US 20220180258A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0180258 A1

PERLOV 43) Pub. Date: Jun. 9, 2022
(54) METHOD AND SYSTEM FOR EFFICIENTLY (52) US. CL
CREATING AND ASSESSING WORK AND CPC .ot G06Q 10/0633 (2013.01)
DATA FLOWS (57) ABSTRACT
(71) Applicant: K2View LTD, Yokneam 1lit (IL) Systems and methods for dynamically modeling a workflow
) ’ and identifying parameters in a computing environment are
(72) TInventor: Yuval PERLOV, Kochav Yair (IL) disclosed. In some non-limiting embodiments, the dynamic
’ ’ modeling workflow system may include circuitry, such as a
processor, that generates the workflow information to be
(21) Appl. No.: 17/527,000 displayed on a display for a user. The workflow information
may contain information representing a first actor configured
o to perform a first operation and having a first output for
(22) Filed: Nov. 15, 2021 outputting first data and a second actor configured to per-
form a second operation and having a first input for inputting
Related U.S. Application Data the first data from the first output. In addition the workflow
.. .. information may be configured to provide a visual repre-
(60) Provisional application No. 63/114,365, filed on Nov. sentation of the order in which the first actor and the second
16, 2020. actor perform the first operation and second operation,
respectively, and information about the first data. Addition-
Publication Classificati ally, the workflow information may include first and second
ublication € lassification stages representing a first and second steps in the workflow
(51) Int. CL and comprising the first and second actors, respectively. A
G06Q 10/06 (2006.01) method performed by the workflow system is also provided.
110
Receive login credentials
and request for
information
N
o 120
Y - « N
es /// \\ o}
—————— User credentials authorized? e
L e
. -
. P
P
N
130A—\
\ 4 RV
/ N
Redirect request for < End /)
f . AN V4
information ~
140 j v

Transmit requested
information

Patent Application Publication Jun. 9,2022 Sheet 1 of 9 US 2022/0180258 A1

110

Receive login credentials
and request for
information

User credentials authorized?

130A—\ 2 1308

Redirect request for
information

Transmit requested
information

FIG. 1

Jun. 9,2022 Sheet 2 of 9 US 2022/0180258 A1

Patent Application Publication

UOoJ3eWIOJU] pRIsaNbal Jjwsued) (S)

GTC WOISAS
UORRWIOLUI GTC WIISAS
JoJ 1sanbaJ ywisuesy (g)
y
ov¢ 0€¢ P 0ZZ dINPoN B 017 91A90 458
9des03s R1RQ DINPON jerslIay [soreonuayiny € !
4
uoieWIOul uclew.oul

10} 3senbaJ pue uozed|j11e2
uopesiuayIne jjuwsued (z)

uol1BWIoHUI paIsanbal jwsues] (1)

Joj 1senbau pue sjepuspssd
uonesuayine jwsuey (1)

Jun. 9,2022 Sheet 3 of 9 US 2022/0180258 A1

Patent Application Publication

0L€ 3403S eleQ

€ Ol

\ 4

A

09€ 9INPON 0S¢
Jo1adsu| a|npon Aejdsiq
ove 0€e

3|npolA 23els

3|INPOW 1010y

0ZE Wa1sAS MO|IOM

A

OTE 321A3Q J3sn

o
o
o)

Jun. 9,2022 Sheet 4 of 9 US 2022/0180258 A1

Patent Application Publication

¥ 'Ol

I

() 8uls

[o]swuswidlg (

Tiewuo48uuls

ooy —
1‘-’""""!""|l|ﬂllllm
_ 5|9 |
- L o
val\l
] wiv [¢]suawall
Jayuap) @lk\.l/ (Tswawaa | yrver] | M e,
paByyY adAL (" . 8uuis [olswuawez 1]
[eA3LIIRY / - amsesn
sgy—’ wur A / N ozy—/
/L/ o e
Y anjea
Jawoisn)
@q_u.\..!lllllll..!,.lll.._
_ !
m_v ynsaJ piomssedajduies a.(
m sjenba 4_
—Nl ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ o
[%:44
ELEIREN 218313UBYINY 5195
owﬂl\ Omwl\ O.Swl\

O
<t

Jun. 9,2022 Sheet S of 9 US 2022/0180258 A1

Patent Application Publication

S 'Ol

Ummm)‘ g
ynsau mW;
Tepingyiein
IGEG e e
bR i
UNNm.U. ovs mmmwwm

1\

mmmm)‘ Q“ﬂ
() 3nsaJ B
TPPVYiEN
mmmml_\l ||||||||||| |w
p q “,\7‘
{7 ansau I
e .
] _ Tienb3 i
|||||||||||| i
paloaye swieled(mNNm.M 0£S a8e1s
Asanp
ses VLZS g q WU
() 3nsal el)
TAldinAYIe /
<mmm._ llllllllllll 2}
1 Qr —]
Coynsad B "]
oo 1
i TuRYLIR18a4D) i
L mm o smo e s e o s o o 4
vezs—
056 ade1s 05 ades

\ 2

[ynsad]

sweled

Aanp

ran) -/

0165 28e15

Jun. 9,2022 Sheet 6 of 9 US 2022/0180258 A1

Patent Application Publication

9 'Old

"9y () 1ynsau indu O
X3} AN
28endue tulojsuel] \
—7 svg A A
u 0s9
pa1d3yje swesed(4+ +~ — — — — — — 5 y [219e1]
mmm&
1peo1aa 9|qeL1924n0s
_J

099 owo.\

eleqglasu| wJojsued| B12(]32.N0S
omml\ Ole\ on|\

US 2022/0180258 A1

127%
«PBILBP UOnESRUBINY, _ _
(> 8uus [CEEE NG
Tiewio43uils

(=) [474
S

e
~
~d

@

5
= ‘ ~
22! {,71SYT NN 1SHI4.}

SOUO[[BRUSIN,,

(o] EK:\
S E_Ecw_u_TI/ OrL™ Eﬂcwemmv\ H
S 2199 " adA E T suwms wsuof, | [T]sauawsa ynsal

N Posiv L T e, | [olswewaia(
a Aswinsuog, .)

