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(57) ABSTRACT 

An adaptive digital tree data Structure incorporates a rich 
pointer object, the rich pointer including both conventional 
address redirection information used to traverse the Structure 
and Supplementary information used to optimize tree tra 
Versal, Skip levels, detect errors, and Store State information. 
The structure of the pointer is flexible so that, instead of 
Storing pointer information, data may be stored in the 
structure of the pointer itself and thereby referenced without 
requiring further redirection. The digital tree data structure 
is self-modifying based on a digital tree (or “trie') data 
Structure which is Stored in the memory, can be treated as a 
dynamic array, and is accessed through a root pointer. For an 
empty tree, this root pointer is null, otherwise it points to the 
first of a hierarchy of branch nodes of the digital tree. 
Low-fanout branches are avoided or replaced with alterna 
tive structures that are less wasteful of memory while 
retaining most or all of the performance advantages of a 
conventional digital tree Structure, including indeX insertion, 
Search, acceSS and deletion performance. This improvement 
reduces or eliminates memory otherwise wasted on null 
pointers prevalent in Sparsely populated and/or unbalanced, 
wide/shallow digital trees. Additional processing time 
required to effectuate and accommodate the branch modifi 
cation is minimal, particularly in comparison to processing 
advantages inherent in reducing the size of the Structure So 
that data fetching from memory is more efficient, capturing 
more data and fewer null pointers. 
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SYSTEMAND METHOD OF PROVIDING A 
CACHE-EFFICIENT, HYBRID, COMPRESSED 

DIGITAL TREE WITH WIDE DYNAMIC RANGES 
AND SIMPLE INTERFACE REQUIRING NO 

CONFIGURATION ORTUNING 

RELATED APPLICATIONS 

0001. This present application is related to co-pending, 
commonly assigned, and concurrently filed U.S. application 
Ser. No. Attorney Docket No. 10012655-1 entitled “SYS 
TEMAND METHOD FOR DATA COMPRESSION IN A 
*VALUELESS DIGITAL TREE REPRESENTING A BIT 
SET; U.S. application Ser. No. Attorney Docket No. 
10012654-1) entitled “SYSTEM FOR AND METHOD OF 
EFFICIENT, EXPANDABLE STORAGE AND 
RETRIEVAL OF SMALL DATASETS”; and U.S. applica 
tion Ser. No. Attorney Docket No. 10012656-1 entitled 
“SYSTEM FOR AND METHOD OF CACHE-EFFICIENT 
DIGITAL TREE WITH RICH POINTERS, the disclosures 
of which are hereby incorporated herein by reference. 

TECHNICAL FIELD 

0002 The present invention relates generally to the field 
of data Structures, and more particularly to a hierarchical 
data organization in which the Structure of the data organi 
Zation is dependent on the data Stored, with components of 
the data structure compressed to match the data. 

BACKGROUND 

0.003 Computer processors and associated memory com 
ponents continue to increase in Speed. AS hardware 
approaches physical Speed limitations, however, other meth 
ods for generating appreciable decreases in data access times 
are required. Even when Such limitations are not a factor, 
maximizing Software efficiency maximizes the efficiency of 
the hardware platform, extending the capabilities of the 
hardware/software system as a whole. One method of 
increasing System efficiency is by providing effective data 
management, achieved by the appropriate choice of data 
Structure and related Storage and retrieval algorithms. For 
example, various prior art data Structures and related Storage 
and retrieval algorithms have been developed for data man 
agement including arrays, hashing, binary trees, AVL trees 
(height-balanced binary trees), b-trees, and skiplists. In each 
of these prior art data Structures and related Storage and 
retrieval algorithms an inherent trade-off has existed 
between providing faster access times and providing lower 
memory overhead. For example, an array allows for fast 
indexing through the calculation of the address of a Single 
array element but requires the pre-allocation of the entire 
array in memory before a single value is Stored, and unused 
intervals of the array waste memory resources. Alternatively, 
binary trees, AVL trees, b-trees and skiplists do not require 
the pre-allocation of memory for the data Structure and 
attempt to minimize allocation of unused memory but 
exhibit an access time which increases as the population 
increases. 

0004. An array is a prior art data structure which has a 
Simplified Structure and allows for rapid access of the Stored 
data. However, memory must be allocated for the entire 
array and the Structure is inflexible. An array value is looked 
up “positionally', or “digitally', by multiplying the index by 
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the size (e.g., number of bytes) allocated to each element of 
the array and adding the offset of the base address of the 
array. Typically, a single Central Processing Unit (CPU) 
cache line fill is required to access the array element and 
value Stored therein. AS described and typically imple 
mented, the array is memory inefficient and relatively inflex 
ible. Access, however, is provided as O(1), i.e., independent 
of the size of the array (ignoring disk Swapping). 
0005 Alternatively, other data structures previously 
mentioned including binary trees, b-trees, skiplists, linked 
lists and hash tables, are available which are more memory 
efficient but include undesirable features. For example, 
hashing is used to convert Sparse, possibly multi-word 
indexes (Such as Strings) into array indexes. The typical hash 
table is a fixed-size array, and each indeX into it is the result 
of a hashing algorithm performed on the original indeX. 
However, in order for hashing to be efficient, the hash 
algorithm must be matched to the indexes which are to be 
Stored. Hash tables also require every data node to contain 
a copy of (or a pointer to) the original index (key) So you can 
distinguish nodes in each Synonym chain (or other type of 
list). Like an array, use of hashing requires Some prealloca 
tion of memory, but it is normally a fraction of the memory 
which must be allocated for a flat array, if well designed, i.e., 
the characteristics of the data to be Stored are well known, 
behaved and matched to the hashing algorithm, collision 
resolution technique and Storage Structure implemented. 

0006. In particular, digital trees, or tries, provide rapid 
access to data, but are generally memory inefficient. 
Memory efficiency may be enhanced for handling Sparse 
index Sets by keeping tree branches narrow, resulting in a 
deeper tree and an increase in the average number of 
memory references, indirections, and cache line fills, all 
resulting in Slower access to data. This latter factor, i.e., 
maximizing cache efficiency, is often ignored when Such 
Structures are discussed yet may be a dominant factor 
affecting System performance. A trie is a tree of Smaller 
arrays, or branches, where each branch decodes one or more 
bits of the index. Most prior art digital trees have branch 
nodes that are arrays of Simple pointers or addresses. Typi 
cally, the size of the pointers or addresses are minimized to 
improve the memory efficiency of the digital tree. 

0007. At the “bottom” of the digital tree, the last branch 
decodes the last bits of the index, and the element points to 
Some storage specific to the index. The “leaves” of the tree 
are these memory chunks for Specific indexes, which have 
application-specific Structures. 

