
(19) United States
US 20030061227A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0061227 A1
Baskins et al. (43) Pub. Date: Mar. 27, 2003

(54) SYSTEM AND METHOD OF PROVIDING A
CACHE-EFFICIENT, HYBRID,
COMPRESSED DIGITAL TREE WITH WIDE
DYNAMIC RANGES AND SIMPLE
INTERFACE REQUIRING NO
CONFIGURATION ORTUNING

(76) Inventors: Douglas L. Baskins, Fort Collins, CO
(US); Alan Silverstein, Fort Collins,
CO (US)

Correspondence Address:
HEWLETTPACKARD COMPANY
Intellectual Property Administration
P.O. BOX 272400
Fort Collins, CO 80527-2400 (US)

(21) Appl. No.: 09/874,586

(22) Filed: Jun. 4, 2001

Publication Classification

(51) Int. Cl. .. G06F 7700
(52) U.S. Cl. .. 707/101

F.G. E.

00000000-00FFFFFF

RiCHPOINTERFOR EXPANSEE1:47
RICHPOINTERFOREXPANSEE29A
RiCHPOINTERFOR EXPANSEE3A5
RCHPOINTERFOR EXPANSEE4tFD

(57) ABSTRACT

An adaptive digital tree data Structure incorporates a rich
pointer object, the rich pointer including both conventional
address redirection information used to traverse the Structure
and Supplementary information used to optimize tree tra
Versal, Skip levels, detect errors, and Store State information.
The structure of the pointer is flexible so that, instead of
Storing pointer information, data may be stored in the
structure of the pointer itself and thereby referenced without
requiring further redirection. The digital tree data structure
is self-modifying based on a digital tree (or “trie') data
Structure which is Stored in the memory, can be treated as a
dynamic array, and is accessed through a root pointer. For an
empty tree, this root pointer is null, otherwise it points to the
first of a hierarchy of branch nodes of the digital tree.
Low-fanout branches are avoided or replaced with alterna
tive structures that are less wasteful of memory while
retaining most or all of the performance advantages of a
conventional digital tree Structure, including indeX insertion,
Search, acceSS and deletion performance. This improvement
reduces or eliminates memory otherwise wasted on null
pointers prevalent in Sparsely populated and/or unbalanced,
wide/shallow digital trees. Additional processing time
required to effectuate and accommodate the branch modifi
cation is minimal, particularly in comparison to processing
advantages inherent in reducing the size of the Structure So
that data fetching from memory is more efficient, capturing
more data and fewer null pointers.

Patent Application Publication Mar. 27, 2003 Sheet 1 of 11 US 2003/0061227 A1

FIG. 1

US 2003/0061227 A1 Patent Application Publication Mar. 27, 2003 Sheet 2 of 11

-|-|-|-|-|-100 - 00000000

60||/01 (EEEEEEEEEEE|· · · EEEEEEEEEEEEEEEEEEEEEEEE|-3 BÆT

US 2003/0061227 A1

10!

Patent Application Publication Mar. 27, 2003 Sheet 3 of 11

Patent Application Publication Mar. 27, 2003 Sheet 4 of 11 US 2003/0061227 A1

RICH POINTERFORSUBEXPANSEAF
RICH POINTERFOR SUBEXPANSE 4D G
RICH POINTERFORSUBEXPANSE 4C
RICH POINTERFOR SUBEXPANSE 46
RICH POINTERFORSUBEXPANSE 45 G
RICH POINTER FORSUBEXPANSE 44
RICH POINTERFORSUBEXPANSE 42 (S

RPSUBARRAYPOINTEREO-FF (NULL)
RPSUBARRAYPOINTER CO-DF (NULL) G
RPSUBARRAYPOINTERA0-BF (NULL)
RPSUBARRAYPOINTER 80-9F
RPSUBARRAYPOINTER 60-7F (NULL)
RPSUBARRAYPOINTER 40-5F GS
RPSUBARRAYPOINTER 20-3F (NULL)
RPSUBARRAYPOINTER 00-1F (NULL)
BITMAPE0-FF-00000000
BITMAP CO-DF=00000000
BITMAPAO-BF=00000000
BITMAP80-9F-00010000
BITMAP 60-7F=00000000
BITMAP 40-5F=0000b.074
BITMAP20-3F=00000000
BITIMAP 00-1F=00000000

S

Patent Application Publication Mar. 27, 2003 Sheet 5 of 11 US 2003/0061227 A1

Patent Application Publication Mar. 27, 2003 Sheet 6 of 11 US 2003/0061227 A1

Cd
s
s

Patent Application Publication Mar. 27, 2003 Sheet 7 of 11 US 2003/0061227 A1

DECODED INDEX = 0.210.6). BYTES

2 32164) ADDRESS BITS se POPULATION - 1 = 1.3 (1.7). BYTES

TYPE = 8 BITS

RICH POINTER FOR EXPANSE 1 (E1)

RICH POINTERFOR EXPANSE 2 (E2)

RICH POINTER FOR EXPANSE 3 (E3)

RICH POINTERFOR EXPANSE 4 (E4)

US 2003/0061227 A1

(TION) H-05 HEINIO?ÁVHHV8/1S dº

Mar. 27, 2003 Sheet 8 of 11 Patent Application Publication

Patent Application Publication Mar. 27, 2003. Sheet 9 of 11 US 2003/0061227 A1

FIG. 5

4 INDEXES, 5 INDEXES, 8 INDEXES, 9 INDEXES,
3 BYTESEACH: 2 BYTESEACH: 1 BYTESEACH: 1 BYTES EACH:

FIG. 6A F.G. 6B FIG 60 FIG. 6D

2 INDEXES, 2 INDEXES, 7 INDEXES,
3 BYTESEACH 2 BYTESEACH: 1 BYTES EACH:

s
FIG. 7A FIG. 7B

Patent Application Publication Mar. 27, 2003 Sheet 10 of 11 US 2003/0061227 A1

BITMAP 00-1F=000A9001
BITMAP20-3F-00000000
BITMAP 40-5F=0C051A30
BITMAP 60-7F=OF70E300
BITMAP80-9F=0008E000
BITMAPAO-BF=00000000
BITMAP C0-DF=00000000
BITMAPE0-FF-00000000

FIG. 8

V VALUE SUBARRAYPOINTER 20-3F (NULL)

VALUE SUBARRAYPOINTERA0-BF (NULL)

VALUE SUBARRAY POINTEREO-FF (NULL)

FIG. 9

US 2003/0061227 A1

600 ||800||

Patent Application Publication Mar. 27, 2003 Sheet 11 of 11

US 2003/0061227 A1

SYSTEMAND METHOD OF PROVIDING A
CACHE-EFFICIENT, HYBRID, COMPRESSED

DIGITAL TREE WITH WIDE DYNAMIC RANGES
AND SIMPLE INTERFACE REQUIRING NO

CONFIGURATION ORTUNING

RELATED APPLICATIONS

0001. This present application is related to co-pending,
commonly assigned, and concurrently filed U.S. application
Ser. No. Attorney Docket No. 10012655-1 entitled “SYS
TEMAND METHOD FOR DATA COMPRESSION IN A
*VALUELESS DIGITAL TREE REPRESENTING A BIT
SET; U.S. application Ser. No. Attorney Docket No.
10012654-1) entitled “SYSTEM FOR AND METHOD OF
EFFICIENT, EXPANDABLE STORAGE AND
RETRIEVAL OF SMALL DATASETS”; and U.S. applica
tion Ser. No. Attorney Docket No. 10012656-1 entitled
“SYSTEM FOR AND METHOD OF CACHE-EFFICIENT
DIGITAL TREE WITH RICH POINTERS, the disclosures
of which are hereby incorporated herein by reference.

