
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0116125 A1

Sundaravaradan et al.

US 20170116125A1

(43) Pub. Date: Apr. 27, 2017

(54) BUILDER PROGRAM CODE FOR

(71)

(72)

(21)

(22)

(51)

N-MEM

Applicant: salesforce.com, inc., San Francisco, CA

Inventors:

Appl. No.

Filed:

ORY CACHE

(US)

Barathkumar Sundaravaradan, San
Francisco, CA (US); Christopher
James Wall, Austin, TX (US);
Lawrence Thomas Lopez, Cupertino,
CA (US); Paul Sydell, San Rafael, CA
(US); Sreeram Duvur, Fremont, CA
(US); Vijayanth Devadhar, Fremont,
CA (US)

: 14/922,733

Oct. 26, 2015

Publication Classification

Int. C.

User Storage
AreaS

Database
460

(2006.01)

Tenant Storage
Area
112

Tenant Database
108

Application Application
Server
100A

User System
12

Server

User System
12

(52) U.S. Cl.
CPC G06F 12/0815 (2013.01); G06F 12/0891

(2013.01); G06F 22 12/621 (2013.01); G06F
2212/604 (2013.01)

(57) ABSTRACT

Techniques are disclosed relating to an in-memory cache. In
Some embodiments, in response to determining that data for
a requested entry is not present in the cache (e.g., because it
has been evicted), a computing system is configured to
invoke cached program code associated with the entry. In
Some embodiments, the computing system is configured to
provide data generated by the program code in response to
requests that indicate the entry. In some embodiments, the
computing system is configured to store the generated data
in the cache. In various embodiments, this may avoid cache
misses and provide configurability in responding to requests
to access the cache.

Multi-Tenant Database System 16

Tenant
Management SE

ProCeSS
110 102

Tenant PrOCeSS
SpaceS
104

Application
Server

User System
12

US 2017/O116125 A1 Apr. 27, 2017. Sheet 1 of 12 Patent Application Publication

@@ 90edS SS0001)

US 2017/O116125 A1 Apr. 27, 2017. Sheet 2 of 12 Patent Application Publication

ZI

F?J S90edS SS0001) quêuÐI

ZI

US 2017/O116125 A1 Apr. 27, 2017. Sheet 3 of 12 Patent Application Publication

9010||enSIA

US 2017/O116125 A1 Apr. 27, 2017. Sheet 4 of 12 Patent Application Publication

LE 5) ?UO

US 2017/O116125 A1 Apr. 27, 2017. Sheet 5 of 12 Patent Application Publication

US 2017/O116125 A1 Apr. 27, 2017. Sheet 6 of 12 Patent Application Publication

US 2017/O116125 A1 Apr. 27, 2017. Sheet 7 of 12 Patent Application Publication

99992||| ZÁÐI

| 5 || ZÁÐI ! OZ || May
søMg) an?eM | May

En TVÅ KVW1060]u|| || ZÁºy
99:821 || 1/8W

US 2017/O116125 A1 Apr. 27, 2017. Sheet 8 of 12 Patent Application Publication

US 2017/O116125 A1 Apr. 27, 2017. Sheet 9 of 12 Patent Application Publication

US 2017/O116125 A1 Apr. 27, 2017. Sheet 10 of 12 Patent Application Publication

US 2017/O116125 A1 Apr. 27, 2017. Sheet 11 of 12 Patent Application Publication

US 2017/O116125 A1 Apr. 27, 2017. Sheet 12 of 12 Patent Application Publication

US 2017/011 6 125 A1

BUILDER PROGRAM CODE FOR
N-MEMORY CACHE

BACKGROUND

0001 Cloud application development platforms, such as
the Force.com multitenant architecture, may allow indi
vidual enterprises and software as a service (SaaS) vendors
to develop robust, reliable, and Internet-scale applications.
Web applications may generate various types of data, e.g.,
by accessing a database and processing accessed informa
tion. Some data may be computationally expensive to gen
erate and some data may change infrequently. Further, some
data may be used by multiple users across an application or
organization.

BRIEF DESCRIPTION OF THE DRAWINGS

0002 FIG. 1 is a block diagram illustrating an exemplary
environment for a multi-tenant database system, according
to Some embodiments.
0003 FIG. 2 is a block diagram illustrating an exemplary
multi-tenant database system in more detail, according to
Some embodiments.
0004 FIG. 3 is a block diagram illustrating and exem
plary API stack, according to some embodiments.
0005 FIG. 4 is a block diagram illustrating exemplary
atomic execution of an exemplary transaction by an appli
cation server, according to some embodiments.
0006 FIG. 5A is a block diagram illustrating an exem
plary cache hierarchy for maintaining separate namespaces
and partitions, according to some embodiments.
0007 FIG. 5B is a diagram illustrating exemplary types
of metadata associated with the cache.
0008 FIGS. 6 and 7 are diagrams illustrating exemplary
metadata for an organization cache and session cache
respectively, according to Some embodiments.
0009 FIGS. 8 and 9 are diagrams illustrating exemplary
caching functions, according to some embodiments.
0010 FIG. 10 is a flow diagram illustrating a method for
operating a cache, according to some embodiments.
0011 FIG. 11 is a flow diagram illustrating a method for
using a visibility parameter, according to some embodi
mentS.

0012 FIG. 12 is a flow diagram illustrating a method for
buffering cache data, according to Some embodiments.
0013 FIG. 13 is a flow diagram illustrating a method for
using a builder pattern, according to some embodiments.

DETAILED DESCRIPTION

0014. This disclosure initially describes, with reference
to FIGS. 1-2, embodiments of an exemplary multi-tenant
database system that includes an in-memory, multi-tenant
cache. (In other embodiments, similar caching techniques
may be used in non-multi-tenant environments.) It then
describes, with reference to FIGS. 3-4, an exemplary cache
API structure and techniques for storing and retrieving data
from the cache. In some embodiments, separate caches are
maintained for user sessions (which may be referred to as a
“session cache”) and for a broader group (which may be
referred to as an “organization cache). FIGS. 5-7 illustrate
exemplary cache partitioning and metadata for cache orga
nization. FIGS. 8-9 illustrate exemplary API functions and
FIGS. 10-13 illustrate exemplary methods for operating a
cache. In various embodiments, disclosed techniques may

Apr. 27, 2017

improve performance of web applications while maintaining
proper visibility Scope for cached data.

Exemplary Multi-Tenant Database System
0015 FIG. 1 illustrates an exemplary environment in
which a multi-tenant database and cache System might be
implemented. Note that the disclosed multi-tenant systems
are included to illustrative purposes but are not intended to
limit the scope of the present disclosure. In other embodi
ments, similar techniques may be implemented in non
multi-tenant environments such as various client/server
environments, cloud computing environments, clustered
computers, etc. As illustrated in FIG. 1 (and in more detail
in FIG. 2) one or more user systems 12 may interact via a
network 14 with a multi-tenant database system (MTS) 16.
The users of those user systems 12 may be users in differing
capacities and the capacity of a particular user system 12
might be determined by the current user. For example, when
a salesperson is using a particular user system 12 to interact
with MTS 16, that user system 12 may have the capacities
allotted to that salesperson. However, while an administrator
is using the same user system 12 to interact with MTS 16,
it has the capacities allotted to that administrator.
0016 Network 14 may be a LAN (local area network),
WAN (wide area network), wireless network, point-to-point
network, star network, token ring network, hub network, or
any other appropriate configuration. The global internetwork
of networks often referred to as the “Internet” with a capital
“I” will be used in many of the examples herein and is one
example of a TCP/IP (Transfer Control Protocol and Internet
Protocol) network. It should be understood, however, that
the networks that the present invention may utilize any of
various other types of networks.
0017 User systems 12 may communicate with MTS 16
using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate. Such as HTTP,
FTP, AFS, WAP, etc. As an example, where HTTP is used,
user system 12 might include an HTTP client commonly
referred to as a “browser' for sending and receiving HTTP
messages from an HTTP server at MTS 16. Such a server
might be implemented as the sole network interface between
MTS 16 and network 14, but other techniques might be used
as well or instead. In some implementations, the interface
between MTS 16 and network 14 includes load sharing
functionality, such as round-robin HTTP request distributors
to balance loads and distribute incoming HTTP requests
evenly over a plurality of servers. Preferably, each of the
plurality of servers has access to the MTS's data, at least for
the users that are accessing a server.
0018. In some embodiments, the system shown in FIG. 1
implements a web-based customer relationship management
(CRM) system. For example, in some embodiments, MTS
16 includes application servers configured to implement and
execute CRM software applications as well as provide
related data, code, forms, web pages and other information
to and from user systems 12 and to store to, and retrieve
from, a database system related data, objects and web page
content. In embodiments of a multi-tenant system, tenant
data is preferably arranged so that data of one tenant is kept
separate from that of other tenants so that that one tenant
does not have access to another tenant's data, unless Such
data is expressly shared.
0019. One arrangement for elements of MTS 16 is shown
in FIG. 1, including a network interface 20, storage 22 for

US 2017/011 6 125 A1

tenant data, storage 24 for system data accessible to MTS 16
and possibly multiple tenants, program code 26 for imple
menting various functions of MTS 16, and a process space
28 for executing MTS system processes and tenant-specific
processes, such as running applications as part of an appli
cation service.

