(12) (19) (CA) Dem ande-Application

OPIC CIPO

OFFICE DE LA PROPRIETE

(CANADIAN INTELLECTUAL

INTELLECTUELLE DU (CANADA “:k PrROPERTY OFFICE (21) (Al) 2,294,181
86) 1999/04/20
&7y 1999/11/11

(72) DICE, DAVID, US

(72) SREENIVASAN, SUNIL, US

(72) AHA, DAVID, US

(71) SUN MICROSYSTEMS, INC., US

1) Int.C1.” GO6F 9/455
30) 1998/04/20 (09/062,908) US

34) SYSTEME ET PROCEDE POUR FOURNIR UN ENSEMBLE
PERMETTANT D EMULER EFFICACEMENT LES APPELS A

UN SYSTEME D’EXPLOITATION

54) SYSTEM AND METHOD PROVIDING AN ARRANGEMENT
FOR EFFICIENTLY EMULATING AN OPERATING SYSTEM

CALL

MEMORY SUBSYSTEM 12

|
|
| CROSSOVER | | APICALL
| TABLE TARGET ADRS
: 25 TABLE 28
!
I
|
i

CONTROL BUS \ MEMORY
INTERFACE MANAGEMENT
23 UNIT 14

(57) L’ mmvention concerne un sous-ensemble de
commande d’appels a un systeme d’exploitation, ce
sous-ensemble ¢€tant destine a étre utilis€¢ dans un
ordinateur comprenant un processeur permettant de
traiter un programme, les mstructions programme d’ un
certain type d’instructions d’appels a un systeme
d’exploitation permettant d identifier I'un des différents
types d appels a un systeme d’exploitation. Chaque type
d’appels a un systeme d’exploitation peut en outre étre
associ¢ a une valeur d’identification correspondant a un
type d’appels a un systeme d’exploitation, cette valeur
¢tant comprise dans une plage de valeurs predeterminee.

I*I Industrie Canada Industry Canada

|
{
'
|
l
I
|
I
1 INPUTIOUTPUT
MIGROPROGESSOR 1 SUBSYSTEMS

(57) An operating system call control subsystem 1s
disclosed for use 1 a computer that includes a processor
for processing a program, the program instructions of an
operating system call instruction type 1dentifying one of
a plurality of types of operating system calls, each type
of operating system call being associable with an
operating system call type identifier value within a
predetermied range of values. The operating system call
instruction type processing module, 1n response to the
processor processing an instruction of the operating
system call mnstruction type, (a) saves the operating
system call set idenftifier from the target address, (b)

OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA "".

%
...
a:'c;\
e s WHEREERS %
I.- ‘q b. 't‘ “q ‘wh \"\ \5
« - (‘\ N % .:- .
. e e T -
-

OPIC CIPO

PROPERTY OFFICE

En réponse au traitement, par ledit processeur, d une
instruction du type instruction d’appels a un systeme
d’exploitation, le module de traitement du type
d’instruction d’appels a un systeme d’exploitation a)
sauvegarde 1’idenftificateur d’appels a un systeme
d’exploitation de 1’adresse cible, b) choisit 1’'une des
entrées du tableau de transition a 1’aide de la valeur de
décalage de ladite adresse cible, ¢) traite I'instruction de
I’entrée saisie du tableau de transition afin de
sauvegarder la valeur correspondant au decalage de
I’entrée saisie dans ce tableau, et d) produit une valeur
permettant d’identifier le type d’appels a un systeme
d’exploitation en rapport avec I"'1dentificateur d’appels a
un systeme d’exploitation sauvegarde, la valeur
sauvegardée correspondant au decalage de 1'entrée
choisie dans ledit tableau de transition.

I*I Industrie Canada Industry Canada

(CANADIAN INTELLECTUAL

21 (A1) 2,294,181
86) 1999/04/20
87y 1999/11/11

selects one of the entries 1n the crossover table using the
offset value of the target address, (¢) processes the
instruction from the selected entry of the crossover table
to save the value corresponding to the offset of the
selected entry in the crossover table, and (d) generates
the operating system call type identifier value 1n
connection with the saved operating system call set
1dentifier and the saved value corresponding to the offset
of the selected entry 1n the crossover table.

CA 02294181 1999-12-16

PCTY WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/57636
GOGF 9/455 A2 . i
l (43) International Publication Date: 11 November 1999 (11.11.99) —I
(21) International Application Number: PCT/US99/08631 | (81) Designated States: CA, DE, DE (Utility model), GB, JP.
(22) International Filing Date: 20 April 1999 (20.04.99)
Published
Without international search report and to be republished
t (30) Priority Data: upon receipt of that report.
09/062,908 20 April 1998 (20.04.98) US

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
| Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventors: DICE, David; 15 Wilkeson Way, Foxboro, MA

02035 (US). SREENIVASAN, Sunil; 4002 Victoria Drive,
* Mt. Kisco, NY 10549 (US). AHA, David; 32 Noon Hill
Avenue, Norfolk, MA 02056 (US).

(74) Agents: HYMAN, Eric, S. et al.; Blakely, Sokoloff, Taylor &

Zafman, 7th floor, 12400 Wilshire Boulevard, Los Angeles,
CA 90025-1026 (US).

(54) Title: SYSTEM AND METHOD PROVIDING AN ARRANGEMENT FOR EFFICIENTLY EMULATING AN OPERATING
SYSTEM CALL

MEMORY SUBSYSTEM 12

GENERAL CROSSOVER AP! CALL
PURPOSE TABLE TARGET ADRS
REGISTER 25 TABLE 28

SET 20

CONTROL
23

(S7) Abstract

An operating system call control subsystem is disclosed for use in a computer that includes a processor for processing a program, the

| program instructions of an operating system call instruction type identifying one of a plurality of types of operating system calls, each type
1 of operating system call being associable with an operating system call type identifier value within a predetermied range of values. The

operating system call instruction type processing module, in response to the processor processing an instruction of the operating system call
instruction type, (a) saves the operating system call set identifier from the target address, (b) selects one of the entries in the crossover table
using the offset value of the target address, (c) processes the instruction from the selected entry of the crossover table to save the value
corresponding to the offset of the selected entry in the crossover table, and (d) generates the operating system call type identifier value in

connection with the saved operating system call set identifier and the saved value cormresponding to the offset of the selected entry in the |
crossover table.

. BA N A e i aal iy
AN, sl g iy s . - st sl - Akt WA
e Tl L YA LT T B 35T SN L

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

SYSTEM AND METHOD PROVIDING AN ARRANGEMENT FOR EFFICIENTLY
EMULATING AN OPERATING SYSTEM CALL

FIELD OF THE INVENTION

The invention relates generally to the field of digital computers. and
more particularly to an arrangement for facilitating an efficient emulation of
an operating system call structure provided by a microprocessor of one
architecture. during emulation of programs written for that microprocessor
bv a microprocessor of another architecture.

BACKGROUND OF THE INVENTION

Digital computers process a variety of diverse types of programs,
with each program including a series of instructions that enable the
computer to perform specific operations in connection with spectfic
elements of data. A variety of types of processors are available for use 1n
digital computer systems, with each type of processor being constructed in
accordance with an architecture which describes, inter alia. the set of
instructions that a processor constructed in accordance with the architecture
is expected to execute, the format(s) of the various instructions, the types
and formats of data which may be processed, definitions for various
registers that may be used during instruction processing, how information in
the computer's memory will be accessed and how a processor constructed 1n
2ccordance with the architecture is to handle exception conditions which
may be detected during instruction processing.

It is often desirable to enable one type of processor. as an "emulated
processor." to be emulated by another type of processor, as a "host
processor.” A host processor generally emulates an emulated processor by
processing programs which have been written for the emulated processor, to
generate an output that effectively corresponds to the output that would be
generated by the emulated processor. Generally, emulation is accomplished
bv translating a program generated for execution by an emulated processor
(an "original" program) into a program which may be processed by a host
processor (a "translated" program). This translation process may include,
for example, generating from instructions and other elements of the original
program, instructions and other elements which are based on the host
processor's architecture thereby to provide the translated program. The

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

translation may be performed by, for example, the host processor itself, by
another processor in the same computer system or by another computer
system and made available to the host processor which is to process the
program, under control of a translation program. In performing the
rranslation, each instruction or sequences or various groups of instructions
in the original program (that is, the program based on the emulated
processor's architecture) may be translated into one or a series or group of
instructions for processing by the host processor. The translation process 1S
typically performed for all or selected portions of an original program when
the processor begins processing the original program, although it will be
appreciated that an instruction or group of instructions of the original
program may be translated as the processing proceeds. In addition, if the
emulated processor's data formats are not directly useable by the host
processor, the data may be processed to convert it from the emulated
processor's formats to formats usable by the host processor.

