
(12) United States Patent
Shoolman et al.

US008954478B2

US 8,954.478 B2
Feb. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

SYSTEMS, METHODS, AND MEDIA FOR
MANAGING RAMI RESOURCES FOR
IN-MEMORY NOSQL DATABASES

Applicants:Yiftach Shoolman, Modi'in (IL); Ofer
Bengal, Hod Hasharon (IL)

Inventors: Yiftach Shoolman, Modi'in (IL); Ofer
Bengal, Hod Hasharon (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 126 days.

Appl. No.: 13/853,011

Filed: Mar. 28, 2013

Prior Publication Data

US 2013/O232177 A1 Sep. 5, 2013

Related U.S. Application Data
Continuation-in-part of application No. 13/247.263,
filed on Sep. 28, 2011, now Pat. No. 8,595,268.
Provisional application No. 61/616,425, filed on Mar.
28, 2012, provisional application No. 61/802,158,
filed on Mar. 15, 2013, provisional application No.
61/387.255, filed on Sep. 28, 2010, provisional
application No. 61/427,492, filed on Dec. 28, 2010.

Int. C.
G06F 7700 (2006.01)
G06F 7/30 (2006.01)
H03M 7700 (2006.01)
H03M 7/30 (2006.01)
U.S. C.
CPC G06F 17/30289 (2013.01); H03M 7700

(2013.01); H03M 7/3088 (2013.01); H03M
7/707 (2013.01)

USPC 707/803; 707/802; 707/702; 707/792
(58) Field of Classification Search

CPC G06F 17/30486; G06F 17/30584;
G06F 17/30283; G06F 17/30289; G06F

3/0629; G06F 3/0631; G06F 12/0871; G06F
17730312

USPC 707/609, 610, 620, 626, 634, 638, 702,
707/791. 793, 803, 804

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,420,992 B1 9/2008 Fang et al.
2008, 0215602 A1* 9, 2008 Samson et al. 707/101
2008/0235292 A1 9, 2008 Janinet al.
2010/0153466 A1* 6/2010 Burger 707/8O2
2010.0185593 A1 7/2010 Wong et al.
2012.0054197 A1 3/2012 San Martin et al.

OTHER PUBLICATIONS

IBM “A System of Reducing Down Time in a Cached In-Memory
Database Environmental Using Checkpointing Mechanism” IPCom
Prior Art Database Technical Disclosure Apr. 14, 2009.*

(Continued)

Primary Examiner — Augustine KObisesan
Assistant Examiner — Berhanu Mitiku
(74) Attorney, Agent, or Firm — Byrne Poh LLP

(57) ABSTRACT
In some embodiments, systems for managing an in-memory
NoSQL database are provided, the systems comprising a
hardware processor that is configured to: receive a dataset;
split the dataset into a plurality of parts of the dataset; and
storing each of the plurality of parts of the dataset in a separate
one of plurality of 32-bit software architecture in-memory
NoSQL databases.

6 Claims, 10 Drawing Sheets

US 8,954.478 B2
Page 2

(56) References Cited Notice of Allowance dated Jul. 23, 2013 in U.S. Appl. No.
13/247,263.

OTHER PUBLICATIONS Office Action dated Aug. 4, 2014 in U.S. Appl. No. 14/064,891.
DeCandia, G., et al., “Dynamo: Amazon's Highly Available Key- Office Action dated Oct. 13, 2011 in U.S. Appl. No. 13/247.263.
Value Store'. In Proceedings of the Symposium on Operating Sys- Office Action dated Oct. 17, 2011 in U.S. Appl. No. 13/247,371.
tems Principles (SOSP07), Stevenson, WA, USA, Oct. 14-17, 2007,
pp. 205-220. * cited by examiner

U.S. Patent Feb. 10, 2015 Sheet 1 of 10 US 8,954.478 B2

S8i (Service

Application 2.

gig 104\ ; : Sever #2. *

as - Severi2.3 -

8ackg 888

gig ServeriS.
i"Applicatii"

Serlieri.S.

8x8 is:

U.S. Patent Feb. 10, 2015 Sheet 2 of 10 US 8,954.478 B2

C
tata

anagement
Contralier

204 CNM :
(Cisteriod: Popotilator Coaster Citister

vanager) Configuration

FG, 2

U.S. Patent Feb. 10, 2015 Sheet 3 of 10 US 8,954.478 B2

302 iii:iz83 &ia:388

33.
v. Store i3i: ; the atabase

38.
Y. Reitiew8 at: 3: 88 ata:388

308 Keiaiance the 383888

FIG. 3A

U.S. Patent Feb. 10, 2015 Sheet 4 of 10 US 8,954.478 B2

32-y Configure a First Rapping Structure that Reiates Keys to
88;i& distie's

314- offigie 3 S8c388 viaegig Sistictate that Keiaies
-atios is:ities with Series tieties

3. 6- Corigiite a hird apping Stractise that Reiates Sesver
icieties it sixie icieties

3: 8

US 8,954.478 B2 Sheet 8 of 10

?

Feb. 10, 2015

U.S. Patent Feb. 10, 2015 Sheet 9 of 10 US 8,954.478 B2

s *- A Pipeired CP correctors with
' h38-is

Cies: C. Cofirefix: it
{:8: Conscios i 88.388t: . * Response

& processing {Cite onsectio; i8

>

pipe:88 fax Socket
otai Coitécois

8.

(Cisteriodiesianager {{Cotto: Ciste; Configuration}

s:---

US 8,954.478 B2 Sheet 10 of 10 Feb. 10, 2015 U.S. Patent

US 8,954,478 B2
1.

SYSTEMS, METHODS, AND MEDIA FOR
MANAGING RAMI RESOURCES FOR
IN-MEMORY NOSQL DATABASES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/616,425, filed Mar. 28, 2012,
which is hereby incorporated by reference herein in its
entirety. This application claims the benefit of U.S. Provi
sional Patent Application No. 61/802,158, filed Mar. 15,
2013, which is hereby incorporated by reference herein in its
entirety. This application is also a continuation-in-part of U.S.
patent application Ser. No. 13/247.263, filed Sep. 28, 2011,
which claims the benefit of U.S. Provisional Patent Applica
tion No. 61/387,255, filed Sep. 28, 2010, and U.S. Provisional
Patent Application No. 61/427,492, filed Dec. 28, 2010, each
of which is hereby incorporated by reference herein in its
entirety.

BACKGROUND

Many Web 2.0 and Software as a Service (SaaS) applica
tions rely heavily on user created content. This reliance drives
the need for (a) efficient and reliable scaling technologies for
Supporting rapid data growth; and (b) better storage and
retrieval technology. Much of this user-created content only
requires a primary key for Store and retrieve commands rather
than complex querying and management functionality
offered by traditional Relational Database Management Sys
tems (RDBMSs). The excess RDBMS functionality involves
expensive hardware and highly skilled personnel, typically
making it unsuitable for these types of applications. In-addi
tion, RDBMS replication capabilities are limited and typi
cally prefer consistency over performance and availability.
Despite many developments in recent years, Scaling-out a
relational database is still very complex.

During recent years NoSQL (Not Only SQL) database
management systems (which are also referred to as non
relational databases or unstructured databases) have emerged
in-order to solve these RDBMS deficiencies. NoSQL is a
broad class of database management systems that can differ
from classic RDBMS in some significant ways: (1) there are
no inherent relations between stored objects; (2) the data
stores may not require fixed table schemas; and (3) NoSQL
avoids join operations and typically scales horizontally.

