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troller via a memory interface may be used as a command 
buffer. Commands received by the module via the command 
buffer are executed by the module. The memory controller 
may write to the command buffer out-of-order. The memory 
controller may delay or eliminate writes to the command 
buffer. Tags associated with commands are used to specify the 
order commands are executed. A status buffer in the memory 
space of the module is used to communicate whether com 
mands have been received or executed. Information received 
via the status buffer can be used as a basis for a determination 
to re-send commands to the command buffer. 
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COMMUNICATION VLAA MEMORY 
INTERFACE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

The present application claims the benefit of U.S. Provi 
sional Application Ser. No. 61/732,898, filed Dec. 3, 2012, 
and titled METHODS AND SYSTEMS FOR SUPPORTING 
FUNCTIONS ON A LEGACY MEMORY INTERFACE, 
and claims the benefit of U.S. Provisional Application Ser. 
No. 61/526,953, filed Aug. 24, 2011, and titled METHODS 
AND SYSTEMS FOR MAPPING A PERIPHERAL FUNC 
TION ONTO A LEGACY MEMORY INTERFACE, and 
claims the benefit of U.S. Provisional Application Ser. No. 
61/647,986, filed May 16, 2012, and titled METHODS AND 
SYSTEMS FOR MAPPING A PERIPHERAL FUNCTION 
ONTO ALEGACY MEMORY INTERFACE, and claims the 
benefit of U.S. Provisional Application Ser. No. 61/670,874, 
filed Jul 12, 2012, and titled METHODS AND SYSTEMS 
FOR MAPPING A PERIPHERAL FUNCTION ONTO A 
LEGACY MEMORY INTERFACE, and claims the benefit of 
U.S. Provisional Application Ser. No. 61/691,134, filed Aug. 
20, 2012, and titled METHODS AND SYSTEMS FOR 
MAPPING A PERIPHERAL FUNCTION ONTO A 
LEGACY MEMORY INTERFACE, and claims the benefit of 
International Application PCT/US 12/52000, filed Aug. 23, 
2012, and titled METHODS AND SYSTEMS FOR MAP 
PING A PERIPHERAL FUNCTION ONTO A LEGACY 
MEMORY INTERFACE, and claims the benefit of Interna 
tional Application PCT/US 12/52043, filed Aug. 23, 2012, 
and titled METHODS AND SYSTEMS FOR MAPPING A 
PERIPHERAL FUNCTION ONTO ALEGACY MEMORY 
INTERFACE, and claims the benefit of International Appli 
cation PCT/US 12/52052, filed Aug. 23, 2012, and titled 
METHODS AND SYSTEMS FOR MAPPING A PERIPH 
ERAL FUNCTION ONTO ALEGACY MEMORY INTER 
FACE, and claims the benefit of International Application 
PCT/US 12/52059, filed Aug. 23, 2012, and titled METHODS 
AND SYSTEMS FOR MAPPING A PERIPHERAL FUNC 
TION ONTO ALEGACY MEMORY INTERFACE, all nine 
of which are hereby incorporated herein by reference for all 
purposes. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram illustrating a memory architec 
ture. 

FIG. 2 illustrates a memory address range map for com 
munication via a memory interface. 

FIG. 3 illustrates an example command port and example 
command format for communication via a memory interface. 

FIG. 4 illustrates an example status port and example status 
information format for communication via a memory inter 
face. 

FIG. 5 is a flowchart illustrating a method of communicat 
ing via a memory interface. 

FIG. 6 illustrates a read-modify-write operation. 
FIG. 7 illustrates an example command communication via 

a memory interface when a read-modify-write operation is 
performed by a memory controller. 

FIG. 8 illustrates write squashing. 
FIG. 9 illustrates an example of detection of a squashed 

command write. 
FIG. 10 illustrates another example of detection of a 

squashed command write. 
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2 
FIG. 11 illustrates a method of communicating commands 

via a memory interface. 
FIG. 12 is a block diagram of a computer system. 

DETAILED DESCRIPTION OF THE 
EMBODIMENTS 

FIG. 1 is a block diagram illustrating a memory architec 
ture. In FIG. 1, computer system 100 comprises CPU/ 
memory controller subsystem 110, I/O controller 130, and 
memory modules 120. CPU/memory controller subsystem 
110 includes a CPU 112 coupled to a memory controller 114. 
One or more memory modules 120 are coupled to memory 
controller 114 in subsystem 110. Each memory module 120 
includes processor 121 and memory 122. Processor 121 may 
be part of a buffer device. Processor 121 may be or comprise 
a microprocessor, finite state machine, or other logic circuitry 
that is part of a buffer device. Memory 122 typically contains 
instructions and/or data used by the CPU 112 and/or proces 
sor 121. It should be understood that CPU 112 may include 
multiple processor cores. CPU 112 may include stacked die 
devices having one or more processors and/or memory 
stacked using, for example, though-silicon Vias. CPU 112 
may include and/or be a specialized processor Such as, for 
example, a digital signal processor, graphics processing unit 
(GPU), an array processor, storage management processor, 
data analytic processor (e.g., Hadoop distributed file system 
processor or a MapReduce processor), pattern recognition 
processor, and/or image manipulation processor (i.e., image 
processor). CPU 112 can divide up and coordinate compute 
processes and tasks among modules 120. 

Processor 121 may also be referred to as a “compute 
engine “computing engine.” “graphics processor,” “render 
ing engine.” “processing unit,” “accelerator”, “offload 
engine, and/or GPU. Processor 121 may include and/or be a 
heterogeneous processing unit that includes the functions of 
one or more of a CPU, GPU, video processor, etc. Processor 
121 may include, or be, a serial-ATA (SATA), serial attached 
SCSI (SAS), eSATA, PATA, IEEE 1394, USB (all revisions), 
SCSI Ultra, FiberChannel, Infiniband, Thunderbolt, or other 
industry standard I/O interfaces (such as PCI-Express— 
PCIe). Processor 121 may include, or be, a network processor 
unit (NPU) such as a TCP offload engine (TOE), a protocol 
translator (e.g., TCP over SATA, TCP over PCI-Express, 
accelerated SCSI interconnect, etc.), and/or a protocol packet 
translator. Processor 121 may include, or be, a fixed function 
graphics processing unit, an encryption/decryption accelera 
tor/offload engine (e.g., for implementing/accelerating SSL, 
AEC, DEC, etc.), a compressor/decompressor, a regular 
expression accelerator engine, a digital signal processor 
(DSP), a signal path processor, a Fourier transform processor, 
an inverse Fourier transform processor, and/or a media format 
encoder/decoder (e.g., JPEG, DVX, AVI, MP2, MP3, MP4, 
Blu-ray, HD-DVD, DVD, etc.). It should also be understood 
that module 120 may be coupled to a local SSD/HDD and/or 
enterprise storage type systems such as external disks, exter 
nal disk arrays, JBODs, RAID arrays, tape drives, optical 
drives, and the like. 
Memory 122 typically includes multiple memory devices 

coupled together to form a block of storage space. Memory 
122 may be, or comprise, but is not limited to, SRAM, DDR3, 
DDR4, DDR5, XDR, XDR2, GDDR3, GDDR4, GDDR5, 
LPDDR, and/or LPDDR2 and successor memory standards 
and technologies. Memory 122 may be or comprise a stack of 
devices Such as a through-silicon-via (TSV) stack and/or a 
hybrid memory cube (HMC). Further information about 
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HMC is available from the Hybrid Memory Cube Consortium 
(http://hybridmemorycube.org/). 