Typically, programs are constructed to be processed under control of
a particular operating system, such as Unix or Microsoft Windows™ or one
of many other operating systems that are available. Operating systems are
programs that provide a number of low-level services, such as interacting
with the computer's hardware to retrieve data for processing by the program,
receiving operator input through an operator input device such as a
keyboard or mouse, controlling graphical display of output data on a video
display device, and many other services. An operating system performs
services for a program in response to "calls" made thereto by the program.
Since an operating system is also a program, during emulation of a program
by a host processor, it is possible to also emulate the operating system.
However, if the operating system normally used with the host processor
provides services that are similar to those provided by the operating system
for the program being emulated, it may be more efficient to have the host
processor's operating system provide those services. A problem arises,
however, if calls to the host processor's operating system are made in

significantly a different manner than in the operating system used with the
emulated program.

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

SUMMARY OF THE INVENTION

The invention provides a new and improved arrangement and
method for facilitating an efficient emulation of an operating system call
structure provided by a microprocessor of one architecture, during
emulation of programs written for that microprocessor by a microprocessor
of another architecture.

[n brief summary, the invention provides operating system call
control subsystem for use in a computer that includes a processor for
processing a program, the program including instructions of an operating
system call instruction type identifying one of a plurality of types of
operating system calls, each type of operating system call being associable
with an operating system call type identifier value within a predetermined
range of values. The operating system call control subsystem comprises a
crossover table. an operating system call instruction type address resolution

module, and an operating system call instruction type processing module.
The crossover table has a number of entries corresponding to a

predetermined fraction of the predetermined range, each entry in the
crossover table having an instruction for enabling the processor to save a
value corresponding to an offset of the entry into the crossover table. The
operating system call instruction type address resolution module provides
the instructions of the operating system call instruction type with respective
target addresses that include an operating system call set identifier in a set of
operating system call set identifiers, the number of operating system call set
{dentifiers multiplied by the number of crossover table entries corresponding
to the predetermined range and an offset value corresponding to an offset to
an entry into the crossover table. The operating system call instruction type
processing module, in response to the processor processing an instruction of
the operating system call instruction type, (a) saves the operating system
call set identifier from the target address, (b) selects one of the entries in the
crossover table using the offset value of the target address, (c) processes the
otruction from the selected entry of the crossover table to save the value
corresponding to the offset of the selected entry in the crossover table, and
(d) generates the operating system call type identifier value in connection
with the saved operating system call set identifier and the saved value
corresponding to the offset of the selected entry in the crossover table.

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

Since the operating system call type identifier value is generated in relation
to the particular one of the operating system call set identifier as well as the
offset of the selected entry into the crossover table, the crossover table can
be construct to have a relatively small fraction of the number of entries
which might otherwise be required if one entry were provided for each
possible value in the predetermined range.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the appended
claims. The above and further advantages of this invention may be better
understood by referring to the following description taken in conjunction
with the accompanying drawings, in which:

FIG. 1 is a functional block diagram of a digital computer including
a microprocessor (termed a host microprocessor) and further including an
arrangement for facilitating an efficient emulation of an operating system
call structure provided by a microprocessor of another architecture (termed
an emulated microprocessor), during emulation of programs written for the
emulated microprocessor by the host microprocessor, in accordance with the
invention;

FIG. 2 is a diagram that is useful in understanding address
translation operations performed by microprocessors of a selected
architecture (namely, Intel's x86 family of microprocessors), which 1s useful
in understanding the invention;

FIGS. 3 and 4 depict data structures used in by the host
microprocessor in connection with the operating system call structure
emulation arrangement; and

FIG. 5 is a flowchart depicting operations performed by the host
microprocessor in connection with the operating system call structure
emulation arrangement.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT
FIG. 1 is a functional block diagram of a digital computer 10
constructed in accordance with the invention. With reference to FIG. 1, the

computer 10 includes a microprocessor 11 which communicates with a

memory subsvstem 12 and one or more input/output subsystems generally
identified by reference numeral 13 through a memory management unit 14.

The memory subsystem 12 includes a number of physical addressable

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

storage locations in which data and instructions (which will be referred to
collectively herein as "information") to be processed by the microprocessor
11 may be stored. In addition, the microprocessor 11, after processing data,
may transfer the processed data to the memory subsystem 12 for storage.

The computer 10 may include a number of diverse types of
input/output subsystems 13, including mass storage subsystems, operator
input and output subsystems, network ports and the like. The mass storage
subsystems generally provide long-term storage for information which may
be processed by the microprocessor 11. The mass storage subsystems may
include such devices as disk or tape subsystems, optical disk storage devices
and CD-ROM devices in which information may be stored and/or from
which information may be retrieved. One or more of the mass storage
subsystems may utilize removable storage media which may be removed
and installed by an operator, which may allow the operator to load programs
and data into the digital computer system 10 and obtain processed data
therefrom. Under control of control information provided thereto by the
microprocessor 11, information stored in the mass storage subsystems may
be transferred to the memory subsystem 12 for storage. After the
information is stored in the memory subsystem 12, the microprocessor 11
may retrieve it from the memory subsystem 12 for processing. After the
processed data is generated, the microprocessor 11 may also enable the
mass storage subsystems to retrieve the processed data from the memory
subsystem 12 for relatively long-term storage.

The operator input and output subsystems generally provide an
operator interface to the digital computer system 10. In particular, the
operator input subsystems may include, for example, keyboard and mouse
devices. which an operator may use to interactively input information to the
digital computer system 10 for processing. In addition, the operator input
subsystems may provide mechanisms whereby the operator may control the
digital computer system 10. The operator output subsystems may also
include devices such as video display devices, through which the digital
computer system 10, under control of the microprocessor 11, displays
results of processing to the operator. In addition, a printer may be provided
to provide a hardcopy output for the operator.

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

The network ports may enable the digital computer system 10 to
connect to a communication link, thereby connecting the computer system
10 in a computer network. The network ports enable the computer system
10 to transmit information (including both program instructions and data) to,
and receive information from, other computer systems and other devices 1n
the network (not shown). In a typical network organized according to, for
example, the client-server paradigm, certain computer systems in the
network are designated as servers, which store information for processing
by the other, client computer systems, thereby to enable the client computer
systems to conveniently share the information. A client computer system
which needs access to information maintained by a particular server will
enable the server to download the information to it over the network. After
processing the data, the client computer system may also return the
processed data to the server for storage. In addition to computer systems
(including the above-described servers and clients), a network may also
include, for example, printers and facsimile devices, digital audio or video
storage and distribution devices, and the like, which may be shared among
the various computer systems connected in the network. The
communication links interconnecting the computer systems in the network
may, as is conventional, comprise any convenient information-carrying
medium, including wires, optical fibers or other media for carrying signals
among the computer systems. Computer systems transfer information over
the network bv means of messages transferred over the communication
links, with each message including information and an identifier identifying
the device to receive the message.

, As is conventional, each of the input/output subsystems 13 will
typically include registers and other data storage elements (not shown)
which store control, status and other information which are used to control
the operations performed by the respective input/output subsystem 13 and to
indicate its operational status. The microprocessor 11 may store
information in the registers and other data storage elements, thereby to
control the respective input/output subsystem 13, in a manner similar to the
manner in which it stores information in the memory subsystem 12.
Similarly, the microprocessor 11 may retrieve the information contained 1n
the input/output subsystem 13, in a manner similar to the manner in which i1t

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

retrieves information in the memory subsystem 12, to ascertain the
operational status of the respective input/output subsystem 13.

The memory management unit 14 performs a number of operations.
[n particular, the memory management unit 14 typically includes a cache
memory, which caches information requested by the microprocessor 11
from the memory subsystem 12. In addition, as is typical, when the
microprocessor 11 requests information to be retrieved from, for example,
the memory subsystem 12, or provides processed data for storage in, for
example, the memory subsystem 12, the microprocessor 1 1 will provide an
address in a virtual address space to the memory management unit 14. The
various application programs processed by the microprocessor 11 may be
provided with respective virtual address spaces. The virtual address space is
divided into "pages," each of which comprises a selected number of virtual
addressable storage locations, with each virtual addressable storage location
storing information. The pages of an application program's virtual address
space are normally stored on a mass storage subsystem, and the
microprocessor 11 enables individual ones of the pages to be copied to the
memory subsystem 12 as they are needed during processing, and for those
pages that are modified during processing the microprocessor 11 may
enable them to be copied to the mass storage subsystem for long-term
storage.