0008 Digital trees have many advantages including not 
requiring memory to be allocated to branches which have no 
indexes or Zero population (also called an empty Subex 
panse). In this case the pointer which points to the empty 
Subexpanse is given a unique value and is called a null 
pointer indicating that it does not represent a valid address 
value. Additionally, the indexes which are Stored in a digital 
tree are accessible in Sorted order which allows identifica 
tion of neighbors. An "expanse' of a digital tree as used 
herein is the range of values which could be stored within 
the digital tree, while the population of the digital tree is the 
set of values that are actually stored within the tree. Simi 
larly, the expanse of a branch of a digital tree is the range of 
indexes which could be stored within the branch, and the 
population of a branch is the number of values (e.g., count) 
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which are actually stored within the branch. (AS used herein, 
the term “population” refers to either the set of indexes or 
the count of those indexes, the meaning of the term being 
apparent to those skilled in the art from the context in which 
the term is used.) 
0009 “Adaptive Algorithms for Cache-Efficient Trie 
Search” by Acharya, Zhu and Shen (1999), the disclosure of 
which is hereby incorporated herein by reference, describes 
cache-efficient algorithms for trie Search. Each of the algo 
rithms use different data structures, including a partitioned 
array, B-tree, hashtable, and vectors, to represent different 
nodes in a trie. The data Structure Selected depends on cache 
characteristics as well as the fanout of the node. The 
algorithms further adapt to changes in the fanout at a node 
by dynamically Switching the data Structure used to repre 
sent the node. Finally, the size and the layout of individual 
data Structures is determined based on the size of the 
Symbols in the alphabet as well as characteristics of the 
cache?s). The publication further includes an evaluation of 
the performance of the algorithms on real and Simulated 
memory hierarchies. 

0010. Other publications known and available to those 
skilled in the art describing data Structures include Funda 
mentals of Data Structures in Pascal, 4th Edition; Horowitz 
and Sahni, pp 582-594; The Art of Computer Programming, 
Volume 3; Knuth; pp. 490-492; Algorithms in C; Sedgewick; 
pp. 245-256, 265-271, “Fast Algorithms for Sorting and 
Searching Strings”; Bentley, Sedgewick; “Ternary Search 
Trees”; 5871926, INSPEC Abstract Number: C9805-6120 
003; Dr Dobb's Journal; “Algorithms for Trie Compaction”, 
ACM Transactions on Database Systems, 9(2):243-63, 
1984; “Routing on longest-matching prefixes”; 5217324, 
INSPEC Abstract Number: B9605-615OM-005, C9605 
5640-006; "Some results on tries with adaptive branching'; 
684.5525, INSPEC Abstract Number: C2001-03-6120-024; 
“Fixed-bucket binary storage trees'; 01998.027, INSPEC 
Abstract Number: C83009879; “DISCS and other related 
data structures'; 03730613, INSPEC Abstract Number: 
C90064501; and “Dynamical sources in information theory: 
a general analysis of trie structures'; 6841374, INSPEC 
Abstract Number: B2001-03-6110-014, C2001-03-6120 
023, the disclosures of which are hereby incorporated herein 
by reference. 

0.011) An enhanced storage structure is described in U.S. 
patent application Ser. No. 09/457,164 filed Dec. 8, 1999, 
entitled “A FAST EFFICIENT ADAPTIVE, HYBRID 
TREE,” (the 164 application) assigned in common with the 
instant application and incorporated herein by reference in 
its entirety. The data structure and Storage methods 
described therein provide a Self-adapting structure which 
Self-tunes and configures "expanse' based Storage nodes to 
minimize Storage requirements and provide efficient, Scal 
able data Storage, Search and retrieval capabilities. The 
Structure described therein, however, does not take full 
advantage of certain Sparse data Situations. 

0012. An enhancement to the storage structure described 
in the 164 application is detailed in U.S. patent application 
Ser. No. 09/725,373, filed Nov. 29, 2000, entitled “A DATA 
STRUCTURE AND STORAGE AND RETRIEVAL 
METHOD SUPPORTING ORDINALITY BASED 
SEARCHING AND DATARETRIEVAL", assigned in com 
mon with the instant application and incorporated herein by 
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reference in its entirety. This latter application describes a 
data Structure and related data Storage and retrieval method 
which rapidly provides a count of elements Stored or refer 
enced by a hierarchical structure of ordered elements (e.g., 
a tree), access to elements based on their ordinal value in the 
Structure, and identification of the ordinality of elements. In 
an ordered tree implementation of the Structure, a count of 
indexes present in each Subtree is Stored, i.e., the cardinality 
of each Subtree is Stored either at or associated with a higher 
level node pointing to that Subtree or at or associated with 
the head node of the Subtree. In addition to data structure 
Specific requirements (e.g., creation of a new node, reas 
signment of pointers, balancing, etc.) data insertion and 
deletion includes Steps of updating affected counts. Again, 
however, the Structure fails to take full advantage of certain 
sparse data Situations. 
0013. Accordingly, a need exists for techniques and tools 
to optimize performance characteristics of digital tree and 
Similar Structures. 

SUMMARY OF THE INVENTION 

0014) A system and data structure according to the 
present invention include a Self-modifying data Structure 
based on a digital tree (or “trie”) data structure which is 
Stored in the memory, can be treated as a dynamic array, and 
is accessed through a root pointer. For an empty tree, this 
root pointer is null, otherwise it points to the first of a 
hierarchy of branch nodes of the digital tree. Low-fanout 
branches are avoided or replaced with alternative structures 
that are leSS wasteful of memory while retaining most or all 
of the performance advantages of a conventional digital tree 
Structure, including indeX insertion, Search, acceSS and dele 
tion performance. This improvement reduces or eliminates 
memory otherwise wasted on null pointers prevalent in 
sparsely populated and/or wide/shallow digital trees. Addi 
tional processing time required to effectuate and accommo 
date the branch modification is minimal, particularly in 
comparison to processing advantages inherent in reducing 
the size of the Structure So that data fetching from memory 
is more efficient, capturing more data and fewer null pointers 
in each CPU cache line fill. The invention includes linear 
and bitmap branches and leaves implemented, for example, 
using a rich pointer Structure. Opportunistic reconfiguration 
of nodes automatically readjusts for changing Subexpanse 
population. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0015 FIGS. 1A-1E are a diagram of an example of a 
digital tree which incorporates hybrid abstract data type data 
Structures (ADTS) according to the invention to maximize 
memory utilization efficiency while minimizing indeX 
access time, 

0016 FIG. 2A is a generalized diagram of an adaptable 
object or “rich pointer”; 

0017 FIG. 2B is a generalized diagram of a rich pointer 
incorporating immediate Storage of indexes, 
0018 FIG. 3 is a diagram of an example of a linear 
branch; 
0019 FIG. 4 is a diagram of an example of a bitmap 
branch; 
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0020 
0021 FIGS. 6A-6D are diagrams of examples of linear 
leaves for Structures referencing only indexes, 
0022 FIGS. 7A-7C are diagrams of examples of linear 
leaves for Structures having values associated with respec 
tive valid indexes Stored in the Structure; 
0023 FIG. 8 is a diagram of a bitmap leaf structure for 
Structures referencing only indexes, 
0024 FIG. 9 is a diagram of a bitmap leaf structure 
including values associated with respective indexes, and 

FIG. 5 is a diagram of an uncompressed branch; 

0.025 FIG. 10 is a block diagram of a computer system 
on which the Subject digital tree may be implemented. 

DETAILED DESCRIPTION 

0026. The present invention includes a system for and a 
method of Storing data in a computer memory for access by 
an application program which is executed on a data pro 
cessing System. The System includes a data Structure and 
asSociated information which is Stored in the memory and 
includes a root pointer which points to a “wide/shallow” 
digital tree having a plurality of nodes in the form of 
branches (branch nodes) and multi-index leaves (leaf 
nodes), arranged hierarchically, that are adaptively com 
pressed using hybrid abstract data types (ADTS). In this 
application an ADT refers to multiple data Structures with 
the Same Virtual meaning but with different literal expan 
Sions. Further, the term “indeX' as used herein encompasses 
a key or set of fields constituting a key including a number, 
String, token, Symbol or other Such designation or represen 
tation. 