m. [eABUIRY / 8el T382U0) aesn

-/

- 5L / oer B

£ / anjea

= -
= LJawinsue),

S =
= e Jawolsn) { QYOMSSVd
[-W i I \) dl Nino1

m Jv 1nsaJ piomssedajdwes ﬂ\ H
£ [-) JWVYN LSYT
g _
= JNVN 1SHid

=
« |PABLIIDY it e s19sn
m o5t~/ oL~/ oz~ otz
M —
= 007

Jun. 9,2022 Sheet 8 of 9 US 2022/0180258 A1

Patent Application Publication

LINGNS T3ONVO

LBuus, 1 2dAL,
L AHYOMSSYd,,
{

et

LBuins, : 2dAl,
} . A NIDO1,
{

:mc _..—u.m= “ :mQ>H=
} L AWYN LSV,
{

JBus, 1 adAy,

} L AWYN LSHI,,
}:.59ndedoad,
\\\HUQ_‘QO ”:mQ>H=

1{nsaJ :ewayds 1pJ

{7 1SYT ANVYNTLSHI,}

St8 -/ F

mdajdwes,

QYOMSSYd
ar Nio1

INVYN LSV

JNVYN 1SYId

1nsal
"Nﬂw

T1duogener

018 23e18

Patent Application Publication Jun. 9,2022 Sheet 9 of 9 US 2022/0180258 A1

910

GENERATE AN ACTOR
COMPRISING AN INPUT AND
OUTPUT

l 920

GENERATE A STAGE
COMPRISING ONE OR MORE
ACTORS

930

GENERATE A WORKFLOW
COMPRISING A PLURALITY OF
STAGES AND ACTORS

940

EXECUTE THE WORKFLOW

950

RECEIVE SELECTION OF AN
ACTOR DURING EXECUTION OF
THE WORKFLOW

990

\ 4

DISPLAY THE INPUT AND THE
OUTPUT OF THE SELECTED
ACTOR DURING EXECUTION OF
THE WORKFLOW

FIG. 9

US 2022/0180258 Al

METHOD AND SYSTEM FOR EFFICIENTLY
CREATING AND ASSESSING WORK AND
DATA FLOWS

RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Application No. 63/114,365, filed Nov. 16, 2020, the dis-
closure of which is hereby incorporated in its entirety.
[0002] FIELD OF THE DISCLOSURE

[0003] The present disclosure relates to generating a work-
flow that simultaneously displays the transfer of data and the
order of workflow operations. It also relates to a worktlow
that dynamically identifies parameters in real time to
enhance the visibility of data flows and to diagnose and
correct errors in real time.

BACKGROUND OF THE DISCLOSURE

[0004] Flow diagrams are used in a variety of settings to
visually represent an ordered step of events. For example, a
business may use a process diagram to model the steps its
employees should take to handle routine customer questions.
A business may also use a data flow to model how infor-
mation, data, or supplies are exchanged among its many
individual departments or teams.

[0005] A workflow may include an execution flow or a
data flow. Execution flows represent ordered lists of discrete
tasks executed in a specific sequence. However, a traditional
execution flow may not accurately reflect complicated rela-
tionships between tasks or entities performing the tasks.
Furthermore, typical execution flows do not allow a user to
easily introduce changes to simulate scenarios with different
data or parameters. A data flow may track how data is
transmitted within a system, but it does not help a user
visualize how an execution flow executes the tasks or
generates the data. Therefore, there is a need for systems and
methods that can receive a set of data, effectively generate
a workflow and data flow, and more easily modify the
generated work and data flows.

SUMMARY OF THE DISCLOSURE

[0006] An illustrative embodiment of a workflow model-
ing system is provided. In some implementations, the system
comprising: at least one interface configured to output
workflow information; and circuitry configured to generate
the workflow information. The workflow information may
comprise information representing a first actor and a second
actor. The first actor may be configured to perform a first
operation and have a first output for outputting first data, and
the second actor may be configured to perform a second
operation and have a first input for inputting the first data
from the first output. The workflow information may also be
configured to provide a visual representation of the order in
which the first actor and the second actor perform the first
operation and second operation, respectively, and informa-
tion about the first data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Various objectives, features, and advantages of the
disclosed subject matter can be more fully appreciated with
reference to the following detailed description of the
enclosed subject matter when considered in connection with
the following drawings, in which like reference numerals

Jun. 9, 2022

identify like elements. The following drawings should not be
construed as limiting the present disclosure and are intended
to be illustrative only.

[0008] FIG. 1 illustrates an example of a workflow.
[0009] FIG. 2 illustrates an example of a data flow.
[0010] FIG. 3 is a diagram illustrating an example of a

dynamic workflow modeling system, according to an
embodiment of the present disclosure.

[0011] FIG. 4 is a diagram illustrating an example of a
dynamic workflow model, according to an embodiment of
the present disclosure.

[0012] FIG. 5 is a diagram illustrating an example of a
dynamic workflow model with conditional stages, according
to an embodiment of the present disclosure.

[0013] FIG. 6 is a diagram illustrating an example of a
dynamic workflow model performing an iterative operation,
according to an embodiment of the present disclosure.
[0014] FIG. 7 is a diagram illustrating an example of a
dynamic workflow model data inspector, according to an
embodiment of the present disclosure.

[0015] FIG. 8 is a diagram illustrating an example of a
dynamic workflow model schema editor, according to an
embodiment of the present disclosure.

[0016] FIG. 9 is a diagram illustrating an example of a
dynamic workflow process, according to an embodiment of
the present disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

[0017] FIG. 1 illustrates an example of a workflow for
handling a user’s request for information. In block 110, a
module, such as an authenticator module, or login portal,
may receive login credentials along with a request for
protected or confidential information. For example, a con-
sumer who shops at an online retailer may wish to access
historical information associated with the consumer’s
account (e.g., purchase history, financial records, profile
information, etc.) by accessing the retailer’s system over the
Internet via an end user computer. However, due to the
personal nature of the information requested, the online
retailer’s system may only provide such information upon
receiving valid login credentials (such as a user name and
password) from the consumer via the end user computer. In
block 120, the retailer’s system analyzes the received login
credentials and determines if the received credentials are
correct. For example, the online retailer’s system may use a
lookup table to compare the received login credentials to a
list of valid retail consumer credentials stored in a database.
If the received login credentials are not associated with a
valid consumer record, then the process may simply termi-
nate in block 130B. Alternatively, the system may send a
message back to the consumer’s end user computer indicat-
ing that the credentials were invalid and prompting the
consumer to input the credentials again. On the other hand,
if the received login credentials match a valid consumer
record, then the process may proceed to block 130A. In
block 130A, the authenticator module of the retailer’s sys-
tem may pass along the request for information to another
module in the retailer’s system that can process the request.
For example, the authenticator module can redirect or trans-
mit the request for information to a remote server hosting a
database storing customer information. In block 140, the
system may transmit the requested information back to the
consumer’s end user computer. For example, upon receiving
a request for a specific customer’s purchase history, the

US 2022/0180258 Al

retailer’s system may extract the information from a con-
sumer records database and transmit the information back to
the end user computer in the form of a webpage, spread-
sheet, table, file, or other format.