Respective pages of a virtual address space may be compactly stored
in physical locations in the memory subsystem 12, which are identified by
physical addresses, and in performing an access operation in connection
with a particular virtual address space location (that is, a retrieval of
information from or a storage of information in a particular physical
location) in response to a request from the microprocessor 11, the memory
management unit 14 will perform a translation of the virtual address to
obtain the physical address for use in performing the access operation in
connection with the memory subsystem 12. In addition, the memory
management unit 14 may perform several checking operations, including
checking to determine whether or not the page is in the memory subsystem
12. whether or not the application program has permission to access (that 1s,
read data from or write data into) the page, and whether or not the requested
page is a valid page in the virtual address space, and the like. [f the memory

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

management unit 14 makes a negative determination in the checking
operation, that is, if it determines, for example, that the page 1s not in the
memory subsystem 12, that the application program does not have the
appropriate access permission, or if it determines that the requested page of
the virtual address space page is not a valid page in the application
program's virtual address space, it may generate an access fault indication,
which the microprocessor 11 may receive and use in performing selected
fault handling operations.

[n one embodiment, a microprocessor 11 useful in system 10
comprises a microprocessor constructed in accordance with the SPARC
Version 9 architecture described in the SPARC International, Inc [David L.
Weaver and Tom Germond (eds)], The SPARC Architecture Manual
Version 9 (Prentice-Hall, 1994) (hereinafter referred to as "the SPARC
Architecture Manual, Version 9"). The microprocessor 11 generally
includes a number of elements, including a register set 20, one or more
functional units 21, a bus interface 22 and a control circuit 23. The control
circuit 23 controls the processing operations as performed by the
microprocessor 11 under control of instructions provided by a program.
Generally, under control of the control circuit 23, the bus interface 22,
cooperating with the memory management unit 14, retrieves instructions
and data from the memory subsystem 12 or data storage elements
maintained by particular input/output subsystems 13 for processing and
loads the retrieved data into registers in the register set 20. Also under
control of the control circuit 23, the functional units 21 perform logical,
integer and floating point arithmetic, and other processing operations in
connection with data which the control circuit 23 enables to be transferred
thereto from the register set 20, to generate processed data which will be
transferred to the register set 20 for storage. The control circuit 23 may also
enable the bus interface 22, also cooperating with the memory management
unit 14, to transfer processed data from the register set 20 to the memory
subsystem 12 or data storage elements maintained by particular input/output
subsystems 13 for storage.

The invention provides an arrangement for enabling the operating
system that is used to control host microprocessor 11, as a host

microprocessor. to efficiently provide operating system services to programs

SUBSTITUTE SHEET (RULE 26)

PR NS s s s A i o MA WAL Bl L s ased aan s APl M s maw ' am esadbs ams v o aa s 4 v s

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

written to be processed by a microprocessor of another architecture, in one
embodiment a microprocessor comprising Intel Corporation's x86 family of
microprocessors (which currently include Intel's 8086, 8088, 80286, 80386,
80486 and "Pentium" lines of microprocessors), as an emulated
microprocessor, during emulation of those programs by the host
microprocessor 11. The arrangement facilitates the efficient provision of
such operating system services without the necessity of emulating the
operating system, such as the Microsoft Windows™ operating system,
which would typically be used if the programs were being processed by a
microprocessor of the x86 microprocessor family. In one embodiment, in
which the host microprocessor 11 comprises a microprocessor constructed
in accordance with the aforementioned SPARC Architecture Manual,
Version 9, the operating system used with the host microprocessor 11,
which is termed a "host operating system," is generally a thirty-two-bit Umx
operating system providing a thirty-two bit operating system call structure.
On the other hand, the Microsoft Windows™ operating system, particularly
the Microsoft Windows™ Version 3.1 and earlier operating systems, which
is used with the emulated programs when they are processed by a
microprocessor in the x86 family of microprocessors, is generally a sixteen-
bit operating system, and provides a sixteen-bit call structure.

The invention more specifically provides an arrangement whereby
the sixteen-bit operating system call structure used in the Microsoft
Windows™ operating system can be efficiently emulated by host
microprocessor 11. In the Microsoft Windows™ sixteen-bit call structure,
each type of operating system call, such as a call to provide a window for a
program on the computer's video display device, is identified by a
predetermined encoding of a sixteen-bit operating system call index value.
This allows for as many as 64k (k=1024) types of operating system calls.
Each type operating system call, in turn, is associated with an entry point to
a routine to handle the operating system call. The Microsoft Windows™

operating system need not provide as many as 64k types of operating system
calls, and thus need not actually provide for 64k entry points, but to
facilitate emulation the host microprocessor 11 and its host operating system

preferably will provide for the possibility of an operating system call for

SUBSTITUTE SHEET (RULE 26)

Y e A e PWLL C A W LAR A Lkt A iy bVA A Saiws: LAt e ? TR

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
10

each of the possible 64k encodings of the sixteen-bit operating system call
index value. '

Generally, calls used by programs to the Microsoft Windows™
operating system in connection with a microprocessor in the x86 family of
microprocessors, are in the form of "far calls." Before proceeding further, it
would be helpful to generally describe how a program addresses storage
locations in connection with a microprocessor in the x86 family of
microprocessors, after which a far call will be described. Generally, a
microprocessor in the x86 microprocessor family provides to a program a
segmented address space comprising a plurality of segments. A program, to
access a storage location in the computer including the x86 microprocessor,
provides a virtual address in the segmented address space. The x86
microprocessor, after receiving the address in the segmented address space,
generates a virtual address in a linear, or non-segmented, virtual address
space, which then is translated into a physical address that identifies the
specific storage location to be accessed.

FIG. 2 depicts a functional block diagram of an arrangement for
performing these address translation operations. With reference to FIG. 2, a
segmented virtual address space provided by a microprocessor of the x86
microprocessor family is formed from a number of segments, including one
or more code, data, stack and extra segments. A segmented virtual address
space may actually consist of a number of code, data and extra segments,
but only one code segment, one data segment and one stack segment may be
used at any point in time, although several extra segments may be used at
any point in time. Each of the code, data and stack segments 1s associated
with one segment register 30(m) in a segment register set 30. A
predetermined number (in one embodiment, three) of segment registers ,
30(m) are provided in the segment register set 30 for the extra segments,
allowing that predetermined number of extra segments to be used at any
point in time. Generally, the code segment is typically be used for storing
program instruction code, the data segment is typically used for storing
program data, and the stack segment is typically used for storing stack(s)
used by the crogram. The application program may use the extra segments

for a variety of purposes, such as storing arrays or temporary data structures.
Each segment register 30(m) will contain a descriptor pointer for the

SUBSTITUTE SHEET (RULE 26)

LI AT | Al By sl s O Sem ¥t - [R et 1%l avmn WS cAMANTLAIS o L o L A A I A AT e A M B ol e AL AR IAT e andie a % AR et ad d e et At amasal . camd s mem A . AR e e

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
11

particular segment, and so segment register 30(0) may contain a descriptor
pointer for the code segment, segment register 30(1) may contain a
descriptor pointer for the data segment, segment register 30(2) may contain
a descriptor pointer for the stack segment, and other segment registers 30(3)
through 30(M) will contain descriptor pointers for other segments.

Each segment register 30(m) contains a descriptor pointer that
identifies one of a plurality of segment descriptors 31(0) through 31(D)
(generally identified by reference numeral 31(d)) in a segment descriptor
table 31. Each segment descriptor, in turn, is associated with and 1dentifies
one of the segments in the segmented virtual address space provided for the
program. Each segment descriptor 31(d) in the segment descriptor table 31
generally includes three fields, including an access rights field 32(d), a
segment length field 33(d) and a segment base address field 34(d). The

~ access rights field 32(d) contains access rights information, whose use will
be described below. The segment base address field 34(d) contains a
segment base virtual address and the segment length field 33(d) contains a
segment length value, both of which serve to define a particular segment in
the segmented virtual address space. The descriptors 31(d) in the respective
segment descriptor tables 31 are preferably maintained by the operating
system, and the particular descriptor pointer value which is maintained in
each of the segment registers 30(m) is also preferably controlled by the
operating system.