In-memory non-relational databases are subset of NoSQL
databases, and are designed in a way that all of (or a major part
of) the users dataset is stored in RAM Memory. In-memory
non-relational databases are usually in two to three orders of
magnitude faster (in terms of throughput and latency) than
RDBMSs and an order of magnitude faster than other
NoSQL databases.
Among the in-memory non-relational databases, the open

Source Memcached was first to emerge intending to Solve
many of the RDBMS issues of read operations, by adding to
RDBMS a simple distributed key-value caching system.
However, Memcached does not include a data-management
layer, and therefore provides no support for high-availability
and data-persistence. In addition, during scaling events,
Memcached loses all, or significant part of its data.

Redis, an emerging open-source in-memory non-relational
database improves Memcached's offering by Supporting
write operations, persistence storage and high-availability,
using a data management-layer for the stored objects. But

10

15

25

30

35

40

45

50

55

60

65

2
Redis is built over a single master multi-slave architecture,
and therefore Suffers from master Scaling problems.

Furthermore, due to the relatively high price of Random
Access Memory (RAM) resources (as of March 2013, RAM
prices are approximately 200 times higher than HDD (Hard
Disk Drive)), in-memory non-relational databases may be
very expensive. Accordingly, in order to reduce the footprint
of in-memory datasets, various techniques that rely on com
pression and object serialization have been developed. How
ever, such techniques often increase the latency and process
ing overheads of in-memory non-relational databases beyond
what is acceptable. In many cases, Sub-millisecond latency is
required even at loads exceeding 100,000 requests per second
on a single server.

Accordingly, there is a need for new methods, systems, and
media for managing an managing in-memory NoSQL data
base.

SUMMARY

Systems, methods, and media for managing an in-memory
NoSQL database are provided. In some embodiments, meth
ods for managing an in-memory NoSQL database are pro
vided, the methods comprising: receiving a dataset; splitting,
by a hardware processor, the dataset into a plurality of parts of
the dataset; and storing each of the plurality of parts of the
dataset in a separate one of a plurality of 32-bit software
architecture in-memory NoSQL databases.

In some embodiments, systems for managing an
in-memory NoSQL database are provided, the systems com
prising a hardware processor that is configured to: receive a
dataset; split the dataset into a plurality of parts of the dataset;
and storing each of the plurality of parts of the dataset in a
separate one of a plurality of 32-bit software architecture
in-memory NoSQL databases.

In some embodiments, non-transitory computer-readable
media are provided containing computer-executable instruc
tions that, when executed by a processor, cause the processor
to perform a method for managing an in-memory NoSQL
database, the method comprising: receiving a dataset; split
ting, by a hardware processor, the dataset into a plurality of
parts of the dataset; and storing each of the plurality of parts
of the dataset in a separate one of a plurality of 32-bit software
architecture in-memory NoSQL databases.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example of a cluster architecture
in accordance with some embodiments.

FIG. 2 is a diagram of an example of a node architecture in
accordance with some embodiments.

FIG. 3A is a diagram of an example of a process for
managing a database in accordance with some embodiments.

FIG. 3B is a diagram of an example of a process for ini
tializing a database in accordance with some embodiments.
FIG.3C is a diagram of an example of a process for storing

data in a database in accordance with some embodiments.
FIG. 3D is a diagram of an example of a process for

retrieving data from a database in accordance with some
embodiments.
FIG.3E is a diagram of an example of a process for rebal

ancing a database in accordance with some embodiments.
FIG.3F is a diagram of an example of another process for

rebalancing a database in accordance with Some embodi
mentS.

US 8,954,478 B2
3

FIG. 4 is a diagram of an example of a connection between
a data management controller and servers and other data
management controllers in accordance with some embodi
mentS.

FIG. 5 is a diagram of an example of a skip list data 5
structure in accordance with some embodiments.

DETAILED DESCRIPTION

Systems, methods, and media for managing an in-memory
NoSQL database are provided.

In accordance with some embodiments, an in-memory
non-relational database can be implemented as a system 100
as illustrated in FIG.1. As shown, system 100 can include one
or more clusters 102, one or more applications 104, one or
more service managers 106, and one or more domain name
servers 108. Clusters 102 can be one or more clusters of nodes
110 for providing in-memory data storage as well as related
functionality as described further below. Applications 104
can be one or more applications that use data and related
information stored in nodes 102. Service manager (SM) 106
can be an entity that manages the user interaction with the
system, as well as maps user configuration to cluster
resources. The SM can be designed to Support single- and 25
multi-tenancy modes of operation, and can allow the system
to be supplied as a service. The SM can also communicate
with a cluster node manager of a node (described below) for
aggregating service statistics and alarms. When deployed as a
service, the SM can also be responsible for usage reports and 30
billing. DNS 108 can provide a mechanism for domain name
server functions as known in the art.

Turning to FIG. 2, an example of a node 200 that can be
used as a node 110 in a cluster 102 in accordance with some
embodiments is illustrated. As shown, node 200 can include a 35
data management controller (DMC) 202, a cluster node man
ager (CNM) 204, Zero or more servers 206, and common
cluster storage 208, and populator 210. As described more
fully below, in some embodiments, server(s) 206 can be used
to provide in-memory non-relational database functionality. 40
In some embodiments, the server(s) can be based on the
open-source Redis server with enhanced functionality. In
Some embodiments, the server(s) can represent one of the
following options: (1) a Memcached Bucket; (2) a partition of
a Memcached Bucket; (3) a Redis database (DB); or (4) a 45
partition of a Redis DB.

In some embodiments, node 200 may be implemented
using physical hardware. Such as a computer and/or a blade
server. Additionally or alternatively, in Some embodiments,
node 200 may be implemented as a virtual server in a virtual 50
environment, such as a computer cloud.

In some embodiments, DMC 202, CNM 204, and/or popu
lator 210 may be implemented as one or more processes that
are executed on node 200. Any Suitable system topology may
be used, in Some embodiments. 55

In some embodiments, each of servers 206 may be imple
mented as one or more software processes that are executed
on node 200. Moreover, in some embodiments, any of servers
206 may be implemented in 32-bit computer software instead
of 64-bit software. Because the size of a word in 32-bit soft- 60
ware is half the size of as 64-bit word, using 32-bit computer
Software may cause a decrease in memory overhead resulting
from the use of pointers (which are one word in size). Regard
less of whether any of servers 206 are implemented in 32-bit
software or 64-bit software, servers 206 may be executed on 65
64-bit hardware (e.g., executed by a 64-bit hardware proces
sor). Although servers 206 are depicted as processes executed

15

4
on the same node, in some embodiments, one or more of
servers 206 may be executed on a different node than the rest
of servers 206.

In some embodiments, data that is stored in the database
may be organized in key-value pairs. In some embodiments,
the key-value pairs may be part of various database objects.
The key of each pair may be any symbol, letter, digit, number,
string, and/or any other Suitable information representation
that is usable to retrieve the same pair's data structure from
the database. The value of each pair may be a digit, string, a
hash, a linked list, a skip list, and/or any other Suitable type of
object, and/or any other Suitable information representation.
Any suitable implementation of database data structures may
be used in some embodiments.

In some embodiments, a database data structure (or a value
that is part of the data structure) may be considered to be
associated with a key, if that key is usable to retrieve the data
structure's value from the database. Additionally or alterna
tively, in Some embodiments, a database data structure may
be considered to be associated with a key, if that key refer
ences the data structure.

