US 20220179673A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0179673 A1l

Kowalezyk et al. 43) Pub. Date: Jun. 9, 2022
(54) SECURE VIRTUAL MACHINE SOFTWARE (52) US. CL
MANAGEMENT CPC GO6F 9/45558 (2013.01); GOGF 21/602
(2013.01); GOG6F 2009/45587 (2013.01); GO6F
(71) Applicant: International Business Machines 21/64 (2013.01); GOGF 9/4881 (2013.01);
Corporation, Armonk, NY (US) GOG6F 21/6254 (2013.01)
(72) Inventors: Szymon Kowalczyk, Krakow (PL); (57) ABSTRACT

Andrzej Pietrzak, Krakow (PL);
Michal Paluch, Krakow (PL); Tomasz
Hanusiak, Krakow (PL); PIOTR P.
GODOWSKI, Krakow (PL)

One or more computer processors responsive to a hypervisor
data request, generate an encrypted set of hypervisor data
indicating hypervisor hardware details using a plurality of
respective asymmetric encryption keys to tag the generated
set of encrypted hypervisor data with a timestamp at a time
of'encryption. The one or more computer processors decrypt
(22) Filed: Dec. 3. 2020 the tagged set of encrypted hypervisor data utilizing a

’ i software asset manager and the plurality of respective asym-
metric encryption keys determined valid based on a thresh-
old time period and the tagged timestamp. The one or more

(21) Appl. No.: 17/110,391

Publication Classification

(51) Int. CL computer processors validate the set of decrypted hypervisor
GO6F 9/455 (2006.01) data utilizing corresponding checksums to determine
GO6F 21/60 (2006.01) whether the set of encrypted hypervisor data was success-
GO6F 21/62 (2006.01) fully decrypted. The one or more computer processors
GO6F 21/64 (2006.01) sanitize the validated hypervisor data based on a correspond-
GO6F 9/48 (2006.01) ing software license.

200
P

RECEIVE REQUEST FOR HYPERVISOR DATA |—202

!

COLLECT HYPERVISOR DATA ~—204

!

TRANSMIT AND STORE HYPERVISOR DATA |~—206

!

TAG ENCRYPTED DATA WITH TIMESTAMP |~—208

!

DECRYPT AND VERIFY HYPERVISOR DATA |~210

:

CALCULATE SOFTWARE USAGE |~212

END

Patent Application Publication

100
\\

HYPERVISOR
110

HYPERVISOR DATA
112

VIRTUAL MACHINE
114

GUEST
SOFTWARE

116

MONITORING
SOFTWARE

154

Jun. 9,2022 Sheet 1 of 3

US 2022/0179673 Al

SERVER COMPUTER
120

DATABASE 122

NETWORK
102

PROGRAM 150

SOFTWARE
ASSET
MANAGER

152

FIG. 1

Patent Application Publication Jun. 9,2022 Sheet 2 of 3 US 2022/0179673 A1

200
P d

RECEIVE REQUEST FOR HYPERVISOR DATA |—202

!

COLLECT HYPERVISOR DATA ~—204

!

TRANSMIT AND STORE HYPERVISOR DATA |~206

!

TAG ENCRYPTED DATA WITH TIMESTAMP |~—208

!

DECRYPT AND VERIFY HYPERVISOR DATA |~210

:

CALCULATE SOFTWARE USAGE [~212

END

FIG. 2

Patent Application Publication

309

Jun. 9,2022 Sheet 3 of 3 US 2022/0179673 Al

DISPLAY

‘/,‘/ 300
301
\
305
PROCESSOR(S) 30\2
] MEMORY
j f 3
CACHE p~—303 PERSISTENT
) STORAGE
304 SOFTWARE
4 | | “AND DATA
)
306 312
N | 307
10 / 1
INTERFACE(S) COMMUNICATIONS UNIT
i
308
N
EXTERNAL
DEVICE(S)

FIG. 3

US 2022/0179673 Al

SECURE VIRTUAL MACHINE SOFTWARE
MANAGEMENT

BACKGROUND

[0001] The present invention relates generally to the field
of software management, and more particularly to secure
virtual machine software management.