Each processor 121 is capable of performing various 
memory access and/or data processing functions. For the 
embodiment shown in FIG. 1, memory controller 114 is also 
coupled to an I/O controller 130 which controls the flow of 
data into and out of the system. An optional video input port 
(not shown in FIG. 1) can provide data to memory controller 
114. A display interface (not shown in FIG. 1) can provide 
data output to one or more devices (such as display devices or 
storage devices). For systems which Support video input or 
capture capability, a video input port on the memory control 
ler 114 is one way to handle the delivery of video source data. 
Another means of delivery of video input data to the system 
would include delivering the data from a peripheral module 
through the I/O controller 130 to memory controller 114. 

In the example of FIG. 1, CPU/memory controller sub 
system 110 is coupled to multiple distinct memory modules 
120. Each memory module 120 includes processor 121 and 
memory 122. As described herein, each processor 121 may be 
part of a buffer device. Processor 121 may be or comprise a 
microprocessor, finite state machine, or other logic circuitry 
that is part of a buffer device. Each processor 121 is capable 
of performing various data processing functions. Thus, the 
processor 121 on different (or the same) memory modules are 
capable of performing different processing functions simul 
taneously (i.e., parallel processing). The processors 121 on 
different (or the same) memory modules are capable of per 
forming vector parallel processing where functions are vec 
torized and divided among the processors 121. The proces 
sors 121 on different (or the same) memory modules are 
capable of performing cluster parallel processing where the 
processors 121 cooperate to work on the same problem simul 
taneously (or concurrently). Further, each processor 121 is 
capable of communicating with other processors 121 on other 
memory modules 120. 

Each processor 121 is capable of communicating with 
other processors 121 on other memory modules 120 with the 
aid of CPU 112 and/or memory controller 114. Modules 120 
and/or processors 121 may be heterogeneous. In other words, 
modules 120 and/or processors 121 may not all be identical. 
Processors 121 may include multiple processor cores that are 
not all identical. For example, processors 121 may comprise 
a mix of CPU type and GPU type processing cores. Modules 
120 and/or processors 121 may perform different functions at 
the same time. Modules 120 and/or processors 121 may be 
produced by different vendors. Modules 120 and/or proces 
sors 121 produced by different vendors may be added, sub 
tracted, and used interchangeably in a plug-and-play manner. 
Modules 120 and/or processors 121 may function in parallel 
running independent (and non-independent) copies of Soft 
ware, processes, applications, and operating systems similar 
to how virtual machines operate. 
CPU 112 can control memory controller 114 to distribute 

particular processing tasks (such as graphical processing 
tasks, Hadoop, and/or MapReduce tasks) to processors 121, 
and can perform certain processing tasks itself. These tasks 
may include data to be processed and/or instructions to be 
executed. Although three memory modules 120 are shown in 
FIG. 1, an alternate system may contain any number of 
memory modules coupled to one or more memory controllers 
114. The ability to add and remove memory modules 120 can 
provide an upgradeable and scalable memory and computing 
architecture. 
CPU 112 may communicate with processor 121 by reading 

from, and writing to, an address aperture associated with 
module 120. CPU 112 can be configured to use any cache 
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4 
policy supported by processor CPU 112 to read from, and 
write to, this address aperture (or portions thereof). However, 
it should be understood that, in an embodiment, the most 
useful cache policies may be limited to configuring the 
address aperture (or portions thereof) to be treated by CPU 
112 as uncacheable memory (UC), write combining memory 
(WC), or write back (WB). In an embodiment, these cache 
policies may be combined with the use of certain instructions 
(e.g., fence instructions, streaming load instructions, and/or 
streaming write instructions) to achieve an optimal (e.g., 
highest) communication bandwidth between CPU 112 and 
processor 121. In addition, when the address aperture (or 
portions thereof) are configured to be treated as WC or WB, at 
least a minimum burst size may be used to achieve an optimal 
(e.g., highest) communication bandwidth between CPU 112 
and processor 121. In other words, Small burst sizes (e.g., less 
than a certain, implementation dependent, number of column 
addresses per burst) may result in less than optimal commu 
nication bandwidth between CPU 112 and processor 121. 
Larger sizes (e.g., greater than a certain, implementation 
dependent, number of column addresses per burst) may 
approach (or approximate) an optimal (e.g., highest) commu 
nication bandwidth between CPU 112 and processor 121. It 
should be understood that computer system 100 may utilize a 
unified memory architecture or a non-unified memory archi 
tecture. Computer system 100 is not limited to heterogeneous 
memory. Further, it should also be understood that computer 
system 100 (and CPU 112, in particular) may utilize a cache 
or caching policies that are coherent or not coherent. 

It may also be useful to configure the address aperture (or 
portions thereof) to be UC for testing, ease of implementa 
tion, and/or when the bandwidth between CPU 112 and pro 
cessor 121 is not a relatively high priority. Configuring the 
address aperture (or portions thereof) to be WB may be most 
useful for testing purposes. Configuring the address aperture 
(or portions thereof) to be WC may, in some embodiments, 
result in the highest bandwidth between CPU 112 and pro 
cessor 121. 
The architecture of FIG. 1 allows CPU 112 to issue high 

level primitive commands to the processors 121 via memory 
controller 114. These high level primitive commands may 
include graphics commands. This can reduce the Volume or 
bandwidth of data that must be communicated between the 
memory controller 114 and memory modules 120. Thus, the 
partitioning of memory among multiple memory modules 
120 improves data throughput relative to systems in which a 
single CPU 112 and/or graphics controller performs all pro 
cessing tasks. A bandwidth reduction to/from CPU 112 can 
occur because primitive commands and data sent to memory 
modules 120 typically require significantly less data than the 
amount of data referenced when rendering the primitive. This 
is because graphics primitives are typically expressed at a 
higher level of abstraction. For example, a tessellated surface 
involving many thousands of primitives (i.e., triangles) is not 
sent through as many thousands of primitives. Instead, a 
parametric function describing the Surface is sent, thus saving 
memory bandwidth. In another example, parametric equa 
tions for vectors may be sent to save memory bandwidth. In 
this case, processors 121 can perform any type of interpola 
tions to generate primitives. Additionally, the system parti 
tioning described allows aggregate bandwidth between pro 
cessors 121 and memory 122 to be much higher than the 
bandwidth between memory controller 114 and memory 
modules 120. Thus, the effective system bandwidth can 
increase for processing tasks. 