When a program initiates a memory access operation, it will provide
a segmented virtual address, which has a structure depicted in FIG. 2, in the
segmented virtual address space. The functional elements depicted on FIG.
2 will convert the segmented virtual address first to a linear virtual address,
and, from the linear virtual address, to a physical address which identifies a
particular physical storage location to be accessed. As shown in F1G. 2, the
address in the segmented virtual address space (illustratively shown in an
address register 35) includes a segment identifier field 36 and an offset field
37. The segment identifier field 36 identifies a particular one of the
segment in which a storage location is to be accessed, the offset field 37
contains an offset value into the segment. More specifically, the segment
identifier in field 36 is used to select a particular segment register 30(m) (as
represented by arrow 40), whose contents are used as a descriptor pointer to,

SUBSTITUTE SHEET (RULE 26)

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
12

in turn, select the particular segment descriptor 3 1(d) (as represented by
arrow 41) to be used in generating the segmented virtual address. The base
address from the segment base address field 34(d) of the selected descriptor
31(d) is coupled to an adder 42 and the segment length value from the
segment length field 33(d) is coupled to one input of a comparator 43.

The address's offset field 37 contains an offset from the segment's
base into the segment to be used in the memory access operation, and so it
(the offset field 37), along with the segment base address value from
segment base address field 34(d), are coupled to respective inputs of adder
42. The adder 42 generates a value corresponding to the sum of the offset
and the segment base address value, which corresponds to the linear virtual
address LIN VIRT_ADRS which identifies the location in the linear virtual
address space represented by the address in register 35. The linear virtual
address is then coupled to a virtual address translator 44, which translates
the linear virtual address to a physical address in a conventional manner.

To verify that the segmented virtual address in register 35 does not
represent an address that is beyond the end of the segment, as defined by the
segment length value in field 33(d) of the segment descriptor 31(d), 1t (the
segment length value from field 33(d)) and the offset field 37 are coupled to
respective inputs of the comparator 43. The comparator 43, in turn,
compares the offset value from the offset field 37 to the segment length
value from segment length field 33(d). If the comparator 43 determines that
the offset value from the offset field 37 is less than or equal to the segment
length value from segment length field 33(d), the segmented virtual address
in address register 35 represents a location in the segmented virtual address
space that is within the segment defined by the selected segment descriptor
31(d). On the other hand, if the comparator 43 determines that the offset
value from the offset field 37 is greater than the segment length value from
segment length field 33(d), the segmented virtual address in address register
35 represents a location that is beyond the end of the segment defined by the
selected descriptor 31(d); in that case, the comparator 43 generates a SEG
LEN VIOL segment length violation indication, which may result in, for

example, a segment length violation exception and a trap to the operating
system for processing.

SUBSTITUTE SHEET (RULE 26)

. 1o b e ARt 4 2 iy N AR ey WAL T R

h;.lmﬁmmwxmwﬂ-p-w LR VA ol A L PSRV PN
AR FANE L AT : AL DA T SR Al &l S LA S 4 i N L AAEASAL S T eI) Al L bgrtas

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

13

As described above, each segment descriptor 31(d) also includes an
access rights field 32(d). The access rights field 32(d) generally contains
access rights information which is useful in controliing memory accesses. If
the access operation initiated by the application program is within the access
rights indicated by the access rights field 32(d), the access operation can
proceed. On the other hand, if the access operation is not within the access
rights indicated by the access rights field 32(d), the access operation will not
proceed, which may result in an access rights violation exception and a trap
to the operating system for processing. In the x86 architecture, access rights
may be used to control whether a particular segment can be accessed by an
application program or only by the operating system, and whether or not an
application program can store information in storage locations in particular
segments, which may facilitate read-only access to a file or fields of a file
by a particular application program. In addition, the access rights can be
used to indicate that particular segments are "execute only," which may
indicate that such segments contain program code which an application
program may only enable to be retrieved and executed.

As noted above, an operating system call in Microsoft Windows™ is
in the form of a far call. The x86 architecture provides for two types of
calls, namely, near calls and far calls. Each type of call effectively causes a
jump or discontinuity in the program's instruction stream, effectively
jumping from a current location in the code segment, which contains the
program instruction that initiates the call, to another location in either the
same segment or a different segment. For near call, the jump 1s to a target
location within the same code segment as the code segment that contains the
program instruction that initiates the near call. For a near call, only the
offset value in the offset field 37 of address register 35 need be changed. In
contrast, a far call is a jump to a target location in another segment. This
will require a change in the segment descriptor 31(d) that is used in
constructing the linear virtual address, and so the descriptor pointer stored in
the segment register 30(m) associated with, in this example, the code
segment, will also need to be changed to point to the new segment
descriptor 31(d). In addition, the offset value in field 37 will also be
changed as necessary to provide the offset of the target location in the
segment pointed to by the new segment descriptor 31(d). Following both a

SUBSTITUTE SHEET (RULE 26)

. PRGN e AN AN sl] P i ALY B o + B LA 5 Frg mah {Sdp) iniL

LY PR AT ERTIS . oF L il VLS T T T T T T T Y P .

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
14

near call and a far call, execution of the program will continue with
instructions starting from the target location in the respective code segment.
Since calls used by programs processed by a microprocessor of the x86
microprocessor family to the Microsoft Windows™ operating system are in
the form of far calls, in response to an operating system call the segment
register 30(m) associated with the code segment is loaded with a descriptor
pointer to a particular segment descriptor 31(d) in the segment descriptor
table 31 and an offset value is loaded in the offset field 37 of address
register 335.

As noted above, the invention provides an arrangement whereby the
sixteen-bit operating system call structure used in the Microsoft Windows™
operating system can be efficiently emulated by host microprocessor 11,
using its host operating system, to provide operating system services to
emulated programs written for execution by a microprocessor of the x86
microprocessor family. It should be noted preliminarily that, in emulating
such a program, the host microprocessor 11 will also emulate the segmented
virtual address translation arrangement described above in connection with
FIG. 2, to translate addresses provided by the emulated program into at least
linear virtual addresses for use in access operations. An arrangement for
efficiently performing such transiation operations is described in U. S. Pat.
Appn. Ser. No. 08/608,571, filed February 28, 1996 in the names of Paul H.
Hohensee, et al.. and entitled "System And Method For Emulating A
Segmented Virtual Address Space By A Microprocessor That Provides A
Non-Segmented Virtual Address Space," assigned to the assignee of the
present invention and incorporated herein by reference.

In accordance with the invention, a crossover table 25 (FIG. 1) is
provided to enable the host microprocessor 11 to, In response to an
operating system call from an emulated program, efficiently transfer control
to the routine of the operating system controlling the host microprocessor 11
that will be used to service the operating system call. The crossover table
25 includes a plurality of entries, generally identified by reference numeral
25(c) (FIG. 3). which provide operating system entry point information
which is used by the host operating system in servicing the operating system
call from the emulated program. Instead of providing one entry 25(c) for
each of the N=64k operating system entry points, which would require 64k

SUBSTITUTE SHEET (RULE 26)

Y T St Vo e A K GO AN W g Ml ol O M v 5 s o

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631

4 VR AL YR {2 e, AR et TR BTN AT S s il ek

15

entries, the crossover table 25 comprises 4096 entries 25(0) through
25(4095) (generally identified by reference numeral 25(c)). Each entry
25(c) includes two elements, namely, a "push (¢)" instruction and a "jmp
APIDispatch" instruction, and may also include padding to provide at least a
predetermined number of bytes in the entry 25(c). In one embodiment, to
provide for efficient retrieval of entries 25(c) by the host microprocessor 11
from memory subsystem 12, the entries 25(c) are aligned on sixteen-byte
boundaries in the address space provided by host microprocessor 11, and
each entry 25(c) is sixteen bytes in length, and so padding may be provided
to ensure that each entry 25(c) is sixteen bytes in length. The "push (c)"
instruction enables the host microprocessor 11 to push a value "c" on the
stack currently used by the host microprocessor 11 for processing of the
emulated program. The "jmp APIDispatch” instruction enables the host
microprocessor 11 to jump to a routine "APIDispatch” that enables the host
microprocessor 11 to perform several operations, including changing stacks
and calling the appropriate routine of the host operating system to service
the operating system call.