[0002] A hypervisor is computer software, firmware, or
hardware that creates and runs virtual machines. A computer
on which a hypervisor runs one or more virtual machines is
called a host machine, and each virtual machine is called a
guest machine. A virtual machine is an efficient, isolated
duplicate of a real computer machine. Virtual machines may
have no direct correspondence to any real hardware. The
hypervisor presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems. Multiple instances of a variety of
operating systems may share the virtualized hardware
resources contrasting with operating-system-level virtual-
ization, where all instances (i.e., containers) must share a
single kernel, though the guest operating systems can differ
in user space.

SUMMARY

[0003] Embodiments of the present invention disclose a
computer-implemented method, a computer program prod-
uct, and a system. The computer-implemented method
includes one or more computer processers responsive to a
hypervisor data request, generating an encrypted set of
hypervisor data indicating hypervisor hardware details using
a plurality of respective asymmetric encryption keys to tag
the generated set of encrypted hypervisor data with a time-
stamp at a time of encryption. The one or more computer
processors decrypt the tagged set of encrypted hypervisor
data utilizing a software asset manager and the plurality of
respective asymmetric encryption keys determined valid
based on a threshold time period and the tagged timestamp.
The one or more computer processors validate the set of
decrypted hypervisor data utilizing corresponding check-
sums to determine whether the set of encrypted hypervisor
data was successfully decrypted. The one or more computer
processors sanitize the validated hypervisor data based on a
corresponding software license.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 (i.e., FIG.) is a functional block diagram
illustrating a distributed data processing environment, in
accordance with an embodiment of the present invention;
[0005] FIG. 2 is a flowchart depicting operational steps of
a program, on a server computer within the data processing
environment of FIG. 1, for securely controlling and provid-
ing hypervisor information to virtualized applications, in
accordance with an embodiment of the present invention;
and

[0006] FIG. 3 is a block diagram of components of hyper-
visor and server computer, in accordance with an embodi-
ment of the present invention.

DETAILED DESCRIPTION

[0007] Traditional software license management requires
access to bare metal hardware and associated system speci-
fications to calculate accurate software usage and mitigate
corresponding license restrictions. Typically, applications

Jun. 9, 2022

require direct access to bare metal hardware (e.g., number of
cores, central processing unit (CPU) model, etc.) to properly
calculate software usage. As modern information technology
continues to utilize virtual machines, virtual appliances, and
containers to host software, effective software usage/license
management has deteriorated. Frequently when licensed
applications run on a virtual machine, licensing functions
can only detect virtualized hardware that may not directly
correspond to bare metal hardware due to security con-
straints and virtual machine isolation principles. Virtualized
hardware can be significantly different than the bare metal
hardware utilized by the hypervisor. This issue is exacer-
bated when instances of application are concurrently run-
ning on a shared hypervisor, where the sum of the virtual
hardware consumed by hosted virtual machine is greater
than the bare metal hardware (i.e., resource over-commit-
ment, CPU simultaneous multithreading, etc.). In addition,
on-the-fly virtual machine migration to other hypervisors
hosted on various systems negatively impacts effective
software license management. Current methods for software
license management in a virtualized environment gather data
from a virtual machine regarding license usage and combine
usage data with hypervisor data utilizing an application
programming interface (API). Unfortunately said methods
require a constant connection to track the hypervisor relation
to the virtual machine. This constant connection often
involves hypervisors that comprise critical systems which
presents an additional attack vector on said systems. In
addition, when said constant connection is unavailable,
usage tracking becomes unreliable and inaccurate.

[0008] Embodiments of the present invention recognize
that software management and licensing in virtualized envi-
ronment is improved through secure dissemination of hyper-
visor hardware details to an isolated guest virtual machine.
Embodiments of the present invention recognize that hyper-
visor security is improved through the secure dissemination
ot hypervisor hardware details to an isolated virtual machine
utilizing a maintained asymmetrically encrypted channel.
Embodiments of the present invention implement the asym-
metrically encrypted channel through a dedicated interface
to a virtual machine basic input/output system (BIOS) that
provides access to encrypted data regarding hypervisor
hardware and virtual machine settings for license monitoring
software hosted on a virtual machine. Embodiments of the
present invention utilize encryption to secure and isolate
hypervisor data from guest systems. Embodiments of the
present invention gather data from the guest system in the
same time frame as a hypervisor hardware scan, providing
real-time hardware analysis for software usage purposes.
Embodiments of the present invention calculate software
usage of one or more licensed applications utilizing gener-
ated encrypted hypervisor data from a set of hypervisors.
Embodiments of the present invention dynamically adjust a
plurality of hypervisors, virtual machines, and associated
applications based on calculated software usage. Implemen-
tation of embodiments of the invention may take a variety of
forms, and exemplary implementation details are discussed
subsequently with reference to the Figures.