In some embodiments, complex data structures, such as
skip lists and linked lists, may include large numbers of
pointers for each value stored in them in order to permit
commands, such as search, intersect, or union, to be executed.
The large numbers of pointers may result in a significant
memory overhead. For example, as illustrated in FIG. 5,
elements in a skip list 500 (when skip list500 is implemented
using 64-bit software) may have 4-byte values, with each
4-byte value being associated with 3 pointers (24 bytes in
total). Thus, in Some instances, the overhead costs introduced
by the management of pointers may reach 87.5% (including
memory alignment overhead).

In some embodiments, this overhead may be reduced by
implementing one or more of servers 206 in 32-bit software.
Using servers implemented in 32-bit software may reduce the
memory overheadby half without causing any significant loss
of performance and/or functionality, as compared to servers
implemented in 64-bit software. As noted above, in embodi
ments in which servers 206 are implemented in 32-bit com
puter Software, pointers can be only 4-bytes in size, rather
than 8 bytes as is the case with 64-bit architectures. This can
represent a 50% savings in memory overhead for every stored
object.

In some aspects, servers running on 32-bit Software archi
tectures may run out of memory faster than those servers that
are implemented in 64-bit software. The memory address
space of 32-bit servers may include 4096 billion different
addresses, whereas the memory space available in 64-bit
architectures may be virtually unlimited (e.g., it may include
1.8x10" addresses). Thus, 32-bit servers may be much more
likely to run out of available memory space than their 64-bit
counterparts when deployed in a data-intensive setting.
Accordingly, as is discussed further below, techniques for
rebalancing the data that is stored on servers may be deployed
that prevent the servers from running out of available memory
addresses when the servers are implemented using low-bit
(e.g., 32-bit) software. Examples of such techniques are pro
vided with respect to FIGS. 3F and 3E.

In some embodiments, DMC 202 and/or CNM 204 may be
used to implement a database (or bucket) that is hosted on a
plurality of servers (e.g., server 206). Any suitable type of
servers may be used to implement the database. The database
may include low-bit servers only (e.g., servers that are imple
mented in 32-bit software or otherwise have a smaller address
space than high-bit servers), high-bit servers only e.g., servers
having a larger address space than the low-bit servers), or any

US 8,954,478 B2
5

Suitable combination of low-bit and high-bit servers (e.g.,
combination of 32-bit servers and 64-bit servers executed on
64-bit processors). DMC 202 and/or CNM 204 may imple
ment an intermediate layer that is used to organize the data
base into partitions. The intermediate layer may be situated
between applications that use the database and the plurality of
servers. The intermediate layer may be transparent to both
client applications that use the database and to the servers that
host the database.

Each partition may be a logical unit that includes a plurality
of database values. The number of partitions in a database
may be fixed throughout the life of the database, in some
embodiments. The size of the partitions may be variable.
Whether a data structure belongs to a given partition may
depend on whether a key associated with the database data
structure is mapped (e.g., by a hashing function and/or a
mapping structure) to an ID of given the partition. Servers that
host the database may store multiple partitions or only one
partition. When the address space capacity of servers
becomes close to being reached, new servers may be instan
tiated, and partitions stored in the latter servers may be relo
cated to the new servers.
An example of the implementation and use of database

partitions is provided in connection to FIGS. 3A-3F. FIG. 3A
depicts a flowchart of an example of a process 300A for
managing a database in accordance with some embodiments
of the disclosed Subject matter. In some embodiments, pro
cess 300A may be performed by CNM 204. Additionally or
alternatively, process 300A may be performed by processors)
execute CNM 204. At 302, a database is initialized. As noted
above, the database may be hosted on a plurality of servers
and it may include low-bit servers only, high bit servers only,
or any suitable combination of low-bit and high-bit servers.
At 304, data is stored in the database. At 306, data is retrieved
from the database. At 308, the database is rebalanced in order
to address the problem of a first server (e.g., a low-bit server)
running out of available address space.

FIG. 3B depicts a flowchart of a process 300B for config
uring a database inaccordance with some embodiments of the
disclosed subject matter. Process 300B, in some embodi
ments, may be used to perform step 302 of process 300A. At
312, a first mapping structure that relates keys to partitionIDS
is configured. Configuring the first mapping structure may
include one or more of instantiating the mapping structure,
updating, the mapping structure, and/or performing any other
Suitable action. Any of the keys may include a number, a
string, or an alphanumerical string that is usable to retrieve
data from servers that are used to implement the database.
Additionally or alternatively, in Some embodiments, any of
the keys may include a number, a string, oran alphanumerical
string that is usable to store data from the servers that are used
to implement the database. Any of the partition IDs may
include a number, a string, an alphanumerical string, and/or
any other suitable type of identifiers. As noted above, each
partition may include one or more database objects. Each
database object may include a key and a value, with the key
being usable to retrieve the value. The database objects may
include a key and a value and/or any other Suitable unit of
data. More particularly, in some embodiments, in order for a
database object to be considered part of a partition (i.e.,
associated with a partition), the ID of that partition needs to be
associated with a key that is part of the object by the first
mapping structure.
The first mapping structure may include data (e.g., a table),

executable code, and/or any Suitable type of information that
is capable of being used to identify a partition ID that is
associated with a given key. In some embodiments, the first

5

10

15

25

30

35

40

45

50

55

60

65

6
mapping structure may be implemented as a table that relates
keys to partition IDs. Additionally or alternatively, in some
embodiments, the first mapping structure may implement a
hashing function. For example, the hashing function may be
one that uses the key as an argument and evaluates to a
partition ID. Thus, in Some embodiments, the hashing func
tion may map a key space (e.g., a key space that includes all
possible keys that can be used in the database) to a partition
space (e.g., a space that includes the identifiers of all parti
tions into which the database is divided). Any suitable hash
ing function may be used in some embodiments. For example,
CRC16 or SHA1 may be used.
At 314, a second mapping structure is configured that

relates partition IDs to server IDs. The second mapping struc
ture may include data (e.g., a table), executable code, and/or
any suitable type of information that is capable of being used
to identify a server ID that is associated with a given partition
ID. In some embodiments, the second mapping structure may
be implemented as a table that relates partition IDs to server
IDs. Any Suitable implementation of the second mapping
structure may be used in Some embodiments. Configuring the
second mapping structure may include one or more of instan
tiating the napping structure, updating the mapping structure,
and/or performing any other Suitable action. Any of the server
IDS may include a number, a string, an alphanumerical String,
and/or any other suitable type of identifiers. In some embodi
ments, for any one of the plurality of partitions in the data
base, the second mapping structure may identify a server
where data corresponding to the partition is stored. In some
embodiments, data corresponding to a partition may include
one or more database objects, wherein a key of any of the
database objects is associated with the ID of the partition by
the first mapping structure.
At 316, a third mapping structure is configured that relates

server IDs to node IDs. The third mapping structure may
include data (e.g., a table), executable code, and/or any Suit
able type of information that is capable of being used to
identify a node ID that is associated with a given server ID. In
Some embodiments, the third mapping structure may be
implemented as a table that relates server IDs to node IDs.
Any suitable implementation of the third mapping structure
may be used in some embodiments. Configuring the third
mapping structure may include one or more of instantiating
the mapping structure, updating the mapping structure, and/
or performing any other suitable action. Any of the server IDs
may include a number, a string, an alphanumerical String,
and/or any other suitable type of identifiers. In some embodi
ments, for any one of the plurality of servers that are used to
host the database, the third mapping structure may identify a
node (e.g., physical hardware. Such as a computer and/or a
blade server, and/or a virtual server in a virtual environment,
Such as a computer cloud) on which the server is executing.

