US 20150123707A1

a2y Patent Application Publication o) Pub. No.: US 2015/0123707 A1l

a9 United States

Nicol

43) Pub. Date: May 7, 2015

(54) LOGICAL ELEMENTS WITH SWITCHABLE
CONNECTIONS

(71) Applicant: Wave Semiconductor, Inc., Campbell,
CA (US)

(72) Inventor: Christopher John Nicol, Campbell, CA

(US)
(21) Appl. No.: 14/530,624
(22) Filed:

Oct. 31, 2014

Related U.S. Application Data

(60) Provisional application No. 61/899,180, filed on Now.
2,2013.

430

410 \

HL1d3d NOLLONYLSNI ONIHOLIMS

SWITCHING ELEMENT
COLUMNS

Publication Classification

(51) Int.CL
HO3K 19/0175 (2006.01)
HO3K 19/177 (2006.01)
(52) US.CL

CPC ... HO3K 19/017581 (2013.01); HO3K 19/1776
(2013.01); HO3K 19/17764 (2013.01)

(57) ABSTRACT

Clusters of logical elements are interconnected by a switch-
ing fabric. Each cluster contains processing elements, storage
elements, and switching elements. A circular buffer within a
cluster contains multiple switching instructions to control the
flow of data throughout the switching fabric. The circular
buffer provides a pipelined execution of switching instruc-
tions. Each cluster contains multiple processing elements,
and each cluster further comprises an additional circular
buffer for each processing element. Logical operations are
controlled by the circular buffers.

SWITCHING ELEMENT

/ ROWS

May 7,2015 Sheet 1 of 8 US 2015/0123707 Al

Patent Application Publication

L "OIld

0gl
0 JOVLS 0ci
obL 8gl ocl beL ZSL mz:mﬂ__n_

o Tl ol]
IRENARINY y

} } LI:
9zl .»
: &ﬂ..,/, P oo} § | —‘U

[
Y2l ~ B < e) e |
RS / Sl o iy

A A b m
- ~V.q [RovT ;. o

4%

LNINZT3 |] [N

ONIHOLIMS _ _ R
\ \mﬁ \NQ J SEL

941 gLl 991 081

0L
d3Addng
dvYINOHID

001

¢ OlId

0ce ¢ee

US 2015/0123707 Al

May 7, 2015 Sheet 2 of 8

¥344Ng 00

dVINO™IO

Patent Application Publication

May 7,2015 Sheet 3 of 8 US 2015/0123707 Al

Patent Application Publication

9le
0'c
¥31sN10

h 4

A

Y

9ze
L'e
H318SN10

753
0'C
¥31sN10

h 4

4

) 4

A 4

A

A

9ee
z'e
HALSNTO

yze
L'
H318NT0

h 4

A

A

yee
A4
¥31SNI0

Zi€ 1€
0'l 0'0
¥3aLsnNion ¥31sSN10

A A
Y y
228 0zg
L'y 10
H3ILSNTIO d31sN10
F § F
m\\:JV\\\\\ovm
A r
Z¢eE N (53
Al A V Z0
d3ILSNTD ISEIRI AR
Zve

€ Ol

A/ 00¢g

Patent Application Publication May 7, 2015 Sheet 4 of 8 US 2015/0123707 A1

/ 400

SWITCHING ELEMENT
ROWS

426

SWITCHING ELEMENT
COLUMNS

SWITCHING INSTRUCTION DEPTH

FIG. 4

May 7,2015 Sheet S of 8 US 2015/0123707 Al

Patent Application Publication

009

0€s
SNOILONYLSNI
HOLIMS 31N03X3

4

228
SNOILLONYLSNI HOLIMS NIVLEO0

0zs
¥344N8 ¥VINOAIO IAINON

4

015
SLNIW3T3 TvOID0T IAINOYHd

G ‘Old

May 7,2015 Sheet 6 of 8 US 2015/0123707 Al

Patent Application Publication

009

0%9
(@ / SINIWATE TYIIDO0T
HONOHHL)
3LNOY

{

0v9
FTOAD ¥3d SNOILLONYLSNI
FHOW ¥O 3ANO 31ND3X3

i

0€9
SNOILVY34O FINAIHOS

i

029
SNOILONYLSNI SSI00Hd-Fdd

019
SNOILONYLSNI HOLIMS NIVLEO

9 "OId

Patent Application Publication May 7, 2015 Sheet 7 of 8 US 2015/0123707 A1

700

PROGRAM
COUNTER
720

\ 4
o
©
soe 8 ,U_]Cf)|
© <€ o™~
=
™~ ~
~ YT 0 NT O OO~ ©WSF ON T P
© - Ll
<
~
v
| -
Yy} LIJ% ;u_|§|
—1 N~
<t o] < a
-
~ I~
N WY O NTO ®O M ©W < MNP
iy Al e
<t
<
N~
o NN|
asoe < P>t L] M
N/ %} o~
-
~ — A
o~ W T O NT O O N O M N~ g
Py Ll i S e
N
3
N~
y
3 0 8
YY) .
o_/// = a. ™
~
N O M N™ O ®OM~O©WL I ON T O
/‘v_ Laad ool el S R

740

FIG. 7

8 'Old

US 2015/0123707 Al

SININWATE TVOIDOT

718 AV1dSIa
8 —
3 Z18 AHOW3N
¢)
~N—
: 018
7 078 ,
S ‘\‘\
IT1NAON] (S)H0SSIDOY —
m HILNINI TN
o
=
)
<
=

0c8
¥344Ng ¥YINOAIO

008

Patent Application Publication

US 2015/0123707 Al

LOGICAL ELEMENTS WITH SWITCHABLE
CONNECTIONS

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. provi-
sional patent application “Logical Elements with Switchable
Connections” Ser. No. 61/899,180, filed Nov. 2, 2013. The
foregoing application is hereby incorporated by reference in
their entirety.