In an embodiment, CPU 112 communicates with processor 
121 by reading from, and writing to, an address aperture 



US 9,098,209 B2 
5 

associated with module 120. This address aperture may be 
further divided into address ranges (a.k.a. ports) that are con 
figured for communication of commands, status, and data. 
The ports of the address aperture may be configured and sized 
as blocks of addresses (e.g., column addresses). 

FIG. 2 illustrates a memory address range map for com 
munication via a memory interface. In FIG.2, a main memory 
address range 201 is illustrated. This main memory address 
range 201 runs from a minimum memory address addressable 
by CPU 112 to a maximum memory address addressable by 
CPU 112. Within the main memory address range 201, a 
range of addresses (which may or may not be contiguous) is 
configured as an aperture 210. This aperture may be used for 
communicating with processor 121 via the memory interface 
between memory controller 114 and module 120. 

Aperture 210 is further divided into address ranges that are 
used as ports for communicating commands, status, and data. 
In FIG. 2, aperture 210 is divided into a command port 220, a 
read status port 230, DMA data ports 240-242. Each of com 
mand port 220, read status port 230, DMA data ports 240-242 
may each be configured to be an arbitrary size or sizes. Each 
of command port 220, read status port 230, DMA data ports 
240-242 may be read or written using DMA operations/in 
structions. In an example, each of command port 220, read 
status port 230, DMA data ports 240-242 may be configured 
to be the same size. For example, each of command port 220, 
a read status port 230, DMA data ports 240-242 may be 
configured to be N column addresses each. 

FIG. 3 illustrates an example command port and example 
command format for communication via a memory interface. 
In FIG. 3, aperture 310 is divided into a command port 320, 
read statusport 330, and DMA read/write data ports. Aperture 
310 may be an aperture used to communicate with module 
120. Commands written to an address in command port 320 
include a unique tag number field 321 and an associated 
command field that is divided into further fields. The tag 
number field 321 and associated command field may be 
referred to herein as a command-tag pair. An example format 
used to write a command-tag pair to an address in command 
port 320 is illustrated. The example command-tag pair format 
illustrated in FIG. 3 includes tag field 321, valid bit #1322, 
opcode field 323, size field 324, data field 325, address field 
326, mask field 327, valid bit #2 328, and cyclic redundancy 
code (CRC) field 329. 
Memory controller 114 may not perform writes to com 

mand port 320 of module 120 in a deterministic order. In other 
words, memory controller 114 may perform the writes of 
command-tag pairs written to command port 320 in a differ 
ent order than the instructions used to write these command 
tag pairs were executed by CPU 112. In an embodiment, tag 
field 321 can be used by processor 121 to determine an order 
to execute commands communicated via command port 320. 
CPU 112 may be instructed to assign tag field 321 values. 
These tag field 321 values may be unique across the locations 
in command port 320. These assigned tag field values of the 
command-tag pairs may be used by processor 121 and/or 
CPU 112 to determine: (a) whether a particular command-tag 
pair has been written by memory controller 114 to module 
120, and/or (2) what order to execute any received commands 
once they are written by memory controller 114 to module 
120. 

For example, considera case where memory controller 114 
writes a command-tag pair to location #1 of command port 
320 first, then another command-tag pair to location #0 sec 
ond, and then yet another command-tag pair to location #2 
third. In this case, after the write to locations #1 has been 
received, processor 121 can determine that it has not yet 
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6 
received a (valid) command-tag pair for locations #0 and #2 
because processor 121 has not received writes of command 
tag pairs with the tag values associated with tag #1 or tag #3. 

Also, after memory controller 114 has written command 
tag pairs to location #1 of command port 320 first, location #0 
second, and location #2 third, as is illustrated in FIG. 3, 
location #0 received a command-tag pair associated with tag 
#1s value, location #1 received a command-tag pair associ 
ated with tag #2's value, and location #2 received a com 
mand-tag pair associated tag #3's value regardless of the 
actual order that the writes of these command-tag pairs to 
module 120 occurred (and also regardless of the order that 
CPU 112 executed the corresponding write instructions). 
Thus, because the tag value of a command-tag pair does not 
change based on the order that the command-tag pair was 
written by memory controller 114 to module 120, processor 
121 can use the tag values to determine an order to execute the 
commands received from memory controller 114. In other 
words, processor 121 can use the tag values associated with a 
command (by the command-tag pairing) to determine an 
order that these commands are executed eventhough memory 
controller 114 (and/or CPU 112) may have written these 
commands (and their associated tag value) to their respective 
locations in command port 320 in a different order. 
The tag values can also be used by processor 121 to deter 

mine whether memory controller 114 and/or CPU 112 have 
written the same command-tag pair to module 120 more than 
once. For example, memory controller 114 may write the 
same command-tag pair to module 120 because of a caching 
policy implemented by CPU/MC subsystem 110. CPU 112 
may, in order to attempt a retry of the command in a com 
mand-tag pair that does not appear to have been executed 
and/or received by module 120, execute write instructions 
that cause memory controller 114 to write the same com 
mand-tag pair to module 120. CPU 112 may assign tag values 
to command-tag pairs that are unique. CPU 112 may assign 
tag values to command-tag pairs that are unique over a given 
set of writes (e.g., a single burst write) to command port 320. 
CPU 112 may assign tag values to command-tag pairs that are 
unique over a given set of writes that span the range of 
addresses of command port 320. 
CPU 112 may assign tag values to command-tag pairs that 

are unique over at least two sets of writes that span the range 
of addresses of command port 320. By looking for duplicate 
tag values in the command-tag pairs that memory controller 
writes to module 120 over the at least two sets of writes, 
module 120 can determine whether memory controller 114 
and/or CPU 112 has written the same command-tag pair to 
module 120 more than once. In other words, module 120 can 
ignore a command-tag pair that appears a second (or greater, 
as the case may be) time over the two (or more) sets of writes 
that are understood to have unique tag values. 

For example, consider a case where command port 320 
spans 128 column addresses. For a first set of command-tag 
pair writes (e.g., a burst write) spanning these 128 column 
addresses, CPU 112 may assign the tag values 0 to 127 one to 
each column address. For a second set of command-tag pair 
writes spanning the same 128 column addresses, CPU 112 
may assign the tag values 128 to 255 one to each column 
address. For a third set of command-tag pair writes spanning 
the same 128 column addresses, CPU 112 may assign the tag 
values 256 to 383 one to each column address. 
When processor 121 receives a repeat tag value in the range 

0-127 before it has received at least one command-tag pair 
with a tag value in the range 128-255, processor 121 should 
ignore the second (i.e., repeat) command-tag pair. When pro 
cessor 121 receives a repeat tag value in the range 0-127 after 
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it has received at least one command-tag pair with a tag value 
in the range 128-255 it indicates that CPU 112 has started 
overwriting command port 320 with a second (new) set of 
command-tag pairs. If processor 121 receives a tag value in 
the range 0-127 after it has received at least one command-tag 
pair with a tag value in the range 128-255, processor 121 can 
ignore command-tag pairs in the range 0-127. Since CPU 112 
has started overwriting command port 320 with a second set 
of command-tag pairs, processor 121 should ignore the com 
mand-tag pairs with tag values in the range 0-127 in order to 
avoid executing the same command twice. 