[0018] FIG. 2 illustrates an example of a data flow asso-
ciated with the workflow described above in FIG. 1. The
process is performed in a system 200, which comprises a
user device 210 (such as the consumer’s end user computer)
and the retailer’s system 215. System 215 comprises authen-
ticator module 220, retrieval module 230, and data storage
240. In some embodiments, user device 210 and system 215
may be connected via a communication pathway (e.g., a
local wireless network, a wired connection, the Internet,
etc.). User device 210 may transmit authentication creden-
tials (such as login credentials) and a request for information
to system 215 (per item (1) in FIG. 2). Authenticator module
220 may then receive the credentials and confirm the valid-
ity of the credentials by, for example, matching the received
credentials with a master list of confirmed user credentials.
In some embodiments, authenticator module 220 may trans-
mit an authentication certification and the request for infor-
mation to retrieval module 230 (per item (2) in FIG. 2). In
some embodiments, retrieval module 230 may be configured
to communicate with data storage 240 (such as a database)
to extract information in response to the request for infor-
mation. The retrieval module 230 transmits or passes along
the request for information to data storage 240 (per item (3)
in FIG. 2). For example, retrieval module 230 may transmit
an identifier associated with the user (e.g., a unique user pin
number or user ID) which may then be used by data storage
240 to search for the stored data associated with the user.
Data storage 240 may then transmit the requested informa-
tion back to retrieval module 230 (per item (4) in FIG. 2).
Retrieval module 230 may then transmit the information
received from data storage 240 to user device 210 over the
communication pathway (per item (5) in FIG. 2).

[0019] There are disadvantages associated with the work-
flow and dataflow illustrated in FIGS. 1 and 2. For example,
the workflow of FIG. 1 shows the high level steps involved
in handling a user’s request for information. However, while
FIG. 1 displays steps in a sequential order, it does not
provide any detailed information regarding how such steps
are actually implemented in a system. For example, a basic
business flow, such as one shown in FIG. 1, does not show
which modules, processors, or other system components are
assigned to execute the tasks in the workflow. Furthermore,
the basic workflow does not show how multiple components
within the system communicate and transfer data within the
system while performing the workflow to accomplish the
tasks. Therefore, for example, if an error occurs while
executing the business flow, a user will have difficulty
diagnosing the exact cause and location of the error within
the system.

[0020] The data flow illustrated in FIG. 2 also presents its
own problems. For example, the data flow shows system
modules and components as well as the flow of data within
the system. Such a data flow may be easy to follow assuming
the tasks executed to generate the data are simple. However,
a user may be quickly overwhelmed in embodiments where
many different components and modules must execute com-
plex tasks to generate and transfer data. In some embodi-
ments, multiple data flows may exist at any one time and
may execute simultaneously, further frustrating a user’s
efforts to understand how each data flow factors into the

Jun. 9, 2022

overall workflow. It is therefore desirable, in some non-
limiting embodiments, to provide a system that allows a user
to examine the details of a complex data flow while also
allowing the user to keep track of the broader workflow
process at any step and point within the system.

[0021] FIG. 3 is a diagram illustrating an example of a
dynamic workflow modeling environment, in accordance
with a non-limiting embodiment, which shows how certain
modules and devices may interact to generate a dynamic
workflow. The dynamic workflow operates in an environ-
ment 300 and comprises a user device 310, workflow system
320, and data store 370. In some embodiments, user device
310, workflow system 320, and data store 370 may be
configured to exchange information via one or more com-
munication pathways, such as a variety of wired and/or
wireless networks, including but not limited to local area
networks, wide area networks, and/or the Internet. In some
embodiments, user device 310 may be any device associated
with a user, such as, for example, a desktop computer, a
laptop computer, a mobile smartphone, tablet, wireless
device, or other device.

[0022] As further shown in FIG. 3, the workflow system
320 includes an actor module 330, a stage module 340, a
display module 350, and an inspector module 360. The
modules 330, 340, 350, and 360 may be implemented by
software, such as software executed by a processor, com-
ponents, packages, classes, objects, or a collection of inter-
active objects. Alternatively, the modules 330, 340, 350, and
360 may be implemented by dedicated hardware, such as an
ASIC, individual processing units, storage devices, 1/O
devices, or communication devices. Yet still, the modules
330, 340, 350, and 360 may be implemented with a com-
bination of hardware and software. The display module 350
may include a display, such as LCD, LED, or OLED
monitor. The display module 350 may alternatively or
additionally include software, hardware, or combination of
software and hardware that creates data to ultimately be
displayed on a display.

[0023] Actor module 330 may be configured to receive an
input, execute a specific set of actions, and generate an
output as part of the dynamic workflow modeling process.
For example, actor module 330 may be configured to accept
an input (e.g., a numeric value), execute a set of operations
based on the input (e.g., multiply the numeric input by 2),
and produce an output (e.g., a modified numeric value). In
some embodiments, actor module 330 may include one or
more “actors,” with each actor being configured to perform
a different or redundant set of instructions or operations.
These “actors” may be predefined and/or may be customized
and created by a user. Furthermore, the “actors” may be
stored in a database. As noted below, in one implementation,
the actors constitute smaller “building blocks” that perform
particular operations and can be easily and efficiently com-
bined to perform a wide variety of robust functions and
operations.

[0024] In one embodiment, an “actor” may be a reusable
piece of logic, with inputs and outputs, that can be
assembled with other actors to create more complex logic.
For example, a first actor may be a data structure configured
to receive an array of numbers as an input, multiply each
number in the array by 10, and output a new array com-
prising the multiplied numbers. The first actor may be used
together with a second actor, which may receive the new
array as an input and produce another output. In one

US 2022/0180258 Al

implementation, an actor may be an object-type data struc-
ture configured to execute a set of instructions on data stored
in the data structure.