TECHNICAL FIELD

0002 The present invention relates generally to the field
of data Structures, and more particularly to a hierarchical
data organization in which the Structure of the data organi
Zation is dependent on the data Stored, with components of
the data structure compressed to match the data.

BACKGROUND

0.003 Computer processors and associated memory com
ponents continue to increase in Speed. AS hardware
approaches physical Speed limitations, however, other meth
ods for generating appreciable decreases in data access times
are required. Even when Such limitations are not a factor,
maximizing Software efficiency maximizes the efficiency of
the hardware platform, extending the capabilities of the
hardware/software system as a whole. One method of
increasing System efficiency is by providing effective data
management, achieved by the appropriate choice of data
Structure and related Storage and retrieval algorithms. For
example, various prior art data Structures and related Storage
and retrieval algorithms have been developed for data man
agement including arrays, hashing, binary trees, AVL trees
(height-balanced binary trees), b-trees, and skiplists. In each
of these prior art data Structures and related Storage and
retrieval algorithms an inherent trade-off has existed
between providing faster access times and providing lower
memory overhead. For example, an array allows for fast
indexing through the calculation of the address of a Single
array element but requires the pre-allocation of the entire
array in memory before a single value is Stored, and unused
intervals of the array waste memory resources. Alternatively,
binary trees, AVL trees, b-trees and skiplists do not require
the pre-allocation of memory for the data Structure and
attempt to minimize allocation of unused memory but
exhibit an access time which increases as the population
increases.

0004. An array is a prior art data structure which has a
Simplified Structure and allows for rapid access of the Stored
data. However, memory must be allocated for the entire
array and the Structure is inflexible. An array value is looked
up “positionally', or “digitally', by multiplying the index by

Mar. 27, 2003

the size (e.g., number of bytes) allocated to each element of
the array and adding the offset of the base address of the
array. Typically, a single Central Processing Unit (CPU)
cache line fill is required to access the array element and
value Stored therein. AS described and typically imple
mented, the array is memory inefficient and relatively inflex
ible. Access, however, is provided as O(1), i.e., independent
of the size of the array (ignoring disk Swapping).
0005 Alternatively, other data structures previously
mentioned including binary trees, b-trees, skiplists, linked
lists and hash tables, are available which are more memory
efficient but include undesirable features. For example,
hashing is used to convert Sparse, possibly multi-word
indexes (Such as Strings) into array indexes. The typical hash
table is a fixed-size array, and each indeX into it is the result
of a hashing algorithm performed on the original indeX.
However, in order for hashing to be efficient, the hash
algorithm must be matched to the indexes which are to be
Stored. Hash tables also require every data node to contain
a copy of (or a pointer to) the original index (key) So you can
distinguish nodes in each Synonym chain (or other type of
list). Like an array, use of hashing requires Some prealloca
tion of memory, but it is normally a fraction of the memory
which must be allocated for a flat array, if well designed, i.e.,
the characteristics of the data to be Stored are well known,
behaved and matched to the hashing algorithm, collision
resolution technique and Storage Structure implemented.

0006. In particular, digital trees, or tries, provide rapid
access to data, but are generally memory inefficient.
Memory efficiency may be enhanced for handling Sparse
index Sets by keeping tree branches narrow, resulting in a
deeper tree and an increase in the average number of
memory references, indirections, and cache line fills, all
resulting in Slower access to data. This latter factor, i.e.,
maximizing cache efficiency, is often ignored when Such
Structures are discussed yet may be a dominant factor
affecting System performance. A trie is a tree of Smaller
arrays, or branches, where each branch decodes one or more
bits of the index. Most prior art digital trees have branch
nodes that are arrays of Simple pointers or addresses. Typi
cally, the size of the pointers or addresses are minimized to
improve the memory efficiency of the digital tree.

0007. At the “bottom” of the digital tree, the last branch
decodes the last bits of the index, and the element points to
Some storage specific to the index. The “leaves” of the tree
are these memory chunks for Specific indexes, which have
application-specific Structures.

0008 Digital trees have many advantages including not
requiring memory to be allocated to branches which have no
indexes or Zero population (also called an empty Subex
panse). In this case the pointer which points to the empty
Subexpanse is given a unique value and is called a null
pointer indicating that it does not represent a valid address
value. Additionally, the indexes which are Stored in a digital
tree are accessible in Sorted order which allows identifica
tion of neighbors. An "expanse' of a digital tree as used
herein is the range of values which could be stored within
the digital tree, while the population of the digital tree is the
set of values that are actually stored within the tree. Simi
larly, the expanse of a branch of a digital tree is the range of
indexes which could be stored within the branch, and the
population of a branch is the number of values (e.g., count)

US 2003/0061227 A1

which are actually stored within the branch. (AS used herein,
the term “population” refers to either the set of indexes or
the count of those indexes, the meaning of the term being
apparent to those skilled in the art from the context in which
the term is used.)
0009 “Adaptive Algorithms for Cache-Efficient Trie
Search” by Acharya, Zhu and Shen (1999), the disclosure of
which is hereby incorporated herein by reference, describes
cache-efficient algorithms for trie Search. Each of the algo
rithms use different data structures, including a partitioned
array, B-tree, hashtable, and vectors, to represent different
nodes in a trie. The data Structure Selected depends on cache
characteristics as well as the fanout of the node. The
algorithms further adapt to changes in the fanout at a node
by dynamically Switching the data Structure used to repre
sent the node. Finally, the size and the layout of individual
data Structures is determined based on the size of the
Symbols in the alphabet as well as characteristics of the
cache?s). The publication further includes an evaluation of
the performance of the algorithms on real and Simulated
memory hierarchies.

0010. Other publications known and available to those
skilled in the art describing data Structures include Funda
mentals of Data Structures in Pascal, 4th Edition; Horowitz
and Sahni, pp 582-594; The Art of Computer Programming,
Volume 3; Knuth; pp. 490-492; Algorithms in C; Sedgewick;
pp. 245-256, 265-271, “Fast Algorithms for Sorting and
Searching Strings”; Bentley, Sedgewick; “Ternary Search
Trees”; 5871926, INSPEC Abstract Number: C9805-6120
003; Dr Dobb's Journal; “Algorithms for Trie Compaction”,
ACM Transactions on Database Systems, 9(2):243-63,
1984; “Routing on longest-matching prefixes”; 5217324,
INSPEC Abstract Number: B9605-615OM-005, C9605
5640-006; "Some results on tries with adaptive branching';
684.5525, INSPEC Abstract Number: C2001-03-6120-024;
“Fixed-bucket binary storage trees'; 01998.027, INSPEC
Abstract Number: C83009879; “DISCS and other related
data structures'; 03730613, INSPEC Abstract Number:
C90064501; and “Dynamical sources in information theory:
a general analysis of trie structures'; 6841374, INSPEC
Abstract Number: B2001-03-6110-014, C2001-03-6120
023, the disclosures of which are hereby incorporated herein
by reference.

