
(12) United States Patent
Gopalakrishnan et al.

US009098209B2

(10) Patent No.: US 9,098,209 B2
(45) Date of Patent: Aug. 4, 2015

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

COMMUNICATION VIAA MEMORY
INTERFACE

Applicant: Rambus Inc., Sunnyvale, CA (US)

Inventors: Liji Gopalakrishnan, Sunnyvale, CA
(US); Vlad Fruchter, Los Altos, CA
(US); Lawrence Lai, San Jose, CA
(US); Pradeep Batra, Santa Clara, CA
(US); Steven C. Woo, Saratoga, CA
(US); Wayne Frederick Ellis, Campbell,
CA (US)

Assignee: Rambus Inc., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 88 days.

Appl. No.: 14/064,167

Filed: Oct. 27, 2013

Prior Publication Data

US 2014/0082234 A1 Mar. 20, 2014

Related U.S. Application Data
Continuation-in-part Of application No.
PCT/US2012/052000, filed on Aug. 23, 2012, and a
continuation-in-part of application No.
PCT/US2012/052043, filed on Aug. 23, 2012, and a

(Continued)

Int. C.
G06F 3/06 (2006.01)
G06F 12/06 (2006.01)

(Continued)
U.S. C.
CPC G06F 3/0659 (2013.01); G06F 3/061

(2013.01); G06F 3/0671 (2013.01); G06F
12/06 (2013.01);

(Continued)

310-a

(58) Field of Classification Search
CPC G06F 13/1626; G06F 13/1621
USPC .. 710/6, 58,59
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,237,673 A
5,269,013 A

8, 1993 Orbits et al.
12/1993 Abramson et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP O492938 B1 11, 1995
EP 0664030 B1 5, 1999

(Continued)
OTHER PUBLICATIONS

Advanced Micro Devices, “Programming Guide: AMD Accelerated
Parallel Processing, OpenCL.” rev1.3c, Jun. 2011. 210 pages (Sentin
3 parts).

(Continued)

Primary Examiner — Ernest Unelus
(74) Attorney, Agent, or Firm — The Neudeck Law Firm,
LLC

(57) ABSTRACT

A memory space of a module connected to a memory con
troller via a memory interface may be used as a command
buffer. Commands received by the module via the command
buffer are executed by the module. The memory controller
may write to the command buffer out-of-order. The memory
controller may delay or eliminate writes to the command
buffer. Tags associated with commands are used to specify the
order commands are executed. A status buffer in the memory
space of the module is used to communicate whether com
mands have been received or executed. Information received
via the status buffer can be used as a basis for a determination
to re-send commands to the command buffer.

17 Claims, 12 Drawing Sheets

320- COMMAND PORT
330 REA STATUS
- PORT

COMMAND i2

COMMAND 3

UrStoA
AACRix

d

4) TAGN COMMAN in

32 32 323 324 325 328 327 328 329

US 9,098,209 B2
Page 2

Related U.S. Application Data
continuation-in-part of application No. PCT/US2012/
052052, filed on Aug. 23, 2012, and a continuation-in
part of application No. PCT/US2012/052059, filed on
Aug. 23, 2012.

(60) Provisional application No. 61/732,898, filed on Dec.
3, 2012, provisional application No. 61/788,196, filed
on Mar. 15, 2013, provisional application No. 61/526,
953, filed on Aug. 24, 2011, provisional application
No. 61/647,986, filed on May 16, 2012, provisional
application No. 61/670,874, filed on Jul. 12, 2012,
provisional application No. 61/691,134, filed on Aug.
20, 2012.

