-shared secret key 1294, and a pre-shared secret
key 1294 can be associated with each module 101 using a
module identity 110. A pre-shared secret key 129« is also
depicted and described in connection with U.S. patent appli-
cation Ser. No. 14/055,606, filed Oct. 16, 2013 in the name of
John Nix, which is hereby incorporated by reference in its
entirety. In an exemplary embodiment, once the pre-shared
secret key 129a has been utilized to authenticate or verify a
module public key 111 with a server 105 (such as, but not
limited to, using subsequent steps 517 in FIG. 56 below), then
that particular pre-shared secretkey 1294 may be “discarded”
and not used again for security purposes contemplated herein.

[0121] Notethattheuse of a pre-shared secret key 1294 and
pre-shared secret key code 134 is also optional, such that a
module program 101; could cipher of obfuscate the initial
submission of a derived module public key 111 and module
identity to a server 105, so that server 105 could be reasonably
assured only a valid module 101 submitted the module public
key 111. According to a preferred exemplary embodiment,
module 101 can derive its own module private key 112 and
module public key 111, and utilize pre-shared secretkey 129a
in order to securely and/or authoritatively communicate the
derived module public key 111 with server 105 and/or a
certificate authority 118. The use of pre-shared secret key
129a can be particularly useful if module 101 has already
been deployed with a monitored unit 119 and connects to
server 105 though the Internet 107 for the very first time.
Server 105 could preferably utilize pre-shared secret key
129a in order to confirm that a received module public key
111 and module identity 110 from module 101 authoritatively
belong to module 101, as opposed to being an unauthorized or
even fraudulent submission of module public key 111 and
module identity 110.

[0122] Server 105 could utilize a pre-shared secret key
129a and the steps depicted and described in connection with
FIG. 4 below in order to securely receive module public key
111 and module identity 110 from module 101, including the
first time module 101 sends module public key 111 to server
105. As one example, pre-shared secret key 1294 could be
utilized as a symmetric ciphering 1415 key, described in FI1G.
1 g below. After the first submission of module public key 111

Apr. 30, 2015

to server 105, any subsequent submissions of new module
public keys 111 derived by module 101 could either (i) con-
tinue to use the pre-shared secret key 129q, or (ii) use a
symmetric key 127 derived after the first module public key
111 has been received. Securing the submission of module
public key 111 with server 105, including both the first sub-
mission and subsequent submissions, is also depicted and
described in connection with FIG. 5b below.

[0123] FIG.1f

[0124] FIG. 1f is a graphical illustration of components
within a server, in accordance with exemplary embodiments.
Server 105 can include a module database 105k, a sub-server
105w, and a message preprocessor 105y. In an exemplary
embodiment, the elements illustrated within a server 105 in
FIG. 1fmay be stored in volatile memory such as RAM 105e,
and/or storage 105m, and may also be accessible to a proces-
sor CPU 10554. In another exemplary embodiment, the mod-
ule database 105%, sub-server 105w, and message processor
105y can comprise separate computers. Module database
105, sub-server 105w, and message preprocessor 105y could
represent either different processes or threads operating on a
server 105, or physically separate computers operating in
conjunction over a network to perform the functions of a
server 105. Since server 105 can preferably support commu-
nications with a plurality of modules 101, server 105 can
utilize module database 1054 to store and query data regard-
ing a plurality of modules 101, monitored units 119, and the
overall M2M service. The server 105 can store a plurality of
module public keys 111 associated with a plurality of devices
in the module database 105%. The server 105 can use the
module identity 110 of device 101, received in a message
such as, but not limited to, a UDP packet, to query the module
database 1054 and select the public key 111 or symmetric key
127 associated with the module 101.

[0125] Although notillustrated in FIG. 1f,; module database
105% can also record a pre-shared secretkey code 134, a set of
cryptographic parameters 126, and a module identity 110 for
each module 101, along with the pre-shared secret key 1294
shown in FIG. 1f. In addition, although not illustrated in FIG.
17, module database 1054 could store a symmetric key 127 for
each module 101, if cryptographic algorithms 141 utilize a
symmetric cipher 1415 such as, but not limited to, AES for
communication with module 101. Examples of module data-
base 105& could include MySQL, Oracle®, SQLite, hash
tables, distributed hash tables, text files, etc. Module database
105% could reside within RAM 105¢ or storage 105m. Server
105 may also record a symmetric key 127, where the sym-
metric key 127 can be associated with an expiration time 133.
Symmetric key 127 can also be recorded in a module database
105% or a sub-server 105w

[0126] Message preprocessor 105y can process incoming
packets and route them to an appropriate sub-server 105w
using information contained in an incoming message, such
as, but not limited to, a module identity 110, a server identity
206 illustrated in FIG. 2 below, and/or a destination IP
address. Message preprocessor 105y can include rules for
processing and routing, such a dropping malformed incoming
messages or incoming messages without correct crypto-
graphic data. Message preprocessor 105y could also option-
ally be combined with a server firewall 124 in order to provide
firewall functionality and security at the network layer. Mes-
sage preprocessor 105y may preferably remain “silent” to
incoming packets without proper cryptographic data con-

US 2015/0121066 Al

tained in an incoming message, such as, but not limited to, one
example of a properly formatted message 208 illustrated in
FIG. 6a below.

[0127] Sub-server 105w can include a server private key
105¢ and cryptographic algorithms 141. A plurality of sub-
servers 105w can be utilized by a server 105 in order to
support communication with a plurality of modules 101. The
server private key 105¢ and module public key 111 can be
utilized by server 105 to secure communication with module
101, including the steps depicted and described in connection
with FIG. 4 and FIG. 5a below. Cryptographic algorithms 141
may comprise a suite of algorithms or subroutines and are
depicted and described in connection with FIG. 1g.

[0128] A first sub-server 105w can process messages and
responses with a first module 101 using a first set of security
keys and algorithms, such as, but not limited to, using RSA-
based security, and a second sub-server 105w can process
messages and responses with a second module 101 using a
second set of security keys and algorithms, such as, but not
limited to, using ECC-based security. Consequently, message
pre-processor 105y could route incoming messages to the
appropriate sub-server 105w depending on the encryption
algorithm used in the incoming message (which could be
determined by message pre-processor 105y by querying the
module database 1054 using a module identity 110 in the
incoming message 208, where module identity 110 can be
used to select a sub-server 105w). Sub-servers 105w may
utilize separate server private keys 105¢, or the sub-servers
105w can share a common private key 105¢. Sub-servers
105w may utilize separate cryptographic algorithms 141, or
the sub-servers 105x can share common cryptographic algo-
rithms 141. Although separate sub-servers 105w are illus-
trated in FIG. 1f, the sub-servers may optionally be combined
with a server 105, or omitted, with the corresponding server
private key 105¢ and cryptographic algorithms 141 stored
directly in a server 105.

[0129] Server 105 may also comprise a collection of indi-
vidual computers, where the individual computers could be
either centrally located or geographically dispersed, but the
individual computers may function in a coordinated manner
over a network to operate as a server 105. Server 105 may be
a “virtualized” server, with computing resources shared with
other processes operating on a computer.

[0130] FIG.1g

[0131] FIG.1 gis a graphical illustration of components in
a set of cryptographic algorithms, in accordance with exem-
plary embodiments. As contemplated herein, communica-
tions between (i) a module 101 and a server 105, and (ii)
between application 171/ and server 105 can be secured by
using cryptographic algorithms 141. The cryptographic algo-
rithms 141 used by module 101, server 105, application
server 171, and/or application 171 can comprise a set of
steps, procedures, or software routines for accomplishing
steps to cipher, decipher, sign, and verify messages, including
the generation of public keys, private keys, and derived shared
keys. Cryptographic algorithms 141 can be implemented in
software operating on (i) module 101 in the form of a module
program 1014, (ii) server 105 in the form of a module con-
troller 105x, or (iii) application server 171 in the form of an
application 171i. Example software for a cryptographic algo-
rithms 141 includes the libraries within the openssl, libm-
crypt, and/or and Crypto++ discussed in FIG. 1e. Other pos-
sibilities for the location of cryptographic algorithms within a
module 101, server 105, or application 171i exist as well,

Apr. 30, 2015

including possibly module operating system 1014, server
operating system 105/, and application server operating sys-
tem 1714, respectively.

[0132] In addition, cryptographic algorithms 141 may be
implemented in hardware or firmware on any of module 101,
server 105, or application 171i. Note that module 101, server
105 and application 171/ could each utilize a different set of
cryptographic algorithms 141, although the sets of algorithms
should preferably be fully interoperable (i.e. ciphering with a
first symmetric ciphering algorithm 14156 and a symmetric
key 127 on module 101 could be deciphered by a second
symmetric ciphering algorithm 1415 on server 105 using the
symmetric key 127, etc.). As illustrated in FIG. 1g, crypto-
graphic algorithms 141 may comprise an asymmetric cipher-
ing algorithm 141a, a symmetric ciphering algorithm 1415, a
secure hash algorithm 141c¢, a digital signature algorithm
141d, a key pair generation algorithm 141e, a key derivation
function 141f; and a random number generator 128.

[0133] Asymmetric ciphering algorithms 141a can com-
prise algorithms utilizing public key infrastructure (PKI)
techniques for both (i) encrypting with a public key and (ii)
decrypting with a private key. Example algorithms within
asymmetric algorithms 141 include the RSA algorithms 153
and the Elliptic Curve Cryptography (ECC) algorithms 154,
and other asymmetric algorithms could be utilized as well.
For example, either the ECC algorithms 154 or RSA algo-
rithms 153 can be used for encryption and decryption, includ-
ing (1) encryption step 503 discussed below, as well as (ii)
decryption step 413 discussed below. A set of cryptographic
parameters 126 can include input into asymmetric ciphering
algorithms 141a, such as, but not limited to, specifying key
lengths, elliptic curves to utilize (if ECC), modulus (if RSA)
or other parameters or settings required. As contemplated
herein and described in additional detail below, the algo-
rithms illustrated in FIG. 1 g can perform both ciphering and
deciphering, using the appropriate keys.

[0134] The use and application of RSA algorithms and
cryptography are described within IETF RFC 3447 titled
“Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1”, herein incorpo-
rated by reference, among other published standards for the
use of RSA algorithms 153. The use of an RSA algorithm 153
for encryption and decryption, including with cryptographic
algorithm and other description of encryption or decryption
algorithms, can also be processed according to the description
of the RSA algorithm according to the Wikipedia entry for
“RSA (algorithm)” as of Sep. 9, 2013, which is incorporated
by reference herein.

[0135] The use and application of ECC algorithms 154 for
asymmetric ciphering algorithms 141« within cryptographic
algorithms 141 are described within IETF RFC 6090 titled
“Fundamental Elliptic Curve Cryptography Algorithms”
(herein incorporated by reference), among other published
standards using ECC. ECC algorithms 154 can also utilize
elliptic curve cryptography algorithms to the Wikipedia entry
for “Elliptic curve cryptography” as of Sep. 9, 2013, which is
incorporated by reference herein. ECC algorithms 154 may
utilized according to exemplary preferred embodiments in
order to maintain high security with smaller key lengths,
compared to RSA, thereby helping to comparably reduce the
message lengths, radio frequency spectrum utilization, and
processing power required by module 101. Thus, the use of
ECC algorithms 154 within various steps requiring ciphering
or digital signatures may help conserve battery life of module

US 2015/0121066 Al

101 while maintaining the objective of securing system 100.
Note that as contemplated herein, other algorithms besides
with ECC algorithms 154 and RSA algorithms 153 may be
also be used in asymmetric algorithms 141a.

[0136] Cryptographic algorithms 141 may also include a
set of symmetric ciphering algorithms 1415. Symmetric
ciphering algorithms 1415 can utilize a symmetric key 127 by
one node such as a module 101 to encrypt or cipher data, and
the encrypted data can be decrypted or deciphered by server
105 also using the symmetric key 127. Examples of symmet-
ric ciphers include Advanced Encryption Standard 155
(AES), as specified in Federal Information Processing Stan-
dards (FIPS) Publication 197, and Triple Data Encryption
Standard (Triple DES), as described in NIST Special Publi-
cation 800-67 Revision 1, “Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher (Revised
January 2012)”. Cryptographic parameters 126 input into
symmetric ciphering algorithms 1415 can include symmetric
key 127 length, such as, but not limited to, the selection of
128, 192, or 256 bits with AES 155 symmetric ciphering, and
cryptographic parameters 126 could also select a symmetric
ciphering algorithm in a collections of symmetric ciphering
algorithms 1415. Other examples of symmetric ciphering
algorithms 1415 may be utilized as well within cryptographic
algorithms 141. Also note that as contemplated herein, the
term “symmetric ciphering” contemplates the use of a sym-
metric ciphering algorithm 1415 in order to encrypt or cipher
data with a symmetric ciphering algorithm 1415, and “asym-
metric ciphering” contemplated the use of an asymmetric
ciphering algorithm 141a to encrypt or cipher data with a
public key, such as module public key 111 or server public
key 114.

[0137] Cryptographic algorithms 141 may also include a
set of secure hash algorithms 141c¢ in order to compute and
output a secure hash value or number based on a string or file
input into the secure hash algorithms 141¢. Example secure
hash algorithms include SHA256 156 (also known as SHA-2)
and SHA-3 157. SHA256 156 is specified in the National
Institute of Standards and Technology (NIST) Federal Infor-
mation Processing Standards Publication (FIPS PUB) 180-2
titled “Secure Hash Standard”. SHA-3 157 is scheduled to be
published in FIPS PUB 180-5. Cryptographic parameters 126
input into secure hash algorithms 141¢ can include the selec-
tion of the length of the secure hash, such as, but not limited
to, using 224, 256, or 512 bits with either SHA-2 or SHA-3,
and other possibilities exist as well.

[0138] Cryptographic algorithms 141 may also include a
set of digital signature algorithms 1414, in order to sign and
verify messages between (i) module 101 and server 105 or (ii)
server 105 and application 171;. Digital signature algorithms
141d can also verify signatures such as, but not limited to,
comparing that (i) a first secure hash value in the form of a
digital signature in a certificate (not shown) using a certificate
authority public key matches (ii) a second secure hash value
in the certificate (not shown). Digital signature algorithms
141d can utilize algorithms in National Institute of Standards
(NIST) “FIPS 186-4: Digital Signature Standard”, or IETF
RFC 6979 titled “Deterministic Usage of the Digital Signa-
ture Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)”. The use of ECDSA algorithm 158
within a set of digital signature algorithms 1414 may be
preferred if keys such as, but not limited to, module public key
111 and server public key 114 are based on elliptic curve
cryptography. Other PKI standards or proprietary techniques

Apr. 30, 2015

for securely verifying digital signatures may be utilized as
well in digital signature algorithms 141d. Cryptographic
parameters 126 input into digital signature algorithms 1414
can include the selection of a secure hash algorithms 141¢ to
utilize with digital signature algorithms 1414, or the algo-
rithm to utilize, such as, but not limited to, ECDSA shown or
an RSA-based alternative for digital signatures is possible as
well. Cryptographic parameters 126 input into digital signa-
ture algorithms 1414 can also include a padding scheme for
use with a digital signature algorithms 141d. Digital signature
algorithms 1414 could also include an RSA digital signature
algorithm for use with RSA-based public and private keys.

[0139] Cryptographic algorithms 141 may also include key
pair generation algorithms 141e, a key derivation function
141/, and a random number generator 128. Key pair genera-
tion algorithms 141e can be utilized by module 101, server
105, or application 1717 to securely generate private and
public keys. The key pair generation algorithms 141e can also
use input from a cryptographic parameters 126, such as, but
not limited to, the desired key lengths, or a value for an ECC
curve if the public key will support ECC algorithms 154.
According to an exemplary preferred embodiment, module
101 can derive a pair of module public key 111 and module
private key 112 using key pair generation algorithms 141e.
Software tools such as, but not limited to, openssl and libcrypt
include libraries for the generation key pairs, and these and
similar libraries can be used in a key pair generation algo-
rithm 141e.

[0140] Key derivation function 141fcan be used by module
101, server 105, and/or application 171 in order to determine
a common derived shared secret key 129, using at least two
respective public keys as input, and may also include the input
of'a private key. A key exchange to share a common symmet-
ric key 127 can be performed using a key derivation function
141/ and cryptographic parameters 126. An exemplary algo-
rithm within a key derivation function 141fcan be the Ditfie-
Hellman key exchange, which is used by tools such as, but not
limited to, secure socket layer (SSL) with RSA algorithms
153. Whenusing ECC algorithms 154, module 101 and server
105 can utilize Elliptic Curve Diffie-Hellman (ECDH) algo-
rithms 159, and a summary of ECDH is included in the
Wikipedia article titled “Elliptic Curve Diffie-Hellman”
(http://en.wikipedia.org/wiki/Elliptic_curve_Diffie %
E2%80%93Hellman” from Sep. 24, 2013, which is herein
incorporated by reference. Other algorithms to derive a
shared secret key 1295 using public keys and a private key
may also beutilized in a key derivation function 141, such as,
but not limited to, the American National Standards Institute
(ANSI) standard X-9.63 160. Cryptographic parameters 126
used with key derivation function 141f with elliptic curve
cryptography can include a common base point G for two
node using the key derivation function 141f'and public keys.
The base point G in a cryptographic parameters 126 can be
transmitted or sent from a module 101 to a server 105 in a
message 208, and the base point G can be sent from a server
105 to a module 101 in a response 209, and other possibilities
exist as well. Cryptographic parameters 126 can also include
other or additional information for using a key derivation
function 141fin order to derive a commonly shared symmet-
ric key 127.

[0141] Cryptographic parameters 126 input into key pair
generation algorithms 141e can include the type of asymmet-
ric ciphering algorithms 141a used with the keys, the key
length in bits, an elliptic curveutilized for ECC, a time-to-live

US 2015/0121066 Al

for a public key that is derived, and similar settings. Addi-
tional cryptographic parameters 126 for a public key can
include a supported point formats extension, where the sup-
ported point formats extension could comprise uncom-
pressed, compressed prime, or “compressed char2” formats,
as specified in ANSI X-9.62. In other words, an ECC public
key can have several formats and a set of cryptographic
parameters 126 can be useful to specify the format. Although
a set of cryptographic parameters 126 is illustrated in FIG. 1
g as internal to cryptographic algorithms 141, parameters 126
could be recorded in other locations in a module 101 or a
system 100. As one example, a set of cryptographic param-
eters 126 could be recorded in a server 105 and downloaded
by module 101 using the Internet 107. The various algorithms
within cryptographic algorithms 141 may utilize a random
number generator 128, which is also depicted and described
in connection with Figure le above. As contemplated herein,
the term “cryptographic parameters” 126 may be considered
equivalent to a “set of cryptographic parameters” 126, and
also use of the terms “parameters” 126 and “set of param-
eters” 126 can both refer to the cryptographic parameters 126
illustrated in FIG. 1g.

[0142] According to a preferred exemplary embodiment,
cryptographic parameters 126 can include values to define an
elliptic curve and/or use ECC algorithms 154. A set of ECC
parameters 137 could comprise values or numbers for an
elliptic curve defining equation. ECC parameters 137 are also
depicted and described in FIG. 1g of U.S. patent application
Ser. No. 14/055,606, filed Oct. 16, 2013 in the name of John
Nix, which is hereby incorporated by reference in its entirety.
Cryptographic parameters 126 could also include an ECC
standard curve 138, which could comprise a name and/or
values for a standardized curve, such as, but not limited to, the
list of named curves included in section 5.1.1 of IETF RFC
4492 titled “Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS).”

[0143] Ascontemplated herein, a set of cryptographic algo-
rithms 141 may operate using either strings or numbers, and
cryptographic parameters 126 could include either strings or
numbers as well. As contemplated herein (i) a collection,
sequence, and/or series of numbers could comprise a string,
(ii) a string can include a mixture of numbers and characters,
or (iii) a string can comprise a collection, sequence, and/or
series of characters. The processing of cryptographic algo-
rithms within a module 101 can take place within a CPU
1014, or module 101 could also process cryptographic algo-
rithms in a cryptographic processing unit (not shown) con-
nected to the system bus 101d. According to an exemplary
embodiment, a module 101 or a server 105 could include a
cryptographic processing unit (not shown) separate from the
CPU 1015 or CPU 1055 in order to increase efficiency for
supporting the use of cryptography through a system 100.
Alternatively, in exemplary embodiments cryptographic
algorithms 141 can be implemented entirely in software
within a module 101 and/or server 105, and also utilized by a
module controller 101x and application interface 101:.
[0144] FIG. 1k

[0145] FIG. 1% is a graphical illustration of an exemplary
system that includes a user, an application, a set of servers,
and a set of modules, in accordance with exemplary embodi-
ments. System 199 illustrated in FIG. 1/ can include a user
183, an application 171/, a set of servers 105, and a set of
modules 101, which can communicate as illustrated using the
Internet 107. Each of a server A 105 and server B 105 and

Apr. 30, 2015

additional servers can communicate with a plurality of mod-
ules. An application 171/ can communicate with a plurality of
servers 105. Although the servers 105 and application 171/ in
system 100 in FIG. 1; are illustrated as being separate, appli-
cation 171/ and server 105 may optionally be combined into
a single node, such that the application 171/ and server 105
operate as separate processes or programs on the same com-
puter, or on a computer operating in a distributed environment
such as, but not limited to, a cloud configuration. In addition,
even though a single application 171/ and a single user 183 are
illustrated in FIG. 1/, a system 199 could include multiple
applications 171/ and multiple users 183. In exemplary
embodiments, application server 171 and/or application 171/
can communicate with multiple servers 105 using the mul-
tiple secure connection data transfer 802 links illustrated in
FIG. 1A. A secure connection data transfer 802 is depicted and
described in connection with FIG. 8 below. In addition, in
exemplary embodiments, a first server A 105 can communi-
cate with a second server B 105 also by using a secure con-
nection data transfer 802.

[0146] As illustrated in FIG. 14, a first server A 105 and a
second server B 105 could also share a module database 105k,
such that information recorded in a module database 105 by
the first server A 105 could be accessible to or queried by a
second server B 105. The connection between the servers and
the module database 1054 could also be through a secure
connection data transfer 802 which is depicted and described
in connection with FIG. 8. In this manner and as contemplated
herein, a module database 105 can comprise a shared mod-
ule database 105%. Other configurations are possible as well
without departing from the scope of the present invention for
using a shared module database 105%. In another embodiment
a shared module database 105k could be combined with
application server 171 or shared module database 1054 could
comprise a distributed hash table. In exemplary embodi-
ments, a system 199 could also include a plurality of shared
module databases 105k, wherein the shared module databases
105% could be either (i) be periodically synchronized, or (ii)
record separate information for a system 199. A shared mod-
ule database 1054 could also comprise a plurality of separate
module databases 105%, such that different information may
be recorded in each module database 105%. With the use of
separate module databases 105£, a first module database 105&
could record data associated with a first module 101, and a
second module database could record data associated with a
second module 101. A server 105 could access each of the first
module database 105k and the second module database 105k,
possibly through a secure connection data transfer 802, in
order to support communication with a plurality of modules
101.

[0147] User 183 can comprise an individual, business man-
ager, network engineer, systems administrator, other
employee with functional responsibilities for a system 199
(or components within a system 199 or system 100) accessing
application 171i using a computer with a user interface such
as, but not limited to, a web browser 183a. Application 171/
could also send an email or text message to user 183 if an
alarm condition is detected in system 199, such as, but not
limited to, if a sensor 101/ measurement exceeds a prescribed
threshold value. The web browser 183a could use a connec-
tion 184 to access a web portal 171 operating on application
171i. Connection 184 could include hypertext markup lan-
guage (HTML) messages, and could be through a secure
connection such as, but not limited to, TLS or [Psec, although

US 2015/0121066 Al

other possibilities exist as well to those of ordinary skill in the
art. Any module 101, such as, but not limited to, module 101
A, could use the Internet 107 and establish a primary connec-
tion 181 with server 105 A, and also module 101 A could
establish a backup connection 182 with server 105 B if the
primary connection 181 is not available. Alternatively, any
module 101, such as, but not limited to, module 101 A, could
communicate with more than one server 105 concurrently or
in sequence, such that module 101 A communicates with both
server A 105 and server B 105. According to exemplary
embodiments, during an active state between periods of sleep
or being dormant, module 101 may communicate with more
than one server 105, such as, but not limited to, a first server
A 105 and a second server B 105. Other possibilities for a
plurality of modules 101 to communicate with a plurality of
servers 105 exist without departing from the scope of the
present invention.

[0148] As contemplated herein a system 199 and other
systems illustrated in additional Figures can include a set of
servers 1057, and the exemplary system illustrated in system
199 includes at least two servers 105 in the set of servers 105x.
Other servers besides a server 105 can be included in a set of
servers 105z, such as, but not limited to, shared module
database 1054 which could operate on separate computers
than a server 105. Other possibilities exist as well for the
number of servers 105 in a set of servers 105x. In another
embodiment, the set of servers 1057 could comprise a single
server 105. Thus, a set of servers 105# can include from one
to many servers 105.

[0149] FIG.2

[0150] FIG. 2 is a graphical illustration of an exemplary
system, where a module sends a message to a server, and
where the server responds to the message, in accordance with
exemplary embodiments. Module 101 as depicted and
described in FIG. 2 can operate as a wireless module 101,
although a wired connection to the Internet 107 could alter-
natively be utilized. System 100 as illustrated in FIG. 2
includes RF signals 201, module IP address 202, port number
203, module IP:port 204, server port number 205, server ID
206, server IP:port number 207, message 208, response 209,
wireless network firewall address 210, and firewall port bind-
ing packet 211. Many of the elements illustrated within sys-
tem 100 in FIG. 2 are also depicted and described in connec-
tion with FIG. 2 of U.S. patent application Ser. No. 14/039,
401 (the contents of which are hereby incorporated by
reference in their entirety). As contemplated herein, a wire-
less module 101 can comprise amodule 101, or in other words
a wireless module 101 may be a module 101 that is wireless.
Functions described as being performed by a wireless module
101 may also be performed by a wired module 101 (where
connection to a wired network would be used instead of
connection to a wireless network 102). Also as contemplated
herein and illustrated in FIG. 2, the wording “module 101
sends a message 208 can also be considered equivalent to
“server 105 receives a message 208”. Likewise, the wording
“server 105 sends a response 209” can be considered equiva-
lent to “module 101 receives a response 209”.

[0151] A wireless module 101 can wake from a dormant
state in order perform (i) remote and automated monitoring
and (ii) control functions such as, but not limited to, collecting
a sensor 101/ measurement, communicating with server 105,
and controlling an actuator 101y. If module 101 is connected
to land-line power or a long-lasting external power source
such solar power, then module 101 may remain in an active

Apr. 30, 2015

state and bypass a dormant state, although transmitting RF
signals 201 may preferably only be utilized when communi-
cating with wireless network 102 or sending data to and
receiving data from server 105. The wireless module can
acquire an IP address 202 from the wireless network 102. IP
address 202 is illustrated as being an IPv6 address, but IP
address 202 could also be an IPv4 address.

[0152] Inorderto transmit or send data from wireless mod-
ule 101 to server 105, a wireless module 101 can use module
program 101 to collect data from a sensor 101fin order to
update server 105. Module program 101/ can request a port
number 203 from operating system 101/ in order to have a
source [P:port for sending data using IP protocols such as, but
not limited to, TCP and UDP. The terminology “IP:port™ as
described herein refers to combining an IP address with a port
number. Wireless module IP address 202 and port number
203 can be combined to form IP:port number 204. IP:port
number 204 can be utilized as a source IP:port number for
packets transmitted from wireless module 101, as well as a
destination IP:port number for packets received by wireless
module 101, when communicating with server 105.

[0153] Inorderto utilize Internet 107, module 101 may also
need a destination IP address and port number in order to send
packets to server 105. Before sending data to server 105,
wireless module 101 preferably retrieves server IP address
106 and server port number 205 from RAM 101e. Server [P
address 106 could be recorded in RAM 101e via (i) a DNS
query using server name 206 or (ii) queries to M2M service
provider 108 or wireless network 102. CPU 1015 may copy
server [P address 106 and server port number 205 from non-
volatile memory into volatile memory such as, but not limited
to, a register for processing to send a packet to server 105.
Server name 206 could also be a server identity. (A) Server I[P
address 106 or server name 206 and (B) server port number
205 could be recorded in a nonvolatile memory such as, but
not limited to, flash memory 101w so that wireless module
101 can store the proper destination of packets transmitted or
sent even when wireless module is dormant or shutdown,
which avoids the processing and bandwidth requirements of
obtaining server IP address 106 and server port number 205
every time the wireless module 101 wakes from the dormant
or shutdown state. Server IP address 106 and server port
number 205 can be combined into a server IP:port number
207.

[0154] After collecting data from a sensor, module 101 can
send a packet from IP:port 204 to IP:port 207, and the packet
could comprise a message 208 that may include the data from
a sensor 101f. Note that message 208 does not need to include
sensor data, and message could potentially be a periodic
registration message or keep-alive message. As contemplated
herein, the term “sensor measurement” can refer to data asso-
ciated with or derived from a sensor 101f. A sensor measure-
ment, can comprise a string containing data regarding a
parameter of a monitored unit 119 and collected by a sensor
101/. The sensor measurement as sent in a message 208 can
also represent a string (alphanumeric, binary, text, hexadeci-
mal, etc.), where the string comprises a transformation or
processing of sensor data collected by a CPU 1015, such
including formatting, compressing, or encrypting, encoding,
etc. of sensor data. A “sensor measurement” could comprise
a plurality of data from a sensor 101f.

[0155] In order to minimize bandwidth and time required
for RF signals 201 to be active, module 101 can send the
message 208 as a single UDP datagram in accordance with a

US 2015/0121066 Al

preferred exemplary embodiment. The single UDP datagram
in this embodiment can preferably be the only packet sent
from module 101 to server 105 or M2M service provider 108
during a wake state for the module 101 when the radio 101z is
active and transmitting, such as, but not limited to, in a radio
resource control (RRC) connected state. In other words,
according to this preferred exemplary embodiment, the mes-
sage 208 sent by module 101 can preferably be the only
message or packet sent by the wireless module to the server
105 between dormant periods of module 101. By sending
message 208 as a single UDP datagram, both a battery 101k is
conserved and utilization of valuable RF spectrum is reduced.
Message 208 could also comprise a series of associated UDP
messages.

[0156] Also, as contemplated herein, message 208 could
comprise a related series of packets, so that message 208
could comprise multiple datagrams. As one example, if TCP
is utilized as the transport protocol for message 208, then the
series of TCP messages including the initial handshake, one
or more packets of payload data, and the closing of the con-
nection could together comprise message 208. As another
example, if UDP or UDP Lite is utilized for the transport
protocol, and payload data exceeds a maximum transmission
unit (MTU) size for the UDP packet and the payload data is
spread across multiple packets, then the multiple packets
would comprise a message 208. Further, a related series of
packets comprising a message 208 could be identified by
using the same source IP:port number as either (i) received by
server 105 or (ii) sent by module 101. In addition, a related
series of packets comprising a first message 208 could be
identified as a series of packets sent by module 101 before
receiving a response 209 from a server, and packets sent after
receiving a response 209 could comprise a second message
208. Other possibilities for a message 208 to comprise mul-
tiple packets or datagrams may exist without departing from
the scope of the present invention.

[0157] The UDP datagram for message 208 could also be
formatted according to the UDP Lite protocol, as specified in
IETF RFC 3828, which is also incorporated by reference
herein. The term “UDP Lite” described in the present inven-
tion may also refer to any connectionless protocol widely
supported on Internet 107 where checksums may be partially
disabled, thereby supporting the transfer of bit errors within a
datagram. The advantages of UDP over TCP is that UDP can
be quickly sent, while TCP requires a “handshake” with the
server which requires more time and bandwidth, which would
utilize more energy from battery 101%. According to an exem-
plary embodiment, both message 208 and response 209 can
be TCP messages. In this exemplary embodiment, message
208 and response 209 could each comprise a series of TCP
messages that can include a TCP SYN, SYN ACK, ACK,
ACK w/data, FIN ACK, etc.