FIG. 3C depicts a flowchart of an example of a process
300C for storing data in a database in accordance with some
embodiments of the disclosed subject matter. In some
embodiments, process 300C may be used to perform step 304
of process 300A. At 322, a first request may be received to
store data in the database from a client application. At 324, the
identity of a client and/or application that issued the first
request is determined. In some embodiments, this determina
tion can be based on data from a client authentication process.
At 326, the database (or bucket) which the client is attempting
to access is determined. In some embodiments, the database
(or bucket) may be determined by looking at the destination
port of the TCP connection from which the request has been
received. Step 326 may be performed when DMC 202 and/or

US 8,954,478 B2
7

CNM204 control the operation of other databases, in addition
to the database discussed with respect to process 300A.

At 328, a key for the data that is to be stored is determined.
In some embodiments, the key may be identified in the first
request. At 330, the key is mapped to a partition ID in order to
identify the partition where the data that is to be stored
belongs. In some embodiments, the mapping may be per
formed by using a mapping structure, such as the first map
ping structure. For example, in some embodiments, the par
tition ID may be identified by hashing the key against the
database (or bucket) partition space (as defined by a hashing
function) to get a partition ID. At 332, the partition ID is
mapped to a server ID in order to identify the server that is
hosting the partition. In some embodiments, the mapping
may be performed based on the second mapping structure. At
334, the server ID is mapped to a node ID in order to identify
the physical hardware (e.g., a computer or a virtual machine)
that is executing the server identified at step 328. In some
embodiments, the mapping may be performed based on the
third mapping structure. At 336, a second request is generated
based on the first request. The second request may be a
request to store the data received with the first request on the
server identified at step 334. The second request is transmit
ted to the server identified at step 334.

FIG. 3D depicts a flowchart of an example of a process
300D for retrieving data from a database in accordance with
Some embodiments of the disclosed subject matter. In some
embodiments, process 300D may be used to perform step 306
of process 300A. As shown, at 342, a first request to retrieve
data from the database is received. The first request may
identify a key that is associated with the requested data. At
344, the identity of a client and/or application that issued the
first request is determined. In some embodiments, this deter
mination can be based on data from a client authentication
process. At 346, the identity of a database (or bucket) that the
client is attempting to access is determined. In some embodi
ments, the identity of the database (or bucket) may be deter
mined by looking at the destination port of the TCP connec
tion from which the first request has been received. Step 346
may be performed when DMC 202 and/or CNM 204 control
the operation of other databases, in addition to the database
discussed with respect to process 300A.

At 348, the key is mapped to a partition ID in order to
identify the partition that the requested data is part of. In some
embodiments, the mapping may be performed by using the
first mapping structure. Additionally or alternatively, as noted
above, the mapping can be performed by hashing the key
against the database (or bucket) partition space (as defined by
a hashing function) to get a partition ID. At 350, the partition
ID is mapped to a server ID in order to identity the server that
is hosting the partition. In some embodiments, the mapping
may be performed based on the second mapping structure.
Thus, a server may be considered to host a partition when an
ID of that server is associated with an ID of the partition by
second mapping structure. At 352, the server ID is mapped to
a node ID in order to identify the physical hardware (e.g.,
computer or the virtual machine) that is executing the server
identified at step 350. In some embodiments, the mapping
may be performed based on the third mapping structure. At
354, a second data request is transmitted to the identified
server. The second data request may be based on the key
received as part of the first data request. At 356, a response to
the second data request is received from the identified server
and forwarded to the client application that originated the first
request.

In some embodiments, the first request may include a plu
rality of keys. In Such situations, a second query may be

5

10

15

25

30

35

40

45

50

55

60

65

8
generated for each one of the plurality of keys and transmitted
to a server that is associated with the key. Each keys associ
ated server, as discussed above, may be identified by execut
ing steps 324-354 for that key (i.e., by mapping the key to a
partitionID and then mapping the partition ID to a server ID).
Once responses to all second requests are received, a response
to the first query may be generated by aggregating the
responses to the second queries. The generated response may
be transmitted afterwards to the application that originated
the first request.

FIG. 3E depicts a flowchart of an example of a process
300E for relocating partitions from a first server to a second
server inaccordance with some embodiments of the disclosed
subject matter. In some embodiments, process 300E may be
used to perform step 308 of process 300A. At step 362, a first
server detects that an amount of data stored on that server
meets (e.g., exceeds or equals) a threshold. In some embodi
ments, the threshold may be based on the architecture that is
used to implement the first server. For example, in embodi
ments in which the first server is implemented using 32-bit
software, the threshold may be less than or equal to 4096 MB.
In some embodiments, the threshold may be set manually by
a system administrator or a designer, such as a programmer
(or a software engineer) of the server software. Additionally
or alternatively in some embodiments, the threshold may be
determined automatically, based on the type of architecture
that is used to implement the first server. For example, in
instances where the first server is implemented in 32-bit com
puter software, the first server may set the threshold to lower
or equal to a first value and in instances where the first server
is implemented in a 64-bit architecture, the first server may set
the threshold to a second value that is greater than the first
value. Regardless of whether the threshold is set manually or
automatically, in Some embodiments, the threshold may be
based on the type of computer architecture (e.g., 128-bit,
64-bit, 32-bit, 16-bit or 8-bit) for which the first server is
compiled.
At 364, a type of server may be selected. In some embodi

ments, a choice may be made between a low-bit server and a
high-bit server. The high-bit server may include any server
Software that has a larger address space than the low-bit
server. For example, in some embodiments, the low-bit server
may include software that is compiled for a 32-bit computer
architecture (i.e., 32-bit server software) and the high-bit
server may include software that is compiled for a 64-bit
architecture (i.e., 64-bit server software). In some embodi
ments, the choice between a low-bit server and a high-bit
server may be based on the size of a partition that is hosted on
the first server. For example, if the partition that is stored on
the first server is approaching or exceeding a predetermined
threshold (e.g., 4096 MB), that partition may need to be
moved to a 64-bit server in order to permit that partition to be
expanded beyond the address space limit of 32-bit software.
In some embodiments, the size of a partition may be based on
the sum of the sizes of all database objects that are stored in
the database whose keys are associated with the partition by
the first mapping structure.
At 366, a second server is instantiated. In some embodi

ments, the second server ma be instantiated from the server
software selected at step 364. The second server may be
instantiated on the node where the first server is executed or
on another node. At 368, one or more partitions that are stored
on the first server are relocated to the second server. In some
embodiments, relocating the partitions may include: select
ing, a Subset of partitions that are associated with the first
server by using a mapping structure. Such as the second map
ping structure (e.g., identifying one or more partitions asso

US 8,954,478 B2

ciated with the first server); identifying data associated with
the selected partitions (e.g., by using a mapping structure,
Such as the first mapping structure); and copying the identi
fied data to the to the second server.

In some embodiments, each of the selected partitions may
be selected based on a characteristic of the selected partition,
Such as size of data corresponding to the partition. Addition
ally or alternatively, each of the selected partitions may be
selected based on a predetermined rule (e.g., “select the par
tition with the largest amount of corresponding data').