(51) Int. Cl.
GO6F 3/16 (2006.01)
GIFC 7/10 (2006.01)

(52) U.S. Cl.
CPC G06F 13/16 (2013.01); G06F 13/1621

(2013.01); G06F 13/1626 (2013.01); GI IC
7/10 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6.216,178 B1 * 4/2001 Stracovsky et al. T10.6
6,286,092 B1 9, 2001 Frank et al.
6,453,370 B1* 9/2002 Stracovsky et al. T10.36
6,510,474 B1* 1/2003 Stracovsky et al. 71 Of 58
6,526,484 B1* 2/2003 Stacovsky et al. T11,158
6,542.971 B1 4/2003 Reed
6,864,896 B2 3/2005 Perego
6,970,891 B1 1 1/2005 Deo et al.
7,024,518 B2 4/2006 Halbert et al.
7,032,158 B2 4/2006 Alvarez, II et al.
7,107,412 B2 9, 2006 Klein et al.
7,162.627 B2 1, 2007 Chen
7,171,494 B2 1/2007 Karamanolis et al.
7,287,103 B2 10/2007 Ganfield et al.
7,383,416 B2 6/2008 Oeschay et al.
7,424,552 B2 9, 2008 Burton
7,480,830 B2 1/2009 Cowell et al.
7,490,211 B2 2/2009 Schnepper
7,506,110 B2 3/2009 Neils et al.
7,525,547 B1 4/2009 Diard
7,526,634 B1 4/2009 Duluk, Jr. et al.
7,539,812 B2 5, 2009 Tetrick
7.623,134 B1 1 1/2009 Danilak
7,633,505 B1 12/2009 Kelleher
7,680,968 B2 3/2010 Burton
7,689,734 B2 3/2010 Bellows
7,694,093 B2 4/2010 Shaw et al.
7,796.414 B2 9, 2010 Hofstra
7,870,323 B2 1/2011 Matsumoto et al.
7,941,591 B2 5, 2011 Aviles
7,970,956 B2 6/2011 Asaro et al.
7.996,602 B1 8, 2011 Warnes et al.
8,006,057 B2 8/2011 LaBerge
8,054,676 B2 11/2011 Tanguay et al.
8, 131,913 B2 3/2012 Pyeon
8,364,867 B2 1/2013 Karamcheti et al.

2002fOO59492 A1 5, 2002 Sabotta et al.
2003/O154370 A1 8, 2003 Lai et al.
2004/0034753 A1 2/2004 Jeddeloh T11 163
2004.0049624 A1 3/2004 Salmonsen
2004/0230718 A1 11, 2004 Polzin et al.
2004/0260864 A1 12/2004 Lee et al.

2005/0223303 A1
2006/0200723 A1
2006/0248253 A1
2006/0267990 A1
2007, OO64500 A1
2007/0079049 A1
2007, 0121389 A1
2007/O13277O A1
2007/O1956.13 A1
2007/0283337 A1
2007/0283358 A1
2008.OO7774.0 A1
2008, OO82488 A1
2008/O126690 A1
2008. O155.187 A1
2008, O256416 A1
2009, OO37657 A1
2009. O157989 A1
2009,0276559 A1
2009/0319719 A1
2009/0327596 A1
2010.0017650 A1
2010, 0211728 A1
2010, 0217.924 A1
2011, 0023040 A1
2011/OO35539 A1
2011/OO35575 A1
2011 OO82971 A1
2011/0099244 A1
2011 0145493 A1
2011 O15391.6 A1
2011/O153925 A1
2011/0239043 A1
2012/0102292 A1
2012/0204079 A1
2013,0042056 A1
2013. O117503 A1
2014/0223262 A1

10/2005 Zimmerman et al.
9, 2006 Carnevale et al.

1 1/2006 Wang
11/2006 Rogers et al.
3/2007 HarmSZeet al.
4/2007 LaBerge
5, 2007 Wu et al.
6/2007 Stefanidis et al.
8/2007 Rajan et al.

12/2007 Kasahara et al.
12/2007 Kasahara et al.
3/2008 Clark et al.
4/2008 Terrell
5/2008 Rajan et al.
6/2008 Skerl
10/2008 Ozawa
2/2009 Bresniker
6/2009 Karamcheti et al.

1 1/2009 Allen, Jr. et al.
12/2009 Perego et al.
12/2009 Christenson et al.
1/2010 Chin et al.
8/2010 Naujokat
8, 2010 Panabaker et al.
1/2011 Hendry et al.
2/2011 Honda
2/2011 Kwon
4/2011 Berke
4/2011 Yang et al.
6, 2011 Ahn et al.
6/2011 Chinnaswamy et al.
6/2011 Bains et al.
9, 2011 Vedder et al.
4/2012 Rajan et al.
8/2012 Takefnman et al.
2/2013 Shats et al.
5/2013 Nellans et al.
8/2014 Takefnman et al.