[0025] As an additional example, while one actor may be
configured to multiply an input numeric value by 2 and
output the result, a different actor may be configured to
accept a different type of input (e.g., a floating point integer)
and generate a different output (e.g., a string). In some
embodiments, actor module 330 may be configured to
receive edits or changes from a user. For example, a user
may access workflow system 320 via an appropriate user
interface (such as a keyboard, mouse, and monitor) to add
additional actors to actor module 330. These additional
actors may by predetermined actors and/or may be prede-
termined actors that have been modified by the user. In some
embodiments, a user may instead create one or more actors
“from scratch™ according to the user’s own specifications.
As will be described in connection with FIG. 4, actors may
be linked together such that a first actor may generate an
output that may be used as an input for a second actor. In
some embodiments, actors may have an “inheritance” hier-
archy that allows an actor to use logic or arguments used in
another actor. For example, a “calculator” actor, which is
configured to perform a variety of mathematical operations
on input numbers, may inherit logic used to add numbers
together from an “addition” actor and may also inherit logic
used to multiply numbers together from a “multiplication”
actor. In other embodiments, actors may reuse a constant
value across multiple flows or reuse actor logic such as
JavaScript or SQL. In yet other embodiments, actors that are
linked together may themselves be collectively saved as a
single actor. Once the linked actors are saved as a new,
single actor, this new actor may be reused in the same
dynamic workflow or another flow. It will be appreciated
that the actors may be configured in alternative ways
depending on the implementation.

[0026] Stage module 340 may be configured to represent
one or more steps or stages in the dynamic workflow
process. For example, in a dynamic workflow model repre-
senting the workflow associated with certifying a user’s
credentials, the stage module 340 may generate or utilize a
first stage for receiving a user’s credentials before transmit-
ting requested information to a user, a second stage for
authenticating the credentials, and a third stage for trans-
mitting an authentication message and/or the requested
information to the user. It will be appreciated that other
dynamic workflows may use a different number of stages
and configurations. Stages may be arranged and executed in
a specific order. For example, the stage associated with
receiving a user’s credentials may be executed before the
stage associated with authenticating the received credentials.
A user may use stage module 340 to rearrange a plurality of
stages in any order the user wishes. Furthermore, in some
embodiments, a user may generate a stage and populate the
stage with one or more actors of the user’s choosing. In
certain implementations, the actors in a particular stage may
be executed simultaneously, and in other implementations,
the actors may be executed sequentially or in another
designated order. In some embodiments, each stage can be
assigned an error handler. The error handler may be an actor
that contains logic to execute an action if an error occurs
during a stage. For example, a stage’s error handler may be
an actor that terminates the stage upon encountering an error.
In one example, a stage that is responsible for performing

Jun. 9, 2022

transformations on entries in an array may include an error
handler that automatically terminates the process if the
referenced array is empty.

[0027] Display module 350 may be configured to generate
a visual representation embodying the various stages and
actors in a dynamic workflow model. Such a visual repre-
sentation will enable a user to assess the operations of the
dynamic workflow (including the data generated by the
workflow) and modify them if needed. Examples of such a
visual representation are discussed below with reference to
FIGS. 4-8.

[0028] Inspector module 360 may generate an overlay or
window while workflow system 320 executes at least one
stage in a dynamic workflow model. Alternatively or addi-
tionally, inspector model 360 may generate an overlay or
window before, during, or after the workflow system 320
executes one or more or all stages in a dynamic worktlow
model. As explained via a non-limiting example in more
detail below, the inspector overlay or window may be
configured to display a variety of information during the
execution of the dynamic workflow model. For example,
inspector module 360 may generate an overlay displaying
input and output parameters of all actors in the dynamic
workflow. In some embodiments, inspector module 360 may
only display additional information upon receiving a user
input. For example, the inspector module 360 may display
the input and output parameters of a specific actor only when
a user selects the actor with a mouse click or touch gesture
or when the user uses a mouse to hover a cursor/pointer over
the actor. In some embodiments, inspector module 360 may
be configured to display other information. For example,
inspector module 360 may display a visual indication show-
ing what stage is currently being executed in real time. By
displaying information during execution in real time, inspec-
tor module 360 allows a user to test, understand, and debug
a dynamic workflow in an efficient, easy, and transparent
manner.

[0029] In some embodiments, data store 370 may be a
database stored on a remote server or in local memory. Data
store 370 may store information being processed by work-
flow system 320. For example, if a stage in workflow system
320 generates or outputs a result (e.g., a string), that result
may be stored in data store 370. In some embodiments, data
store 370 may additionally or alternatively store a plurality
of predefined actors or stages. The workflow system 320
may then refer to data store 370 to reuse the actors or stages
that are already stored in data store 370. If a user creates a
new actor or stage, data store 370 may be updated to include
the new actor or stage.

[0030] FIG. 4 is a diagram illustrating an example
dynamic workflow model 400. In this example, model 400
is associated with an authentication and information
retrieval workflow and can be executed through workflow
system 320 and displayed via display module 350. Model
400 comprises a user 1D stage 410, and authentication stage
430, and an information retrieval stage 480. Each of the
stages 410, 430, and 480 represents a step in the authenti-
cation and information retrieval workflow.

[0031] Each of the stages 410, 430, and 480 may comprise
at least one actor. For example, stage 410 comprises a user
1D actor 420. Stage 430 comprises an equals actor 440, a
customer actor 445, a concatl actor 450, an else actor 452,
and a stringformatl actor 460. Stage 480 comprises a
retrieval actor 485. Actors within a stage may be further

US 2022/0180258 Al

divided into groups. For example, Stage 430 includes actors
440, 445, and 450 in one group (as denoted by the solid-
lined box surrounding the actors 440, 445, and 450), while
actor 460 is separated into its own group within the same
stage (as shown by the box around actor 460). In some
embodiments, actors belonging to a single group may be
implemented as sub-actors in one larger actor representing
the entire group. Stages 410, 430, and 480 are displayed in
order from left to right and may be executed sequentially in
that order as well. It will be appreciated that some embodi-
ments may utilize a different arrangement of stages and
execution order. While the order of steps in a flow may be
visually represented (e.g. via display module 350) by the
sequential order of the stages 410, 430, and 480 (e.g. from
left to right), the flow of data associated with the process
may be visually represented in the dynamic workflow model
as well.

[0032] As shown in the example in FIG. 4, display module
350 of workflow system 320 may display the flow of the
work and data as a series of nodes and links connecting
actors together via their inputs and outputs. For example, the
output of actor 420 from stage 410 is provided to the input
of actor 440 via link 422, to the input of actor 450 via link
424, and to the input of actor 460 via link 426. Similarly, the
output of actor 445 is provided to a first input of actor 485
via link 472. The output of actor 450 is provided to a second
input of actor 485 via links 474.

[0033] In this embodiment, each of stages 410, 430, and
480 comprises one or more actors to execute specific
instructions or operations to be performed during the stage.
For example, the users stage 410 in the workflow system 320
may receive user credentials (e.g. user ID and an alphanu-
meric password such as “Samplepassword”) from a user’s
end user computer for accessing data in the user’s account.
In this example, stage 410 comprises the single user ID actor
420, which forwards the received user ID and password
(“Samplepassword”) from its output to the authentication
stage 430 via links 422, 424, and 426.