FIELD OF ART

[0002] This application relates generally to logic circuitry
and more particularly to logical elements with switchable
connections.

BACKGROUND

[0003] Semiconductor devices are vastly complex struc-
tures. Various semiconductors, including application specific
integrated circuits (ASICs), are designed with a certain pur-
pose in mind. As a downside of the specific design parameters
of'an ASIC, the circuit can no longer be altered after it leaves
the production line. For this reason, ASIC designers need to
be sure of their design, especially when producing large quan-
tities of the same ASIC. In contrast, a programmable logic
device such as a field programmable gate array (FPGA) is
also a type of semiconductor, but does not have specific
programming built into the design during production. Pro-
grammable logic devices often can be reprogrammed while
remaining in their environment of use (e.g. while mounted on
the circuit board within which the device is intended to func-
tion). Programmable logic devices typically include logic
blocks (e.g. programmable Boolean logic gates) and can also
include programmable memory blocks, programmable
clocking blocks, and other specialized programmable blocks
such as multiplier blocks and 1/O ports.

[0004] Typically, programmable logic devices are pro-
grammed using a programming language used to implement
specific, desired logic in the programmable logic devices. The
programmable logic devices can be programmed by writing
data to storage on the programmable logic devices. A pro-
grammable logic device architecture includes a program-
mable routing structure and an array of configurable logic
blocks. The programmable routing matrix includes an ability
to connect configurable logic blocks to each other.

[0005] Programmable logic devices allow adaptability to
future (unforeseen) changes in functional requirements. In
some cases, programmable logic devices are used as proto-
types for ASIC or other devices. Using a programmable logic
device to prototype an ASIC for verification and initial soft-
ware development is a useful way to both decrease develop-
ment time and reduce the risk of first silicon failure for the
ASIC. Programmable logic devices function well in many
applications such as digital video, graphics processing, com-
munications, encryption, medical equipment, mobile com-
puting, and instrumentation, areas which are all continuing to
play an important role in the implementation of many new
programmable logic designs.

SUMMARY

[0006] Logical elements, including processing elements,
storage elements, and switching elements, are arranged into
clusters. Clusters are arranged in groups interconnected by a
structure referred to as a switching fabric. The switching

May 7, 2015

fabric includes logical elements, such as switching elements.
Each cluster contains circular buffers which contain configu-
ration instructions for the cluster. The instructions within a
circular buffer allow the switching elements to be controlled.
The instructions within the buffer reconfigure the logical
elements, thus allowing for a dynamic programmable logic
device.

[0007] An apparatus for data manipulation is disclosed
comprising: a plurality of logical elements, configurable con-
nections between the logical elements, and a circular buffer
controlling the configurable connections. The circular buffer
is programmed and instructions are pre-processed to generate
input to the circular buffer for dynamic programming. The
circular buffer can include one, two, three, or more switch
instruction entries per column. In embodiments, a computer-
implemented method implements logic to form the switching
fabric and circular buffer controlling the configurable con-
nections.

[0008] Various features, aspects, and advantages of various
embodiments will become more apparent from the following
further description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The following detailed description of certain
embodiments may be understood by reference to the follow-
ing figures wherein:

[0010] FIG. 1 is a block diagram of a circular buffer.
[0011] FIG. 2 is an example cluster for course-grained
reconfigurable processing.

[0012] FIG. 3 shows an example fabric of clusters.

[0013] FIG. 4 shows example point-to-point routing.
[0014] FIG. 5is a flow diagram for implementing and using
logic.

[0015] FIG. 6 is a flow diagram for the programming and

use of a circular buffer.

[0016] FIG. 7 shows an example instruction execution for
processing elements.

[0017] FIG. 8 is a system diagram for implementing pro-
cessing elements.

DETAILED DESCRIPTION

[0018] Programmable logic devices such as FPGAs have
wide applicability due to FPGAs’ flexibility and ability to be
reprogrammed within their operating environment. While an
FPGA canbe reprogrammed, a given program only allows the
FPGA to remain in a certain logical arrangement to accom-
plish a specific logical task. In contrast, embodiments dis-
closed herein provide an improved programmable logic
device capable of executing a series of logic operations by
dynamic reconfiguration using instructions stored in a circu-
lar buffer. For example, one program can stored in the circular
buffer that is attached to logical elements. As the circular
buffer rotates, different instructions from the stored program
are executed, allowing the logical elements and interconnec-
tions to perform different operations based on the instructions
in the circular buffer without changing programs.

[0019] Embodiments disclosed herein provide clusters of
logical elements. The logical elements can include processing
elements, storage elements, and switching elements. The pro-
cessing elements can also include processor cores capable of
executing machine instructions. The storage elements can
include registers, caches, and/or on chip memories. The

US 2015/0123707 Al

switching elements can include bus control circuits, which
can be configured to route data on a bus from one cluster to
another cluster.