[0009] The present invention will now be described in
detail with reference to the Figures.

[0010] FIG. 1 is a functional block diagram illustrating a
distributed data processing environment, generally desig-
nated 100, in accordance with one embodiment of the
present invention. The term “distributed” as used in this

US 2022/0179673 Al

specification describes a computer system that includes
multiple, physically, distinct devices that operate together as
a single computer system. FIG. 1 provides only an illustra-
tion of one implementation and does not imply any limita-
tions with regard to the environments in which different
embodiments may be implemented. Many modifications to
the depicted environment may be made by those skilled in
the art without departing from the scope of the invention as
recited by the claims.

[0011] Distributed data processing environment 100
includes hypervisor 110, server computer 120 intercon-
nected over network 102. Network 102 can be, for example,
a telecommunications network, a local area network (LAN),
a wide area network (WAN), such as the Internet, or a
combination of the three, and can include wired, wireless, or
fiber optic connections. Network 102 can include one or
more wired and/or wireless networks that are capable of
receiving and transmitting data, voice, and/or video signals,
including multimedia signals that include voice, data, and
video information. In general, network 102 can be any
combination of connections and protocols that will support
communications between hypervisor 110, server computer
120, and other computing devices (not shown) within dis-
tributed data processing environment 100. In various
embodiments, network 102 operates locally via wired, wire-
less, or optical connections and can be any combination of
connections and protocols (e.g., personal area network
(PAN), near field communication (NFC), laser, infrared,
ultrasonic, etc.).

[0012] Hypervisor 110 may be any electronic device or
computing system capable of processing program instruc-
tions and receiving and sending data. In some embodiments,
hypervisor 110 may be a laptop computer, a tablet computer,
a netbook computer, a personal computer (PC), a desktop
computer, a personal digital assistant (PDA), a smart phone,
or any programmable electronic device capable of commu-
nicating with network 102. In other embodiments, hypervi-
sor 110 may represent a server computing system utilizing
multiple computers as a server system, such as in a cloud
computing environment. In general, hypervisor 110 is rep-
resentative of any electronic device or combination of
electronic devices capable of executing machine readable
program instructions as described in greater detail with
regard to FIG. 3, in accordance with embodiments of the
present invention. Hypervisor 110 may provide a virtual
BIOS for the virtual machine (i.e., guest machine or system)
where such BIOS mimics all virtual systems calls for
hardware information (e.g., bare metal hardware and/or
virtualized hardware). In an embodiment, the virtual BIOS
provides a method to gather encrypted data by software
running on virtual machine 114. In an embodiment, the
virtual BIOS provides dynamic adjustment based on subse-
quent software usage calculations. Here, a virtual machine
may have dedicated virtual hardware reserved for virtual
computational requirements. Hypervisor 110 contains
hypervisor data 112, virtual machine 114 which further
contains guest software 116, and monitoring software 154.

[0013] Hypervisor data 112 comprises a plurality of
descriptive information regarding hypervisor 110. In an
embodiment, hypervisor data 112 includes hypervisor iden-
tifiers, hypervisor hostname, hypervisor internet protocol
(IP), hypervisor bare metal hardware specifications, date and

Jun. 9, 2022

time information, virtual machine parameters and configu-
ration details, virtual machine identifiers, and data check-
sums.

[0014] Virtual machine 114 provides a complete system
platform and supports the execution of a complete operating
system (OS). Virtual Machine 114 emulates an existing
architecture, and provides a platform to run guest software
116, for example, on virtualized hardware where the real
hardware is not available for use, such as executing on
obsolete platforms.

[0015] Guest software 116 is a set of one or more virtu-
alized programs, applications, and software designed to
carry out one or more computational operations for a spe-
cific task. In an embodiment, guest software 116 is subject
to one or more licenses controlling software usage.

[0016] Monitoring software 154 is a client program of
program 150, residing on hypervisor 110 and/or virtual
machine 114, providing an asymmetrically encrypted hyper-
visor data 112 and virtual machine settings for monitoring
software 154. In an embodiment, monitoring software 154
monitors guest software 116, hosted on virtual machine 114,
for license compliance. Monitoring software 154 collects
information regarding installed and running guest software
116. In an embodiment, monitoring software 154 gathers
data required for guest software 116 detection and usage
tracking alongside with encrypted hypervisor data 112. In a
further embodiment, monitoring software 154 collects and
encrypts hypervisor data 112, responsively transmitting
encrypted hypervisor data 112 to software asset manager
152.