[0034] As shown in the example, authentication stage 430
uses multiple actors 440, 445, 450, 452, and 460 to authen-
ticate the user ID and password. The equals actor 440 may
receive the user’s password (“Samplepassword”) (and/or the
user ID) from actor 420 via its input over link 422 and
compare it to a list of authorized passwords (and/or user
1Ds). If the received password (and/or user ID) matches one
of the passwords (and/or user 1Ds) on the list, the process
may proceed to the customer actor 445. In this case, actor
445 may transmit an integer value (e.g., 1), which indicates
that the password (and/or user ID) has been authenticated,
via its output to the first input of retrieval actor 485 via link
472. In response to the actor 445 generating the integer value
(e.g. 1), the concatl actor 450 may also input the received
alphanumerical password (“Samplepassword”) from the
actor 420 via link 424 store it as an string array “Elements
[0].” If equals actor 440 determines that the received pass-
word (“Samplepassword”) (and/or user ID) matches one of
the passwords (and/or user IDs) on the list, customer actor
450 may provide a string (e.g., “Samplepassword accepted”)
to the second input of actor 485 via link 474. It should be
noted that, in some embodiments, actor 450 is not limited to
inputting only one array element

[0035] “Elements[0].” In some embodiments, actor 450
may include Elements|1], Elements[2], or any other number
of array entries to accept a variable number of inputs. In yet

Jun. 9, 2022

other, non-limiting embodiments, equals actor 440 may not
output a “result” of is analysis of the password and/or user
ID to customer actor 445 or concatl actor 450 via an
external link. For example, customer actor 445 and concatl
actor 450 may be integrated or otherwise closely associated
with equals actor 440, such that they “internally” receive the
result of equals actor 440. Such a relationship between the
actors 440 and the actors 445 and 450 may be denoted by a
dashed border notation of actor 440 and/or by the solid
border box surrounding the three actors 440, 445, and 450),
as shown in FIG. 4.

[0036] However, if equals actor 440 determines that that
received password (“Samplepassword”) (and/or user ID)
does not match one of the authorized passwords (and/or user
1Ds), then customer actor 445 may output a different integer
value (e.g., 0) via link 472 to the first input of actor 485
indicating that the password has not been authenticated. In
this case, the authentication stage 430 may proceed to the
else actor 452 and then, to the stringformat1 actor 460. As
shown in FIG. 4, the stringformat] actor 460 receives the
alphanumerical password (“Samplepassword”) from the
actor 420 via link 426 and stores it as an string array
“Elements[0].” The actor 460 may output a string (e.g.,
“Samplepassword denied”) that can be displayed on the end
user device. Moreover, the actor 460 may prevent the
process from proceeding to the retrieval stage 480 and actor
485 so that confidential information is not retrieved during
the stage 480. In some embodiments, actor 460 may be
integrated or otherwise closely associated with else actor
452 and may be executed without receiving an input from
actor 452 via an external link. Such a relationship between
the actors 452 and 460 may be denoted by a dashed border
notation of actor 452, as shown in FIG. 4.

[0037] As indicated above, retrieval actor 485 is config-
ured to receive an integer value from actor 445 via its first
input and an alphanumeric string from actor 450 via its
second input. The actor 485 stores the integer value as a
“type” and stores the alphanumeric string as an “identifier.”
For example, actor 485 may receive an integer value (e.g. a
0 or 1) from actor 445. When the actor 485 receives a value
of “1,” it knows that the password (“Samplepassword”)
(and/or user ID) has been successfully authenticated. One
the other hand, when the actor 485 receives a value of “0,”
it knows that the password is not correct.

[0038] In some embodiments, actor 485 may be config-
ured to perform a set of actions depending on the received
inputs. For example, if actor 485 receives the integer value
“1” from the actor 445 and the string “Samplepassword
accepted” from the actor 450, it may pass along the string to
the user for display on the user’s computer and grant the user
access to protected information or supply requested infor-
mation to the user’s computer.

[0039] FIG. 5 is a diagram illustrating an example of a
dynamic workflow model with conditional stages. Multiple
stages and actors may be used in a dynamic workflow to
represent a process involving conditional steps. As shown,
the model includes five stages, 510, 520, 530, 540, and 550.
Stage 510 includes a query actor 512. Stage 520 includes a
greaterthanl actor 522A and a mathmultiplyl actor 525A.
Stage 530 includes an equall actor 522B and a mathaddl
actor 525B. Stage 540 includes an else actor 522C and a
mathdividel actor 525C. Stage 550 includes a query actor
535.

US 2022/0180258 Al

[0040] As shown in this example, the workflow system
320 executes one of stages 520, 530, or 540 depending on
the output of query actor 512 in stage 510. For example, the
output of actor 512 may be an array of integers (e.g., labeled
“[result]”) containing integers (e.g., integers a and b), and
the array of integers are provided to stages 520, 530, and
540. For example, the output of actor 512 may be transmit-
ted to actors 522A, 525A, 522B, 525B, and 522C, as shown
in FIG. 5. In some embodiments, stages 520, 530, and 540
may be executed sequentially. For example, stage 520 may
be executed before stages 530 and 540, and stage 530 may
be executed before stage 540. In other embodiments, stages
520, 530, and 540 may be configured to be executed
simultaneously. In yet other embodiments, stages 520, 530,
and 540 may be configured to check for different conditions,
as will be discussed below.

[0041] At stage 520, actor 522A receives the array of
integers a and b from actor 512 and determines if both
integers are greater than a predetermined value (e.g., 1). If
s0, actor 522A may generate and/or output a Boolean value
“true” as the result. When the value is “true,” the stage 520
may execute actor 525A, which multiples the integers a and
b together to generate result 527A (e.g., an integer value
c=a*b). Then, actor 525A may output result 527A to actor
535 in stage 550.

[0042] On the other hand, if actor 522A determines that
the integers a and b are not greater than 1, it generates and/or
outputs a Boolean value “false,” and the actor 525 A does not
perform its operation on the integers a and b. If the stages are
executed sequentially (as opposed to simultaneously), the
value “false,” may cause stage 530 to be executed. Alter-
natively, if stages 520, 530, and 540 execute simultaneously,
stage 530 may execute regardless of the result of stage 520
(and actor 522A within the stage 520).

[0043] At stage 530, actor 522B determines if the integers
a and b are both equal to the value 1. If integers a and b are
both equal to the value 1, actor 522B may generate and/or
output the Boolean value “true.” In this case, stage 530 then
executes actor 525B, which adds the input integers a and b
together to generate result 527B (e.g., an integer value
c=a+b). Then, actor 525B may output result 527B to actor
535.