0020 Several elements in the system shown in FIG. 1
may include conventional, well-known elements that need
not be explained in detail here. For example, each user
system 12 may be a desktop personal computer, workstation,
laptop, PDA, cell phone, or any WAP-enabled device or any
other computing device capable of interfacing directly or
indirectly to the Internet or other network connection. User
system 12 may execute an HTTP client, e.g., a browsing
program, such as Microsoft's Internet ExplorerTM browser,
Netscape's NavigatorTM browser, Opera's browser, or a
WAP-enabled browser in the case of a cell phone, PDA or
other wireless device, or the like, allowing a user (e.g.,
subscriber of a CRM system) of user system 12 to access,
process, and view information and pages available to it from
MTS 16 over network 14. Each user system 12 may include
one or more user interface devices, such as a keyboard, a
mouse, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display monitor screen, LCD display, etc. in conjunction
with pages, forms and other information provided by MTS
16 or other systems or servers. As discussed above, the
present invention is suitable for use with the Internet, which
refers to a specific global internetwork of networks. It should
be understood, however, that other networks may be used
instead of the Internet, such as an intranet, an extranet, a
virtual private network (VPN), a non-TCP/IP based net
work, any LAN or WAN or the like.
0021. In some embodiments, each user system 12 and its
components are operator configurable using applications,
Such as a browser, that include computer code executable on
one or more processing elements. Similarly, in some
embodiments, MTS 16 (and additional instances of MTSs,
where more than one is present) and their components are
operator configurable using application(s) that include com
puter code executable on one or more processing elements.
Thus, various operations described herein may be performed
by executing program instructions stored on a non-transitory
computer-readable medium and executed by one or more
processing elements. The program instructions may be
stored on a non-volatile medium Such as a hard disk, or may
be stored in any other volatile or non-volatile memory
medium or device as is well known, such as a ROM or
RAM, or provided on any media capable of staring program
code, such as a compact disk (CD) medium, digital versatile
disk (DVD) medium, a floppy disk, and the like. Addition
ally, the entire program code, or portions thereof, may be
transmitted and downloaded from a software source, e.g.,
over the Internet, or from another server, as is well known,
or transmitted over any other conventional network connec
tion as is well known (e.g., extranet, VPN, LAN, etc.) using
any communication medium and protocols (e.g., TCP/IP.
HTTP, HTTPS, Ethernet, etc.) as are well known. It will also
be appreciated that computer code for implementing aspects
of the present invention can be implemented in any pro
gramming language that can be executed on a server or
server system such as, for example, in C, C+, HTML, Java,
JavaScript, or any other scripting language. Such as
VBScript.

Apr. 27, 2017

0022. According to one embodiment, each MTS 16 is
configured to provide web pages, forms, applications, data,
and/or media content to user systems 12 to Support the
access by user systems 12 as tenants of MTS 16. As such, in
this embodiment, MTS 16 provides security mechanisms to
keep each tenant's data separate unless the data is shared. If
more than one MTS is used, they may be located in close
proximity to one another (e.g., in a server farm located in a
single building or campus), or they may be distributed at
locations remote from one another (e.g., one or more servers
located in city A and one or more servers located in city B).
As used herein, MTSs may include one or more logically
and/or physically connected servers distributed locally or
across one or more geographic locations. Additionally, the
term "server” includes a computer system, including pro
cessing hardware and process space(s), and an associated
storage system and database application as is well known in
the art. It should also be understood that “server system” and
“server are often used interchangeably herein. Similarly,
the databases described herein can be implemented as single
databases, a distributed database, a collection of distributed
databases, a database with redundant online or offline back
ups or other redundancies, etc., and might include a distrib
uted database or storage network and associated processing
intelligence.
0023 FIG. 2 illustrates exemplary embodiments of an
MTS 16 and various interconnections in more detail. In this
example, the network interface is implemented as one or
more HTTP application servers 100. Also shown is system
process space 102 including individual tenant process spaces
104, a system database 106, tenant database(s) 108 and a
tenant management process space 110. Tenant database 108
may be sharded across application servers and may be
divided into individual tenant storage areas 112, which can
be either a physical arrangement or a logical arrangement.
Within each tenant storage area 112, user storage 114 might
be allocated for each user.

0024. In the illustrated embodiment, each application
server 100 also includes at least a portion of a cache 118. In
Some embodiments, user Systems 12 that utilize web appli
cations can request that data be stored in cache 118 (e.g.,
using a 'put' operation) and later retrieve the data (e.g.,
using a 'get' operation) rather than re-generating the data.
In some embodiments, capacity limits may be assigned to
different users/tenants/partitions, etc. and cached data may
be evicted in order to remain below the allotted capacity. In
Some embodiments, cached data for a particular tenant is
kept private from other tenants. Further, the visibility scope
for cached data within a particular tenant may be configu
rable.

0025. In some embodiments, cache 118 is split across
multiple application servers 100. In some embodiments,
splitting across multiple instances may allow the data in
cache 118 to fit in system memory space, which may
improve response times relative to storing data for cache 118
in disk storage, for example. As used herein, an “in-memory
cache' is a cache that stores data in System memory space
(which typically means that the data can be stored in RAM)
rather than requiring paging for storage (as is typically
required for traditional disc storage, for example). Cache
118 may also be a “multi-tenant cache in the sense that a
single cache is used to provide separate virtual caches for
multiple different tenant entities. The different tenants may
use the same data structure to store data or different tenants

US 2017/011 6 125 A1

may have different data structures in the cache. In various
embodiments, multi-tenant caches enforce data security
between tenants such that data from one tenant is not
available to other tenants. Thus, as used herein, the term
“tenant in the context of a multi-tenant cache refers to an
entity for which cache entries are separately maintained Such
that different tenants cannot access each other's data. In
Some embodiments, tenants may authorize other tenants to
access their data via the cache, while in other embodiments
a given tenant's data may be accessible to only that tenant
via the multi-tenant cache (although that tenant may Subse
quently share data retrieved from the cache, as that tenant
desires).
0026. It should also be understood that each application
server 100 may be communicably coupled to database
systems, e.g., system database 106 and tenant database(s)
108, via, a different network connection. For example, one
server 100, might be coupled via the Internet 14, another
server 100- might be coupled via a direct network link,
and another server 100 might be coupled by yet a different
network connection. Transfer Control Protocol and Internet
Protocol (TCP/IP) are preferred protocols for communicat
ing between servers 100 and the database system, however,
it will be apparent to one skilled in the art that other transport
protocols may be used to optimize the system depending on
the network interconnect used.
0027. In preferred aspects, each application server 100 is
configured to handle requests for any user/organization.
Because it is desirable to be able to add and remove
application servers from the serverpool at any time for any
reason, there is preferably no server affinity for a user and/or
organization to a specific application server 100. In one
embodiment, therefore, an interface system (not shown)
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the servers
100 and the user systems 12 to distribute requests to the
servers 100. In one aspect, the load balancer uses a least
connections algorithm to route user requests to the servers
100. Other examples of load balancing algorithms, such as
are round robin and observed response time, also can be
used. For example, in certain aspects, three consecutive
requests from the same user could hit three different servers,
and three requests from different users could hit the same
server. In this manner, MTS 16 is multi-tenant, wherein the
MTS 16 handles storage of different objects and data across
disparate users and organizations.
0028. As an example of storage, one tenant might be a
company that employs a sales force where each salesperson
uses MTS 16 to manage their sales process. Thus, a user
might maintain contact data, leads data customer follow-up
data, performance data, goals and progress data, all appli
cable to that user's personal sales process (e.g., in tenant
database 108). In some MTS embodiments, since all of this
data and the applications to access, view, modify, report,
transmit, calculate, eta, can be maintained and accessed by
a user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is paying a visit to a customer and the customer has Internet
access in their lobby, the salesperson can obtain critical
updates as to that customer while waiting for the customer
to arrive in the lobby.
0029 While each user's sales data may be separate from
other users’ sales data regardless of the employers of each

Apr. 27, 2017

user, some data may be organization-wide data shared or
accessible by a plurality or all of the sales three for a given
organization that is a tenant. Thus, there may be some data
structures managed by MTS 16 that are allocated at the
tenant level while other data structures are managed at the
user level. Because an MTS may support multiple tenants
including possible competitors, the MTS should have secu
rity protocols that keep data, applications and application
use separate. Also, because many tenants will opt for access
to an MTS rather than maintain their own system, security,
redundancy, up-time and backup are more critical functions
and need to be implemented in the MTS.
0030. In addition to user-specific data and tenant-specific
data, MTS 16 might also maintain system level data usable
by multiple tenants. Such system level data might include
industry reports, news, postings, and the like that are shar
able among tenants.
0031. In certain aspects, client systems 12 communicate
with application servers 100 to request and update system
level and tenant-level data from MTS 16 that may require
one or more queries to database system 106 and/or database
system 108. In some embodiments, MTS 16 automatically
generates one or more SQL statements (the SQL query)
designed to access the desired information.
0032 Each database may generally be viewed as a set of
logical tables containing data fitted into predefined catego
ries. Each table typically contains one or more data catego
ries logically arranged in physical columns. Each row of a
table typically contains an instance of data for each category
defined by the columns. For example, a CRM database may
include a table that describes a customer with columns for
basic contact information Such as name, address, phone
number, fax number, etc. Another table may describe a
purchase order, including columns for information Such as
customer, product, sale price, date, etc.