[0017] Server computer 120 can be a standalone comput-
ing device, a management server, a web server, a mobile
computing device, or any other electronic device or com-
puting system capable of receiving, sending, and processing
data. In other embodiments, server computer 120 can rep-
resent a server computing system utilizing multiple com-
puters as a server system, such as in a cloud computing
environment. In another embodiment, server computer 120
can be a laptop computer, a tablet computer, a netbook
computer, a personal computer (PC), a desktop computer, a
personal digital assistant (PDA), a smart phone, or any
programmable electronic device capable of communicating
with hypervisor 110 and other computing devices (not
shown) within distributed data processing environment 100
via network 102. In another embodiment, server computer
120 represents a computing system utilizing clustered com-
puters and components (e.g., database server computers,
application server computers, etc.) that act as a single pool
of seamless resources when accessed within distributed data
processing environment 100. In the depicted embodiment,
server computer 120 includes database 122 and program
150. In other embodiments, server computer 120 may con-
tain other applications, databases, programs, etc. which have
not been depicted in distributed data processing environment
100. Server computer 120 may include internal and external
hardware components, as depicted and described in further
detail with respect to FIG. 3.

[0018] Database 122 is a repository for data used by
program 150. In the depicted embodiment, database 122
resides on server computer 120. In another embodiment,
database 122 may reside on hypervisor 110 or elsewhere
within distributed data processing environment 100 pro-
vided program 150 has access to database 122. A database
is an organized collection of data. Database 122 can be

US 2022/0179673 Al

implemented with any type of storage device capable of
storing data and configuration files that can be accessed and
utilized by program 150, such as a database server, a hard
disk drive, or a flash memory. In an embodiment, database
122 stores data used by program 150, such as software
licenses and controls, usage restrictions, hypervisor infor-
mation, and virtual machine information.

[0019] Program 150 is a program for securely controlling
and providing hypervisor information to virtualized appli-
cations. In various embodiments, program 150 may imple-
ment the following steps: generate an encrypted set of
hypervisor data indicating hypervisor hardware details using
a plurality of respective asymmetric encryption keys to tag
the generated set of encrypted hypervisor data with a time-
stamp at a time of encryption; decrypt the tagged set of
encrypted hypervisor data utilizing a software asset manager
and the plurality of respective asymmetric encryption keys
determined valid based on a threshold time period and the
tagged timestamp; validate the set of decrypted hypervisor
data utilizing corresponding checksums to determine
whether the set of encrypted hypervisor data was success-
fully decrypted; and sanitize the validated hypervisor data
based on a corresponding software license. Program 150
may be implemented in multiple ways. In the depicted
embodiment, program 150 is a standalone software program.
In another embodiment, the functionality of program 150, or
any combination programs thereof, may be integrated into a
single software program. In some embodiments, program
150 may be located on separate computing devices (not
depicted) but can still communicate over network 102. In
various embodiments, client versions of program 150
resides on hypervisor 110 and/or any other computing
device (not depicted) within distributed data processing
environment 100. Program 150 contains software asset
manager 152, a module for managing and optimizing the
purchase, deployment, maintenance, utilization, and dis-
posal of software, and monitoring software 154. In an
embodiment, software asset manager 152 manages the redis-
tribution of licenses associated with software ownership and
expiration by tracking license usage and expiration. Program
150 is depicted and described in further detail with respect
to FIG. 2.

[0020] The present invention may contain various acces-
sible data sources, such as database 122, that may include
personal storage devices, data, content, or information the
user wishes not to be processed. Processing refers to any,
automated or unautomated, operation or set of operations
such as collection, recording, organization, structuring, stor-
age, adaptation, alteration, retrieval, consultation, use, dis-
closure by transmission, dissemination, or otherwise making
available, combination, restriction, erasure, or destruction
performed on personal data. Program 150 provides informed
consent, with notice of the collection of personal data,
allowing the user to opt in or opt out of processing personal
data. Consent can take several forms. Opt-in consent can
impose on the user to take an affirmative action before the
personal data is processed. Alternatively, opt-out consent
can impose on the user to take an affirmative action to
prevent the processing of personal data before the data is
processed. Program 150 enables the authorized and secure
processing of user information, such as tracking informa-
tion, as well as personal data, such as personally identifying
information or sensitive personal information. Program 150
provides information regarding the personal data and the