FOREIGN PATENT DOCUMENTS

EP 1652O58 5, 2011
WO WO-2004-092904 A2 10, 2004
WO WO-2006-122932 11, 2006

OTHER PUBLICATIONS

International Search Report and Written Opinion dated Dec. 20, 2012
in International Application No. PCT/US2012/052043. 11 pages.
International Search Report and Written Opinion dated Dec. 26, 2012
in International Application No. PCT/US2012/052000. 11 pages.
International Search Report and Written Opinion dated Dec. 27, 2012
in International Application No. PCT/US2012/052059. 12 pages.
International Search Report and Written Opinion dated Jan. 2, 2013
in International Application No. PCT/US2012/052052.8 pages.
PCI-SIG Engineering Change Notice, “Resizable BAR Capability.”
Jan. 22, 2008, Updated and approved by PWG Apr. 24, 2008, PCI
Express Base Specification version 2.0.9 pages.
Stich, Timo, “GPU Computing on Clusters.” Nvidia, Slide Show
Presentation, GPU Technology Summit Israel, May 30, 2011. 28
pageS.
Stuartet al., “Multi-GPU MapReduce on GPU Clusters.” 2011 IEEE
International Parallel & Distributed Processing Symposium, pp.
1068-1079, Oct. 11, 2009. 12 pages.
Wikipedia entry for “Serial Presence Detect” downloaded Jun. 6.
2012 from http://en.wikipedia.org/wiki/Serial presence detect. 20
pageS.
Wikipedia entry for “Video BIOS” downloaded Jun. 6, 2012 from
http://en.wikipedia.org/wiki/Video BIOS. 1 page.

* cited by examiner

US 9,098,209 B2 Sheet 2 of 12 Aug. 4, 2015 U.S. Patent

HOVE SESSE? HOJCIV/ NWT TOO N

OZZ

0

0 || Z.

US 9,098,209 B2 U.S. Patent

k

US 9,098,209 B2 U.S. Patent

U.S. Patent Aug. 4, 2015 Sheet 5 of 12 US 9,098,209 B2

FORM BATCH OF PACKETS WITH
TAG, OPCODE, AND VALID BITS

502

FORMNOPPACKETS IF COMMAND
PORT WILL NOT BE FULL

504

WRITE PACKETS TO COMMAND
PORT ADDRESSES

506

READ STATUS PORT ADDRESSES
510

EVALUATE TAG STATUS
512

TAG STATUS PASS2
514

RETRY MISSING
YES COMMANDS? COMMANDS?