[0158] According to an exemplary embodiment, module
101 sends (and server 105 receives) the same sensor data in
multiple copies of the same UDP packet. Each of the multiple
copies of the same UDP packet can also optionally be for-
matted according to the UDP Lite protocol. As one example,
wireless module sends three identical copies of the UDP or
UDRP Lite packet that include the same sensor data. The ben-
efit of sending three copies of UDP Lite include (i) the RF
signals 201 received by the base station 103 could include bit
errors, which could result in a regular (RFC 768) UDP packet
being dropped, since a bit error could result in a UDP check-
sum mismatch, as received and processed by wireless net-

Apr. 30, 2015

work 102. Note that the use of checksums is mandatory in
IPv6, and thus checksums cannot be fully disabled in IPv6.
With UDP Lite packets transmitted by wireless module 101,
where the mandatory checksum for IPv6 can cover the packet
header, wireless network 102 can forward all packets
received, potentially including bit errors, to server 105 over
the Internet 107.

[0159] Server 105 can receive the multiple copies of the
UDP or UDP Lite packets, which could include bit errors
received, and server 105 could compare or combine the mul-
tiple copies or each individual UDP Lite packet in order to
remove bit errors. Note that UDP Lite is not required, and
wireless module 101 could send the message 208 using a
single UDP packet, or multiple copies of a regular UDP (i.e.
non UDP Lite) packet. However, using UDP Lite with mul-
tiple packets sent can provide benefits such as if the sensor
data is encrypted in the packet, then a single bit error would
normally break the receiver’s ability to decipher the data
using a cryptographic key, unless the encrypted data was
channel coded and the channel coding could recover from the
bit error in order to present an error-free input of the
encrypted data to a deciphering algorithm.

[0160] Further, between periods of sleep when a wireless
module 101 becomes active and transmits RF signals 201,
module 101, which may also comprise a wireless module
101, could send the sensor data in a single UDP Lite packet
where the packet includes channel coding, which can also be
referred to forward error correction. Forward error correction
could also be implemented by sending multiple copies of the
same UDP packet. Note that since large segments of message
208 could include encrypted or hashed data, those segments
may not be appropriate for compression since the data is often
similar to random strings which are not readily compressed.
Channel coding techniques for the data in message 208 could
include block codes and convolution codes. Block codes
could include Reed-Solomon, Golay, BCH, Hamming, and
turbo codes. According to a preferred exemplary embodi-
ment, data within message 208 is sent as a UDP Lite packet
using a turbo code to correct multiple bit errors within a
packet or datagram sent by module 101 and received by server
105.

[0161] In system 100 illustrated in FIG. 2, server 105 can
use IP:port 207 to receive the packet from wireless module
101 and sent from source IP:port 204 to IP:port 207, and the
packet could comprise a message 208 that may include the
data from a sensor associated with module 101 or monitored
unit 119. As contemplated herein, a message 208 illustrated in
FIG. 2 does not need to include sensor data and other data
could be transmitted or sent, such as, but not limited to, a
server instruction 414 (described in FIG. 4 below), or other
data pertaining to module 101 or a monitored unit 119. Note
that server 105 can use IP:port 207 to receive a plurality of
messages 208 from a plurality of wireless modules 101.
Server 105 preferably listens for UDP packets on [P:port 207
or monitors IP:port 207, although TCP packets could be sup-
ported as well. If server 105 receives multiple copies of the
same UDP packet from module 101, server 105 preferably
includes a timer to drop duplicate packets received outside a
timer window such as, but not limited to, an exemplary 5
seconds.

[0162] After receiving the message 208 and processing the
message according to the techniques described below such as,
but not limited to, in FIG. 4, server 105 can send a response
209. Since module 101 may belong to a wireless network 102

US 2015/0121066 Al

which includes a firewall 104, the source IP:port of the mes-
sage 208 received by server 105 could be different from the
source [P:port 204 utilized by wireless module 101. The
source [P:port in message 208 could be changed if firewall
104 performs network address translation (NAT), as one
example. Server 105 may not readily know if a NAT transla-
tion has been performed on the message 208. Alternatively,
firewall 104 may not perform NAT, but could still block data
from the Internet 107 which does not properly match the
firewall rules. As one example, firewall 104 could be a sym-
metric firewall (but without NAT functionality), where only
packets from IP:port 207 to IP:port 204 are allowed to pass the
firewall after message 208 has been sent by module 101.

[0163] In either case, where firewall 104 may or may not
perform NAT routing, server 105 preferably sends the
response 209 from the server IP:port 207 to the source [P:port
it receives in message 208. According to a preferred exem-
plary embodiment, response 209 is a UDP packet sent from
server 105 with (i) a source IP:port 207 and (ii) a destination
IP:portequal to the source IP:port received in message 208, as
illustrated in packet 209a. The example use of source and
destination IP:ports in message 208 and response 209 are also
illustrated in FIG. 6a below. In this manner, the UDP packet
can traverse a firewall 104, if firewall 104 is present. If firewall
104 is present and performs NAT routing, then firewall 104
can receive the response 209 and change the destination IP
address and port within response 209 to equal IP:port 204.

[0164] According to exemplary preferred embodiments,
module 101 may also obtain power from a land-line source,
such as, but not limited to, a traditional 120 volt wall socket,
or possibly power over Ethernet, and other non-transient
power sources could be utilized as well. In this case, module
101 may remain persistently connected to the Internet
through either a wireless network 102 or a wired connection
such as, but not limited to, Ethernet. In other words, module
101 may omit entering periods of sleep or dormancy where
inbound packets from the Internet would not be received due
to the sleep state of module 101. Consequently in an exem-
plary embodiment, module 101, which does not sleep for
periods longer than a minute, may preferably periodically
send a firewall port binding packet 211 from IP:port 204 to
IP:port 207 in order to keep ports and addresses within a
firewall 104 and/or firewall 124 open to communications
between module 101 and server 105. Firewall port binding
packet 211 can comprise a packet that is sent periodically
using a timer interval that is shorter than the port-binding
timeout period 117 on a firewall 104 and firewall 124.

[0165] Continuing with this exemplary embodiment where
module 101 does not sleep for periods longer than approxi-
mately one minute, if UDP is utilized for message 208 and
response 209, then a small UDP packet comprising firewall
port binding packet 211 can be sent periodically such as, but
not limited to, every 45 seconds. If TCP is utilized for mes-
sage 208 and response 209, then a small TCP packet com-
prising firewall port binding packet 211 can be sent periodi-
cally such as, but not limited to, every 4 minutes. Other
possibilities for the timing of sending firewall port binding
packet 211 are possible as well. By sending firewall port
binding packet 211 periodically, server 105 can send module
101a response 209, (i) which could include a module instruc-
tion 502 as explained in FIG. Sa, at (ii) time intervals between
message 208 and response 209 that are longer than the fire-
wall port binding timeout values 117 of firewall 104 and/or
firewall 124. Without firewall port binding packet 211, if (A)

Apr. 30, 2015

a response 209 sent from server 105 at an exemplary 180
seconds after receiving message 208, such as, but not limited
to, after a firewall port binding timeout value 117 of firewall
104 of an exemplary 60 seconds transpired, then (B) response
209 would be dropped by firewall 104 and the response 209
would not be received by module 101.

[0166] FIG.3

[0167] FIG. 3isaflow chartillustrating exemplary steps for
a server to receive a message from a module, in accordance
with exemplary embodiments. As illustrated in F1G. 3, FIG. 3
can include steps used by a module controller 105x in a server
105 as illustrated in FIG. 1¢. The processes and operations,
including steps for module controller 105x, described below
with respect to all of the logic flow diagrams may include the
manipulation of signals by a processor and the maintenance
of'these signals within data structures resident in one or more
memory storage devices. For the purposes of this discussion,
a process can be generally conceived to be a sequence of
computer-executed steps leading to a desired result.

[0168] These steps usually require physical manipulations
of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical, magnetic, or optical
signals capable of being stored, transferred, combined, com-
pared, or otherwise manipulated. It is convention for those
skilled in the art to refer to representations of these signals as
bits, bytes, words, information, elements, symbols, charac-
ters, numbers, points, data, entries, objects, images, files, or
the like. It should be kept in mind, however, that these and
similar terms are associated with appropriate physical quan-
tities for computer operations, and that these terms are merely
conventional labels applied to physical quantities that exist
within and during operation of the computer.

[0169] It should also be understood that manipulations
within the computer are often referred to in terms such as
listing, creating, adding, calculating, comparing, moving,
receiving, determining, configuring, identifying, populating,
loading, performing, executing, storing etc. that are often
associated with manual operations performed by a human
operator. The operations described herein can be machine
operations performed in conjunction with various input pro-
vided by a human operator or user that interacts with the
computer.

[0170] In addition, it should be understood that the pro-
grams, processes, methods, etc. described herein are not
related or limited to any particular computer or apparatus.
Rather, various types of general purpose machines may be
used with the following process in accordance with the teach-
ings described herein. The present invention may comprise a
computer program or hardware or a combination thereof
which embodies the functions described herein and illus-
trated in the appended flow charts. However, it should be
apparent that there could be many different ways of imple-
menting the invention in computer programming or hardware
design, and the invention should not be construed as limited to
any one set of computer program instructions.

[0171] Further, askilled programmer would be able to write
such a computer program or identify the appropriate hard-
ware circuits to implement the disclosed invention without
difficulty based on the flow charts and associated description
in the application text, for example. Therefore, disclosure of
aparticular set of program code instructions or detailed hard-
ware devices is not considered necessary for an adequate
understanding of how to make and use the invention. The
inventive functionality of the claimed computer implemented

US 2015/0121066 Al

processes will be explained in more detail in the following
description in conjunction with the remaining Figures illus-
trating other process flows. Further, certain steps in the pro-
cesses or process flow described in all of the logic flow dia-
grams below must naturally precede others for the present
invention to function as described. However, the present
invention is not limited to the order of the steps described if
such order or sequence does not alter the functionality of the
present invention. That is, it is recognized that some steps
may be performed before, after, or in parallel other steps
without departing from the scope and spirit of the present
invention.

[0172] The processes, operations, and steps performed by
the hardware and software described in this document usually
include the manipulation of signals by a CPU or remote server
and the maintenance of these signals within data structures
resident in one or more of the local or remote memory storage
devices. Such data structures impose a physical organization
upon the collection of data stored within a memory storage
device and represent specific electrical or magnetic elements.
These symbolic representations are the means used by those
skilled in the art of computer programming and computer
construction to most effectively convey teachings and discov-
eries to others skilled in the art.

[0173] At step 311, the server 105 can record a module
public key 111, or a plurality of module keys 111 in a module
database 105%. The module public key 111 could be received
in a message 208 according to steps 516 and 517, including
authenticating the message 208, as depicted and described in
connection with FIG. 56 below. Module public key 111 could
also be recorded at step 311 before module 101 connects to
the Internet 107 the very first time, and in this case module
public key 111 could be recorded in server 105 by M2M
service provider 108 or module provider 109. At step 312, the
server 105 can open a TCP/UDP socket associated with an
IP:port number 207 and listen or monitor for incoming mes-
sage from modules. At step 313, server 105 can receive a
message 208 sent by module 101, using the IP:port number
207. Although not illustrated in FIG. 3, upon the first com-
munication from module 101 by server 105 where the com-
munication could include step 313, according to an exem-
plary embodiment, module 101 can also send a certificate 122
to server 105, where certificate 122 would normally include
module public key 111 and module identity 110. Server 105
could utilize a certificate 122 to verify a module identity 110,
as described in FIG. 4 below at step 412.

[0174] An exemplary format of message 208 is depicted
and described in connection with FIG. 6a below, and other
possibilities for a message 208 exist as well. Although not
illustrated in FIG. 3, after receiving message 208 at step 313,
server 105 may also process any channel coding present in
message 208 in order to eliminate any bit errors received. The
channel coding could be included in a message 208 that
utilizes the UDP Lite protocol in an exemplary embodiment.
At step 314, server 105 can decrypt a message 208 using a
cryptographic algorithm 141 and one of (i) server private key
105¢, or (ii) a symmetric key 127. Additional details regard-
ing step 314 are depicted and described in connection with
FIG. 4 below. At step 315, server 105 can verify that message
208 was sent by module 101 using a module identity 110,
module public key 111, and a cryptographic algorithm 141,
including verifying a module digital signature 405 discussed
in FIG. 4 below. Additional details regarding step 315 are
depicted and described in connection with FIG. 4 below. Note

Apr. 30, 2015

that step 315 can take place before step 314 if the module
identity 110 and/or a digital signature is not encrypted within
message 208 (i.e. a sensor measurement in message 208
could be encrypted but a module identity 110 or digital sig-
nature may not be encrypted). Step 315 may optionally be
omitted, if a symmetric key 127 is used to cipher data within
message 208, such that a module digital signature from mod-
ule 101 was previously verified when the symmetric key 127
was implemented.

[0175] After verifying the identity of module 101 in step
315, at step 316 server 105 can record sensor data or sensor
measurements within message 208 in a module database
1054, if message 208 has a sensor measurement. Note that
message 208 may not have a sensor measurement, and in this
case step 316 can be skipped, or message 208 may also
include other data besides a sensor measurement. Sensor data
recorded in module database 105k can be made available for
subsequent processing by server 105 or other servers or appli-
cations associated with an M2M service provider 108 in order
to manage the function and operation of module 101 or moni-
tored unit 119. As illustrated in FIG. 7 through FIG. 9,
received sensor data could also be forwarded by server 105 to
an application server 171. Although not illustrated in FIG. 3,
in an exemplary embodiment at step 316 server 105 could
alternatively forward the sensor data to application 171/
instead of recording the data in module database 105k. After
receiving message 208, server 105 can process a response 209
at step 317a. Step 3174 can comprise encrypting an instruc-
tion, where the instruction could include an acknowledge-
ment of the message received, a command or setting for an
actuator, and/or another control message for module 101.
Server 105 can utilize a module public key 111 and crypto-
graphic algorithms 141 in order to encrypt the instruction.
Step 3175 can comprise creating a digital signature for the
response 209 using the server private key 105¢ and crypto-
graphic algorithms 141.

[0176] Additional details regarding steps 317a and 317b
are depicted and described in connection with FIG. 5a below.
Note that step 317a and/or step 3175 may optionally be omit-
ted, such that response 209 is transmitted without encryption
and/or a signature, and security could be obtained through
other means, such as through firewalls 104 and 124, or using
a secured network link between module 101 and server 105,
such as, but not limited to, setting up a virtual private network
(VPN) or SSH tunnel between the two endpoints. These alter-
native means for security at the network layer would likely
require additional bandwidth and power consumption for a
module 101 and thus may not be adequately efficient. As one
example, if module 101 is a wireless module that sleeps for
relatively long periods such as, but not limited to, every hour
(and obtains a new 1P address for every wake period), setting
up anew VPN between module 101 and server 105 in order to
receive send a message from module 101 may not be practical
due to the extra drain on a battery 1014 for re-establishing the
VPN. Or, only portions of steps 317a and 3175 could be used,
such that a response 209 (or a message 208 received in step
313) is not encrypted but a digital signature is used in the
response 209 (or message 208).

[0177] After completing steps 317a and 31754, at step 209a,
server 105 can send response 209 from (a) the source port
utilized to receive message 208 to (b) a destination IP:port.
The destination IP:port can comprise the source IP:port in
message 208 as received by server 105, and the destination
IP:port can represent the external interface of a firewall 104.

US 2015/0121066 Al

Inother words, server 105 may send response 209 from server
IP:port 207 to the source IP:port received in message 208,
which could represent the source IP:port on a wireless net-
work firewall 104, wherein the source IP:port on the wireless
network firewall 104 contains the firewall IP address 210. The
wireless network firewall 104 could forward the response 209
to module IP:port 204. As contemplated herein, server 105
can send response 209 as soon as practical after receiving
message 208, and in any case response 209 should be sent
before the expiration of a firewall port binding timeout value
117 associated with firewall 104. According to a preferred
exemplary embodiment, response 209 is sent by server 105
within no more than 5 seconds of receiving message 208.
After completing step 209q as illustrated in FIG. 34, server
105 can return to step 312 and listen for or monitor for
additional incoming messages 208 from modules 101.
[0178] FIG.4

[0179] FIG.4isaflow chartillustrating exemplary steps for
a server to process a message, including veritying a module’s
identity and decrypting data, in accordance with exemplary
embodiments. The steps illustrated in FIG. 4 may comprise
step 315 and step 316 illustrated in FIG. 3 above. Server 105
can receive message 208 using IP:port 207, as illustrated in
FIG. 2. Message 208 can be formatted according to the UDP
protocol or UDP Lite protocol, although other possibilities
exist as well without departing from the scope of the present
invention

[0180] Atstep 407, server 105 can process the packet using
the appropriate transport layer protocol, such as, but not lim-
ited to, UDP. In this step 407, the body of the packet com-
prising message 208 can be extracted, and a checksum, if any,
can be calculated to verify the integrity. Note that if the UDP
Lite protocol is utilized, the checksum may optionally only
apply to the packet header. At step 408, server 105 canremove
channel coding, if present in message 208. Channel coding
techniques utilized in step 408 could include block codes and
convolution codes, and can use the same channel coding
algorithms used in channel coding algorithms implemented
by module 101, depicted and described in connection with
FIG. 5a below. By processing channel coding in step 408,
server 105 can correct potential bit errors received in message
208, although channel coding 408 may be optionally omitted.
As noted above, the use of channel coding 408 can be pre-
ferred in an embodiment, since any bit errors received within
module encrypted data 403 in message 208 could break (i) a
cryptographic algorithms 141 used by server 105 at subse-
quent steps 413, and/or (ii) the verification of module digital
signature 405 at step 410 below.

[0181] At step 409, the server 105 can read and record the
module identity 110, if module 110 is included in message
208 as external to module encrypted data 403 as illustrated in
an exemplary message 208 in FIG. 6a below. Although not
illustrated in FIG. 4, server 105 can select a module public key
111 for module 101 by querying a module database 1054 with
module identity 110. Module identity 110 could comprise a
string or session identifier, whereby server 105 could derive
or track a module identity 110 from one message 208 to the
next message 208 using the string or session identifier. By
including module identity 110 in a message 208, but external
to module encrypted data 403 such as, but not limited to,
illustrated in FIG. 6a below, a server 105 can utilize module
identity 110 in order to select a server private key 105¢ or
symmetric key 127 for decrypting module encrypted data
403. According to an exemplary embodiment, a plurality of

Apr. 30, 2015

server private keys 105¢ could be utilized, where a first private
key 105¢ is used with a first set of modules 101 and a second
private key 105c¢ is used with a second set of modules 101.
The first and second private keys 105¢ could use or be asso-
ciated with different sets of parameters 126. By reading the
module identity 110 outside of module encrypted data 403,
the module identity 110 can be read before decryption, in
order to identify which of the first or second set server private
keys 105¢ that a module 101 sending message 208 is associ-
ated with, and thus server 105 can subsequently select the first
or second set of server private keys 105¢ to use when decrypt-
ing module encrypted data 403.

[0182] Alternatively according to an exemplary embodi-
ment, if server 105 operates in a distributed environment
(such as, but not limited to, comprising multiple sub-servers
105w as illustrated in FIG. 10, an unencrypted module iden-
tity 110, including a possibly a session identifier for module
identity 110 within a message 208, can be utilized by a mes-
sage preprocessor 105y to select the appropriate sub-server
105w to process the message 208. Server 105 using message
preprocessor 105y could forward the message 208 to the
correct sub-server 105w. At step 410, server 105 can validate
and verify the module identity 110 using the module digital
signature 405 inserted by module 101 in message 208. Mod-
ule digital signature 405 can comprise a secure hash signature
or tag, where module 101 generated the hash signature using
the module private key 112 and digital signature algorithms
141d. As one example, server 105 can utilize the module
public key 111 recorded in memory 105e to securely validate
the module digital signature 405 receive in a message 208.

[0183] The module digital signature 405 can be verified
according to public key infrastructure (PKI) standards such
as, but not limited to, the National Institute of Standards
(NIST) “FIPS 186-4: Digital Signature Standard”, or IETF
RFC 6979 titled “Deterministic Usage of the Digital Signa-
ture Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)”. Other PKI standards or proprietary
techniques for securely verifying a module digital signature
405 may be utilized as well. If message 208 comprises an
initial communication from module 101, at step 412 server
105 can verify that module public key 111 is associated with
module identity 110 using a module certificate 122, where
certificate 122 includes a signature 123 from a certificate
authority 118, as illustrated in FIG. 1/ of U.S. patent appli-
cation Ser. No. 14/055,606, filed Oct. 16, 2013 in the name of
John Nix. Server 105 could receive certificate 122 before
module 101 sends message 208, or server 105 could query
module 101 or another server for certificate 122 after receiv-
ing message 208. Server 105 could use digital signature algo-
rithms 141d to compare a secure hash calculated using (i) a
first certificate 122 and/or public key from module 101 and
(i1) a second certificate and/or public key from certificate
authority 118 or another server, in order to confirm that mod-
ule public key 111 is associated with module identity 110,
where module identity 110 was read from message 208 in step
409. The secure hash could also be calculated using module
publickey 111 and a public key from certificate authority 118,
and other possibilities using PKI exist as well for server 105
to confirm module public key 111 is associated with module
identity 110 at step 412.

[0184] In an exemplary embodiment, if (A) module
encrypted data 403 includes module identity 110 and/or mod-
ule digital signature 405, then (B) steps 409 and/or 410 may
also take place after step 413, where server 105 (i) first

US 2015/0121066 Al

decrypts module encrypted data 403 and can then (ii) verify
module identity 110 by performing steps 409 and 410 after
step 413. If module encrypted data 403 utilizes a symmetric
cipher 1415, then a module identity 110 can preferably be
external to module encrypted data 403 so that server 105 can
select the appropriate symmetric key 127 used by module 101
in order to decipher module encrypted data 403 (since a
plurality of modules 101 may communicate with server 105
concurrently).

[0185] After verifying module digital signature 405 in step
410, server 105 can record an authenticated module
encrypted data 403 from module 101 received in message
208. At step 413, server 105 can decrypt module encrypted
data 403 using cryptographic algorithms 141 and either (i)
server private key 105¢ as a decryption key with asymmetric
ciphering 141a or (ii) symmetric key 127 with symmetric
ciphering 1415. A symmetric key 127 may be stored in a
module database 1054, as noted in FIG. 1fabove. If a sym-
metric key 127 is used at step 413, the symmetric key 127
could be (i) sent by server 105 in a response 209 or (ii)
received by server 105 in a prior message 208, before the
message 208 illustrated in FIG. 4 was received by server 105.
[0186] With an asymmetric ciphering 141a scheme used in
a module encrypted data 403 and by cryptographic algo-
rithms 141 at step 413, server 105 can decrypt module
encrypted data 403 using (i) server private key 105¢ and (ii)
RSA algorithms 153, elliptic curve cryptography (ECC) algo-
rithms 154, or other algorithms for public key cryptography.
The use and application of RSA algorithms 153 and cryptog-
raphy are described within IETF RFC 3447, among other
published standards. The use and application of ECC cryp-
tography and algorithms are described within IETF RFC
6637, among other published standards. ECC algorithms 154
may be preferred in order to maintain high security with
smaller key lengths, compared to RSA, in order to minimize
the message lengths, radio frequency spectrum utilization,
and processing power or energy required by module 101.
Note that module encrypted data 403 may also include a
security token 401 (not shown in FIG. 4, but shown in FIG.
5a), which could comprise a random string, and thus each
module encrypted data 403 received by server 105 in message
208 may be reasonably considered unique and thus robust
against replay attacks.

[0187] With a symmetric ciphering 1415 scheme used in a
module encrypted data 403 and by cryptographic algorithms
141 at step 413, server 105 can decrypt module encrypted
data 403 using (i) symmetric key 127 and (ii) a symmetric
cipher 1415 such as, but not limited to, AES 155, Triple DES,
or similar secure symmetric ciphers. As one example, by
using ECC cryptography and ECIES, server 105 could
decrypt module encrypted data at step 413 by using the steps
outlined in FIG. 3, titled “ECIES Encryption Functional Dia-
gram” in “A Survey of the Elliptic Curve Integrated Encryp-
tion Scheme” by Martinez et al in the Journal of Computer
Science and Engineering, Volume 2, August 2010, page 11,
(herein incorporated by reference). Other possibilities exist as
well without departing from the scope of the present inven-
tion. Server 105 can utilize step 413 illustrated in FIG. 4 to
extract the plaintext, or decrypted data within module
encrypted data 403.

[0188] After decrypting module encrypted data 403, server
105 can read the resulting data within message 208, which
could comprise a server instruction 414. The server instruc-
tion 414 can represent the purpose of the message 208 for

Apr. 30, 2015

server 105. Server instruction 414 could comprise a plurality
of different procedures for server 105, such as, but not limited
to, an “update” with sensor data, a “query” for data or instruc-
tions from server 105 or M2M service provide 108, a “noti-
fication” of state or condition at module 101 such as, but not
limited to, an alarm or error, a “configuration request” where
module 101 seeks configuration parameters, a “software
request” where module 101 request updated software or rou-
tines, a “registration” message where module 101 periodi-
cally registers with server 105, etc. Thus, server instruction
414 can comprise the purpose module 101 sends message
208. In addition, server instruction 414 could comprise a
“confirmation”, where module 101 sends a “confirmation” in
a second message 208 after receipt of a response 209, where
response 209 could include a module instruction 502 (below),
and the “confirmation” in this second message 208 could
signal server 105 that the module instruction 502 had been
properly executed.

[0189] As examples for server instruction 414, an “update”
could be used to periodically notify server 105 of regular,
periodic sensor data 305 acquired by a sensor 101f. An
“update” for server instruction 414 may also comprise a peri-
odic report regarding monitored unit 119 or information
regarding a state, condition, or level for an actuator 101y. A
“query” for server instruction 414 could comprise module
101 querying server 105 for data from a module database
105k, where the data could be associated with monitored unit
119, wireless network 102, an element within module 101
such as, but not limited to, an actuator setting. A “notification”
for server instruction 414 could comprise module 101 noti-
fying server 105 that an alarm or error condition has occurred,
such as, but not limited to, a sensor measurement exceeds a
threshold value or another error condition such as, but not
limited to, loss of contact with monitored unit 119. A “con-
figuration request” for server instruction 414 could comprise
module 101 requesting server 105 for configuration param-
eters or a configuration file. Other possibilities for server
instruction 414 exist without departing from the scope of the
present invention.

[0190] At step 415, server 105 can process the server
instruction 414. If server instruction 414 comprises an
“update”, then sensor data, or other data in server instruction
414 including potentially a new symmetric key 127 generated
by module 101, could be recorded in module database 105%,
Other applications may subsequently access the sensor data
for generating reports or making decisions regarding moni-
tored unit 119. If server instruction 414 comprises a “query”,
then server 105 could execute the query at step 415. If server
instruction 414 comprises a “notification” of an alarm, then
step 415 could initiate procedures for alarm notification to 3¢
parties or alarm resolution. Other possibilities for processing
a server instruction 414 at step 415 exist without departing
from the scope of the present invention.

[0191] FIG. 5a

[0192] FIG. 5a is a flow chart illustrating exemplary steps
for a server to process a response for a module, including
sending and signing a module instruction, in accordance with
exemplary embodiments. The steps illustrated in FIG. 5a may
comprise step 317a and step 3175 illustrated in FIG. 3 above.
Since message 208 and response 209 may traverse the public
Internet 107, a module 101 and a server 105 may prefer to take
additional steps to sending plaintext in packets in order to
maintain security of a system 100. Server 105 can process a
response 209 to a message 208 from module 101 using a

US 2015/0121066 Al

module public key 111 and a server private key 105¢, accord-
ing to a preferred exemplary embodiment. If a symmetric
cipher 1415 is utilized within cryptographic algorithms 141,
then server 105 may also utilize a symmetric key 127 to
encrypt data within a response 209. Note that the security
methods described herein are optional, and message 208 and
response 208 can be sent without any or all of the additional
security steps described herein, but the use of these security
steps may be preferred.

[0193] After receiving message 208 as illustrated in FI1G. 2,
server 105 can prepare an acknowledgement 501. The
acknowledgement 501 can be a simple text, binary, or hexa-
decimal string to confirm that message 208 has been received
and/or processed by server 105. Since message 208 may be
transmitted via a UDP or UDP Lite packet, module 101 may
preferably utilize a reply message from server 105 containing
acknowledgement 501, in order to confirm message 208 has
been received by server 105. Alternatively, if TCP is used to
transmit message 208, an acknowledgement 501 may be used
at the application layer of the Open Systems Interconnection
(OSI) model, wherein a simple TCP ACK message may oper-
ate atthe lower transport layer than the application layer. UDP
may be preferred over TCP in order to reduce processing
resources for module 101 and server 105, especially consid-
ering the relatively small and comparably infrequent mes-
sages sent between a module 101 and a server 105 (when
compared to web browsing and considering module 101 may
have a battery 1014 that may preferably last for weeks or
longer without recharging). In processing a response 209,
server 105 may optionally add a security token 401, which
could be a random number 128a, or a randomly generated
text, binary, or hexadecimal string. Security token 401 could
be a random number 128a or string that is included in
response 209 in order to make each response 209 unique and
thus avoid any replay attacks when response 209 traverses
Internet 107. Note that a message 208 may also preferably
include a security token 401.

[0194] In other words, the use of security token 401 can
ensure to a high level of certainty that each response 209 will
be different and thus the data within response 209 would not
be sent more than once. Note that security token 401 may be
generated by module 101 in message 208, and in this case
server 105 can use the same security token received in mes-
sage 208. Security token 401 can alternatively be generated
by server 105 and different than any security token 401
received in message 208. Security token 401 illustrated in
FIG. 5a can be derived or processed by using message 208 in
accordance with preferred exemplary embodiments.

[0195] Server 105 may also optionally add a module
instruction 502 when preparing a response 209. The module
instruction 502 could be a string that contains instructions or
configuration parameters for module 101, such as, but not
limited to, an order to change state, parameters regarding the
monitoring of monitored unit 119, server names or addresses,
radio frequency parameters, wireless network 102 authenti-
cation parameters or keys, keys for communication with
server 105 or M2M service provider 108, etc. Module instruc-
tion 502 may also comprise an instruction to change the state
of actuator 101y, a timer value, a sensor threshold value, the
threshold for an alarm state, and information for display at a
user interface 101, an instruction to sleep, etc. Module
instruction 502 may further comprise an updated module
private key 112, and updated server public key 114, or the
address or name of a new server 105 added to M2M service

Apr. 30, 2015

provider 108. According to an exemplary preferred embodi-
ment, a module instruction 502 could comprise a “key gen-
eration” instruction, where module 101 generates a new pair
of' a module private key 112 and a module public key 111,
utilizing the exemplary steps and procedures illustrated in
FIG. 556 below, including step 515. The “key generation” 608
module instruction 502 (illustrated in FIG. 6a below) could
be used to create new keys for a new purpose (such as, but not
limited to, connecting to a new wireless network 102 or
communicating with a new server 105), while the existing
keys used to communicate with server 105 could remain
operable or be deprecated at a later time. Alternatively, an
existing or previous module public key 111 could be depre-
cated or become invalid once server 105 sends a “key genera-
tion” module instruction 502.