0.011) An enhanced storage structure is described in U.S.
patent application Ser. No. 09/457,164 filed Dec. 8, 1999,
entitled “A FAST EFFICIENT ADAPTIVE, HYBRID
TREE,” (the 164 application) assigned in common with the
instant application and incorporated herein by reference in
its entirety. The data structure and Storage methods
described therein provide a Self-adapting structure which
Self-tunes and configures "expanse' based Storage nodes to
minimize Storage requirements and provide efficient, Scal
able data Storage, Search and retrieval capabilities. The
Structure described therein, however, does not take full
advantage of certain Sparse data Situations.

0012. An enhancement to the storage structure described
in the 164 application is detailed in U.S. patent application
Ser. No. 09/725,373, filed Nov. 29, 2000, entitled “A DATA
STRUCTURE AND STORAGE AND RETRIEVAL
METHOD SUPPORTING ORDINALITY BASED
SEARCHING AND DATARETRIEVAL", assigned in com
mon with the instant application and incorporated herein by

Mar. 27, 2003

reference in its entirety. This latter application describes a
data Structure and related data Storage and retrieval method
which rapidly provides a count of elements Stored or refer
enced by a hierarchical structure of ordered elements (e.g.,
a tree), access to elements based on their ordinal value in the
Structure, and identification of the ordinality of elements. In
an ordered tree implementation of the Structure, a count of
indexes present in each Subtree is Stored, i.e., the cardinality
of each Subtree is Stored either at or associated with a higher
level node pointing to that Subtree or at or associated with
the head node of the Subtree. In addition to data structure
Specific requirements (e.g., creation of a new node, reas
signment of pointers, balancing, etc.) data insertion and
deletion includes Steps of updating affected counts. Again,
however, the Structure fails to take full advantage of certain
sparse data Situations.
0013. Accordingly, a need exists for techniques and tools
to optimize performance characteristics of digital tree and
Similar Structures.

SUMMARY OF THE INVENTION

0014) A system and data structure according to the
present invention include a Self-modifying data Structure
based on a digital tree (or “trie”) data structure which is
Stored in the memory, can be treated as a dynamic array, and
is accessed through a root pointer. For an empty tree, this
root pointer is null, otherwise it points to the first of a
hierarchy of branch nodes of the digital tree. Low-fanout
branches are avoided or replaced with alternative structures
that are leSS wasteful of memory while retaining most or all
of the performance advantages of a conventional digital tree
Structure, including indeX insertion, Search, acceSS and dele
tion performance. This improvement reduces or eliminates
memory otherwise wasted on null pointers prevalent in
sparsely populated and/or wide/shallow digital trees. Addi
tional processing time required to effectuate and accommo
date the branch modification is minimal, particularly in
comparison to processing advantages inherent in reducing
the size of the Structure So that data fetching from memory
is more efficient, capturing more data and fewer null pointers
in each CPU cache line fill. The invention includes linear
and bitmap branches and leaves implemented, for example,
using a rich pointer Structure. Opportunistic reconfiguration
of nodes automatically readjusts for changing Subexpanse
population.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIGS. 1A-1E are a diagram of an example of a
digital tree which incorporates hybrid abstract data type data
Structures (ADTS) according to the invention to maximize
memory utilization efficiency while minimizing indeX
access time,

0016 FIG. 2A is a generalized diagram of an adaptable
object or “rich pointer”;

0017 FIG. 2B is a generalized diagram of a rich pointer
incorporating immediate Storage of indexes,
0018 FIG. 3 is a diagram of an example of a linear
branch;
0019 FIG. 4 is a diagram of an example of a bitmap
branch;

US 2003/0061227 A1

0020
0021 FIGS. 6A-6D are diagrams of examples of linear
leaves for Structures referencing only indexes,
0022 FIGS. 7A-7C are diagrams of examples of linear
leaves for Structures having values associated with respec
tive valid indexes Stored in the Structure;
0023 FIG. 8 is a diagram of a bitmap leaf structure for
Structures referencing only indexes,
0024 FIG. 9 is a diagram of a bitmap leaf structure
including values associated with respective indexes, and

FIG. 5 is a diagram of an uncompressed branch;

0.025 FIG. 10 is a block diagram of a computer system
on which the Subject digital tree may be implemented.

DETAILED DESCRIPTION

0026. The present invention includes a system for and a
method of Storing data in a computer memory for access by
an application program which is executed on a data pro
cessing System. The System includes a data Structure and
asSociated information which is Stored in the memory and
includes a root pointer which points to a “wide/shallow”
digital tree having a plurality of nodes in the form of
branches (branch nodes) and multi-index leaves (leaf
nodes), arranged hierarchically, that are adaptively com
pressed using hybrid abstract data types (ADTS). In this
application an ADT refers to multiple data Structures with
the Same Virtual meaning but with different literal expan
Sions. Further, the term “indeX' as used herein encompasses
a key or set of fields constituting a key including a number,
String, token, Symbol or other Such designation or represen
tation.

0027) A digital tree implementation allows the data (set
of indexes or keys) to be organized primarily “by expanse”
rather than purely “by population”, which has various ben
efits for Simplifying tree traversal and modification algo
rithms. In particular, a wide digital tree has potentially high
fan-out at each branch, which allows the tree to be shallow,
hence fast to traverse, even for large populations; thus
“well-Scalable'. Use of compressed branches largely pre
serves the performance benefit of wide branches while
allowing their actual fan-out, hence memory usage, to Shrink
to match the data (indexes or keys) being Stored. Using this
technique, only populated Subexpanses from among all
possible Subexpanses of a branch, that is, those containing
Stored indexes, must be represented in compressed branches,
empty Subexpanses are typically (although not necessarily)
absent.

0028. Further, storing multiple indexes (or keys) and their
asSociated values, if any, in a "multi-indeX leaf makes the
tree shallower by one or more levels, hence both smaller in
memory usage and faster to access. Compressed multi-indeX
leaves hold more indexes rather than having to insert more
branches in the tree to hold the same set of indexes. Such
“cache efficient' compressed branches and leaves are
designed optimally with respect to CPU cache lines to
minimize “cache fills” that result in relatively slow access to
random access memory (RAM).
0029. Thus, the invention includes several types of
branch and leaf compressions to optimize performance of a
data Structure Such as a digital tree. These improvements
include linear and bitmap branches (i.e., interior nodes),