Jun. 9, 2022

nature (e.g., type, scope, purpose, duration, etc.) of the
processing. Program 150 provides the user with copies of
stored personal data. Program 150 allows the correction or
completion of incorrect or incomplete personal data. Pro-
gram 150 allows the immediate deletion of personal data.
[0021] FIG. 2 depicts flowchart 200 illustrating opera-
tional steps of program 150 for securely controlling and
providing hypervisor information to virtualized applica-
tions, in accordance with an embodiment of the present
invention.

[0022] Program 150 receives a request for hypervisor data
(step 202). In an embodiment, program 150 initiates subject
to a user request or a request for hypervisor data 112 from
one or more virtualized applications or programs contained
in a set of hypervisors. In another embodiment, program 150
commences responsive to a detected installation of licensed
software onto a virtual machine and/or a monitored hyper-
visor 110. In another embodiment, program 150 initiates
responsive to an application activation request. In yet
another embodiment, program 150 initiates responsive to an
organizational software audit. In an embodiment, program
150 identifies the requesting application and retrieves any
relevant licensing information such as usage restrictions
(e.g., concurrent running applications, geographical restric-
tions, CPU restrictions, etc.). In another embodiment, pro-
gram 150 intercepts any activation request or any license
transmission to and from guest software 116. In an embodi-
ment, program 150 transmits the request for hypervisor data
112 to monitoring software 154.

[0023] Program 150 collects hypervisor data (step 204).
Program 150 instructs monitoring software 154 to collect
and generate hypervisor data 112 indicating hypervisor
hardware details associated with hypervisor 110 administer-
ing one or more virtual machines that each comprise one or
more requesting applications, where hypervisor data
includes hypervisor identifiers, hypervisor hostname, hyper-
visor IP identification, hypervisor bare metal hardware, date
and time information, virtual machine parameters and con-
figuration details, virtual machine identifiers, and data
checksums. In an embodiment, program 150 instructs moni-
toring software 154 to poll hypervisor 110 for additional
encrypted hypervisor data 112 including, but not limited to,
CPU configurations (i.e., number of CPU cores, number of
threads per CPU core, non-uniform memory access
(NUMA) nodes, remote memory access latency, memory
bandwidth, CPU-GPU link bandwidth/latency, and CPU-
CPU interconnection bandwidth/latency) and graphical pro-
cessing unit (GPU) configurations (i.e., number of GPUs,
GPU compute capability (FLOPS), available GPU memory,
GPU topology, GPU-GPU link bandwidth, and GPU-GPU
link latency). For example, responsive to a request from
program 150, hypervisor 110 responds with device identi-
fication information. In another embodiment, program 150
identifies hypervisor 110 utilizing a unique identifier, manu-
facturer part number, and/or part number. In another
embodiment, monitoring software 154 provides a virtual
system management BIOS (SMBIOS) as a data specification
for the hypervisor data generated above. In this embodiment,
a client version of program 150 (i.e., monitoring software
154) is maintained in conjunction with hypervisor 110.
[0024] Program 150 transmits and stores hypervisor data
(step 206). In an embodiment, for each hypervisor in a set of
hypervisors, monitoring software 154 provides one or more
private key and public key pairs utilizing the virtual

US 2022/0179673 Al

SMBIOS detailed in step 204. In this embodiment, moni-
toring software 154 creates a set of encrypted hypervisor
data 112 with associated encryption keys. In an embodiment,
monitoring software 154 utilizes asymmetric cryptography
(e.g., asymmetric encryption keys) to generate a private key
and public key utilized to encrypt and decrypt subsequent
hypervisor data communications. In a further embodiment,
monitoring software 154 generates a plurality of public keys
and private keys. In this embodiment, monitoring software
154 utilizes a set of generated keys in a round-robin fashion
responsive to a hypervisor data 112 request. Monitoring
software 154 utilizes asymmetric cryptography to securely
encrypt hypervisor data 112 for each hypervisor in the set of
hypervisors and provide isolation from component virtual
machines. In an embodiment, monitoring software 154
transmits the generated hypervisor data 112 to a controlled
software asset manager (i.e., software asset manager 152). In
this embodiment, monitoring software 154 also transfers an
associated public key along with metadata associated with
generated hypervisor data 112 such as creation/encryption
timestamps, validity (e.g., expiration) date, data permis-
sions, etc.