0027) A digital tree implementation allows the data (set 
of indexes or keys) to be organized primarily “by expanse” 
rather than purely “by population”, which has various ben 
efits for Simplifying tree traversal and modification algo 
rithms. In particular, a wide digital tree has potentially high 
fan-out at each branch, which allows the tree to be shallow, 
hence fast to traverse, even for large populations; thus 
“well-Scalable'. Use of compressed branches largely pre 
serves the performance benefit of wide branches while 
allowing their actual fan-out, hence memory usage, to Shrink 
to match the data (indexes or keys) being Stored. Using this 
technique, only populated Subexpanses from among all 
possible Subexpanses of a branch, that is, those containing 
Stored indexes, must be represented in compressed branches, 
empty Subexpanses are typically (although not necessarily) 
absent. 

0028. Further, storing multiple indexes (or keys) and their 
asSociated values, if any, in a "multi-indeX leaf makes the 
tree shallower by one or more levels, hence both smaller in 
memory usage and faster to access. Compressed multi-indeX 
leaves hold more indexes rather than having to insert more 
branches in the tree to hold the same set of indexes. Such 
“cache efficient' compressed branches and leaves are 
designed optimally with respect to CPU cache lines to 
minimize “cache fills” that result in relatively slow access to 
random access memory (RAM). 
0029. Thus, the invention includes several types of 
branch and leaf compressions to optimize performance of a 
data Structure Such as a digital tree. These improvements 
include linear and bitmap branches (i.e., interior nodes), 
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linear and bitmap leaves (i.e., terminal nodes), and rules and 
methods for effectuating use of these nodes including, for 
example, a global, memory-efficiency-driven, opportunistic 
decompression of compressed branches, and use of leaf 
indeX compression. 
0030 Linear branch nodes according to the invention 
address low-fanout branches by providing a list of populated 
Subexpanses (i.e., index digits) and corresponding next-level 
pointers. More generally, a linear branch contains a list of 
Subexpanse descriptors that contain criteria for Selecting a 
Subexpanse corresponding to a key or one or more of a Set 
of fields constituting a key. According to a preferred embodi 
ment of the invention, the Subexpanse descriptors are 1-byte 
segments of 32-bit indexes. Preferably, linear branches are 
constrained to a single CPU cache line of the target platform. 
AS the Subexpanse becomes more heavily populated, a 
bitmap branch node may be used including a binary vector 
indicating which Subexpanses are populated (i.e., are not 
empty) followed by a list of pointers to the populated 
Subexpanses (or an equivalent multi-level data structure). 
0031 Linear leaf nodes according to the invention are 
likewise directed to low populations of indexes by using 
multi-indeX leaves containing lists of valid indexes. The lists 
may have associated value areas for respective indexes of 
the multi-indeX leaves. For medium to high population 
densities at low levels in the tree, bitmap leaf nodes provide 
a binary vector of valid indexes, possibly including value 
areas corresponding to each valid indeX. 
0032. The invention further incorporates global, 
memory-efficiency-driven, opportunistic decompression of 
compressed branches. According to this aspect of the inven 
tion, when an entire data Set Stored in the data structure 
occupies leSS memory used per indeX than Some threshold 
value (possibly measured in bytes per index) or when the 
population of the Subexpanse under a linear or bitmap 
branch is Sufficiently high, even if the global metric is not 
adequate, linear and/or bitmap branches are replaced with an 
uncompressed form of the branch (i.e., an uncompressed 
branch node) resulting in less computation and fewer cache 
fills to traverse the level, albeit at the cost of Some additional 
memory. Using this option in the case of larger populations 
of indexes, particularly data having well-clustered indexes, 
the invention “amortizes' exceSS memory needed to main 
tain fast access to the indexes and any related data. 
0033. Note the degree of symmetry between branches 
and leaves, that is, between linear branches and linear leaves 
and also between bitmap branches and bitmap leaves. This 
Symmetry is most apparent in the embodiment wherein each 
indeX is mapped to an associated value. The interior nodes 
of the tree map portions (digits) of indexes to pointers to 
Subsidiary nodes, while the terminal nodes of the tree map 
fully decoded indexes to value areas that, in practice, often 
contain the addresses of, that is, pointers to, caller-defined 
objects external to the tree. This Symmetry fails, however, in 
that there is no leaf equivalent to an uncompressed branch. 
When a higher-level leaf exceeds a Specific population, it is 
converted to a Subtree under a new branch, or else or to a 
lower-level, more-compressed leaf (as described below), as 
appropriate. When a lowest-level linear leaf exceeds a 
Specific population, it is converted to a bitmap leaf. 
0034. According to another aspect of the invention, the 
fact that a portion of a target indeX is decoded at each level 
of a digital tree is further leveraged to compress leaf indexes. 
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Because indexes are partially decoded while traversing the 
tree, only the remaining undecoded portion of each indeX 
need be stored in the leaves, the number of bits or bytes 
constituting this undecoded portion shrinking at each lower 
level. The result is that a lower-level leaf (i.e., a leaf more 
distant from the root) stores more indexes in the same Space 
as a higher level leaf, the latter requiring more bits to 
represent the larger undecoded portion of each indeX. Hence, 
even worst-case indeX insertions and deletions are localized 
and do not cascade more than one level down or up the tree, 
respectively, minimizing worst-case insertion and deletion 
time. Note that this type of compression is most applicable 
to fixed-size indexes but leSS useful for variable-size indexes 
Such as character Strings or bit Strings. 

0035) It should be noted that it is possible to compress a 
digital tree Such that bits common to multiple keys (indexes) 
are skipped (not represented). Such trees must store copies 
of whole keys, of whatever fixed or variable size, in their 
leaf nodes to disambiguate the leaves (except in rare cases 
in which disambiguation is not required). This is distinguish 
able from leaf compression implemented by the invention, 
wherein decoded portions of indexes, whether required for 
tree traversal or skipped (compressed out) as being common 
to all indexes in a Subexpanse, are always Stored in and 
recoverable from the branch nodes and need not be stored in 
leaf nodes. 