In some embodiments, relocating the one or more parti
tions may include: transmitting an image including all data
stored on the first server (e.g., a Snapshot) to the second
server; deleting data corresponding to the partitions that are
desired to be relocated from the first server; and on the second
server deleting data corresponding to the partitions that are
not desired to be relocated from the first server.
At 370, the second mapping structure is updated. Updating

the second mapping structure may include configuring the
second mapping structure to relate the IDs of the partitions
that are relocated with an ID of the second server. Further
more, in Some embodiments, updating the second mapping
structure may include removing from the second mapping
structure any associations between IDs of the relocated par
titions and the ID of the first server. Reconfiguring the map
ping structure may result in Subsequent requests for data
associated with the relocated partitions to be routed to the
second server and not to the first one. As noted above, in some
embodiments, in order for data to be associated with a given
partition, the keys of database objects for that data may need
to be mapped to the ID of the given partition by the first
mapping structure.

FIG.3F depicts a flowchart of a process 300F for rebalanc
ing a database in accordance with some embodiments of the
disclosed subject matter. In some embodiments, process 300F
may be used to perform step 308 of FIG. 3A. As shown, at
time t, a first server (e.g., one of servers 206) may detect that
a threshold is met. In some embodiments, the threshold may
be met when the amount of data stored on that server has
exceeded a predetermined amount or when any other Suitable
condition is satisfied. At time t, the first server transmits a
message to CNM 204 indicating that the threshold has been
met. At time t, in response to the message, a second server is
instantiated by CNM 204. The second server may be instan
tiated, on node 200 or on another node. At time t, the second
server transmits a message to CNM 204 indicating that the
instantiation of the second server has completed.

At time ts, CNM 204 transmits an instruction to the first
server to relocate one or more of the partitions stored on the
first server to a second server. The instruction may include
any Suitable type of instruction, in some embodiments. Addi
tionally or alternatively, the instruction may include an iden
tifier of the partitions that are to be relocated, identifier of the
database that the partition is part of, and/or any other suitable
type of identifier. When received at the first server, the instruc
tion may cause the first server to fulfill a Subsequent request
from the second server for the data that is being relocated.

At time to the CNM 204 transmits an instruction to the
second server to retrieve one or more partitions from the first
server. In some embodiments, the instruction may include an
identifier of the partitions that are to be relocated, identifier of
the database that the partition is part of, and/or any suitable
type of identifier.

At time tz, the second server retrieves the requested parti
tions from the first server. At time ts, the second server trans
mits a message to CNM 204 indicating that the relocation has
completed.

10

15

25

30

35

40

45

50

55

60

65

10
At time to CNM 204 transmits an instruction to DMC 202

to update partitions associated with data that has been relo
cated from the first server. In some embodiments, the instruc
tion may include an indication of the relocated data and/or
one or more second keys associated with the relocated data.
At time to the IDs of the relocated partitions are updated. In
Some embodiments, updating the IDs of the relocated parti
tions may include associating the IDs for the relocated parti
tions with the ID of the server instantiated at time t. In some
embodiments, the association may be performed by updating
the second mapping structure to relate the IDs for the relo
cated partitions to the ID of the newly-instantiated server.

In some embodiments, any messages, communications,
and/or instructions transmitted between the first server, the
second server, DMC 202, and CNM 204 may be transmitted
over a communications network, such as TCP/IP network, a
LAN, or any suitable type of network. Additionally or alter
natively, any messages, communications, and/or instructions
transmitted between the first server, DMC 202, and CNM 204
may be transmitted by using any suitable inter-process com
munications method (or protocol). The inter-process commu
nications method (or protocol) may be effectuated over an
internal data bus (e.g., PCI, PCIe, FSB), over a communica
tions network (e.g., TCP/IP. InfiniBand), and/or over any
other Suitable means for communications.

Returning to FIG. 2, DMC 202 can also be used to perform
client authentication in some embodiments. Any suitable one
or more client authentication mechanisms can be used. For
example, Simple Authentication and Security Layer (SASL)
authentication, password authentication, source IP authenti
cation, Amazon Web Service Security Group, and/or any
other suitable authentication mechanisms can be used in
Some embodiments.
Any Suitable mechanism for identifying a server in a node

can be used. For example, a server can be identified by a port
number that is appended to an IP address of a node (e.g.,
NodeIP:ServerPort).

In accordance with some embodiments, DMC 202 can also
be used to perform protocol translation. For example, in some
embodiments, DMC 202 can perform a translation from a
protocol used by clients/applications requesting data to a
protocol used by servers 206. More particularly, for example,
a client/application can request data using Memcached
ASCII, Memcached binary, Redis old protocol, Redis unified
protocol, and/or any other suitable protocol. Servers 206 can
communicate using a Redis unified protocol modified to
include extensions that allows the servers to Support opera
tions which are natively not Supported by a Redis server (e.g.,
Memcached commands) withoutbreaking the Redis unified
protocol semantics. And DMC 202 can perform a translation
between these protocols.

For example, in accordance with some embodiments,
DMC 202 can perform translation between the Memcached
protocol and a modified Redis unified protocol. In doing so,
the following can be performed. First, a client may issue a
Memcached cas command using the following format: cas
<key> <flags <exptime> <bytes <cas unique noreply
\rvin. Note that cas is a check and set operation, which means
“store this data but only if no one else has updated since I last
fetched it.” This command can then be translated to a new
command, RCAS, using the following format RCAS <key>
<flags F(<exptime>) <cas unique <bytes/body).

In doing so, the DMC can perform the following steps
when translating a Memcached cas command received from
the client to the new RCAS command. If a noreply argument
is used by the client, the DMC does not forward this argument
to the server. Instead the DMC remembers that the initial

US 8,954,478 B2
11

request included this option, and therefore will not transfer
the Redis reply to the client. If Memcached expiration time
(exptime) uses Unix time format, the DMC can translate the
Unix time to offset in seconds from the current time. The
DMC can then receive a response to the RCAS command as
follows. A '+OK\r\n' response can be received, which indi
cates success. A “-NOT STORED' response can be
received, which indicates that the data was not stored, but not
because of an error. A “-EXIST response can be received,
which indicates that the item trying to be stored with the
RCAS command has been modified since it was last fetched.
A “-NOT FOUND\r\n” response can be received, which
indicates that the item trying to be stored with a RCAS com
mand did not exist or has been deleted. These received mes
sages can then respectively be translated to “STORED\r\n'.
“NOT STORED, “EXISTVr\n', and “NOT FOUND of the
Memcached protocol.
DMC 202 can also perform load balancing in some

embodiments to balance loads among a master server 206
(which can respond to read and write requests for data
objects) for a database (or bucket) partition and one or more
slave servers 206 (which can respond to read requests for data
objects) for the same partition. For example, in some embodi
ments, the DMC for a partition that resides over multiple
servers 206 (e.g., one master server and N (Zero or more) slave
servers), can redirect a request for a data object on that par
tition to a relevant least used server 206 based on shared usage
statistics.