Exemplary Cache Stack
0033 FIG. 3 is a block diagram illustrating an exemplary
stack for accessing cache 118, according to some embodi
ments. In the illustrated embodiment, web applications may
be developed using Apex 302 and VISUALFORCE(R 304
application programming interfaces (APIs). Apex is a Sales
force.com (SFDC) programming language that is strongly
typed, object-oriented, uses Java-like syntax to perform
database stored procedures. Visualiforce is a markup lan
guage that may provide user-friendly development, integra
tion with other web-based interfaces, concise syntax, data
driven defaults, and a hosted platform. In other
embodiments, any of various appropriate APIs that are
currently available or developed in the future may be
implemented at this level (and/or other levels in the stack),
Such as C, Java, etc.
0034. In some embodiments, a high-level programming
API such as the illustrated SFDC API 308 may interact
directly with a low-level API 312. It may be desirable to
have a high-level cache interface between low-level API312
and high-level programming APIs. Thus, as shown, Apex
API 302 and Visual force API 304 may interact with the
cache via a high-level cache API 310. In some embodiments,
this high-level cache API may provide simple, high-level
functions for putting data in a cache, getting data from a
cache, clearing data, etc. High-level cache API 310 may
simplify caching operations relative to using low-level API
312. For example, high-level cache API 310 may allow a

US 2017/011 6 125 A1

user to put data in cache 118 and retrieve data from cache
118 without worrying about the underlying data structure of
cache 118, sharding of data in cache 118, etc.
0035 Low-level API 312, in the illustrated embodiment,

is used to handle the data structure for caching data and may
provide more control over cached data than high-level cache
API 310. One example of low-level API 312 is the Redis
platform. Another example is memcached. In other embodi
ments, any of various low-level APIs may be implemented.
Low-level API 312 may be used to handle sharding, generate
cache statistics, enforce capacity restrictions, etc.
0036. In the illustrated embodiment, the SFDC interface
308 includes both high-level programming API and high
level cache API functionality. In some embodiments, an API
may provide functionality described with reference to mul
tiple ones of the various levels illustrated in FIG. 3. Pro
gramming at a given level may provide tradeoffs in usability
and low-level control, for example. In some embodiments,
users are restricted to one or more upper levels in the
illustrated hierarchy. In other embodiments, users are not
restricted to one or more upper levels, but may have access
to any and/or all levels in the hierarchy.
0037 Data structure instance(s)315A-315N, in the illus
trated embodiment, are configured to actually store cached
data. In various embodiments, these data structures are
stored in-memory. For example, each application server 100
of FIG. 2 may be assigned a database instance (e.g., a
NoSQL database instance Such as a Redis instance), in some
embodiments. In some embodiments, a Redis key is
assigned to each namespace and sharding is applied across
each namespace. In a multi-tenant system, namespaces
within a tenant configuration are discussed in further detail
below with reference to FIG. 5A. Sharding is a well-known
database technique in which data is horizontally partitioned
(e.g., rows of a database table are stored on different server
instances) and “shards' of the data are held on different
database server instances. This is contrast to normalization
or vertical partitioning, in which database tables are split
into columns. Some sharded data may be stored by only a
single server instance while other data may be stored in all
shards, for example. In some embodiments, data for a given
tenant may be visible across namespaces, depending on
initial configuration parameters or Subsequent commands
for the tenant. In other embodiments, sharding may not be
applied; sharding is implemented in various embodiment
disclosed herein for illustrative purposes but is not intended
to limit the scope of the present disclosure.

Session Cache Overview

0038. In some embodiments, system 16 is configured to
provide multiple types of caches. A session cache, in some
embodiments, is a cache that is scoped to a user session and
thus typically does not last after the session is ended. A
session refers to an interaction of the user with a web
application and is typically associated with one or more data
structures for storing data during the interaction. For
example, a session may begin when a user invokes a web
application via a web browser and may end when the user
closes the web browser, logs out of the application, etc. In
various embodiments, data in the session cache is visible
only within the session and is not available from other
sessions. The session cache may be used to cache data that
is fairly static (i.e., does not change often) or that is
expensive to compute or retrieve (e.g., certain database

Apr. 27, 2017

queries, results of compute-intensive processing, etc.). The
session cache may eliminate redundant DB invocations and
web service callouts and may reduce request/response pay
load size. This may include, for example, generating, cach
ing, and re-using user-specific data or views such as a
custom navigation menu, gathering form data across mul
tiple requests or web pages, and/or storing information
similarly to the Visual force View State, which may include
components, field values, and controller state for a form.
This may reduce demand on backend services and improve
response times for system 16.
0039. In some embodiments, the session cache is config
ured to store data as key/value pairs. The data may include
data gathered from the user, generated from database calls,
callouts, or page rendering, for example. Each key may be
a unique value within a given tenant. In some embodiments,
the session cache may initially be retained beyond the end of
a corresponding session, but may be evicted eventually to
clear up cache space. In other embodiments, the session
cache for a particular session may be invalidated as soon as
the session ends. In some embodiments, data that should live
beyond the life of a session or should be available to
multiple sessions is managed by an application developer
using another data structure, Such as an organization cache
(discussed in further detail below). The session cache is
limited in size, in Some embodiments, in order to maintain
consistent response times across sessions, for example. In
Some embodiments, the session cache does not handle data
structures or objects directly but is merely configured to
store data without knowledge of its structure. In these
embodiments, data is serialized (e.g., written as bytes
according to a pre-determined serialization technique)
before being stored and de-serialized when retrieved.
0040. The session cache, in some embodiments, is not
concurrent. For example, the session cache, in some
embodiments, is not shared among multiple browsers open
by the same user. Thus, if a given user creates simultaneous
requests via different browser windows or tabs or uses
asynchronous requests, Subsequent requests may retrieve
stale data from the cache or overwrite previously stored
items. Therefore, in Some embodiments, the session cache
API provides direct operations that are performed immedi
ately to facilitate concurrency. Direct operations are dis
cussed in further detail with reference to FIG. 4 below.

Organization Cache Overview
0041 An organization cache is another type of cache that
system 16 is configured to provide, in Some embodiments.
This cache may store data that is available to multiple
sessions (e.g., data cached by one session may be retrieved
by a user in another session). The organization cache may,
by default, be scoped to be available across all namespaces
of the owning tenant. As used herein, the term “namespace'
refers to a grouping of data for an application for which a
visibility Scope can be defined. A namespace may be defined
for each application, for a portion of an application and/or
for multiple applications. Applications, users, requests, etc.
may be associated with a namespace and visibility param
eters may be defined such that certain data within a
namespace is only visible to entities associated with the
namespace. For example, an application in one namespace
may or may not be able to access data in another namespace,
depending on visibility parameters of the other namespace.
Similarly, a user session associated with a particular

US 2017/011 6 125 A1

namespace may or may not be able to access data for other
namespaces. Note, however, that a given user session may
be associated with multiple different namespaces.
Namespaces may be statically defined for an application or
may be dynamically adjustable by administrators.
0042. In some embodiments, data stored in an organiza
tion cache may have configurable visibility, e.g., for restric
tion to particular namespaces, users, or applications of a
particular tenant, etc. Thus, some data stored in an organi
Zation cache may be visible to all users associated with a
particular tenant. In various embodiments, however, a given
tenants organization cache is not available to other tenants,
even though data for multiple tenants may be cached using
a shared data structure. An organization cache may persist
indefinitely so long as it is being used, but may be associated
with a time-to-live (TTL) that indicates a desired duration of
caching for the data and may eventually be cleared based on
the TTL, capacity constraints, and/or inactivity, in some
embodiments.
0043. The organization cache, in some embodiments, is
also a key/value pair cache that Supports put/get/remove/etc.
The organization cache, in some embodiments, may be
partitioned, e.g., to provide flexible separate capacity limits
for different partitions within the same organization cache.
0044. The organization cache and session cache may

utilize similar data structures and store similar types of data,
in Some embodiments and situations. Providing separate
caches may, however, provide developers flexibility in cach
ing data for different user sessions separately (e.g., in a
session cache) or caching data that is likely to be useful to
multiple sessions (e.g., in an organization cache).
0045 Various functionality discussed herein with refer
ence to an organization cache may also apply to session
caches and vice versa. Further, various functionality dis
cussed with reference to a cache in general may apply to an
organization cache and/or a session cache.