[0025] Program 150 tags the encrypted hypervisor data
with a timestamp (step 208). In an embodiment, program
150 tags encrypted hypervisor data 112 with a plurality of
timestamps associated with the creation, encryption, and
transmission of the encrypted hypervisor data. In another
embodiment, program 150 tags hypervisor data 112 with a
calculated checksum for subsequent data verification. The
tagged hypervisor data 112 is then stored in the software
asset manager.

[0026] Program 150 decrypts and verifies the hypervisor
data (step 210). In an embodiment, program 150 utilizes one
or more encryption keys provided by a user or hypervisor
110 to decrypt the encrypted hypervisor data. In a further
embodiment, program 150 utilizes a received public key to
verify the authenticity of the transmitting hypervisor. In
another embodiment, program 150 verifies permissions and
licensing files associated with the transmitting hypervisor. In
another embodiment, program 150 verifies the hypervisor
data 112 utilizes associated data checksums to determine
that the encrypted hypervisor data was successfully
decrypted. In a further embodiment, program 150 utilizes
the tagged timestamps to verify that the encrypted hypervi-
sor data is still within an acceptable range (i.e., threshold
time period).

[0027] Program 150 calculates software usage (step 212).
In an embodiment, for each successfully decrypted hyper-
visor data 112, program 150 calculates software usage
containing software utilization details such as hardware
specifications associated with virtual machine 114, guest
software 116 utilization count, and guest software 116
utilization duration. In this embodiment, program 150 cal-
culates software usage by comparing decrypted hypervisor
data 112 to one or more parameters (e.g., restrictions,
limitations, payment tiers, etc.) contained in associated
software licenses. For example, the parameters contained in
associated software licenses contain limitations regarding
CPU type or number of cores, here, program 150 utilizes the
decrypted hypervisor data 112 to identify license compliance
or identity any non-conforming usage, such as noncompliant
hypervisor specifications. In a further embodiment, program
150 assembles hypervisor data 112 from all running guest
software 116, subject to a licensing requirement, comparing

Jun. 9, 2022

respective decrypted hypervisor data 112 to parameters in a
controlling license. For example, in a situation where a
software license restricts concurrent users to 50 users, pro-
gram 150 compiles a plurality of generated hypervisor data
112 from all active application instances and compares said
information to the software license parameters. In a further
embodiment, program 150 sanitizes hypervisor data 112
and/or calculated software usage by removing irrelevant
information and information not needed to satisfy a corre-
sponding software license. For example, if a license require-
ment only restricts usage count, then program 150 removes
all information not related to usage count. In another
example, if a license requirement restricts CPU cores but not
CPU type or model, then program 150 removes all identi-
fying CPU information while retaining information about
the cores. In an embodiment, program 150 encrypts the
calculated software usage, containing compliance instruc-
tions and details, with the public key associated to hyper-
visor 110 and transmits the results to monitoring software
154 and in turn to guest software 116. In an embodiment,
program 150 dynamically adjusts hypervisor 110, virtual
machine 114, and/or running guest software 116 to conform
to one or more licensing requirements based on the calcu-
lated software usage. For example, in a situation where guest
software 116 is restricted to four CPU cores, program 150
alters the hypervisor to limit virtual machine 114 to four
CPU cores or restricts guest software 116 to four CPU cores.
[0028] FIG. 3 depicts block diagram 300 illustrating com-
ponents of hypervisor 110 and server computer 120 in
accordance with an illustrative embodiment of the present
invention. It should be appreciated that FIG. 3 provides only
an illustration of one implementation and does not imply any
limitations with regard to the environments in which differ-
ent embodiments may be implemented. Many modifications
to the depicted environment may be made.

[0029] Hypervisor 110 and server computer 120 includes
communications fabric 304, which provides communica-
tions between cache 303, memory 302, persistent storage
305, communications unit 307, and input/output (I/O) inter-
face(s) 306. Communications fabric 304 can be imple-
mented with any architecture designed for passing data
and/or control information between processors (such as
microprocessors, communications, and network processors,
etc.), system memory, peripheral devices, and any other
hardware components within a system. For example, com-
munications fabric 304 can be implemented with one or
more buses or a crossbar switch.