Likewise, when processor 121 receives a repeat tag value in 
the range 128-255 after it has received at least one command 
tag pair with a tag value in the range 256-383, this indicates 
that CPU 112 has started overwriting command port 320 with 
a third set of command-tag pairs. The tag values may be 
reused (i.e., their values "wrapped around a maximum 
value) by CPU 112. For example, CPU 112 may reuse the tag 
values 0-127 after memory controller 114 sends the com 
mand-tag pairs in the range 256-383. In other words, when 
processor 121 receives a tag value in the range 256-383 after 
it has received at least one command-tag pair with a tag value 
in the range 0-127, this indicates that CPU 112 has started 
overwriting command port 320 with the third set of com 
mand-tag pairs. 

Valid bit #1322 and valid bit #2 328 can be used by CPU 
112 and processor 121 to determine whether memory con 
troller 114 has written all of a command-tag pair to a particu 
lar location. Memory controller 114 may perform a write to a 
location of command port 320 using multiple write opera 
tions to module 120. For example, consider the case of a write 
to location #1 of command port 320. This write may be a 
result of a single write instruction executed by CPU 112. 
However, memory controller 114 may, for example, perform 
the following (in order): (1) read the contents of location #1 of 
command port 320; (2) after module 120 returns data associ 
ated with location #1 of command port 320, memory control 
ler 114 may replace only a portion of the data received from 
module 120 with new data forming a (possibly nonsensical) 
command-tag pair that is part new data and part retrieved 
data; (3) this partially new command-tag pair is then written 
to module 120; (4) at some later time, memory controller 114 
may again read the contents of location #1 of command port 
320; (5) after module 120 returns data associated with loca 
tion #1 of command port 320 (which can be part old data and 
part new data, or some arbitrary data), memory controller 114 
may replace the remaining unwritten portion of the data 
received from module 120 with the rest of the new data 
(possibly thereby forming a command-tag pair that has a 
complete new command-tag pair); and, (6) this new data 
containing the remaining unwritten portion of the data is then 
written to location #1. 

To determine whether memory controller 114 has written 
all of a command-tag pair to a particular location, CPU/MC 
subsystem 110 and module 120 may cooperate in the follow 
ing (example) manner: (a) when memory controller 114 first 
reads the contents of location #1 of command port 320 (step 
1, above), module 120 returns data associated with location 
#1 that has valid bit #1 322 and valid bit H2 328 both set to 
indicate that the data is invalid (e.g., both set to a logic “0”); 
(b) when memory controller 114 replaces only portion of the 
data received from module 120 with new data (step 2, above), 
the new data has a corresponding valid bit set to indicate that 
the data is valid (e.g., set to a logic “1”)—thus the command 
tag pair formed from part new data and part retrieved data has 
one valid bit 322 or 328 set to indicate valid data and one valid 
bit 322 or 328 set to indicate that data is invalid; (c) when the 
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8 
partially new command-tag pair entry is written to module 
120 (step 3, above), processor 121 can determine that part of 
the data is invalid from the one valid bit 322 or 328 which is 
set to indicate that at least some data is invalid (e.g., from the 
bit that is set to a logic “0”); (d) when memory controller 114 
reads the contents of location #1 of command port 320 again 
(step 4, above), processor 121 returns data associated with 
location #1 that again has both valid bit 322 and 328 set to 
indicate that at least Some data is invalid (e.g., both set to a 
logic “0”, or one set to a logic “1” and one set to a logic “0”. 
as appropriate); (e) memory controller 114 may then replace 
the remaining unwritten data portion with the rest of the new 
data thereby forming data that includes the unwritten data and 
corresponding valid bit 322 or 328 set to indicate that its 
respective part of the data is valid (step 5, above); and, (f) 
when this data is written to location #1 by memory controller 
114 (step 6, above), processor 121 can determine that the 
remaining unwritten data portion has been received from 
memory controller 114 by the state of the appropriate valid bit 
#1 322 or valid bit #2 328 in the remaining portion. In an 
embodiment, after the command of a command-tag pair is 
executed, module 120 will return data associated with loca 
tion #1 that has valid bit #1322 and valid bit #2 328 both set 
to indicate that the data is invalid (return to step 1, above). 

In FIG. 3, two valid bits 322 and 328 are illustrated. How 
ever, it should be understood that the number of valid bits 
should correspond to the number of parts that memory con 
troller 114 may split the data when using multiple write 
operations to module 120. For example, if memory controller 
114 writes 64 bytes at a time, but may perform these writes by 
using multiple writes of the new data in segments as small as 
16 bytes, then 4 valid bits should be used. Each of these four 
valid bits should be located in different 16 byte segments of 
the 64 byte write data. 

FIG. 4 illustrates an example status port and example status 
information format for communication via a memory inter 
face. In FIG. 4, aperture 410 is divided into a command port 
420, read status port 430, and DMA read/write data ports. 
Aperture 410 may be used to communicate with module 120. 
In an embodiment, each command port 420 entry is associ 
ated with a corresponding read port 430 entry. Reads made 
from an address in read status port 430 includes a unique tag 
number field 421 and an associated status field that is divided 
into further fields. This may be referred to herein as a tag 
status pair. An example format that can be used to provide 
data in response to a read from an address in status port 430 is 
illustrated. The example status entry illustrated in FIG. 4 
includes tag field 431, status field 432, size field 433, a 
reserved or unused field 434, highest continuous tag (HCT) 
field 435, first location tag (FLT) field 436, last executed tag 
(LET) field 437, highest received tag (HRT) field 438, valid 
bits field 439, time stamp field 440, and CRC field 441. 

In an embodiment, the contents of the status-tag pairs sent 
by module 120 in response to a read by memory controller 
114 can be used by CPU/MC subsystem 110 to determine the 
status of command-tag pairs written to command port 320. 
For example, when memory controller 114 reads a location in 
status port 430, the HCT field 435 returned by module 120 
can indicate the tag value where all of the preceding (e.g., 
with lower valued tags) command-tag pairs to be executed 
have been received by module 120. The LET field can indi 
cate the tag value where all of the preceding (e.g., with lower 
valued tags) commands have been executed by module 120. 
The HRT field can indicate the tag value of the most subse 
quent (e.g., highest valued tag) command-tag pair that has 
been received. 
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The contents of the status-tag pairs sent by module 120 
(and therefore received by CPU/MC subsystem 110) may 
also include, for example, a valid bits field 439 map that 
indicates the status of each command-tag pair within a range 
of tag values. Alternatively, the valid bits field 439 map can 
indicate a status of each command-tag pairin association with 
its address within command port 320. The first location tag 
(FLT) field 436 can indicate a starting point for a range of tag 
values that are associated with each bit in the valid bits field 
439. 