[0044] On the other hand, if actor 522B determines that
integers a and b are both not equal to 1, actor 522B generates
and/or outputs a Boolean value “false,” and the actor 525B
does not perform its operation on integers a and b. If the
stages are executed sequentially (as opposed to simultane-
ously), the output value “false,” may cause stage 540 to be
executed.

[0045] At stage 540, actor 525C may perform a different
mathematical operation on input integers a and b. For
example, actor 525C may divide integer a by integer b to
generate result 527C (e.g., a floating point value c=a/b) and
output the result to actor 535.

[0046] Each of stages 520, 530, and 540 represents a set of
processes that may be sequentially executed after stage 510,
such that stages 520, 530, or 540 may be executed one at a
time. In some embodiments, multiple stages may be
executed simultaneously. Although FIG. 5 represents con-
ditions as multiple stages, it will be appreciated that condi-
tional flows may be represented in other ways in other
embodiments. For example, a single stage may comprise
multiple actors, wherein each actor in the stage is associated
with a separate condition.

Jun. 9, 2022

[0047] While actors 522A and 522B represent conditions
that are mutually exclusive, it will be appreciated that
multiple conditions may be satisfied at the same time in
some embodiments. For example, a first actor (e.g. a “Grea-
terThanl” actor) may determine whether integers a and b are
both greater than 1 (like actor 522A), and a second actor
(e.g. a “GreaterThan5” actor) may determine whether inte-
gers a and b are both greater than 5. In this case, both actors
may return the Boolean value “true” if the integers a and b
are both equal to 7. Similarly, multiple conditions may fail
at the same time in some embodiments. For example, the
GreaterThanl actor and the GreaterThan5 actor may both
return Boolean values “false” if input integers a and b are
both numbers smaller than 1. Also, in some embodiments,
actors 522A, 522B, and 522C are stylized with dashed lines
in this embodiment to indicate that they do not provide an
output via external links to other actors and are closely
associated with other actors, as explained above.

[0048] FIG. 6 illustrates an example of a dynamic work-
flow model performing an iterative operation. Stages and
actors may be arranged in a dynamic workflow to represent
any sort of task or process that a user wishes. The workflow
system 320 may then execute the stages in order from left to
right. However, certain processes may require iterative
operations and may require certain actors or stages to
execute more than once. For example, performing some sort
of data transformation on multiple entries in a database or
traversing through an array may require an actor to repeat-
edly perform the same operations on different information.

[0049] As shown, the model includes a sourcedata stage
610, a transform stage 620, and an insertdata stage 630. The
source data stage 610 has a sourcetable actor 640 that
retrieves data from a first location in a table stored in a
database, and outputs the first data via link 645 to the
transform stage 620. Stage 620 has a Transform1 actor 650
that inputs the first data and transforms it (e.g., by perform-
ing a mathematical operation) and outputs the transformed
data via a link 655 to the InsertData stage 630. Stage 630 has
a DbLoadl actor 660 that inputs the transformed data and
stores it in a database. Then, as shown by link 656, source-
data stage 610 is executed again.

[0050] As such, in this example, stages 610, 620, and 630
are sequentially executed a number of times to similarly
process data located in other locations of the table. Workflow
system 320 may therefore represent the iterative operation
using a combination of dashed links 645 and 656 and
non-dashed link 655. In some embodiments, a dashed link
may signal to workflow system 320 that a specific action
must be performed in successive iterations. For example,
dashed link 656 signals that each entry of the original table
in stage 610 is transmitted over to actor 660, and dashed link
645 signals that Transform1 actor 650 must perform a data
transformation for each entry referenced in sourceTable 640.
Transform1 actor 650 may perform an alteration or trans-
formation operation on the received inputs. For example, if
the input table from sourceTable 640 is a table of customer
names and associated passwords, Transform1 actor 650 may
adjust each password entry to reflect any user password
changes but leave the customer names unchanged. By con-
trast, a non-dashed link may signal that an action does not
need to be iteratively performed on multiple entries. For
example, non-dashed link 655 signals that no traversal is

US 2022/0180258 Al

needed because Transform 1 receives only one input at a
time (via link 645) and generates one corresponding output
(on link 655).

[0051] FIG. 7 is a diagram illustrating an example of a
dynamic workflow model data inspector 700, which may be
implemented via inspector module 360. As explained above,
the inspector 700 (implemented in one example via the
inspector model 360) may generate an overlay before,
during, or after the workflow system 320 executes at least
one stage in a dynamic workflow model. This overlay may
be configured to display a variety of information during the
execution of the dynamic workflow model, such as input and
output parameters of the actors in the dynamic workflow.
[0052] As such, in one example, the dynamic workflow
model data inspector 700 shown in FIG. 7 displays infor-
mation for a user to review during the execution of the
dynamic workflow. By displaying information during execu-
tion, the inspector 700 may offer a transparent view of how
data flows in the process. Accordingly, the inspector 700
may be helpful to check for errors in the process or to
determine how modify the process to perform different, but
similar tasks.

[0053] The inspector 700 may display a variety of infor-
mation on the screen by default or in response to some user
input. In the embodiment shown in FIG. 7, the inspector 700
is used in conjunction with dynamic worktflow model that is
similar to the dynamic workflow model 400 shown in FIG.
4. Thus, operations of the model shown in FIG. 7 that are
similar to the operations of the model 400 shown in FIG. 7
are omitted for the sake of brevity.

[0054] In one embodiment, if the user moves a mouse via
a user interface to hover a cursor above an input or an output
of an actor, the inspector 700 may display a window
showing at least some of the information that will be, has
been, or is being, provided from the output. For example, if
the user moves the cursor over the “result” output of the
actor 712, the inspector 700 may display a small window
714 containing some information, such as strings or param-
eters including the first name “FIRST NAME” and last name
“LAST NAME” of a user requesting information from the
system. Alternatively, the system may automatically display
a small window, such as the window 714, all the time, during
a specific operational mode, or periodically, without having
to hover a cursor above the input or output of an actor.
[0055] In a further implementation, if the user actually
selects the input or output of an actor (e.g., via a mouse
click), the inspector 700 may generate a larger window to
display more detailed information. For instance, continuing
with the example above, if the user clicks on the small
window 714 or the “result” output with the mouse, the
inspector 700 displays a larger window 720 to display more
detailed information output from the actor 712. Namely, as
shown, the window 720 contains a list 722 indicating that
the output of the actor 712 includes multiple strings or
parameters, including the first name “FIRST NAME,” last
name “LAST NAME,” user ID “LOGIN ID,” and password
“PASSWORD?” of the user requesting information from the
system.