0.036 The invention provides an appropriate combination 
(hybrid) of various cache-efficient ADTs for branches and 
leaves, the combination depending upon an unpredictable 
data set (indexes or keys) to be stored in one instance, and 
results in a wide digital tree that is both memory-efficient 
and fast to acceSS or modify over a wide dynamic range. A 
wide dynamic range means over Small to large data Sets: few 
to many (billions of) indexes or keys; and types of data Sets: 
indexes or keys that are Sequential, clustered, periodic, or 
random. A well-designed hybrid digital tree with a wide 
dynamic range can be represented at the Software interface 
as a simple dynamic array with no initialization, tuning, or 
configuration necessary (or even possible). 

0037. The invention may be implemented using a wide 
range of constructs for traversing a data Structure including 
pointers and other Schemes for linking nodes and/or provid 
ing for traversal of the data Structure. For purposes of 
illustration, a preferred embodiment of the invention may be 
implemented within a construct of a digital tree including an 
enhanced pointer as fully described in U.S. application Ser. 
No. Attorney Docket No. 10012656-1 entitled “SYSTEM 
FOR AND METHOD OF CACHE-EFFICIENT DIGITAL 
TREE WITH RICH POINTERS, the disclosure of which is 
hereby incorporated herein by reference. Such a pointer may 
take a first form as shown in FIG. 2A when used as a null 
pointer or to point to a branch or leaf node, or as shown in 
FIG. 2B when containing immediate indexes. Use of rich 
pointers provides for designation of the type of object being 
pointed to, e.g., linear or bitmap, branch or leaf, etc. Alter 
nate embodiments of the invention may use other constructs 
Such as conventional pointers and, for example, use the least 
Significant bits of the pointer itself (recognizing that the 
pointers might point to 8-byte-aligned objects So that the 
least significant three bits are not otherwise used) to identify 
the target object, or provide that the pointed-at object 
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self-identify (that is, type information is stored in the child 
node rather than in the parent). 
0038. As shown in FIG. 2A, the basic pointer structure 
on, for example, a 32-bit platform, includes two 32-bit 
words, one entire word used by a pointer to redirect tree 
traversal flow to another node, a Decoded Index of between 
Zero and 2 bytes, a Population field of between 1 and 3 bytes, 
and a Type field of 1 byte. For a null pointer, all bytes except 
the Type field are zero. Otherwise, the first word is a pointer 
to a subsidiary branch or leaf node. The Decode and Popu 
lation fields together fill all but 1 byte of the second word. 
0039. A pointer construct containing immediate indexes 
is shown in FIG. 2B, eliminating the need to redirect or 
point to another node to access the indexes. AS explained in 
the referenced patent application, Still other variations of 
these pointer constructs may be used to associate values with 
respective indexes, while adaptations are provided to 
accommodate various machine word sizes. 

0040. The present invention uses these pointers to form 
ADTS including branches, i.e., interior nodes and leaves, i.e., 
terminal nodes. According to this data Structure, a digital 
tree includes Some combination of branch nodes (linear, 
bitmap or uncompressed) and leaf nodes (linear or bitmap). 
Each branch is a literal (uncompressed) or virtual (linear or 
bitmap) array of pointers, preferably 256 Such rich pointers. 
That is, each node has a fanout of up to 256 Subexpanses. 
0041. In the preferred embodiment indexes are decoded 8 

bits, that is 1 byte, at a time. In other words, each digit is 1 
byte, and the real or virtual fanout of each branch node is 
256. It should be apparent to one of ordinary skill in the art 
that a digital tree can have any fanout in its branch nodes, 
even fanouts which are not a power of 2, Such as 26 when 
the tree decodes a simple 26-character alphabet. A binary 
tree is normally a divide-by-population tree (referred to as a 
binary Storage tree) in which keys are compared with whole 
key values Stored in each node. However, a binary tree can 
also be a divide-by-expanse (binary digital) tree with a 
fanout of 2 in which each digit is 1 bit. Furthermore, a hybrid 
tree may have varying fanouts at different branches or levels. 
However, the inventors of the present invention have dis 
covered that a consistent fanout of 256, that is, a digit size 
of 1 byte, is most efficient because computers naturally 
process byte-sized objects efficiently, in addition to word 
sized objects. 

0042 Compressed branches include linear and bitmap, 
Supplementing the uncompressed type branch. This latter 
branch type Supports conventional digital tree functions 
using, for example, an array of 256 Subexpanse pointers. 
When the actual fanout (i.e., number of populated Subex 
panses) is relatively limited, as is typically true when a new 
branch is created during indeX insertion, a “compressed” 
branch is instead used. This compressed branch may be 
Viewed as a virtual array of 256 Subexpanse pointers, but 
requiring much less memory (although often requiring two 
cache fills to traverse the associated node rather than one for 
reasons explained below.) 
0043 Referring to FIGS. 1A-1E, root pointer node 101 is 
used for accessing the underlying data Structure of the digital 
tree. Root pointer node 101 includes address information 
diagrammatically shown as an arrow pointing to a first or 
“top” level node 102, in this illustration, a branch node. 
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(Note, the terminology used herein assumes a 32-bit imple 
mentation wherein indexes are Single words, as opposed to 
character Strings, and thereby labels the top node of a tree 
pointed to by the root as “level 4'', children of the level 4 
node are designated as “level 3' nodes, etc. On a 64-bit 
machine, the root pointer points to a level 8 node, children 
of which are at level 7, etc. Thus, the level of any branch or 
leaf node is equal to the number of digits (bytes) remaining 
to decode in the indexes stored at or below that node. This 
numbering Scheme further has the advantage of making the 
lowest levels of both 32-bit and 64-bit trees the same, 
thereby simplifying Source code required for use with trees 
of varying sizes. It is further noted that this convention, 
while representative, is for purposes of the present expla 
nation and other conventions may be adopted including, for 
example, designating leaf nodes as constituting a highest 
(e.g., fourth) level of the tree.) Top level node 102 is an 
uncompressed branch node that includes an array of 256 rich 
pointers for referencing up to 256 lower level nodes and 
represents the entire expanse of the data Structure, i.e. 
indexes 00000000 through FFFFFFFF hex. Top level node 
102 includes a first rich pointer 103 (also referred to as an 
adaptable object) which corresponds to expanse 00000000 
00FFFFFF and points to a linear branch 105 at level 3. 
Another rich pointer 104 is shown corresponding to a final 
expanse portion including indexes FF000000-FFFFFFFF. 
Rich pointer 104 points to the most significant upper /256th 
of level 3 and an uncompressed branch 106. 
0044) The first Subexpanses of Level 3 include a subsid 
iary node in the form of linear branch 105. As shown, linear 
branch 105 includes a fanout (NumRP=the count of the 
number of child nodes referenced by the branch), a sorted 
list of index portions (digits) corresponding to the Subex 
panses referenced by the branch, and a list of pointers to the 
indicated Subexpanses. In the present illustration, only the 
pointer to the final Subexpanse listed as E4 and representing 
the subexpanse including 00FD00000 through 00FDFFFF is 
shown, although Similar pointers emanating from the slots 
for Subexpanses E1 through E3 would also be present but are 
not shown. Thus, the fourth rich pointer of linear branch 105 
is shown referencing bitmap branch 113 of level 2 which, in 
turn references linear leaves 118-122 and bitmap leaves 116, 
117 and 123 

0.045. On the high order end of node 102, uncompressed 
branch 106 at level 3 is referenced by rich pointer 104. 
Typically, uncompressed branch 106 would reference a large 
number of Subordinate nodes, although only two Such ref 
erences are shown for purposes of illustration. Note that 
sparsely populated branches would otherwise be converted 
into a linear or bitmap branch format to conserve memory 
but Still provide access to the node using one or two cache 
line fills. 