[0196] In order to control module 101, server 105 would
normally need to include module instruction 502 in the
response 209 only after receiving message 208, since the
server 105 would normally not be able to send messages to a
module 101 at arbitrary times, such as before a message 208
has been received by the server 105. The reasons include (i)
the module may normally be in a sleep or dormant state, in
order to conserve battery life or power consumption, where an
unsolicited incoming Internet packet from server 105 would
not be received by module 101, and (ii) a wireless network
102 (or equivalent wired network that a wired module 101
could connect with) may frequently include a firewall 104.
Firewall 104 could prevent packets from the Internet 107
from reaching module 101 unless module 101 had previously
first sent a packet to server 105 within a firewall port-binding
timeout period 117 of firewall 104. The port-binding timeout
period of a firewall 104 may be an exemplary period such as,
but not limited to, 20-60 seconds for UDP packets and several
minutes for TCP packets. Note that module instruction 502
may optionally be omitted, such that (b) some response 209
messages may include module instruction 502, and (b) other
response 209 messages may omit module instruction 502, but
include an acknowledgement 501 to message 208. Also note
that according to an exemplary embodiment described herein,
the use of optional strings or steps can be depicted in FIGS. 4
and 5a through the use of dashed lines for the various ele-
ments illustrated. In other words, the use of dashed lines
shows steps that are included in one exemplary embodiment,
but excluded or omitted in another exemplary embodiment.

[0197] Server 105 may then use as input the acknowledge-
ment 501, security token 401, and module instruction 502,
including optional data and cryptographic parameters 126,
into cryptographic algorithms 141 at step 503. The crypto-
graphic algorithms 141 at step 503 can utilize either (i) mod-
ule public key 111 as an encryption key if asymmetric cipher-
ing 141a is utilized, or (ii) a shared symmetric key 127 if a
symmetric cipher 1415 is utilized, such as, but not limited to,
AES 155 ciphering. The output of cryptographic algorithms
141 at step 503, using acknowledgement 501, security token
401, and module instruction 502, plus optional data and
parameters 126, as input, can be server encrypted data 504, as
illustrated in FIG. 5a. Server encrypted data 504 could be a
string or number, including a text, binary, or hexadecimal
string or series of numbers or bits, and other possibilities for
the formal of server encrypted data 504 exist as well, includ-
ing a file, without departing from the scope of the present
invention. By using module public key 111 and/or symmetric
key 127 in the cryptographic algorithms 141 at step 503,
server encrypted data 504 may only be reasonably decrypted

US 2015/0121066 Al

by module 101 using module private key 112 and/or symmet-
ric key 127. Thus the response 209 transmitted across an
Internet 107 may be reasonably considered secure and only
reasonably decrypted by module 101.

[0198] Server 105 can then process server encrypted data
504 by appending or including server identity 206. Note that
server identity 206 can be appended or included after the
operation of step 503, since the server identity 206 may
optionally be openly readable within a response 209 trans-
mitted or sent to module 101. As one example, server identity
206 could comprise IP address 106 as a source IP address in
response 209, which would be openly readable on the Internet
107 since a valid packet must have a source and destination IP
address. Additional details on an exemplary structure of
response 209 are illustrated in FIG. 6a below. By including
server identity 206 after encryption at step 503, the module
can read the server identity 206 and verity a digital signature
within response 209 without having to first decrypt data
within response 209 using the module private key 112 or
symmetric key 127. Note that server identity 206 could alter-
natively be included within server encrypted data 504, such
that step 505 takes place before step 504. In other words,
including server identity 206 external to a server encrypted
data 504 can be used by module 101 to select the proper server
public key 114 when verifying a digital signature in response
209.

[0199] Server 105 can then process a server digital signa-
ture 506 using the server private key 105¢. In an exemplary
embodiment, the server digital signature 506 can be pro-
cessed according to public key infrastructure (PKI) standards
such as, but not limited to, the National Institute of Standards
(NIST) “FIPS 186-4: Digital Signature Standard” (which is
hereby incorporated herein by reference), or IETF RFC 6979
titled “Deterministic Usage of the Digital Signature Algo-
rithm (DSA) and Elliptic Curve Digital Signature Algorithm
(ECDSA)” (which is hereby incorporated herein by refer-
ence). In another exemplary embodiment the use of a server
digital signature 506 can be processed according to the
description of a digital signature according to the Wikipedia
entry for “Digital Signature” as of Sep. 9, 2013, which is
incorporated by reference herein in its entirety. Also note that
other uses of a digital signature as contemplated within the
present invention may refer to the above three references and
related standard techniques for processing and creating digi-
tal signatures. Other PKI methods for securely generating a
server digital signature 506 may be utilized as well.

[0200] According to a preferred exemplary embodiment,
ECC algorithms for generating server digital signature 506
may be utilized in order to minimize the key length compared
to RSA algorithms. Server digital signature 506 may com-
prise a secure hash signature using a hash algorithm such as,
but not limited to, secure hash algorithm 1 (SHA-1), or sub-
sequent standards such as, but not limited to, SHA-2 and
SHA-3, and other possibilities exist as well. Server digital
signature 506 is illustrated in FIG. 5a as being processed after
server encrypted data 504, but server digital signature 506
may also optionally be included in server encrypted data 504.
Step 506 may also take place before step 505.

[0201] Also note that server digital signature 506 may pref-
erably be included in a response 209 before module 101
begins either (i) utilizing a symmetric key 127 shown in step
413 to encrypt a module encrypted data 403, or (ii) accept or
process a module instruction 502. After including server digi-
tal signature 506 in a first response 209 that uses asymmetric

Apr. 30, 2015

ciphering 141a, server 105 may omit server digital signature
506 in a second subsequent response. The second subsequent
response could be a case where (i) server encrypted data 504
utilizes a symmetric key 127 for ciphering (where server 105
received the symmetric key 127 in a message 208 that utilized
asymmetric ciphering 141a as illustrated in FIG. 4 above) and
(ii) expiration time 133 of symmetric key 127 has not tran-
spired.

[0202] FIG. 5k

[0203] FIG. 556 is a flow chart illustrating exemplary steps
for a server to communicate with a module that has derived a
public key and private key, in accordance with exemplary
embodiments. In order to utilize communications secured
with PKI techniques such as, but not limited to, private keys,
public keys, certificates, and identities, a module 101 may
preferably obtain or generate these keys and utilize a module
identity 110 and/or a certificate 122 in a secure manner. Given
that a plurality of modules 101 may be deployed in potentially
remote places, without frequent contact with end users or
technicians, the use of secure PKI techniques for a module
101 can create a significant set of challenges for the genera-
tion of module public key 111 and module private key 112, as
well as properly and securely obtaining a certificate 122 with
an module identity 110. Using conventional technology, sig-
nificant challenges and costs can be incurred when (i) module
101 has already been deployed, such as collecting data from
a monitored unit 119, and (ii) module 101 needs to utilize a
new set of module private key 112 and module publickey 111.
[0204] Exemplary embodiments that include derivation or
processing of a new module private key 112 and module
public key 111 may utilize the particular steps and procedures
contemplated herein, in order to minimize any potential
human intervention (with related costs) while continuing to
maintain or also enhance security, compared either (i) exter-
nally generating module private key 112, and/or (ii) continu-
ing to use the same module private key 112 for the lifetime of
module 101. Over a long period of operating time for a
module 101, such as, but not limited to, several years or
longer, there may be many reasons module 101 may need a
new pair of PKI keys, such as, but not limited to, (i) expiration
ofa certificate 122, or the certificate 122 of a parent signature
authority, (ii) the transfer of ownership or control of module
101, where the prior ownership could have direct or indirect
access to the module private key 112, (iii) supporting a new
server 105 that has different security requirements or a dif-
ferent set of cryptographic parameters 126 (longer keys, dif-
ferent ECC curves, different cryptographic algorithms 141,
etc.), and/or (iv) revocation of a public key in a chain of
signatures associated with a certificate 122. In the case of (ii)
above, new ownership of module 101 may require a module
101 to utilize a new module private key 112 since the old
ownership may have access to an old module private key 122.
In the case of (iii) above, a new server 105 may require a pair
of'public/private keys incompatible with a prior set of public/
private keys utilized by module 101 and/or a certificate 122
for module 101.

[0205] Other possibilities exist as well for reasons why a
module 101 and/or server 105 may prefer for a module 101 to
utilize a new module public key 111 and new module private
key 112. In an exemplary embodiment, module 101 may
generate a new public/private key periodically in order to
enhance the security of a system 100. A benefit of a system
100 supporting periodic generation of keys by module 101 is
that the key length can be shortened in order to obtain a

US 2015/0121066 Al

similar level of security, and the processing power and energy
consumption, possibly from a battery 105%, can be reduced
through the use of shorter key lengths. In other words, over
time such as, but not limited to, several months or years, the
use of a plurality of different pairs of public/private keys for
module 101 with shorter key lengths can be both more secure
and energy efficient than using a single pair of public/private
keys with a longer key length for the lifetime of module 101.
Shorter key lengths may also be more compatible with pro-
cessing power constraints of a module 101. Thus, in exem-
plary embodiments, module 101 and/or server 105 may prefer
for module 101 to periodically generate new public and pri-
vate keys.

[0206] The general approach adopted by most mobile
phone networks over the past two decades has been founded
upon the use of a pre-shared secret key recorded in subscriber
identity module (SIM) or UICC cards, such as the Ki pre-
shared secret key in 2G, 3G, and subsequent networks. That
approach may work for mobile phones, where the SIMs can
often be easily replaced, but the use of a pre-shared secret key
in a SIM or UICC may not be suitable for a module 101 and
M2M service provider 108 for many circumstances. As one
example, significant costs may be incurred by swapping out a
SIM card for already deployed modules 101, especially if
they are in remote locations or continually moving such as,
but not limited to, a tracking device on a container, pallet,
truck, or automobile. In an exemplary embodiment, a module
101 may preferably record multiple pairs of public/private
keys 111/112 for various and different functions, such as, but
not limited to, connecting to different servers 105, connecting
to different wireless networks 102, etc. As contemplated
herein, recording more than one public/private key 111/112
can comprise module 101 recording a plurality of pairs of
module public keys 111 and module private keys 112. In
exemplary embodiments, one pair comprising a first module
public key 111 and a first module private key 112 can be
identified or selected from a different pair comprising a sec-
ond module public key 111 and a second module private key
112 using a module public key identity 111a.

[0207] The number of pairs of public/private keys useful to
a module 101 concurrently could be several, such as, but not
limited to, an exemplary three or more actively used public/
private keys, although other possibilities exist as well. Manu-
ally trying to change or add a new SIM card each time a new
security key is required may not be efficient or feasible. Or in
another exemplary embodiment, the multiple pairs of private
and public keys could be used in sequence, such that module
101 with server 105 utilizes a single module public key 111
and module private key 112 at any given point in time. In the
case where module 101 with a module identity 110 derives or
generates more than one module private key 112 and module
public key 111 during the lifetime of module 101 and sends
the derived module public keys 111 over time to a set of
servers 105n, this case may be considered a server 105 receiv-
ing a series of module public keys for a module identity 110.
The various pairs in the series may also use either different
sets of cryptographic parameters 126 or the same set of cryp-
tographic parameters 126. The series of module public keys
111 (with corresponding module private keys 112) can be
processed by a CPU 1015 with key pair generation algorithms
141e and a random number generator 128. The random num-
ber generator 128 can use input from a sensor 101/, a radio
101z, and/or a temporary random seed file 139.

Apr. 30, 2015

[0208] In exemplary embodiments, module 101 can use a
module public key 111 for sending a module encrypted data
403 or receiving a server encrypted data 504 by either (i)
sending the module public key 111 to a server 105 in order to
allow the module encrypted data 403 to be decrypted (such as,
but not limited to, using a step 413) or the server encrypted
data 504 to be encrypted (such as, but not limited to, using a
step 503), or (ii) inputting the module public key 111 into a
key derivation function 141f’in order to derive or process a
derived shared secret key 1295, which could be used with a
symmetric key 127. Other possibilities exist as well for mod-
ule 101 to use its own module public key 111 with crypto-
graphic algorithms for communicating with a server 105.

[0209] FIG. 55 illustrates exemplary steps that can be per-
formed with module 101, including using a module program
101, for generating, deriving, and/or updating a module pub-
lic key 111 and module private key 112. The steps illustrated
in FIG. 54 include both (i) an “initial” or “startup” case where
module 101 has not previously derived keys (or keys not
internally derived may not have been loaded), and (ii) a sub-
sequent or “follow on” time where module 101 can generate
or derive keys after keys were initially obtained or derived.
Note that efficient and secure methods and systems contem-
plated herein, including in FIG. 55, may also be utilized with
aregular consumer mobile phone, or smartphone, as amodule
101. Mobile phones as module 101 can benefit from (i) deriv-
ing amodule public key 111 and a module private key 112, (ii)
sending module encrypted data 403 in a message 208 using
the derived keys, and (iii) receiving a server encrypted data
504 in a response 209 also using the derived keys. In the
exemplary embodiment where module 101 comprises a
mobile phone, then sensor 101/ may comprise a microphone
and actuator 101y may comprise a speaker, and other possi-
bilities exist as well to those of ordinary skill in the art for
module 101 to comprise a mobile phone.

[0210] At step 511, during manufacturing of module 101,
including manufacturing of sub-components such as, but not
limited to, a circuit board, assembly of hardware components
illustrated in FIG. 15, etc., a module identity 110 could be
written into the hardware, and could comprise a serial num-
ber, International Mobile Equipment Identity (IMEI) number,
Ethernet MAC address, or a similar persistent identification
for a module 101. An IEMI number may be used with a
mobile phone as module 101, in a preferred embodiment. For
security purposes, the module identity 110 may preferably be
written into a read-only location or protected location or
protected memory, such as, but not limited to, a readable
location on a system bus 1014, which could also comprise a
ROM 101c¢. Recording and utilizing module identity 110 is
also depicted and described in connection with FIG. 1e, FIG.
2, and elsewhere herein. Alternatively, module identity 110
could be recorded in a non-volatile memory such as, but not
limited to, a flash memory 101w.

[0211] At step 512, module 101 can be distributed to end
users and also installed with a monitored unit 119. If module
101 is a mobile phone, then monitored unit 119 could be a
person that carries the mobile phone. Also note that a moni-
tored unit 119 could be omitted, and a module 101 could use
the techniques contemplated herein. At step 513, a shared
secret key 510, parameters 126, and a server address 207 can
be recorded in a nonvolatile memory 101w. Parameters 126
may comprise settings for a cryptographic algorithms 141 as
illustrated in FIG. 1 g, including (i) key lengths, (ii) algo-
rithms to utilize for key generation or ciphering, such as, but

US 2015/0121066 Al

not limited to, selecting RSA algorithms 153 or ECC algo-
rithms 154, (iii) a specific secure hash algorithm 141c¢ to
utilize, such as, but not limited to, SHA-256 or SHA-3, (iv) an
expiration date of the module public key 111, (v) a maximum
time value for an expiration time 133 associated with a sym-
metric key 127, (vi) a ECC parameters 137 or an ECC stan-
dard curve 138 as parameters 126 in FIG. 1/ of U.S. patent
application Ser. No. 14/055,606, filed Oct. 16, 2013 in the
name of John Nix, (vii) the specification of or values for a
padding scheme for use with a digital signature algorithms
141d, and/or similar or related values for using cryptographic
algorithms 141d. Although not illustrated in FIG. 55, at step
512 a configuration file could also be loaded into non-volatile
memory, where the configuration file includes a plurality of
fields specifying the operation of module 101. The shared
secret key 510, parameters 126, and server address 207 could
be included in a configuration file.

[0212] Continuing at step 513, server identity 206 could be
utilized in place of or in addition to server address 207, and in
this case module 101 can later perform a DNS or DNSSEC
lookup using server identity 206 in order to obtain server
address 207 for use in a message 208, such as the destination
address. Shared secret key 510 and server address 207 (or
server identity 206) could also be recorded in a ROM 101c¢ at
step 513. Step 513 may also be performed concurrently with
step 511 or step 512. According to an exemplary embodiment,
amanufacturer may perform step 513 and in this case step 513
could take place concurrently with step 511. In another
embodiment, a distributor of module 101 could perform step
513 and in this case step 513 could take place concurrently
with step 512. Alternatively, step 513 may be performed by a
technician or end user after manufacturing and distribution
and before module 101 begins collecting sensor data with a
monitored unit. Other possibilities exist as well for the
sequence of steps 511 through 513 illustrated in FIG. 5b
without departing from the scope of the present invention.

[0213] Note that step 513 may take place multiple times
during the lifetime of a module 101, and in this case (a) the
first time step 513 is conducted, step 513 could be conducted
concurrent with steps 511 or 512, and (b) a subsequent time
step 513 is conducted, step 513 could be conducted after the
receipt of a response 209, where the response 209 includes a
second shared secret key 510, server address 207, and also
potentially a new module identity 110. In other words,
although not illustrated in FIG. 55, a module 101 could return
to step 513 from later steps upon the equivalent of a “factory
reset”, or similar command where flash memory 101w and
other nonvolatile memory would be cleared. In an exemplary
embodiment where step 513 takes place a second time may
potentially be the transfer of ownership or control of module
101, or a another embodiment where step 513 takes place a
second time could be the upload of new firmware that is
incompatible with a previous configuration file. In any case,
shared secret key 510 can preferably be uniquely associated
with module 101 (i.e. any given shared secret key 510 may
belong only to an individual module 101).

[0214] Shared secret key 510 may comprise a pre-shared
secret key 129a, as described in FIG. 1e. If module 101 has
already derived a module private key 112 and module public
key 111 (such as when step 513 is being conducted at a second
or additional time as contemplated in the previous para-
graph), then shared secret key 510 may comprise (i) a key
received in a server encrypted data 504 including possibly a
symmetric key 127, or (ii) a derived shared secret key 1295.

Apr. 30, 2015

Derived shared secret key 1295 could be obtained from using
akey derivation function 141fand module public key 111 and
server public key 114, using a module public key 111 that has
already been derived orused by module 101 (such as if at least
one module private key 112 and module public key 111 had
already been used or derived before step 513).

[0215] As contemplated herein in an exemplary embodi-
ment, an first module private key 112 and first module public
key 111 could be derived outside module 101 and loaded into
a nonvolatile memory such as flash memory 101w at a prior
time before step 513, and the shared secret key 510 could be
received by module 101 using the first module private key 112
and module public key 111 (such as, but not limited to,
receiving the shared secret key 510 in a server encrypted data
504 using the first module private key 112 which had been
loaded). Step 513 could then comprise a later time after the
server encrypted data 504 has been received that includes the
shared secret key 510, where module 101 may (i) prefer to
begin utilizing keys that module 101 internally derives using
cryptographic algorithms 141 instead of (ii) continuing to use
the first module public key 111 and module private key 112
that were derived outside of the module 101, such as, but not
limited to, possibly loaded into a nonvolatile memory from an
external source.

[0216] Inthe embodiment where shared secret key 510 has
not been received by module 101 in a server encrypted data
504, shared secret key 510 could be obtained and loaded by a
distributor, installer, or end user into a nonvolatile memory
such as, but not limited to, flash memory 101w in the form of
a pre-shared secret key 129a, where pre-shared secret key
129a was obtained using a module identity 110 and pre-
shared secret key code 134 as depicted and described in
connection with FIG. 1e of U.S. patent application Ser. No.
14/055,606, filed Oct. 16, 2013 in the name of John Nix.
Module 101 could also utilize a first pre-shared secret key
129a, including a first pre-shared secret key 129q entered by
potentially a distributor, installer, or end-user described in
FIG. 1e, to derive shared secret key 510. Other possibilities
exist as well for shared secret key 510, and shared secret key
510 can be useful for the proper identification and/or authen-
tication of module 101 upon module 101°s generation of a
private key 112 and public key 111, as described below
including step 517. If module 101 is a mobile phone, as
contemplated herein, shared secret key 510 could be loaded
by a distributor or company selling or servicing the mobile
phone, or shared secret key 510 could be obtained by the end
user or subscriber accessing a web page associated with a
mobile operator for a wireless network 102 associated with
the mobile phone and/or SIM card.

[0217] Also note that as contemplated herein, an initial
module private key 112 and initial module public key 111
could be recorded into nonvolatile memory at step 513. For
example, a manufacturer, distributor, installer, technician, or
end-user could load the initial module private key and initial
module public key 111, where the initial module public key
111 would be utilized to authenticate at step 517 a subsequent
set of public/private keys derived by module 101 at step 515.
In this case, the initial module public key 111 and/or initial
module private key 112 described in the previous two sen-
tences could comprise the shared secret key 510. In another
embodiment, the initial module public key 111 and initial
module private key 112 could be recorded in a SIM or UICC,
and the SIM or UICC could be either virtual or physical such
as, but not limited to, a SIM card, including a Universal

US 2015/0121066 Al

Integrated Circuit Card (UICC) or an embedded UICC
(eUICCQ). A set of servers 105% could also record the initial
module public key 111 recorded in the SIM (including an
eUICC), and the set of servers 105z could authenticate a
message or a subsequent module public key 111 derived by
module 101 (such as in a step 515 below) using the initial
module public key 111.

[0218] The use of an initial module public key 111 and/or
initial module private key 112 are also depicted and described
in connection with FIG. 56 of U.S. patent application Ser. No.
14/055,606, filed Oct. 16, 2013 in the name of John Nix,
which is hereby incorporated by reference in its entirety.
Thus, FIG. 556 also contemplates an embodiment where
shared secret key 510 at step 513 comprises an initial public/
private key pair for module 101 that is not internally derived
by module 101, including keys derived at step 515. Note that
the contemplation of the use of shared secret key 510 as a
pre-shared secret key 1294 within the present invention may
be different than the use of a pre-shared secret key within a
subscriber identity module (SIM) card as commonly sup-
ported by wireless networks 102 with mobile phones in 2013.

[0219] If either a “virtual” SIM or a physical SIM card or
eUICC is present within module 101 (including a UICC or
eUICC), and the SIM contains a pre-shared secret key, such
as, but not limited to, Ki, then as contemplated herein, shared
secret key 510 may be derived using the SIM and Ki. As one
example, module 101 could (i) utilize a RAND message,
potentially received from a 3G or 4G mobile network such as
wireless network 102, and (ii) input the RAND into the SIM
card and receive a response RES (or SRES), and utilize the
string in RES to process or derive a shared secret key 510.
Response RES could also comprise a shared secret key 510.
Server 105 could also submit the same RAND associated with
the SIM and Ki to wireless network 102, and receive the same
RES as obtained by module 101. By both module 101 and
server 105 having the same RES value, they can follow a
pre-agreed series of steps to use the same RES in order to
derive a commonly shared secret key 510 (or the shared RES
could comprise a shared secret key 510). In one embodiment
where module 101 includes a SIM for a wireless network 102,
such as, but not limited to, a 4G LTE network, module 101 and
server 105 could both utilize a key derivation function 141f,
using the same RES as input, in order to derive the same
shared secret key 510.

[0220] At step 514, module 101 can read module identity
110 using a read-only address. Module 101 can read module
identity 110 directly from read-only hardware address by
using system bus 1014, including from a ROM 101¢, or
module 101 can read module identity 110 from a nonvolatile
memory such as a flash memory 101w. Step 514 could also
take place after step 515 below. At Step 515, module 101 can
derive module private key 112 and a corresponding module
public key 111 using (i) random number generator 128, (ii)
cryptographic parameters 126, (iii) cryptographic algorithms
141, and/or (iv) a key pair generation algorithm 141e. Module
101 at step 515 and elsewhere in the present invention can be
a mobile phone such as, but not limited to, a smartphone.
Private key 112 and corresponding module public key 111
can be derived according to a wide range of parameters 126,
and can utilize different algorithms for different pairs ofkeys,
such as, but not limited to, RSA 153 or ECC 154. Key deri-
vation at step 515 could generate keys of various lengths, such
as, but not limited to, 2048 bits with RSA 153 or 283 bits with
ECC 154, and other possibilities exist as well. If using ECC

Apr. 30, 2015

154 to derive a pair of keys for module 101, step 515 could
also accommodate the use of different elliptic curves for
compatibility with server 105, such as, but not limited to, the
use of odd-characteristic curves, Koblitz curves, and making
sure the derived keys by module 101 use a compatible or
identical elliptic curve or defined elliptic curve equation as
server 105, etc. Module 101 can use ECC parameters 137 or
an ECC standard curve 138 in a parameters 126 to derive
module private key 112 and/or module public key 111.

[0221] Deriving keys in step 515 could also comprise using
values such as constants or variables in a set of cryptographic
parameters 126 to define an elliptic curve equation for use
with an ECC algorithm 154. The values or constants to define
an equation for an elliptic curve could be input into a key pair
generation algorithms 141e in the form of ECC parameters
137 or an ECC standard curve 138. In an exemplary embodi-
ment, where a parameters 126 does not include constants and
variables for defining an elliptic curve equation, a key pair
generation algorithms 141e could use pre-defined elliptic
curves with ECC algorithms 154 such as, but not limited to,
standardized, named curves in ECC standard curve 138
including exemplary values such as, but not limited to,
sect283k1, sect283rl, sectd09k1, sect409rl, etc. Exemplary,
standardized named curves, as opposed to module 101 and
server 105 using an internally generated elliptic curve equa-
tion using cryptographic parameters 126, are also identified
as example curves in IETF RFC 5480, titled “Elliptic Curve
Cryptography Subject Public Key Information”. Thus, mod-
ule 101 could use either standardized elliptic curves, or a
separate defined elliptic curve equation as specified in a
parameters 126.

[0222] The curve for module 101 to utilize in deriving
module public key 111 and module private key 112 at step 515
could be specified in a set of cryptographic parameters 126.
Consequently, the parameters of keys generated by module
101 at step 515 (including key length or algorithms utilized)
may be selected based upon the requirements of the applica-
tion and can be included in a parameters 126. When deriving
keys at step 515, module 101 may also preferably utilize data
from sensor 101f; radio 101z, a bus 1014, a physical interface
101a, memory 101e, and/or a clock in order to generate a seed
129 for random number generator 128, or random number
generator 128 could utilize these inputs directly. A random
number 1284 can be input into key pair generation algorithm
141e in order to derive the module public key 111 and module
private key 112. Note that with ECC algorithms 154, a mod-
ule private key 112 can be a random number 1284 in one
embodiment, and the module public key 111 can be derived
with a key pair generation algorithms 141e using the module
private key 112 comprising the random number 128a.

[0223] Uponkey derivation at step 515, module private key
112 and module public key 111 can be recorded in a nonvola-
tile memory 101w. Module private key 112 can preferably not
be transmitted or sent outside module 101. Also note that over
a potential lifetime of a decade or more of operation of mod-
ule 101, each time a new module private key 112 may be
required (for various potential reasons outlined above), the
external recording and/or transterring of module private key
112 incurs a potential security risk. Security risks can be
compounded if the external location records private keys 112
for a plurality of modules 101. Also, by internally generating
private key 112 at step 515, module 101 can overcome sig-
nificant limitations and costs requiring the distribution of a
pre-shared secret key Ki in the form of a SIM card or similar

US 2015/0121066 Al

physical distribution of a pre-shared secret key, after module
101 begins operations. In comparison, the use of a shared
secret key 510 in the present invention does not require physi-
cal distribution of a new shared secret key 510 after module
101 begins operations. Module 101°s key derivation could be
triggered by either (i) a bootloader program 125, where the
bootloader program 125 determines that memory within
module 101 does not contain a module private key 112, or (ii)
via a module instruction 502 such as, but not limited to, a “key
generation” or “derive new keys” command in a response 209
from a server, and other possibilities exist as well.

[0224] Note that module 101°s generation of keys after
deployment and installation may create challenges for
authentication of a new module public key 111 with module
identity 110, since module 101 may be connecting to server
105 or M2M service provider 108 via the Internet 107. After
module 101 creates new module public key 111 and module
private key 112 at step 515, at step 516 server 105 can receive
a message 208 with the module identity 110, the new module
public key 111, and cryptographic parameters 126. Param-
eters 126 in message 208 at step 516 can represent the param-
eters 126 used to generate the module public key 111. The
sub-steps for a server 105 to receive a message 208 are also
depicted and described in connection with FIG. 2 and also
FIG. 1c¢ above. Parameters 126 within a message 208 can
comprise descriptive values for new module public key 111.
Note that at step 516, server 105 does not need to receive new
module public key 111 in the form of a certificate 122 (al-
though it could be in the form of a certificate 122). New
module public key 111 could be received by server 105 within
a string or field within abody 602 of a TCP/UDP packet 601a,
illustrated in FIG. 65 below. As depicted in step 516 shown in
FIG. 65 below, message 208 at step 516 can also optionally
include a module public key identity 111a, which can be
recorded in module database 1054 along with module identity
110 and module public key 111a.

[0225] According to an exemplary embodiment, a first
source (IP:port) number received in a first message 208 at step
516 can be different than a second source IP:port numberin a
second message 208 at step 518 below, wherein a response
209 send in step 519 below can preferably be sent to the
second source IP:port number received in the second message
208 at step 518 in order to traverse a firewall 104 (as depicted
and described in connection with packet 209« in FIG. 2). In
other words, the proper destination IP:port for a response 209
to a module 101 can change over time, such as the proper
destination IP:port changing due to the use of sleep states by
module 101 and/or function of a firewall 104. Consequently,
according to an exemplary embodiment, a response 209 can
utilize a destination IP:port number equal to the source
IP:port number received in the last (i.e. most recent) message
208 from module 101 received by server 105.

[0226] Atstep 517, server 105 can authenticate the message
208 received in step 516 using the shared secret key 510
described in step 513. Server 105 could record the shared
secret key 510 before step 517 in a module database 105%. If
step 517 occurs for the first time in a lifetime of module 101,
then shared secret key 510 could comprise a pre-shared secret
key 1294 recorded by server 105 in a module database 105%
illustrated in FIG. 1f. If step 517 occurs at subsequent time,
then server 105 could have sent shared secret key 510 in a
server encrypted data 504 and recorded shared secret key 510
in a module database 105% for later use (such as at step 517).
Server 105 can authenticate the message 208 according to

Apr. 30, 2015

message digest, or using the shared secret key 510 to process
a symmetric key 127 within a symmetric ciphering algorithm
1415, where the successful encryption and decryption of data
within message 208 using the shared secret key 510 on both
ends could be confirmation that message 208 is authenticated,
since both parties would only be able to mutually successfully
encrypt and decrypt by sharing the same shared secret key
510. As contemplated herein, the term “authenticating a pub-
lic key” may refer to “authenticating a message that includes
the public key”, and both may refer to validating or verifying
that a recorded module identity 110 stored in server 105 is
associated with a receive module public key 111.

[0227] Other possibilities exist as well for server 105 to use
a shared secret key 510 in order to authenticate a message 208
that contains a new module public key 111 (where module
101 contains a new module private key 112). In one embodi-
ment, message 208 in step 516 could include a secure hash
signature using secure hash algorithms 141¢, where both the
module 101 and the server 105 input a string combing at least
aportion of the shared secret key 510 and a portion of the new
module public key 111 into the secure hash algorithms 141¢
in order to obtain the secure hash signature. Module 101
could send the secure hash signature to server 105 in a mes-
sage 208. The authentication of a new module public key 111
in step 517 is also depicted and described in step 1202 of FIG.
12 below, including the authentication and/or verification of
either () new module public key 111 or (ii) a message 208 that
includes new module public key 111 according to steps that
use alternatives to a shared secret key 510. Thus, according to
some exemplary embodiments (also discussed with step 1202
in FIG. 12 below), new module public key 111 can be authen-
ticated and/or verified as being properly associated with a
recorded module identity 110 in server 105 (¢) without the use
of a shared secret key 510, and/or (ii) with alternatives to
using shared secret key 510. After receiving authenticated
new module public key 111 insteps 516 and 517, according to
a preferred exemplary embodiment, server 105 can prefer-
ably only accept and process (A) either incoming (i) a sym-
metric keys 127 ciphered with a asymmetric ciphering algo-
rithm 141q, and/or (ii) incoming server instructions 414,
when (B) the next or a subsequent incoming message 208
from module 101 using module identity 110 also includes a
valid module digital signature 405 verified by using the new
module public key 111, received at step 516.