Each bit in valid bits field 439 can be associated with a 
command-tag pair (and therefore a tag value). Each bit can 
indicate a status associated with the respective command-tag 
pair. For example, the corresponding bit in valid bits field 439 
can be setto indicate when a command-tag pairis received for 
that tag value. This corresponding bit can be reset to indicate 
when that command has been executed. To illustrate, consider 
a status-tag pair that has an 12 bit valid bits field 439 with the 
contents 000011011110b (note: for this discussion, these bits 
are numbered 0 to 11, left to right), an HCT value of 5, a LET 
value of 3, and an HRT value of 10. This value indicates: (1) 
the tag values associated with bits #6 and #11 have not been 
received; (2) the command-tag pairs associated with bits #4, 
#5, and #7-#10 have been received; and, (3) the commands 
associated with bits #0-#3 have been executed by module 
120. 

In an embodiment, module 120 returns the most current 
values (as reflected by the current state) for highest continu 
ous tag (HCT) field 435, first location tag (FLT) field 436, last 
executed tag (LET) field 437, highest received tag (HRT) field 
438, valid bits field 439, and time stamp field 440 when 
module 120 receives a read operation from memory control 
ler 114. Module 120 returns these most current values regard 
less of the location within status port 430 memory controller 
114 reads. The time stamp field 440 received by CPU 112 can 
be used by CPU 112 to determine which of status-tag pairs 
read has the most current information. CPU 112 uses the 
timestamp field 440 to determine which of status-tag pairs 
read has the most current information because a CPU/MC 
Subsystem 110 caching policy may result in out-of-order 
reads from module 120, and/or reads being serviced by a 
cache internal to CPU/MC subsystem 110. Thus, by time 
stamping the content of data sent in response to each read 
from status port 430, CPU 112 can determine which status 
tag pair received has the most current information about the 
state of module 120. 
The status of command-tag pairs written to command port 

320 (as determined by CPU 112 from the contents of the 
status-tag pairs from module 120) can be used as a basis to 
retry the communication of commands and/or command-tag 
pairs. For example, after a threshold period of time, the con 
tents of the valid bits field 439 may indicate a particular 
command-tag pair has not been received. In response, CPU 
112 may execute write instructions that may cause memory 
controller 114 to write the same command-tag pair to module 
120. 
The status of command-tag pairs written to command port 

320 (as determined by CPU 112 from the contents of the 
status-tag pairs from module 120) can be used as a basis to 
attempt to flush command-tag pairs not yet received by mod 
ule 120 from CPU/MC subsystem 110. For example, after a 
threshold period of time, the contents of the valid bits field 
439 may indicate one or more command-tag pairs have not 
been received. In response, CPU 112 may execute write 
instructions to addresses other than command port 320 that 
may cause memory controller 114 to write the missing com 
mand-tag pair(s) to module 120. 
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10 
FIG. 5 is a flowchart illustrating a method of communicat 

ing via a memory interface. The steps illustrated in FIG. 5 
may be performed by one or more elements of computer 
system 100. A batch of packets with tag, opcode, and valid 
bits is formed (504). For example, CPU 112 may assemble a 
set of command-tag pairs. These command tag pairs may 
include tag 321, opcode 323, a valid bit #1322, and a valid bit 
#2 328. Valid bit #1322 and valid bit #2 328 may be, for 
example, placed in different bytes, words, banks, and/or 
pages such that if memory controller 114 were to perform a 
read-modify-write operation, valid bits #1322 and valid bit 
#2328 would not both be overwritten with new data during 
the partial write step of the read-modify-write operation. 

Optionally, no-operation (NOP) packets may be formed if 
a command port will not be full (504). For example, CPU 112 
may assemble in a memory a set of command-tag pairs that 
specify no operation is to be performed. These NOP packets 
can be used to pad the batch of packets formed in block 502 in 
order to have a number of command-tag pairs that correspond 
to the size of command port 320. 
The packets are written to command port addresses (506). 

For example, CPU 112 may execute instructions that write the 
packets formed in block 502 (and optionally those in block 
504, as appropriate) to the memory addresses that correspond 
to command port 320. Optionally, the method may wait for a 
period of time (508). Status port addresses are read (510). For 
example, CPU 112 may execute instructions that read the 
memory addresses that correspond to status port 430 (or 
status port 330). 
The tag status is evaluated (512). For example, CPU 112 

may execute instructions that select the status-tag pair read in 
block 510 with the latest timestamp. This status-tag pair may 
then be evaluated to determine whether all of the commands 
associated with the command-tag pairs written in block 506 
have been received (i.e., tag status passes). If the tag status 
passes, flow proceeds to block 518. If the tag status fails, flow 
proceeds to block 516 (514). 

If the tag status passes, it is determined whether there are 
more commands to be executed (518). If there are no more 
commands to be executed, flow terminates in block 520. If 
there are more commands to be executed, flow proceeds to 
block 502 to assemble another batch of packets. If the tag 
status does not pass, it is determined whether to retry one or 
more missing commands (516). If missing commands are not 
to be retried, flow proceeds to block 508. This allows more 
time for missing commands to be processed. If missing com 
mands are to be retried, flow proceeds to block 502 so the 
missing commands may be assembled into another batch of 
packets. 

FIG. 6 illustrates a read-modify-write operation. The read 
modify-write operation illustrated in FIG. 6 may be per 
formed by computer system 100. In FIG. 6, CPU 612 receives 
and executes an instruction to write the data D0 to address A1 
which resides in an address range of a command port of 
module 620. In response to this instruction, CPU 612 couples 
address A1 and data D0 to memory controller 614. Memory 
controller 614 then issues a series of commands to module 
620. The commands issued to module 620 include (in order, 
but possibly with other commands intervening): (1) a first 
read of address A1-this operation returns data to memory 
controller 614 that has two parts D1 and D2; (2) a write of 
address A1 with part D1 replaced by a corresponding part of 
data D0; (3) a second read of address A1—this operation 
returns data to memory controller 614 that has two parts D1 
and the corresponding part of data D0 already written to 
module 620; (4) a write of address A1 with part D2 replaced 
by a corresponding remaining part of data D0. 
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FIG. 7 illustrates an example command communication via 
a memory interface when a read-modify-write operation is 
performed by a memory controller. The operations illustrated 
in FIG.7 may be performed by computer system 100. In FIG. 
7, a CPU (e.g., CPU 112) receives and executes an instruction 5 
to write the data D0 710 to address A1. Data D0 710 includes 
a first valid bit 722 and a second valid bit 728. Both valid bit 
722 and valid bit 728 are set to indicate data D0 710 is valid. 