In some embodiments, DMC 202 can redirect requests to
and responses from a node on which a data object is stored
when a request for that data object is received at the wrong
node. In some embodiments, this redirection of responses can
occur via dedicated connections 404 to one or more other
DMCs in other nodes as shown in FIG. 4 or one or more
servers in other nodes.
To improve the performance of servers 206, DMC 202 can

perform connection pooling in Some embodiments. Any Suit
able technique for connection pooling can be used in some
embodiments. For example, as shown in FIG. 4, in some
embodiments, the DMC can maintain a number of connec
tions 402 with each server 206 so that each addition or
removal of a connection from a server will degrade its
throughput and increase its latency. In some embodiments,
connections 402 between a DMC 202 and servers 206 can be
long-lived, persistent connections that reduce the overhead
associated with connection setup and teardown between cli
ent and server.
To improve the performance of servers 206, DMC 202 can

additionally or alternatively use Unix domain socket connec
tions between the DMC and the servers in some embodi
ments. When the DMC and the server reside on the same
physical/virtual machine, Unix domain Socket connections
can be used to eliminate the processing overhead associated
with managing TCP connection between the DMC and the
SWCS.

To improve the performance of servers 206, DMC 202 can
additionally or alternatively perform request pipelining in
some embodiments. Requests can be pipelined by the DMC
by sending multiple requests to the same server before
responses to the earlier of those requests are received from the
server on requests that were previously sent on the same
connection.

In some embodiments, the number of connections and the
size of a pipeline between DMC 202 and each server 206 can
additionally or alternatively be changed based on the average
object size in the server. For example, in Some embodiments,
when the average object size in a server is less than 1 kB, the

10

15

25

30

35

40

45

50

55

60

65

12
DMC may open fewer (or reduce the number of) persistent
connections with the server and increase the pipeline size
(i.e., the number of requests that can be sent to the server
without waiting for its response). However, when the average
file size is over 20 kB, for example, the DMC may increase the
number of persistent connections with the server and reduce
the pipeline size.

In some embodiments, the DMC can additionally or alter
natively prioritize light processing requests over heavy pro
cessing requests coming from different client connections.
Any suitable basis for selecting a processing request as being
light or heavy can be used in Some embodiments. For
example, a Redis GET request can be considered to be a light
request, where as a Redis ZRANGEBYSCORE request can
be considered to be a heavy request.

In some embodiments, the DMC can additionally or alter
natively send the same response to multiple requesters when
a read request for a data object is received while another read
request for the same data object has already been sent b the
DMC to a server, but a corresponding response not received.
In doing so, the DMC can queue one or more later requests
until the response for the first request is received. The DMC
can then send that response to the client that sent the first
request and to all the clients with queued requests.

In some embodiments, the DMC can additionally or alter
natively provide a cache for frequently requested data objects.
In some embodiments, the frequently requested objects can
be more frequently requested than the frequently requested
objects similarly replicated across servers 206 as described
below.

In accordance with some embodiments, data management
controller (DMC) 202 can be used to manage the data flow of
node 200, to manage the data flow between node 200 and one
or more other nodes in the same cluster, and to manage the
data flow between node 200 and one or more nodes in another
cluster.

In accordance with some embodiments, Cluster Node
Manager CNM 204, as a cluster manager can make auto
sharding (scaling-out) decisions when a specific database (or
Bucket) has to be split over more than one server due to load
or memory constraints. This can be accomplished in any
suitable manner. For example, the CNM can instruct a server
to send one or more user data set partitions to a new server,
and then the CNM can instruct the DMC to redirect requests
destined to this partition(s) to the new server. Similarly, in
Some embodiments, CNM204 as a cluster manager can make
auto-merging (Scaling-in) decisions when a specific database
(or Bucket) has to be merged from two or more servers to
fewer servers due to reduced load or a reduction in memory
size. This can be accomplished in any suitable manner. For
example, the CNM can instruct a server to send one or more
user data set partitions to a target server that already manages
a portion of the user data set, and then the CNM can instruct
the DMC to redirect requests destined to this partition(s) to
the target server.

In accordance with some embodiments, cluster node man
ager (CNM) 204 can be used to perform node management
functions and cluster management functions. For example,
the cluster node manager can be used to monitor the status of
each node, configure the node, control inter- and intra-node
communications, elect nodes for aggregation and Supervision
functions, and provide a management interface for the cluster
operation.

In accordance with some embodiments, CNM 204 as a
node manager can monitor for failures and/or degraded status
in other nodes and in servers of its own node. Any Suitable
mechanism can be used for determining that another node or

US 8,954,478 B2
13

server has failed or become degraded in Some embodiments.
For example, in Some embodiments, periodic messages can
be sent out by each server in a node to the CNM of the node.
The CNM can detect a failure when a message is missing. As
another example, in some embodiments, each CNM can send
out a periodic message to CNM(s) in one or more other nodes.
The CNM(s) in the one or more other nodes can detect a
failure when this message is missing. As yet another example,
each server can send out a memory fragmentation status
message to the CNM in the same node to alert the CNM if its
performance has become degraded. Any suitable action can
be taken in response to a failure or degraded Status. For
example, in some embodiments, a CNM can cause a server or
another node to restart its software upon a failure being
detected, to perform a de-fragmentation process upon a
degraded status being detected, etc. In some embodiments,
when the fragmentation ratio crosses a pre-defined threshold,
the following can be performed: (1) another server on the
same node or on a different node can be started; (2) the
fragmented server can be backed-up; (3) all clients can be
switched to the new server; and (4) the fragmented server can
be released.

In some embodiments, CNM 204 as a node manager can
receive, process, and monitor local configuration data, and/or
monitor and collect node statistics, such as DMC statistics
and server statistics.

In some embodiments, CNM 204 as a node manager can
translate server statistics to other non-relational database sta
tistics. For example, when a Memcached user asks to get
his/her Memcached statistics for the user's server 206 that is
based on a Redis server, the request can be forwarded to the
relevant node that contains the user's server 206 that holds the
user dataset, and the CNM in that node can process this
request and translate the Redis statistics to Memcached sta
tistics.

In some embodiments, CNM 204 as a node manager can
provide statistics information to other components upon
request.

In some embodiments, CNM 204 as a node manager can
monitor the DMC and server(s) for performance alerts. For
example, the CNM as a node manager can monitor cases
where the throughput or the latency of the node or the server
crosses pre-defined thresholds.

In some embodiments, CNM 204 as a node manager can
control the load of the replication processes across the servers
which reside on the same node, and control the multi-cluster
replication operation of the server(s) within a node.

In some embodiments, CNM 204 as a cluster manager can
manage cluster configuration by communicating with
another CNM designated as a Node Configuration Manager
for allocating and releasing resources.

In some embodiments, CNM 204 as a cluster manager can
update the cluster DNS servers with any configuration change
of the database (or Bucket). These updates can be used to
ensure that only one protocol hop will be used between the
clients and the cluster nodes in Some embodiments.

In some embodiments, CNM 204 as a cluster manager can
maintain a global configuration map that maps of all users
datasets (e.g., databases or Buckets) with their partitions to
cluster nodes and servers. In some embodiments, when the
CNM receives a request to create a user dataset, or receives a
request to increase the size of a user dataset, the CNM can
perform an admission control process which will look for
additional resources over existing nodes of a cluster or alter
natively will add a new node to the cluster. In some embodi
ments, when the CNM receives a request to delete a user
dataset, or receives a request to decrease the size of a user data

5

10

15

25

30

35

40

45

50

55

60

65

14
set, the CNM can perform an admission control process
which will release the resources.

In some embodiments, CNM 204 as a cluster manager can
maintain a global rebalancing process in order to ensure that
all resources of a cluster are spread equally across nodes.