0046. As shown in FIGS. 1A-1E, level 3 uncompressed 
branch 106 includes an array of 256 rich pointers including 
rich pointer 107 to level 1 linear leaf node 108. Note that the 
use of the rich pointer according to one implementation of 
the invention allows the pointer to “skip' a level of the tree 
(i.e., in this case, level 2) to avoid an unused indirection 
when an intermediate branch would contain a single refer 
ence. Another rich pointer 109 points to level 2 linear leaf 
node 110 including two, 2-byte indexes. 
0047 A rich pointer may be used to implement a data 
Structure compatible with and further incorporating branch 
and leaf compression according to the present invention. 
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While not required, use of rich pointers is compatible with 
and Supports one implementation of the present invention. 
Such a rich pointer Structure encompasses at least two types 
of rich pointers or adaptable objects including a pointer type 
as described above as depicted in FIG.2A and an immediate 
type depicted in FIG. 2B. The immediate type supports 
immediate indexes. That is, when the population of an 
expanse is relatively sparse, a rich pointer can be used to 
store the indexes “immediately” within a digital tree branch, 
rather than requiring traversal of the digital tree down to the 
lowest level to access the index. This format is akin to the 
“immediate' machine instruction format wherein an instruc 
tion Specifies an immediate operand which immediately 
follows any displacement bytes. Thus, an immediate index 
or a Small number of indexes are Stored in the node, avoiding 
one or more redirections otherwise required to traverse the 
tree and arrive at Some distant leaf node. Immediate indexes 
thereby provide a way of packing Small populations (or 
Small number of indexes) directly into a rich pointer Struc 
ture instead of allocating more memory and requiring mul 
tiple memory references and possible cache fills to acceSS 
the data. 

0048. A two-word format of the preferred embodiment 
readily supports the inclusion of immediate indexes. Within 
the rich pointer, this is accomplished by Storing indeX digits 
in the entirety of the rich pointer excepting the type field. A 
rich pointer implemented in a 32-bit System may store 
anywhere from a Single 3-byte immediate indeX up to Seven 
1-byte indexes, while a rich pointer in a 64-bit System may 
Store up to 15 1-byte immediate indexes. The generalized 
Structure of a rich pointer (also referred to as an adaptable 
object) supporting immediate indexes is shown in FIG.2B. 
The rich pointer includes one or more indexes “I”, depend 
ing on the word-size of the platform and the size of the 
index, and an 8-bit Type field that also encodes the index 
Size and the number of immediate indexes. 

0049 FIG. 3 illustrates details of a linear branch con 
Struct according to the invention as implemented on a 32-bit 
platform. The linear branch consists of one byte indicating 
the fanout, i.e., number of populated Subexpanses referenced 
by the branch (NumRP), followed by a sorted array con 
sisting of 1 byte (i.e., digit) per populated Subexpanse 
indicating the Subexpanse number (e.g., 0 through 255). The 
number of populated Subexpanses is followed by a corre 
sponding array of Subexpanse pointers. The invention incor 
porates Some padding at the end of the two arrays which 
allows them to "grow in place' for faster insertions and 
deletions. Both of the Subexpanse arrays (i.e., digits and 
pointers) are organized or packed purely by population, not 
addressed uniformly by expanse but can be thought of as 
being organized or accessed by expanse. 

0050 Typically, a linear branch node as shown in FIG.3 
is used when the actual fanout, that is, the number of 
populated Subexpanses, is relatively Small, for example up to 
Seven rich pointers out of a possible 256 Subexpanses per 
branch. The linear branch node according to one implemen 
tation of the invention includes the previously mentioned 
three consecutive regions, including a count of populated 
Subexpanses, a Sorted list of populated Subexpanses (1 byte 
each) and a list of corresponding rich pointers, each two 
words in length. (AS recognized by those of ordinary skill in 
the art, other configurations of numbers, types, sizes and 
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ordering of regions may be employed in alternative imple 
mentations of the invention.) Using this particular Scheme, 
a maximum linear branch including Seven rich pointers 
requires 1 byte for the number of Subexpanses and 7 bytes 
for the Subexpanse list, hence two words (on a 32-bit 
system) for the combination. The combination of count and 
Subexpanse list is followed by fourteen words for the rich 
pointers themselves, the entire construct fitting in Sixteen 
words or one cache line total. Referring back to FIG. 3, a 
total of 4 populated Subexpanses are referenced by pointers 
for Expansel through Expanse4, respectively. 

0051 FIG. 4 illustrates a bitmap branch, again as imple 
mented on a 32-bit word size platform. The bitmap branch 

node has a first portion 401 including 256 bits (32 bytes) 
indicating populated and empty Subexpanses, followed by a 
Second portion 402 including ordinary pointers to indepen 
dent Subarrays of rich pointers to the populated Subexpanses. 
This construct may be thought of as compressing the byte 
per-valid-indeX required in a linear branch to a bit-per-any 
index, a potential Savings of up to 78, except that a bitmap 
contains 0 bits for invalid indexes. In concept, the Subex 
panse pointers are held in a simple array (portion 402) 
following the bitmap. However, according to a preferred 
embodiment of the invention, So as to keep memory man 
agement simple and insertion and deletion fast, the bitmap 
may be followed by eight ordinary pointers, each to an 
independent Subarray 408, 409 of between Zero and 32 
Subexpanse pointers. The bitmap is thereby organized by 
expanse, Since it is addressable by the digit (0... 255), while 
the Subexpanse pointers are listed “by population', Since the 
latter are packed into Subarrays corresponding only to the 
bits that are set in the bitmap. 

0.052 In another embodiment of the invention, once any 
bitmap branch Subarray of rich pointers reaches maximum 
memory usage, that is, a number of pointers (i.e., populated 
Subexpanses) Such that the amount of memory allocated to 
the Subarray is Sufficient to hold 32 Subexpanse pointers, the 
Subarray is made uncompressed to Save time during 
accesses, insertions, and deletions. Uncompressing a rich 
pointer Subarray means Setting all of the bits in the corre 
sponding Subexpanse of the bitmap, even for Subexpanses of 
indexes which are unpopulated; unpacking the rich pointer 
Subarray to be a simple, positionally-accessed array; and 
representing unpopulated Subexpanses with null rich point 
CS. 