In response to the instruction to write the data D0710 to 
address A1, a memory controller (e.g., memory controller 10 
114) issues a read of address A1 to a module (e.g., module 
120). The module returns data 701 to the memory controller. 
The returned data 701 from the module includes the first valid 
bit 722 and the Second valid bit 728. In the returned data 701 
from the module, both valid bit 722 and valid bit 728 are set 15 
to indicate data 701 is invalid (e.g., both are set to a logic “0”). 
The memory controller replaces a portion of the returned data 
701 with a portion of data D0 710 to form data 702. The 
memory controller issues a write of data 702 to address A1. 
As can be seen from data 702, the portion of data D0 710 that 20 
has been combined with data 701 includes the second valid bit 
728 which is set to indicate data 702 is valid. However, the 
portion of data 701 that was not replaced with a correspond 
ing portion of data D0 710 includes the unreplaced first valid 
bit 728 which is set to indicate data 702 is invalid. Thus, when 
the module receives data 702, the module can determine data 
702 is not completely valid because at least one of the first 
valid bit 722 and the second valid bit 728 indicate data 702 is 
invalid. 
The memory controller then issues a second read of 

address A1 to the module. The module returns data 703 
(which can be but is not necessarily identical to data 702) 
to the memory controller. The returned data 703, like data 
701, from the module includes the first valid bit 722 and the 
second valid bit 728 is set to indicate data 703 is invalid. 
The memory controller replaces another portion of the 

returned data 703 with the remaining portion of data D0 710 
to form data 704. The memory controller issues a write of data 
704 to address A1. As can be seen from data 704, both por 
tions of data D0 710 have overwritten data 701. Thus, data 
704 includes both the first valid bit 722 and the second valid 
bit 728 set to indicate data 704 is valid. Thus, when the 
module receives data 704, the module can determine that the 
portion of data 704 associated with valid bit 722 is valid 
because the first valid bit 722 indicates the portion of data 704 
associated with valid bit 722 is valid. The Second valid bit 728 
may indicate that data 704 is invalid. However, since data 702 
indicated the portion of data 704 associated with valid bit 728 
was valid, the module can construct a whole valid data block 
from the two valid portions from data 702 and data 704. 

FIG. 8 illustrates write squashing. The operations illus 
trated in FIG.8 may be performed by computer system 100. 
In FIG. 8, CPU 812 receives and executes an instruction to 
write the data D0 to address A1 which resides in module 820. 
CPU812 also receives and executes an instruction to write the 
data D1 to address A1. CPU812 also receives and executes an 
instruction to write the data D2 to address A1. CPU812 also 
receives and executes an instruction to write the data D3 to 
address A1. The collective response by CPU812 and memory 
controller 814 to these four instructions is, however, that only 
a single write command is issued to module 820 (e.g., a write 
of D3 to address A1). Thus, even though CPU 812 executed 
four write instructions which each wrote different data, mod 
ule 820 only receives one write command. In other words, the 
writes of data D0, D1, and D2 have been “squashed' and 
module 820 is unaware that CPU812 executed these writes to 
A1—even though A1 is in module 820's address space. 
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FIG. 9 illustrates an example detection of a squashed com 

mand write. The operations illustrated in FIG. 9 may be 
performed by computer system 100. In FIG. 9, a CPU (e.g., 
CPU 112) receives and executes an instruction to read data 
910 from an address in a status port (e.g., status port 430) of 
a module (e.g., module 120). In response, a memory control 
ler (e.g., memory controller 114) issues a read of a location in 
the status port to the module. The module returns data 901 to 
the memory controller. The returned data 901 includes a valid 
bit associated with a first tag (tag #1 valid bit) and a valid bit 
associated with a second tag (tag #2 valid bit). The returned 
data 901 received by the CPU from the memory controller as 
data 910. Data 901 and data 910 have both tag #1 valid bit and 
tag #2 valid bit set to indicate that both tag #1 and tag #2 have 
not been received (or executed). 
The CPU receives and executes an instruction to write data 

D1911 to address A1. Address A1 is in a command port of the 
module. Data D1 911 includes a tag field with a tag value 
associated with tag #1. The rest of data D1 911 may be 
command fields such that data D1911 comprises a command 
tag pair, described herein. The CPU also receives and 
executes an instruction to write data D2912 to address A1. 
Data D2912 includes a tag field with a tag value associated 
with tag #2. The rest of data D2912 may be command fields 
Such that data D2 912 comprises a command-tag pair, 
described herein. 

In response to the instructions to write data D1 911 to 
address A1, and to write data D2 912 to address A1, the 
memory controller issues a write of data 902 to the module. 
Data 902 corresponds to data D2912. Accordingly, the mod 
ule receives the command-tag pair associated with tag #2. 
However, in FIG. 9, the module does not receive the com 
mand-tag pair associated with tag #1. 
The CPU receives and executes an instruction to read data 

913 from an address in the status port of the module. In 
response, the memory controller issues a read of a location in 
the status port to the module. The module returns data 903 to 
the memory controller. Because the module has received a 
command-tag pair associated with tag #2, the module sets the 
tag #2 valid bit in data 903 to indicate that tag #2 has been 
received. Because the module has not received a command 
tag pair associated with tag #1, the module sets the tag #1 
valid bit in data 903 to indicate that tag #1 has not been 
received. 
The returned data 903 is received by the CPU from the 

memory controller as data 913. Data 913 has tag #1 valid bit 
set to indicate that tag #1 has not been received and tag #2 
valid bit set to indicate that tag #2 has been received. Thus, 
when the CPU receives data 913, the CPU can determine that 
data 911 (and therefore the command-tag pair associated with 
tag #1) has not been received by the module. In response to 
determining that the command-tag pair associated with tag #1 
has not been received by the module, the CPU may decide to 
retry writing data 911 to the module. This retry write may be 
to a different address than A1. 

FIG.10 illustrates another example detection of a squashed 
command write. The operations illustrated in FIG. 10 may be 
performed by computer system 100. In FIG. 10, a CPU (e.g., 
CPU 112) receives and executes an instruction to read data 
1010 from an address in a status port (e.g., status port 430) of 
a module (e.g., module 120). In response, a memory control 
ler (e.g., memory controller 114) issues a read of a location in 
the status port to the module. The module returns data 1001 to 
the memory controller. The returned data 1001 includes a 
status field, a last executed tag field, and a last received tag 
field. The returned data 1001 received by the CPU from the 
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memory controller as data 1010. Data 1001 and data 1010 
have the status field set to indicate that there is not an error. 

The CPU receives and executes an instruction to write data 
D1 1011 to address A1. Address A1 is in a command port of 
the module. Data D1 1011 includes a tag field with a tag value 
associated with tag #1. The rest of data D1 1011 may be 
command fields such that data D1 1011 comprises a com 
mand-tag pair, described herein. The CPU also receives and 
executes an instruction to write data D2 1012 to address A1. 
Data D2 1012 includes a tag field with a tag value associated 
with tag #2. The rest of data D2 1012 may be command fields 
Such that data D2 1012 comprises a command-tag pair, 
described herein. The CPU also receives and executes an 
instruction to write data D31013 to address A1. Data D31013 
includes a tag field with a tag value associated with tag #3. 
The rest of data D3 1013 may be command fields such that 
data D3 1013 comprises a command-tag pair, described 
herein. 