In some embodiments, CNM 204 as a cluster manager can
forward monitoring requests from the system manager to the
proper CNM and aggregate statistics from multiple servers
that serve the same database (or Bucket). Information about
levels of utilization of the servers 206 can be exchanged
between cluster node managers (CNM) 204 in different
nodes.

In some embodiments, CNM 204 as a cluster manager,
together with the relevantanother CNM designated as a Node
Replication Controller, can perform cross-clusters replica
tion operations.

In some embodiments, DMC 202 and CNM 204, each of
which is a control process, can be combined to form a com
bined control process.

In some embodiments, server(s) 206 can be used to provide
in-memory non-relational database functionality and any
other Suitable server process(es). In some embodiments, the
server(s) can be based on the open-source Redis server with
enhanced functionality. In some embodiments, the server(s)
can represent one of the following options: (1) a Memcached
Bucket; (2) a partition of a Memcached Bucket; (3) a Redis
database (DB); or (4) a partition of a Redis DB.

In some embodiments, each cluster's node includes Nserv
ers, and there can be any suitable number of servers, including
Zero, in Some embodiments.

In some embodiments, in addition to functionality per
formed by a Redis server, server 206 can also support data
operations which are not natively supported by a Redis server,
Such as cas and prepend commands and flag and cas argu
ments of Memcached. Commands and arguments which are
not natively supported by the Redis server are transmitted to
server 206 using the extension(s) of the modified Redis uni
fied protocol, which extends the supported Redis command
while preserving Redis unified protocol semantics. Server
206 supports these extensions by adding new elements to the
object key data structure and by implementing the command
logic behind the new commands. Examples for the new ele
ments that are added to the Redis Object Key Data Structure
a.

i. flags field: to support the Memcached flag functionality
and

ii. cas field: to Support the Memcached cas functionality.
In some embodiments, in addition to functionality per

formed by a Redis server, the server can also perform real
time (or near real-time) class-based compression. In order to
perform this compression, in some embodiments, a set of
global dictionaries for finding duplicated Strings across mul
tiple objects can be provided. These dictionaries can treat all
the non-relational objects that belong to a certain class as a
one big object. As a result, an object can be compressed based
on many data patterns which appeared in objects previously
processed by the compression process.
Any Suitable compression dictionaries can be used in some

embodiments. For example, the compression dictionaries can
be a LZW/LZ78 dictionary, a LZP dictionary, or any other
Suitable compression dictionary.

These dictionaries can be saved globally and can be not
attached to each object, which provides additional reduction
in the size of each compressed object, in some embodiments.

In some embodiments, a classification mechanism can be
used to classify objects according to data patterns that were
found in the objects and can provide a dedicated global dic

US 8,954,478 B2
15

tionary per object class. This mechanism can find new classes
of objects and merge classes of objects. As a result, the total
size of each compression dictionary can be reduced, which
contributes to additional enhancement in the compression
ratio.

In some embodiments, in addition to functionality per
formed by a Redis server, a real-time (or near real-time)
compaction mechanism for cached objects can be provided.
In some embodiments, this compaction mechanism can
delete cached objects immediately (or a soon after) after they
have been expired.

In some embodiments, in addition to functionality per
formed by a Redis server, a mechanism for storing frequently
used objects in a partition that is replicated across multiple
nodes can be provided. In this way, multiple nodes can each
serve the frequently used objects simultaneously thus
improving performance. In some embodiments, these fre
quently used objects can always bestored in an uncompressed
format.

In accordance with some embodiments, CCS 208 is an
internal cluster repository service (based on the Redis archi
tecture). In some embodiments, this service can include a per
node and a per-cluster configuration, statistics, and alert
information. All the nodes in a cluster can be synchronized
with the per-cluster configuration. The DMC and CNM can
be registered to the CCS to receive configuration change
events which are relevant to their operations.
As shown in FIG. 1, in accordance with some embodi

ments, each cluster can include one or more Backup Nodes
112.

In some embodiments, the cluster architecture described
herein can be provided as a service. A user of this service can
be registered through the service manager (SM), which com
municates with a CNM designated as a Cluster Orchestrator
to allocate user resources in the cluster. In some embodi
ments, the SM may allocate resources across multiple clus
terS.

In some embodiments, a user resource can be a Mem
cached Bucket, a Redis database (DB), or any other suitable
non-relational database. Each database (or bucket) can be
hosted over one or more servers 206, depending on the trans
action load imposed and the memory size of its dataset. In
Some embodiments, each database (or bucket) can be com
posed of multiple partitions (e.g., 4096 or any other suitable
number). In some embodiments, keys can be equally spread
over the different partitions by applying a hash function tech
nique. Partition space may scaled dynamically (in or out) if
necessary, using a consistent hashing algorithm.

In some embodiments, a partition in a cluster can be hosted
by one master server 206, and by Zero or more slave servers
206. Master servers can serve both read and write requests,
and slave servers can only serve read requests, in some
embodiments.
When a database (or a bucket) is created, the user can be

provided with a single DNS address oralist of DNS addresses
to be used for accessing the database (or the bucket) in some
embodiments. The user then needs to configure its application
servers to use these addresses. This list can include DNS
addresses for both master and slave servers 206 that hold the
database (or the bucket). Multiple DNS addresses may point
to the same server 206.

Application requests may be sent directly to the node
where the key is hosted, or may be redirected to that node by
another node (through the DMC).

In embodiments in which servers 206 are implemented
using 32-bit computer software, populator 210 may be used to
import existing 64-bit data sets into servers 206. The dataset,

10

15

25

30

35

40

45

50

55

60

65

16
in Some instances, may be provided to populator 210 by a
system administrator or another entity that is responsible for
migrating the 64-bit dataset to the 32-bit storage of servers
206. Populator 210 may issue a series of commands to DMC
202 instructing DMC 202 to store the data set in servers 206.
The commands may be executed in the manner discussed
with respect to FIG.3C.

In accordance with Some embodiments, any one or more
node, any one or more cluster, the service manager, and the
DNS can be implemented in one or more general or special
purpose devices, such as a general purpose computer, a spe
cial purpose computer, a client, a server, etc. Any of these
general or special purpose devices can include any Suitable
components such as one or more hardware processor (each of
which can be a microprocessor, digital signal processor, a
controller, etc.), memory, communication interfaces, display
controllers, input devices, etc. Any one or more of the con
nections between different components herein can be formed
from any suitable communication link or combination of
communication links. For example, the communication links
can include the Internet, a local area network, a wide area
network, a telephone network, a satellite network, a cable
network, etc.

In some embodiments, any Suitable computer readable
media can be used for storing instructions for performing the
processes described herein. For example, in Some embodi
ments, computer readable media can be transitory or non
transitory. For example, non-transitory computer readable
media can include media Such as magnetic media (Such as
hard disks, floppy disks, etc.), optical media (such as compact
discs, digital video discs, Blu-ray discs, etc.), semiconductor
media (such as flash memory, electrically programmable read
only memory (EPROM), electrically erasable programmable
read only memory (EEPROM), etc.), any suitable media that
is not fleeting or devoid of any semblance of permanence
during transmission, and/or any suitable tangible media. As
another example, transitory computer readable media can
include signals on networks, in wires, conductors, optical
fibers, circuits, any suitable media that is fleeting and devoid
of any semblance of permanence during transmission, and/or
an Suitable intangible media.