[0020] FIG. 1 is a block diagram 100 of a circular buffer
110 and a corresponding switching element 112. The block
diagram 100 describes an apparatus for data manipulation.
The circular buffer 110 contains a plurality of pipeline stages.
Each pipeline stage contains one or more instructions, up to a
maximum instruction depth. In the embodiment shown in
FIG. 1, the circular buffer 110 is a 6x3 circular buffer, mean-
ing that it implements a six stage pipeline with an instruction
depth of up to three instructions per stage (column). Hence,
the circular buffer 110 can include one, two, or three switch
instruction entries per column. In some embodiments, the
plurality of switch instructions per cycle can comprise two or
three switch instructions per cycle. However, in certain
embodiments, the circular buffer 110 supports only a single
switch instruction in a given cycle. In the example 100 shown,
Pipeline Stage 0 130 has an instruction depth of two instruc-
tions 150 and 152. Though the remaining pipeline stages 1-5
are not textually labeled in the FIG. 100, the stages are indi-
cated by callouts 132, 134, 136, 138 and 140. Pipeline stage 1
132 has an instruction depth of three instructions 154, 156,
and 158. Pipeline stage 2 134 has an instruction depth of three
instructions 160, 162, and 164. Pipeline stage 3 136 also has
an instruction depth of three instructions 166, 168, and 170.
Pipeline stage 4 138 has an instruction depth of two instruc-
tions 172 and 174. Pipeline stage 5 140 has an instruction
depth of two instructions 176 and 178. In embodiments, the
circular buffer 110 includes 64 columns.

[0021] During operation, the circular buffer 110 rotates
through configuration instructions. The circular buffer 110
can dynamically change operation of the logical elements
based on the rotation of the circular buffer. The circular buffer
110 can comprise a plurality of switch instructions per cycle
for the configurable connections.

[0022] The instruction 152 is an example of a switch
instruction. In embodiments, each cluster has four inputs and
four outputs, each designated within the cluster’s nomencla-
ture as “north,” “east,” “south,” and “west” respectively. For
example, the instruction 152 in the diagram 100 is a west-to-
east transfer instruction. The instruction 152 directs the clus-
ter to take data on its west input and send out the data on its
east output. In another example of data routing, the instruc-
tion 150 is a fan-out instruction. The instruction 150 instructs
the cluster to take data on its south input and send out on the
data on both its north output and its west output. The arrows
within each instruction box indicate the source and destina-
tion of the data. The instruction 178 is an example of a fan-in
instruction. The instruction 178 takes data from the west,
south, and east inputs and sends out the data on the north
output. Therefore, the configurable connections can be con-
sidered to be time multiplexed.

[0023] In embodiments, the clusters implement multiple
storage elements in the form of registers. In the example 100
shown, the instruction 162 is a local storage instruction. The
instruction 162 takes data from the instruction’s south input
and stores it in a register (r0). The instruction 168 is a retrieval
instruction. The instruction 168 takes data from the register
(r0) and outputs it on the instruction’s west output. Some
embodiments utilize four general purpose registers, referred
to as registers r0, rl, r2, and r3. The registers are, in embodi-
ments, storage elements which store data while the config-
urable connections are busy with other data. In embodiments,

May 7, 2015

the storage elements are 32-bit registers. In other embodi-
ments, the storage elements are 64-bit registers. Other register
widths are possible.

[0024] In embodiments, the clusters implement multiple
processing elements in the form of processor cores, referred
to as cores q0, q1, g2, and q3. In embodiments, four cores are
used, though any number of cores can be implemented. The
instruction 158 is a processing instruction. The instruction
158 takes data from the instruction’s east input and sends it to
a processor q1 for processing. The processors can perform
logic operations on the data, including, but not limited to, a
shift operation, a logical AND operation, a logical OR opera-
tion, a logical NOR operation, a logical XOR operation, an
addition, a subtraction, a multiplication, and a division. Thus,
the configurable connections can comprise one or more of a
fan-in, a fan-out, and a local storage.

[0025] In the example 100 shown, the circular bufter 110
rotates instructions in each pipeline stage into switching ele-
ment 112 via a forward data path 122, and also back to a
pipeline stage 0 130 via a feedback data path 120. Instructions
can include switching instructions, storage instructions, and
processing instructions, among others. The feedback data
path 120 can allow instructions within the switching element
112 to be transferred back to the circular buffer. Hence, the
instructions 124 and 126 in the switching element 112 can
also be transferred back to pipeline stage O as the instructions
150 and 152. In addition to the instructions depicted on FIG.
1, a no-op instruction or a sleep instruction can also be
inserted into a pipeline stage. In embodiments, a no-op
instruction causes execution to not be performed for a given
cycle. In effect, the introduction of a no-op instruction can
cause a column within the circular buffer 110 to be skipped in
acycle. In contrast, not skipping an operation indicates that a
valid instruction is being pointed to in the circular buffer. A
sleep state can be accomplished by not applying a clock to a
circuit, performing no processing within a processor, remov-
ing a power supply voltage or bringing a power supply to
ground, storing information into a non-volatile memory for
future use and then removing power applied to the memory, or
by similar techniques. A sleep instruction that causes no
execution to be performed until a predetermined event occurs
which causes the logical element to exit the sleep state can
also be explicitly specified. The predetermined event can be
the arrival or availability of valid data. The data can be deter-
mined to be valid using null convention logic (NCL). In
embodiments, only valid data can flow through the switching
elements and Xs (invalid data points) are not propagated by
instructions.