In response to the instructions to write data D1 1011 to 
address A1, to write data D2 1012 to address A1, and to write 
data D3 1013 to address A1, the memory controller issues a 
write of data 1002 to the module and a write of data 1003 to 
the module. Data 1002 corresponds to data D1 1011. Data 
1003 corresponds to data D3 1013. Accordingly, the module 
receives the command-tag pair associated with tag #1 and the 
command-tag pair associated with tag #3. However, in FIG. 
10, the module does not receive the command-tag pair asso 
ciated with tag #2. 
The module may execute the command-tag pair associated 

with tag #1. The CPU receives and executes an instruction to 
read data 1014 from an address in the status port of the 
module. In response, the memory controller issues a read of a 
location in the status port to the module. The module returns 
data 1004 to the memory controller. 

If the module has not yet executed the command-tag pair 
associated with tag #1, because the module has received a 
command-tag pair associated with tag #3 thereby overwriting 
tag #1, the module sets the status field to indicate an “over 
flow error to indicate that tag #1 was overwritten before it 
was executed. The last received tag field can be set to indicate 
tag #3 was received. 

If the module has executed the command-tag pair associ 
ated with tag #1, because the module received tag #3 without 
first receiving tag #2, the module sets the status field to indi 
cate an “out-of-order error occurred as a result of the write of 
tag #2 being squashed. The last executed tag field can be setto 
indicate that tag #1 was executed. 

The returned data 1004 is received by the CPU from the 
memory controller as data 1014. Data 1014 has the status 
field, last received tag, and last executed tag fields set as 
appropriate. Thus, when the CPU receives data 1014, the 
CPU can determine whether data 1012 (and therefore the 
command-tag pair associated with tag #2) has been received 
by the module. The CPU can also determine whether data 
1011 (and therefore the command-tag pair associated with tag 
#1) has been received and/or executed by the module. In 
response to determining that the command-tag pair associ 
ated with tag #2 has not been received by the module, the CPU 
may decide to retry writing data 1012 to the module. This 
retry write may be to a different address than A1. 

FIG. 11 illustrates a method of communicating commands 
via a memory interface. The steps illustrated in FIG. 11 may 
be performed by one or more elements of computer system 
100. A first write transaction addressed to a first location in an 
instruction queue in a memory space of a module is received 
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14 
(1102). For example, module 120 may receive, from memory 
controller 114, a first write transaction directed to location 0 
(Zero) in command port 320. 

First data corresponding to the first write transaction that 
includes a first instruction to be executed by the module and 
a first reference tag is received (1104). For example, module 
120 may receive a command-tag pair having a first (e.g., tag 
#1) tag field 321 value. The opcode field 323 may specify an 
instruction (or command) to be executed by module 120. 
A second write transaction addressed to a second location 

in the instruction queue in the memory space of the module is 
received (1106). For example, module 120 may receive, from 
memory controller 114, a second write transaction directed to 
location 1 (one) in command port 320. 

Second data corresponding to the second write transaction 
that includes a second instruction to be executed by the mod 
ule and a second reference tag is received (1108). For 
example, module 120 may receive a command-tag pair hav 
inga second (e.g., tag #2) tag field 321 value. The opcode field 
323 of this second command-tag pair may specify an instruc 
tion (or command) to be executed by module 120. 
The first reference tag may include first instruction order 

bits and the second reference tag may include second instruc 
tion order bits. For example, certain bits of tag field 321 may 
specify the order that the first instruction and the second 
instruction are to be executed. Bits of tag field 321 may be 
used for other purposes—such as ensuring that tag values are 
unique, or have specified uniqueness over selected address 
ranges. 
The first reference tag may be associated with a first write 

completion indicator and a second write completion indica 
tor. For example, the first reference tag may be associated 
with valid bit #1 322 and valid bit #2 328. The first write 
completion indicator may communicate that a first portion of 
the first data has been received by the module. The second 
write completion indicator may communicate that a second 
portion of the first data has been received by the module. 
The module may also receive, from the memory controller, 

a first read transaction addressed to a first location in status 
area in the memory space of the module. For example, mod 
ule 120 may receive a read transaction addressed to a location 
in status port 430. In response to the first read transaction, the 
module may send third data that includes an indicator of a 
status of the first write transaction. This indicator of status 
may indicate whether the first transaction has been received 
by the module. This indicator of status may indicate whether 
a command in the first transaction has been executed by the 
module. 
The devices, circuits, modules, CPUs, controllers, proces 

sors, memory, and systems described above may be imple 
mented in computer systems, or include components that are 
stored by computer systems. The systems described above 
may also contain one or more components that can be stored 
on a computer readable medium. Devices, circuits, modules, 
CPUs, controllers, processors, memory, and systems 
described herein may be implemented using computer-aided 
design tools available in the art, and embodied by computer 
readable files containing software descriptions of Such cir 
cuits. This includes, but is not limited to one or more elements 
of computer system 100, CPU 112, memory controller 114, 
and modules 120, and their components. These software 
descriptions may be: behavioral, register transfer, logic com 
ponent, transistor and layout geometry-level descriptions. 
Moreover, the Software descriptions may be stored on Storage 
media or communicated by carrier waves. 

Data formats in which such descriptions may be imple 
mented include, but are not limited to: formats Supporting 
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behavioral languages like C, formats Supporting register 
transfer level (RTL) languages like Verilog and VHDL, for 
mats Supporting geometry description languages (such as 
GDSII, GDSIII, GDSIV. CIF, and MEBES), and other suit 
able formats and languages. Moreover, data transfers of Such 
files on machine-readable media may be done electronically 
over the diverse media on the Internet or, for example, via 
email. Note that physical files may be implemented on 
machine-readable media Such as: 4 mm magnetic tape, 8 mm 
magnetic tape, 3/2 inch floppy media, CDs, DVDs, and so on. 

FIG. 12 illustrates a block diagram of a computer system. 
Computer system 1200 includes communication interface 
1220, processing system 1230, storage system 1240, and user 
interface 1260. Processing system 1230 is operatively 
coupled to storage system 1240. Storage system 1240 stores 
software 1250 and data 1270. Computer system 1200 may 
include memory system 100. Processing system 1230 is 
operatively coupled to communication interface 1220 and 
user interface 1260. Computer system 1200 may comprise a 
programmed general-purpose computer. Computer system 
1200 may include a microprocessor. Computer system 1200 
may comprise programmable or special purpose circuitry. 
Computer system 1200 may be distributed among multiple 
devices, processors, storage, and/or interfaces that together 
comprise elements 1220-1270. 