The APIDispatch routine uses the value "c" that was previously
pushed on the stack, along with other information, to identify the particular
operating system call index value, thereby to identify the particular type of
operating system call that was made by the emulated program. This, in turn,
allows the host operating system to determine the particular one of 1ts
operating system routines that is to be used in servicing the operating
system call. As noted above, there are as many as 64k possible entry points,
whereas only 4096 possible values of "¢" that may be pushed on the stack in
response to the "push (c)" instruction in the entries 25(c) of the crossover
table 25. However, as also noted above, since the operating system call 1s a
far call, the value of the code segment's descriptor pointer in the code
segment's segment register 30(m) is also modified. The value of the code
segment descriptor pointer that is loaded into the code segment's segment
register 30(m) in response to the operating system call is selected so as to
provide the additional information sufficient to identify the appropriate one
of the 64k entrv points for the operating system routine to service the
operating system call. Thus, the host microprocessor 11, during execution

SUBSTITUTE SHEET (RULE 26)

P TP D L 12 RS D . A Ot S ANMALE RO VT AT T b D TLee L Cote mon a AR,

PR by oy S BT o By Ay A S NP N e T Sl e e N AT A e e s Y

e e R T O Ty e

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
16

of the APIDispatch routine, uses the value of the code segment pointer and
the value pushed on the stack in response to the "push (¢)" instruction.

In further accordance with the invention, each of the 64k operating
system call entry points in the sixteen-bit operating system call structure
provided by Microsoft Windows™ operating system is associated with
specific far call target address that is constructed as will be described in
connection with FIG. 4. In one embodiment, the target address provided for
each entry point is provided in an API call target address table 26, which 1s
shown in FIG. 4. With reference to FIG. 4, the API call target address table
26 includes a plurality of entries 26(0) through 26(N-1) (generally identified
by reference numeral 26(n)), where "N" represents the number of possible
entry points for operating system calls and each value of "n" corresponds to
one of the operating system call index values. Since there are 64k possible
entry points in one embodiment of the invention, there are 64k entries in the
table 26. When an emulated program is loaded by the host microprocessor
11, during a process generally referred to as "dynamic linking," "binding,"
"address resolution" or "fix-up" (which collectively will be referred to as
"fix-up"), the host microprocessor 11 will provide, in the executable
program code for the emulated program, for each operating system call the
target address from the target address table 26 that is appropnate to the
particular type of the operating system call. Thus, if a particular instruction
of the emulated program is an operating system call of the type associated
with a particular operating system call index value "x," during the fix-up
process while the program is being loaded, the host microprocessor 11 will
provide the target address from entry 26(x) of the API call target address
table 26 for that instruction.

Each entry 26(n) in the API call target address table 26 comprises
thirty-two bits. When an operating system call is made using the target
address from an entry 26(n), the high-order sixteen bits will be used as the
descriptor pointer for the segment register 30(m) for the code segment, and
the low-order sixteen bits of the entry 26(n) used as the offset value for
offset field 37 of the address register 35 (FIG. 2). As noted above, the host
microprocessor 11 makes use of the value of the code segment's descriptor
pointer in the code segment's segment register 30(m) in the identification of
the appropriate entry point for the operating system call, and sixteen

SUBSTITUTE SHEET (RULE 26)

R L R ¥ b AT AT ol U e I Y S S o ' =
AR AN ACH] SRV OCRE T i, 3 AL A0S € NOIRL At s s Mot Y ST a3 034 A AT ST MY ST AR i R A5 suvdes ey A ek ey e LMyt OO Ervarwee e el
" A Tk A A N Y - e I . .

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
17

successive segment descriptors 31(d) in the segment descriptor table 31 are
allocated for this purpose, associated with sixteen successive value for the
descriptor pointer, starting from a segment descriptor 31(BASIS) pointed to
by a base value "BASIS" through the segment descriptor 31(BASIS+15)
which is pointed to by the value "BASIS+(DESC_LEN*135)," where
"DESC_LEN" is the length of each segment descriptor and "*" refers to the
multiplication operation. All of the sixteen segment descriptors 31(d) that
are so allocated have a segment base address in their respective fields 34(d)
that point to the first entry 25(0) of the crossover table 23.

The target address in each entry 26(n) of the API call target address
table 26 is constructed as follows. The high-order sixteen bits of each entry
26(n), is formed to have the value "BASIS+(8*(n div 4096)," for eight-byte
segment descriptors 31(d), where "*" refers to the multiplication operation
and "div" refers to the division operation, with the result of "a div b" being
the integer portion of the quotient of "a" divided by "b." Thus, for

(a) the first 4096 types of operating system calls, identified as a "first
operating system call type set" and associated with "n" from zero to 4095,
the high-order sixteen bits of the target address entries 26(0) through
26(4095) will contain the value "BASIS," since "n div 4096" equals zero for
"n" between zero and 40995, inclusive, and thus the descriptor pointer
provided thereby will point to the segment descriptor 31(BASIS) pointed to
by the value "BASIS;"

(b) the next 4096 types of operating system calls, identified as
"second operating system call type set" and associated with "n" from 4096
through 8191, the high order sixteen bits of the target address entries
26(4096) through 26(8191) will contain the value "BASIS+8.," since "n div
4096" equals one for "n" between 4096 and 8191, inclusive, and thus the
descriptor pointer provided thereby will point to the segment descriptor
31(BASIS+I1);
and so forth, and for

(¢) the last, sixteenth, set of 4096 types of operating system calls,
identified as a "sixteenth operating system call type set" and associated with
"n" from 64k-4095 through 64k-1, the high-order sixteen bits of the target
address entries 26(64k-4095) through 26(64k-1) will contain the value
"BASIS+(8*15)." since "n div 4096" equals fifteen for "n" between

SUBSTITUTE SHEET (RULE 26)

o R ot G Nﬁ;lmmﬂwhmgwmpmu.:-u.-n.,f S P 1P e —

L B N L T R T R Y T o T W S S S —

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
18 |

64(k)-4095 and 64k-1, inclusive, and thus the descriptor pointer provided
thereby will point to the segment descriptor 31(BASIS+15).

The low-order sixteen bits of each target address entry 26(n) 1s
formed to have the value "(n mod 4096)*0x10," where "*" refers to the
multiplication operation, "mod" refers to the modulo operation, with the
result of "a modulo b" being the remainder portion of the quotient "a"
divided by "b," and "0x10" refers to the hexadecimal value "10" (which
corresponds to the decimal value sixteen), for sixteen-byte crossover table
entries 25(c). Thus, for each series of 4096 consecutive target address
entries 26(0)...26(4095), 26(4096)...26(8191), ..., 26(64k-4096)...26(64k),

(1) the low-order bits of the first entry 26(0), 26(4096), ..., 26(64k-
4096) in each set contains the value zero, since "n mod 4096" equals zero
for n=0, 4096,...,64k-4096,

(i) the low-order bits of the second entry 26(1), 26(4097),...,26(64k-
4095) in each set contains the hexadecimal value "10," since "n mod 4096"
equals one for n=1, 4097....,64k-4095,

(iii) the low-order bits of the third entry 26(2), 26(4098),...26(64k-
4094) in each set contains the hexadecimal value "20," since "n mod 4096"
equals two for n=2, 4098,...,64k-4094,
and so forth, with

(iv) the low-order bits of the last entry 26(4095),
26(8191),...,26(64k) in each set containing the hexadecimal value "FFFO0,"
since "n mod 4096" equals 4095 (which corresponds to "FFF" in the
hexadecimal representation) for n=4095, 8191,...,64k.

As noted above, each of the sixteen successive segment descriptors
31 in the segment descriptor table 31 that are allocated for use in connection
with operating system calls contains a segment base address in their
respective fields 34(d) that points to the first entry 25(0) 1n the crossover
table 25. As further noted above, since the operating system call in a
microprocessor of the x86 family is a far call, during emuilation by host
microprocessor 11 the high-order sixteen bits of the target address of the
call, which corresponds to the high-order sixteen bits of the target address
entry 26(n) for the associated type of operating system call, are loaded mto

the code segment's segment register 30(m) as the new descriptor pointer.
This descriptor pointer points to one of the segment descriptors

SUBSTITUTE SHEET (RULE 26)

Tora s v e i o ATV S A AT 33 A S PR D AR AN ST LA LA BT T e A S R e ek M AR L Wl te Wan e Al s e BB ot

-l AN, (e Bl Al A AN v W AR M LA A RS el aa L aak A m kAl L&

CA 02294181 1999-12-16

WO 99/57636 " PCT/US99/08631
19

31(BASIS),...,31(BASIS+135), all of which have a segment base address in
their respective fields 34(d) that points to the first entry 25(0) in the
crossover table 25. In addition, during emulation of the operating system
call the host microprocessor 11 loads the low-order sixteen bits of the target
address of the call, which corresponds to the low-order sixteen bits of the
target address entry for the associated operating system call type, into the
offset field 37 of the address register 35. Thus, the sum of the segment base
address provided by the segment descriptor 31(d) in the segment descriptor
table 31 (reference FIG. 2) that is pointed to by the descriptor pointer in the
in the segment register 30(m) associated with the code segment, and the
offset in field 37 of the address register 35, is one of the entries 25(c) in the
crossover table 25, in particular the entry 25(c) determined by ¢="n mod
4096," where "n" corresponds to the index for the operating system call
type.