Exemplary Caching Requests and Buffered Cache
Interactions

0046. In some embodiments, multiple cache requests
may be included in a request or transaction which may be
performed atomically (e.g., similar to other SFDC requests).
Generally, a “transaction' is a request to perform an action
such as invoking Visual force or Apex, web requests, HTTP
requests, REST requests, etc. A transaction from a user
system 12 may be received by an application server 100
which may in turn send a response. In some embodiments,
mutable cache commands (i.e., cache commands that change
the cache State, such as put and remove operations, for
example) for failed transactions are not performed. Thus, in
Some embodiments, transactions are performed atomically
by default, such that all of the operations in the transaction
are performed, or none of them are performed (e.g., by
rolling back any intermediate results if a transactions fails).
Transactions may fail for a variety of reasons, including
customer code failures, internal exceptions, etc. Examples of
requests or transactions that may be performed atomically
include Apex transactions, for example, in the SFDC con
text.

0047 FIG. 4 shows an example transaction 410 (which
may also be referred to as a request) that includes three put
operations, two get operations, and a remove operation.
Transaction 410, in various embodiments, may also include
non-cache-related operations or commands. In the illustrated

Apr. 27, 2017

embodiment, if transaction 410 is successful (e.g., if every
operation in transaction 410 is successfully completed), then
a single get operation and a single put operation is performed
to cache data structure 430. In the illustrated embodiment, if
transaction 410 fails, then no get or put operations are
performed to cache data structure 430.
0048 For example, if transaction 410 is successful, appli
cation server 100 may perform one put operation that stores
key 1/value2 (the overall delta caused by transaction 410.
because value 1 is overwritten) and key3/value3. Similarly,
application server 100 may perform one get operation to
retrieve data corresponding to key2 and key4. Application
server 100 may also perform a remove operation for key 5
once transaction 410 is Successful as a whole.

0049. In the illustrated embodiment, application server
100 may buffer cache operations using local buffer 420 until
transaction 410 has succeeded or failed. For example, appli
cation server 100 may store key1/value1 in local buffer 420
until transaction 410 is completed. This may allow for
atomic transactions and may also increase performance. For
example, if a request accesses data to be cached (consider,
e.g., a get(key1) operation that were to follow the first 'put'
operation within transaction 410 in program order), appli
cation server 100 is configured to provide the data directly
from local buffer 420, in some embodiments, which may
reduce access times. In some embodiments, data in local
buffer 420 is not serialized, further decreasing access times.
Access times may also be reduced because cache data
structure 430 may be sharded across multiple application
servers 100 such that application server 100 does not actu
ally store the desired data, meaning that the data would be
retrieved from another application server 100 if it were not
available in local buffer 420.

0050 Cache data structure 430, in the illustrated embodi
ment, may include cached data from multiple tenants (e.g.,
organization and/or session caches for multiple tenants) and
may be sharded across multiple application servers 100. In
Some embodiments, a shared data structure is used for cache
data for multiple tenants while in other embodiments sepa
rate data structures may be used for different tenants. Thus,
cache data structure 430 may be shared in the sense that its
structures include keys from multiple tenants. For example,
a database table in cache data structure 430 may include a
row for key1 from one tenant and another for a key from
another tenant. In various embodiments, cache 118 is con
figured such that data cached by one tenant is not available
to other tenants. In some embodiments, visibility parameters
may allow configurable scope for sharing cached data within
a given tenant organization.
0051. In some embodiments, operations within a trans
action may include a parameter indicating that they should
be performed immediately, rather than waiting for the end of
the transaction. This may allow a developer to intentionally
violate atomicity for a transaction, which may facilitate
concurrency in Some situations. For example, a developer
may use an immediate operation to ensure that data is not
stale when a user has multiple browser windows open. It
may also allow, for example, a developer to use data from a
cache GET in the same transaction.

0.052 For an immediate put operation, the value may be
directly committed to cache data structure 430 prior to the
end of transaction 410. For an immediate get operation, the
value may be pulled directly rom cache data structure 430

US 2017/011 6 125 A1

using the associated key. Direct operations may or may not
change the data stored in local buffer 420.

Exemplary Cache Hierarchy and Partitions
0053 FIG. 5A illustrates an exemplary cache hierarchy.
In the illustrated embodiment, a client tenant is provided
with a total cache capacity 500. (Note that similar principles
apply in non-multi-tenant systems.) The client may then
Subdivide the capacity for various namespaces/partitions/
types of cache, etc., and separate capacities may be main
tained for the different portions, in some embodiments. In
the illustrated embodiment, the cache for the client includes
a namespace my namespace 510 and a namespace my ap
plication 520. The my application namespace 520 may be a
separate namespace dedicated to a particular application
package, e.g., which may be purchased from among multiple
application packages available to the client tenant.
0054. In some embodiments, cached data for a particular
tenant is not available to cached data for other tenants, even
though the data may be stored in the same data structure on
the same hardware. Similarly, in Some embodiments, data
stored in one namespace of a given tenant is not available to
other namespaces of the tenant. Thus, in the illustrated
embodiment, cached data for my application 520 may not
be visible to applications using the my namespace 510
namespace. If a client wishes for cached data to be available
to multiple different applications by default, it may assign
those applications to the same namespace. Further, the client
may specify visibility parameters for cached data, e.g., to
indicate that cached data should be available across multiple
(or all) namespaces for the client.
0055 Client namespace my namespace 510, in the illus
trated embodiment, includes a default partition 530 and an
administration application partition 540. In some embodi
ments, separate cache partitions are assigned separate
capacities. For example, default partition 530 may be
assigned a 5 GB capacity and admin application partition
540 a 10 GB capacity. When a given partition is at, near, or
over capacity, system 16 may evict cached data. Assigning
applications or data to particular partitions may allow flex
ibility in separately managing capacities for different types
of data. In the illustrated embodiment, each partition
includes a session cache (SC) and an organization cache
(OC). The session cache may be used to cache data for
individual user sessions (and data stored in a session cache
may be private to that session). The organization cache may
be used to cache data for a partition that is relevant to
multiple user sessions, in Some embodiments.
0056. An administrator for a given client may control
where the client’s overall cache capacity is allocated
dynamically, e.g., by changing the allocations for different
partitions. For example, a client may service multiple
groups, departments, or teams that have different applica
tions and may assign each its own cache partition. A given
cache partition may then be able to guarantee a given level
of capacity for the assigned group, team, or department.
Further, an administrator may be able to buy additional
capacity (overall or for a given partition) if desired.
0057 Thus, each partition may be treated separately for
capacity and eviction monitoring. In some embodiments,
separate statistics are maintained for each partition. Parti
tions may be Subsets of cache namespaces and may be
created, deleted, or renamed for client administrators. The
total of all partitions in a given namespace may not exceed

Apr. 27, 2017

the namespace capacity, in some embodiments. Various
information may be maintained for each partition, including
without limitation: name, namespace, version, cache type,
builder class, creator, date/time of creation, date/time of last
modification, identify of last modifier, initial capacity, cur
rent capacity, etc. In some embodiments validation may
ensure that a partition needed for a particular application
package is included with that package.
0058 Application package namespace my application
520, in the illustrated embodiment, includes separate parti
tions 550, 560, and 570 for default, orders, and administra
tion. The orders partition 560, in the illustrated embodiment,
may be used to cache data associated with orders placed
using the application package. In the illustrated embodi
ment, each partition includes a respective session cache
portion and organization cache portion, which may be
treated as individual caches in some embodiments. The
illustrated hierarchal cache organization techniques may
allow flexibility in assigning data limits, data access autho
rizations, etc.