Communication interface 1220 may comprise a network 
interface, modem, port, bus, link, transceiver, or other com 
munication device. Communication interface 1220 may be 
distributed among multiple communication devices. Process 
ing system 1230 may comprise a microprocessor, microcon 
troller, logic circuit, or other processing device. Processing 
system 1230 may be distributed among multiple processing 
devices. User interface 1260 may comprise a keyboard, 
mouse, Voice recognition interface, microphone and speak 
ers, graphical display, touch screen, or other type of user 
interface device. User interface 1260 may be distributed 
among multiple interface devices. Storage system 1240 may 
comprise a disk, tape, integrated circuit, RAM, ROM, 
EEPROM, flash memory, network storage, server, or other 
memory function. Storage system 1240 may include com 
puter readable medium. Storage system 1240 may be distrib 
uted among multiple memory devices. 

Processing system 1230 retrieves and executes software 
1250 from storage system 1240. Processing system 1230 may 
retrieve and store data 1270. Processing system 1230 may 
also retrieve and store data via communication interface 
1220. Processing system 1230 may create or modify software 
1250 or data 1270 to achieve a tangible result. Processing 
system 1230 may control communication interface 1220 or 
user interface 1260 to achieve a tangible result. Processing 
system 1230 may retrieve and execute remotely stored soft 
ware via communication interface 1220. 

Software 1250 and remotely stored software may comprise 
an operating system, utilities, drivers, networking Software, 
and other Software typically executed by a computer system. 
Software 1250 may comprise an application program, applet, 
firmware, or other form of machine-readable processing 
instructions typically executed by a computer system. When 
executed by processing system 1230, software 1250 or 
remotely stored software may direct computer system 1200 to 
operate. 
The foregoing description of the invention has been pre 

sented for purposes of illustration and description. It is not 
intended to be exhaustive or to limit the invention to the 
precise form disclosed, and other modifications and varia 
tions may be possible in light of the above teachings. The 
embodiment was chosen and described in order to best 
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16 
explain the principles of the invention and its practical appli 
cation to thereby enable others skilled in the art to best utilize 
the invention in various embodiments and various modifica 
tions as are Suited to the particular use contemplated. It is 
intended that the appended claims be construed to include 
other alternative embodiments of the invention except insofar 
as limited by the prior art. 
What is claimed is: 
1. A module, comprising: 
a memory interface configured to interface with a memory 

controller, the memory interface including a memory 
data interface and a memory command/address inter 
face; and, 

the module to execute instructions received via the 
memory data interface from the memory controller, the 
instructions to be addressed to a memory space of the 
module that includes an instruction queue, the instruc 
tion queue comprising a plurality of column addresses, 

wherein the instructions received via the memory data 
interface include command tag pairs, each command tag 
pair including a tag value corresponding to an instruc 
tion order bit and a command associated with the 
instruction order bit, 

wherein the instruction order bits determine a relative order 
of the instructions and the execution of instructions are 
reordered using the instruction order bits. 

2. The module of claim 1, wherein the memory space 
further includes a status register space, a plurality of status 
register space entries each corresponding to a respective entry 
in the instruction queue. 

3. The module of claim 2, wherein each of the status reg 
ister space entries, when read by the memory controller, 
include an indicator of a status of the corresponding entry in 
the instruction queue. 

4. The module of claim 3, wherein the indicator of the 
status of an entry in the instruction queue, as read by the 
memory controller, indicates whether the corresponding 
entry in the instruction queue has been executed by the mod 
ule. 

5. The module of claim 3, wherein the indicator of the 
status of an entry in the instruction queue, as read by the 
memory controller, indicates whether the corresponding 
entry in the instruction queue has been received by the mod 
ule. 

6. The module of claim 1, wherein the instruction queue is 
managed as a circular buffer. 

7. A method of operating a module, comprising: 
receiving from a memory controller, via a memory com 

mand/address interface, a first write transaction 
addressed to a first location in an instruction queue in a 
memory space of the module, the instruction queue com 
prising a plurality of column addresses; 

receiving, via a memory data interface, and by the module, 
first data corresponding to the first write transaction, the 
first data including a first instruction to be executed by 
the module and a first reference tag: 

receiving from the memory controller, via the memory 
interface, a second write transaction addressed to a sec 
ond location in the instruction queue in the memory 
space of the module: 

receiving, via the memory data interface, and by the mod 
ule, second data corresponding to the second write trans 
action, the second data including a second instruction to 
be executed by the module and a second reference tag: 

wherein the first reference tag includes first instruction 
order bits and the second reference tag includes second 
instruction order bits, the values of the first and second 
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instruction order bits determining a relative order the a data interface to receive a first plurality of data transfers 
first instruction and the second instruction are to be respectively corresponding to the first plurality of write 
executed by the module; and commands from the memory controller, the first plural 

reordering the execution of the first and second instructions ity of data transfers each indicating a respective com 
using the first and second instruction order bits. 5 

8. The method of claim 7, wherein the first reference tag is 
associated with a first write completion indicator and a sec 
ond write completion indicator, the first write completion 

mand to be executed by the module, 
wherein the first plurality of data transfers received via the 

data interface include command tag pairs, each com 
indicator communicating when a first portion of said first data mand tag pair including a tag Value corresponding to an 
has been received by the module and the second write 10 instruction order bit and a command associated with the 
completion indicator communicating when a second portion instruction order bit, 
of said first data has been received by the module. wherein the instruction order bits determine a relative order 

9. The method of claim 7, further comprising: of the commands and the execution of the commands are 
receiving from the memory controller, via the memory reordered using the instruction order bits. 

interface, a first read transaction addressed to a first 
location in status area in the memory space of the mod- 1 
ule; and, 

in response to the first read transaction, sending, via the 
memory data interface, third data that includes an indi 

14. The module of claim 13, wherein the command/address 
interface is to receive a first plurality of read commands and 
first plurality of read addresses from the memory controller, 
the first plurality of read addresses to be in a status port 

cator of a status of the first write transaction. address space of the module; 
10. The method of claim 9, wherein the indicator of the 20 and wherein the data interface is to send a second plurality 

status of the first write transaction includes an indicator of of data transfers respectively corresponding to the first 
whether the first write transaction has been received by the plurality of read commands, the second plurality of data 
module. transfers each including status indicators that respec 

11. The method of claim 9, wherein the indicator of the 
status of the first write transaction includes an indicator of as 
whether the first instruction has been successfully executed 
by the module. 

12. The method of claim 9, wherein the first reference tag 
includes first ordering bits and the third data includes second 
ordering bits that have the same value as the first ordering bits. 

13. A module, comprising: 
a command/address interface to receive a first plurality of 

write commands and first plurality of write addresses 
from a memory controller, the first plurality of write 
addresses to be in a command port address space of the 
module; and, k . . . . 

tively indicate a status of the first plurality of write 
commands. 

15. The module of claim 14, wherein the status indicators 
signal whether a corresponding one of the first plurality of 
write commands has been received by the module. 

16. The module of claim 14, wherein the status indicators 
signal whether a corresponding one of the first plurality of 
write commands has been executed by the module. 

17. The module of claim 14, wherein the second plurality 
of data transfers each include a plurality of different valued 
Status tags. 