0053 Thus, as shown in FIG. 4, the bitmap branch is a 
2-tier object, Somewhat more complex than either a linear or 
uncompressed branch. The first level (portion 401) is the 
bitmap itself, according to a 32-bit word size implementa 
tion of the invention, including 256 bits (32 bytes) Subdi 
vided into 8 subexpanses, followed by 8 pointers (portion 
402) to second-level ADTS or Subarrays (e.g., arrays 408 and 
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409). Each ADT 400 consists of a packed linear list of rich 
pointers, one rich pointer for each bit Set in the associated 
bitmap. On a 32-bit system, 8 words are required for the 
bitmap (32/4) and 8 words for the pointers, for a total of 16 
words. This latter total of 16 words is important to system 
performance as it is equal to one CPU cache line according 
to a preferred implementation of the invention. Note that on 
a 64-bit system, only 4 words would be needed for the 
bitmap, while 8 words would still be needed for the pointers, 
So that 4 words are wasted assuming again a 16 word cache 
line. 

0054 For example, bitmap 404 has a hex value of 
0000b074, which provides the following binary vector and 
index values: 

TABLE 1. 

5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4. 
C B A 9 8 7 6 5 4 3 2 1 O F E D 
O O O O O O O O O O O O O 1 O 1 
4 4 4 4 4 4 4 4 4 4 
9 8 7 6 5 4 3 2 1 O 
O O O 1 1 1 0 1 O O 

0055 According to this example, the binary vector rep 
resented in the bottom row of Table 1 indicates the presence 
of indexes within Subexpanses including Subexpanses 42, 
44, 45, 46, 4C, 4D and 4F within the range 40" to 5F 
The associated ordinary pointer 406 for this range (FIG. 4) 
points to array 408 which includes individual rich pointers 
to each of the Subexpanses corresponding to the Subexpanses 
indicated by the associated binary vector. 
0056. For comparison an uncompressed branch is 
depicted in FIG. 5. This construct comprises a simple array 
of rich pointers, in this case 256 Such rich pointers, with null 
rich pointers used to represent empty expanses. ASSuming 
again 2 words per rich pointer, Such uncompressed branches 
require 512 words. 

0057 The invention further supports global memory effi 
ciency. That is, when fanout (i.e., the number of populated 
Subexpanses) increases to a point where a linear branch 
occupies too many cache lines (according to one preferred 
embodiment of the invention, this limit is a single 16 word 
cache line), the branch is converted to a bitmap branch. Note 
that such a bitmap construct can handle “full fanout” and 
need never be converted to an uncompressed branch. Neither 
linear nor bitmap branches waste any memory on null 
Subexpanses. However, when the population under a linear 
or bitmap branch is high enough to “amortize’ the memory 
required for an uncompressed branch, or the overall or 
global memory efficiency of the data structure (preferably 
measured in bytes per index) still do not exceed Some 
Selected, “tunable' value, the branch is opportunistically 
converted to an uncompressed type. While this wastes Some 
memory on null Subexpanse pointers, it ensure a single 
indirection (and cache fill) to traverse the branch. Note, to 
Support the latter parameter, that is global memory effi 
ciency, at least in a higher population tree the root pointer 
may point to an intermediate data Structure that Stores the 
total number of bytes used by the tree and the total count of 
indexes Stored in the tree. This intermediate data structure 
may reside adjacent to the top branch node of the tree or 
point in turn to the top branch of the tree. 
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0.058 Leaf compression is also utilized according to the 
invention in the form of multi-indeX leaves including the 
aforementioned linear and bitmap leaf types. Typically, each 
lookup in one branch of a digital tree reduces the expanse or 
range of the indexes that can possibly be stored under the 
next lower Subexpanse pointer. Therefore, only the respec 
tive unique remaining bits not yet decoded need be stored. 
AS previously explained, when the population (i.e., number 
of valid indexes) in an expanse is Small, it becomes useful 
to Store the indexes in a Single object that is Sequentially or 
otherwise immediately Searchable, rather than proceeding 
hierarchically through more tree branches to application 
Specific leaves, each related to a single index. According to 
one implementation, in its Simplest case, an indexes-only 
leaf is a list of valid indexes. 

0059. The inventors have experimentally determined that 
an optimal Size of a leaf is relatively Small, e.g., less than or 
equal to two cache lines, i.e., 32 words or 128 bytes on a 
typical 32-bit word size platform. It has been found that even 
a Serial Search of a Sorted list of indexes in two full cache 
lines takes, on average, 1.5 cache fills (assuming that the 
data is not already in cache), Since half of the time the index 
is found in the first cache line (1 fill) and half the time in the 
Second line (2 fills). That is, when a population is Sufficiently 
Small, it has been found that it is preferable to Store it as a 
list, bitmap, or other ADT of indexes in one to two cache 
lines, rather than in more levels of a digital tree. 

0060 FIGS. 6A-6D and 7A-7C show examples of linear 
leaves according to the invention. A linear leaf is an ordered 
list of indexes, each consisting of N undecoded bytes, where 
N is the level in the tree using a convention wherein the 
lowest level, i.e., the level furthest from the root, is level 1. 
(Note that this is opposite of how trees are conventionally 
described wherein level numbering Starts at the topmost 
node at level 1, each child being at a level numbered higher 
than a level of its parent.) According to a preferred imple 
mentation, the population of the leaf (count of indexes 
equals the size of the leaf) is stored with the pointer to the 
leaf, not in the leaf itself (with the exception of an imple 
mentation used for very Small arrays that consist entirely of 
a single root-level linear leaf.) 

0061. As shown in FIGS. 6A-6D, the linear leaf is a 
packed array of Sorted indexes that Stores, for each index, 
only the minimum number of bytes remaining to be decoded 
at the level of the leaf in the tree. FIGS. 7A-7C depict 
alternative implementations used when values are associated 
with respective indexes, So that a separate value area is 
added including a list of Such values. Also note that, unlike 
the root-level leaf, the linear leaves need not include a 
population field for an index count. Instead, according to a 
preferred embodiment of the invention, the parent node 
carries the population field. 

0.062 Table 2 includes arrangements and capacities of 
leaves at various levels of a tree (lower level leaves requiring 
more bytes to represent the remaining portion of the index) 
for 32 and 64-bit word size platforms, and for systems 
having values associated with the indexes. 

Mar. 27, 2003 

TABLE 2 

Values Associated 
Index Only with Indexes 

32-bit 64-bit 32-bit 64-bit Index Size 

3 ... 36 2 ... 34 7-byte indexes 
3. . . 42 2 ... 36 6-byte indexes 
4. .. 51 2 ... 39 5-byte indexes 
4... 64 2 . . . 42 4-byte indexes 

3 . . . 42 6... 85 2 . . . 36 3 . . . 46 3-byte indexes 
4... 64 8. . . 128 2 . . . 42 4. .. 51 2-byte indexes 
8 . . . 24 See text 4... 25 8 . . . 25 1-byte indexes 

0063) Note that, in each case, the index size of a leaf, i.e., 
the number of remaining undecoded bytes in each index, is 
enumerated in the Type field of the referencing rich pointer 
Structure. The minimum leaf populations are based on how 
may indexes an immediate rich pointer can hold So that 
Smaller populations are “immediatized”, i.e., Stored in the 
rich pointer Structure itself. In contrast, the maximum leaf 
populations are limited by the capacity of two cache lines 
(e.g., 32 words) in the case of index-only leaves, or four 
cache lines (e.g., 64 words) in the case of leaves in which 
values are associated with indexes. According to another 
implementation of the invention on a 64-bit platform, an 
indexes-only leaf is reconfigured from an immediate indexes 
type directly to a bitmap leaf upon reaching Sixteen indexes 
So as to avoid creating a linear leaf for a single population 
Size and then a bitmap leaf upon the next insertion, reaching 
Seventeen indexes, in the same Subexpanse. 