[0026] Insomeembodiments, the sleep state is exited based
on an instruction applied to a switching fabric. The sleep state
can, in some embodiments, only be exited by stimulus exter-
nal to the logical element and not based on the programming
of the logical element. The external stimulus can include an
input signal, which in turn can cause a wake up or an interrupt
service request to execute on one or more of the logical
elements. An example of such a wake up request can be seen
in the instruction 158, assuming that the processor ql was
previously in a sleep state. In embodiments, when the instruc-
tion 158 takes valid data from the east input and applies that
data to the processor ql, the processor ql wakes up and
operates on the received data. In the event that the data is not
valid, the processor q1 can remain in a sleep state. At a later
time, data can be retrieved from the ql processor, e.g. by
using an instruction such as the instruction 166. In the case of

US 2015/0123707 Al

the instruction 166, data from the processor q1 is moved to the
north output. In some embodiments, if Xs have been placed
into the processor q1, such as during the instruction 158, then
Xs would be retrieved from the processor ql during the
execution of the instruction 166 and applied to the north
output of the instruction 166.

[0027] A collision occurs if multiple instructions route data
to a particular port in a given pipeline stage. For example, if
instructions 152 and 154 are in the same pipeline stage, they
will both send data to the east output at the same time, thus
causing a collision since neither instruction is part of a time-
multiplexed fan-in instruction (such as the instruction 178).
To avoid potential collisions, certain embodiments use pre-
processing, such as by a compiler, to arrange the instructions
in such a way that there are no collisions when the instructions
are loaded into the circular buffer. Thus, the circular buffer
110 can be statically scheduled in order to prevent data col-
lisions. In embodiments, when the preprocessor detects a data
collision, the scheduler changes the order of the instructions
to prevent the collision. Alternatively or additionally, the pre-
processor can insert further instructions such as storage
instructions (e.g. the instruction 162), sleep instructions, or
no-op instructions, to prevent the collision. Alternatively or
additionally, the preprocessor can replace multiple instruc-
tions with a single fan-in instruction. For example, if a first
instruction sends data from the south input to the north output
and a second instruction sends data from the west input to the
north output in the same pipeline stage, the first and second
instruction can be replaced with a fan-in instruction that
routes the data from both of those inputs to the north output in
a deterministic way to avoid a data collision. In this case, the
machine can guarantee that valid data is only applied on one
of the inputs for the fan-in instruction.

[0028] FIG. 2 is an example cluster 200 for course-grained
reconfigurable processing. The cluster 200 comprises a cir-
cular buffer 202, which operates similarly to the circular
buffer 110 of FIG. 1. The circular buffer 202 can be referred
to as a main circular buffer or a switch-instruction circular
buffer. In some embodiments, the cluster 200 comprises addi-
tional circular buffers corresponding to processing elements
within the cluster. The additional circular buffers can be
referred to as processor instruction circular buffers. The
example cluster 200 comprises a plurality of logical elements,
configurable connections between the logical elements, and a
circular buffer 202 controlling the configurable connections.
The logical elements can further comprise one or more of
switching elements, processing elements, or storage ele-
ments. The example cluster 200 also comprises four process-
ing elements (q0, ql, q2, and g3). The four processing ele-
ments can collectively be referred to as a “quad,” and jointly
indicated by a grey reference box 228. In embodiments, there
is intercommunication among and between each of the four
processing elements. In embodiments, the circular buffer 202
controls the passing of data to the quad of processing ele-
ments 228 through switching elements. In embodiments, the
four processing elements 228 comprise a processing cluster.
In some cases, the processing elements can be placed into a
sleep state. In embodiments, the processing elements wake up
from a sleep state when valid data is applied to the inputs of
the processing elements. In embodiments, the individual pro-
cessors of a processing cluster share data and/or instruction
caches. The individual processors of a processing cluster can
implement message passing via a bus or shared memory

May 7, 2015

interface. Power gating can be applied to one or more proces-
sors (e.g. q1) in order to reduce power.

[0029] The cluster 200 can further comprise storage cle-
ments coupled to the configurable connections. As shown, the
cluster 200 comprises four storage elements (10 240, r1 242,
r2 244, and r3 246). The cluster 200 futher comprises a north
input (Nin) 212, a north output (Nout) 214, an east input (Ein)
216, an east output (Eout) 218, a south input (Sin) 222, a south
output (Sout) 220, a west input (Win) 210, and a west output
(Wout) 224. The circular buffer 202 can contain switch
instructions that implement configurable connections. For
example, an instruction such as the instruction 160 in FIG. 1
effectively connects the west input 210 with the north output
214 and the east output 218 and this routing is accomplished
via bus 230. The cluster 200 can further comprise a plurality
of circular buffers residing on a semiconductor chip where the
plurality of circular buffers control unique, configurable con-
nections between the logical elements.