Mar. 27, 2003

linear and bitmap leaves (i.e., terminal nodes), and rules and
methods for effectuating use of these nodes including, for
example, a global, memory-efficiency-driven, opportunistic
decompression of compressed branches, and use of leaf
indeX compression.
0030 Linear branch nodes according to the invention
address low-fanout branches by providing a list of populated
Subexpanses (i.e., index digits) and corresponding next-level
pointers. More generally, a linear branch contains a list of
Subexpanse descriptors that contain criteria for Selecting a
Subexpanse corresponding to a key or one or more of a Set
of fields constituting a key. According to a preferred embodi
ment of the invention, the Subexpanse descriptors are 1-byte
segments of 32-bit indexes. Preferably, linear branches are
constrained to a single CPU cache line of the target platform.
AS the Subexpanse becomes more heavily populated, a
bitmap branch node may be used including a binary vector
indicating which Subexpanses are populated (i.e., are not
empty) followed by a list of pointers to the populated
Subexpanses (or an equivalent multi-level data structure).
0031 Linear leaf nodes according to the invention are
likewise directed to low populations of indexes by using
multi-indeX leaves containing lists of valid indexes. The lists
may have associated value areas for respective indexes of
the multi-indeX leaves. For medium to high population
densities at low levels in the tree, bitmap leaf nodes provide
a binary vector of valid indexes, possibly including value
areas corresponding to each valid indeX.
0032. The invention further incorporates global,
memory-efficiency-driven, opportunistic decompression of
compressed branches. According to this aspect of the inven
tion, when an entire data Set Stored in the data structure
occupies leSS memory used per indeX than Some threshold
value (possibly measured in bytes per index) or when the
population of the Subexpanse under a linear or bitmap
branch is Sufficiently high, even if the global metric is not
adequate, linear and/or bitmap branches are replaced with an
uncompressed form of the branch (i.e., an uncompressed
branch node) resulting in less computation and fewer cache
fills to traverse the level, albeit at the cost of Some additional
memory. Using this option in the case of larger populations
of indexes, particularly data having well-clustered indexes,
the invention “amortizes' exceSS memory needed to main
tain fast access to the indexes and any related data.
0033. Note the degree of symmetry between branches
and leaves, that is, between linear branches and linear leaves
and also between bitmap branches and bitmap leaves. This
Symmetry is most apparent in the embodiment wherein each
indeX is mapped to an associated value. The interior nodes
of the tree map portions (digits) of indexes to pointers to
Subsidiary nodes, while the terminal nodes of the tree map
fully decoded indexes to value areas that, in practice, often
contain the addresses of, that is, pointers to, caller-defined
objects external to the tree. This Symmetry fails, however, in
that there is no leaf equivalent to an uncompressed branch.
When a higher-level leaf exceeds a Specific population, it is
converted to a Subtree under a new branch, or else or to a
lower-level, more-compressed leaf (as described below), as
appropriate. When a lowest-level linear leaf exceeds a
Specific population, it is converted to a bitmap leaf.
0034. According to another aspect of the invention, the
fact that a portion of a target indeX is decoded at each level
of a digital tree is further leveraged to compress leaf indexes.

US 2003/0061227 A1

Because indexes are partially decoded while traversing the
tree, only the remaining undecoded portion of each indeX
need be stored in the leaves, the number of bits or bytes
constituting this undecoded portion shrinking at each lower
level. The result is that a lower-level leaf (i.e., a leaf more
distant from the root) stores more indexes in the same Space
as a higher level leaf, the latter requiring more bits to
represent the larger undecoded portion of each indeX. Hence,
even worst-case indeX insertions and deletions are localized
and do not cascade more than one level down or up the tree,
respectively, minimizing worst-case insertion and deletion
time. Note that this type of compression is most applicable
to fixed-size indexes but leSS useful for variable-size indexes
Such as character Strings or bit Strings.

0035) It should be noted that it is possible to compress a
digital tree Such that bits common to multiple keys (indexes)
are skipped (not represented). Such trees must store copies
of whole keys, of whatever fixed or variable size, in their
leaf nodes to disambiguate the leaves (except in rare cases
in which disambiguation is not required). This is distinguish
able from leaf compression implemented by the invention,
wherein decoded portions of indexes, whether required for
tree traversal or skipped (compressed out) as being common
to all indexes in a Subexpanse, are always Stored in and
recoverable from the branch nodes and need not be stored in
leaf nodes.

0.036 The invention provides an appropriate combination
(hybrid) of various cache-efficient ADTs for branches and
leaves, the combination depending upon an unpredictable
data set (indexes or keys) to be stored in one instance, and
results in a wide digital tree that is both memory-efficient
and fast to acceSS or modify over a wide dynamic range. A
wide dynamic range means over Small to large data Sets: few
to many (billions of) indexes or keys; and types of data Sets:
indexes or keys that are Sequential, clustered, periodic, or
random. A well-designed hybrid digital tree with a wide
dynamic range can be represented at the Software interface
as a simple dynamic array with no initialization, tuning, or
configuration necessary (or even possible).

0037. The invention may be implemented using a wide
range of constructs for traversing a data Structure including
pointers and other Schemes for linking nodes and/or provid
ing for traversal of the data Structure. For purposes of
illustration, a preferred embodiment of the invention may be
implemented within a construct of a digital tree including an
enhanced pointer as fully described in U.S. application Ser.
No. Attorney Docket No. 10012656-1 entitled “SYSTEM
FOR AND METHOD OF CACHE-EFFICIENT DIGITAL
TREE WITH RICH POINTERS, the disclosure of which is
hereby incorporated herein by reference. Such a pointer may
take a first form as shown in FIG. 2A when used as a null
pointer or to point to a branch or leaf node, or as shown in
FIG. 2B when containing immediate indexes. Use of rich
pointers provides for designation of the type of object being
pointed to, e.g., linear or bitmap, branch or leaf, etc. Alter
nate embodiments of the invention may use other constructs
Such as conventional pointers and, for example, use the least
Significant bits of the pointer itself (recognizing that the
pointers might point to 8-byte-aligned objects So that the
least significant three bits are not otherwise used) to identify
the target object, or provide that the pointed-at object

Mar. 27, 2003

self-identify (that is, type information is stored in the child
node rather than in the parent).
0038. As shown in FIG. 2A, the basic pointer structure
on, for example, a 32-bit platform, includes two 32-bit
words, one entire word used by a pointer to redirect tree
traversal flow to another node, a Decoded Index of between
Zero and 2 bytes, a Population field of between 1 and 3 bytes,
and a Type field of 1 byte. For a null pointer, all bytes except
the Type field are zero. Otherwise, the first word is a pointer
to a subsidiary branch or leaf node. The Decode and Popu
lation fields together fill all but 1 byte of the second word.
0039. A pointer construct containing immediate indexes
is shown in FIG. 2B, eliminating the need to redirect or
point to another node to access the indexes. AS explained in
the referenced patent application, Still other variations of
these pointer constructs may be used to associate values with
respective indexes, while adaptations are provided to
accommodate various machine word sizes.

0040. The present invention uses these pointers to form
ADTS including branches, i.e., interior nodes and leaves, i.e.,
terminal nodes. According to this data Structure, a digital
tree includes Some combination of branch nodes (linear,
bitmap or uncompressed) and leaf nodes (linear or bitmap).
Each branch is a literal (uncompressed) or virtual (linear or
bitmap) array of pointers, preferably 256 Such rich pointers.
That is, each node has a fanout of up to 256 Subexpanses.
0041. In the preferred embodiment indexes are decoded 8

bits, that is 1 byte, at a time. In other words, each digit is 1
byte, and the real or virtual fanout of each branch node is
256. It should be apparent to one of ordinary skill in the art
that a digital tree can have any fanout in its branch nodes,
even fanouts which are not a power of 2, Such as 26 when
the tree decodes a simple 26-character alphabet. A binary
tree is normally a divide-by-population tree (referred to as a
binary Storage tree) in which keys are compared with whole
key values Stored in each node. However, a binary tree can
also be a divide-by-expanse (binary digital) tree with a
fanout of 2 in which each digit is 1 bit. Furthermore, a hybrid
tree may have varying fanouts at different branches or levels.
However, the inventors of the present invention have dis
covered that a consistent fanout of 256, that is, a digit size
of 1 byte, is most efficient because computers naturally
process byte-sized objects efficiently, in addition to word
sized objects.