[0030] Memory 302 and persistent storage 305 are com-
puter readable storage media. In this embodiment, memory
302 includes random access memory (RAM). In general,
memory 302 can include any suitable volatile or non-volatile
computer readable storage media. Cache 303 is a fast
memory that enhances the performance of computer pro-
cessor(s) 301 by holding recently accessed data, and data
near accessed data, from memory 302.

[0031] Program 150 may be stored in persistent storage
305 and in memory 302 for execution by one or more of the
respective computer processor(s) 301 via cache 303. In an
embodiment, persistent storage 305 includes a magnetic
hard disk drive. Alternatively, or in addition to a magnetic
hard disk drive, persistent storage 305 can include a solid-
state hard drive, a semiconductor storage device, a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM), a flash memory, or any other computer

US 2022/0179673 Al

readable storage media that is capable of storing program
instructions or digital information.

[0032] The media used by persistent storage 305 may also
be removable. For example, a removable hard drive may be
used for persistent storage 305. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer readable storage medium that is also part of
persistent storage 305. Software and data 312 can be stored
in persistent storage 305 for access and/or execution by one
or more of the respective processors 301 via cache 303.
[0033] Communications unit 307, in these examples, pro-
vides for communications with other data processing sys-
tems or devices. In these examples, communications unit
307 includes one or more network interface cards. Commu-
nications unit 307 may provide communications through the
use of either or both physical and wireless communications
links. Program 150 may be downloaded to persistent storage
305 through communications unit 307.

[0034] 1/O interface(s) 306 allows for input and output of
data with other devices that may be connected, respectively,
to hypervisor 110 and server computer 120. For example,
1/0O interface(s) 306 may provide a connection to external
device(s) 308, such as a keyboard, a keypad, a touch screen,
and/or some other suitable input device. External devices
308 can also include portable computer readable storage
media such as, for example, thumb drives, portable optical
or magnetic disks, and memory cards. Software and data
used to practice embodiments of the present invention, e.g.,
program 150, can be stored on such portable computer
readable storage media and can be loaded onto persistent
storage 305 via [/O interface(s) 306. /O interface(s) 306
also connect to a display 309.

[0035] Display 309 provides a mechanism to display data
to a user and may be, for example, a computer monitor.
[0036] The programs described herein are identified based
upon the application for which they are implemented in a
specific embodiment of the invention. However, it should be
appreciated that any particular program nomenclature herein
is used merely for convenience, and thus the invention
should not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

[0037] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0038] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-

Jun. 9, 2022

cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0039] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0040] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages, and quantum programming languages such
as the “Q” programming language, Q#, quantum computa-
tion language (QCL) or similar programming languages,
low-level programming languages, such as the assembly
language or similar programming languages. The computer
readable program instructions may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0041] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of

US 2022/0179673 Al

blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0042] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0043] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0044] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

[0045] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or technical improvement over technologies
found in the marketplace, or to enable others of ordinary
skill in the art to understand the embodiments disclosed
herein.

Jun. 9, 2022

What is claimed is:

1. A computer-implemented method comprising:

responsive to a hypervisor data request, generating, by

one or more computer processors, an encrypted set of
hypervisor data indicating hypervisor hardware details
using a plurality of respective asymmetric encryption
keys;

tagging, by one or more computer processors, the gener-

ated set of encrypted hypervisor data with a timestamp
at a time of encryption;
decrypting, by one or more computer processors, the
tagged set of encrypted hypervisor data utilizing a
software asset manager and the plurality of respective
asymmetric encryption keys determined valid based on
a threshold time period and the tagged timestamp;

validating, by one or more computer processors, the set of
decrypted hypervisor data utilizing corresponding
checksums to determine whether the set of encrypted
hypervisor data was successfully decrypted; and

sanitizing, by one or more computer processors, the
validated hypervisor data based on a corresponding
software license.

2. The computer-implemented method of claim 1, further
comprising:

calculating, by one or more computer processors, a soft-

ware usage of a respective hypervisor utilizing the
sanitized set of decrypted hypervisor data.

3. The computer-implemented method of claim 1, further
comprising:

dynamically adjusting, by one or more computer proces-

sors, a hypervisor associated with the set of hypervisor
data utilizing the calculated software usage.

4. The computer-implemented method of claim 1,
wherein each set of hypervisor data further includes a
hypervisor identification, a hypervisor hostname, a hyper-
visor internet protocol (IP) identification, a date, a time, a
virtual machine configuration, a virtual machine identifica-
tion, and a checksum.