[0030] As stated previously, the preprocessor can be con-
figured to prevent data collisions within the circular buffer
202. The prevention of collisions can be accomplished by
inserting no-op or sleep instructions into the circular buffer
(pipeline). Alternatively, in order to prevent a collision on an
output port, intermediate data can be stored in registers for
one or more pipeline cycles before being sent out on the
output port. In other situations the preprocessor can change
one switching instruction to another switching instruction to
avoid a conflict. For example, in some instances the prepro-
cessor can change an instruction placing data on the west
output 224 to an instruction placing data on the south output
220, such that the data can be output on both output ports
within the same pipeline cycle. In a case where data needs to
travel to a cluster that is both south and west of the cluster 200,
it can be more efficient to send the data directly to the south
output port rather than storing the data in a register and
sending the data to the west output on a subsequent pipeline
cycle.

[0031] FIG. 3 shows a diagram 300 indicating an example
fabric of clusters. A cluster 330 has a cluster 332 to its eastand
a cluster 320 to its south. The cluster 330 exchanges data 340
with the southerly cluster 320 by using a south output con-
nected to a north input of the cluster 320. Similarly, a south
input of the cluster 330 is connected to a north output of the
cluster 320. The cluster 330 exchanges data 342 with the
cluster 332 oriented to the first cluster’s west by using an east
output connected to a west input of the second cluster 332.
Similarly, an east input of cluster 330 is connected to a west
output of cluster 332. In embodiments, the switching fabric is
implemented with a parallel bus, such as a 32-bit bus. Other
bus widths are possible, including, but not limited to, 16-bit,
64-bit, and 128-bit buses. Therefore, the configurable con-
nections can provide for routing of a plurality of signals in
parallel. In embodiments, the plurality of signals comprise
four bytes. Communication through the configurable connec-
tions can be based on data being valid.

[0032] The fabric of clusters shown in FIG. 3 is a two-
dimensional (2D) fabric, illustrating a mesh interconnection
network where the clusters are placed in a two-dimensional
grid. Each cluster is connected to its immediate neighbors as
described in the case of the previously mentioned clusters as
well as other clusters 310, 312, 314, 316, 322, 324, 326, 334,
and 336. Hence, in embodiments, the switching fabric is used
in mesh computing. Other embodiments have a fabric of more
than two dimensions. The configurable connections can pro-

US 2015/0123707 Al

vide three-dimensional routing. A three-dimensional (3D)
embodiment can have additional cluster interconnectivity. In
one embodiment, the 3D fabric is formed by layering multiple
2D mesh interconnect fabrics. The three-dimensional routing
can include accessing a stacked chip. The stacked chip can be
a 3D-integration integrated circuit where multiple die are
stacked and interconnected with through-silicon vias. In the
case of three-dimensional routing, each cluster can have addi-
tional input and output ports. For example, in addition to the
north, south, east, and west I/O ports, sets of up and down I/O
ports can be present in each cluster to allow connectivity to
clusters situated above and below a certain cluster. In embodi-
ments, the configurable connections comprise a switching
fabric that is attached to a plurality of processing elements.
The configurable connections can route through one or more
of silicon vias, two-dimensional connections, three-dimen-
sional connections, or connections with more than three
dimensions. For example, a setup such as a hypercube can
allow for greater than three-dimensional interconnectivity.
With n-dimensional hypercubes, the interconnection topol-
ogy can comprise a plurality of clusters and a plurality of
links, with “n” being an integer greater than or equal to three.
Each cluster has a degree “n,” meaning that it is connected
with links to “n” other clusters. The configurable connections
can enable the bypassing of neighboring logical elements. In
embodiments, some or all of the clusters in the fabric have a
direct connection to a non-adjacent (non-neighboring) clus-
ter. Within the fabric, each cluster of the plurality of clusters
can have its own circular buffer. Therefore, the example dia-
gram 300 includes a plurality of circular buffers. The plurality
of circular buffers can have differing lengths. For example,
the cluster 330 can have a circular buffer of X length, while
the cluster 332 can have a circular buffer with a length of X+Y.
In such a configuration, the cluster 330 sleeps after execution
of the X-1 stage until the cluster 332 executes the X+Y-1
stage, at which point the plurality of circular buffers having
differing lengths can resynchronize with the zeroth pipeline
stage for each of the plurality of circular buffers. In an
example where X=6 and Y=2, after the execution of the fifth
stage of F1IG. 1 140, the cluster 330 sleeps until the cluster 332
executes the seventh stage, at which point both pipelines
resynchronize and start executing the same stage together.
The clusters (310-336) can be configured to function together
to process data and produce a result. The result can be stored
in one of the storage elements of one of the clusters. In some
embodiments, the result is stored across multiple clusters.

[0033] FIG. 4 shows a chart 400 indicating an example
point-to-point routing. The vertical axis 410 indicates switch-
ing instruction depth. The X axis 412 indicates switching
element columns. TheY axis 414 indicates switching element
rows. A curve 422 depicts an exemplary data transfer. The
exemplary data transfer starts at the point (0, 0) 420, which in
the example given represents the cluster 310 of FIG. 3. In the
subsequent pipeline cycle, the data is transferred to another
cluster, at the point (0, 1) on the graph, representing the
cluster 320 of FIG. 3. In the subsequent pipeline cycle, the
data is transferred to a third cluster, at the point (0, 2) on the
graph, representing the cluster 330 of FIG. 3. In the subse-
quent pipeline cycle, the data is transferred to a fourth cluster,
atthe point (1, 2) on the graph, representing the cluster 332 of
FIG. 3. and indicated by the point 424 in the chart 400. In the
subsequent pipeline cycle, the data is transferred to a fifth
cluster, at the point (2, 2) on the graph, representing the
cluster 334 of FIG. 3. Finally, in the last pipeline cycle, the

May 7, 2015

data is transferred to a sixth cluster, at the point (3, 2) on the
graph, representing the cluster 336 of FIG. 3. and indicated by
the point 426 in the chart 400. A vertical line 430 indicates a
potential transfer delay. If a cluster is not ready to accept data,
the data can be stored in a register (e.g. the register 240 of F1G.
2) for multiple cycles.