0064 Bitmap leaves are useful when the memory cost of 
a linear leaf exceeds a particular threshold, for example, 
upon reaching the aforementioned 17 indexes. Thus, at the 
lowest level of the tree, where there is only a single index 
digit (e.g., byte) remaining to decode, a 256-index Subex 
panse has Sufficient population (e.g., 17 indexes), memory is 
conserved by representing the leaf as a bitmap with 1 bit for 
each index in the Subexpanse, hence 256 total bits or 32 
bytes. An example of an indexes-only bitmap leaf imple 
mented on a 32-bit word platform is presented in FIG. 8. In 
the figure, each horizontal rectangle represents one word. On 
a 64-bit platform, the leaf would appear Similar except that 
the words are larger and there are half as many words in the 
bitmap. The bits in the bitmap indicate which of the possible 
indexes in the expanse of the leaf are actually present, that 
is, Stored. 

0065 FIG. 9 is a diagram of an alternate embodiment in 
which the Subject data Structure associates values with the 
Stored indexes. AS shown, a value area including one word 
per valid index is included in the bitmap leaf. Similar to a 
bitmap branch, this embodiment of the bitmap leaf is a 2-tier 
construct, except that the rich pointer arrays (with two words 
per element) are instead value area Subarrays, that is, lists of 
values, having one word per element. On a 64-bit platform, 
the bitmap would instead require four words, with four 
words being unused. The result of using a 2-tier construct is 
that value list modification is faster because fewer bytes of 
memory and cache lines are involved. 

0066 Similar to bitmap branches, when an expanse is 
sufficiently small, for example, 256-way nodes with 8 bits or 
1 byte remaining to decode, and the population of the 
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expanse is Sufficiently large, e.g., equal to or greater than 25 
indexes, it has been determined that it is advantageous (i.e., 
“cheaper in terms of memory”) to represent the valid 
indexes in the expanse as a bitmap rather than as a list of 
indexes. This characteristic holds true only at level 1 of the 
tree (i.e., at leaves farthest from the root node) with just one 
undecoded byte per index. According to a preferred embodi 
ment of the invention, use of bitmap leaves may be limited 
to level 1 leaves, that is, for indexes containing only one 
undecoded byte. 

0067. The invention further includes leaf-index compres 
Sion. AS previously described in connection with linear 
leaves, traversing a digital tree involves decoding indeX bits 
(digits) representing portions (e.g., 1-byte Segments) of a 
target indeX being Sought, inserted or deleted. In many cases, 
upon reaching a leaf, Some or most of the bits in the index 
Stored at the leaf have already been decoded, that is, Stored 
positionally (i.e., digitally) in the tree. Thus, only the 
remaining undecoded indeX bits (the Suffix) must be stored 
in the leaf. Thus, on a 32-bit platform with 4-byte indexes 
decoded 1 byte at a time (i.e., at each branch of the tree), a 
(terminal) leaf having a size of two 64-byte wide cache lines 
(i.e., 128 bytes) might accommodate the number of com 
pressed indexes shown in Table 3. 

TABLE 3 

Maximum 
Number of 

Compressed Indexes 
per Leaf Conditions 

128/4 = 32 disjoint 4-byte indexes (no common leading bits) 
128/3 = 42 3-byte indexes each with 1 leading byte in common 

(already decoded) 
128/2 = 64 2-byte indexes each with 2 leading bytes in common 

(already decoded) 
128/1 = 128 1-byte indexes each with 3 leading bytes in common 

(already decoded) 

0068 Referring to Table 3, in the case of 1 byte per index, 
once the population exceeds twenty-four indexes, a 32-byte 
(i.e., 256 bit) object is sufficient to hold a bitmap represent 
ing all of the 256 possible indexes in a low-level leaf. Also 
note that leaf-indeX compression has additional advantages. 
In particular, each lower-level leaf in the tree can hold more 
indexes than a current-level leaf So that, even without 
immediate indexes, a cascade caused by inserting a single 
indeX which overflows an existing leaf never creates more 
than one additional level in the tree. Similarly, a decascade 
caused by deleting a Single indeX never deletes more than 
one level in the tree. In other words, leaf compression 
Supports good locality of changes during modification. 

0069. As previously noted, while the preferred embodi 
ment has been described in terms of a fixed size index, it 
may be readily modified to accommodate indexes of Vari 
able sizes Such as character Strings and bit Strings of arbi 
trary length. For example, using character Strings of arbi 
trary length as indexes, a unique remaining Suffix portion of 
a single index, if Sufficiently Small, may be Stored immedi 
ately in a rich pointer or, if longer, Stored in a variable size 
Single-indeX Suffix leaf. 

0070 FIG. 10 is a diagram of a computer system capable 
of Supporting and running a memory Storage program imple 
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menting and maintaining a data Structure according to the 
invention. Thus, although the present invention is adaptable 
to a wide range of data Structures, programing languages, 
operating Systems and hardware platforms and Systems, 
FIG. 10 illustrates one such computer system 1000 com 
prising a platform Suitable to Support the present invention. 
Computer system 1000 includes Central Processing Unit 
(CPU) 1001 coupled to system bus 1002. CPU 1001 may be 
any general purpose CPU, such as an HP PA-8500 or Intel 
Pentium processor. However, the present invention is not 
restricted by the architecture of CPU 1001 as long as CPU 
1001 Supports the inventive operations as described herein, 
e.g., the use of pointers. System bus 1002 is coupled to 
Random Access Memory (RAM) 1003, which may be 
SRAM, DRAM or SDRAM. ROM 1004 is also coupled to 
system bus 1002, which may be PROM, EPROM, or 
EEPROM. RAM 1003 and ROM 1004 hold user and system 
data and programs as is well known in the art. 
0071 System bus 1002 is also coupled to input/output 
(I/O) controller card 1005, communications adapter card 
1011, user interface card 1008, and display card 1009. The 
I/O card 1005 connects to storage devices 1006, such as one 
or more of a hard drive, a CD drive, a floppy disk drive, a 
tape drive, to the computer System. Communications card 
1011 is adapted to couple computer system 1000 to network 
1012, which may be one or more of a telephone network, a 
Local (LAN) and/or a Wide-Area (WAN) network, an Eth 
ernet network, and/or the Internet network and can be wire 
line or wireless. User interface card 1008 couples user input 
devices, such as keyboard 1013 and pointing device 1007, to 
computer system 1000. Display card 1009 is driven by CPU 
1001 to control display device 1010. 
0072 While the invention has been described in connec 
tion with what is presently considered to be the preferred 
embodiment, it is to be understood that the invention is not 
limited to the disclosed embodiment, but, on the contrary, is 
intended to cover various modifications and equivalent 
arrangements included within the Spirit and Scope of the 
appended claims. 