[0228] According to an exemplary embodiment, shared
secret key 510 can be associated with a module public key
identity 111a, and shared secret key 510 can be used to
authenticate a particular value for a module public key iden-
tity 111a. In this embodiment, (i) a message 208 with module
public key 111 and a first module public key identity 111a
may be authenticated using a shared secret key 510, but (ii) a
second message with module public key 111 and a second
module public key identity 111a may not be authenticated
using the same shared secret key 510. Thus, in accordance
with an exemplary embodiment, shared secret key 510 can be
used for both (i) a single time for authenticating a module
public key 111, and (ii) authenticating a module public key
111 with a particular value for the module public key identity
111a. Note that module public key identity 111a can be
particularly useful with key revocation, such that a key revo-
cation could specify a particular module public key identity
111a (associated with a particular module public key 111) to
be revoked, but other module public keys 111 for a module

US 2015/0121066 Al

101 and module identity 110 with different module public key
identities 111a could remain valid and not revoked.

[0229] Althoughnotillustrated in FIG. 55, server 105 could
operate with a certificate authority 118 in order to utilize a
new module public key 111, as described in this paragraph. In
this case, server 105 could bypass the authentication at step
517, but certificate authority 118 may perform step 517 in
order to sign the certificate 122, including possibly using
shared secret key 510 to authenticate module public key 111.
At step 516, new module public key 111 could be received by
server 105 in the form of a uniform resource locator (URL) or
domain name for download of a certificate 122 corresponding
to the new module public key 111. Using a certificate author-
ity 118 in conjunction with step 516 is also depicted and
described in connection with FIG. 56 of U.S. patent applica-
tion Ser. No. 14/055,606, filed Oct. 16, 2013 in the name of
John Nix, which is hereby incorporated by reference in its
entirety.

[0230] After steps 516 and 517, server 105 can update a
module database 1054 using the module identity 110 to insert
orupdate the new module public key 111, and parameters 126
associated with new module public key 111. Server 105 may
communicate with a plurality of modules 101, and thus could
utilize a module database 1054 in order to record the new
module public key 111 and parameters 126 with the module
identity 110. In one embodiment, the module identity 110
could preferably operate as an index within a table of module
database 105k in order to speed reads and writes from the
table used with module public key 111, parameters 126, and
also selecting a symmetric key 127 for a symmetric ciphering
algorithm 1415 in later messages. As described in FIG. 1g,
parameters 126 can include data useful for the operation of
cryptographic algorithms 141 and module public key 111.
According to a preferred exemplary embodiment, some mod-
ules 101 in a system 100 could utilize a first elliptic curve,
such as, but not limited to, using a first set of ECC parameters
137 or first ECC standard curve 138 within a parameters 126,
and other modules 101 could utilize a second and different
elliptic curve within a parameters 126, such as, but not limited
to, a second set of ECC parameters 137 or second ECC
standard curve 138.

[0231] After verifying the new module public key 111 in a
step 517, at step 518 of FIG. 55, server 105 could receive a
second message 208, and the second message 208 can include
a module identity 110 and module encrypted data 403.
Although not illustrated in FIG. 54, the second message 208
could also include a module digital signature 405, wherein the
module digital signature is created with the new module
public key 111 received in step 516. Server 105 could then
utilize the steps illustrated in FIG. 4 in order to process the
incoming message 208 with the new module public key 111,
including using the module identity 110 received in the sec-
ond message 208 at step 518 to select the new module public
key 111 and subsequently verify a module digital signature
405 using the new module public key 111 and digital signa-
ture algorithm 141d. Also as discussed in FIG. 4 in connection
with processing a received message 208, server 105 could
decrypt the module encrypted data 403 in the second message
208 by using server private key 105¢. In one embodiment, the
second message 208 as illustrated in FIG. 55, which could be
the next message after authenticating module public key 111
in step 517, could include a symmetric key 127.

[0232] The module encrypted data 403 in step 518 could
include a symmetric key 127 for utilization with a symmetric

Apr. 30, 2015

cipher 1415, where symmetric key 127 could be ciphered
with an asymmetric ciphering algorithm 141a. In another
embodiment, module 101 could also send sensor data in a
module encrypted data 403 at step 518. Or, at step 518 the
second message 208 could be a signal and/or data (such as a
random number 128a) for server 105 to use a key derivation
function 141f with the server public key 114 and the new
module public key 111 (received at step 516) to create a new
derived shared key 1294 for use with symmetric ciphering
algorithms 14154 in subsequent messages 208. In other words,
in some embodiments derived shared key 1295 can function
as a symmetric key 127. If the second message 208 in step 518
comprises a signal and/or data for server 105 to derive a new
derived shared key 1295, then this second message 208 could
then optionally leave off module encrypted data 403 and/or a
module digital signature 405. The successful use of a new
derived shared key 1295 (using the new module public key
111, possible received in step 516, and existing server public
key 114) with symmetric ciphering algorithms 1415 at sub-
sequent steps by both module 101 and server 105 can indicate
to each the communications are mutually authenticated. Sec-
ond message 208 could also include a server instruction 414,
a security token 401, and/or a timestamp value 604a, and
other possibilities exist as well without departing from the
scope of the present invention.

[0233] At step 519, server 105 can send a response 209 to
module 101, where the response 209 includes server
encrypted data 504 and a module instruction 502. Server 105
could take the steps to create and send response 209 as
depicted and described in connection with FIG. 5a. Response
209 could be formatted according to the exemplary response
209 illustrated in FIG. 6a below. The module instruction 502
could be an acknowledgement 501 that the second message
208 sent in step 518 was received by server 105. At step 520,
server 105 can receive a third message 208 with a confirma-
tion 414 to server 105. Confirmation 414 can be used to signal
proper execution of module instruction 502 from a step 519,
if module instruction 502 comprised an instruction other than
an “ACK” or acknowledgement 501. In an embodiment
where module instruction 502 in step 519 comprises an
acknowledgement 501 from server 105, then the confirmation
414 may omitted and in this case step 520 could be skipped.

[0234] At step 521 server 105 can determine or evaluate if
a new module public key 111 and/or certificate 122 are
required for continued operation. One reason for the need of
new keys could be the expiration of a certificate 122 for
module 101, or the desire to utilize a different set of crypto-
graphic parameters 126 such as, but not limited to, a longer
key length for increase security or the use of a different ECC
parameters 137 or a different ECC standard curve 138 with
cryptographic algorithms 141. As described elsewhere
herein, many other possibilities exist for reasons why module
101 and/or server 105 can prefer for module 101 to utilize a
new module public key 111 and new module private key 112.
Either server 105 or module 101 may determine that the use of
anew module public key 111 and new module private key 112
may be preferred at step 521. If module 101 determines that
the use of a new module public key 111 and new module
private key 112 is preferred or desirable, module 101 could
send server 1054 signal that new keys will be generated either
before step 521 or at step 521.

[0235] Upon determining new keys are desirable at step
521, then server 105 could instruct module 101 to derive new
private and public keys by returning to step 515. Although not

US 2015/0121066 Al

illustrated in FIG. 5b, upon determining “yes” at step 521,
server 105 could send a module instruction 502 of “new key
generation” and also a new or current set of cryptographic
parameters 126 to utilize with the new module private key 112
and module public key 111. In accordance with exemplary
embodiments, module instruction 502, including the “new
key generation” instruction and set of parameters 126, can be
sent in a response 209 both (i) after module 101 wakes from
a sleep or dormant state and sends a message 208 after waking
from the sleep or dormant state, and (ii) before the expiration
of'a firewall port binding timeout value 117 after receiving the
message 208. If server 105 determines that new keys are not
required or desirable at step 521, server 105 can then proceed
to step 312 and wait for additional incoming messages 208
from module 101 with module identity 110 or other modules.
Step 312 is also depicted and described in connection with
FIG. 3. Other possibilities exist as well for a server to receive
and respond to messages without departing from the scope of
the present invention.

[0236] FIG. 6a

[0237] FIG. 6a is a simplified message flow diagram illus-
trating an exemplary message received by a server, and an
exemplary response sent from the server, in accordance with
exemplary embodiments. FIG. 6a illustrates exemplary
details within message 208 received by server 105 and also
response 209 sent by server 105. Message 208 may comprise
a TCP/UDP packet 601a sent from module 101 source IP:port
204 to server 105 destination [P:port 207. According to an
exemplary embodiment, UDP or UDP Lite formatting for
TCP/UDP packet 601a may be preferred. Source IP:port 204
and destination IP:port 207 in message 208 may be included
within a header in TCP/UDP packet 601a. Although a single
message 208, response 209, module 101, and server 105 are
shown in FIG. 6a, system 100 as illustrated in FIG. 2 and
other systems depicted herein may comprise a plurality of
each of the nodes and datagrams illustrated in FIG. 6s. As
contemplated herein, the term “datagram” may also referto a
“packet”, such that referring to as datagram 601a can be
equivalent to referring to packet 601a. Note that when using
TCP protocol, a packet within a series of TCP messages can
also be a datagram 601a.

[0238] TCP/UDP packet 601a may include a body 602,
which can represent the data payload of TCP/UDP packet
601a. The data payload of message 208 can optionally
include channel coding 406 as described in FIG. 4 above, if
the transport protocol for TCP/UDP packet 601a supports the
transmission of bit errors in the body 602 (as opposed to
entirely dropping the packet), such as, but not limited to, with
the UDP Lite protocol. Support for the transmission of bit
errors in body 602 by wireless network 102 would be pre-
ferred over entirely discarding a packet, since the programs
such as module controller 105x could include support for and
utilization of channel coding 406. Without UDP Lite format-
ting, message 208 can alternatively sent by module 101 as a
UDP datagram, such as if wireless network 102 (or a wired
connection) does not support the UDP Lite protocol.

[0239] Note that if (A) message 208 comprises (i) regular
UDP or TCP formatting (i.e. not UDP Lite or similar varia-
tions) within an IPv6 network, or (ii) a UDP or TCP format
within an IPv4 network with a checksum 603 enabled (i.e.
checksum 603 not equal to zero), then (B) channel coding 406
may optionally be omitted. Checksum 603 can comprise a
value to for an integrity check of a packet 601a, and the
calculation and use of checksum 603 is defined in IETF

Apr. 30, 2015

standards for TCP and UDP packets. In accordance with an
exemplary embodiment, including the use of IPv6 for Internet
107 and a UDP datagram for message 208 and response 209,
a checksum 603 sent by module 101 in a message 208 does
not equal a checksum 603 in the message 208 received by
server 105.

[0240] The body 602 can include a module identity 110,
module encrypted data 403, and channel coding 406.
Although not illustrated in FIG. 6a, body 602 could also
include a module digital signature 405, as illustrated in FIG.
6 of U.S. patent application Ser. No. 14/039,401. Module
identity 110 is illustrated in FIG. 6a as external to module
encrypted data 403, although module identity 110 may
optionally only be included in module encrypted data 403,
and in this case module identity 110 would not be external to
module encrypted data 403 in a body 602. By including
module identity 110 as external to module encrypted data
403, server 105 can use the unencrypted module identity 110
in order to select either (i) the appropriate module public key
111 to verify module digital signature 405 if an asymmetric
cipher 141a is used within cryptographic algorithms 141, or
(ii) the appropriate symmetric key 127 within cryptographic
algorithms 141 to decrypt the module encrypted data 403.
Module public key 111 and symmetric key 127 may prefer-
ably be recorded in a module database 105£, such that server
105 can access a plurality of public keys associated with
different module identities 110 with different bodies 602 for
a plurality of modules 101.

[0241] Thus, by including module identity 110 external to
module encrypted data 403, server 105 can utilize the module
identity 110 to query a module database 1054 and select the
appropriate module public key 111 or symmetric key 127. As
noted previously, module identity 110 could comprise a string
or number that is uniquely associated with module identity
110, such as, but not limited to, a session identity, as opposed
to being a module identity 110 that is read from hardware in
module 101 such as, but not limited to, an IMEI number,
Ethernet MAC address, etc. Module identity 110 is illustrated
in FIG. 6a as a session identity that is a different representa-
tion of module identity 110 of a serial number such as in FI1G.
2, but in both cases the values can comprise a module identity
110 since the values can be uniquely associated with module
101 at different points in time.

[0242] According to an exemplary embodiment where
asymmetric ciphering 141a of module encrypted data 403 is
utilized, such as (i) the first message 208 sent by module 101
and (ii) where a symmetric key 127 had not been previously
exchanged, module identity 110 can be (a) within module
encrypted data and (b) not external to module encrypted data
403. Inthis case, server 105 can utilize server private key 105¢
to, in sequence, decrypt module encrypted data 403, extract
module identity 110 from the decrypted module encrypted
data 403, and then used the module identity 110 to select
module public key 111 from module database 1054 in order to
verify a module digital signature 405. In a related embodi-
ment, if a module identity 110 is in body 602 and external to
module encrypted data 403, then module identity 110 could
be obfuscated or otherwise ciphered according to a pre-
agreed algorithm with server 105, such that server 105 can
utilize the obfuscated or ciphered module identity 110 to
select a module public key 111 from module database 105%.
The value of “[Module Identity String]” shown in FIG. 6a
could comprise an obfuscated module identity 110. Accord-
ing to an exemplary embodiment where (1) symmetric cipher-

US 2015/0121066 Al

ing 1415 of module encrypted data 403 is utilized, such as
after a first message 208 had already been sent by module 101
and a symmetric key 127 had previously been exchanged,
then (ii) module identity 110 can be external to module
encrypted data 403 and in body 602 in order for server 105 to
utilize module identity 110 and select symmetric key 127
from a module database 105%, thereby enabling server 105 to
decrypt the module encrypted data 403 using the selected
symmetric key 127 and a symmetric ciphering algorithm
1415.

[0243] Inexemplary embodiments, a module digital signa-
ture 405 may optionally be omitted from body 602 after
module 101 has previously sent symmetric key 127 in a
previous message 208 to the message 208 illustrated in FIG.
6a. In other words, in a series of messages 208, module 101
can preferably change from (i) using asymmetric ciphering
141a with in a previous message 208 that includes symmetric
key 127 in a module encrypted data 403 (where the initial
message 208 also includes module digital signature 405 and
module identity 110) to (ii) using symmetric ciphering 1415
with subsequent messages 208 without module digital signa-
ture 405 in the series (where the subsequent messages 208 can
optionally include an obfuscated module identity 110 exter-
nal to module encrypted data 403 for server 105 to select the
appropriate symmetric key 127). Message 208 illustrated in
FIG. 6a can comprise a subsequent message 208 as described
in the previous sentence. A series of messages 208 could
begin when the initial message 208 is sent by module 101 and
end when expiration time 133 of symmetric key 127 has
transpired, and subsequently a new series of messages 208
could begin where the first message 208 in the new series of
messages changes back to asymmetric ciphering 141a with
initial message 208 that includes symmetric key 127 in a
module encrypted data 403 (where the initial message 208
also includes a new module digital signature 405). An
example of the initial message 208 described in this para-
graph can comprise message 208 illustrated in FIG. 6 of U.S.
patent application Ser. No. 14/039,401, filed Sep. 27, 2013 in
the name of John Nix, which is hereby incorporated by ref-
erence in its entirety. Other possibilities exist as well without
departing from the scope of the present invention.

[0244] Using a message 208 with a module digital signa-
ture 405 can be both more efficient and overall more secure
than digest authentication (such as the digest authentication
described in IETF RFC 2069), although using digest-based
authentication may be alternatively used. The use ofa module
digital signature 405 requires only a single packet for mes-
sage 208 and a single packet for response 209 for secure
communication between module 101 and server 105. Module
encrypted data 403 illustrated in FIG. 6a can be processed
using the steps and algorithms described in FIG. 4. Note that
module encrypted data 403 as illustrated in FIG. 64 is shown
in a plaintext form for ease of illustration, but actual module
encrypted data 403 within body 602 of a packet 601a could be
transmitted as binary, hexadecimal, Base64 binary-to-text
encoding, or other encoding rules and strings of the actual
data within module encrypted data 403 would not normally be
human readable.

[0245] In an exemplary embodiment, encryption by mod-
ule 101 may optionally be omitted, and the server instruction
414 with corresponding data could be included within a mes-
sage 208 without encryption, such as if security could be
maintained at the network level. As one example for this
embodiment without encryption, server instruction 414 could

Apr. 30, 2015

be included in body 602 as plaintext. The encryption and/or
security could be applied through other means, such as, but
not limited to, a secure tunnel between module 101 and server
105, although setting up and maintaining a secure tunnel and
similar or other means of security may require more process-
ing and bandwidth resources than the efficient techniques
described herein.

[0246] Module encrypted data 403 can include a server
instruction 414, a server identity 206, a module identity 110,
a security token 401, a timestamp 6044, and a sensor mea-
surement 6045. The server instruction 414 can represent the
purpose of the message 208 for server 105, and FIG. 6a
illustrates an “update” for server instruction 414. An update
for server instruction 414 could be used to periodically notify
server 105 of regular, periodic sensor measurements 6045
acquired by a sensor 101f or also data from a plurality of
sensors. An update for server instruction 414 may also com-
prise a periodic report regarding monitored unit 119, and a
server instruction 414 is described in FIG. 4. Other server
instructions 414 besides an “update” may be included in a
module encrypted data 403 within a body 602. The “update”
illustrated in message 208 in FIG. 6a can also include a new
symmetric key 127, and the module encrypted data 403 illus-
trated in FIG. 6a may comprise the use of either an asymmet-
ric ciphering 141a with public/private keys, or (ii) symmetric
ciphering 1415 with a symmetric key 127.

[0247] An initial transmission or negotiation of a symmet-
ric key 127 may preferably utilize asymmetric ciphering 141a
and the use of a public key as an encryption key and a private
key as a decryption key. Subsequent transmission of a new
symmetric key 127 may utilize either (i) a symmetric cipher
1415 with a previously negotiated but still valid symmetric
key 127 (i.e. expiration time 133 has not transpired), or (ii)
asymmetric ciphering 141a. If the data within instruction 414
is longer than the maximum data length supported by a
selected asymmetric ciphering algorithm 141a and the pub-
lic/private key pair, then module encrypted data 403 within
message 208 can be broken up into several sections, such that
the data within each section is less than the maximum data
length supported by the asymmetric ciphering algorithm
141a and key length. In an exemplary embodiment, a first
symmetric key 127 can be used with module encrypted data
403 and a second symmetric key 127 can be used with server
encrypted data 504. The first symmetric key 127 and second
symmetric key 127 can be different, including using a first
symmetric ciphering algorithm 1415 with the first symmetric
key and a second symmetric ciphering algorithm 1415 with
the second symmetric key 127. In another exemplary embodi-
ment, in order to reduce the number of messages required to
be transmitted and thus save power usage by a module 101,
symmetric key 127 used with module encrypted data 403 and
server encrypted data 504 can be the same and rotated peri-
odically such, but not limited to, when expiration time 133 for
a symmetric key 127 transpires.

[0248] Module identity 110 within module encrypted data
403 can represent the identity of module 110, and could
represent a serial number read by module 101 from a read-
only hardware address. Module identity 110 is described in
FIG. 1 ¢ and can represent a unique identifier of module 101.
Module identity 110 outside module encrypted data 403 can
represent a string or number that is different than a serial
number that can be used by module 101 within a module
encrypted data 403. Security token 401 within module
encrypted data 403 can represent a random string in order to

US 2015/0121066 Al

make message 208 reasonably unique and thus system 100 in
FIG. 2 and other systems illustrated herein robust against
replay attacks. Security token 401 is described in FIG. 5a.
Timestamp 604a can represent a time value that module 101
sends message 208 or a time value that module 101 acquired
sensor data 604b. Sensor data 6045 is described with the
description of a sensor 101fin FIG. 1e, and sensor data 6045
can represents data module 101 acquires using sensor 101f.
Sensor data 6045 within message 208 may be stored by server
105 in a module database 1054, or potentially forwarded to
another server such as, but not limited to, an application
server 171 for additional processing. Sensor data 6045 can
comprise a wide range of values for a sensor 101/ besides the
exemplary value of a temperature reading shown in FIG. 6a,
including raw sensor data, compressed sensor data, and pro-
cessed or averaged data. The specific sensor data 6045 shown
in FIG. 6a is illustrated to be exemplary and not limiting for
sending and receiving sensor data. Sensor data 6045 may also
be referred to as a sensor measurement 604b.

[0249] FIG. 6a also illustrates exemplary details within
response 209 sent by server 105. Response 209 may comprise
a TCP/UDP packet 6015 sent from server 105 IP:port 207 the
1P address 210 and port number 605, where IP address 210
represents the external IP address of wireless network firewall
104 and port number 605 is the source port in message 208 as
received by server 105 (i.e. the source port in message 208
after traversing the firewall 104 illustrated in FIG. 6a). Thus,
IP:port with IP address 210 and port number 605 in response
209 may be different than IP:port 204 in message 208, since
the presence of a wireless network firewall 104 may perform
NAT routing, which could change the source IP address and
source port number from IP:port 204 to IP address 210 and
port number 605 in message 208, as received by server 105.
The use of wireless network firewall 104 in wireless network
102 may require that response 209 be sent from IP:port 207 to
1P address 210 and port number 605 in order to be properly
processed by firewall 104 and forwarded to module 101 at
IP:port 204. Source IP:port 207 and destination IP address
210 and port number 605 in response 209 may be included
within a header in TCP/UDP packet 6015, as illustrated in
FIG. 6a. TCP/UDP packet 6015 could comprise a regular
UDP packet, a UDP Lite packet, or a TCP datagram, or
similar protocols supported by an Internet 107. TCP/UDP
packets 601a and 6015 may utilize the same protocol.

[0250] As noted previously, the use of checksums may be
mandatory in IPv6 networks, and thus a response 209 com-
prising a packet 6015 can include a checksum value 603
(illustrated in message 208 but not response 209) for the
header. The use of firewalls such as firewall 104 can change
the header values in a packet 6015. In accordance with a
preferred exemplary embodiment, a first checksum value 603
within a response 209 sent by server 105 can be different
and/or not equal to a second checksum value 603 within the
response 209 received by module 101. Likewise, in an exem-
plary embodiment, a first checksum value 603 within a mes-
sage 208 sent by a module 101 can be different and/or not
equal to a second checksum value 603 within the message 208
received by server 105.

[0251] A UDP, TCP, or UDP Lite datagram as a TCP/UDP
packet 6015 within response 209 may include a body 606.
Body 606 may comprise the payload or data within a UDP,
TCP, or UDP Lite packet. Body 606 can include a server
identity 206, a server digital signature 506 (not shown in FIG.
6a), server encrypted data 504, and channel coding 406.

Apr. 30, 2015

Server identity 206 is illustrated in FIG. 6a as external to
server encrypted data 504 within body 606, but server identity
206 may optionally be included in server encrypted data 504
instead. Module 101 may communicate with a plurality of
servers 105, and server identity 206 as external to server
encrypted data 504 can allow module 101 to select the appro-
priate symmetric key 127 to utilize for decrypting server
encrypted data 504 (since each of the multiple servers 105
that module 101 communicates with may utilize a different
symmetric key 127).

[0252] Also note that the server identity 206 can be similar
to module identity 110, such that multiple diftferent values for
server identity 206 could be utilized in different systems
illustrated herein, but each of the different values could pref-
erably be uniquely associated with a server 105. As one
example, server identity 206, outside server encrypted data
504 as illustrated in FIG. 6a, may comprise a session identity
or session identifier, as opposed to a different server identity
206 that could comprise a hardware serial number or domain
name for server 105. Thus, server identity 206 outside a server
encrypted data 504 may be a different string or representation
than server identity 206 within server encrypted data 504, but
both strings/numbers used for server identity 206 in response
209 could be associated with server 105. In an exemplary
embodiment, a set of servers 105z can collectively use a
server identity 206.

[0253] Although not illustrated in FIG. 6a, a server digital
signature 506 in body 606 can comprise a secure hash signa-
ture of a subset of body 606, where the subset of body 606 can
comprise server encrypted data 504, and/or server identity
206 as illustrated in FIG. 6a. The use of a server digital
signature 506 in a body 606 is illustrated in FIG. 6 of U.S.
patent application Ser. No. 14/039,401, filed Sep. 27,2013 in
the name of John Nix, which is hereby incorporated by ref-
erence in its entirety. In this manner, module 101 can utilize
server digital signature 506 to authenticate that response 209
was sent by server 105. Channel coding 406 in body 606 is
also depicted and described in connection with FIG. 5a
above. The server digital signature 506 may optionally be
omitted as well.

[0254] Body 606 may include server encrypted data 504.
Server encrypted data 504 is depicted and described in con-
nection with FIG. 5a above. Server encrypted data 504 may
include an acknowledgement 501, wherein acknowledge-
ment 501 can notity module 101 that message 208 has been
received by server 105. As illustrated in FIG. 6a, server
encrypted data 504 may optionally also include a module
instruction 502 for module 101. The module instruction 502
could be a string that contains instructions or configuration
parameters for module 101, such as an order to change state,
parameters regarding the monitoring of monitored unit 119,
server names or addresses, radio frequency parameters, timer
values, settings for actuator 101y, etc. A module instruction
502 is depicted and described in connection with FIG. 5a
above. The exemplary module instruction 502 illustrated in
FIG. 6a comprises a “key generation” 608 instruction for
module 101 derive a new set of keys, also depicted and
described in connection with FIG. 55 above. Other possibili-
ties for a module instruction 502 within a response 209 are
possible as well without departing from the scope of the
present invention. Although not depicted in FIG. 6a or FIG. 2,
if response 209 includes a module instruction 502, according
to an exemplary embodiment, module 101 can preferably
send a second message 208 to server 105, where the second

US 2015/0121066 Al

message 208 includes a confirmation that module instruction
502 was successfully executed or implemented by module
101. This confirmation could be included in a server instruc-
tion 414 for server 105 within a second message 208, and the
confirmation could include a timestamp value 601a for when
the module instruction 502 was executed. A timestamp value
601a may be useful for tracking time of actions and data
collected, when a module 101 may only periodically have
access to a network 102 and also may periodically be dormant
or sleep.

[0255] Also, although a server encrypted data 504 may be
included within a body 606 in exemplary embodiments, body
606 may optionally omit server encrypted data 504 and
include data from server 105 or aset of servers 105z that is not
encrypted, such as, but not limited to, plaintext. As one
example in this case, acknowledgement 501 could be
included in body 606 as plaintext. Also, although not illus-
trated in FIG. 6a, server encrypted data 504 could include a
symmetric key 127 for module 101 to utilize with symmetric
ciphering 1415 in cryptographic algorithms 141 for process-
ing a module encrypted data 403 in subsequent messages 208
and/or responses 209. Server encrypted data 504 in aresponse
209 may include a security token 401. Security token 401 may
be arandom string and may also be generated by either server
105 or module 101. If security token 401 is generated by
module 101, then security token 401 may be included in
message 208 and also utilized by server 105 in response 209,
as illustrated in FIG. 6a. Other possibilities exist as well
without departing from the scope of the present invention.

[0256] FIG. 6b

[0257] FIG. 64 is a simplified message flow diagram illus-
trating an exemplary message received by a server, wherein
the message includes a derived module public key, in accor-
dance with exemplary embodiments. As discussed in FIG. 55,
there can be cases where module 101 derives a new module
public key 111 and new module private key 112. On example
would be the initial creation of the key pairs by module 101,
and many other examples could exist as well. FIG. 65 can
illustrate an exemplary format and contents of a message 208
for steps 516 and 517 of FIG. 54. This exemplary message
208 can also help to illustrate the significant differences from
conventional technology and improvements for efficient and
secure communications by utilizing embodiments contem-
plated herein.

[0258] A message 208 illustrated in FIG. 65 using steps 516
and 517 can include (i) sending new module public key 111,
a module public key identity 111a, a module identity 110, a
server instruction 414, a security token 401, and a set of
cryptographic parameters 126 associated with the new mod-
ule public key 111 and/or cryptographic algorithms 141 for
using the new module public key 111. Exemplary crypto-
graphic parameters 126 illustrated in FIG. 65 include (i) a
secure hash algorithm 141c¢ to utilize in signatures, which
could comprise the SHA 256 algorithm as shown (which may
also be known as the SHA-2 algorithm), (ii) a selected elliptic
curve for use with ECC algorithms 154 or a modulus to use
with RSA algorithms 153, and (iii) a time-to-live value for the
public key, such as, but not limited to, the illustrated “time to
live” value of 1 year shown in FIG. 65. The time value for the
validity of new module public key 111 could alternatively be
specified in a set expiration date. Other values associated with
cryptographic algorithms 141 could be included in a set of
cryptographic parameters 126 as well, and the illustrated
values are intended to be exemplary instead of limiting. In

Apr. 30, 2015

exemplary embodiments, the set of cryptographic parameters
126 in a message 208 could comprise a set of cryptographic
parameters 126 depicted and described in connection with
step 1105 of FIG. 11 below, and/or FIG. 1g.

[0259] Additional values or fields within a message 208
associated with communicating a new module public key 111
with server 105 could include a server instruction 414 of “new
public key”. This server instruction 414 could inform server
105 to utilize the new module public key 111 within the
message 208. Module public key identity 111« can include a
sequence number or identity for the new module public key
111, such that module 101 or server 105 can properly refer-
ence and/or record the key from a plurality of module public
keys 111 that could be associated with module identity 110.
Although module public key identity 111« is illustrated as a
separate field in server instruction 414, module public key
sequence number 1114 could optionally be included in a set
of cryptographic parameters 126, such that the value within
cryptographic parameters 126 specifies the current sequence
number of module public key identity 111a for the new mod-
ule public key 111 included in a message 208.

[0260] Other fields and features within a message 208 as
illustrated in a FIG. 65 can be similar to the fields presented in
FIGS. 6a. Since (a) FIG. 65 can also illustrate a first message
208 sent by a module 101 to a server 105, such as after keys
are derived in a step 515, then (b) module 101 can read
multiple values from RAM 101e or a nonvolatile memory
101w or 101c¢ in order properly construct or format message
208. Each of (i) destination IP:port number 207, (ii) param-
eters 126, and (iii) shared secret key 510 can preferably be
written into nonvolatile memory at step 512 of FIG. 54, if
message 208 in FIG. 65 represents the first message 208 sent
by module 101. The source IP:port number 204 can represent
a number assigned by an operating system 1014.

[0261] If message 208 in FIG. 65 comprises a subsequent
time message 208 is received by server 105 (i.e. not a first
time module 101 sends a module public key 111), such as
after step 521 illustrated in FIG. 55, then each of (i) destina-
tion [P:port number 207, (ii) parameters 126, and (iii) shared
secret key 510 could be updated by server 105 using a module
instruction 502 within a server encrypted data 504 before
message 208 illustrated in FIG. 65 is received by server 105.
In this manner, shared secret key 510 could change from (i)
comprising a pre-shared secret key 1294 (for a first message
208 after initial module key derivation) to (ii) comprising a
shared secret key that is sent by server 105 within a server
encrypted data 504 (for a subsequent message 208 after a
subsequent module key derivation).

[0262] After receiving message 208, server 105 can use the
module identity 110 illustrated in a body 602 of FIG. 65 to
select the shared secret key 510 in order authenticate message
208. As described in step 517 of FIG. 55, server 105 may
preferably authenticate message 208 that includes module
public key 111 in order to confirm that module public key 111
originated from physical module 101 with a hardware module
identity 110 (as opposed to being an imposter submitting the
module public key 111). The use of a channel coding 406 is
described in connection with FIGS. 4 and 5a, and channel
coding may optionally be omitted. If message 208 comprises
a UDP Lite packet, then channel coding may optionally be
applied within the body 602. If message 208 comprises a
UDBP packet, then channel coding may comprise sending the
exact same UDP packet 601a multiple times, such as, but not
limited to, an exemplary 3 packets 601a sent at the same time.