516

FIGURE 5

U.S. Patent Aug. 4, 2015 Sheet 6 of 12 US 9,098,209 B2

CPU INSTRUCTIONS

1GH (write A1: D0

MEMORY
CONTROLLER

614

MEMORY CONTROLLER
COMMANDS DATA

READ A1 %522%51%
N. WRITE A1 %52%%D0

READ A1 %52254DO
MODULE WRITE A1 ||||||||IDO

620

FIGURE 6

US 9,098,209 B2 Sheet 7 of 12 Aug. 4, 2015 U.S. Patent

Z97/ZZZ

U.S. Patent Aug. 4, 2015 Sheet 8 of 12 US 9,098,209 B2

CPU INSTRUCTIONS

WRITE A1 DO

N WRITE A1 D1
WRITE A1 D2

WRITE A1 D3

MEMORY
CONTROLLER

814

MEMORY CONTROLLER
COMMANDS DATA

XXXXXXXXXXXXXXXXXXXXXXXX:
-D WRITE A1 &D3.x: xxxxxxxx xxxxxxxx XXXXXXXXXXX

MODULE
820

FIGURE 8

[Sn LVLS) GIVENH

-

US 9,098,209 B2 U.S. Patent

US 9,098,209 B2

| || 0 ||

U.S. Patent

U.S. Patent Aug. 4, 2015 Sheet 11 of 12 US 9,098,209 B2

RECEIVE A FIRST WRITE TRANSACTION ADDRESSED TO
A FIRST LOCATION IN AN INSTRUCTION OUEUE INA

MEMORY SPACE OF A MODULE
1102

RECEIVE FIRST DATA CORRESPONDING TO THE FIRST
WRITE TRANSACTION, THE FIRST DATA INCLUDING A

FIRST INSTRUCTION TO BE EXECUTED BY THE MODULE
AND A FIRST REFERENCE TAG

1104

RECEIVE A SECOND WRITE TRANSACTION ADDRESSED
TO ASECOND LOCATION IN THE INSTRUCTION OUEUE

IN THE MEMORY SPACE OF THE MODULE
1106

RECEIVE SECOND DATA CORRESPONDING TO THE
SECOND WRITE TRANSACTION, THE SECOND DATA

INCLUDING ASECOND INSTRUCTION TO BE EXECUTED
BY THE MODULE AND A SECOND REFERENCE TAG

1108

FIGURE 11

US 9,098,209 B2 Sheet 12 of 12 Aug. 4, 2015 U.S. Patent

09Z|. WELSÅS €)NISSE OORHCH

US 9,098,209 B2
1.

COMMUNICATION VLAA MEMORY
INTERFACE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi
sional Application Ser. No. 61/732,898, filed Dec. 3, 2012,
and titled METHODS AND SYSTEMS FOR SUPPORTING
FUNCTIONS ON A LEGACY MEMORY INTERFACE,
and claims the benefit of U.S. Provisional Application Ser.
No. 61/526,953, filed Aug. 24, 2011, and titled METHODS
AND SYSTEMS FOR MAPPING A PERIPHERAL FUNC
TION ONTO A LEGACY MEMORY INTERFACE, and
claims the benefit of U.S. Provisional Application Ser. No.
61/647,986, filed May 16, 2012, and titled METHODS AND
SYSTEMS FOR MAPPING A PERIPHERAL FUNCTION
ONTO ALEGACY MEMORY INTERFACE, and claims the
benefit of U.S. Provisional Application Ser. No. 61/670,874,
filed Jul 12, 2012, and titled METHODS AND SYSTEMS
FOR MAPPING A PERIPHERAL FUNCTION ONTO A
LEGACY MEMORY INTERFACE, and claims the benefit of
U.S. Provisional Application Ser. No. 61/691,134, filed Aug.
20, 2012, and titled METHODS AND SYSTEMS FOR
MAPPING A PERIPHERAL FUNCTION ONTO A
LEGACY MEMORY INTERFACE, and claims the benefit of
International Application PCT/US 12/52000, filed Aug. 23,
2012, and titled METHODS AND SYSTEMS FOR MAP
PING A PERIPHERAL FUNCTION ONTO A LEGACY
MEMORY INTERFACE, and claims the benefit of Interna
tional Application PCT/US 12/52043, filed Aug. 23, 2012,
and titled METHODS AND SYSTEMS FOR MAPPING A
PERIPHERAL FUNCTION ONTO ALEGACY MEMORY
INTERFACE, and claims the benefit of International Appli
cation PCT/US 12/52052, filed Aug. 23, 2012, and titled
METHODS AND SYSTEMS FOR MAPPING A PERIPH
ERAL FUNCTION ONTO ALEGACY MEMORY INTER
FACE, and claims the benefit of International Application
PCT/US 12/52059, filed Aug. 23, 2012, and titled METHODS
AND SYSTEMS FOR MAPPING A PERIPHERAL FUNC
TION ONTO ALEGACY MEMORY INTERFACE, all nine
of which are hereby incorporated herein by reference for all
purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a memory architec
ture.

FIG. 2 illustrates a memory address range map for com
munication via a memory interface.

FIG. 3 illustrates an example command port and example
command format for communication via a memory interface.

FIG. 4 illustrates an example status port and example status
information format for communication via a memory inter
face.

FIG. 5 is a flowchart illustrating a method of communicat
ing via a memory interface.