[0056] Furthermore, the list of strings or parameters in a
larger window may indicate which strings or parameters are
input from or output to which actors. For example, the larger
window 720 may indicate that the “FIRST NAME,” “LAST
NAME,” and “LOGIN ID” parameters are output from actor
712 to actor 736 in stage 730 (as noted by the links between

Jun. 9, 2022

the parameters and the inputs to the actor 736). Additionally,
the window 720 may indicate that the “PASSWORD”
parameter is output to the actor 731 in stage 730 (as noted
by the link between the parameter and the actor 731).

[0057] In yet another embodiment, the inspector 700 may
offer more detailed information about the workflow model in
case the user desires additional information. For example, as
shown in FIG. 7, additional windows 724, 726, 734, 738,
740, 744, 754, and 756 are provided that display the actual
contents or values of specific parameters generated by actors
and/or exchanged between actors during or after they are
input to or output from the actors. For example, the window
724 indicates that the “FIRST NAME” parameter output
from actor 712 has a value “Michael,” and the window 726
indicates that the “LAST NAME” parameter output from
actor 712 has a value “Jones.” Similarly, the windows 738
and 740 indicate that the actor 736 inputs the “FIRST
NAME” parameter having the value “Michael” as Element
[0] and the “LAST NAME” parameter having the value
“Jones” as Element[1]. Also, windows 734 and 754 indicate
that a string having a value “Consumer” is output from actor
732 and input to actor 752, and window 756 indicates that
a string having a value “Michael Jones” is input to actor 752.
These additional windows 724, 726, 734, 738, 740, 744,
754, and 756 may be displayed at all times, individually
selectively displayed upon the user’s request, and/or dis-
played when the inspector 700 is operated in a certain mode.
Moreover, in one implementation, the windows 724, 726,
734, 738, 740, 744, 754, and 756 (as well as the windows
714 and 722) may be updated in real time so that the user can
see how the information propagating through the dynamic
workflow changes during execution. As such, the inspector
700 provides increased transparency of how data flows in a
dynamic workflow process. In some embodiments, inspector
700 may display an additional window displaying even more
detailed information when the user performs a selection
action (e.g., a mouse click) on a specific actor, input, or
output.

[0058] Similar to the operation of the dynamic workflow
model 400 shown in FIG. 4, actor 731 in stage 730 may input
the “PASSWORD?” parameter having a certain value and
may determine if it matches a password, such as “Sample-
password,” on a list of valid passwords. If there is a match,
actor 731 may return a Boolean value “true” indicating that
the password has been validated. In some embodiments, and
as described above in conjunction with FIG. 4, this Boolean
value “true” output from actor 731 may be used by actors
732 and 736. For example, if the password is validated as
“true,” then actor 732 may output a string (e.g., “consumer,”
“administrator,” or “seller” account) identifying the type of
account associated with the validated password. In this
example, the type of account is a consumer account, and the
actor 732 outputs the string “Consumer” (as indicated by
window 734). Then, as indicated by window 756, the string
“Consumer” is received by actor 752 in stage 750.

[0059] Additionally, as shown in FIG. 7, after actor 736
receives the ‘“FIRST NAME,” “LAST NAME,” and
“LOGIN ID” parameters as inputs, it may transmit them as
an output string to actor 752 in stage 750. For example, as
shown, the actor 736 receives the “FIRST NAME” param-
eter having a value “Michael” (as indicated by window 738)
and receives the “LAST NAME” parameter having a value

US 2022/0180258 Al

“Jones” (as indicated by window 740). Then, the actor 736
outputs a string “Michael Jones” to actor 752 (as indicated
by window 756).

[0060] The windows 724, 726, 734, 738, 740, 744, 754,
and 756 may be useful to help a user determine whether the
actors in the dynamic workflow model are operating prop-
erly. For example, the user may confirm via windows 734
and 754 that the “Consumer” string output from actor 734 is
successfully received by actor 752. Additionally, user can
determine whether the “FIRST NAME” and “LAST
NAME” parameters having values “Michael” and “Jones,”
respectively, are successfully output from actor 712 and
received by actor 736 via windows 738 (as indicated by
windows 724, 726, 738, and 740). Moreover, the user can
determine whether the actor 736 successfully combines the
input values “Michael” and “Jones” to output a string having
the value “Michael Jones™ to actor 752 (as indicated by
windows 738, 740, and 756). Additionally or alternatively,
the inspector 700 may rely on the information in the win-
dows (or the underlying data) to automatically determine
whether the actors in the workflow model are operating
properly. The inspector 700 may further provide a status
and/or alarm to the user indicating that the actors are
working properly or if there is an error. For example, if the
user accidentally provides a misspelled or incorrect “FIRST
NAME” or “LAST NAME,” the user may see via inspector
700 that actors 741 and 742 are executed instead of actors
732 and 736. In such an embodiment, inspector 700 may
display window 744 to show the error message “Authenti-
cation denied” (in window 744) to the user to notify the user
of an error in the retrieval process.

[0061] FIG. 8 is a diagram illustrating an example of a
dynamic workflow model schema editor, which allows a
user to edit a “schema.” A “schema” describes a data type
and its associated properties and values. For example, a
schema meant to represent data about a person may include
an “object” data type along with the “FIRST NAME” and
“LAST NAME” properties. As mentioned above in connec-
tion with FIG. 3, a user may wish to create new actors or
stages (or edit existing ones) to create (or modify) a work-
flow or as part of a debugging process. The schema editor is
one mechanism for doing so.

[0062] In some embodiments, actors and stages may uti-
lize schemas to define data used in the workflow or to design
data flows that leverage known data structures. A schema
may comprise instructions about how an actor should pro-
cess input information or data to generate corresponding
output information or data. In some embodiments, a schema
can be updated or edited during runtime and when the
workflow is not being run.

[0063] Inone embodiment, when a workflow is displayed,
a user may use a mouse to click or select an actor, a stage,
input to the actor, output from the actor, node, etc. For
example, as shown in FIG. 8, a user may select a node 812
(i.e., the output of “JavaScript]” actor in stage 810) to
instruct the inspector 700 to display window 820 containing
detailed information regarding the selected node 812. When
the scheme editor is invoked, the inspector 700 may also
display a schema editor window 850, which displays code
associated with the selected node. For example, as shown
window 850 may display a file, such as a JSON file,
associated with the parameters “FIRST NAME,” “LAST
NAME,” “LOGIN ID,” and “PASSWORD” displayed in
window 820. Moreover, a user may examine the actual

Jun. 9, 2022

values of the parameters through windows 822, 824, 826,
and 828 during execution and then edit the schema using
window 850. For example, the user may change the “type”
of'the “FIRST NAME” parameter from “string” to “integer”
to modify the operation or properties of the “JavaScriptl”
actor’s output. In some embodiments, the user may directly
edit the code found in window 850 by entering changes to
the information displayed in the window 850 and submitting
the edits. Upon submitting the edits, the process may auto-
matically re-execute using the updated schema. Moreover, a
user may add additional properties or parameters to the
“JavaScript]” actor’s output by entering the information via
the window 850. It will be appreciated that in some embodi-
ments, a user may implement edits or changes to actors or
stages differently.