0042 Compressed branches include linear and bitmap,
Supplementing the uncompressed type branch. This latter
branch type Supports conventional digital tree functions
using, for example, an array of 256 Subexpanse pointers.
When the actual fanout (i.e., number of populated Subex
panses) is relatively limited, as is typically true when a new
branch is created during indeX insertion, a “compressed”
branch is instead used. This compressed branch may be
Viewed as a virtual array of 256 Subexpanse pointers, but
requiring much less memory (although often requiring two
cache fills to traverse the associated node rather than one for
reasons explained below.)
0043 Referring to FIGS. 1A-1E, root pointer node 101 is
used for accessing the underlying data Structure of the digital
tree. Root pointer node 101 includes address information
diagrammatically shown as an arrow pointing to a first or
“top” level node 102, in this illustration, a branch node.

US 2003/0061227 A1

(Note, the terminology used herein assumes a 32-bit imple
mentation wherein indexes are Single words, as opposed to
character Strings, and thereby labels the top node of a tree
pointed to by the root as “level 4'', children of the level 4
node are designated as “level 3' nodes, etc. On a 64-bit
machine, the root pointer points to a level 8 node, children
of which are at level 7, etc. Thus, the level of any branch or
leaf node is equal to the number of digits (bytes) remaining
to decode in the indexes stored at or below that node. This
numbering Scheme further has the advantage of making the
lowest levels of both 32-bit and 64-bit trees the same,
thereby simplifying Source code required for use with trees
of varying sizes. It is further noted that this convention,
while representative, is for purposes of the present expla
nation and other conventions may be adopted including, for
example, designating leaf nodes as constituting a highest
(e.g., fourth) level of the tree.) Top level node 102 is an
uncompressed branch node that includes an array of 256 rich
pointers for referencing up to 256 lower level nodes and
represents the entire expanse of the data Structure, i.e.
indexes 00000000 through FFFFFFFF hex. Top level node
102 includes a first rich pointer 103 (also referred to as an
adaptable object) which corresponds to expanse 00000000
00FFFFFF and points to a linear branch 105 at level 3.
Another rich pointer 104 is shown corresponding to a final
expanse portion including indexes FF000000-FFFFFFFF.
Rich pointer 104 points to the most significant upper /256th
of level 3 and an uncompressed branch 106.
0044) The first Subexpanses of Level 3 include a subsid
iary node in the form of linear branch 105. As shown, linear
branch 105 includes a fanout (NumRP=the count of the
number of child nodes referenced by the branch), a sorted
list of index portions (digits) corresponding to the Subex
panses referenced by the branch, and a list of pointers to the
indicated Subexpanses. In the present illustration, only the
pointer to the final Subexpanse listed as E4 and representing
the subexpanse including 00FD00000 through 00FDFFFF is
shown, although Similar pointers emanating from the slots
for Subexpanses E1 through E3 would also be present but are
not shown. Thus, the fourth rich pointer of linear branch 105
is shown referencing bitmap branch 113 of level 2 which, in
turn references linear leaves 118-122 and bitmap leaves 116,
117 and 123

0.045. On the high order end of node 102, uncompressed
branch 106 at level 3 is referenced by rich pointer 104.
Typically, uncompressed branch 106 would reference a large
number of Subordinate nodes, although only two Such ref
erences are shown for purposes of illustration. Note that
sparsely populated branches would otherwise be converted
into a linear or bitmap branch format to conserve memory
but Still provide access to the node using one or two cache
line fills.

0046. As shown in FIGS. 1A-1E, level 3 uncompressed
branch 106 includes an array of 256 rich pointers including
rich pointer 107 to level 1 linear leaf node 108. Note that the
use of the rich pointer according to one implementation of
the invention allows the pointer to “skip' a level of the tree
(i.e., in this case, level 2) to avoid an unused indirection
when an intermediate branch would contain a single refer
ence. Another rich pointer 109 points to level 2 linear leaf
node 110 including two, 2-byte indexes.
0047 A rich pointer may be used to implement a data
Structure compatible with and further incorporating branch
and leaf compression according to the present invention.

Mar. 27, 2003

While not required, use of rich pointers is compatible with
and Supports one implementation of the present invention.
Such a rich pointer Structure encompasses at least two types
of rich pointers or adaptable objects including a pointer type
as described above as depicted in FIG.2A and an immediate
type depicted in FIG. 2B. The immediate type supports
immediate indexes. That is, when the population of an
expanse is relatively sparse, a rich pointer can be used to
store the indexes “immediately” within a digital tree branch,
rather than requiring traversal of the digital tree down to the
lowest level to access the index. This format is akin to the
“immediate' machine instruction format wherein an instruc
tion Specifies an immediate operand which immediately
follows any displacement bytes. Thus, an immediate index
or a Small number of indexes are Stored in the node, avoiding
one or more redirections otherwise required to traverse the
tree and arrive at Some distant leaf node. Immediate indexes
thereby provide a way of packing Small populations (or
Small number of indexes) directly into a rich pointer Struc
ture instead of allocating more memory and requiring mul
tiple memory references and possible cache fills to acceSS
the data.

0048. A two-word format of the preferred embodiment
readily supports the inclusion of immediate indexes. Within
the rich pointer, this is accomplished by Storing indeX digits
in the entirety of the rich pointer excepting the type field. A
rich pointer implemented in a 32-bit System may store
anywhere from a Single 3-byte immediate indeX up to Seven
1-byte indexes, while a rich pointer in a 64-bit System may
Store up to 15 1-byte immediate indexes. The generalized
Structure of a rich pointer (also referred to as an adaptable
object) supporting immediate indexes is shown in FIG.2B.
The rich pointer includes one or more indexes “I”, depend
ing on the word-size of the platform and the size of the
index, and an 8-bit Type field that also encodes the index
Size and the number of immediate indexes.

0049 FIG. 3 illustrates details of a linear branch con
Struct according to the invention as implemented on a 32-bit
platform. The linear branch consists of one byte indicating
the fanout, i.e., number of populated Subexpanses referenced
by the branch (NumRP), followed by a sorted array con
sisting of 1 byte (i.e., digit) per populated Subexpanse
indicating the Subexpanse number (e.g., 0 through 255). The
number of populated Subexpanses is followed by a corre
sponding array of Subexpanse pointers. The invention incor
porates Some padding at the end of the two arrays which
allows them to "grow in place' for faster insertions and
deletions. Both of the Subexpanse arrays (i.e., digits and
pointers) are organized or packed purely by population, not
addressed uniformly by expanse but can be thought of as
being organized or accessed by expanse.

0050 Typically, a linear branch node as shown in FIG.3
is used when the actual fanout, that is, the number of
populated Subexpanses, is relatively Small, for example up to
Seven rich pointers out of a possible 256 Subexpanses per
branch. The linear branch node according to one implemen
tation of the invention includes the previously mentioned
three consecutive regions, including a count of populated
Subexpanses, a Sorted list of populated Subexpanses (1 byte
each) and a list of corresponding rich pointers, each two
words in length. (AS recognized by those of ordinary skill in
the art, other configurations of numbers, types, sizes and

US 2003/0061227 A1

ordering of regions may be employed in alternative imple
mentations of the invention.) Using this particular Scheme,
a maximum linear branch including Seven rich pointers
requires 1 byte for the number of Subexpanses and 7 bytes
for the Subexpanse list, hence two words (on a 32-bit
system) for the combination. The combination of count and
Subexpanse list is followed by fourteen words for the rich
pointers themselves, the entire construct fitting in Sixteen
words or one cache line total. Referring back to FIG. 3, a
total of 4 populated Subexpanses are referenced by pointers
for Expansel through Expanse4, respectively.