The result of the operating system call is to enable the host
microprocessor 11 to begin processing the instructions in the entry 25(c), in
particular to push the value "c" on the stack during execution of the
"sush (c)" instruction and to jump to the APIDispatch routine during
execution of the "jmp APIDispatch” instruction. As noted above, the
APIDispatch routine enables the host microprocessor 11 to, among other
things, generate the sixteen-bit operating system call type index value "n,"
using the value "c" pushed on the stack as a result of the push (c) instruction
and the value of the descriptor pointer in the segment register 30(m)

associated with the code segment. Operations performed by the host
microprocessor 11 under control of the APIDispatch routine are depicted in
the flowchart in FIG. 5. With reference to FIG. 5, the host microprocessor
11, under control of the APIDispatch routine, will save the value of the
descriptor pointer from the code segment's segment register 30(m) (step
100), and subtract the value for "BASIS" (step 101), which, as noted above,
points to the first segment descriptor 31(d) in the series of sixteen segment
descriptors in the segment descriptor table 31 that is allocated for operating
system calls. The host microprocessor 11 then determines an operating
system call type set value by dividing the difference value by eight (for
eight-byte s~gment descriptors) (step 102), thereby to indicate whether the
operating system call is of an operating system call type that has an index in

SUBSTITUTE SHEET (RULE 26)

T w-wwmmmdwﬁu‘ R s R E 2T T A EEE L T T

Y SOl A et e e B B e e t P] f L gt AL e

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
20

the first 4096 types of operating system calls (associated with "n" from zero
to 4095), the second 4096 types of operating system calls (associated with
"n" from 4096 through 8191),...., or the sixteenth set of 4096 types of
operating system calls (associated with "n" from 64k-4095 through 64k-1).
The host microprocessor 11 then (step 103) concatenates the binary encoded
value of the operating system call type set and the binary representation of
the value "c" pushed onto the stack in response to the "push (¢)" instruction
<0S CALL_TYPE_SET|c>, where "|" refers to the concatenation
operation, thereby to construct the operating system call index value for the
operating system call from the emulated program. It will be appreciated that
the host microprocessor 11 can perform:

(i) the division operation (step 102), by clearing the low-order three
bits (2:0) of the binary representation of the difference value; 1n that case it
will be appreciated that the operating system call type set value will be
defined by the four bits (6:3) of the binary representation; and

(ii) the concatenation operation (step 103) by:

(a) shifting the four bits (6:3) that defined the operating system
call type set value nine bits to the left (that is, to higher-order
bit positions) (step 103a), thereby to provide the bits defining
the operating system call type set value in bits (15:12) of the
binary representation, with the rest of the bits (11:0) being
zero, and

(b) ORing the value constructed in (ii)(a) above with the value of
"¢" (step 103b)

It will be appreciated that the value generated in (i1)(a) above corresponds to
the sixteen-bit operating system call type index "n" for the operating system
call. After the host microprocessor 11 has performed operations, the
APIDispatch routine can enable the host microprocessor 11 to perform the
other operations necessary to facilitate a call to the microprocessor's
operating system to service the routine, such as switching stacks from the
sixteen bit stack used during emulation of the emulated program to a thirty-
two bit stack normally used by the microprocessor, and use the constructed

operating system call index value to identify the host operating system
routine to provide the service required by the operating system calil.

SUBSTITUTE SHEET (RULE 26)

TN b R s A Al A S TV | N 42 TS S . A VLT ¥ € T § VAT MY, AT GG+ K A A e rame e ot kY

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
21

The invention provides a number of advantages. In particular, the
invention provides an efficient arrangement for facilitating the emulation by
the host microprocessor 11 and host operating system operating system calls
which may be issued by emulated programs written for execution by a
microprocessor of, for example, the x86 microprocessor family under
control of the Microsoft Windows™ operating system. In particular, the
invention provides an arrangement whereby a crossover table 25 may be
used which requires far fewer entries than the number of possible operating
system call index values used in operating system calls in the Microsoft
Windows™ operating system.

It will be appreciated that numerous modifications may be made to
the arrangement described above in connection with FIGS. 1 through 5. For
example, although the arrangement has been described as using a crossover
table 25 of 4096 entries 25(0) through 25(4095), each of which is associated
with one of sixteen operating system call sets, with each operating system
call set being associated with a segment descriptor 31(d), it will be
appreciated that a crossover table may be used with more or fewer entries,
with correspondingly decreased or increased numbers of segment
descriptors. Thus, the arrangement may include a crossover table 25 of
2048 entries, each of which is associated with one of thirty-two operating
system call sets, with each operating system call set being associated with
one of thirtv-two segment descriptors 31(d). On the other hand, the
arrangement may use a crossover table of 8192 entries, each of which 1s
associated with one of eight operating system call sets, with each operating
system call set being associated with one of eight segment descriptors 31(d).

_ In addition, although the arrangement has been described as making
use of an API call target address table 26 as providing target addresses tor
use in connection with fix-up operations, it will be appreciated that the host
microprocessor may instead generate the target addresses directly, with the
high-order sixteen bits having the value "BASIS+(DESC_LEN*n div
4096)" and the low-order sixteen bits having the value "n mode

4096*CT ENTRY LEN" (where "CT_ENTRY_LEN" represents the
number of bvtes in each entry in the crossover table.)

Furthermore, although the arrangement has been described as
making use of eight-byte segment descriptors 31(d) and sixteen-byte

SUBSTITUTE SHEET (RULE 26)

1 (W
PNy Y Ay ety SO 424 WP B PAOARTIRA T 130w L aeske gl A e B A s IS M APV R A A L3 e - A O 1 Tans o Ml L 10 A b A E TP AT P i P IRNG A A5 SR e MR NGO D % e A e far sl 43 LIEAEA & ve. 3 ot ¥ T B s v < A
. . . e ML T4 A" T T A T ITT YT TI ™

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
22

crossover table entries 35(c), it will be appreciated that different length
segment descriptors crossover table entries may be used.

It will be appreciated that a system in accordance with the invention
can be constructed in whole or in part from special purpose hardware or a
general purpose computer system, or any combination thereof, any portion
of which may be controlied by a suitable program. Any program may in
whole or in part comprise part of or be stored on the system in a
conventional manner, or it may in whole or in part be provided in to the
system over a network or other mechanism for transferring information in a
conventional manner. In addition, it will be appreciated that the system may
be operated and/or otherwise controlled by means of information provided
bv an operator using operator input elements (not shown) which may be
connected directly to the system or which may transfer the information to
the system over a network or other mechanism for transferring information
in a conventional manner.

The foregoing description has been limited to a specific embodiment
of this invention. It will be apparent, however, that various vanations and
modifications may be made to the invention, with the attainment of some or
all of the advantages of the invention. It is the object of the appended
claims to cover these and such other variations and modifications as come
within the true spirit and scope of the invention.