Software Vendors and Cache

0059. In some embodiments, independent software ven
dors (ISVs) may develop applications and sell them to
multiple different customers or users. These vendors may be
referred to as “providers' of a given application while the
purchasing clients may be referred to as “subscribers’ in the
context of the application. In some embodiments, if Such an
application uses cache 118, the ISV purchases cache space
for each subscriber application install. The subscribers may
then allocate the capacity among different partitions for the
installed application and/or purchase additional capacity if
desired, in some embodiments.
0060. In some embodiments, the provider process pro
ceeds as follows. The provider evaluates where the cache
would benefit their application. The provider decides what
type(s) of cache to use, for what data, and how it will be
partitioned. The provider also decides an initial capacity,
e.g., based on customer data and usage. The provider then
implements the cache, including creating partitions, allocat
ing space, and testing the cache. The provider then deploys
an application package with the cache partitions included in
the package and communicates the package to customers.
0061. In this embodiment, the customers may then install
the application package, which includes installing packaged
partitions. At this point, the provider may or may not have
actually purchased cache allocation for the customer. In
Some embodiments, the customer may run the application at
this point without caching features. Once the provider or
Subscriber orders cache capacity (e.g., the initial allocation),
the caching features may be enabled for the customer. The
customer may then reallocate partition capacities and/or
purchase additional capacity as desired.
0062 System 16, in some embodiments, is configured to
process the order, bill the provider, and enable caching
features for the application package. When capacity is
added, system 16 may apply it to the default partition by
default, or another partition as specified. Cache may be
purchased by unit cost, e.g., per megabyte or gigabyte in
Some embodiments.

Overview of Cache Metadata

0063. In various embodiments, system 16 is configured to
maintain various metadata in order to provide cache 118. In

US 2017/011 6 125 A1

the illustrated embodiment of FIG. 5B, cache metadata 590
includes per-partition information 580, per-instance infor
mation 582, per-organization-cache information 584, per
session-cache information 586, and per-entry information
588. The illustrated types of metadata are exemplary and not
intended to limit the scope of the present disclosure, other
types of metadata may be maintained in various embodi
ments in addition to and/or in place of the disclosed types.
More detailed examples of these various types of metadata
are discussed in further detail below with reference to FIGS.
6-7.
0064 Per-partition information 580, in some embodi
ments, is separately maintained for one or more partitions
(e.g., separate metadata may be maintained for the default
partition 530 and admin app partition 540 of FIG. 5A). This
information may include organization cache keys in the
partition, session caches in the partition, session cache keys
in the partition, memory usage for entries in the partition,
etc. This information may allow system 16 to enforce
capacity limits on each partition, in some embodiments.
0065 Per-instance information 582, in some embodi
ments, is separately maintained for one or more of the
application servers 100. For example, this information may
include memory usage by different partitions at a given
application server. As another example, this information
may indicate the last time a partition was accessed via the
application server.
0066 Per-organization-cache information 584, in some
embodiments, is separately maintained for one or more
organization caches. This information may include a list of
entries in the organization cache (e.g., based on correspond
ing keys), TTL information for the organization cache as a
whole, LRU information for entries in the organization
cache, etc.
0067 Per-session-cache information 586, in some
embodiments, is separately maintained for one or more
session caches. This may include statistics information for
each session cache, a list of entries in each session cache,
TTL information for keys in the session cache, memory
usage for entries in the session cache, etc.
0068 Per-entry information 588, in some embodiments,

is separately maintained for one or more entries in organi
Zation and/or session caches. This may include values for an
entry, one or more builder patterns for the entry, statistics
information regarding the entry, visibility information for
the entry, TTL information for the entry, etc.
0069. In various embodiments, this information may
facilitate various functionality for cache 118, as discussed in
further detail below.

Exemplary Organization Cache Model
0070 FIG. 6 shows exemplary data structures for orga
nization cache metadata, according to Some embodiments.
In some embodiments, these data structures are hashes,
Sorted sets, lists, etc., as appropriate. In the illustrated
embodiment, the information includes a data structure 610
(e.g., a hash) for a cache key key 1, least-recently-used
(LRU) information 620 for keys in my partition, a list 630
of metadata associated with key1, memory usage informa
tion 640 for keys in my partition, memory usage informa
tion 650 for different partitions on an instance, information
660 indicating whether certain partitions are active on an
instance, a list 670 of keys in my partition, and a list of
time-to-live (TTL) values for keys in my partition. Note

Apr. 27, 2017

that the exemplary illustrated types of information data
structures (e.g., hashes, lists, sets, etc.) are included for
exemplary purposes but are not intended to limit the scope
of the present disclosure. In other embodiments, any of
various metadata and/or data structures may be imple
mented, as appropriate.
0071. The following naming convention is used for orga
nization cache keys in the illustrated embodiment: <prefix>.
<namespaces:<partition>:<cache-types:<key-name>. The
<prefix may identify a relevant system, e.g., using an IP
address and/or other information and may identify the
tenant. The <namespace and <partition> respectively iden
tify the relevant namespace and partition that include the key
(a default partition may be used if a partition is not speci
fied). The <cache-type indicates, in the illustrated embodi
ment, whether the cache is an organization cache or a session
cache. In other embodiments, additional types of caches may
be supported. The <key-name> identifies the relevant key
and may be a unique value, for a given tenant. The naming
convention may facilitate enforcement of privacy settings,
e.g., preventing tenant's data from being available to other
tenants, enforcing visibility Scopes to particular namespace
(S), etc.
0072 Data structure 610, in the illustrated embodiment,
is configured to store the actual value for a cache entry in the
value field. In the illustrated embodiment, data structure 610
includes multiple key/value pairs including the value, a
pointer to builder code, lastaccess, stats field, evict, and
visibility. The value associated with each key, in the illus
trated embodiment, may be stored as a byte array or another
format. Each field may be accessed using the key. For
example, the datetime value may be retrieved by specifying
the key 1 lastaccess key. In some embodiments, a byte array
may be generated by serializing a class in an object-oriented
programming language such as Apex or Java. In other
embodiments, the values in hash 610 may encode objects
directly.
(0073. The builder field may point to a builder pattern that
is invoked to generate data for the value field in certain
situations, in some embodiments. This functionality is
described in further detail below.

0074 The lastaccess field indicates a date and time of the
last access of key 1, in the illustrated embodiment.
0075. The stats field, in the illustrated embodiment, is a
byte array that may indicate various stats related to key 1.
This may include put information (e.g., operation times,
serialization times, initiator, etc.), get information (e.g., hits,
misses, operation times, de-serialization times, access
counts, last initiator, etc.), etc. In some embodiments, system
16 is configured to aggregate this information across all
application server instances to provide overall statistics for
cache 118. In some embodiments, statistics may be main
tained top-to-bottom (e.g., in the context of FIG. 5A) and
may include, without limitation, per-namespace, per-parti
tion, and per-cache: capacity, hits, misses, largest cached
items, most accessed active cached items, least accessed
active cached items, etc.
0076. The evict value, in the illustrated embodiment,
indicates that key1 should not be evicted. In some embodi
ments, this value may be set to true to indicate that key1 is
a candidate for eviction. Generally, these illustrated values
are examples of metadata that may be maintained for a given

US 2017/011 6 125 A1

cache entry. In other embodiments, any of various appro
priate metadata may be maintained for each entry of a given
type.
0077. The visibility field, in some embodiments, indi
cates the scope of visibility for key 1. In the illustrated
embodiment, key1 is visible only in the my namespace
namespace. In various embodiments, when putting data into
an organization cache, an application can indicate whether
the data should be shared or private, or otherwise indicate
the scope of the data. In some embodiments, a visibility
value may be binary, e.g., to indicate whether the key is
visible only within its associated namespace or is visible to
all namespaces for a given tenant. In other embodiments, the
visibility value may set out a list of namespaces for which
the key is visible. In other embodiments, any of various
appropriate encodings for a visibility parameter may be
utilized.

0078. As discussed above, in some embodiments, when a
web application requests data from an entry in cache 118 via
an application server 100 (e.g., using a get command), the
application server is configured to determine whether the
data is still cached, using a key such as key 1. If the data is
available in cache 118 (which may be determined based on
whether list 670 includes the key), then the application
server may provide the data from cache 118. In some
embodiments, user programs may be configured to re
generate data if it is not available in cache 118.
0079 Data structure 620, in the illustrated embodiment,

is a sorted set of all organization cache keys in my partition
(key1 and key2 in the illustrated example) and least-re
cently-used (LRU) information for each key. In the illus
trated embodiment, the score value associated with each key
indicates an amount of time since the key was used. This
information may be used in determining what data to evict
from cache 118, in some embodiments, e.g., when my
partition is above its assigned capacity. For example, in
response to determining that a given partition is at a par
ticular percentage of its allocated capacity (e.g., 80%, 99%,
120%, etc.), system 16 may begin evicting data in the
partition. The decision of what data to evict may be based on
LRU data in set 620, TTL data, the size of data in an entry,
etc