5. The computer-implemented method of claim 1,
wherein decrypting tagged set of encrypted hypervisor data
is completed in a round-robin fashion.

6. The computer-implemented method of claim 1, further
comprising:

communicating, by one or more computer processors, the

set of encrypted hypervisor data through a system
management basic input/output system.

7. The computer-implemented method of claim 1,
wherein the set of encrypted hypervisor data is stored on the
software asset manager.

8. A computer program product comprising:

one or more computer readable storage media and pro-

gram instructions stored on the one or more computer
readable storage media, the stored program instructions
comprising:

program instructions to responsive to a hypervisor data

request, generate an encrypted set of hypervisor data
indicating hypervisor hardware details using a plurality
of respective asymmetric encryption keys;

program instructions to tag the generated set of encrypted

hypervisor data with a timestamp at a time of encryp-
tion;

program instructions to decrypt tagged set of encrypted

hypervisor data utilizing a software asset manager and

US 2022/0179673 Al

the plurality of respective asymmetric encryption keys
determined valid based on a threshold time period and
the tagged timestamp;

program instructions to validate the set of decrypted

hypervisor data utilizing corresponding checksums to
determine whether the set of encrypted hypervisor data
was successfully decrypted; and

program instructions to sanitize the validated hypervisor

data based on a corresponding software license.

9. The computer program product of claim 8, wherein the
program instructions, stored on the one or more computer
readable storage media, further comprise:

program instructions to calculate a software usage of a

respective hypervisor utilizing the sanitized set of
decrypted hypervisor data.

10. The computer program product of claim 8, wherein
the program instructions, stored on the one or more com-
puter readable storage media, further comprise:

program instructions to dynamically adjust a hypervisor

associated with the set of hypervisor data utilizing the
calculated software usage.

11. The computer program product of claim 8, wherein
each set of hypervisor data further includes a hypervisor
identification, a hypervisor hostname, a hypervisor internet
protocol (IP) identification, a date, a time, a virtual machine
configuration, a virtual machine identification, and a check-
sum.

12. The computer program product of claim 8, wherein
decrypting tagged set of encrypted hypervisor data is com-
pleted in a round-robin fashion.

13. The computer program product of claim 8, wherein
the program instructions, stored on the one or more com-
puter readable storage media, further comprise:

program instructions to communicate the set of encrypted

hypervisor data through a system management basic
input/output system.

14. The computer program product of claim 8, wherein
the set of encrypted hypervisor data is stored on the software
asset manager.

15. A computer system comprising:

one or more computer processors;

one or more computer readable storage media; and

program instructions stored on the computer readable

storage media for execution by at least one of the one
or more processors, the stored program instructions
comprising:

Jun. 9, 2022

program instructions to responsive to a hypervisor data
request, generate an encrypted set of hypervisor data
indicating hypervisor hardware details using a plu-
rality of respective asymmetric encryption keys;

program instructions to tag the generated set of
encrypted hypervisor data with a timestamp at a time
of encryption;

program instructions to decrypt tagged set of encrypted
hypervisor data utilizing a software asset manager
and the plurality of respective asymmetric encryp-
tion keys determined valid based on a threshold time
period and the tagged timestamp;

program instructions to validate the set of decrypted
hypervisor data utilizing corresponding checksums
to determine whether the set of encrypted hypervisor
data was successfully decrypted; and

program instructions to sanitize the validated hypervi-
sor data based on a corresponding software license.

16. The computer system of claim 15, wherein the pro-
gram instructions, stored on the one or more computer
readable storage media, further comprise:

program instructions to calculate a software usage of a
respective hypervisor utilizing the sanitized set of
decrypted hypervisor data.

17. The computer system of claim 15, wherein the pro-
gram instructions, stored on the one or more computer
readable storage media, further comprise:

program instructions to dynamically adjust a hypervisor
associated with the set of hypervisor data utilizing the
calculated software usage.

18. The computer system of claim 15, wherein each set of
hypervisor data further includes a hypervisor identification,
a hypervisor hostname, a hypervisor internet protocol (IP)
identification, a date, a time, a virtual machine configuration,
a virtual machine identification, and a checksum.

19. The computer system of claim 15, wherein decrypting
tagged set of encrypted hypervisor data is completed in a
round-robin fashion.

20. The computer system of claim 15, wherein the set of
encrypted hypervisor data is stored on the software asset
manager