[0034] FIG. 5 is a flow diagram 500 for implementing and
using logic. The flow comprises a computer-implemented
method of logic implementation. The flow 500 can provide
logical elements 510. The logical elements can include pro-
cessing elements, storage elements, and switching elements.
In embodiments, the logical elements are grouped into clus-
ters. Bach cluster can comprise one or more processing ele-
ments, storage elements, and switching elements. As shown,
the flow 500 continues with providing a circular bufter 520.
The circular buffer can have a length and a depth. The length
can determine the number of pipeline stages. The depth can
determine the number of instructions per pipeline stage. In
embodiments, the circular buffer provides between six and 12
pipeline stages, with a depth of three instructions. In embodi-
ments, the circular buffer length is programmable. The pro-
grammability can be accomplished by providing additional
circuitry, such as muxes, to configure the circular buffer to a
desired length. The circular buffer can be programmed and
instructions can be pre-processed to generate input to the
circular buffer for dynamic programming. The flow 500 con-
tinues with obtaining switch instructions 522. The switch
instructions can be obtained from a preprocessor and/or com-
piler which generate the switch instructions for the imple-
mentation of a particular function. The switch instructions
can be loaded into the circular buffer. The flow 500 continues
with executing the switch instructions 530. The switch
instructions can be loaded into switching elements within the
clusters to configure connections to other clusters such that
data can be transferred between and among the clusters. The
flow can include designing a switching fabric using a plurality
of logical elements, configurable connections between the
logical elements, and a circular buffer controlling the config-
urable connections.

[0035] FIG. 6 is a flow diagram 600 for the programming
and use of a circular buffer. The flow 600 includes obtaining
switch instructions 610. The switch instructions can be
obtained from a computer system executing a compiler. The
flow 600 continues with preprocessing the instructions 620.
In embodiments, the preprocessing includes conflict check-
ing. The flow 600 continues with scheduling operations 630.
The flow 600 continues with executing one or more instruc-
tions per cycle 640. The order in which operations are placed
in a circular buffer can determine the order of execution of the
instructions. For example, the instructions 176 and 178 of
FIG. 1 can be next in line to be executed by the switching
element 112 of the same figure, followed by the execution of
the instructions 172 and 174. The instructions 176 and 178
can be executed in parallel. Similarly, the instructions 172 and
174 can also be executed in parallel. The plurality of switch
instructions per cycle can be mutually exclusive. The flow
600 continues with routing data through logical elements 650.
[0036] FIG. 7 shows a diagram 700 indicating an example
instruction execution for processing elements. In this
embodiment, in addition to the main circular buffer for a
cluster (for example, the buffer 202 of FIG. 2), an additional
circular buffer is implemented for each processing element. A
circular buffer 710 feeds a processing element 730. A circular
buffer 712 feeds another processing element 732. A third

US 2015/0123707 Al

circular buffer 714 feeds another processing element 734. A
fourth circular buffer 716 feeds another processing element
736. The four processing elements 730, 732, 734, and 736 can
represent a quad of processing elements. In embodiments, the
processing elements 730, 732, 734, and 736 are controlled by
instructions received from the circular buffers 710, 712, 714,
and 716. The circular buffers can be implemented using feed-
back paths 740, 742, 744, and 746, respectively. In embodi-
ments, the circular buffer (e.g. 202 of FIG. 2) can control the
passing of data to a quad of processing elements through
switching elements, where each of the quad of processing
elements is controlled by four other circular buffers (e.g. 710,
712,714, and 716) and where data is passed back through the
switching elements from the quad of processing elements
where the switching elements are again controlled by the
main circular buffer. In embodiments, a program counter 720
is configured to point to the current instruction within a cir-
cular buffer. In these embodiments, the contents of the circu-
lar buffer are not shifted or copied to new locations on each
instruction cycle. Rather, the program counter 720 is incre-
mented in each cycle to point to a new location in the circular
buffers. The circular buffers 710, 712, 714, and 716 can
contain instructions for the processing elements. The instruc-
tions can include, but are not limited to, move instructions,
skip instructions, logical AND instructions, logical AND-
Invert (e.g. ANDI) instructions, logical OR instructions, shift
instructions, sleep instructions, and so on. A sleep instruction
can be usefully employed in numerous situations. The sleep
state can be entered by an instruction within one of the pro-
cessing elements. One or more of the processing elements can
be in a sleep state at any given time. In some embodiments, a
“skip” can be performed on an instruction and the instruction
in the circular buffer can be ignored and the corresponding
operation not performed. In embodiments, the circular buft-
ers 710, 712, 714, and 716 have a length of 128 instructions,
but other circular buffer lengths are also possible.