FIG. 6 illustrates a read-modify-write operation.
FIG. 7 illustrates an example command communication via

a memory interface when a read-modify-write operation is
performed by a memory controller.

FIG. 8 illustrates write squashing.
FIG. 9 illustrates an example of detection of a squashed

command write.
FIG. 10 illustrates another example of detection of a

squashed command write.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 11 illustrates a method of communicating commands

via a memory interface.
FIG. 12 is a block diagram of a computer system.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

FIG. 1 is a block diagram illustrating a memory architec
ture. In FIG. 1, computer system 100 comprises CPU/
memory controller subsystem 110, I/O controller 130, and
memory modules 120. CPU/memory controller subsystem
110 includes a CPU 112 coupled to a memory controller 114.
One or more memory modules 120 are coupled to memory
controller 114 in subsystem 110. Each memory module 120
includes processor 121 and memory 122. Processor 121 may
be part of a buffer device. Processor 121 may be or comprise
a microprocessor, finite state machine, or other logic circuitry
that is part of a buffer device. Memory 122 typically contains
instructions and/or data used by the CPU 112 and/or proces
sor 121. It should be understood that CPU 112 may include
multiple processor cores. CPU 112 may include stacked die
devices having one or more processors and/or memory
stacked using, for example, though-silicon Vias. CPU 112
may include and/or be a specialized processor Such as, for
example, a digital signal processor, graphics processing unit
(GPU), an array processor, storage management processor,
data analytic processor (e.g., Hadoop distributed file system
processor or a MapReduce processor), pattern recognition
processor, and/or image manipulation processor (i.e., image
processor). CPU 112 can divide up and coordinate compute
processes and tasks among modules 120.

Processor 121 may also be referred to as a “compute
engine “computing engine.” “graphics processor,” “render
ing engine.” “processing unit,” “accelerator”, “offload
engine, and/or GPU. Processor 121 may include and/or be a
heterogeneous processing unit that includes the functions of
one or more of a CPU, GPU, video processor, etc. Processor
121 may include, or be, a serial-ATA (SATA), serial attached
SCSI (SAS), eSATA, PATA, IEEE 1394, USB (all revisions),
SCSI Ultra, FiberChannel, Infiniband, Thunderbolt, or other
industry standard I/O interfaces (such as PCI-Express—
PCIe). Processor 121 may include, or be, a network processor
unit (NPU) such as a TCP offload engine (TOE), a protocol
translator (e.g., TCP over SATA, TCP over PCI-Express,
accelerated SCSI interconnect, etc.), and/or a protocol packet
translator. Processor 121 may include, or be, a fixed function
graphics processing unit, an encryption/decryption accelera
tor/offload engine (e.g., for implementing/accelerating SSL,
AEC, DEC, etc.), a compressor/decompressor, a regular
expression accelerator engine, a digital signal processor
(DSP), a signal path processor, a Fourier transform processor,
an inverse Fourier transform processor, and/or a media format
encoder/decoder (e.g., JPEG, DVX, AVI, MP2, MP3, MP4,
Blu-ray, HD-DVD, DVD, etc.). It should also be understood
that module 120 may be coupled to a local SSD/HDD and/or
enterprise storage type systems such as external disks, exter
nal disk arrays, JBODs, RAID arrays, tape drives, optical
drives, and the like.
Memory 122 typically includes multiple memory devices

coupled together to form a block of storage space. Memory
122 may be, or comprise, but is not limited to, SRAM, DDR3,
DDR4, DDR5, XDR, XDR2, GDDR3, GDDR4, GDDR5,
LPDDR, and/or LPDDR2 and successor memory standards
and technologies. Memory 122 may be or comprise a stack of
devices Such as a through-silicon-via (TSV) stack and/or a
hybrid memory cube (HMC). Further information about

US 9,098,209 B2
3

HMC is available from the Hybrid Memory Cube Consortium
(http://hybridmemorycube.org/).