0080 Data structure 630, in the illustrated embodiment,
is a list of metadata added to my partition for key 1. In the
illustrated example, this includes the entries for key1 in data
structures 620, 640, 670, and 680. List 630 may facilitate
deleting information associated with a key when it is
removed from cache 118, in some embodiments.
0081 Data structure 640, in the illustrated embodiment,
maintains information that indicates the amount of memory
used for each organization cache key in my partition, in the
illustrated embodiment. This information may be used, e.g.,
in conjunction with the LRU information in data structure
620, to determine what data to evict, in some embodiments.
This data may also be used, in the aggregate, to determine
the amount of data stored in a given partition at a given time.
0082 Data structures 650 and 660, in the illustrated
embodiment, are maintained at each application server
instance (e.g., each Redis instance on an application server
100 in embodiments in which a Redis database is used for
cache 118). Thus, each application server 100 may maintain
a version of information 650 and 660 corresponding to its
respective portion of cache 118. Data structure 650, in the
illustrated embodiment, is a hash that indicates the total

Apr. 27, 2017

memory usage for at least the portion of each partition
associated with the instance. Data structure 660, in the
illustrated embodiment, is a sorted set that indicates the last
time a particular partition was accessed on the instance. In
the illustrated embodiment, information 650 and 660 is for
organization caches, but similar information may be used for
session caches as well, in various embodiments. In some
embodiments, system 16 may perform cache maintenance
operations (e.g., periodic checking of current data usage)
only on partitions that are active within a recent time
interval. In some embodiments, decisions on whether to
evict data from a particular partition may be made based on
data structures 650 and 660.
0083 Data structure 670, in the illustrated embodiment,
stores time-to-live values for organization cache keys in
my partition. In some embodiments, keys may be automati
cally evicted after their TTL has expired. In other embodi
ments, keys may be maintained even after their TTL has
expired, but may be considered first as candidates for
eviction if the data usage for my partition is above some
threshold usage. In some embodiments, an organization
cache as a whole may have a TTL value (not shown).
I0084. The illustrated exemplary metadata may be used to
manage an organization cache, in various embodiments,
including facilitating caching operations, statistics, eviction,
privacy partitioning, etc. In some embodiments, the illus
trated metadata is stored in a shared data structure for
multiple tenants. For example, various instances hashes or
sets shown in FIG. 6 may be used to store data for different
tenants. In other embodiments, separate data structures may
be maintained in the same memory space for different
tenants. In various embodiments, data associated with one
tenant is not visible to other tenants in the multi-tenant
system.

Exemplary Session Cache Model
I0085 FIG. 7 shows exemplary data structures for session
cache metadata, according to Some embodiments. In the
illustrated embodiment, the information includes a informa
tion 710 for a session corresponding to a session identifier
(sid) sid1, a set 720 of LRU information for keys associated
with sid1, information 730 indicating metadata associated
with sid1, information 740 indicating memory use informa
tion for keys associated with sid1, a list 770 of partitions
used during the session, a list 780 of session identifiers in the
relevant partition and instance, and a list 790 of TTL values
for metadata. The following naming convention is used for
session cache keys in the illustrated embodiment: <prefix>:
<namespaces:<partition>:<cache-types:<session-id:
<key>.
0.086 Data structure 710, in the illustrated embodiment,
includes fields for session cache entries with keys KeyA and
KeyB which are each paired with a byte-array of serialized
data. In some embodiments, each user session is associated
with such a data structure. In the illustrated embodiment,
hash 710 also includes statistics information and a visibility
parameter. In some embodiments, the visibility parameter is
a binary value, indicating shared or not shared. In the
illustrated embodiment, the visibility value indicates that
sid1 data is visible within the my namespace namespace. As
discussed above with reference to OC visibility parameters,
any of various encodings may be used to specify visibility.
Note that a given session may access multiple namespaces
(e.g., if a user accesses multiple different applications within

US 2017/011 6 125 A1

different namespaces during the same session). Thus,
depending on visibility parameters, cached data for the
session may be available across these namespaces or
restricted to its associated namespace.
0087 Data structure 720, in the illustrated embodiment,

is a set of LRU values for all session cache (SC) keys in
my partition (KeyA and KeyB in the illustrated example).
This information may be used in determining what data to
evict from cache 118, in some embodiments, e.g., when
my partition is above a threshold related to its assigned
capacity.
0088 Data structure 730, in the illustrated embodiment,

is a list of metadata associated with sid1. In the illustrated
example, this includes the entries for sid1 in set 720 and list
790. List 730 may facilitate deleting information associated
with a session when it ended or otherwise evicted from
cache 118, in some embodiments.
0089. Data structure 740, in the illustrated embodiment,

is a hash that maintains the amount of memory used for
metadata associated with sid1, in the illustrated embodi
ment. This information may be used, e.g., in conjunction
with the LRU information in set 720, to determine what data
to evict. In some embodiments, LRU is applied across all
sessions for a given tenant when determining which session
cache to evict from.
0090 Data structure 770, in the illustrated embodiment,

is a list of all partitions used during a particular session. This
may be used to clean-up the session when the session ends
or for earlier eviction.
0091 Data structure 780, in the illustrated embodiment,

is a list of customer-provided time-to-live values for SC keys
in my partition for a particular application server. In some
embodiments, keys may be automatically evicted after their
TTL has expired. In other embodiments, keys may be
maintained even after their TTL has expired, but may be
considered first as candidates for eviction if the data usage
for my partition is above some threshold usage.
0092. The illustrated information may be used to manage
a session cache, in various embodiments, including facili
tating caching operations, statistics, eviction, privacy parti
tioning, etc.

Exemplary Eviction to Remain Within Capacity
0093 Consider, for example, a situation in which the
orders partition 560 reaches a threshold value relative to its
allotted capacity. For example, the allotted capacity may be
4 GB, and the organization cache in the partition may store
2 GB of data and the session cache may store 0.5 GB of data
each for four different user sessions. In this situation, the
threshold value may be 100%, but any of various thresholds
may be used in other embodiments. In response to detecting
the threshold (e.g., based on periodic analysis, in some
embodiments) system 16 may use various input data to
determine what entries to evict from cached entries in orders
partition 560. In some embodiments, system 16 is config
ured to use hash 640 and/or list 670 to determine the data
usage for a given partition. This input data may include,
without limitation: LRU data in sets 620 and 720, TTL
information in 680 and 790, and memory usage information
in 640 and 740. In some embodiments, some input data may
trump other types (e.g., entries that have expired based on
their TTL may be evicted first) while in other embodiments
the input data may be weighted according to any of various
algorithms.

Apr. 27, 2017

0094. Once entries have been selected for eviction, sys
tem 16 is configured to determine all cached data associated
with an entry in order to remove it. For example, if system
16 determines that the entry corresponding to key1 is to be
evicted, it may use information 630 to determine the various
information maintained for key 1 and Subsequently delete or
invalidate that information (e.g., by deleting hash 610 and
list 630, and removing information for key1 from 620, 640,
670, and 680).

Exemplary API Functions
0.095 FIG. 8 illustrates exemplary put and get functions
for an organization cache. Other functions (not shown) may
include without limitation: remove, contains, getName, get
Keys, clear, getCapacityUsed, etc. For example, a “remove”
function may remove all cached data associated with a
provided key. A “contains' function may indicate whether a
particular key is present in the cache. A “getName” function
may be used to get the name of a partition associated with
a particularkey, if the namespace is partitioned. A 'getKeys'
function may be used to get a list of all keys in a particular
namespace, partition, and/or cache. A “clear function may
delete all keys in a particular partition, while a 'getCapaci
tyUsed function may return the current used capacity as a
portion of the partition’s maximum capacity. In other
embodiments, any of various appropriate commands may be
implemented in addition to and/or in place of those dis
cussed herein.
I0096. The put function, in the illustrated embodiment,
takes key, value, builder instance, TTL, Visibility, and immu
table parameters. The key, as discussed above, may be a
unique key associated with the stored value. The value may
be an object, but may be serialized before storage (e.g.,
written as a byte array). Builder patterns are discussed in
further detail below, and may be used to generate the value
for a key in Some situations. The TTL parameter may
provide a time to live for the cached data. The visibility
parameter may indicate the privacy scope for the cached
data. The immutable parameter may indicate whether the
value is allowed to be overwritten outside of the put
namespace. This parameter may be stored with an entry (not
explicitly shown in FIG. 6) and may allow broad read
visibility a cache entry with more limited write visibility. In
Some embodiments, various put parameters are cached using
a hash such as hash 610 in cache 118.
0097. The first get function, in the illustrated embodi
ment, takes a key parameter and returns a cached data object
from an entry corresponding to the key. In some embodi
ments, system 16 is configured to check visibility param
eters and is configured to provide data in response to a get
command only if the appropriate tenant and namespace is
being used.
0098. The second get function, in the illustrated embodi
ment, is used to obtain a list of multiple objects based on
their associated key parameters.
0099 FIG. 9 illustrates exemplary put, get, and remove
functions for a session cache. In some embodiments, a
session cache API may also support any of various func
tions, e.g., as discussed above with reference to FIG. 8.
0100. The put function, in the illustrated embodiment,
takes key, value, immutable, global, and tt1 parameters and
caches the value using the key. The immutable and tt1
features may be used as discussed above with reference to
FIG. 8. The global value, in some embodiments, indicates