[0037] FIG. 8 is a system diagram for implementing pro-
cessing elements. The system 800 includes one or more pro-
cessors 810 and a memory 812. The memory 812 can be used
for storing instructions, for storing circuit designs, for storing
logic designs, for system support, and the like. The one or
more processors 810 can read in information regarding logi-
cal elements 820 and a circular buffer 830, and implement
various programmable logic designs using a logic imple-
menter module 840. Logical elements can be represented in
the form of digital data stored on a storage medium such as a
hard disk. The digital data can be in the form of a library or a
database. The library or database can comprise a plurality of
standard designs. Similarly, the circular buffer 830 can be
represented in the form of digital data stored on a storage
medium such as a hard disk. The circular buffer digital data
can also be in the form of a library or database. In at least one
embodiment, the implementer module 840 functions are
accomplished by the one or more processors 810.

[0038] Inembodiments, one or more ofthe logical elements
820, circular buffer 830, and implementer module 840 are
interconnected via the Internet. Cloud computing can be used
to design the switching fabric and plurality of logical ele-
ments. Information about the various designs can be shown
on a display 814 which is attached to the one or more proces-
sors 810. The display 814 can be any electronic display,
including but not limited to, a computer display, a laptop
screen, anet-book screen, a tablet screen, a cell phone display,
amobile device display, a remote with a display, a television,

May 7, 2015

a projector, and the like. The system 800 can include a com-
puter program product embodied in a non-transitory com-
puter readable medium for implementation of a logical cal-
culation apparatus, the computer program product
comprising: code for designing a switching fabric using: a
plurality of logical elements; configurable connections
between the logical elements; and a circular buffer control-
ling the configurable connections.

[0039] Each of the above methods may be executed on one
Or more processors on one or more computer systems.
Embodiments may include various forms of distributed com-
puting, client/server computing, and cloud based computing.
Further, it will be understood that the depicted steps or boxes
contained in this disclosure’s flow charts are solely illustra-
tive and explanatory. The steps may be modified, omitted,
repeated, or re-ordered without departing from the scope of
this disclosure. Further, each step may contain one or more
sub-steps. While the foregoing drawings and description set
forth functional aspects of the disclosed systems, no particu-
lar implementation or arrangement of software and/or hard-
ware should be inferred from these descriptions unless explic-
itly stated or otherwise clear from the context. All such
arrangements of software and/or hardware are intended to fall
within the scope of this disclosure.

[0040] The block diagrams and flowchart illustrations
depict methods, apparatus, systems, and computer program
products. The elements and combinations of elements in the
block diagrams and flow diagrams, show functions, steps, or
groups of steps of the methods, apparatus, systems, computer
program products and/or computer-implemented methods.
Any and all such functions—generally referred to herein as a
“circuit,” “module,” or “system”—may be implemented by
computer program instructions, by special-purpose hard-
ware-based computer systems, by combinations of special
purpose hardware and computer instructions, by combina-
tions of general purpose hardware and computer instructions,
and so on.

[0041] A programmable apparatus which executes any of
the above mentioned computer program products or com-
puter-implemented methods may include one or more micro-
processors, microcontrollers, embedded microcontrollers,
programmable digital signal processors, programmable
devices, programmable gate arrays, programmable array
logic, memory devices, application specific integrated cir-
cuits, or the like. Each may be suitably employed or config-
ured to process computer program instructions, execute com-
puter logic, store computer data, and so on.

[0042] It will be understood that a computer may include a
computer program product from a computer-readable storage
medium and that this medium may be internal or external,
removable and replaceable, or fixed. In addition, a computer
may include a Basic Input/Output System (BIOS), firmware,
an operating system, a database, or the like that may include,
interface with, or support the software and hardware
described herein.

[0043] Embodiments of the present invention are neither
limited to conventional computer applications nor the pro-
grammable apparatus that run them. To illustrate: the embodi-
ments of the presently claimed invention could include an
optical computer, quantum computer, analog computer, or the
like. A computer program may be loaded onto a computer to
produce a particular machine that may perform any and all of
the depicted functions. This particular machine provides a
means for carrying out any and all of the depicted functions.

US 2015/0123707 Al

[0044] Any combination of one or more computer readable
media may be utilized including but not limited to: a non-
transitory computer readable medium for storage; an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor computer readable storage medium or any suitable
combination of the foregoing; a portable computer diskette; a
hard disk; a random access memory (RAM); a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM, Flash, MRAM, FeRAM, or phase change
memory); an optical fiber; a portable compact disc; an optical
storage device; a magnetic storage device; or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0045] It will be appreciated that computer program
instructions may include computer executable code. A variety
of languages for expressing computer program instructions
may include without limitation C, C++, Java, JavaScript™,
ActionScript™, assembly language, Lisp, Perl, Tcl, Python,
Ruby, hardware description languages, database program-
ming languages, functional programming languages, impera-
tive programming languages, and so on. In embodiments,
computer program instructions may be stored, compiled, or
interpreted to run on a computer, a programmable data pro-
cessing apparatus, a heterogeneous combination of proces-
sors or processor architectures, and so on. Without limitation,
embodiments of the present invention may take the form of
web-based computer software, which includes client/server
software, software-as-a-service, peer-to-peer software, or the
like.

[0046] In embodiments, a computer may enable execution
of computer program instructions including multiple pro-
grams or threads. The multiple programs or threads may be
processed approximately simultaneously to enhance utiliza-
tion of the processor and to facilitate substantially simulta-
neous functions. By way of implementation, any and all
methods, program codes, program instructions, and the like
described herein may be implemented in one or more threads
which may in turn spawn other threads, which may them-
selves have priorities associated with them. In some embodi-
ments, a computer may process these threads based on prior-
ity or other order.