[0064] FIG. 9 is a diagram illustrating an example
dynamic workflow process. In block 910, workflow system
320 may generate an actor comprising an input and output.
In some embodiments, the actor may accept a variety of
inputs and provide a variety of outputs. For example, an
actor may accept strings, Booleans, arrays, constant values,
or other types of data as inputs, and provide similar outputs.
An actor may be configured to accept specific types of inputs
and to automatically convert a received input into the
specified type of information. In some embodiments, the
actor’s input may be the output from another actor. There-
fore, multiple actors may be linked together to form a logic
chain. In some embodiments, a logic chain formed by
linking multiple actors together may itself be saved as a
single actor. In some embodiments, the actor may be stored
in a data store to be used at a later point.

[0065] In block 920, the system may generate a stage
comprising one or more actors. A stage may represent one or
more steps in the dynamic workflow process. For example,
a three-step process may be divided into a first stage, a
second stage, and a third stage. Stages may be arranged and
executed in a specific order. For example, a first stage may
be executed before a second stage, and the second stage may
in turn be executed before a third stage. A user may generate
a stage and populate the stage with one or more actors of the
user’s choosing. In some embodiments, the actors in a
particular stage may be executed simultaneously. Each stage
may also be assigned an error handler. The error handler may
be an actor that contains logic to execute an action if an error
occurs during a stage. For example, a stage’s error handler
may be an actor that terminates the stage upon encountering
an error.

[0066] In block 930, the system generates a worktlow
comprising a plurality of stages and actors. It will be
appreciated that any number of stages and actors may be
used to represent a dynamic workflow. In block 940, the
system executes the generated workflow. The workflow
system may execute the workflow by executing stages in a
specific order by default. For example, if stages are arranged
from left to right, then the workflow may be executed by first
executing the left-most stage and proceeding sequentially to
the right. Alternatively, the workflow may execute stages in
a different order or may be configured to allow a user to
selectively configure the workflow to execute the stages in
a particular order.

[0067] In block 950, the system receives a selection of an
actor during execution of the workflow. For example, the
system may receive a user input (e.g., a mouse click) that
identifies a specific actor in the dynamic workflow. In block

US 2022/0180258 Al

960, the system displays the input and the output of the
selected actor during the execution of the workflow. As
mentioned above in connection with FIG. 7, the input and
output of a selected actor may be displayed using an
inspector.

[0068] In some embodiments, the dynamic workflow pro-
cess may include additional or fewer steps. For example, the
dynamic workflow may also include receiving, during
execution of a workflow, an edit to the workflow comprising
at least an edit to an actor from the plurality of actors. The
system may generate a modified actor based at least partly
on the received edit and execute a modified workflow based
at least partly on the modified actor.

[0069] Moreover, some or all of the structure and func-
tionality of the embodiments described above may be imple-
mented on a single processor or a single server. Alterna-
tively, some or all of the structure and functionality of the
embodiments described above may be implemented via a
distributed network of processors and servers located in the
same or different remote locations.

[0070] As will be apparent to one of ordinary skill in the
art from a reading of this disclosure, the disclosed subject
matter can be embodied in forms other than those specifi-
cally disclosed above. The particular embodiments
described above are, therefore, to be considered as illustra-
tive and not restrictive. Those skilled in the art will recog-
nize, or be able to ascertain, using no more than routine
experimentation, numerous equivalents to the specific
embodiments described herein. The scope of the invention is
as set forth in the appended claims and equivalents thereof,
rather than being limited to the examples contained in the
foregoing description.

1. A workflow modeling system, comprising:

at least one interface configured to output workflow

information; and

circuitry configured to generate the worktflow informa-

tion, wherein the workflow information comprises

information representing:

a first actor configured to perform a first operation and
having a first output for outputting first data,

a second actor configured to perform a second opera-
tion and having a first input for inputting the first data
from the first output,

wherein the workflow information is configured to
provide a visual representation of:
the order in which the first actor and the second actor

perform the first operation and second operation,
respectively, and
information about the first data.

2. The workflow system as claimed in claim 1, wherein
the circuitry is further configured to receive a user input and
provide the information about the first data in response to the
user input.

Jun. 9, 2022

3. The workflow system as claimed in claim 1, wherein
the information about the first data indicates a value of the
first data.

4. The workflow system as claimed in claim 1, wherein
the information about the first data indicates a data type of
the first data.

5. The workflow system as claimed in claim 1, wherein
the workflow information further comprises information
representing:

a first stage representing a first step in the workflow and

comprising the first actor, and

a second stage representing a second step in the workflow

and comprising the second actor.

6. The workflow system as claimed in claim 5, wherein
the first stage comprises the first actor and a third actor
configured to perform a third operation.

7. The workflow system as claimed in claim 5, wherein
the second stage comprises the second actor and a third actor
configured to perform a third operation.

8. The workflow system as claimed in claim 1, wherein
the workflow information further comprises information
representing a third actor for performing a third operation.

9. The workflow system as claimed in claim 8, wherein
the third actor has a second input for inputting the first data
from the first output.

10. The workflow system as claimed in claim 8, wherein
the first actor has a second output for outputting second data,

wherein the third actor has a second input for inputting the

second data from the second output.

11. The workflow system as claimed in claim 10, wherein
the workflow information is configured provide a visual
representation of information about the second data.

12. The workflow system as claimed in claim 11, wherein
the information about the first data comprises at least one of
a first value of the first data or a first data type of the first
data, and

wherein the information about the second data comprises

at least one of a second value of the second data or a
second data type of the second data.

13. The workflow system as claimed in claim 12, wherein
the information about the first data comprises the first data
type of the first data and the information about the second
data comprises the second data type of the second data, and
wherein the first data type is different than the second data
type.

14. The workflow system as claimed in claim 12, wherein
the circuitry is further configured to receive a user input and
provide the information about the first data or the second
data in response to the user input.

15. The workflow system as claimed in claim 1, wherein
the circuitry comprises at least one processor configured to
generate the workflow information.

#* #* #* #* #*