What is claimed is: 
1. A data Structure for Storage in a computer memory, Said 

data Structure accessible by an application program being 
executed on a data processing System, Said data structure 
comprising: 

a root pointer, and 
a digital tree pointed to by Said root pointer, comprising 

a first plurality of nodes arranged hierarchically, a 
Second plurality of Said nodes including: 
a branch node Selected from the group consisting of a 

linear, bitmap and uncompressed branch node 
Selected according to a number of populated Subex 
panses and an overall Status of the digital tree, and 

a leaf node Selected from the group consisting of linear 
and bitmap leaf nodes, each holding a plurality of 
indexes and containing only undecoded indeX bits 
according to a level of the leaf in the digital tree and 
a number of indexes in the leaf. 

2. The data structure according to claim 1 wherein Said 
Second plurality of nodes includes Said linear, bitmap and 
uncompressed branch nodes. 
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3. The data structure according to claim 1 wherein Said 
Second plurality of nodes includes Said linear and bitmap 
leaf nodes. 

4. The data Structure according to claim 1 wherein Said 
Second plurality of nodes constitutes Said first plurality of 
nodes. 

5. The data structure according to claim 1 further com 
prising a computer readable media having Stored therein Said 
digital tree. 

6. The data structure according to claim 1 wherein Said 
linear branch node comprises at least two linear lists, the first 
list including a Subexpanse descriptor including at least the 
corresponding indeX bits of each associated populated Sub 
expanse, and the Second list including pointers to one or 
more Subsidiary nodes for each associated Subexpanse, Said 
pointers corresponding to Said Subexpanse descriptor of Said 
first list. 

7. The data Structure according to claim 6 wherein each of 
Said pointers comprises a rich pointer. 

8. The data Structure according to claim 1 wherein Said 
bitmap branch node comprises at least a first list of bits 
including one bit for each possible Subexpanse under the 
bitmap branch node, each said bit indicating if the corre 
sponding Subexpanse is populated by any indexes, and a 
Second list of pointers pointing to at least one Subsidiary 
node for each of Said Subexpanses, Said pointers correspond 
ing to a Status of Said bits in Said first list. 

9. The data structure according to claim 8 wherein each of 
Said pointers comprises a rich pointer. 

10. The data structure according to claim 8 wherein said 
bitmap is Subdivided into Sections and Said list of pointers is 
similarly subdivided into a plurality of independent Subar 
rays, each Said Subarray pointed to by a Single corresponding 
pointer in a third list accompanying the bitmap. 

11. The data Structure according to claim 10 including 
logic configured to independently convert Said Subarrays to 
an uncompressed form in response to filling Said SubarrayS 
to their respective maximum memory usage. 

12. The data structure according to claim 1 wherein Said 
linear leaf node comprises at least a list of indexes reduced 
to respective unique remaining bits not yet decoded higher 
in the digital tree. 

13. The data structure according to claim 1 wherein Said 
bitmap leaf node comprises at least a first list of bits 
including one bit for each possible indeX in the leaf, each 
Said bit indicating if a corresponding one of Said indexes is 
valid. 

14. The data Structure according to claim 13 wherein Said 
bitmap leaf node comprises a list of values corresponding to 
valid ones of Said indexes and Said bitmap is Subdivided into 
Sections and Said list of values is similarly Subdivided into 
a plurality of independent Subarrays, each Said Subarray 
pointed to by a Single corresponding pointer in a third list 
accompanying the bitmap. 

15. The data structure according to claim 1 wherein Said 
data Structure includes fields Storing a total population and 
a total memory used by Said data Structure. 

16. A method of Storing an indeX in a data Structure, 
comprising the Steps of: 

identifying a compressed branch node of the data Struc 
ture under which the indeX belongs, 

determining a parameter of Said data Structure, Said 
parameter comprising one of an overall memory used 
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per index value for the data Structure, and a population 
under Said compressed branch node, 

in response to Said value, Selectively converting Said 
compressed branch node to an uncompressed branch 
node, and 

Storing the indeX under Said uncompressed branch node. 
17. The method according to claim 16 wherein said data 

Structure is Stored in a computer memory So as to be 
accessible by an application program being executed on a 
data processing System, Said data Structure comprising: 

a root pointer, and 
a digital tree pointed to by Said root pointer, comprising 

a plurality of nodes arranged hierarchically, each of 
Said nodes including one of: 
a branch node Selected from the group consisting of 

Said compressed branch node and Said uncompressed 
branch node, and 

a leaf node Selected from the group consisting of linear 
and bitmap leaf nodes, each holding a plurality of 
indexes and containing only undecoded indeX bits 
according to a level of the leaf in the digital tree and 
a number of indexes in the leaf. 

18. The method according to claim 16 wherein said 
compressed branch node comprises one of a linear branch 
node and a bitmap branch node. 

19. A method of Storing data in a data structure in a 
computer memory, said data structure accessible by an 
application program being executed on a data processing 
System, Said data Structure comprising a root pointer and a 
digital tree pointed to by Said root pointer, Said digital tree 
comprising a plurality of nodes arranged hierarchically, Said 
method comprising the Steps of 

identifying a number of populated expanses in Said digital 
tree, 

identifying an overall Status of Said digital tree; 
Selectively creating, in response to Said identifying Steps, 

a branch node Selected from the group consisting of a 
linear, bitmap and uncompressed branch node, 

identifying a level of a leaf node to be created in Said 
digital tree; 

identifying a number of indexes in Said leaf node to be 
created; and 

creating Said leaf node in response to Said Steps of 
identifying Said level of Said leaf node and Said Step of 
identifying Said number of indexes in Said leaf node 
including Selecting a type of Said leaf node from the 
group consisting of linear and bitmap leaf nodes, each 
holding a plurality of indexes and containing only 
undecoded indeX bits according to a level of the leaf in 
the digital tree and a number of indexes in the leaf. 

20. A computer memory for Storing data for access by a 
computer program being executed on a data processing 
System, comprising: 

a data Structure Stored in Said computer memory, said data 
Structure accessible by an application program being 
executed on a data processing System, said data Struc 
ture including 
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a root pointer; and expanses and an overall Status of the digital tree, 
and 

a digital tree pointed to by Said root pointer, comprising 
a plurality of nodes arranged hierarchically, each of 
Said nodes including one of 

a leaf node Selected from the group consisting of 
linear and bitmap leaf nodes, each holding a 
plurality of indexes and containing only unde 

a branch node Selected from the group consisting of coded index bits according to a level of the leaf in 
a linear, bitmap and uncompressed branch node the digital tree and a number of indexes in the leaf. 
Selected according to a number of populated Sub k . . . . 