US 2015/0121066 Al

[0263] Although not illustrated in FIG. 64, in an exemplary
embodiment module public key 111 could also be received in
amessage 208, where the module public key 111 and param-
eters 126 can be included in an encrypted format within a
module encrypted data 403. As depicted and described in
connection with steps 1001 and 1002 of FIG. 10, and also
FIG. 11 of U.S. patent application Ser. No. 14/039,401, the
security of a system 100 and other systems illustrated herein
can be further increased by both (i) ciphering module public
key 111 and the set of cryptographic parameters 126, and (ii)
only sharing the module public key 111 in a confidential
manner with server 105 and/or a set of servers 105z. If mod-
ule 101 needed a module public key 111 for other purposes,
such as, but not limited to, obtaining a certificate, then a
second, publicly disclosed module public key 111 could be
utilized, where the second module public key 111 is different
than a module public key 111 using parameters 126 that is
sent to a server 105 in a module encrypted data 403.

[0264] FIG. 65 also illustrates an exemplary embodiment,
where module public key 111 can be authenticated with
server 105 using a module digital signature 405. If message
208 comprises a first time module 101 utilizes a step 516 and
step 517, such that a module public key 111 has not previ-
ously been sent to server 105 and/or a set of servers 105, then
in an exemplary embodiment message 208 could include a
module digital signature 405 using the shared secret key 510,
which could comprise the pre-shared secret key 129q. If
message 208 comprises a subsequent time module 101 uti-
lizes a step 516 and step 517, such that a module public key
111 has previously been sent to server 105, then message 208
could include a module digital signature 405 using the previ-
ous module private key 112 (i.e. not the new module private
key 112 associated with the new module public key 111 in the
message 208 shown in FIG. 65). As noted in FIG. 55, module
digital signature 405 could be omitted, and message 208 with
module public key 111 could be authenticated using a mes-
sage digest algorithm and the shared secret key 1294. Other
possibilities for a module 101 to send a new module public
key 111 in a message exist as well without departing from the
scope of the present invention.

[0265] FIG.7

[0266] FIG. 7 is a simplified message flow diagram illus-
trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments. FIG. 7 includes a sys-
tem 700 and illustrates an exemplary message 208 from a
module 101 to a server 105 and also an exemplary application
message 701 between an application 171 and server 105.
Note that application message 701 could also be considered
as transferred between, sent to, or received from server 105
and application server 171. System 700 can comprise a mod-
ule 101, a server 105, and an application 171/ operating on an
application server 171, and these elements may communicate
over a network such as, but not limited to, the Internet 107.
For example, application server 171 may utilize an IP:port
number 702 for sending and receiving messages with server
105. The IP address within IP:port number 702 is illustrated
as an IPv4 address, but an IPv6 address could be utilized as
well, or other addressing schemes are possible. Message
flows within a module 101 from a sensor 101/ and to an
actuator 101y are also included in a system 700 as illustrated
in FIG. 7. Message flows within a module 101 could utilize a
system bus 101d.

Apr. 30, 2015

[0267] Asillustrated in FIG. 7, before module 101 sends a
module public key 111 to server 105, possibly by using step
516 as illustrated in FIG. 7, module 101 can derive the public
and private keys using step 515 and a set of cryptographic
parameters 126. Alternatively, in a different embodiment
module 101 may have the module public key 111 and module
private key 112 generated outside module 101 and loaded into
anon-volatile memory 101w, and in this case step 515 shown
can be optionally omitted. Server 105 can utilize step 516 to
receive amodule publickey 111 from module 101. Server 105
can utilize a step 517 and a shared secret key 510 to authen-
ticate a message 208 that contains the module public key 111
from step 516. Authentication of module public key 111 may
be preferred in order to ensure that the module public key 111
is properly associated with the correct physical module 101,
and prevent an imposter, hacker, etc. from sending in a fake
module public key 111 for module 101. After using step 517
to authenticate module public key 111, server 105 can record
module public key 111 and associated module identity 110
(plus optionally a module public key identity 111a) in a
module database 105%. Although not illustrated in FIG. 7,
server 105 can also send an application message 701 to appli-
cation 171/ after successtully recording module public key
111.

[0268] Application 171i operating within an application
server 171 can send an application message 701 to server 105,
and server 105 can receive the application message 701.
Application message 701 could include a module instruction
502, where the module instruction 502 could comprise an
actuator setting 706. Although not illustrated in FIG. 7, mod-
ule instruction 502 as transmitted or sent by application 1717
or application server 171 could include a module identity 110
and/or an actuator identity 152. Actuator setting 706 could
include a setting value and an actuator identity 152. As dis-
cussed below in connection with FIG. 8, actuator setting 706
within an application message 701 could be received within a
secure connection data transfer 802 from application server
171. Thus, in an exemplary embodiment, the actuator setting
706 may preferably not be plaintext as transmitted across a
network such as, but not limited to, the Internet 107 between
server 105 and application server 171 in an application mes-
sage 701.

[0269] A module instruction 502 (i) from an application
171 or application server 171, and (ii) within an application
message 701 could include other exemplary values or instruc-
tions for a module 101, besides the exemplary actuator setting
706. According to exemplary embodiments, a module
instruction 502 could comprise information for module 101
such as (i) sleep timers or instructions or values for a CPU
wake controller 101, (ii) server address 106 or server iden-
tity 206 for communicating with a server 105 (such as sending
a different server address 106 for module 101 to utilize in
future communications), (iii) a new or updated values for set
of data reporting steps 101x, (iv) a new or updated module
program 101/, (v) software or firmware for operating system
101/ and device driver 101g (including a pointer or reference
to a location where the updated module program 101/ could
be located), (vi) a calibration value for sensor 101for actuator
101y, (vii) values for a set of cryptographic parameters 126,
(viii) software or settings for radio 101z, (ix) updated cryp-
tographic algorithms 141, (x) a new module private key 112,
(xi) a symmetric key 127, (xii) a pre-shared secret key value
129a for use in communicating with a wireless network 102
(where the pre-shared secret key value 129a can be the

US 2015/0121066 Al

equivalent of a Ki value in a network supporting ETSI/3GPP
standards), (xii) a value for a module identity 110, (xiii) a
value to use in a channel coding 406, (xiv) a security token
401 or settings for using security tokens, and/or (xv) values
for a electronic UICC (eUICC). Other possibilities exist as
well for a module instruction 502 without departing from the
scope of the present invention. After receiving module
instruction 502 in a response 209 from server 105, module
101 could record the data in module instruction 502 within a
nonvolatile memory 101w or RAM 101e. In an exemplary
embodiment, a eUICC received within a module instruction
502 by module 101 could provide the data and parameters for
module 101 to connect with another wireless network 102,
which could comprise a second PLMN.

[0270] After receiving application message 701, server 105
can wait for wait interval 703. As depicted and described in
connection with FIGS. 2 and 64, firewall 104 may be present
in a system 700 and/or other systems depicted in the present
invention, and a firewall 104 could block the transmission or
sending of packets from server 105 to module 101 at arbitrary
times. In addition, according to exemplary preferred embodi-
ments, module 101 can enter periods of sleep or dormancy
using a CPU wake controller 101« in order to conserve energy
orthe life ofa battery 101%, if present. During periods of sleep
or dormancy, module 101 may not be able to receive packets
from server 105. Consequently, server 105 can preferably
wait for the wait interval 703 as illustrated in FIG. 7, before
sending response 209 which could include the module
instruction 502. As illustrated in FIG. 7, the module instruc-
tion 502 could include an actuator setting 706, but module
instruction 502 could include other data as well such as the
exemplary module instructions 502 described in the previous
paragraph.

[0271] According to exemplary embodiments, wait interval
703 can vary depending upon module 101 and monitored unit
119, and wait interval 703 could comprise a wide range of
values. Module 101 could send a sensor data 6045 or a report
ora message 208 at exemplary reporting intervals such as, but
not limited to, every minute, 10 minutes, hour, 6 hours, daily,
or longer. Wait interval 703 could be associated with the
reporting interval, and the wait interval 703 would end when
the next message 208 from module 101 is received. If server
105 supports a plurality of modules 101, wait interval 703 can
be associated with the specific module 101 associated with
the module instruction 502, possibly by using a module iden-
tity 110 in both a message 208 and an application message
701. In other words, server 105 can preferably wait for a
message 208 from the specific module 101 associated with
the module instruction 502 before sending the response 209
which could include the module instruction 502. Response
209 could be sent using the source and destination IP:port
numbers depicted and described in connection with FIG. 2.

[0272] Upon the receipt of message 208 from module 101
with module identity 110, the wait interval 703 can end. As
illustrated in FIG. 7, message 208 could include a server
instruction 414. The server instruction 414 in the exemplary
embodiment illustrated in FIG. 7 comprises an “update”
server instruction 414, and could include a sensor measure-
ment 6045 and/or a timestamp 604a. Sensor measurement
6045 could be obtained by module 101 from sensor 101/
before sending message 208, and possibly after module 101
wakes from a dormant state using a CPU wake controller
101u. Sensor measurement 6045 could be collected by a
module program 101/ using a system bus 101d. As illustrated

Apr. 30, 2015

in FIG. 6a, a server instruction 414 with sensor data 6045
could be within a module encrypted data 403 and received by
server 105. Server 105 could utilize the steps illustrated in
FIG. 4 to process the received message 208 at the end of wait
interval 703. Sensor measurement 6045 as used by module
program 101i, server 105, application 171, and/or applica-
tion server 171 could represent a different string or number at
each element, depending upon encoding rules or encoding
schemes utilized by each element, but sensor measurement
6045 at each location can represent data or a value collected
by a sensor 101f.

[0273] After processing the received message 208 that
could include sensor data 6045 and/or timestamp 6044, server
105 can send application 171/ operating on application server
171 an application message 701 that includes an update
instruction 704, where update instruction 704 could include
sensor data 6045, module identity 110, and sensor identity
151, if present. Update instruction 704 could include data
other than sensor data 604, such as data pertaining to the state
of module 101, including subcomponents illustrated in FIGS.
15 and 1e. Using update instruction 704 or a plurality of
update instructions 704, application 171/ can aggregate data
to generate reports for presentation to user 183 or make deci-
sions using service controller 171x. Based on data input in
multiple update instructions 704 over time, application 1717
could output module instruction 502 in an application mes-
sage 701. Application 171i could record data received in
update instruction 704 within an application database 1714,
and process the data using a service controller 171xin order to
automatically generate module instructions 502 using a plu-
rality of sensor data 6045 for a module 101 or aset of modules
101.

[0274] After receiving message 208 with server instruction
414, server 105 can send a response 209 to module 101. Note
that response 209 is illustrated in FIG. 7 as being sent after
sending update instruction 704 to application server 171, but
response 209 could also be sent to module 101 before sending
update instruction 704 to application server 171. Response
209 can include module instruction 502, where module
instruction 502 could comprise the actuator setting 706 server
105 received from application 171/, according to an exem-
plary embodiment. Module instruction 502 could also com-
prise other data besides actuator setting 706 for module 101 in
other exemplary embodiments, as outlined above. Although
not illustrated in FIG. 7, response 209 could include module
instruction 502 within a server encrypted data 503 using the
steps depicted and described in connection with FIG. 5aq.
Module instruction 502 could also include actuator identity
152 associated with actuator setting 706. Response 209 can
be formatted as depicted and described in FIGS. 2 and 6a,
such that response 209 can traverse a firewall 104 and be
received by module 101 using IP address 204. Network fire-
wall 104 is illustrated as a dashed line in FIG. 7, and may be
optionally not be present. But, the use of network firewall 104
may be included in a system 100 and/or system 700 and the
presence and operation of a network firewall 104 may be
beyond the control of a module 101, server 105, module
provider 109, M2M service provider 108, etc., and thus a
system 700 can support a firewall 104 in exemplary embodi-
ments.

[0275] After receiving response 209 with the module
instruction 502 and actuator setting 706, module 101 can
process the response 209, which could also include server
encrypted data 503. Module 101 could extract or read actua-

US 2015/0121066 Al

tor setting 706 from the module instruction 502. Module
instruction 502 could include an actuator identity 152. Mod-
ule 101 can use a module program 101: to send the actuator
setting 706 to the actuator 101y with actuator identity 152.
Actuator setting 706 as sent by module program 101; may be
in a different format or data structure than actuator setting 706
as sent by application 171/, but both sets of data can achieve
the same objective of having an actuator 101y apply a setting.
According to one exemplary embodiment, actuator setting
706 as sent by module program 101 could be an analog
voltage along a system bus 1014, while actuator setting 706 as
sent by application 171 could be a string or number. Note that
as contemplated herein, the term “actuator data” can include
or comprise “actuator setting”.

[0276] After applying actuator setting 706, actuator 101y
can send an acknowledgement to module program 101i.
Module program 101/ can then send a second message 208 to
server 105, where message 208 includes a server instruction
414 of “confirmation”. The server instruction 414 of “confir-
mation” could be included in a module encrypted data 403
according to a preferred exemplary embodiment. Server 105
can receive the second message 208 with the module
encrypted data 403 and decrypt the module encrypted data
403 using a step 413 to extract the server instruction 414 of
“confirmation”. The second message 208 may include the
actuator identity 152, a timestamp value 604a, and/or also the
module identity 110. Server 105 can send an application
message 701 that includes a confirmation 705, where the
confirmation can (i) inform application 171 that the actuator
setting 706 sent to server 105 has been properly and/or suc-
cessfully applied by module 101 and/or actuator 101y. Con-
firmation 705 could also include module identity 110 and/or
actuator identity 152 and a timestamp value 604a. Applica-
tion 171/ could then send an acknowledgement back to server
105 after receiving the confirmation 705.

[0277] According to preferred exemplary embodiments,
actuator identity 152 is preferably globally unique, such that
that including an actuator identity 152 in any packet would
allow a server 105 or application 171i to lookup a module
identity 110 and/or module 101 using the actuator identity
152 and a database such as, but not limited to, module data-
base 105%. Similarly, a sensor identity 151 may be globally
unique, according to preferred exemplary embodiments such
that a sensor identity 151 in any packet would allow a server
105 or application 171i to lookup a module identity 110
and/or module 101 using the sensor identity 151 and a data-
base such as, but not limited to, application database 171k

[0278] FIG.8

[0279] FIG. 8 is a simplified message flow diagram illus-
trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments. System 800 can include
an application server 171, a server 105, and a module 101 in
connected via a network. The network could comprise the
Internet 107. Application server 171 could include an appli-
cation 171, where application 171/ can include logic, algo-
rithms, databases, user interfaces, and programs for manag-
ing a plurality of modules 101 with a plurality of users 183.
Application server 171 and application 171/ may be associ-
ated with an M2M service provider 108, and M2M service
provider 108 could use application 171i to provide and man-
age a service with distributed modules 101 associated with a
plurality of monitored units 119. Server 105 could belong to

Apr. 30, 2015

a set of servers 105x, and the set of servers 105x could also
take the actions described herein for the server 105.

[0280] In an exemplary embodiment, module 101 can
derive a public key 111 and a private key 112 using step 515.
Module 101 can derive the public and private keys using step
515 and a set of cryptographic parameters 126. Alternatively,
module 101 may have the module public key 111 and module
private key 112 generated outside module 101 and loaded into
anon-volatile memory 101w. Server 105 can utilize step 516
to receive a module public key 111 from module 101. In an
exemplary embodiment, module public key 111 in a step 516
illustrated in FIG. 8 can comprises a format of the module
publickey 111 that s different than a certificate 122 that could
record a module public key 111. Module public key 111 in a
step 516 could be received in an exemplary format and form
illustrated in FIG. 65 above.

[0281] Server 105 can utilize a step 517 to authenticate a
message 208 that contains the module public key 111 and a
module identity 110 received in a step 516. Authentication of
module public key 111 may be preferred in order to ensure
that the module public key 111 is properly associated with the
correct physical module 101 with a module identity 110, and
prevent an imposter, hacker, etc. from sending in a fake mod-
ule public key 111 for module 101. After using step 517 to
authenticate module public key 111, server 105 can record
module public key 111 with the module identity 110 in a
module database 1054, which could also comprise a shared
module database 105% illustrated in FIG. 14. Although not
illustrated in FIG. 8, server 105 can also send an application
message 701 to application 1717 after successtully recording
an authenticated module public key 111. Although not illus-
trated in FIG. 8, a module public key 111 received in step 516
may also include a module public key identity 1114 in order
to track which of a plurality of potential module public keys
111 for a module 101 may be used at any given point in time
or with any given message 208.

[0282] Also, server 105 is not required to receive module
public key 111 from module 101 in order to utilize the meth-
ods and systems contemplated herein. Instead of receiving
module public key 111 in a message 208 from module 101,
server 105 could alternatively query another server such as,
but not limited to, application server 171 or a server associ-
ated with certificate authority 118 for either module public
key 111 or a certificate 122 associated with module 101 using
a module identity 110, where module identity 110 could be
received in a message 208 at a step 516 with or without
module public key 111. In addition, server 105 could have a
list or database table of module identities 110 and module
public keys 111 loaded into a module database 1054 before
the message 208 in FIG. 8 is received. After recording module
public key 111 and module identity 110, possibly including a
module public key identity 111a, server 105 can wait for wait
interval 703. Wait interval 703 could represent the time
between reports or messages 208 submitted by module 101,
and wait interval 703 for an individual module 101 could
comprise a wide range of values from several times a second
to several days or longer, depending upon the application
and/or monitored unit 119. The wait interval 703 can end
when server 105 receives a message 208 from module 101
with a module identity 110.

[0283] Module controller 105x within server 105 can
receive a message 208 that includes a server instruction 414
with sensor data 6045. The sensor data 6045 and/or server
instruction 414 could be included in a module encrypted data

US 2015/0121066 Al

403, where decrypting the module encrypted data 403 canuse
the module public key 111 submitted in step 516 above and
derived by module 101 in step 515. According to one exem-
plary embodiment, module encrypted data 403 could be
ciphered with a symmetric key 127 that is a derived shared
key 1295 from a key derivation function 141f and module
public key 111 received in step 516 (and also server public
key 114). Module controller 105x can process message 208
using the steps depicted and described in connection with
FIG. 4 in order to decrypt the module encrypted data 403 and
obtain the plaintext server instruction 414 and plaintext sen-
sor data 6045. Although sensor data 60454 is illustrated as the
server instruction 414 in FIG. 8, server instruction 414 could
have other values such data associated with any of the com-
ponents for module 101 illustrated in FIG. 16 and FIG. 1e.
Server instruction 414 could be a “query” where module 101
queries for information from server 105 or application 1714,
or server instruction 414 could be an alarm or error notifica-
tion outside a regular reporting interval. Other possibilities
for server instruction 414 exist without departing from the
scope of the present invention. In an exemplary embodiment,
server instruction 414 could also be a periodic “registration”
message with no subsystem data for module 101 (an also no
sensor data 6045), and a “registration” could be a message for
server 105 indicating module 101 is awake and online with
Internet 107.

[0284] Server 105 can establish a secure connection with
application server 171 and application 171i using a secure
connection setup 801 and a secure connection data transfer
802. Server 105 can utilize an application interface 105: to
manage the communication with application 171; and/or
application server 171, while a module controller 105x can
manage communication with a module 101. Alternatively,
application interface 1057 and module controller 105x can be
optionally combined or omitted, such that server 105 and/or a
set of servers 105% perform the actions illustrated in FIG. 8 for
application interface 105/ and module controller 105x. Like-
wise, server 105 and application 171 could be combined or
operate on the same local area network (LAN) and thus not be
connected via the Internet 107. If server 105 and application
171 are nodes within the same [LAN or virtual private network
(VPN), then the network connection can also be considered a
secure connection (without using encryption between the
nodes), since packets routed between the nodes may not need
to traverse the Internet 107 and thus the network layer could
provide security. Although secure connection setup 801 is
illustrated in FIG. 8 as occurring after message 208 is
received by server 105, secure connection setup 801 could
take place before message 208 is received by server 105.
Secure connection setup 801 could utilize a secure protocol
such as, but not limited to, TLS, Secure Sockets Layer (SSL),
IPSec, or VPN to establish a secure connection between
server 105 and application 171; and/or application server 171,
such that data transferred between the two nodes is encrypted
and also not subject to replay attacks. As contemplated
herein, a secure connection can comprise any of a TLS con-
nection, an IPSec connection, a VPN connection, an
encrypted connection, and/or a LAN connection between
server 105 and application server 171 and/or application 1717,
and other possibilities exist as well without departing from
the scope of the present invention.

[0285] Other secure connections may be utilized as well,
including a secure shell (SSH) tunnel, future versions of
standard secure connections, or also a proprietary protocol for

Apr. 30, 2015

a secure connection. Secure connection setup 801 as illus-
trated in FIG. 8 may utilize a TLS protocol, such as, but not
limited to, TLS version 1.2, TLS version 1.3, etc. Secure
connection setup 801 can include the transfer of a certificate
122 for application server 171, and also the transfer of an
application public key 171w. Server 105 can utilize applica-
tion public key 171w to encrypt data received from module
101 in a message 208, such as, but not limited to, sensor data
6045. According to one exemplary embodiment, application
message 701 could be ciphered with a symmetric key 127 that
comprises a derived shared key 1295 from at least (i) a key
derivation function 141f, (ii) application public key 171w and
server public key 114, and (iii) a random number 128a from
either server 105 or application server 171.

[0286] The message flow in a secure connection setup 801
also illustrates one benefit of the present invention, where a
message 208 can be securely transferred between module 101
and server 105 using a single UDP datagram (or less than 3-4
datagrams), while secure connection setup 801 may require a
plurality of TCP messages in both directions. In other words,
using a secure connection setup 801 as illustrated in FIG. 8
between module 101 and server 105 may not be energy effi-
cient for module 101, while using secure connection setup
801 between server 105 and application server 171 can be
efficient, since the data from a plurality of modules 101 can be
shared over the secure connection setup 801. Also note that
since module 101 may sleep for relatively long periods such
as, but not limited to, 30 minutes or longer, a new secure
connection setup 801 would likely be required to support a
firewall 104 after each period of sleep, and completing the
process of a secure connection setup 801 each time module
101 wakes may not be energy or bandwidth efficient for a
module 101.

[0287] After completing server connection setup 801, in
exemplary embodiments server 105 or a set of servers 105 can
use a secure connection data transfer 802 to send a first
application message 701, where the first application message
701 could include update instruction 704 that includes sensor
data 6045 that server 105 received in a message 208. Data
within the first application message 701 containing update
instruction 704 could be ciphered according to the specifica-
tions of the secure connection, such as, but not limited to, TLS
or IPSec, and other possibilities exist as well. Note that server
105 can decrypt a module encrypted data 403 that includes
sensor data 6045 and subsequently encrypt the sensor data
6045 according to the format required by secure connection
setup 801 for transfer to application 171; using secure con-
nection data transfer 802. System 700 can use two different
server public keys 114, recorded in the form of a certificate
122 in one embodiment, with a first server public key 114
used in encrypting and/or decryption module encrypted data
403 and a second server public key 114 used in encrypting
and/or decrypting update instruction 704. The two server
public keys 114 can be used by server 105 in a key derivation
function 141fto derive two shared secret keys 1295 used in a
symmetric ciphering algorithm 1415 for both secure connec-
tion data transfer 802 and module encrypted data 403 (with a
different derived shared public key 1295 with module 101 and
application server 171, respectively).

[0288] Inanother embodiment, server 105 can use the same
server public key 114 to both decrypt module encrypted data
403 and encrypt update instruction 704. Other possibilities
existas well for server 105 to use a server public key 114 to (i)
encrypt update instruction 704, such as using an asymmetric

US 2015/0121066 Al

ciphering algorithm 141a, and (ii) decrypt module encrypted
data 403 without departing from the scope of the present
invention. As illustrated in FIG. 8, server 105 can receive an
acknowledgement 804 after sending the first application mes-
sage 701, with update instruction 704 that includes sensor
data 6045, where acknowledgement 804 can signal that appli-
cation message 701 with update instruction 704 has been
received by application 171/ and/or application server 171.
Although not illustrated in FIG. 8, the acknowledgement 804
could optionally include a module instruction 502 for module
101. As contemplated herein, a module instruction 502 can
also include a timestamp value 604a, such that a module 101
can determine when the module instruction 502 was gener-
ated or processed by a source of the module instruction 502
such as an application 171/ or a server 105.

[0289] After receiving message 208, server 105 can then
send a response 209. Response 209 could be sent before or
after server 105 sends update instruction 704 to application
171i using secure connection data transfer 802. Response 209
can include a server encrypted data 504 that includes a mod-
ule instruction 502. Module instruction 502 could be (i) pro-
cessed by server 105, (ii) obtained by server 105 from appli-
cation 171; in an application instruction 701, and/or (iii) read
by server 105 from a shared module database 105%. In other
words, a secure connection data transfer 802 may be utilized
by aserver 105 and either (i) an application server 171 or (ii)
a shared module database 1054 to in order for server 105 or a
set of servers 105x to receive a module instruction 502 with a
module identity 110 for a module 101. According to an exem-
plary preferred embodiment, server 105 waits for a response
or acknowledgement 804 from application 171i to applica-
tion message 701 (where application message 701 could
comprise a polling request 1302 described below) before
sending response 209 to module 101. One reason for waiting
for a response or acknowledgement 804 from application
171i is that response or acknowledgement 804 from applica-
tion 171i could include a module instruction 502, and the
module instruction 502 may preferably be included in a
response 209. Other possibilities exist as well without depart-
ing from the scope of the present invention.

[0290] FIG. 8 can also illustrate a benefit of an exemplary
embodiment contemplated herein. According to an exem-
plary embodiment, (i) server 105 and application server 171
can utilize a first set of cryptographic algorithms 141 for
sending and receiving data between server 105 and applica-
tion server 171, such as, but not limited to, with a secure
connection data transfer 802, and (ii) server 105 and module
101 can utilize a second set of cryptographic algorithms 141
for sending and receiving data between server 105 and mod-
ule 101, such as using the second set of cryptographic algo-
rithms 141 for a module encrypted data 403 and/or server
encrypted data 504. In an exemplary embodiment, server 105
and application server 171 can use RSA algorithms 153 in the
first set of cryptographic algorithms 141, while server 105
and module 101 can use ECC algorithms 154 in the second set
of cryptographic algorithms 141. As one example, server 105
can use an (i) RSA-based asymmetric ciphering algorithm
1415 and first server public key 114 with the application
server 171 to securely transfer a first symmetric key 127 with
application server 171, and (ii) an ECC-based asymmetric
ciphering algorithm 14156 and second server public key 114
with the module 101 to securely transfer a second symmetric
key 127 with a module 101.

Apr. 30, 2015

[0291] Other possibilities exist as well for a server 105 to
use a different cryptographic algorithms 141 and/or crypto-
graphic parameters 126 for each of application server 171 and
module 101. (A) Server 105 and application server 171 could
use a first set of cryptographic parameters 126 for use with
cryptographic algorithms 141 for an application message 701
with related server digital signatures, while (B) server 105
and module 101 could use a second set of cryptographic
parameters 126 for use with cryptographic algorithms 141 for
amodule encrypted data 403 and/or server encrypted data 504
and related digital signatures. The first set of cryptographic
parameters 126 and the second set of cryptographic param-
eters 126 are illustrated in FIG. 8. In order to maximize
security between servers such as server 105 and application
server 171, the first set of parameters 126 could specify (i) a
longer public and private key length, (ii) a shorter key expi-
ration time 133, (iii) a longer secure hash algorithm (such as,
but not limited to, an exemplary 384 or 512 bits), (iv) a longer
symmetric ciphering key 127 length (such as, but not limited
to, an exemplary 192 or 256 bits), (v) the use of or values for
RSA algorithm 153 and a modulus, (vi) the use of Diffie
Hellman key exchange or a first key exchange algorithm for a
key derivation function 141f'and key exchange, (vii) the use
of'or values for a second symmetric ciphering algorithm 1415
for symmetric ciphering, (viii) the use of or values foran RSA
digital signature algorithm or a second digital signature algo-
rithm, and similar settings.

[0292] In accordance with a preferred exemplary embodi-
ment, in order to minimize processing power and/or energy
usage required for a module 101, the second set of crypto-
graphic parameters 126 illustrated in FIG. 8 could specity (i)
a shorter public and private key length, (ii) a longer key
expiration time 133, (iii) a shorter secure hash algorithm
(such as, but not limited to, an exemplary 224, 256, or 160
bits), (iv) a shorter symmetric ciphering key 127 length (such
as, but not limited to, an exemplary 128 bits), and (v) the use
ofan ECC algorithm 154, (vi) the use of or values foran ECC
standard curve 138 and/or ECC parameters 137, (vii) the use
of or values for ECDH 159 or a second key exchange algo-
rithm for key derivation and exchange, (vii) the use of or
values for of a second symmetric ciphering algorithm 1415
for symmetric ciphering, (viii) the use of or values for of
ECDSA 158 or a second digital signature algorithm for digi-
tal signatures, and similar settings. In an embodiment, the first
set of parameters 126 (which can be used by server 105 and
application server 171) and the second set of parameters 126
(which can be used by server 105 and module 101) can both
specify the use of elliptic curve cryptographic algorithms
141, but with different sets of parameters 126 such that the
first set of parameters 126 is selected for server to server
communications, and the second set of parameters 126 is
selected for communications between a server 105 and a
module 101. In another embodiment, the first set of param-
eters 126 and the second set of parameters 126 can both
specify the use of RSA based cryptographic algorithms 141,
but with different sets of parameters 126 such that the first set
of parameters 126 is selected for server to server communi-
cations, and the second set of parameters 126 is selected for
communications between a server 105 and a module 101.

[0293] In this manner, the use of cryptographic algorithms
141 between (i) server 105 and application server 171 and (ii)
server 105 and module 101 can be optimized given different
constraints for processing power and energy consumption for
server 105, application server 171, and a module 101. In

US 2015/0121066 Al

addition, an application server 171 may use cryptographic
algorithms 141 and parameters 126 that may not be compat-
ible with cryptographic algorithms 141 and parameters 126
used by a module 101, and server 105 can use cryptographic
algorithms 141 and at least the two sets of cryptographic
parameters 126 illustrated in FIG. 8 to enable a translation or
conversion of encrypted data and digital signatures between a
module 101 and an application server 171, thereby establish-
ing connectivity between a module 101 and an application
server 171 through a server 105. According to an exemplary
embodiment, server 105 can function as a gateway between
application server 171 and/or application 171/ and a plurality
of modules 101.

[0294] FIG.9

[0295] FIG. 9 is a simplified message flow diagram illus-
trating exemplary data transferred between (i) a server and an
application and between (ii) a server and a module, in accor-
dance with exemplary embodiments. An application server
171, aserver 105, and a module 101 can send and receive data
illustrated in FIG. 9. Application server 171 caninclude appli-
cation 171; and use an Internet Protocol address and port
(IP:port) number 903 for sending and receiving data with
server 105. Server 105 can include an application interface
105i and a module controller 105x, where application inter-
face 105i can access a first server IP:port number 901 for
communicating with application server 171, and module con-
troller 105x can access a second server IP:port number 207 for
communication with module 101. In accordance with a pre-
ferred exemplary embodiment, multiple modules 101 can
send data to server [P:port number 207, and thus server 105
and/or a module controller 105x can use a single IP:port
number 207 to communicate with a plurality of modules 101.
In addition, server 105 could specify that one subset of mod-
ules 101 communicate with a first IP:port number 207, and a
second subset of modules 101 communicate with a second
IP:port number 207, etc. In another embodiment, a set of
servers 105% could comprise the server 105 illustrated in FIG.
8. Module 101 can utilize an IP:port number 204 for sending
and receiving data with a server 105.