0051 FIG. 4 illustrates a bitmap branch, again as imple
mented on a 32-bit word size platform. The bitmap branch

node has a first portion 401 including 256 bits (32 bytes)
indicating populated and empty Subexpanses, followed by a
Second portion 402 including ordinary pointers to indepen
dent Subarrays of rich pointers to the populated Subexpanses.
This construct may be thought of as compressing the byte
per-valid-indeX required in a linear branch to a bit-per-any
index, a potential Savings of up to 78, except that a bitmap
contains 0 bits for invalid indexes. In concept, the Subex
panse pointers are held in a simple array (portion 402)
following the bitmap. However, according to a preferred
embodiment of the invention, So as to keep memory man
agement simple and insertion and deletion fast, the bitmap
may be followed by eight ordinary pointers, each to an
independent Subarray 408, 409 of between Zero and 32
Subexpanse pointers. The bitmap is thereby organized by
expanse, Since it is addressable by the digit (0... 255), while
the Subexpanse pointers are listed “by population', Since the
latter are packed into Subarrays corresponding only to the
bits that are set in the bitmap.

0.052 In another embodiment of the invention, once any
bitmap branch Subarray of rich pointers reaches maximum
memory usage, that is, a number of pointers (i.e., populated
Subexpanses) Such that the amount of memory allocated to
the Subarray is Sufficient to hold 32 Subexpanse pointers, the
Subarray is made uncompressed to Save time during
accesses, insertions, and deletions. Uncompressing a rich
pointer Subarray means Setting all of the bits in the corre
sponding Subexpanse of the bitmap, even for Subexpanses of
indexes which are unpopulated; unpacking the rich pointer
Subarray to be a simple, positionally-accessed array; and
representing unpopulated Subexpanses with null rich point
CS.

0053 Thus, as shown in FIG. 4, the bitmap branch is a
2-tier object, Somewhat more complex than either a linear or
uncompressed branch. The first level (portion 401) is the
bitmap itself, according to a 32-bit word size implementa
tion of the invention, including 256 bits (32 bytes) Subdi
vided into 8 subexpanses, followed by 8 pointers (portion
402) to second-level ADTS or Subarrays (e.g., arrays 408 and

Mar. 27, 2003

409). Each ADT 400 consists of a packed linear list of rich
pointers, one rich pointer for each bit Set in the associated
bitmap. On a 32-bit system, 8 words are required for the
bitmap (32/4) and 8 words for the pointers, for a total of 16
words. This latter total of 16 words is important to system
performance as it is equal to one CPU cache line according
to a preferred implementation of the invention. Note that on
a 64-bit system, only 4 words would be needed for the
bitmap, while 8 words would still be needed for the pointers,
So that 4 words are wasted assuming again a 16 word cache
line.

0054 For example, bitmap 404 has a hex value of
0000b074, which provides the following binary vector and
index values:

TABLE 1.

5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4.
C B A 9 8 7 6 5 4 3 2 1 O F E D
O O O O O O O O O O O O O 1 O 1
4 4 4 4 4 4 4 4 4 4
9 8 7 6 5 4 3 2 1 O
O O O 1 1 1 0 1 O O

0055 According to this example, the binary vector rep
resented in the bottom row of Table 1 indicates the presence
of indexes within Subexpanses including Subexpanses 42,
44, 45, 46, 4C, 4D and 4F within the range 40" to 5F
The associated ordinary pointer 406 for this range (FIG. 4)
points to array 408 which includes individual rich pointers
to each of the Subexpanses corresponding to the Subexpanses
indicated by the associated binary vector.
0056. For comparison an uncompressed branch is
depicted in FIG. 5. This construct comprises a simple array
of rich pointers, in this case 256 Such rich pointers, with null
rich pointers used to represent empty expanses. ASSuming
again 2 words per rich pointer, Such uncompressed branches
require 512 words.

0057 The invention further supports global memory effi
ciency. That is, when fanout (i.e., the number of populated
Subexpanses) increases to a point where a linear branch
occupies too many cache lines (according to one preferred
embodiment of the invention, this limit is a single 16 word
cache line), the branch is converted to a bitmap branch. Note
that such a bitmap construct can handle “full fanout” and
need never be converted to an uncompressed branch. Neither
linear nor bitmap branches waste any memory on null
Subexpanses. However, when the population under a linear
or bitmap branch is high enough to “amortize’ the memory
required for an uncompressed branch, or the overall or
global memory efficiency of the data structure (preferably
measured in bytes per index) still do not exceed Some
Selected, “tunable' value, the branch is opportunistically
converted to an uncompressed type. While this wastes Some
memory on null Subexpanse pointers, it ensure a single
indirection (and cache fill) to traverse the branch. Note, to
Support the latter parameter, that is global memory effi
ciency, at least in a higher population tree the root pointer
may point to an intermediate data Structure that Stores the
total number of bytes used by the tree and the total count of
indexes Stored in the tree. This intermediate data structure
may reside adjacent to the top branch node of the tree or
point in turn to the top branch of the tree.

US 2003/0061227 A1

0.058 Leaf compression is also utilized according to the
invention in the form of multi-indeX leaves including the
aforementioned linear and bitmap leaf types. Typically, each
lookup in one branch of a digital tree reduces the expanse or
range of the indexes that can possibly be stored under the
next lower Subexpanse pointer. Therefore, only the respec
tive unique remaining bits not yet decoded need be stored.
AS previously explained, when the population (i.e., number
of valid indexes) in an expanse is Small, it becomes useful
to Store the indexes in a Single object that is Sequentially or
otherwise immediately Searchable, rather than proceeding
hierarchically through more tree branches to application
Specific leaves, each related to a single index. According to
one implementation, in its Simplest case, an indexes-only
leaf is a list of valid indexes.

0059. The inventors have experimentally determined that
an optimal Size of a leaf is relatively Small, e.g., less than or
equal to two cache lines, i.e., 32 words or 128 bytes on a
typical 32-bit word size platform. It has been found that even
a Serial Search of a Sorted list of indexes in two full cache
lines takes, on average, 1.5 cache fills (assuming that the
data is not already in cache), Since half of the time the index
is found in the first cache line (1 fill) and half the time in the
Second line (2 fills). That is, when a population is Sufficiently
Small, it has been found that it is preferable to Store it as a
list, bitmap, or other ADT of indexes in one to two cache
lines, rather than in more levels of a digital tree.

0060 FIGS. 6A-6D and 7A-7C show examples of linear
leaves according to the invention. A linear leaf is an ordered
list of indexes, each consisting of N undecoded bytes, where
N is the level in the tree using a convention wherein the
lowest level, i.e., the level furthest from the root, is level 1.
(Note that this is opposite of how trees are conventionally
described wherein level numbering Starts at the topmost
node at level 1, each child being at a level numbered higher
than a level of its parent.) According to a preferred imple
mentation, the population of the leaf (count of indexes
equals the size of the leaf) is stored with the pointer to the
leaf, not in the leaf itself (with the exception of an imple
mentation used for very Small arrays that consist entirely of
a single root-level linear leaf.)

0061. As shown in FIGS. 6A-6D, the linear leaf is a
packed array of Sorted indexes that Stores, for each index,
only the minimum number of bytes remaining to be decoded
at the level of the leaf in the tree. FIGS. 7A-7C depict
alternative implementations used when values are associated
with respective indexes, So that a separate value area is
added including a list of Such values. Also note that, unlike
the root-level leaf, the linear leaves need not include a
population field for an index count. Instead, according to a
preferred embodiment of the invention, the parent node
carries the population field.