It should be noted that FIGS. 3A-F are provided as
examples only. At least some of the steps of processes 300A-F
may be performed in a different order than represented, per
formed concurrently, or omitted. Although the invention has
been described and illustrated in the foregoing illustrative
implementations, it is understood that the present disclosed
Subject matter has been made only by way of example, and
that numerous changes in the details of implementation of the
invention can be made without departing from the spirit and
scope of the invention, which is limited only by the claims
which follow. Features of the disclosed implementations can
be combined and rearranged in various ways. It will also be
understood that the provision of the examples described
herein (as well as clauses phrased as “such as "e.g.,
“including and the like) should not be interpreted as limiting
the claimed Subject matter to the specific examples; rather, the
examples are intended to illustrate only some of many pos
sible aspects.

Although the invention has been described and illustrated
in the foregoing illustrative embodiments, it is understood
that the present disclosure has been made only by way of
example, and that numerous changes in the details of imple
mentation of the invention can be made without departing
from the spirit and scope of the invention, which is only

US 8,954,478 B2
17

limited by the claims which follow. Features of the disclosed
embodiments can be combined and rearranged in various
ways.
What is claimed is:
1. A method for managing an in-memory NoSQL database

comprising:
receiving a dataset;
splitting, by a hardware processor, the dataset into a plu

rality of parts of the dataset, wherein one of the plurality
of parts of the dataset includes a plurality of partitions;

storing each of the plurality of parts of the dataset in a
separate one of a plurality of 32-bit software architecture
in-memory NoSQL databases:

storing data in the one of the plurality of parts of the
dataset;

determining an amount of data stored in the one of the
plurality of parts of the dataset;

determining whether the amount meets a threshold;
responsive to determining that the amount meets the

threshold, determining whether the one of the plurality
of parts of the dataset can be split into a plurality of
sub-parts of the dataset, wherein each of the sub-parts of
the dataset includes at least one of the plurality of parti
tions, and whether at least one of the plurality of sub
parts of the dataset can be stored in a 32-bit software
architecture in-memory NoSQL database; and

responsive to determining that the one of the plurality of
parts of the dataset can be split into a plurality of sub
parts of the dataset, wherein each of the sub-parts of the
dataset includes at least one of the plurality of partitions,

10

15

25

30

and that the at least one of the plurality of sub-parts of the
dataset can be stored in a 32-bit software architecture
in-memory NoSQL database, splitting the one of the
plurality of parts of the dataset into a plurality of sub
parts of the dataset, wherein each of the sub-parts of the 35
dataset includes at least one of the plurality of partitions,
and storing the at least one of the plurality of sub-parts of
the dataset in a 32-bit software architecture in-memory
NoSQL database; and

responsive to determining that the one of the plurality of 40
parts of the dataset cannot be split into a plurality of
sub-parts of the dataset, wherein each of the sub-parts of
the dataset includes at least one of the plurality of parti
tions, or that the at least one of the plurality of sub-parts
of the dataset cannot be stored in a 32-bit software archi- 45
tecture in-memory NoSQL database, Scaling the one of
the plurality of parts of the dataset to a 64-bit software
architecture in-memory NoSQL database.

2. The method of claim 1, wherein the dataset is received
from a 64bit software architecture in-memory NoSQL data
base.

3. A system for managing an in-memory NoSQL database,
comprising:

a hardware processor that is configured to:
receive a dataset;
split the dataset into a plurality of parts of the dataset,

wherein one of the plurality of parts of the dataset
includes a plurality of partitions;

store each of the plurality of parts of the dataset in a sepa
rate one of a plurality of 32-bit software architecture
in-memory NoSQL databases:

store data in the one of the plurality of parts of the dataset;
determine an amount of data stored in the one of the plu

rality of parts of the dataset;
determine whether the amount meets a threshold;
responsive to determining that the amount meets the

threshold, determine whether the one of the plurality of

50

55

60

65

18
parts of the dataset can be split into a plurality of sub
parts of the dataset, wherein each of the sub-parts of the
dataset includes at least one of the plurality of partitions,
and whether at least one of the plurality of sub-parts of
the dataset can be stored in a 32-bit software architecture
in-memory NoSQL database; and

responsive to determining that the one of the plurality of
parts of the dataset can be split into a plurality of sub
parts of the dataset, wherein each of the sub-parts of the
dataset includes at least one of the plurality of partitions,
and that the at least one of the plurality of sub-parts of the
dataset can be stored in a 32-bit software architecture
in-memory NoSQL database, split the one of the plural
ity of parts of the dataset into a plurality of sub-parts of
the dataset, wherein each of the sub-parts of the dataset
includes at least one of the plurality of partitions, and
store the at least one of the plurality of sub-parts of the
dataset in a 32-bit software architecture in-memory
NoSQL database; and

wherein the hardware processor is further configured to:
responsive to determining that the one of the plurality of

parts of the dataset cannot be split into a plurality of
sub-parts of the dataset, wherein each of the sub-parts of
the dataset includes at least one of the plurality of parti
tions, or that the at least one of the plurality of sub-parts
of the dataset cannot be stored in a 32-bit software archi
tecture in-memory NoSQL database, scale the one of the
plurality of parts of the dataset to a 64-bit software
architecture in-memory NoSQL database.

4. The system of claim 3, wherein the dataset is received
from a 64-bit software architecture in-memory NoSQL data
base.

5. A non-transitory computer-readable medium containing
computer-executable instructions that, when executed by a
processor, cause the processor to perform a method for man
aging an in-memory NoSQL database, the method compris
ing:

receiving a dataset;
splitting, by a hardware processor, the dataset into a plu

rality of parts of the dataset, wherein one of the plurality
of parts of the dataset includes a plurality of partitions;

storing each of the plurality of parts of the dataset in a
separate one of a plurality of 32-bit software architecture
in-memory NoSQL databases:

storing data in the one of the plurality of parts of the
dataset;

determining an amount of data stored in the one of the
plurality of parts of the dataset;

determining whether the amount meets a threshold;
responsive to determining that the amount meets the

threshold, determining whether the one of the plurality
of parts of the dataset can be split into a plurality of
sub-parts of the dataset, wherein each of the sub-parts of
the dataset includes at least one of the plurality of parti
tions, and whether at least one of the plurality of sub
parts of the dataset can be stored in a 32-bit software
architecture in-memory NoSQL database;

responsive to determining that the one of the plurality of
parts of the dataset can be split into a plurality of sub
parts of the dataset, wherein each of the sub-parts of the
dataset includes at least one of the plurality of partitions,
and that the at least one of the plurality of sub-parts of the
dataset can be stored in a 32-bit software architecture
in-memory NoSQL database, splitting the one of the
plurality of parts of the dataset into a plurality of sub
parts of the dataset, wherein each of the sub-parts of the
dataset includes at least one of the plurality of partitions,

US 8,954,478 B2
19

and storing the at least one of the plurality of sub-parts of
the dataset in a 32-bit software architecture in-memory
NoSQL database; and

wherein the method further comprises:
responsive to determining that the one of the plurality of 5

parts of the dataset cannot be split into a plurality of
sub-parts of the dataset, wherein each of the sub-parts of
the dataset includes at least one of the plurality of parti
tions, or that the at least one of the plurality of sub-parts
of the dataset cannot be stored in a 32-bit software archi- 10
tecture in-memory NoSQL database, Scaling the one of
the plurality of parts of the dataset to a 64-bit software
architecture in-memory NoSQL database.

6. The non-transitory computer-readable medium of claim
5, wherein the dataset is received from a 64 bit software 15
architecture in-memory NoSQL database.

k k k k k

20