[0296] As illustrated in FIG. 9, a symmetric firewall 104
could beincluded between module 101 and server 105. The of
1P addresses and port numbers in packets between server 105
and module 101 illustrated in FIG. 9 could also represent
routing if a firewall 104 is present and functions as a symmet-
ric firewall without NAT routing. In this case, firewall 104
may not perform network address translation on source and
destination IP addresses and/or port numbers, but rather filter
packets based on pre-determined rules. For example, a fire-
wall 104 that is a symmetric firewall could drop inbound
packets from IP:port number 207 to module 101 unless mod-
ule 101 had previously sent a packet to IP:port number 207
within a firewall port binding timeout value 117. Alterna-
tively, a firewall 104 may be optionally omitted, and in this
case the destination address in packets sent from server 105 to
module 101 could include the IP address 202 of module 101,
which is also the case illustrated in FIG. 9. In other words,
FIG. 9 illustrates an exemplary routing of packets in the cases
that (i) firewall 104 is a symmetric firewall, and (ii) firewall
104 is optionally not present.

[0297] Server 105 can receive a message 208 from a mod-
ule 101. Server 105 can use a module controller 105x to
receive the message, and module controller 105x could also
be identified as a process operating on server 105 that binds to
the port number in IP:port 207, which could include a port

Apr. 30, 2015

number 205. Message 208 could include module identity
string 904, which could represent a temporary or transient
string or number used by module 101 and server 105 to
associate and identify message 208 with module identity 110.
Module identity string 904 could also comprise a module
identity 110. Server 105 can use module identity string 904 to
select a symmetric key 127 in order to decrypt module
encrypted data 403, since module identity string 904 may
preferably be not encrypted. Server 105 and module 101
could use an algorithm within cryptographic algorithms 141
in order to process a module identity string 904, whereby the
module identity string 904 can be converted between (i) a
module identity 110 in a form such as, but not limited to, a
serial number, IMEI, or related identifier for module 101, and
(i1) a module identity string 904 in a message 208 that can
traverse the Internet 107.

[0298] Message 208 as received by server 105 can also
include a server instruction 414 within a module encrypted
data 403, where the module encrypted data 403 could be
ciphered using a symmetric key 127. The server instruction
414 illustrated in FIG. 9 can be an exemplary “update”
instruction, where the “update” instruction can include a
security token 401 and sensor data 6045. Sensor data 6045
can include a sensor identity 151 and a sensor measurement.
Server instruction 414 within a message 208 could include
many other values besides an update, including a registration,
a query, an alarm or error notification, configuration request,
software request, confirmation, or other values also depicted
and described in connection with a server instruction 414 in
FIG. 4. A security token 401 can comprise a random number
128a processed by a random number generator 128 and can
be preferably not reused and therefore can keep message 208
unique and not subject to replay attacks. In exemplary
embodiments, a UDP protocol may be implemented for mes-
sage 208, and the connectionless UDP protocol may require a
module 101 to send retransmissions of a UDP datagram 601«
for message 208, if module 101 does not receive a response
209 within a specified timer period.

[0299] Ifthe UDP Lite protocol is utilized for message 208,
with multiple copies of UDP Lite datagram 601a received in
an exemplary embodiment, then each UDP Lite datagram
601a could be different, depending on the presence of bit
errors in the datagram, and thus server 105 can use timer 905
to collect the multiple copies of UDP Lite datagram 601a
within the timer 905 period and process the multiple packets
received, including combining the data across multiple pack-
ets, in order to eliminate bit errors within the datagrams and
collect an error-free message 208. Packets for a message 208
received outside timer 905 could be dropped by server 105,
and the timer 905 could start when the first datagram 601a for
a message 208 was received by server 105.

[0300] After receiving message 208, server 105 use the
steps outlined in FIG. 5a to process message 208 and read the
plaintext server instruction 414, such as, but not limited to, the
sensor data 6045 illustrated in FIG. 9. Other possibilities exist
as well for sensor data 6045 or values or information inside a
server instruction 414. Server 105 can then send or transmit a
first application message 701 to application server 171 that
includes data received from the server instruction 414 from
module 101 in message 208. The data received in the server
instruction 414 from module 101 could be included by server
105 in an update instruction 704. An application 171 oper-
ating within application server 171 or associated with appli-
cation server 171 could receive the first application message

US 2015/0121066 Al

701. The first application message 701 could be formatted
according to a TCP datagram 902, although other possibilities
exist as well including UDP.

[0301] Inaccordance with an exemplary preferred embodi-
ment, the first application message 701 may include an update
instruction 704 with sensor data 6045, although update
instruction 704 could also contain or include other data per-
taining to module 101 besides sensor data 6045, such as a
state of a component with module 101, a state of a software
routine, variable, or parameter associated with module 101.
The first application message 701 sent from server 105 to
application server 171 could be a datagram within a secure
connection data transfer 802 as illustrated in FIG. 8. Sensor
data 6045 could be sent by server 105 using application server
public key 171w, such as either (i) mutually deriving a com-
mon shared key 1295 between server 105 and application
171/ using a key derivation function 141f, where the shared
key 1295 could function as a symmetric key 127 with a
symmetric ciphering algorithm 14154, or (ii) server 105 send-
ing a symmetric key 127 to application server 171 using an
asymmetric ciphering algorithm 141a and the application
server public key 171w. Message 805 in FIG. 8 with the label
of “Client Key Exchange” can comprise server 105 sending a
symmetric key 127 (or value or cryptographic parameters 126
for deriving symmetric key 127) to application server 171,
where the symmetric key 127 can be used by server 105 to
encrypt update instruction 704 illustrated in FIG. 9. As con-
templated herein, a random number 128« input into a set of
cryptographic algorithms 1414 can also be considered a cryp-
tographic parameter 126. Also, a random number 1284 input
into a key derivation function 141f can comprise a crypto-
graphic parameter 126.

[0302] Inaccordance with an exemplary preferred embodi-
ment, application message 701 may include (i) module iden-
tity 110 encrypted within secure connection data transfer 802
and also a server identity 206 that is not encrypted. In this
manner, application server 171 can use server identity 206 to
select a symmetric key 127 (possibly sent in message 805 as
described in the paragraph above) in order to decrypt the
encrypted data in update instruction 704. Application server
171 can receive the first application message 701 sent by
server 105 and process the message. The message processing
by application server 171 could use steps similar or equivalent
to the steps utilized by server 105 illustrated in FIG. 4, in order
to extract a plaintext application instruction 704. Although
not illustrated in FIG. 9, application 171/ could record data
received within application instruction 704 and record the
data in an application database 171%. Application 171/ could
use the data received in application instruction 704 or a plu-
rality of application instructions 704 to generate reports,
graphs, emails, or other user information for a user 183.

[0303] Upon processing the information within application
instruction 704, application 171i or application server 171
could send a second application message 701 to server 105, as
illustrated in FIG. 9. The second application message 701
could be sent using a secure connection data transfer 802, and
could include a module instruction 502 and a module identity
110. The second application message 701 can use the IP:port
number 903 as a source IP:port number for the second appli-
cation message 701, where IP:port number 903 also repre-
sented a destination IP:port number for the first application
message 701. The second application message 701 can use
the IP:port number 901 as the destination IP:port number,
where [P:port number 901 was the source port number in the

Apr. 30, 2015

first application message 701. The module instruction 502
within the second application message 701 could include an
actuator setting 706. The module instruction 502 within the
second application message 701 can comprise other data or
module instructions 502 for a module 101 that do not include
an actuator setting 706, such as the exemplary data depicted
and described in connection with FIG. Sa.

[0304] Server 105 or a set of servers 105% can receive the
second application message 701, and the message could be
received using an IP:port number 901. Although an IPv4
address is shown in F1IG. 9, and IPv6 address could be utilized
as well. Server 105 could decrypt a body 602, that contains
module identity 110 and a module instruction 502, using
algorithms specified according to a secure connection data
transfer 802. As depicted and described in FI1G. 8, a first set of
cryptographic parameters 126 with cryptographic algorithms
141 could be used with an application message 701 and a
second set of cryptographic parameters 126 with crypto-
graphic algorithms 141 could be used with server encrypted
data 504 and/or module encrypted data 403.

[0305] After extracting a plaintext module instruction 502
and module identity 110 from a body 602 in the second
application message 701, server 105 can take steps to process
the data and create a response 209 for module 101. Server 105
can record or query for information pertaining to module 101
using module identity 110 in a module database 105%. In
accordance with exemplary embodiments, server 105 can use
module identity 110 received in the second application mes-
sage 701 to select (1) a symmetric key 127 used by module 101
for encrypting and/or decrypting a server encrypted data 504
that can include the module instruction 502, (ii) a destination
IP:port number 204 for sending a response 209, (iii) a source
IP:port number 207 for sending a response 209, (iv) a deter-
mination if a wait interval 703 is required before sending
response 209, (v) a value for a security token 401, and (vi) at
least one value for a set of cryptographic parameters 126 for
use with a cryptographic algorithms 141 in communications
with module 101. In one embodiment, different modules 101
connected to server 105 may use different cryptographic
parameters 126, and server 105 can select the appropriate set
of cryptographic parameters 126 for a module 101 using (a)
the module identity 110 received in the second application
message and (b) a module database 105%. Server 105 can also
use module identity 110 received in the second application
message 701 to select (vii) a transport protocol for a response
209, such as, but not limited to, TCP, UDP, or UDP Light, and
(viii) a channel coding 406 parameter such as, but not limited
to, a block code, turbo code, or forward error correction
coding scheme. Server 105 can use module identity 110
received in an application message 701 such as the second
application message 701 illustrated in FIG. 9 to format and/or
send a response 209 to module 101.

[0306] According to a preferred exemplary embodiment,
server 105 may receive an application message 701 with data
for a module 101 at arbitrary times. According to a preferred
exemplary embodiment, server 105 can use module identity
110 received within an application message 701 to determine
(1) if server 105 should wait until a wait interval 703 expires
before sending response 209 (where the wait interval 703 can
end upon receipt of a message 208 from a module 101 with
the module identity 110 received in the application message
701) or (ii) if server 105 can send response 209 right away
(such as a firewall port binding timeout period 117 has not
expired), where response 209 includes the module instruction

US 2015/0121066 Al

502 received in the application message 701. Firewall port
binding timeout value 117 (or a time value associated with
firewall port binding timeout value) can be recorded for mod-
ule identity 110 in a module database 1054

[0307] After (A) using module identity 110 received within
application message 701 to select values to process aresponse
209 and timing for sending a response 209, then (B) server
105 can send response 209 as illustrated in FIG. 9, where the
specific response 209 in FIG. 9 is exemplary. Response 209
can include a server encrypted data 504. Server encrypted
data 504 can include module instruction 502. The exemplary
response 209 illustrated in FIG. 9 includes an actuator setting
706 within module instruction 502, but other possibilities
exist as well. Note that the use of server encrypted data 504 is
optional within a response 209, and server 105 could send
module instruction 502 as plaintext. However, in this case of
module instruction 502 being sent as plaintext, server 105 can
preferably include a server digital signature 506 such that
module 101 can verify the server digital signature 506 using
the server public key 114 and confirm the module instruction
502 was transmitted by server 105. In accordance with exem-
plary preferred embodiments, (i) a message from module 101
to server 105 that does not include a module encrypted data
403 preferably includes a module digital signature 405, and
(i) a response 209, message sent back, datagram, or packet
from server 105 to module 101 that does not include a server
encrypted data 504 preferably includes a server digital signa-
ture 506. If data is not encrypted within a packet and the
packet includes plaintext instructions such as a module
instruction 502 or a server instruction 414, then, in accor-
dance with preferred exemplary embodiments, the receiving
node can preferably verity the identity of a sender using (i) a
digital signature, (ii) an identity, and (iii) a public key, where
the digital signature and identity can be included in the
packet.

[0308] Response 209 sent from server 105 to module 101
could include a checksum 603. Since firewall 104 may com-
prise a symmetric firewall 104 (that may not perform network
address translation routing), the destination address within
IP:port 204 in response 209 illustrated in FIG. 9 may match
the IP address 202 used by module 101. In this case, where the
destination IP:port in response 209 includes IP address 202, a
checksum 603 sent by server 105 can be equal to a checksum
603 received by module 101. In accordance with exemplary
embodiments, response 209 is transmitted or sent by server
105 within a firewall port binding timeout value 117 after
message 208 was received by server 105. In other words, if a
firewall port binding timeout value 117 was equal to an exem-
plary 20 seconds for UDP packets, the response 209 illus-
trated in FIG. 9 would preferably be sent in less than 20
seconds after receiving the previous message 208.

[0309] FIG.10

[0310] FIG. 10 is a flow chart illustrating exemplary steps
for a set of servers to communicate with a module, in accor-
dance with exemplary embodiments. The exemplary steps
illustrated in FIG. 10 could be implemented in either a col-
lection of servers 105 (such as, but not limited to, the two
exemplary servers illustrated in FIG. 1%), where the collec-
tion of servers 105 comprise a set of servers 105x. Or, a set of
servers 105x can comprise a single server 105 with only one
member in the set of servers 105. The members and numbers
of servers 105 in a set of servers 105% can also change over
time. In other words, over time such as when a plurality of
module public keys 111 could be generated for various needs

Apr. 30, 2015

of'amodule 101 or a system such as, but not limited to, system
100, module 101 may communicate with multiple servers in
some embodiments.

[0311] FIG. 10 illustrates an exemplary embodiment where
a set of servers 105x can authenticate module 101 using a
module identity 110 and subsequently receive a plurality of
module public keys 111 over time. As depicted and described
in FIG. 14, a set of servers 105z can comprise at least on
server 105. New module public keys 111 are generated for the
various purposes contemplated herein, including (i) periodi-
cally rotating module private keys 112 for security, (ii) chang-
ing a set of cryptographic parameters 126 used with the keys
in order to increase security (where a new set of cryptographic
parameters 126 can require the use of a new module public
key 111 and new module private key 112), (iii) change of
ownership and/or control of module 101 such that the previ-
ous module private key 112 may not longer be considered
secure, and (iv) the first time module 101 sends in a module
public key 111. Other possibilities for reasons that a set of
servers 105z can receive and authenticate and/or verify a
module public key 111 are possible as well without departing
from the scope of the present invention.

[0312] At step 1001, a server 105 and/or a set of servers
105% can receive and verify a module public key 111 is
associated with a module identity 110 that is recorded within
server 105, potentially in a module database 105%. Module
database 1054 could also be a shared module database 105k as
illustrated in FIG. 14. The module public key 111 could be
received from module 101 in a message 208 that includes the
module identity 110. If a server 105 has not previously record
module identity 110 received in a message 208 at step 1001,
potentially in a module database 105, then server 105 could
query for data to authenticate module public key 111 with
module identity at step 1001. A server 105 could query other
servers such as, but not limited to, an application server 171,
a certificate authority 118, and/or a server associated with
M2M service provider 108 or module provider 109. The other
exemplary servers listed in the previous sentence could also
comprise members of a set of servers 105z in some embodi-
ments, but in other embodiments an application server 171
and a certificate authority 118, etc. may notbe members of the
set of servers 105. Exemplary details for the steps to verify a
received module public key 111 are also depicted and
described in connection with step 1202 of FIG. 12, and step
517 of FIG. 5b. In accordance with an exemplary embodi-
ment, the received module public key 111 can be verified
using any of a shared secret key 510, a module digital signa-
ture 405, or a certificate 122. A server 105 could also use an
initial set of cryptographic parameters 126 at step 1001,
where the initial set or first set of cryptographic parameters
126 could be pre-agreed between module 101 (possibly
through module provider 109) and server 105 (possibly
through M2M service provider 108).

[0313] According to an exemplary preferred embodiment,
(1) the first time a server 105, including any server in a set of
servers 105, receives any module public key 111 for module
identity 110, the module public key 111 can be verified using
a certificate 122, and (ii) a subsequent time server 105
receives a module public key 111 for module identity 110, the
module public key 111 can be verified using either a shared
secret key 510 or a module digital signature 405, where (i) the
module digital signature 405 is processed by server 105 using
aprior module publickey 111 (i.e. received before step 1001),
and (ii) the prior module public key 111 had also been previ-

US 2015/0121066 Al

ously verified. In the embodiment where a received module
public key 111 at step 1001 is verified using a prior module
public key 111 and a module digital signature 405 (as con-
templated in the previous sentence), a message 208 including
the module digital signature 405 may also preferably include
a module public key identity 111a such that server 105 can
properly lookup, query, or obtain the correct prior module
public key 111 with module public key identity 111a to use
with a digital signature algorithms 141d to verify the module
digital signature 405 received in the message 208. In other
words, when a plurality of module public keys 111 may be
utilized, server 105, possibly within a set of servers 105z, can
use a module public key identity 1114 to track which module
public key 111 is currently being used with either a module
digital signature 405 or an asymmetric ciphering algorithms
141a.

[0314] After receiving and verifying module public key
111 and module identity 110 at step 1001, a server 105 and/or
a set of servers 1057 can receive a message 208 that includes
module identity 110 at step 1002. The message 208 could
include a server instruction 414 or a module encrypted data
403. In an exemplary embodiment, server 105 can receive
other messages 208 and module public keys 111 both before
and after steps 1001 and step 1002, as well as other steps
contemplated herein. In other words, the various messages
and responses illustrated in Figures herein can comprise sub-
sets of all messages and responses, such that the subsets
comprise embodiments of the present invention. At step 1003,
server 105 can send a response 209, where the response can
include a second set of cryptographic parameters 126. The
response 209 can be sent in a packet with a source IP:port
number and a destination IP:port number, and the destination
IP:port number in the packet can be equal to or the same as the
source [P:port number for a packet received in message 208 at
step 1002.

[0315] In an exemplary embodiment, the second set of
cryptographic parameters 126 are sent to a module 101 with
module identity 110 only after the module public key 111 has
been verified in a step 1001. In this manner, the cryptographic
parameters 126 may be more securely held (i.e. not disclosed
to unauthorized parties). Further, the cryptographic param-
eters 126 in a response 209 sent at step 1003 may also option-
ally be encrypted using the module public key 111 received at
step 1001. In one embodiment, the module public key 111
received in step 1001 can be used to derive or transfer a
symmetric key 127, and the symmetric key 127 could be used
with a symmetric ciphering algorithms 1415 to cipher the
second cryptographic parameters 126 sent in a response 126.

[0316] At step 1004, a set of servers 1057 can receive over
time a series of module public keys 111 associated with
module 101 using module identity 110. Members of the series
of module public keys 111 can be different, representing
different module public keys 111 for the module identity 110,
and the numbers and/or strings in the module public keys 111
can be different. The series of different module public keys
111 can comprise at least a first module public key 111 for
module identity 110 and a second module public key 111 for
module identity 110, where the two module public keys 111
are received at different times, such as, but not limited to,
exemplary values of a week, a month, or a year apart, and
other times between members of the series of module public
keys are possible as well. An exemplary format for a server
105 to receive a module public key 111 is illustrated in the
exemplary message 208 depicted and described in connection

Apr. 30, 2015

with FIG. 64, and other possibilities exist as well. Different
members of the set of servers 105x can receive different
module public keys 111 in the series of module public keys
111 for the module identity 110. Although not illustrated in
FIG. 10, the set of servers 105x can also receive additional
messages 208 and send additional responses 209 during step
1004, such as when module 101 and the set of servers 105
continue to operate over time until step 1005 below. The
module identity 110 received with a first module public key
111 in the series may have a different value, string, or number
than the module identity 110 received with a second module
public key 111 in the series, but different values, strings, or
numbers for module identity 110 can used for the same physi-
cal module 101, and the different values for module identity
110 can be associated with a unique serial number for a
module 101, and other possibilities exist as well.

[0317] A module 101 could generate, process, or derive
each of the different module public keys 111 in the series of
different module public keys 111 using a set of cryptographic
algorithms 141, the cryptographic parameters 126 sent at step
1003, and a random number generator 128. Each member of
the series of module public keys 111 could be received in a
message 208 that could also include a module public key
identity 111a in order to track the module public keys 111. In
an exemplary embodiment, a server 105 at step 1004 can also
receive a third set of cryptographic parameters 126 from
module 101, such that the third set of cryptographic param-
eters 126 received can specify how server 105 can use a set of
cryptographic algorithms 141 in order to either (i) use at least
one module public key 111 in the series form step 1004,
and/or (i1) communicate with module 101. The third set of
cryptographic parameters 126 could be sent in a module
encrypted data 403. Note that the second set of cryptographic
parameters 126 sent by a server 105 at step 1003 could inter-
sect with a third set of cryptographic parameters 126 received
by server 105 with a module public key 111 at step 1004.

[0318] Inan exemplary embodiment, a second set of cryp-
tographic parameters 126 sent by a server 105 at step 1003
could include a list of secure hash algorithms, and elliptic
curve names, and a third set of cryptographic parameters
received by server 105 in a step 1004 can include a selection
by module 101 of a specific secure hash algorithm and an
elliptic curve name from the first set of cryptographic param-
eters. Other possibilities exist as well, and each of the second
set and third set of cryptographic parameters 126 can include
more than a list of secure hash algorithms and elliptic curve
names, such as but not limited to (i) the name or value for a
symmetric ciphering algorithm 1415, (ii) parameters or val-
ues for a module random seed file 139, (iii) the name or value
for an asymmetric ciphering algorithm 1414, (iv) the name or
value for a digital signature algorithm 1414, (iv) a value for a
key pair generation algorithm, and/or (v) a value for a key
derivation function 141f. The selection of the third set of
cryptographic parameters 126 by module 101 could be made
based on the capabilities of cryptographic algorithms 141 in a
module 101. In an exemplary embodiment, the third set of
cryptographic parameters 126 received by server 105 at step
1004 comprises a subset of the second cryptographic param-
eters 126 sent by server 105 at step 1003. After receiving the
second cryptographic parameters at step 1004, server 105 can
record and implement the third set of cryptographic param-
eters 126 in future communications with module 101 (until
possibly a different or new third set of cryptographic param-
eters 126 are possibly received by a server 105 in a message

US 2015/0121066 Al

208 at a future time). Note that the use of a third set of
cryptographic parameters 126 at step 1004 may optionally be
omitted (as illustrated in FIG. 10), such that the second set of
cryptographic parameters 126 from step 1003 are used by
module 101 at step 1004.

[0319] At step 1005, a server 105, possibly in the set of
servers 105, can receive a module instruction 502 and a mod-
ule identity 110. In one embodiment, server 105 could poll
another server, process, or database in order to receive the
module instruction 502 and module identity 110, such as, but
not limited to, sending a polling request or query in a step
1302 depicted and described below in connection with FIG.
13 and FIG. 14. The response received to the poll or query
could be the receipt of a module instruction 502 and module
identity 110 in a step 1005, possibly through using astep 1303
illustrated in FIG. 13 and FIG. 14. In another embodiment for
step 1005, a server 105 could receive an application message
701 from an application server 171, where the application
message 701 can include the module instruction 502 and the
module identity 110. The module instruction 502 for module
101 with module identity 110 could be for any reason that
application 171i and/or user 183 prefers to change a state of
module 101, including the exemplary reasons depicted and
described in connection with FIG. 7. By receiving module
instruction 502, server 105 can enable the remote or external
control of a module 101, which may be important for suc-
cessful operation of module 101. At step 1005, server 105 can
record module instruction 502 in memory 105¢ or a module
database 105%.

[0320] Although not illustrated in FIG. 10, for the embodi-
ment where server 105 receives a module instruction 502 in
an application message 701 from application server 171,
server 105 could then use a wait interval 703, to wait for the
next message 208 from module 101. A wait interval 703 as
depicted and described in connection with FIG. 7, and server
105 can wait after step 1005 and before step 1006, or until a
next message 208 is received with the module identity 110. In
many embodiments, module 101 may not be continuously
connected with server 105 due to any of (i) the use of sleep or
dormant states, (ii) periodic outages of network connectivity
through a network 102 and/or the Internet 107, and/or (iii)
firewall rules on a firewall 104 that would prevent outbound
packets from server 105 from reaching module 101. Although
not illustrated in FIG. 10, server 105 could attempt to send a
packet such as datagram 6015 to module 101 at step 703 in
FIG. 10, and if module 101 does not send back a message 208
with a server instruction 414 of a confirmation and/or
acknowledgement (potentially for the reasons listed in the
above sentence), then server 105 could also then continue to
wait using a wait interval 703.

[0321] At step 1006, server 105 can receive the next mes-
sage 208 from module 101, where message 208 preferably
includes the module identity 110 and the module identity 110
can correspond to the module identity 110 received at steps
1005, 1004, and 1001. The next message 208 illustrated in
FIG. 10 at step 1006 could be for any reason. Server 105 can
use the receipt of next message 208 at step 1006 as confirma-
tion that module 101 is in an active state and that communi-
cation is possible through the Internet 107, firewall 104, and
network 102. The next message 208 at step 1006 may pref-
erably include at least one of (i) module encrypted data 403
that is ciphered with a symmetric key 127 and (ii) a module
digital signature 405. In this manner, server 105 can verify or

Apr. 30, 2015

confirm that the next message 208 at step 1006 is from a
module 101 with a module identity 110.

[0322] Atstep 1007, server 105 can send a second response
209 that includes the module instruction 502, where response
209 canbe sent to amodule 101 with module identity 110, and
response 209 can be sent in after receiving the next message
from step 1006. Note that the second response 209 should
preferably be sent before the expiration of a firewall port-
binding timeout value 117. The second response 209 could
include server encrypted data 504, where the module instruc-
tion 502 is included in the server encrypted data 504. Alter-
natively, module instruction 502 could be sent a plaintext in
the second response 209, and in this case the second response
209 can preferably include a server digital signature 506.
Although not illustrated in FIG. 10, after sending the second
response 209 using a step 1007 illustrated in FIG. 10, the set
of'servers 105x (of which a server 105 can be a member) can
then also receive a confirmation with a timestamp 604a from
module 101 with module identity 110. The set of servers 105»
could then send the timestamp 604a and module identity 110
to an application server 171 that originated the module
instruction 502, thereby informing the application server 171
when the module 101 executed the module instruction 502.
Other possibilities exist as well to those of ordinary skill in the
art without departing from the scope of the present invention.
[0323] FIG.11

[0324] FIG. 11 is a flow chart illustrating exemplary steps
for a set of servers to communicate with a module and an
application server, in accordance with exemplary embodi-
ments. The exemplary steps illustrated in FIG. 11 could be
implemented in either a collection of servers 105 (such as, but
not limited to, the two servers 105 illustrated in FIG. 14),
where the collection of servers comprise a set of servers 105z.
Or, a set of servers can comprise a single server 105 with only
one member in the set of servers 105z. In an exemplary
embodiment, a set of servers 105z could derive the set of
server’s own server public key 114 and server private key
105¢ using a set of cryptographic algorithms 141, a random
number generator 128, and a set of cryptographic parameters
126. The set of servers 105% could use steps similar to step
515 for a module 101 in order to derive one or more server
private keys 105¢. According to an exemplary preferred
embodiment, a set of servers 1057 can use a plurality of public
and private key pairs in order to efficiently and securely
communicate through systems such as, but not limited to,
those illustrated in system 100, system 199, system 700,
system 800, system 1200, and/or system 1300.

[0325] A server public key 114 could be recorded in the
form of a certificate 122 an optionally signed by a certificate
authority 118, and the certificate 122 may also optionally
include a set of cryptographic parameters 126 associated with
a server public key 114. In an embodiment, a certificate 122
can include a subset of the set of cryptographic parameters
126 associated with the server public key 114, and other
members of the set outside the subset can be sent to a module
101 in a server encrypted data 503. In one embodiment, a
server public key 114 is kept confidential and not shared with
other entities besides a set of modules 101 and/or application
server 171. In an exemplary embodiment, the server public
key 114 is only transmitted to the set of modules 101 within a
server encrypted data 503, in order to increase the security of
a system contemplated herein. Different pairs of keys within
a plurality of public and private key pairs for a set of servers
1057 can utilize different sets of cryptographic parameters

US 2015/0121066 Al

126. An exemplary use for a set of servers 105z using differ-
ent pairs of server public key 114 and server private key 105¢
with different parameters 126 is illustrated in FIG. 11, and
other possibilities for the use of multiple pairs of public and
private keys are possible as well without departing from the
scope of the present invention.

[0326] At step 1101, in an exemplary embodiment a set of
servers 105x can establish a secure connection with at least
one application server 171 using a first server private key 105¢
and a first set of cryptographic parameters 126. The secure
connection in step 1101 could be established through a secure
connection setup 801 illustrated in FIG. 8. The first set of
cryptographic parameters 126 could specity multiple values
across a set of algorithms comprising (i) asymmetric cipher-
ing algorithms 141a, (ii) symmetric ciphering 14154 algo-
rithms, (iii) secure hash algorithms 141¢, (iv) digital signature
algorithms 141d, (v) key pair generation algorithms 141e,
and/or (vi) a key derivation function 141f. The first server
private key 105¢ could be utilized at step 1101 by any of (i)
generating a server digital signature 506 that is sent to an
application server 171, (ii) receiving a symmetric key 127 for
the secure connection, where the symmetric key 127 is
decrypted by a set of servers 1057 using the first server private
key 105¢, (iii) input into a key derivation function 141f
including using ECIES with the first server private key 105¢
to obtain a derived shared secret key 1295, and (iv) the first
server private key 105¢ is used to process a first server public
key 114, and the first server public key 114 is used to establish
the secure connection. Other possibilities exist as well for
values or settings specified in a set of cryptographic param-
eters 126 without departing from the scope of the present
invention.

[0327] Atstep 1102, in an exemplary embodiment the set of
servers 105z can receive a first message 208 that includes a
module identity 110. The first message 208 could include a
server instruction 414, a module encrypted data 403, and/or a
module digital signature 405. In an exemplary embodiment,
server 105 can receive other messages 208 and module public
keys 111 both before and after steps 1101 and step 1102, as
well as other steps contemplated herein. In other words, the
various messages and responses illustrated in FIG. 11 can
comprise subsets of all messages and responses, such that the
subsets comprise illustrated embodiments of the present
invention. Note that step 1102 could take place before or after
steps 1101 and 1103. Although not illustrated in FIG. 11, a set
of servers 105» could also receive can receive over time a
series of module public keys 111 associated with module 101
including the module identity 110. Each member of the series
of'module public keys 111 could be received in amessage 208
that could also include a module public key identity 111a in
order to track the module public keys 111 in the series. A set
of'servers 105x could receive the series of module public keys
111 associated with module 101 including the module iden-
tity 110 using a step 1004 depicted and described in connec-
tion with FIG. 10 above.

[0328] At step 1103, a set of servers 105 can verify a
module digital signature 405 with module identity 110 using
afirst module public key 111. The first module public key 111
could be received and recorded by a set of servers 105% before
or after step 1101, including receiving the first module public
key 111 with a module identity 110 from module 101 in a
message 208. Note that the module digital signature 405 does
not need to be received in the message 208 received at step
1102, and module digital signature 405 could be received in a

Apr. 30, 2015

different message 208. In an exemplary embodiment, the
common feature of steps 1102 and steps 1103 can comprise
that a set of servers 105z performs the action, and a module
101 with a module identity 110 submitted the data illustrated
in order for a set of servers 105z to perform the actions
described in steps 1102 and 1103.