US 2017/011 6 125 A1

whether the cached value is visible to other namespaces.
This may be a boolean value. In other embodiments, vis
ibility may be represented using other values, e.g., that list
one or more namespaces that are allowed to access the
object. The global value in FIG.9 may be specified differ
ently than the visibility value of FIG. 8 because different
APIs are used for these functions, in some embodiments,
and/or the underlying data structure may be implemented
differently.
0101 The get function, in the illustrated embodiment,
takes key and immediate parameters and returns an object
associated with the key. The immediate parameter is used in
Some embodiments to indicate that the get should be per
formed right away rather than at the end of an atomic
transaction. This may facilitate concurrency (e.g., via mul
tiple browser windows) and avoid stale cached data, in some
embodiments.
0102 The remove function, in the illustrated embodi
ment, takes a key and immediate parameter and gets and
removes corresponding cached data.
0103) In other embodiments, any of various APIs may be
used to provide access to session and/or organization caches.
The illustrated API functions are included for illustrative
purposes but are not intended to limit the scope of the
present disclosure.

Exemplary Builder Patterns

0104. In some embodiments, in addition to (or instead of)
specifying a value for cached data, a PUT may specify a
builder pattern. In FIG. 6, for example, this is shown as a
pointer to a byte array in hash 610. In some embodiments,
the byte array may be fetched and de-serialized to produce
executable program code that specifies operations to gener
ate the value for a provided key.
0105. In some embodiments, when a GET is performed
using a key that has a null value field (e.g., in hash 610),
system 16 instead retrieves and de-serializes the builder field
to generate program code, which it then executes. The
builder pattern may access a database, perform computa
tions on user input data, etc. If there are any exceptions in
the builder patterns, they may be signaled to a requesting
application and handled gracefully. System 16 may store the
result of the builder code in the cache in the “value” field and
also return the result to the GET caller. In some embodi
ments, system 16 is then configured to re-serialize the
builder pattern and store it in the builder field. In some
embodiments, this may also allow modification of the
builder pattern by the requesting application, if desired.
0106 The “value” field may be null for various reasons.
For example, an eviction algorithm may be configured to
retain keys that have non-null builder fields but delete the
data corresponding to their “value” fields. In this case, the
builder pattern may be used to ensure that there is never a
miss for the particular key in the cache (barring an excep
tion, for example), because it can generate a value for the
key if needed. In some embodiments, a PUT operation may
simply provide a null “value' parameter intentionally, in
order to load a builder pattern for future use on the first GET
that uses the key. Further, in some embodiments, a builder
pattern result value may be provided in response to a request
but may not be cached, based on configuration parameters or
request parameters. This may allow a developer to store the
builder pattern for a future use without using cache storage
for the data in the short-term.

Apr. 27, 2017

0107. In other embodiments, a builder pattern may be
invoked even when corresponding data is present and valid.
For example, in these embodiments a parameter may be
stored with a cache entry indicating that the builder pattern
should be invoked upon a request to access the entry. For
example, this may be used by a developer to indicate that a
cached entry should be updated in the future, without having
to update the data in the short-term.

Exemplary Methods

0.108 Turning now to FIG. 10, a flow diagram illustrating
a method for operating an in-memory cache is shown,
according to some embodiments. The method shown in FIG.
10 may be used in conjunction with any of the computer
systems, devices, elements, or components disclosed herein,
among other devices. In various embodiments, some of the
method elements shown may be performed concurrently, in
a different order than shown, or may be omitted. Additional
method elements may also be performed as desired. Flow
begins at 1010.
0109. At 1010, in the illustrated embodiment, system 16
maintains a multi-tenant database (e.g., database 108) that
stores data generated by a plurality of web application
corresponding to different tenants.
0110. At 1020, in the illustrated embodiment, system 16
maintains an in-memory cache for the database. In various
embodiments, the multi-tenant database may not be stored in
the system memory space of application servers 100, but
may be stored in longer term storage (e.g., non-volatile
storage rather than Volatile storage) and may be stored using
paging, as is well-understood in the art. In contrast, in
various embodiments the in-memory cache is stored in
system memory space of application servers 100. This may
improve performance of the in-memory cache relative to
database 108.

0111. At 1030, in the illustrated embodiment, system 16
stores data in an entry of the cache in response to a put
request that includes the data and an identifier for the entry
(e.g., a key). In some embodiments, system 16 may also
allocate or update memory blocks for storing various meta
data for the entry, e.g., as shown in FIGS. 6 and/or 7.
0112 At 1040, in the illustrated embodiment, system 16
retrieves data from the entry in response to a get request that
specifies the identifier. In some embodiments, if the cache
does not have data for the entry, system 16 may respond with
an indication of a cache miss. In some embodiments, system
16 may invoke a builder pattern in Such a situation. In
situations where the cache has data for the entry, perfor
mance may be improved relative to retrieving the data from
a database or performing operations to generate the data.
0113. At 1050, in the illustrated embodiment, system 16
provides the data to a requesting computing device from the
cache and not from the multi-tenant database.
0114 Turning now to FIG. 11, a flow diagram illustrating
a method for enforcing visibility parameters is shown,
according to some embodiments. The method shown in FIG.
11 may be used in conjunction with any of the computer
systems, devices, elements, or components disclosed herein,
among other devices. In various embodiments, some of the
method elements shown may be performed concurrently, in
a different order than shown, or may be omitted. Additional
method elements may also be performed as desired. Flow
begins at 1110.

US 2017/011 6 125 A1

0115. At 1110, in the illustrated embodiment, system 16
stores application data in an in-memory cache for a plurality
of namespaces using a plurality of entries. In the illustrated
embodiment, this includes a particular entry associated with
a particular namespace, and the entry is associated with a
visibility parameter that defines which of the plurality of
namespaces have access to the particular entry. As used
herein, the term “entry” refers to data at a granularity at
which the in-memory cache is configured to receive data for
caching or provide cached data. For example, in the context
of FIG. 6, an entry may refer to the value field in hash 610
and the various metadata associated with key 1. Thus, the
term entry does not connote a specific set of hardware (e.g.,
memory locations) used to store an entry, as the set of
hardware may change (e.g., based on a change in the size of
cached data for a particular entry). This is in contrast to
caches such as an L1 cache in a central processing unit
(CPU), for example, which are not software managed. Thus,
different entries in cache 118 may have different sizes,
attributes, parameters, etc. In some embodiments, each entry
for a given tenant is associated with a unique key. In other
embodiments, any of various techniques may be used to
specify entries in cache 118.
0116. In some embodiments, the visibility parameter is
stored in the entry, e.g., as shown in the examples of FIGS.
6-7. In other embodiments, the visibility parameter may be
stored separately and associated with the entry. The visibility
parameter may be binary or may contain more detailed
information encoding a set of namespaces that are allowed
to access the particular entry. The visibility parameter may
be updated for a given cache entry to change the scope of
visibility.
0117. At 1120, in the illustrated embodiment, system 16
receives a request to access the particular entry. In the
illustrated embodiment, the request is associated with a
specified namespace. The request may be received based on
program code executed on system 16 (e.g., on an application
server 100) or based on program code executed on a client
device. In other words, the received request may be gener
ated on the computing device that receives the request, in
some embodiments. The visibility parameter may have been
specified by a request to cache the data prior to the request
of FIG. 11.