Each processor 121 is capable of performing various
memory access and/or data processing functions. For the
embodiment shown in FIG. 1, memory controller 114 is also
coupled to an I/O controller 130 which controls the flow of
data into and out of the system. An optional video input port
(not shown in FIG. 1) can provide data to memory controller
114. A display interface (not shown in FIG. 1) can provide
data output to one or more devices (such as display devices or
storage devices). For systems which Support video input or
capture capability, a video input port on the memory control
ler 114 is one way to handle the delivery of video source data.
Another means of delivery of video input data to the system
would include delivering the data from a peripheral module
through the I/O controller 130 to memory controller 114.

In the example of FIG. 1, CPU/memory controller sub
system 110 is coupled to multiple distinct memory modules
120. Each memory module 120 includes processor 121 and
memory 122. As described herein, each processor 121 may be
part of a buffer device. Processor 121 may be or comprise a
microprocessor, finite state machine, or other logic circuitry
that is part of a buffer device. Each processor 121 is capable
of performing various data processing functions. Thus, the
processor 121 on different (or the same) memory modules are
capable of performing different processing functions simul
taneously (i.e., parallel processing). The processors 121 on
different (or the same) memory modules are capable of per
forming vector parallel processing where functions are vec
torized and divided among the processors 121. The proces
sors 121 on different (or the same) memory modules are
capable of performing cluster parallel processing where the
processors 121 cooperate to work on the same problem simul
taneously (or concurrently). Further, each processor 121 is
capable of communicating with other processors 121 on other
memory modules 120.

Each processor 121 is capable of communicating with
other processors 121 on other memory modules 120 with the
aid of CPU 112 and/or memory controller 114. Modules 120
and/or processors 121 may be heterogeneous. In other words,
modules 120 and/or processors 121 may not all be identical.
Processors 121 may include multiple processor cores that are
not all identical. For example, processors 121 may comprise
a mix of CPU type and GPU type processing cores. Modules
120 and/or processors 121 may perform different functions at
the same time. Modules 120 and/or processors 121 may be
produced by different vendors. Modules 120 and/or proces
sors 121 produced by different vendors may be added, sub
tracted, and used interchangeably in a plug-and-play manner.
Modules 120 and/or processors 121 may function in parallel
running independent (and non-independent) copies of Soft
ware, processes, applications, and operating systems similar
to how virtual machines operate.
CPU 112 can control memory controller 114 to distribute

particular processing tasks (such as graphical processing
tasks, Hadoop, and/or MapReduce tasks) to processors 121,
and can perform certain processing tasks itself. These tasks
may include data to be processed and/or instructions to be
executed. Although three memory modules 120 are shown in
FIG. 1, an alternate system may contain any number of
memory modules coupled to one or more memory controllers
114. The ability to add and remove memory modules 120 can
provide an upgradeable and scalable memory and computing
architecture.
CPU 112 may communicate with processor 121 by reading

from, and writing to, an address aperture associated with
module 120. CPU 112 can be configured to use any cache

5

10

15

25

30

35

40

45

50

55

60

65

4
policy supported by processor CPU 112 to read from, and
write to, this address aperture (or portions thereof). However,
it should be understood that, in an embodiment, the most
useful cache policies may be limited to configuring the
address aperture (or portions thereof) to be treated by CPU
112 as uncacheable memory (UC), write combining memory
(WC), or write back (WB). In an embodiment, these cache
policies may be combined with the use of certain instructions
(e.g., fence instructions, streaming load instructions, and/or
streaming write instructions) to achieve an optimal (e.g.,
highest) communication bandwidth between CPU 112 and
processor 121. In addition, when the address aperture (or
portions thereof) are configured to be treated as WC or WB, at
least a minimum burst size may be used to achieve an optimal
(e.g., highest) communication bandwidth between CPU 112
and processor 121. In other words, Small burst sizes (e.g., less
than a certain, implementation dependent, number of column
addresses per burst) may result in less than optimal commu
nication bandwidth between CPU 112 and processor 121.
Larger sizes (e.g., greater than a certain, implementation
dependent, number of column addresses per burst) may
approach (or approximate) an optimal (e.g., highest) commu
nication bandwidth between CPU 112 and processor 121. It
should be understood that computer system 100 may utilize a
unified memory architecture or a non-unified memory archi
tecture. Computer system 100 is not limited to heterogeneous
memory. Further, it should also be understood that computer
system 100 (and CPU 112, in particular) may utilize a cache
or caching policies that are coherent or not coherent.