0.062 Table 2 includes arrangements and capacities of
leaves at various levels of a tree (lower level leaves requiring
more bytes to represent the remaining portion of the index)
for 32 and 64-bit word size platforms, and for systems
having values associated with the indexes.

Mar. 27, 2003

TABLE 2

Values Associated
Index Only with Indexes

32-bit 64-bit 32-bit 64-bit Index Size

3 ... 36 2 ... 34 7-byte indexes
3. . . 42 2 ... 36 6-byte indexes
4. .. 51 2 ... 39 5-byte indexes
4... 64 2 . . . 42 4-byte indexes

3 . . . 42 6... 85 2 . . . 36 3 . . . 46 3-byte indexes
4... 64 8. . . 128 2 . . . 42 4. .. 51 2-byte indexes
8 . . . 24 See text 4... 25 8 . . . 25 1-byte indexes

0063) Note that, in each case, the index size of a leaf, i.e.,
the number of remaining undecoded bytes in each index, is
enumerated in the Type field of the referencing rich pointer
Structure. The minimum leaf populations are based on how
may indexes an immediate rich pointer can hold So that
Smaller populations are “immediatized”, i.e., Stored in the
rich pointer Structure itself. In contrast, the maximum leaf
populations are limited by the capacity of two cache lines
(e.g., 32 words) in the case of index-only leaves, or four
cache lines (e.g., 64 words) in the case of leaves in which
values are associated with indexes. According to another
implementation of the invention on a 64-bit platform, an
indexes-only leaf is reconfigured from an immediate indexes
type directly to a bitmap leaf upon reaching Sixteen indexes
So as to avoid creating a linear leaf for a single population
Size and then a bitmap leaf upon the next insertion, reaching
Seventeen indexes, in the same Subexpanse.

0064 Bitmap leaves are useful when the memory cost of
a linear leaf exceeds a particular threshold, for example,
upon reaching the aforementioned 17 indexes. Thus, at the
lowest level of the tree, where there is only a single index
digit (e.g., byte) remaining to decode, a 256-index Subex
panse has Sufficient population (e.g., 17 indexes), memory is
conserved by representing the leaf as a bitmap with 1 bit for
each index in the Subexpanse, hence 256 total bits or 32
bytes. An example of an indexes-only bitmap leaf imple
mented on a 32-bit word platform is presented in FIG. 8. In
the figure, each horizontal rectangle represents one word. On
a 64-bit platform, the leaf would appear Similar except that
the words are larger and there are half as many words in the
bitmap. The bits in the bitmap indicate which of the possible
indexes in the expanse of the leaf are actually present, that
is, Stored.

0065 FIG. 9 is a diagram of an alternate embodiment in
which the Subject data Structure associates values with the
Stored indexes. AS shown, a value area including one word
per valid index is included in the bitmap leaf. Similar to a
bitmap branch, this embodiment of the bitmap leaf is a 2-tier
construct, except that the rich pointer arrays (with two words
per element) are instead value area Subarrays, that is, lists of
values, having one word per element. On a 64-bit platform,
the bitmap would instead require four words, with four
words being unused. The result of using a 2-tier construct is
that value list modification is faster because fewer bytes of
memory and cache lines are involved.

0066 Similar to bitmap branches, when an expanse is
sufficiently small, for example, 256-way nodes with 8 bits or
1 byte remaining to decode, and the population of the

US 2003/0061227 A1

expanse is Sufficiently large, e.g., equal to or greater than 25
indexes, it has been determined that it is advantageous (i.e.,
“cheaper in terms of memory”) to represent the valid
indexes in the expanse as a bitmap rather than as a list of
indexes. This characteristic holds true only at level 1 of the
tree (i.e., at leaves farthest from the root node) with just one
undecoded byte per index. According to a preferred embodi
ment of the invention, use of bitmap leaves may be limited
to level 1 leaves, that is, for indexes containing only one
undecoded byte.

0067. The invention further includes leaf-index compres
Sion. AS previously described in connection with linear
leaves, traversing a digital tree involves decoding indeX bits
(digits) representing portions (e.g., 1-byte Segments) of a
target indeX being Sought, inserted or deleted. In many cases,
upon reaching a leaf, Some or most of the bits in the index
Stored at the leaf have already been decoded, that is, Stored
positionally (i.e., digitally) in the tree. Thus, only the
remaining undecoded indeX bits (the Suffix) must be stored
in the leaf. Thus, on a 32-bit platform with 4-byte indexes
decoded 1 byte at a time (i.e., at each branch of the tree), a
(terminal) leaf having a size of two 64-byte wide cache lines
(i.e., 128 bytes) might accommodate the number of com
pressed indexes shown in Table 3.

TABLE 3

Maximum
Number of

Compressed Indexes
per Leaf Conditions

128/4 = 32 disjoint 4-byte indexes (no common leading bits)
128/3 = 42 3-byte indexes each with 1 leading byte in common

(already decoded)
128/2 = 64 2-byte indexes each with 2 leading bytes in common

(already decoded)
128/1 = 128 1-byte indexes each with 3 leading bytes in common

(already decoded)

0068 Referring to Table 3, in the case of 1 byte per index,
once the population exceeds twenty-four indexes, a 32-byte
(i.e., 256 bit) object is sufficient to hold a bitmap represent
ing all of the 256 possible indexes in a low-level leaf. Also
note that leaf-indeX compression has additional advantages.
In particular, each lower-level leaf in the tree can hold more
indexes than a current-level leaf So that, even without
immediate indexes, a cascade caused by inserting a single
indeX which overflows an existing leaf never creates more
than one additional level in the tree. Similarly, a decascade
caused by deleting a Single indeX never deletes more than
one level in the tree. In other words, leaf compression
Supports good locality of changes during modification.

0069. As previously noted, while the preferred embodi
ment has been described in terms of a fixed size index, it
may be readily modified to accommodate indexes of Vari
able sizes Such as character Strings and bit Strings of arbi
trary length. For example, using character Strings of arbi
trary length as indexes, a unique remaining Suffix portion of
a single index, if Sufficiently Small, may be Stored immedi
ately in a rich pointer or, if longer, Stored in a variable size
Single-indeX Suffix leaf.