What is claimed as new and desired to be secured bv Letters Patent
of the United States 1s:

SUBSTITUTE SHEET (RULE 26)

o ANR R B A s AR 0 Y AR NI WAL AN AN e AR et e s

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
23

CLAIMS

1. An operating system call control subsystem for use in a computer

including a processor for processing a program, the program having at jeast

one instruction of an operating system call instruction type, said instruction
of the operating system call instruction type identifying one of a plurality of
types of operating system calls, each type of operating system call being

associable with an operating system call type identifier value within a

predetermined range of values, the operating system call control subsystem

comprising;

A. a crossover table configured to have a number of entries
corresponding to a predetermined fraction of the predetermined
range, each entry in said crossover table having an instruction for
enabling the processor to save a value corresponding to an offset of
the entry into the crossover table,

B. an operating system call instruction type address resolution module
for providing the at least one instruction of the operating system call
instruction type with a target address value that includes an
operating system call set identifier in a set of operating system call
set identifiers, the number of operating system call set identifiers
multiplied by the number of crossover table entries corresponding to
the predetermined range and an offset value corresponding to an
offset to an entry into the crossover table, and

C. an operating system call instruction type processing module
configured to, in response to the processor processing the at least
one instruction of the operating system call instruction type, (a) save
the operating system call set identifier from the target address, (b)
select one of the entries in the crossover table using the offset value
of the target address, (c) process the instruction from the selected
entry of the crossover table to save the value corresponding to the
offset of the selected entry in the crossover table, and (d) generate
the operating system call type identifier value associable with the
operating system call in connection with the saved operating system

call set identifier and the saved value corresponding to the offset of
the selected entry in the crossover table.

SUBSTITUTE SHEET (RULE 26)

A AR R TC A P s 1 whas s A e e ey Bt LR S L

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
24

2. An operating system call control subsystem as defined in claim 1 in
which said program is provided with a segmented address space comprising
a plurality of segments, each segment being defined by one of a series of
segment descriptors, with a segment descriptor for a current descriptor being
pointed to by a segment descriptor pointer, the operating system call set
identifiers in the set pointing to successive ones of said segment descriptors,
the processor, while processing the at least one instruction of the operating
system call instruction type, providing the operating system call set
identifier as the segment descriptor pointer.

3. An operating system call control subsystem as defined in claim 2 in
which each segment descriptor points to a base of a segment, one of said
segments containing the crossover table, and all of the segment descriptors
pointed to by the operating system call set identifiers point to the segment
containing tiie crossover table.

4. An operating system call control subsystem as defined in claim 3 in
which the operating system call instruction type processing module 1s
configured to select one of the entries of the crossover table in relation to
the segment pointed to by the segment descriptor pointed to by the operating
system call set identifier and the offset value from the target address.

5. An operating system call contro] subsystem as defined in claim 2 in
which said segment descriptors form segment descriptor entries in a
segment descriptor table, the segment descriptor pointer pointing to the one
of the entries containing the segment descriptor for the current segment, the
operating system call set identifiers in the set pointing to successive entries
in the segment descriptor table from a base entry associated with a segment
descriptor table offset value, the target address providing a segment
descriptor pointer, the operating system call instruction type processing
module being configured to generate the operating system call set identifier
in relation to the segment descriptor pointer and the segment descriptor table
offset value.

6. An operating system call control subsystem as defined in claim 1 in
which the operating system call instruction type processing module 1s
configured to generate the operating system call type identifier value with
the saved operating system call set identifier as a high-order portion and the

SUBSTITUTE SHEET (RULE 26)

o8 @GR A0 104 Gy | e A A - AEECE L e D m‘m A MR O RREC RS O L oo v e L a8 T e i

v
G AR LT MLt T LA Sa AR M O il A ¢ A v] S (R AR = b A s

T 2 ek d A kel daderbhy . 2

WO 99/57636

CA 02294181 1999-12-16

23

saved value corresponding to the offset of the selected entry in the crossover

table as a low-order portion.

7. A computer program product for use in connection with a computer to

provide an operating system call control subsystem for use with a processor,

the processor being configured to process a program having at least one
instruction of an operating system call instruction type, said instruction of
the operating system call instruction type identifying one of a plurality of
types of operating system calls, each type of operating system call being

associable with an operating system call type identifier value within a

predetermined range of values, computer program product comprising a

computer-readable medium having encoded thereon::

A. a crossover table configured to have a number of entries
corresponding to a predetermined fraction of the predetermined
range, each entry in said crossover table having an instruction for
enabling the processor to save a value corresponding to an offset of
the entry into the crossover table,

B. an operating system call instruction type address resolution module
for enabling the computer to provide the at least one instruction of
the operating system call instruction type with a target address value
that includes an operating system call set identifier in a set of
'operating system call set identifiers, the number of operating system
call set identifiers multiplied by the number of crossover table
entries corresponding to the predetermined range and an offset value
corresponding to an offset to an entry into the crossover table, and

C. an operating system call instruction type processing module
configured to enable the computer to, in response to the processor
processing the at least one instruction of the operating system call
instruction type, (a) save the operating system call set identifier from

the target address, (b) select one of the entries in the crossover table
using the offset value of the target address, (c) process the
instruction from the selected entry of the crossover table to save the
value corresponding to the offset of the selected entry in the
crossover table, and (d) generate the operating system call type
identifier value associable with the operating system call in

connection with the saved operating system call set identifier and the

SUBSTITUTE SHEET (RULE 26)

< -1 ey e AL] Ny s P e BT AR - S W, WA S R AR AR N Lo . T .o ,
MG 405 T IR KL Car el any) o T AL A Ca 2L T LA P D IO SO Frg M o R e A

PCT/US99/08631

SAhAaNvia s v wteal

r PR VAR AL «w sl A MNP MRS A RTEE s aaloh n vk v

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
26

saved value corresponding to the offset of the selected entry in the

crossover table.
8. A computer program product as defined in claim 7 in which said program
is provided with a segmented address space comprising a plurality of ..
segments, each segment being defined by one of a series of segment
descriptors, with a segment descriptor for a current descriptor being pointed
to by a segment descriptor pointer, the operating system call set identitiers
in the set pointing to successive ones of said segment descriptors, the
processor, while processing the at least one instruction of the operating
system call instruction type, providing the operating system call set
identifier as the segment descriptor pointer.
9. A computer program product as defined in claim 8 in which each segment
descriptor points to a base of a segment, one of said segments containing the
crossover table. and all of the segment descriptors pointed to by the
operating system call set identifiers point to the segment containing the
crossover table.
10. A computer program product as defined in claim 9 in which the
operating system call instruction type processing module 1s configured to
enable the computer to select one of the entries of the crossover table in
relation to the segment pointed to by the segment descriptor pointed to by
the operating system call set identifier and the offset value from the target
address.
11. A computer program product as defined in claim 8 in which said
segment descriptors form segment descriptor entries in a segment descriptor
table, the seument descriptor pointer pointing to the one of the entries
containing the segment descriptor for the current segment, the operating
system call set identifiers in the set pointing to successive entries in the
segment descriptor table from a base entry associated with a segment
descriptor table offset value, the target address providing a segment
descriptor pointer, the operating system call instruction type processing
module being configured to enable the computer to generate the operating

system call set identifier in relation to the segment descriptor pointer and the
segment descriptor table offset value.

12. A computer program product as defined in claim 7 in which the
operating system call instruction type processing module is configured to

SUBSTITUTE SHEET (RULE 26)

NI T U CTIREON0D Sl AT AT A AT AL S W SRS PRt e D | AL I TS

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
27

enable the computer to generate the operating system call type identifier

value with the saved operating system call set identifier as a high-order

portion and the saved value corresponding to the offset of the selected entry
i1 the crossover table as a low-order portion.

13. An operating system call control method for use 1n connection with a

computer including a processor for processing a program, the program

having at least one instruction of an operating system call instruction type,
<aid instruction of the operating system call instruction type identifying one
of a plurality of types of operating system calls, each type of operating
system call being associable with an operating system call type identifier
value within a predetermined range of values, the operating system call
control method comprising the steps of:

A. providing a crossover table configured to have a number of entries
corresponding to a predetermined fraction of the predetermined
range, each entry in said crossover table having an instruction for
enabling the processor to save a value corresponding to an offset of
the entry into the crossover table,

B. an overating system call instruction type address resolution step
including the step of providing the at least one instruction of the
operating system call instruction type with a target address value that
includes an operating system call set identifier in a set of operating
system call set identifiers, the number of operating system call set
identifiers multiplied by the number of crossover table entries
corresponding to the predetermined range and an offset value
corresponding to an offset to an entry into the crossover table, and

C. an operating system call instruction type processing step including
the steps of, in response to the processor processing the at least one
instruction of the operating system call instruction type, (a) saving
the operating system call set identifier from the target address, (b)
selecting one of the entries in the crossover table using the offset
value of the target address, (c) processing the instruction from the
selected entry of the crossover table to save the value corresponding
to the offset of the selected entry in the crossover table, and (d)

generating the operating system call type identifier value associable
with the operating system call in connection with the saved