[0329] Atstep 1104, in an exemplary embodiment the set of
servers 105x can send a first response 209 that includes server
digital signature 506, where server digital signature 506 is
processed using a second server private key 105¢, and the
second server private key 105¢ can be different than the first
server private key 105¢ used in step 1101. As exemplary
embodiments, (i) the first server private key 105¢ from a step
1101 could be an RSA-based key such as, but not limited to,
aprivate key associated with an exemplary RSA-based public
key depicted and described in connection with FIG. 1gof U.S.
patent application Ser. No. 14/039,401, filed Sep. 27,2013 in
the name of John Nix, and (ii) the second server private key
105¢ from a step 1104 could be an ECC-based key such as, but
not limited to, a private key associated with an exemplary
ECC-based public key depicted and described in connection
with FIG. 1/ of U.S. patent application Ser. No. 14/039,401,
filed Sep. 27, 2013 in the name of John Nix. Note that the
second server private key 105¢ can also be associated with a
second set of cryptographic parameters 126 that are difterent
ornot equal to a first set of cryptographic parameters 126 that
are associated with the first server private key 105¢ used in a
step 1101. The second set of cryptographic parameters 126
could be used by a key pair generation algorithms 141e to
process or derive the second server private key 105¢. Also
note that both the first server private key 105¢ used in step
1101 and the second server private key 105¢ used in step 1104
can each be associated with a different random number 1284,
where the different random numbers 1284 could also each be
used by a key pair generation algorithms 141e to process or
derive the first server private key 105¢ and the second server
private key 105¢, respectively.

[0330] At step 1105, in exemplary embodiments the set of
servers 1057 can receive a second message 208 that includes
a module identity 110. The message 208 could include a
server instruction 414, a module encrypted data 403, and/or a
module digital signature 405. At step 1106, the set of servers
1057 can send a second response 209 with a set of crypto-
graphic parameters 126, where module 101 can use the set of
cryptographic parameters 126 to derive a second module
public key 111 and a corresponding module private key 112,
potentially by using a step 515. According to an exemplary
embodiment, the set of cryptographic parameters 126 sent by
a set of servers 105z in a step 1106 could be included in a
server encrypted data 504. Security of a system 100 and other
systems herein can be increased by encrypting a set of cryp-
tographic parameters 126 sent to a module 101. In an exem-
plary embodiment, the set of cryptographic parameters 126
sent in a step 1106 can include at least one of (i) the name or
value for a symmetric ciphering algorithm 1415, (ii) param-
eters or values for a module random seed file 139, (iii) the
name or value for an asymmetric ciphering algorithm 141a,
(iv) the name or value for a digital signature algorithm 1414,
(iv) a value for a key pair generation algorithm, (v) a name or
value for an elliptic curve defining equation, and/or (vi) a
value for a key derivation function 141f. Module 101 could
use the set of cryptographic parameters 126 sent in a step
1106 with a key pair generation algorithms 141e and a ran-
dom number generator 128 to derive the second module pub-

US 2015/0121066 Al

lic key 111. Module 101 could use a step 515 to derive the
second module public key 111 and a corresponding module
private key 112.

[0331] At step 1107, in an exemplary embodiment a set of
servers 105x can receive (i) the second module publickey 111
and a module identity 110, and (ii) verify the second module
public key 111 using the first module public key 111 received
in a step 1103. In an exemplary embodiment, the a set of
servers 1057 can use the first module public key 111 to verity
the received second module public key 111 using at least one
of several sub-steps. The sub-steps at step 1107 to verify the
second module public key 111 using the first module public
key 111 could comprise any of (i) receiving the second mod-
ule public key 111 and a module identity 110 with a module
encrypted data 403 that uses a symmetric ciphering algorithm
1415, where the symmetric key 127 for encrypting and
decrypting the module encrypted data 403 at step 1107 could
previously be communicated before step 1107 using the first
module public key 111 (such as a server 105 in the set of
servers 1057 sending the symmetric key 127 to module 101 in
a server encrypted data 504, where the server encrypted data
504 was ciphered with an asymmetric ciphering algorithm
141a and the first module public key 111), (ii) receiving the
second module public key 111 and module identity 110 with
a module digital signature 405 where the module digital sig-
nature 405 is verified by the set of servers 105 using the first
module public key 111 (and module 101 could process the
module digital signature 405 with the module private key 112
for the first module public key 111 used in a step 1103), and/or
(iii) using a derived shared secret key 1295 with a message
digest authentication for verifying a received message 208
with the second module public key 111 at step 1107, where
the derived shared secret key 1295 was processed using a key
derivation function 141f'and the first module public key 111.
Other possibilities exist as well without departing from the
scope of the present invention for using the first module
public key 111 from a step 1103 to verify the second module
public key 111 at a step 1107.

[0332] At step 1108, in exemplary embodiments a set of
servers 1057 can decrypt a module encrypted data 403 using
the verified second module public key 111, where the second
module public key 111 was verified in a previous step 1107.
The module encrypted data 403 be received in a message 208
and could include a server instruction 414, sensor data 6045,
asecurity token 410, a timestamp 604a, and/or other data. The
set of servers 105% can decrypt the module encrypted data 403
in a received message 208 at step 1108 using the second
module public key 111. In one embodiment, the module
encrypted data 403 in step 1108 could be ciphered with a
symmetric key 127, where the symmetric key 127 was
received in a prior module encrypted data 403 before step
1108 and the symmetric key 127 in the prior module
encrypted data 403 before step 1108 could be (i) ciphered
using an asymmetric ciphering algorithm 141a and the sec-
ond module public key 111, or (ii) ciphered using a symmetric
ciphering algorithm 1415 and a derived shared secret key
129b, where the derived shared secret key 1295 was derived
using the second module public key 111 and a key derivation
function 141f. The symmetric key 127 received in a prior
module encrypted data 403 before step 1108 with a module
identity 110 could be recorded in a shared module database
105%. A set of servers 105z, including one member of the set
of servers 105, could access the shared module database
105% in order to obtain or read the symmetric key 127. In

Apr. 30, 2015

another embodiment, the prior module encrypted data 403
received prior to step 1108 with the symmetric key 127 could
be ciphered with a different key that was communicated using
the second module public key 111. Other possibilities exist as
well without departing from the scope of the present inven-
tion for a set of servers 1057 to use the second module public
key 111 to decrypt a module encrypted data 403 in a step
1108.

[0333] At step 1109, a set of servers 105% can send sensor
data 6045 to an application server 171 and/or application 171/
using the first server private key 105¢. The sensor data 6045
could be received in a module encrypted data 403, such as but
not limited to sensor data 6045 that could be received in a
module encrypted data 403 at step 1108. The sensor data 6045
could be sent to application server 171 and/or application
171/ using a secure connection data transfer 802, where the
secure connection data transfer 802 was established via a
secure connection data setup 801, and the secure connection
data setup 801 could use the first server private key 105¢ at
step 1101. A secure connection data transfer 802 using a first
server private key 105c¢ is depicted and described in connec-
tion with FIG. 8. In this manner, (i) a set of servers 105% can
use a first server private key 105¢, with an associated set of
cryptographic parameters 126, to communicate with an appli-
cation server 171 and/or application 1714, and (ii) a set of
servers 1057 can use a second server private key 105¢, with a
different associated set of cryptographic parameters 126, to
communicate with a module 101. The first and second server
private keys 105¢, could each use a set of cryptographic
parameters 126 that are selected in order to optimize or
enhance a desired level of security and efficiency for commu-
nicating (i) with another server for the first server private key
105¢ and (i) with a set of modules 101 for the second server

private key 105¢.
[0334] FIG.12
[0335] FIG. 12 is a simplified message flow diagram illus-

trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments. System 1200 can
include an application server 171, a server 105, and a module
101. Although a single application server 171, server 105, and
module 101 are illustrated in FIG. 12, a system 1200 could
include a plurality of any of these elements. Application
server 171 can include application 171i and utilize IP:port
702 for communicating with server 105. Although not illus-
trated in FIG. 12, application server 171 could also commu-
nicate with other servers or nodes on the Internet, including a
user 183 via a web portal 171; illustrated in FIG. 14, or an
enterprise resource planning (ERP) system (not shown). The
nodes illustrated in FIG. 12 could communicate using Inter-
net protocols such as, but not limited to, TCP and/or UDP, and
the network between server 105 and application server 171
could be either via the public Internet 107 or a private intranet
or a VPN layered on top of the public Internet 107. Other
possibilities exist as well, and according to an exemplary
embodiment, application server 171 and server 105 can be
connected via a LAN; such that packets between the two do
not route over the public Internet 107. Sending data between
two nodes on a LAN can also be considered using a secure
connection data transfer 802.

[0336] Server 105 can include a module controller 105x, a
shared secret key 510, and a module identity 110, in addition
to the other components and values shown for a server 105
illustrated in FIG. 1fand FIG. 1¢, including a module data-

US 2015/0121066 Al

base 105k, and one or more server private keys 105¢. Shared
secret key 510 is depicted and described in connection with
FIG. 5b, and can also comprise a pre-shared secret key 1294
in one embodiment where server 105 receives a module pub-
lic key 111 from module 101 for the first time (i.e. before
server 105 sends or receives encrypted data with module
101). As contemplated herein, a server 105 may also comprise
a set of servers 105, such that the set of servers 105x can
perform the actions depicted and described for a server 105
illustrated in FIG. 12 and other Figures. Module identity 110
can comprise an identity for module 101, and is also depicted
and described in connection with FIG. 1e and elsewhere
herein. Server 105 can use IP:port number 901 for commu-
nicating with application server 171 and IP:port number 207
for communicating with module 101 and other modules. Note
that server 105 could also use multiple IP:port numbers 901
and 207 in a system 1200, such as, but not limited to, a first
IP:port number 901 to communicate with a first application
server 171 and/or application 171i, a second IP:port number
901 to communicate with a second application server 171, a
first IP:port number 207 to communicate with a first set of
modules 101, a second IP:port number 207 to communicate
with a second set of modules 101, etc. The IP addresses and
port numbers within an [P:port number 901 and 207 can also
change over time.

[0337] Module controller 105x is depicted and described in
connection with FIG. 1¢, FIG. 8, FIG. 9, and elsewhere
herein. Module controller 105x can transmit, send, and
receive packets for server 105 using IP:port number 207.
Although a single module controller 105x and server 105 are
illustrated in FIG. 12, a server 105 could include multiple
module controllers 105x that are distributed, and server 105
could also be distributed such that different sub-servers 105w
perform the function of server 105 in an exemplary embodi-
ment, and the sub-servers 105w could also include the module
controller 105x. Module 101 in system 1200 can comprise a
module 101 as depicted and described in connection with
FIG. 1a, FIG. 15, FIG. 1 d, FIG. 2, and elsewhere herein.
Module 101 can include a module identity 110 and a shared
secret key 510 and utilize an IP:port number 204 for sending
and receiving data with server 105. IP:port number 204 can
also change over time, such that module 101 uses either a
different IP address 202 or port number 203 when (i) sending
one message 208 or a series of message 208 to (ii) sending the
next message 208 or series of messages 208. According to an
exemplary embodiment, module 101 can connect with mul-
tiple different networks 102 over time and each network 102
may provide a different IP address 202 to module 101. Alter-
natively, the same network 102 may provide a different IP
address 202 for module 101 at different times.

[0338] Inanexemplary embodiment, module 101 canuse a
different IP address 202 between either periods of sleep or
when a DHCP lease expires, and other possibilities exist as
well. As in other Figures in the present invention, IP addresses
illustrated in FIG. 12 may comprise either IPv4 or IPv6
addresses. System 1200 may include a firewall 104, which
may operate between module 101 and server 105, and firewall
104 can provide NAT routing functionality, such that IP
address 210 illustrated in FIG. 12 is different than IP address
202 (in FIG. 2), and firewall 104 may translate ports as well.
Note that firewall 104 may also be a symmetric firewall 104
illustrated in FIG. 9, such that addresses and ports are not
translated by firewall 104, but in this case IP:port 204 may
change over time in exemplary embodiments (such as, but not

Apr. 30, 2015

limited to, from module 101 using different networks 102, or
acquiring different IP addresses 202 between periods of
sleep, etc.). The IP address 210 and port number 605 illus-
trated in FIG. 12 for firewall 12 can comprise the IP address
and port number on the external interface of firewall 104, such
that packets routed to/from the Internet 107 with module 101
could use IP address 202 and port number 605 as a source/
destination IP:port number, respectively.

[0339] Prior to step 1201, module 101 may optionally
derive a module public key 111 and a module private key 112
using a step 515, as depicted and described in connection with
FIG. 5b. Note that the internal derivation of module public
key 111 and module private key 112 using a step 515 are not
required to use the other components and steps illustrated in
asystem 1200. A system 1200 (or system 1300 below in FIG.
13) can also be used in an alternative embodiment where
module private key 111 is obtained by other means than
internal derivation using a key pair generation algorithm
141e, such as loading module private key 112 into a nonvola-
tile memory 101¢ or 101w upon manufacturing, distribution,
or installation or a module 101 or at other times. However, in
an exemplary embodiment, a system 1200 illustrated in FIG.
12 can be useful for secure and efficient communication
between a module 101, server 105, and application server 171
when module 101 also derives the module private key 112 and
module public key 111, potentially by using a step 515. The
derivation of keys does not need to use and/or be associated
with IP:port 204, and step 515 is illustrated in FIGS. 12 and 13
are shown for an exemplary sequence of timing and location
of message flows, such that key derivation using a step 515
can take place before a step 1201.

[0340] At step 1201, in an exemplary embodiment server
105 can use a module controller 105x to receive a first mes-
sage 208 that includes module public key 111. The first mes-
sage 208 can also include a module identity 110, or other
identifying information such that server 105 can determine
the first message 208 with module public key 111 is associ-
ated with module identity 110. The first message 208 can also
preferably include a module public key identity 111a associ-
ated with the module public key 111. Although not illustrated
in FIG. 12, at step 1201 module controller 105x can also
receive a set of cryptographic parameters 126 associated with
module public key 111, such as, but not limited to, a value for
an elliptic curve defining equation, a RSA modulus, a time-
to-live value or expiration date, etc. As received by server 105
(i.e. after traversing firewall 104), the source IP address and
source port number in message 208 can comprise IP address
210 and port number 605, which can be different than IP:port
number 204 due to network address translation by a firewall
104. Module controller 105x can use IP:port number 207 to
receive the first message 208, wherein IP:port number 207
can comprise a destination address in a packet header of the
first message 208 as illustrated in FIG. 6a. Although depicted
in FIG. 12 as a “first message” 208, module 101 may have
previously sent messages 208 to server 105, and the “first
message” 208 can comprise the first message 208 received
within the series or sequence of packets illustrated in FIG. 12.
Other messages 208 may potentially flow before and/or after
a “first message” 208. This terminology of “first message”,

2 <

“second response”, “second public key”, etc. contemplated in

2 <

various Figures herein may refer to the “first message”, “sec-
ond response”, “second public key”, “first set of parameters”,
etc. described in the illustrated flows within each Figure.

Other messages, responses, keys, and parameters may be

US 2015/0121066 Al

communicated before and/or after a depicted “first message”,
“second response”, “second public key”, etc. and the depicted
elements can comprise a subset of other messages, responses,
keys, etc. that may also flow in addition to the elements

illustrated.

[0341] Although server 105 is illustrated as receiving mod-
ule public key 111 in FIG. 12 using a module controller 105x,
a first sub-server 105w could receive module public key 111,
and a different sub-server 105w or server 105 using a different
module controller 105x could send and/or receive subsequent
messages and responses illustrated in FIG. 12. Thus, a system
1200 could use a plurality of module controllers 105x in a
coordinated manner to operate as a single module controller
105x illustrated in FIG. 12 and FIG. 13. In an exemplary
embodiment, server 105 can receive module public key 111 at
a step 1201 due to any of (i) module 101 communicating with
server 105 for the first time, (i) module 101 deriving a new
module public key such as using step 515 in FIG. 55, or (iii)
an end user, technician, or distributor loading a new module
public key 111 (with a module private key 112) into module
101, and other possibilities for reasons for receiving module
public key 111 exist as well without departing from the scope
of'the present invention. In an exemplary embodiment, server
105 has already securely communicated with module 101
using a different or prior module public key 111 (not shown,
and also possibly with a different set of parameters 126)
before receiving the module public key 111 illustrated in FI1G.
12, and the module public key 111 at step 1201 can represent
a new module public key 111 to be used with subsequent
communications. In an exemplary embodiment, the module
public key 111 received at step 1201 in FIG. 12 comprises an
exemplary message 208 illustrated in FIG. 6b. Server 105
could also receive the new module public key 111 in FIG. 12
by previously sending a module instruction 502 for module
101 to derive a new module public key 111 and module
private key 112 using a set of parameters 126, and other
possibilities exist as well.

[0342] At step 1202 in exemplary embodiments module
controller 105x and/or server 105 can verify or authenticate
module public key 111, where the received data that includes
module public key 111 also includes a received module iden-
tity 110. Module controller 105x and/or server 105 could
authenticate and/or verify module public key 111 is associ-
ated with the recorded module identity 110 using a step 517
depicted and described in connection with FI1G. 55, including
using a shared secretkey 510. At step 1202, module controller
105x can also use a set of cryptographic parameters 126 and
a set of cryptographic algorithms 141 to verify or authenticate
module public key 111 at step 1202. In one exemplary
embodiment, step 1202 could use a message digest authenti-
cation and the shared secret key 510 to verify a response from
module 101 with the message digest. At step 1202, module
controller 105x and/or server 105 can take other actions
besides message digest using the shared secret key 510 to
determine if module 101 has the shared secretkey 510. Upon
determination that module 101 has the shared secret key 510
(i.e. determining the received module public key 111 is asso-
ciated with the recorded module identity 110 via the shared
secret key 510) then module public key 111 with the received
module identity 110 can be authenticated and/or verified. In
one exemplary embodiment module controller 105x and/or
server 105 could use shared secret key 510 in processing a
symmetric key 127, such that if server 105 can decrypt data
sent with module public key 111 and a symmetric ciphering

Apr. 30, 2015

algorithm 14154, then server 105 can determine that module
101 has the shared secret key 510. Shared secret key 510
could also be used by module 101 in sending a secure hash
signature with the module public key 111 at step 1201 (where
shared secret key 510 is used by module 101 to generate the
secure hash signature), and server 105 could verify the
received secure hash signature with the shared secret key 510
and a secure hash algorithms 141c¢ at step 1202.

[0343] Other possibilities exist as well for authenticating
and/or verifying module public key 111 at step 1202, and the
use of a shared secret key 510 is not required in order to
authenticate and/or verify that module public key 111 is asso-
ciated with a recorded module identity 110 at a step 1202. A
set of cryptographic parameters 126 that were received with
module 101 in step 1201 could also specify the actions or
processes that module controller 105x and/or server 105 can
use to authenticate and/or verify module public key 111 at
step 1202. In an exemplary embodiment, server 105 can
authenticate and/or verify module public key 111 is associ-
ated with module identity 110 using a certificate 122 and a
signature from a certificate authority 118, such as using a step
412 depicted and described in connection with FIG. 4. In this
embodiment with a certificate authority 118 or another server
performing steps 1201 and 1202, the certificate authority 118
or another server may operate in conjunction with server 105
and/or module controller 105x and perform an authentication
and/or verification of module public key 111. In another
exemplary embodiment, server 105 and/or M2M service pro-
vider 108 (with potentially a different server than the server
105 illustrated in FIG. 12) may have communicated with
module 101 prior to receiving module public key 111 at step
1201, and in this case server 105 could use a different key than
shared secret key 510 to authenticate and/or verify at step
1201 module public key 111 illustrated in FIG. 12 is properly
associated with module identity 110, such as using the differ-
ent key (not shown) with a message digest, module digital
signature 405, symmetric ciphering algorithm 1415, and/or
secure hash algorithms 141¢ using data received with module
public key 111. A set of parameters 126 received with module
public key 111 at step 1201 could specify that module con-
troller 105x use the different key to authenticate and/or verify
module public key 111 at step 1202. Servers for a certificate
authority 118, M2M service provider 108, module provider
109, and/or server 105 connected via a network can also
operate or function as a set of servers 105z.

[0344] In another embodiment, server 105 and/or M2M
service provider 108 may previously have communicated a
symmetric key 127 with module 101, and the symmetric key
127 could be used to authenticate and/or verify module public
key 111 at step 1202. Server 105 could receive the symmetric
key 127 from (i) the M2M service provider 108, or (ii) module
101 before step 1201 (in a previous state where module 101
was authenticated with server 105). Module public key 111 at
step 1201 and/or other data could be sent in a module
encrypted data 403 using the symmetric key 127, and
decrypting the module public key 111 from a step 1201 with
the symmetric key 127 can determine that module public key
111 is authenticated and/or verified at a step 1202.

[0345] In another embodiment, server 105 could have
received a prior module public key 111 (possibly from M2M
service provider 108 or another authenticated and/or verified
source) before the received module public key 111 from step
1201 illustrated in FIG. 12, and server 105 and/or module
controller 105x could use the prior module public key 111 and

US 2015/0121066 Al

amodule digital signature 405 (processing using a prior mod-
ule private key 112) sent with the module public key 111 at
step 1201 illustrated in FIG. 12 to determine that the module
public key 111 is authenticated and/or verified at a step 1202.
In accordance with exemplary embodiments, step 1202 can
authenticate and/or verify that received module public key
111 is properly associated with the module identity 110
recorded in server 105 in order to securely communicate with
module 101 at subsequent steps illustrated in FIG. 12, thereby
securing a system 1200. Without proper authentication and/or
verification that module public key 111 is properly associated
with a recorded module identity 110 at step 1202 by using the
exemplary embodiments described herein, a system 1200
may be vulnerable to an imposter, hackers, or fraudulent
submissions of module public key 111 and/or subsequent
communication with the wrong (or fraudulent) module 101 in
subsequent communications.

[0346] At step 1202a, an application interface 105 can
send the received and verified module public key 111 to
application server 171 and/or application server 171/ via a
secure connection data transfer 802 and an application mes-
sage 701. The application message 701 can also include the
module identity 110, a module public key identity 111a, and
a set of cryptographic parameters 126, and the module iden-
tity 110, the module public key identity 111a, and the set of
cryptographic parameters 126 could be also received in the
message 208 at step 1201. Although not illustrated in FIG. 12,
application server 171 and/or application 171 could (i)
record the data received in step 12024 and also (ii) send values
received in application message 701 at step 12024 to a second
server 105, such as a second server 105 (not shown in FIG. 12)
illustrated in FIG. 1/ using a second secure connection data
transfer 802. In this manner, a second server 105 can record
the module identity 110, the verified module public key 111,
the module public key identity 111qa, and the set of crypto-
graphic parameters 126 associated with module public key
111 in a module database 105k associated with the second
server 105.

[0347] In another embodiment, at step 1202a, server 105
could record the module identity 110, the verified module
public key 111, the module public key identity 111a, and the
set of cryptographic parameters 126 associated with module
public key 111 in a shared module database 1054 (such as the
module database 105% illustrated in FIG. 1/%), and a second
server 105 could have access to the data by querying the
shared module database 105k. A shared module database
105% is also illustrated in FIG. 1/. In an embodiment where
server 105 accesses a shared module database 105%, at step
12024 the module public key 111 and related data (such as,
but not limited to, module identity 110), could be sent to the
shared module database 105% via the message shown in step
12024 instead of sending the message to application server
171. In this case by using a shared module database 105, the
message at step 12024 could comprise or trigger an “insert”
command or message to shared module database 105%, where
the insert command could include (i) a table name, (ii) the
received and verified module public key 111, (iii) the module
identity 110, (iv) a set of cryptographic parameters for mod-
ule 101, and (v) a module public key identity 111a. In this
manner with exemplary embodiments, by sharing module
database 105& with multiple servers 105, communication
with module 101 and a plurality of servers 105 can be more
efficient, since each server 105 can access data such as a
previously recorded and verified module public key 111,

Apr. 30, 2015

module identity 110, module public key identity 111q, and set
of cryptographic parameters 126 associated with each mod-
ule 101. By reducing the transmission of messages between a
module 101 and different servers 105 over the lifetime of
module 101, a system can be simultaneously more secure and
more efficient.

[0348] By a second server 105 receiving the values from
application server 171 and/or application 171i, the second
server 105 can also record that module 101 with the module
public key 111 (received in step 1201 shown in FIG. 12) and
module identity 110 has been verified. In addition, although
server 105 is illustrated as sending the module public key 111
to application server 171 in FIG. 12 at step 12024, server 105
could alternatively send the module public key 111, the mod-
ule identity 110, a module public key identity 111a, and a set
of cryptographic parameters 126 associated with module 101
directly to a second server 105, such as, but not limited to,
server B 105 depicted and described in connection with FIG.
14. Server 105 could send the module public key 111, the
module identity 110, a module public key identity 111a, and
a set of cryptographic parameters 126 associated with module
101 to the second server B 105 illustrated in FIG. 1% using a
secure connection data transfer 802. In another embodiment,
a second server B 105 illustrated in FIG. 1/ could access the
verified module public key 111 from steps 1201 and 1202 by
accessing a module database 1054 where server 105 had
recorded the module public key 111, the module identity 110,
a module public key identity 111a, and a set of cryptographic
parameters 126 associated with module 101.

[0349] At step 1203, module controller 105x can send a
server digital signature 506 with a server identity 206, and
server digital signature 506 could be processed as described
in FIG. 5a. In an exemplary embodiment, module controller
105x and/or server 105 could use (i) a first server private key
105¢, (ii) a set of cryptographic parameters 126, and (iii) a
digital signature algorithm 141d to process and/or create
server digital signature 506. Module controller 105x can use
IP:port number 207 for sending server digital signature 506.
In an exemplary embodiment, a second server private key
105¢ using a different set of cryptographic parameters 126
could be used with secure connection setup 801 to application
171i. In one embodiment, first server private key 105¢ can use
ECC algorithms 154 and the second server private key 105¢
can use RSA algorithms 153, and the selection of ECC algo-
rithms 154 or RSA algorithms 153 can be specified in a set of
cryptographic parameters 126, although other possibilities
exist as well. In another embodiment, a single server private
key 105¢ (possibly with a single set of cryptographic param-
eters 126) can be used for both server digital signature 506
and secure connection setup 801. Server digital signature 506
could be sent within a response 209, and although not illus-
trated in FIG. 12, server digital signature 506 could be asso-
ciated with or sent with a packet that includes a symmetric key
127 for use by module 101. A set of parameters 126 used with
processing server digital signature 506 can be sent by module
controller 105x before, with, or after step 1203.

[0350] Althoughnotillustrated in FIG. 12, module control-
ler 105x could also send server encrypted data 504 to module
101 at step 1203, where the server encrypted data 504 can
include exemplary values such as, but not limited to, an actua-
tor instruction 706, a module instruction 502, a security token
401, additional cryptographic parameters 126, a symmetric
key 127, or an acknowledgement that a message 208 has been
received. In accordance with a preferred exemplary embodi-

US 2015/0121066 Al

ment, module controller 105x sends a server digital signature
506 with server identity 206 to module 101 in a step 1203
upon the successful authentication and/or verification of
module public key 111 received in step 1202 above. Module
101 can use the server digital signature 506, server public key
114, a set of parameters 126, and a digital signature algorithm
141d to verify the identity of server 105 used in FIG. 12.
Server digital signature 506 may also be sent with or as a
signal that the module public key 111 was properly received
in a step 1201 and/or authenticated or verified at a step 1202.
In one embodiment, the set of parameters 126 can specity (i)
a secure hash algorithm 141¢ to use with a digital signature
algorithm 1414 (such as, but not limited to, either SHA-256,
SHA-3, etc.), and (ii) additional details for processing a
secure hash algorithm 141c¢ used with a digital signature
algorithm 141d such as the format or order of strings or values
input into a secure hash algorithm 141¢. In another embodi-
ment, digital signature algorithms 1414 can include logic for
the format, order, strings or values, and encoding to use for
processing a digital signature including a server digital sig-
nature 506 and/or a module digital signature 405. In other
words, a set of parameters 126 and/or digital signature algo-
rithms 1414 can include settings such that a server 105 and
module 101 can calculate, derive, or process the same digital
signature as the other node.

[0351] At step 1204, a module controller 105x can receive
a module digital signature 405. Module controller 105x can
use an [P:port number 207 to receive the module digital
signature 405. Although not illustrated in FIG. 12, module
controller 105x can receive module digital signature 405 with
a module identity 110. In addition, although the receipt of
module digital signature 405 is depicted as after the sending
of server digital signature 506, module digital signature 405
could be received before the sending of server digital signa-
ture 506 in exemplary embodiments. Processing a module
digital signature 405 is also depicted and described in con-
nection with FIG. 4 above and elsewhere herein. Module
digital signature 405 could be received in a message 208,
which could be formatted with the exemplary format for a
message 208 in illustrated in FIG. 6a, and other possibilities
exist as well.

[0352] Module digital signature 405 received in step 1204
can also include a symmetric key 127, and symmetric key 127
could be ciphered using an asymmetric ciphering algorithm
141a, where a module 101 used a server public key 114 in
order to encrypt the symmetric key 127. Symmetric key 127
could be used with a symmetric ciphering algorithm 1415 and
a set of parameters 126 at subsequent (i) step 1207 to decrypt
data within a second message 208 and/or (ii) step 1208 to
encrypt data within a response 209. The use of a symmetric
key 127 with a set of parameters 126 is depicted and described
in connection with FIG. 1e, FIG. 3, FIG. 4, and FIG. 54, and
elsewhere herein. In an exemplary embodiment, the receipt of
module digital signature 405 at step 1204 can be omitted, and
the verification of messages or packets from module 101 can
be processed with other means, such as using the shared
secret key 510. However, over time and with a change of the
use of IP addresses such as, but not limited to, changing
source [P:port number 210:605, and possibly using different
sub-servers to receive messages from module 101, the peri-
odic transmission of a module digital signature 405 may be
preferred.

[0353] Atstep 1205, module controller 105x can verify the
module digital signature 405 for module identity 110 received

Apr. 30, 2015

in step 1204 using the module public key 111 (i) received in
step 1201 and (ii) authenticated in step 1202. At step 1205,
module controller 105x can use a set of parameters 126, the
module publickey 111 received in step 1201, digital signature
algorithms 1414, secure hash algorithms 141¢, and module
identity 110 in order to verify module digital signature 405.
Although not illustrated in FIG. 12, after step 1205, module
controller 105x can then follow the sequence of steps illus-
trated in FIG. 3 to process additional messages 208 and
responses 209 from/to module 101, until application message
701 with module instruction 502 is received at step 1206
below. The symmetric key 127 received in step 1204 with a
module digital signature 405 verified in a step 1205 could be
used to receive module encrypted data 403 and send server
encrypted data 504 after step 1205.