0070 FIG. 10 is a diagram of a computer system capable
of Supporting and running a memory Storage program imple

Mar. 27, 2003

menting and maintaining a data Structure according to the
invention. Thus, although the present invention is adaptable
to a wide range of data Structures, programing languages,
operating Systems and hardware platforms and Systems,
FIG. 10 illustrates one such computer system 1000 com
prising a platform Suitable to Support the present invention.
Computer system 1000 includes Central Processing Unit
(CPU) 1001 coupled to system bus 1002. CPU 1001 may be
any general purpose CPU, such as an HP PA-8500 or Intel
Pentium processor. However, the present invention is not
restricted by the architecture of CPU 1001 as long as CPU
1001 Supports the inventive operations as described herein,
e.g., the use of pointers. System bus 1002 is coupled to
Random Access Memory (RAM) 1003, which may be
SRAM, DRAM or SDRAM. ROM 1004 is also coupled to
system bus 1002, which may be PROM, EPROM, or
EEPROM. RAM 1003 and ROM 1004 hold user and system
data and programs as is well known in the art.
0071 System bus 1002 is also coupled to input/output
(I/O) controller card 1005, communications adapter card
1011, user interface card 1008, and display card 1009. The
I/O card 1005 connects to storage devices 1006, such as one
or more of a hard drive, a CD drive, a floppy disk drive, a
tape drive, to the computer System. Communications card
1011 is adapted to couple computer system 1000 to network
1012, which may be one or more of a telephone network, a
Local (LAN) and/or a Wide-Area (WAN) network, an Eth
ernet network, and/or the Internet network and can be wire
line or wireless. User interface card 1008 couples user input
devices, such as keyboard 1013 and pointing device 1007, to
computer system 1000. Display card 1009 is driven by CPU
1001 to control display device 1010.
0072 While the invention has been described in connec
tion with what is presently considered to be the preferred
embodiment, it is to be understood that the invention is not
limited to the disclosed embodiment, but, on the contrary, is
intended to cover various modifications and equivalent
arrangements included within the Spirit and Scope of the
appended claims.

What is claimed is:
1. A data Structure for Storage in a computer memory, Said

data Structure accessible by an application program being
executed on a data processing System, Said data structure
comprising:

a root pointer, and
a digital tree pointed to by Said root pointer, comprising

a first plurality of nodes arranged hierarchically, a
Second plurality of Said nodes including:
a branch node Selected from the group consisting of a

linear, bitmap and uncompressed branch node
Selected according to a number of populated Subex
panses and an overall Status of the digital tree, and

a leaf node Selected from the group consisting of linear
and bitmap leaf nodes, each holding a plurality of
indexes and containing only undecoded indeX bits
according to a level of the leaf in the digital tree and
a number of indexes in the leaf.

2. The data structure according to claim 1 wherein Said
Second plurality of nodes includes Said linear, bitmap and
uncompressed branch nodes.

US 2003/0061227 A1

3. The data structure according to claim 1 wherein Said
Second plurality of nodes includes Said linear and bitmap
leaf nodes.

4. The data Structure according to claim 1 wherein Said
Second plurality of nodes constitutes Said first plurality of
nodes.

5. The data structure according to claim 1 further com
prising a computer readable media having Stored therein Said
digital tree.

6. The data structure according to claim 1 wherein Said
linear branch node comprises at least two linear lists, the first
list including a Subexpanse descriptor including at least the
corresponding indeX bits of each associated populated Sub
expanse, and the Second list including pointers to one or
more Subsidiary nodes for each associated Subexpanse, Said
pointers corresponding to Said Subexpanse descriptor of Said
first list.

7. The data Structure according to claim 6 wherein each of
Said pointers comprises a rich pointer.

8. The data Structure according to claim 1 wherein Said
bitmap branch node comprises at least a first list of bits
including one bit for each possible Subexpanse under the
bitmap branch node, each said bit indicating if the corre
sponding Subexpanse is populated by any indexes, and a
Second list of pointers pointing to at least one Subsidiary
node for each of Said Subexpanses, Said pointers correspond
ing to a Status of Said bits in Said first list.

9. The data structure according to claim 8 wherein each of
Said pointers comprises a rich pointer.

10. The data structure according to claim 8 wherein said
bitmap is Subdivided into Sections and Said list of pointers is
similarly subdivided into a plurality of independent Subar
rays, each Said Subarray pointed to by a Single corresponding
pointer in a third list accompanying the bitmap.

11. The data Structure according to claim 10 including
logic configured to independently convert Said Subarrays to
an uncompressed form in response to filling Said SubarrayS
to their respective maximum memory usage.

12. The data structure according to claim 1 wherein Said
linear leaf node comprises at least a list of indexes reduced
to respective unique remaining bits not yet decoded higher
in the digital tree.

13. The data structure according to claim 1 wherein Said
bitmap leaf node comprises at least a first list of bits
including one bit for each possible indeX in the leaf, each
Said bit indicating if a corresponding one of Said indexes is
valid.

14. The data Structure according to claim 13 wherein Said
bitmap leaf node comprises a list of values corresponding to
valid ones of Said indexes and Said bitmap is Subdivided into
Sections and Said list of values is similarly Subdivided into
a plurality of independent Subarrays, each Said Subarray
pointed to by a Single corresponding pointer in a third list
accompanying the bitmap.

15. The data structure according to claim 1 wherein Said
data Structure includes fields Storing a total population and
a total memory used by Said data Structure.

16. A method of Storing an indeX in a data Structure,
comprising the Steps of:

identifying a compressed branch node of the data Struc
ture under which the indeX belongs,

determining a parameter of Said data Structure, Said
parameter comprising one of an overall memory used

Mar. 27, 2003

per index value for the data Structure, and a population
under Said compressed branch node,

in response to Said value, Selectively converting Said
compressed branch node to an uncompressed branch
node, and

Storing the indeX under Said uncompressed branch node.
17. The method according to claim 16 wherein said data

Structure is Stored in a computer memory So as to be
accessible by an application program being executed on a
data processing System, Said data Structure comprising:

a root pointer, and
a digital tree pointed to by Said root pointer, comprising

a plurality of nodes arranged hierarchically, each of
Said nodes including one of:
a branch node Selected from the group consisting of

Said compressed branch node and Said uncompressed
branch node, and

a leaf node Selected from the group consisting of linear
and bitmap leaf nodes, each holding a plurality of
indexes and containing only undecoded indeX bits
according to a level of the leaf in the digital tree and
a number of indexes in the leaf.

18. The method according to claim 16 wherein said
compressed branch node comprises one of a linear branch
node and a bitmap branch node.

19. A method of Storing data in a data structure in a
computer memory, said data structure accessible by an
application program being executed on a data processing
System, Said data Structure comprising a root pointer and a
digital tree pointed to by Said root pointer, Said digital tree
comprising a plurality of nodes arranged hierarchically, Said
method comprising the Steps of

identifying a number of populated expanses in Said digital
tree,

identifying an overall Status of Said digital tree;
Selectively creating, in response to Said identifying Steps,

a branch node Selected from the group consisting of a
linear, bitmap and uncompressed branch node,

identifying a level of a leaf node to be created in Said
digital tree;

identifying a number of indexes in Said leaf node to be
created; and

creating Said leaf node in response to Said Steps of
identifying Said level of Said leaf node and Said Step of
identifying Said number of indexes in Said leaf node
including Selecting a type of Said leaf node from the
group consisting of linear and bitmap leaf nodes, each
holding a plurality of indexes and containing only
undecoded indeX bits according to a level of the leaf in
the digital tree and a number of indexes in the leaf.

20. A computer memory for Storing data for access by a
computer program being executed on a data processing
System, comprising:

a data Structure Stored in Said computer memory, said data
Structure accessible by an application program being
executed on a data processing System, said data Struc
ture including

US 2003/0061227 A1 Mar. 27, 2003
10

a root pointer; and expanses and an overall Status of the digital tree,
and

a digital tree pointed to by Said root pointer, comprising
a plurality of nodes arranged hierarchically, each of
Said nodes including one of

a leaf node Selected from the group consisting of
linear and bitmap leaf nodes, each holding a
plurality of indexes and containing only unde

a branch node Selected from the group consisting of coded index bits according to a level of the leaf in
a linear, bitmap and uncompressed branch node the digital tree and a number of indexes in the leaf.
Selected according to a number of populated Sub k