SUBSTITUTE SHEET (RULE 26)

g e 4 ALY XAV el .- FIL PR NSTVINTITROw PV R | . R :
SR, . - 3 et LM P wirt Yo el s v e 1 M I e 1 0 el L TR T Ve 8 TR AR A AN 4 LA A e = SN e) ¢ (08 CCAE b M L Lallate AASEs . 138 =il
. R

RS il SIS AR IS v O AP ARG L At - b - B TNICTA 4 B vl L | Avrbrr A O, AP =, = =% * =g i1

*rB

el a et e MBI S DI e) ee d T

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
28

operating system call set identifier and the saved value

corresponding to the offset of the selected entry in the crossover

table.
14. An operating system call control method as defined in claim 13 in which
said program is provided with a segmented address space comprising a
plurality of segments, each segment being defined by one of a series of
segment descriptors, with a segment descriptor for a current descriptor being
pointed to by a segment descriptor pointer, the operating system call set
identifiers in the set pointing to successive ones of said segment descriptors,
the processor, while processing the at least one instruction of the operating
system call instruction type, providing the operating system call set
identifier as the segment descriptor pointer.
15. An operating system call control method as defined in claim 14 in which
each segment descriptor points to a base of a segment, one of said segments
containing the crossover table, and all of the segment descriptors pointed to
by the operating system call set identifiers point to the segment containing
the crossover table.
16. An operating system call control method as defined in claim 15 in which
the operating svstem call instruction type processing step includes the step
of selecting one of the entries of the crossover table 1n relation to the
segment pointed to by the segment descriptor pointed to by the operating
system call set identifier and the offset value from the target address.
17. An operating system call control method as defined in claim 14 in which
said segmen descriptors form segment descriptor entries in a segment
descriptor table, the segment descriptor pointer pointing to the one of the
entries containing the segment descriptor for the current segment, the
operating system call set identifiers in the set pointing to successive entries
in the segment descriptor table from a base entry associated with a segment
descriptor table offset value, the target address providing a segment
descriptor pointer, the operating system call instruction type processing step
including the step of generating the operating system call set identifier 1n
relation to the segment descriptor pointer and the segment descriptor table
offset value.
18. An operating system call control method as defined in claim 13 in which
the operating svstem call instruction type processing step includes the step

SUBSTITUTE SHEET (RULE 26)

e W Ay e SRy A C e LA AL L W Mo E NN e

AN P e - *MNHMW'“.!*‘*P‘MWW 4 A A Aa P e

e O ———
b S A AR I Y e 1O OV bbb alOpl AT A ANTIIE I s ! andpaid L) 2Rl gl s 4 e ARG AT 1Al A i = DAY AR

CA 02294181 1999-12-16

WO 99/57636 PCT/US99/08631
29

of generating the operating system call type identifier value with the saved
operating system call set identifier as a high-order portion and the saved
value corresponding to the offset of the selected entry in the crossover table

as a low-order portion.

SUBSTITUTE SHEET (RULE 26)

s adomiAs 2 *aa Sl ADS > " e * A oma s huatead A b A e Al e ed sl N A I AL Al F i led e Bt Tad seam ' m S e gAY LM Y e 4D TG ML e it e b ASMERA S B MM -l AR S s bt S ST AR MMV T 4. spa -
AN CAA - Py s Y ve 2 oy S VAT M A I T PRSP N
OOV TWAIINE T YE A ST AP ra At s Svh o it 3 vivby . v pd S by L 4% phos o &% Bt as *

LY T IC S W W L VO T Y PRT "Rl T L N

02294181 1999-12-16

CA

PCT/US99/08631

WO 99/37636

174

£l

SWILSASENS
1Nd1NO/LNdNI

i LIND

INIWIOVNVIA
AHOWN

9¢ F18Vl GC
SHAV 1394Vl 719Vl
TIVO |IdV HINOSSOHI

ZL W3LSASINS AHOWHNW

llililllillilllllllll]!.‘llll

L2 SLINM
TYNOILONNA

¢C

FOV4d3LNI
SNd

0Z 135S
H31S193d
350ddNd
IVHANGD

illllllll

Illllllltlii!illlll

' U ohe A RAAL L A M. 1 1. LOPLME AR AR M T L
) mm eEfdinn € [0 PAT R SIN fedrr=<tina ¥

02294181 1999-12-16

CA

: " one oswom
S
A
=
-
o
(p)ye SHAVY IASVE 93S
S¥dy | NOLLY IX SHdy | T (Mee NI1O3S' (P)ZE S1¥ OOV
W3IN | SSIHAAv LHIA NI
(U)L€
A
10IA
N ch Le 37VL HOLAIHDS3IA INFNWOTS
dWOD v
v
(W)oE ¥ld 2S3da
(w)og ¥Hld 2S3A
— | |~
& e
3 DI A .
m (0)o€ ¥ld 2S3d /€ 9¢
. al
m 0 SO3IY ININOIS O e

GE O3 SHAV

& 00 AT MITEAE LT Tl S4ho ' bt i RS A R TU LA A v & WAL T I & o

. 8 e e B T 16 lad Y LT sl APl £ B e o o ALl 4 ¢ ARSI - s gt M 4 Ly S N S 400 ACac 1AL § ¥ RO f O O e M

02294181 1999-12-16

CA

PCT/US99/08631

WO 99/57636

y'O1A

(1-N)9Z AHLINT SHAVY L30dVl

lllllll'll"ll!ll‘ll

Illlllilllllilllllli

01X0,960% Pow U (9601 AP U).8)+SISVE ~

lll'llllllli‘lilllll

llil!illllliil"llli

9¢ 31gVL SdaVv
1394HVL TIVO IdVv

(

u)9e

Gz 31gv.L H3IN0SSOHO

AN LA SR AT OHMCIAY TLE R S AR, DL TSI T r VA a3 g v d AT 1l ul iAcdng

e et AL A ¢ b LG oA

bt R LIL TL SR S E S TUPPRT NPT PUNS S Y TRLSTTTIRO- Y AT ST TR PV PV - S TVE F o m -] s S R B ot Ll ke g

CA 02294181 1999-12-16

WO 99/57636

4/ 4

100. HOST MICROPROCESSOR 11 SAVES THE VALUE OF
THE DESCRIPTOR POINTER FROM THE CODE SEGMENT'S

SEGMENT REGISTER

101. HOST MICROPROCESSOR 11 SUBTRACTS THE
VALUE FOR "BASIS" FROM THE SAVED DESCRIPTOR

POINTER VALUE

02. HOST MICROPROCESSOR 11 DETERMINES AN
OPERATING SYSTEM CALL TYPE SET VALUE BY DIVIDING
THE DIFFERENCE VALUE GENERATED IN STEP 101 BY
EIGHT (FOR EIGHT-BYTE SEGMENT DESCRIPTORS)
THEREBY TO INDICATE WHETHER THE OPERATING
SYSTEM CALL IS OF AN OPERATING SYSTEM CALL TYPE
THAT HAS AN INDEX VALUE IN THE FIRST 4096 TYPES OF
OPERATING SYSTEM CALLS, THE SECOND 4036 TYPES
OF OPERATING SYSTEM CALLS,..,ORTHE SIXTEENTH SET
OF 4096 TYPES OF OPERATING SYSTEM CALLS

403A. HOST MICROPROCESSOR 11 SHIFTS THE FOUR
BITS (6:3) THAT DEFINE THE OPERATING SYSTEM CALL
TYPE SET VALUE NINE BITS TO THE LEFT, THEREBY TO
PROVIDE THE BITS DEFINING THE OPERATING SYSTEM
CALL TYPE SET VALUE IN BITS (15:12) OF THE BINARY
REPRESENTATION, WITH THE REST OF THE BITS (11:0)

BEING ZERO.

1038. HOST MICROPROCESSOR 11 ORS THE VALUE
CONSTRUCTED IN STEP 103A WITH THE PREVIOUSLY
PUSHED OF “c" FROM THE CROSSOVER TABLE 25,

THEREBY TO PROVIDE THE SIXTEEN BIT OPERATING

SYSTEM CALL INDEX VALUE

- e el eI L SIS v B e T e TN B] ASe g AR Al Rt 8 Ry . -
o e U B ALK e B AL A SO fa e o O WY A . VAT e Tt 0 ke e b e B 2 0 Ot it e e L A = o
2 1 '
h ot et S L LY AL, 1 AT A I e Y R, At e . e
PR e ey Mt tmetaremrasum L diaet o0y

PCT/US99/08631

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