[0354] At step 1205aq, after verifying the module digital
signature 405 received in step 1204 and verified in step 1205,
an application interface 105/ can send a symmetric key 127
for use with module 101 to application server 171 and/or
application server 171/ via a secure connection data transfer
802 and an application message 701. The symmetric key 127
sent in application message 701 could be received in step
1204, or the symmetric key 127 could be processed or gen-
erated by server 105 and sent to module 101 in step 1203. The
application message 701 at step 12054 can also include the
module identity 110. Although not illustrated in FIG. 12,
application server 171 and/or application 171i could record
the data received in step 12054 and also send values received
in application message 701 at step 12054 to a second server
105, such as a second server 105 (not shown in FIG. 12)
illustrated in FIG. 1/ using a second secure connection data
transfer 802. In this manner, a second server 105 can record
include the module identity 110 and the symmetric key 127
with a module database 1054 for the second server 105. In
another embodiment, at step 12054, server 105 could record
the received symmetric key 127 and module identity 110, plus
optionally related additional information, in a shared module
database 105k. A second server 105, such as server B 105
illustrated in FIG. 14, could access the symmetric key 127 and
module identity 110 via the shared module database 1054

[0355] By asecond server 105 receiving the symmetric key
127 and module identity 110 from either (i) application server
171 or (ii) a shared module database 105k, the second server
105 can communicate with module 101 using module identity
110 and the symmetric key 127 without the second server
previously conducting the steps 1201 through 1204. In this
manner according to a preferred exemplary embodiment, a
system 100 can be made more efficient, since a second server
105 (such as the second server 105 illustrated as “Server B” in
FIG. 1%) can use the symmetric key 127 received from appli-
cation server 171 or shared module database 1054 to commu-
nicate with module 101 without requiring sending or receiv-
ing additional packets in order to establish or communicate a
symmetric key 127. In addition, although server 105 is illus-
trated as sending the symmetric key 127 to application server
171 in FIG. 12, server 105 could alternatively send the sym-
metric key 127 directly to a second server 105, such as server
B 105 depicted and described in connection with FIG. 1.
Server 105 could send the symmetric key 127 and module
identity 110 to the second server B 105 illustrated in FIG. 1%
using a secure connection data transfer 802. Server 105 could
use a step 1205a to send the symmetric key 127 and module
identity 110 to a plurality of servers, including and of a

US 2015/0121066 Al

plurality of application servers 171, other servers 105, and a
one or more shared module databases 105k

[0356] At step 1206, in an exemplary embodiment server
105 can receive an application message 701 that includes a
module instruction 502. In exemplary embodiments, applica-
tion message 701 received also includes a module identity
110 in order to specify which module 101 from a plurality of
modules 101 that module instruction 502 is intended as the
ultimate recipient. The application message 701 could be
received through secure connection data transfer 802, which
could be established using secure connection setup 801.
Application interface 105x can use IP:port number 901 to
receive application message 701, where application message
701 includes IP:port number 702 as a source [P:port number
in the packet header of application message 701, as illustrated
in FIG. 7. Secure connection data transfer 802 and secure
connection setup 801 are depicted and described in connec-
tion with FIG. 8 above. As contemplated herein, the term
“secure connection” can refer to either secure connection data
transfer 802 or secure connection setup 801. An application
message 701 is depicted and described in connection with
FIG. 7 through FIG. 9. A module instruction 502 within
application message 701 can include an instruction, com-
mand, or data for module 101, possibly including any of the
exemplary module instructions 502 depicted and described in
connection with FIG. 7 for an exemplary module instruction
502 in an application message 701. As illustrated in FIG. 12,
application message 701 received in step 1206 can be
received after a first message 208 and before a second mes-
sage 208.

[0357] In the exemplary embodiment of system 199 illus-
trated in FIG. 14, the use of a server 105 for routing module
instruction between (i) an application 171/ and/or application
server 171 and (ii) a module 101 may be preferred for many
different reasons, including supporting scalability, increasing
security, reducing bandwidth, supporting legacy crypto-
graphic algorithms 141 supported on application server 171,
and/or increasing efficiency by using two different crypto-
graphic schemes, where one is optimized for communication
between modules and servers, and a second is optimized for
communication between servers.

[0358] In exemplary embodiments, application message
701 from step 1206 can be received when (i) module 101
comprises a sleep or dormant state, (ii) a firewall port binding
timeout value 117 associated with firewall 104 has expired,
and/or (iil) communication with module 101 is not available
for other reasons (such as, but not limited to, out of range of
awireless network, waiting for a battery 1054 to be recharged,
etc.) For any of the above cases, outbound packets sent from
module controller 105x would not normally be received by
module 101. Consequently, after receiving application mes-
sage 701 in step 1206, module controller 105x can begin
waiting for a wait interval 703. As illustrated in FIG. 12,
application interface 105; can send application 171 a second
application message 701 upon waiting for a second message
208 from module 101, where the second application message
701 can comprise an application update 704 instruction of
“waiting”. Application update 704 instruction of “waiting”
can include module identity 110. In this manner, application
171i can be informed that module controller 105x and/or
server 105 comprise a state of wait interval 703 for the next or
second message 208 from module 101. Wait interval 703 can
end when the second message 208 is received from module
101 where the second message 208 can include a module

Apr. 30, 2015

identity 110 received in the application message 701 at step
1206. The second message 208 can comprise the next mes-
sage 208 after server 105 receives the module instruction 502.
Module controller 105x and/or server 105 can stop waiting
when the next message 208 is received from module 101, and
the next message 208 is illustrated as a second message 208 in
FIG. 12.

[0359] At step 1207, module controller 105x can receive a
second message 208 from module 101. Module controller
105x can receive the second message 208 by monitoring an
IP:port number 207. IP:port number 207 in step 1207 can be
the same value or address as IP:port number 207 in step 1201,
or IP:port number 207 in step 1207 could be a different value
oraddress than IP:port number 207 in step 1201. According to
exemplary embodiments, over time a specific address and/or
numeric value for a port number used in an IP:port number
contemplated herein can change. In an exemplary embodi-
ment, the second message 208 includes a source IP address of
IP address 210 and a source port number of port number 605.
As illustrated in FIG. 12, IP address 210 and port number 605
can comprise an IP address and port number associated with
the external interface of a firewall 104, and can represent a
source [P:port number in a packet header received in a mes-
sage 208 as illustrated in FIG. 6a and FIG. 2. In this exem-
plary embodiment, the numeric values for IP:port number
210:605 received in the second message 208 can be different
than the numeric values for IP:port number 210:605 received
in the first message 208. IP:port number 210:605 received in
the second message 208 can be different than in the first
message due to many factors, including (i) module 101 has
moved to a different network 102 in step 1207 after server 105
received the first message in step 1201, (ii) firewall 104 has
changed a source port number 605 based on logic internal to
firewall 104 for allocating, sharing, using, and reusing port
numbers with a plurality of connected nodes, and (iii) a net-
work 102 could also change the IP address 202 used by
module 101.

[0360] Continuing at step 1207, the second message 208
can preferably include a module identity 110, wherein the
module identity 110 was previously verified as being associ-
ated with module public key 111 in step 1202. Module iden-
tity 110 in a second message 208 could comprise string or
number with a different value than a module identity 110
received in the first message 208 at step 1201, such as, but not
limited to, the module identity 110 in the second message
comprising a session identifier associated with module iden-
tity 110. In exemplary embodiments, module controller 105x
can process the string or number for module identity 110
received in the second message 208 in order to associate the
string or value in a module identity 110 received in the second
message 208 at step 1207 with the string or value for a module
identity 110 received in the first message 208 at step 1201. As
contemplated herein, exemplary embodiments contemplate
the use of different strings or values for the same module
identity 110. Different strings or values for a first module
identity 110 can be separated from different strings or values
for a second module identity 110 because (i) the strings or
values as a first module identity 110 can be associated with a
first physical module 101, including possibly a serial number
for the first physical module 101, whereas (ii) the strings or
values as a second module identity 110 can be associated with
a second physical module 101, including possibly a serial
number for the second physical module 101. Although not
illustrated in FIG. 12, the second message 208 at a step 1207

US 2015/0121066 Al

could include additional data such as, but not limited to, a
module encrypted data 403, a module digital signature 405,
and/or a server instruction 414. The server instruction 414
could be sent as plaintext in a body 602 or could be encrypted
or obfuscated.

[0361] At step 1208, in exemplary embodiments module
controller 105x can send a response 209 to the second mes-
sage 208, and the response 209 can include the module
instruction 502 received at step 1206. The second message
208 and the response 209 can be sent and received as UDP
packets or datagrams. In an exemplary embodiment, module
controller 105x uses both (i) IP:port number 207 that received
the second message 208 as a source IP:port number in
response 209, and (ii) the IP:port number 210:605 received in
the second message 208 as a destination IP:port number in
response 209. In this manner, response 209 can traverse a
firewall 104 in order to be received by module 101. In an
exemplary embodiment, module controller 105x can send
response 209 before the expiration of a firewall port-binding
timeout value 117, where the start of firewall port-binding
timeout value 117 began when message 208 traversed firewall
104. Module instruction 502 in response 209 can be formatted
or encoded differently than module instruction 502 received
in application message 701 at step 1206. Response 209 could
include module instruction 502 within a server encrypted data
504, where server encrypted data 504 can be ciphered using
the symmetric key 127 received in step 1204. In an exemplary
embodiment, module instruction 502 can be sent as plaintext
in response 209, and in this case response 209 can preferably
include a server digital signature 506 in order for module 101
to confirm or verify that server 105 and/or module controller
105x sent module instruction 502.

[0362] According to an exemplary embodiment, at step
1209, module controller 105x can receive a server instruction
414 comprising an acknowledgement with a timestamp 604a
when module 101 properly received and/or executed module
instruction 502 from step 1208. Application interface 105/
can send an application update 704 with the module identity
110, where application update 704 can comprise (i) an
acknowledgement that module 101 with module identity 110
executed the module instruction 502 received in step 1206,
and (ii) a timestamp value 604a when module 101 properly
received and/or executed module instruction 502. In exem-
plary embodiments, the inclusion of timestamp 604a can be
important or useful for application 171 to manage or control
a plurality of modules 101 via a server 105 or a set of servers
105%. The timestamp 604a can be useful because module 101
may utilize sleep and/or dormant states, or possibly having
periodic outages or loss of access to Internet 107 and/or
network 102. As one example, there could also be an exem-
plary delay of minutes or longer between module 101’s
execution of module instruction 502 and when module 101
can send an acknowledgement such as server instruction 414,
possibly due to a sleep state or network outage. Additional
unknown or uncertain time for application 171 between
sending module instruction 502 at step 1206 the execution of
module instruction 502 by module 101 can include the wait
interval 703. Consequently, in accordance with a preferred
exemplary embodiment, server instruction 414 and applica-
tion update 704 at step 1209 include a timestamp 604a that
module 101 executed module instruction 502.

[0363] Although not illustrated in FIG. 12, server instruc-
tion 414 could include additional data such as sensor data
6045 or other data associated with a state of module 101 or a

Apr. 30, 2015

component within module 101 including the state or value for
an actuator 101y. Server instruction 414 could be included in
a module encrypted data 403. Application update 704 can
include the sensor data 6045 and additional information. In
one embodiment, server instruction 414 can be received with
a module identity 110 and server instruction 414 with times-
tamp 604a can be encrypted in a module encrypted data 403.

[0364] FIG.13

[0365] FIG. 13 is a simplified message flow diagram illus-
trating an exemplary system with exemplary data transferred
between a module and an application using a server, in accor-
dance with exemplary embodiments. System 1300 can
include an application server 171, a server 105, and a module
101. Although a single application server 171, server 105, and
module 101 are illustrated in FIG. 13, a system 1300 could
include a plurality of any of these elements. System 1300
illustrated in FIG. 13 can comprise the same components,
steps, and message flows as system 1200 illustrated in FIG.
12, with changes to support (i) a polling of a module instruc-
tion 502 from application 1717 and/or application server 171
in a step 1302 instead of (ii) receiving module instruction 502
in a step 1206 illustrated in FIG. 12.

[0366] Steps 1201 through step 1205 illustrated in FIG. 13
can comprise the same steps 1201 through 1205 depicted and
described in connection with FIG. 12. At step 1301, applica-
tion 171 can process a module instruction 502 to be sent to a
module 101 with a module identity 110. The determination
and/or processing of a module instruction 502 could be for
any reason application 1717 prefers for a state, value, or set-
ting within a module 101 to change. Module instruction 502
could comprise any of the exemplary module instructions 502
depicted and described in connection with FIG. 7, and other
possibilities exist as well. In one exemplary embodiment, at
step 1301 application 171/ could determine that a setting for
an actuator 101y should change, such as based on the input
from a user 183 or other automated control decisions.
Although not illustrated in FIG. 12 above, an application 171
and/or application server 171 within a system 1200 could also
use a step 1301 before sending the application message 701
with module instruction 502 in step 1206, where the module
instruction 502 can be processed at a step 1301 in a system
1200 above.

[0367] According to an exemplary embodiment, illustrated
in FIG. 13, after step 1301 the wait interval 703 illustrated in
FIG. 12 can be omitted by not receiving module instruction
502 in an application message at step 1206. Instead, and as
illustrated in FIG. 13, module controller 105x could receive
the second message 208 from a step 1207 after receiving the
module public key 111 in a step 1201. Upon or after receiving
the second message 208 in a step 1207, server 105 and/or
application interface 105/ can send application 171/ and/or
application server 171 an application message 701 with a
polling request at step 1302. In an exemplary embodiment,
the polling request could signal that a module 101 in a system
1300 is ready and available to receive the module instruction
502. In an exemplary embodiment, application message 701
in a step 1302 can be sent using application interface 105; and
an [P:port number 901. The application message 701 can
optionally be sent using a secure connection data transfer 802.
The polling request in application message 701 at step 1302
can be useful since module 101 may use periods of sleep or
dormancy, and or periodically not be connected or accessible
through a network 102 and/or firewall 104, and in this case

US 2015/0121066 Al

module instruction 502 could not be transmitted or sent to
module 101 at arbitrary times.

[0368] At step 1303, application 171/ can send the module
instruction 502 processed above at step 1301, after receiving
the first application message 701 with the polling request.
Module instruction 502 can be sent from application 171/ to
application interface 105; in a second application message
701 at step 1303 and may also use a secure connection data
transfer 802. Application interface 105i can receive the sec-
ond application message 701 with the module instruction
502. As illustrated in FIG. 13, module controller 105x can
then use a step 1208 to send the module instruction 502 in a
response 209. System 1300 can then also use step 1209 to
receive a server instruction 414 with an acknowledgement
and a timestamp 604a, and send an acknowledgement 704 to
application 171/ and/or application server 171. In an exem-
plary embodiment, a step 1209 can be optionally omitted, and
timestamp 604a could be optionally communicated in a sepa-
rate application message 701 at a later time or within other
application messages 701 not depicted in system 1300.
[0369] System 1300 illustrated in FIG. 13 may be preferred
in a system where a single application 171; communicates
with a server 105. In another embodiment, where multiple
application servers 171 communicate with a server 105 or a
set of servers 105x, then a system 1200 may be preferred,
where server 105 receives the module instruction without
sending an application message 701 with a polling request.
One reason is that when multiple application servers 171
communicate with server 105, an application interface 171/
may not know the correct or proper application server 171 in
order to send the application message 701 with the polling
request at a step 1302 (since potentially many different appli-
cation servers 171 may be a source of the module instruction
502). Without knowing the proper application server 171 to
send the application message 701 with the polling request,
server 105 would then need to poll the plurality of application
servers 171 each time a second message 208 was received in
a step 1207. A server 105 could receive many second mes-
sages 208 over time, and polling a plurality of application
servers 171 each time a second message 208 was received
could significantly increase network traffic and load, and
therefore may not be efficient.

[0370] According to an exemplary embodiment, applica-
tion 171i can operate within server 105, and in this case
IP:port 702 and/or IP:port 901 could be a loopback address
and port number, which is reserved for the block of IPv4
addresses 127.x.x.x, and a similar loopback port for IPv6
addresses could be utilized as well when an application 171/
operates within server 105.

[0371] FIG.14

[0372] FIG. 14 is a graphical illustration of an exemplary
system that includes a set of application servers, a set of
servers, and a set of modules, in accordance with exemplary
embodiments. System 1400 can include multiple application
servers 171, multiple servers 105, and a plurality of modules
101. A large, distributed system of thousands or more mod-
ules may utilize multiple application servers 171, such as, but
not limited to, the multiple application servers 171 associated
with one or more enterprises with multiple operating divi-
sions. Or, the application servers 171 in a system 1400 could
each be associated with the same enterprise, while separate
application servers 171 could be associated with separate
divisions. In another embodiment, M2M service provider 108
may support different customers, where some customer may

Apr. 30, 2015

prefer or require the use of a different or segmented applica-
tion server 171 and/or application 1714, and in this case an
M2M service provider 108 with a plurality of modules 101
and servers 105 may utilize different application servers 171
for different customers. Multiple application servers 171
could comprise a set of application servers 171. Other possi-
bilities exist as well for using a set of application servers, a set
of'servers, and a set or plurality of modules without departing
from the scope of the present invention.

[0373] Inan embodiment where multiple application serv-
ers 171 communicate with multiple servers 105, a combina-
tion of steps with system 1200 illustrated in FIG. 12 and steps
within system 1300 illustrated in FIG. 13 may be preferred.
Before step 1206 in FIG. 14 (illustrated as a “First” step in a
system 1400), any of the application servers 171 can process
a module instruction 502 to be sent to a module 101 with a
module identity 110. With a plurality of application servers
171, each application server can include or be associated with
an application server identity 1401. The determination and/or
processing of a module instruction 502 could be for any
reason application 171i and/or application server 171 prefers
for a state, value, or setting within a module 101 to change.
Note that any of the illustrated application servers 171 could
originate the module instruction 502, and thus a server A 105
may not know beforehand which of the multiple application
servers to poll upon receipt of a message 208 from module
101 (which could comprise a second message 208 illustrated
in at step 1207 in FIG. 12 and FIG. 13). At step 1206 in FIG.
14, the application server 171 processing or originating mod-
ule instruction 502 can send the module instruction 502, the
module identity 110, and the application server identity 1401
to a shared module database 1054. The module instruction
502 could be sent via a secure connection data transfer 802,
and other possibilities exist as well, including application
server 171 having a remote connection to shared module
database 105%. Application 171 could take an action (includ-
ing an HTTP post or similar message) that would trigger an
insertion of the module instruction 502 with module identity
110 into a database table within a shared module database
105%. Application 171 and/or application server 171 could
also issue an insert command with module instruction 502,
such as with, but not limited to, an structured query logic
(SQL) “insert” command.

[0374] The second step in a system 1400 could comprise
module 101 sending a message 208 to a member of the set of
servers. Message 208 could traverse a firewall 104 and be
received by server A 105. Message 208 can (i) include a
module encrypted data 403 with a sensor measurement 604a
and (ii) be sent after a module 101 changes from a sleep or
dormant state to an active state. Message 208 could also be
received by server A 105 after network 102 and/or Internet
107 connectivity was restored for module 101 after a period
of network outage. A message 208 could be similar to the
exemplary messages 208 illustrated in FIG. 2, FIG. 6a, FIG.
65, F1G. 9, and other possibilities exist as well. Message 208
can include a module identity 110. Message 208 in system
1400 could be a second message 208 illustrated at step 1207
of FIG. 12 and FIG. 13. In an exemplary embodiment, mes-
sage 208 in a system 1400 is sent as a UDP datagram 601a
with forward error correction, such that module 101 sends
multiple copies of the UDP datagram 601« (such as, but not
limited to, sending an exemplary 3 copies of the same UDP
datagram 601a) and server 105 can receive at least a subset of
the multiple copies of the UDP datagram 601a. Although not

US 2015/0121066 Al

illustrated in FIG. 14, server A 105 may preferably already
have taken steps before receiving message 208 for (i) verify-
ing a module public key 111 and module identity 110 for
module 101 and/or (ii) authenticating communication with
module 101 such using a symmetric key 127 to encrypt/
decrypt data. Although a message 208 is illustrated in the
second step in a system 1400, server A 105 could receive
other datagrams from a module 101 besides a message 208.
[0375] The third step in a system 1400 can comprise server
A 105 performing a step 1302 to poll shared module database
105k for an incoming module instruction 502 for module
identity 110. Note that server A 105 may have entered a
waiting state or used a wait interval 703 (for communications
related to module 101 with module identity 110) before per-
forming a step 1302 to poll shared module database 105%. In
accordance with a preferred exemplary embodiment, server A
105 may wait until after receiving message 208 (illustrated as
the “Second” step in FIG. 14) before performing step 1302
because (i) before that time the module instruction 502 may
not be sent to module 101 due to firewall 104, and (ii) server
A 105 may prefer to allow for time up until response 209 is
sent for a shared module database 105%to collect all incoming
module instructions 502 from all sources. Step 1302 can
utilize a secure connection data transfer 802 or server A 105
may be able to perform SQL queries or similar commands
directly with shared module database 105%. As contemplated
herein and illustrated in FIG. 14, a server 105 can use an
application interface 105x to send and receive data with a
shared module database 105%.

[0376] The fourth step in a system 1400 can comprise
server A 105 receiving the module instruction 502 for module
identity 110 from the shared module database 105% using a
step 1303. The module instruction 502 was received by
shared module database 1054 from application server 171
using a step 1206 illustrated above. Note that any of server A
105 and server B 105 could use a step 1302 and step 1303 to
communicate with shared module database 105k, after
receiving a message 208 or other data from a module 101. In
an exemplary embodiment, step 1303 may also comprise a
server 105 receiving the application server identity 1401 with
the module instruction 502 and module identity 110. By
acquiring the application server identity 1401 at a step 1303,
a server 105 can record the proper application server 171 to
send an acknowledgement and a timestamp 6045 at a subse-
quent time after successfully sending module instruction 502
to module 101.

[0377] The fifth step in a system 1400 can comprise server
A 105 sending a response 209 to the module 101 with module
identity 110, and the response 209 can include the module
instruction 502. The module instruction 502 could be
included in a server encrypted data 504. In an exemplary
embodiment, response 209 is sent as a UDP datagram 6015
with both (i) forward error correction and (ii) with a destina-
tion IP:port number in the UDP datagram 6015 equal to a
source [P:port number in a UDP datagram 601a received for
the message 208. In exemplary embodiments, response 209 is
sent before the expiration of a firewall port-binding timeout
value 117.

[0378] The sixth step in a system 1400 can comprise server
A 105 receiving a server instruction 414 of an acknowledge-
ment and/or confirmation the module instruction 502 was
properly executed or processed by module 101, including a
timestamp 604a. Server instruction 414 at the sixth step could
be sent in a second message 208 that also includes module

Apr. 30, 2015

identity 110, and server instruction 414 could also be in a
module encrypted data 403. Timestamp 604a could represent
atime value associated with the processing of module instruc-
tion 502 by module 101, such as, but not limited to, the time
when module 101 implemented an actuator setting 706, col-
lected a sensor measurement 6045, and other possibilities
exist as well. The timestamp 604a could be valuable for an
application server 171 in order to keep track of the state of
module 101 and/or a monitored unit 119, since there can be
delays between when application server 171 originated a
module instruction 502 and when module 101 executed or
applied module instruction 502 (in addition to delays when
application server 171 can receive a confirmation the module
instruction 502 has been executed).

[0379] The seventh step in a system 1400 can comprise
server A 105 sending an application message 701 with the
timestamp 604a to application server A 171. Application
message 701 can also include the module identity 110. Note
that server A 105 can obtain the proper application server 171
for sending application message 701 using the application
server identity 1401 received by server A 105 in a step 1303
above. Application message 701 could also comprise an
acknowledgement that module 101 properly executed the
module instruction 502.

CONCLUSION

[0380] Various exemplary embodiments have been
described above. Those skilled in the art will understand,
however, that changes and modifications may be made to
those examples without departing from the scope of the
claims.

What is claimed is:

1. A method for supporting machine-to-machine commu-
nications, the method performed by a set of servers, the
method comprising:

receiving a first message that includes a module identity
and a first source Internet protocol address and port
(IP:port) number, wherein the module identity is verified
using at least one of a shared secret key and a module
digital signature;

sending a response to the first source IP:port number,
wherein the response includes a set of cryptographic
parameters for deriving a public key and a private key;

receiving a series of different module public keys for the
module identity;

receiving via a secure connection a module instruction and
the module identity; and,

waiting until after (a) receiving a second message, wherein
the second message includes a second source IP:port
number and the module identity, before (b) sending the
module instruction within a server encrypted data to the
second source IP:port number, wherein the server
encrypted data is ciphered using a module public key
from the series.

2. The method of claim 1, wherein the set of cryptographic
parameters includes at least one of (i) an elliptic curve cryp-
tography (ECC)named curve, (ii) a value for an ECC defining
equation, (iii) a modulus for an RSA algorithm, (iv) a time-
to-live value, (v) a value for a random number seed, (vi) a
value for a module public key identity, (vii) a value for a
module random seed file.

US 2015/0121066 Al

3. The method of claim 1, further comprising encrypting
the set of cryptographic parameters with a symmetric key, and
sending the encrypted set of cryptographic parameters in the
response.

4. The method of claim 1, wherein the set of servers
includes at least a first server and a second server, wherein the
first server receives the first message and the second server
receives the second message, wherein the set of servers
includes a shared module database, wherein the shared mod-
ule database receives the module instruction, and wherein the
second server queries the shared module database for the
module instruction after receiving the second message.

5. The method of claim 1, wherein a module with the
module identity sends (i) the first and the second messages,
and (ii) the series of different module public keys, and
wherein the module derives the series of different module
public keys using at least a set of cryptographic algorithms
and the set of cryptographic parameters.

6. The method of claim 6, wherein the module comprises at
least one of a mobile phone and a payment terminal, wherein
one of the mobile phone and the payment terminal includes a
universal integrated circuit card (UICC), wherein the UICC
records an initial module private key, and wherein the set of
servers records the initial module public key and uses the
initial module public key to verify the module identity.

7. The method of claim 1, wherein the series of different
module public keys comprises at least a first module public
key and a second module public key, wherein the first module
public key is received before the second module public key,
and wherein the second module public key is authenticated
using the first module public key.

8. The method of claim 1, further comprising:

receiving the module instruction from an application
server;

decrypting the module instruction using a first server pub-
lic key, wherein the first server public key is processed
using an RSA algorithm; and,

ciphering the server encrypted data using a second server
public key, wherein the second server public key is pro-
cessed using an ECC algorithm.

9. The method of claim 1, wherein the module identity in
the first message comprises a first string, and wherein the
module identity in the second message comprises a second
string, and wherein the first string and the second string are
associated with a serial number of a module.

10. The method of claim 1, wherein ciphering the server
encrypted data using a module public key from the series
further comprises ciphering the server encrypted data with a
symmetric key, wherein the symmetric key is shared by using
at least one of (i) the module public key from the series and a
key derivation function, (ii) an asymmetric ciphering algo-
rithm and the module public key from the series to encrypt the
symmetric key, wherein the set of servers sends the symmet-
ric key, and (iii) a digital signature verified with the module
public key from the series, wherein the set of servers receives
the symmetric key and the digital signature.

11. A method for supporting machine-to-machine commu-
nications, the method performed by a set of servers, the
method comprising:

using a first server private key to establish a secure connec-
tion with at least one application server;

Apr. 30, 2015

receiving a message, wherein the message includes a mod-
ule identity and a module digital signature, wherein the
module digital signature is verified using a first module
public key;

sending a response, wherein the response includes a server

digital signature processed using a second server private
key;

sending a set of cryptographic parameters for deriving a

second module public key;
receiving the second module public key, wherein the sec-
ond module public key is verified using the first module
public key, wherein the second module public key is
used to decrypt a module encrypted data, and wherein
the module encrypted data includes a sensor data; and,

sending the sensor data and the module identity to the
application server.

12. The method of claim 11, wherein the module identity in
the first message comprises a first string, and wherein the
module identity sent with the sensor data comprises a second
string, and wherein the first string and the second string are
associated with a serial number of a module.

13. The method of claim 11, wherein the set of servers
includes at least a first server and a second server, wherein (i)
the first server receives the message and sends the response,
and (ii) the second server receives the module encrypted data,
wherein the set of servers includes a shared module database,
wherein the shared module database records the module iden-
tity, the first module public key, and the second module public
key.

14. The method of claim 11, wherein the set of crypto-
graphic parameters includes at least one of (i) an elliptic curve
cryptography (ECC) named curve, (ii) a value for an ECC
defining equation, (iii) a modulus for an RSA algorithm, (iv)
a time-to-live value, (v) a value for a random number seed,
(vi) a value for a module public key identity, (vii) a value for
a module random seed file.

15. The method of claim 11, wherein a module for the
module identity sends the message and the second module
public key, and wherein the module derives the second mod-
ule public key using at least a set of cryptographic algorithms
and the set of cryptographic parameters.

16. The method of claim 15, wherein the module comprises
at least one of a mobile phone and a payment terminal,
wherein one of the mobile phone and the payment terminal
includes a universal integrated circuit card (UICC), wherein
the UICC records a module private key associated with the
first module public key, and wherein the set of servers records
the first module public key and the module identity.

17. The method of claim 11, wherein the first and second
server private keys are different, wherein the first server pri-
vate key is processed using an RSA algorithm and the second
server private key is processed using an ECC algorithm.

18. The method of claim 11, further comprising:

receiving a module instruction and the module identity;

and,

waiting until after receiving a third message before sending

the module instruction within a server encrypted data,
wherein the server encrypted data is ciphered using the
second module public key.

19. The method of claim 11, wherein decrypting the mod-
ule encrypted data using the second module public key further
comprises decrypting the module encrypted data with a sym-
metric key, and at least one of (i) sending the symmetric key
using an asymmetric ciphering algorithm and the second

US 2015/0121066 Al

module public key, (i) deriving the symmetric key using a
key derivation function and the second module public key,
and (iii) receiving (a) the symmetric key using an asymmetric
ciphering algorithm and (b) a digital signature, wherein the
digital signature is verified using the second module public
key.

20. The method of claim 11, wherein verifying the second
module public key using the first module public key com-
prises at least one of (i) receiving the second module public
key with a digital signature, where the digital signature is
verified with the first module public key, and (ii) receiving an
encrypted data with the second module public key, wherein
the encrypted data is decrypted using the first module public
key.

21. A system for supporting machine-to-machine commu-
nications, the system comprising:

A module controller for monitoring a first Internet protocol
address and port (IP:port) number, for receiving a first
message comprising a module public key, a module
identity, a set of cryptographic parameters, and a first
source [P:port number, for sending a server digital sig-
nature, for receiving a second message comprising the
module identity and a second source IP:port number,
and for sending a response to the second message,
wherein the response comprises (i) a module instruction
and (ii) the second source IP:port number as a destina-
tion IP:port number;

An application interface for monitoring a second IP:port
number, for receiving a module instruction and the mod-
ule identity, wherein the module instruction with the
module identity is received after the first message and
before the second message;

A shared module database for recording a shared secret
key, the module identity, the module public key, and the
set of cryptographic parameters; and,

A set of cryptographic algorithms for using the shared
secret key to verify the received module public key is
associated with the recorded module identity, and for
processing the server digital signature using a server
private key.

Apr. 30, 2015

22. The system of claim 21, further comprising:

a set of servers, wherein the set of servers includes the
module controller and the application interface, wherein
the application interface uses a first IP address to receive
the application message and the module controller uses
a second IP address to receive the second message; and,

the cryptographic algorithms for decrypting at least one of
the first module public key and the set of cryptographic
parameters.

23. The system of claim 21, wherein verifying the module
public key using the shared secret key comprises using the
shared secret key and at least one of (i) a message digest
algorithm, (ii) a module digital signature, wherein the module
digital signature was processed using the shared secret key,
and (iii) a symmetric ciphering algorithm, wherein the sym-
metric ciphering algorithm uses the shared secret key.

24. The system of claim 21, further comprising the set of
cryptographic algorithms for using a first server public key
with the application interface, and a second public key with
the module controller, wherein the first server public key is
associated with an RSA algorithm, and wherein the second
public key is associated with an elliptic curve cryptography
(ECC) algorithm.

25. The system of claim 21, wherein the set of crypto-
graphic parameters includes at least one of (i) an elliptic curve
cryptography (ECC) named curve, (ii) a value for an ECC
defining equation, (iii) a modulus for an RSA algorithm, (iv)
a time-to-live value, and (v) a value for a module public key
identity.

26. The system of claim 21, wherein the second message
includes a server instruction, wherein the server instruction is
received in a module encrypted data, wherein the module
encrypted data includes a security token, and at least one of a
sensor measurement, a registration message, and an acknowl-
edgement, and wherein the module encrypted data is pro-
cessed using the set of cryptographic parameters.

27. The system of claim 21, further comprising the module
controller for receiving a series of different module public
keys with the module identity after receiving the first mes-
sage, wherein each of the different module public keys in the
series is verified using a prior module public key in the series.

#* #* #* #* #*