[0047] Unless explicitly stated or otherwise clear from the
context, the verbs “execute” and “process” may be used inter-
changeably to indicate execute, process, interpret, compile,
assemble, link, load, or a combination of the foregoing.
Therefore, embodiments that execute or process computer
program instructions, computer-executable code, or the like
may act upon the instructions or code in any and all of the
ways described. Further, the method steps shown are intended
to include any suitable method of causing one or more parties
or entities to perform the steps. The parties performing a step,
or portion of a step, need not be located within a particular
geographic location or country boundary. For instance, if an
entity located within the United States causes a method step,
or portion thereof, to be performed outside of the United
States then the method is considered to be performed in the
United States by virtue of the causal entity.

[0048] While the invention has been disclosed in connec-
tion with preferred embodiments shown and described in
detail, various modifications and improvements thereon will
become apparent to those skilled in the art. Accordingly, the

May 7, 2015

forgoing examples should not limit the spirit and scope of the
present invention; rather it should be understood in the broad-
est sense allowable by law.

What is claimed is:

1. An apparatus for data manipulation comprising:

a plurality of logical elements;

configurable connections between the plurality of logical

elements; and

a circular buffer controlling the configurable connections.

2. The apparatus of claim 1 wherein the plurality of logical
elements comprise one or more of switching elements, pro-
cessing elements, or storage elements.

3. The apparatus of claim 1 further comprising a plurality
of circular buffers residing on a semiconductor chip where the
plurality of circular buffers control different configurable
connections between the plurality of logical elements.

4. The apparatus of claim 3 wherein the plurality of circular
buffers have differing lengths.

5. The apparatus of claim 4 wherein the plurality of circular
buffers having differing lengths resynchronize with a zeroth
pipeline stage for each of the plurality of circular buffers.

6. The apparatus of claim 1 wherein the circular buffer is
statically scheduled.

7. The apparatus of claim 6 wherein scheduling of the
circular buffer prevents data collisions.

8. The apparatus of claim 1 wherein the configurable con-
nections comprise a switching fabric.

9. The apparatus of claim 8 wherein the switching fabric
includes fan-in and fan-out connections.

10. The apparatus of claim 1 wherein the configurable
connections are time multiplexed.

11. The apparatus of claim 1 wherein the circular buffer
dynamically changes operation of the plurality of logical
elements based on the circular buffer rotating.

12. The apparatus of claim 11 wherein the circular buffer is
programmed and instructions are pre-processed to generate
input to the circular buffer for dynamic programming.

13. The apparatus of claim 1 wherein the circular buffer
controls passing data to a quad of processing elements
through switching elements, where each of the quad of pro-
cessing elements is controlled by four other circular buffers,
where data is passed back through the switching elements
from the quad of processing elements where the switching
elements are again controlled by the circular buffer.

14. The apparatus of claim 1 wherein a column within the
circular buffer can be skipped in a cycle.

15. The apparatus of claim 14 wherein not skipping indi-
cates a valid instruction.

16. The apparatus of claim 1 wherein the plurality of logi-
cal elements includes a processing element that can be placed
in a sleep state where the sleep state is exited based on data
being valid.

17.The apparatus of claim 16 wherein the sleep state can be
entered by an instruction within the processing element.

18. The apparatus of claim 17 wherein the sleep state can
only be exited by stimulus external to the processing element
and not based on programming of the processing element.

19. The apparatus of claim 18 wherein the sleep state is
exited based on an instruction applied to a switching fabric.

20. The apparatus of claim 1 wherein the circular buffer
comprises a plurality of switch instructions for the config-
urable connections.

US 2015/0123707 Al

21. The apparatus of claim 20 wherein the circular buffer
comprises a plurality of switch instructions per cycle for the
configurable connections.

22-25. (canceled)

26. The apparatus of claim 1 wherein the configurable
connections provide three-dimensional routing.

27. (canceled)

28. The apparatus of claim 1 further comprising storage
elements coupled to the configurable connections.

29. The apparatus of claim 28 wherein the storage elements
store data while the configurable connections are busy with
other data.

30. The apparatus of claim 1 wherein the configurable
connections enable bypassing of neighboring logical ele-
ments.

31. (canceled)

32. The apparatus of claim 1 wherein the configurable
connections comprise one or more of a fan-in, a fan-out, or a
local storage.

33. The apparatus of claim 1 wherein the configurable
connections route through one or more of silicon vias, two-
dimensional connections, three-dimensional connections, or
greater-than three-dimensional connections.

May 7, 2015

34. The apparatus of claim 1 wherein communication
through the configurable connections is based on data being
valid.

35. A computer-implemented method of logic implemen-
tation comprising:

designing a switching fabric using:

a plurality of logical elements;

configurable connections between the plurality of logi-
cal elements; and

a circular buffer controlling the configurable connec-
tions.

36. A computer program product embodied in a non-tran-
sitory computer readable medium for implementation of a
logical calculation apparatus comprising:

code for designing a switching fabric using:

a plurality of logical elements;

configurable connections between the plurality of logi-
cal elements; and

a circular buffer controlling the configurable connec-
tions.

37. (canceled)