0118. At 1130, in the illustrated embodiment, system 16
determines, based on the visibility parameter and the speci
fied namespace, whether to provide access to the particular
entry in response to the request. For example, if the visibility
parameter is binary and indicates restriction to a single
namespace, System 16 may determine whether the particular
namespace and the specified namespace match. In other
embodiments, system 16 may determine whether the speci
fied namespace is one of a set of namespaces that are
allowed to access the entry based on the visibility parameter.
In some embodiments, the visibility parameter may include
information that specifies a different visibility scope for
write access than for read accesses.
0119 The illustrated techniques may increase perfor
mance by caching application data while allowing configu
rable privacy for cached data within a given tenant.
0120 Turning now to FIG. 12, a flow diagram illustrating
a method for performing transaction that include caching
operations, according to some embodiments. The method
shown in FIG. 12 may be used in conjunction with any of the
computer systems, devices, elements, or components dis

Apr. 27, 2017

closed herein, among other devices. In various embodi
ments, some of the method elements shown may be per
formed concurrently, in a different order than shown, or may
be omitted. Additional method elements may also be per
formed as desired. Flow begins at 1210.
I0121. At 1210, in the illustrated embodiment, an appli
cation server 100 receives a transaction that includes a
plurality of operations, including one or more cache opera
tions to access an in-memory cache. The transaction may be
an Apex or HTTP request, for example. The cache opera
tions may be gets and/or puts, for example, as shown in FIG.
4

I0122. At 1220, in the illustrated embodiment, the appli
cation server 100 stores data corresponding to the one or
more cache operations in memory outside of the in-memory
cache (e.g., in a local buffer 420 memory area as shown in
FIG. 4) until the transaction is successfully completed. This
may (1) increase performance by maintaining nearby if it is
used again (e.g., because cached data may be sharded to
other application servers) and/or (2) allow for atomic execu
tion of transactions, in Some embodiments. In some embodi
ments, the data stored in 1220 is maintained in the same
memory as cached data, but in a different area of memory
and/or using a different data structure.
I0123. At 1230, in the illustrated embodiment, the appli
cation server 100 caches data corresponding to the one or
more cache operations in the in-memory cache after Suc
cessful completion of the transaction. In some embodiments,
the application server 100 is configured to stored the deltas
of put operations (e.g., cache a final value for a given cache
entry but not cache one or more intermediate values for the
entry) one the transaction is completed Successfully.
0.124. In some embodiments, an application server 100
may perform a cache operations immediately, instead of
waiting until the end of a transaction, based on a parameter.
For example, an application server 100 may get cached data
or put data into cache 118 before the end of a transaction in
response to an immediate parameter. This may prevent
atomic execution but may facilitate concurrency, in some
embodiments. Such a parameter may be used to get cached
data in a single transaction and use the data in the same
transaction. If the data is not available in cache 118, a
requesting application may receive an exception and handle
the exception by fetching the data from database 108
instead.

0.125 Turning now to FIG. 13, a flow diagram illustrating
a method using a builder pattern, according to some embodi
ments. The method shown in FIG. 13 may be used in
conjunction with any of the computer systems, devices,
elements, or components disclosed herein, among other
devices. In various embodiments, some of the method
elements shown may be performed concurrently, in a dif
ferent order than shown, or may be omitted. Additional
method elements may also be performed as desired. Flow
begins at 1310.
I0126. At 1310, in the illustrated embodiment, system 16
receives a request to access cached data in an entry of an
in-memory cache. The request may be a get operation, for
example.
I0127. At 1320, in the illustrated embodiment, system 16
determines that the data for the entry is not present in the
cache. The data may have been evicted or the entry may
have been allocated without data, for example.

US 2017/011 6 125 A1

0128. At 1330, in the illustrated embodiment, system 16
invokes cached program code associated with the entry in
response to the determination. This may include retrieving
the program code from the cache, de-serializing the program
code, and executing the program code. The program code
may operate on user input data, query a database, etc. to
generate data for the entry.
0129. At 1340, in the illustrated embodiment, system 16
provides a response to the request that includes data gener
ated by the program code. In some embodiments, system 16
is configured to never return a miss for entries that include
a valid builder pattern, because the builder pattern may be
invoked to generate data for Such entries. The program code
may be modified and/or stored in the cache after invocation.
In some embodiments, a client device is configured to
execute program instructions to cause the program code to
be cached for the entry. This may allow developers to
incorporate builder patterns into their web applications.
0130 Various operations described herein may be imple
mented by a computing device configured to execute pro
gram instructions that specify the operations. Similarly,
various operations may be performed by circuitry desired or
configured to perform the operations. In some embodiments,
a non-transitory computer-readable medium has program
instructions stored thereon that are capable of causing vari
ous operations described herein. As used herein, the term
“processing element” refers to various elements or combi
nations of elements configured to execute program instruc
tions. Processing elements include, for example, circuits
such as an ASIC (Application Specific Integrated Circuit),
portions or circuits of individual processor cores, entire
processor cores, individual processors, programmable hard
ware devices such as a field programmable gate array
(FPGA), and/or larger portions of systems that include
multiple processors, as well as any combinations thereof.
0131 This specification includes references to “one
embodiment,” “some embodiments, or “an embodiment.”
The appearances of these phrases do not necessarily refer to
the same embodiment. Particular features, structures, or
characteristics may be combined in any Suitable manner
consistent with this disclosure.

0132 Various units, circuits, or other components may be
described or claimed as “configured to perform a task or
tasks. In Such contexts, “configured to’ is used to connote
structure by indicating that the units/circuits/components
include structure (e.g., circuitry) that performs the task or
tasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when
the specified unit/circuit/component is not currently opera
tional (e.g., is not on). The units/circuits/components used
with the “configured to language include hardware—for
example, circuits, memory storing program instructions
executable to implement the operation, etc. Reciting that a
unit/circuit/component is “configured to perform one or
more tasks is expressly intended not to invoke 35 U.S.C. S
112(f) for that unit/circuit/component.
0.133 Although specific embodiments have been
described above, these embodiments are not intended to
limit the scope of the present disclosure, even where only a
single embodiment is described with respect to a particular
feature. Examples of features provided in the disclosure are
intended to be illustrative rather than restrictive unless stated
otherwise. The above description is intended to cover such

Apr. 27, 2017

alternatives, modifications, and equivalents as would be
apparent to a person skilled in the art having the benefit of
this disclosure.
I0134. The scope of the present disclosure includes any
feature or combination of features disclosed herein (either
explicitly or implicitly), or any generalization thereof,
whether or not it mitigates any or all of the problems
addressed herein. Accordingly, new claims may be formu
lated during prosecution of this application (or an applica
tion claiming priority thereto) to any Such combination of
features. In particular, with reference to the appended
claims, features from dependent claims may be combined
with those of the independent claims and features from
respective independent claims may be combined in any
appropriate manner and not merely in the specific combi
nations enumerated in the appended claims.
What is claimed is:
1. A method, comprising:
receiving, by a computing system, a request to access

cached data in an entry of an in-memory cache;
determining, by the computing system, that the data for

the entry is not present in the cache;
invoking, by the computing system in response to the

determining, cached program code associated with the
entry; and

providing a response to the request, by the computing
system, wherein the response includes data generated
by the program code.

2. The method of claim 1, wherein the entry and the
cached program code are associated with a key that is
specified by the request.

3. The method of claim 1, further comprising executing
the cached program code to query a database.

4. The method of claim 1, further comprising de-serial
izing the cached program code.

5. The method of claim 1, further comprising:
receiving, prior to the request to access cached data, a

second request to allocate the entry in the in-memory
cache, wherein the second request does not include data
for the entry.

6. The method of claim 1, further comprising:
prior to the request to access cached data, evicting data

from the entry in the in-memory cache.
7. The method of claim 1, further comprising storing the

generated data in the in-memory cache.
8. The method of claim 1, further comprising caching a

modified version of the program code.
9. A non-transitory computer-readable medium having

computer instructions stored thereon that are capable of
causing operations comprising:

receiving a request to access cached data in an entry of an
in-memory cache;

determining that the data for the entry is not present in the
cache;

invoking, in response to the determining, cached program
code associated with the entry; and

providing a response to the request, wherein the response
includes data generated by the program code.

10. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise:

receiving a second request to access cached data in a
second entry of the in-memory cache, wherein data for
the second entry is present in the cache;

US 2017/011 6 125 A1

detecting an indication to invoke a builder pattern asso
ciated with the second entry;

invoking, in response to the detecting, cached second
program code associated with the second entry; and

providing a response to the second request, wherein the
response includes data generated by the second pro
gram code.

11. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise de-serial
izing the cached program code and executing, after invoca
tion of the cached program code, the de-serialized program
code.

12. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise receiving,
prior to the request to access cached data, a request to put
information in the entry in the in-memory cache, wherein the
request to put does not include data for the entry.

13. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise evicting
data from the entry in the in-memory cache.

14. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise storing the
generated data in the in-memory cache.

15. A non-transitory computer-readable medium having
computer instructions stored thereon that are capable of
causing operations comprising:

13
Apr. 27, 2017

transmitting a request to store program code in association
with an entry in an in-memory cache, wherein the
program code is usable to generate data for the entry in
the cache in response to determining that data for the
entry is not stored in the in-memory cache.

16. The non-transitory computer-readable medium of
claim 15, further comprising transmitting a request to update
the stored program code.

17. The non-transitory computer-readable medium of
claim 15, wherein the request specifies a key associated with
the entry.

18. The non-transitory computer-readable medium of
claim 15, wherein the request to store program code includes
data to be cached in the entry, wherein the program code is
usable to generate the data Subsequent to eviction of the data
from the entry.

19. The non-transitory computer-readable medium of
claim 15, wherein the operations further comprise:

requesting data from the entry in the cache; and
receiving data in response to the request, wherein the data

is generated by the program code.
20. The non-transitory computer-readable medium of

claim 15, wherein the program code specifies a database
aCCCSS,