It may also be useful to configure the address aperture (or
portions thereof) to be UC for testing, ease of implementa
tion, and/or when the bandwidth between CPU 112 and pro
cessor 121 is not a relatively high priority. Configuring the
address aperture (or portions thereof) to be WB may be most
useful for testing purposes. Configuring the address aperture
(or portions thereof) to be WC may, in some embodiments,
result in the highest bandwidth between CPU 112 and pro
cessor 121.
The architecture of FIG. 1 allows CPU 112 to issue high

level primitive commands to the processors 121 via memory
controller 114. These high level primitive commands may
include graphics commands. This can reduce the Volume or
bandwidth of data that must be communicated between the
memory controller 114 and memory modules 120. Thus, the
partitioning of memory among multiple memory modules
120 improves data throughput relative to systems in which a
single CPU 112 and/or graphics controller performs all pro
cessing tasks. A bandwidth reduction to/from CPU 112 can
occur because primitive commands and data sent to memory
modules 120 typically require significantly less data than the
amount of data referenced when rendering the primitive. This
is because graphics primitives are typically expressed at a
higher level of abstraction. For example, a tessellated surface
involving many thousands of primitives (i.e., triangles) is not
sent through as many thousands of primitives. Instead, a
parametric function describing the Surface is sent, thus saving
memory bandwidth. In another example, parametric equa
tions for vectors may be sent to save memory bandwidth. In
this case, processors 121 can perform any type of interpola
tions to generate primitives. Additionally, the system parti
tioning described allows aggregate bandwidth between pro
cessors 121 and memory 122 to be much higher than the
bandwidth between memory controller 114 and memory
modules 120. Thus, the effective system bandwidth can
increase for processing tasks.

In an embodiment, CPU 112 communicates with processor
121 by reading from, and writing to, an address aperture

US 9,098,209 B2
5

associated with module 120. This address aperture may be
further divided into address ranges (a.k.a. ports) that are con
figured for communication of commands, status, and data.
The ports of the address aperture may be configured and sized
as blocks of addresses (e.g., column addresses).

FIG. 2 illustrates a memory address range map for com
munication via a memory interface. In FIG.2, a main memory
address range 201 is illustrated. This main memory address
range 201 runs from a minimum memory address addressable
by CPU 112 to a maximum memory address addressable by
CPU 112. Within the main memory address range 201, a
range of addresses (which may or may not be contiguous) is
configured as an aperture 210. This aperture may be used for
communicating with processor 121 via the memory interface
between memory controller 114 and module 120.

Aperture 210 is further divided into address ranges that are
used as ports for communicating commands, status, and data.
In FIG. 2, aperture 210 is divided into a command port 220, a
read status port 230, DMA data ports 240-242. Each of com
mand port 220, read status port 230, DMA data ports 240-242
may each be configured to be an arbitrary size or sizes. Each
of command port 220, read status port 230, DMA data ports
240-242 may be read or written using DMA operations/in
structions. In an example, each of command port 220, read
status port 230, DMA data ports 240-242 may be configured
to be the same size. For example, each of command port 220,
a read status port 230, DMA data ports 240-242 may be
configured to be N column addresses each.

FIG. 3 illustrates an example command port and example
command format for communication via a memory interface.
In FIG. 3, aperture 310 is divided into a command port 320,
read statusport 330, and DMA read/write data ports. Aperture
310 may be an aperture used to communicate with module
120. Commands written to an address in command port 320
include a unique tag number field 321 and an associated
command field that is divided into further fields. The tag
number field 321 and associated command field may be
referred to herein as a command-tag pair. An example format
used to write a command-tag pair to an address in command
port 320 is illustrated. The example command-tag pair format
illustrated in FIG. 3 includes tag field 321, valid bit #1322,
opcode field 323, size field 324, data field 325, address field
326, mask field 327, valid bit #2 328, and cyclic redundancy
code (CRC) field 329.
Memory controller 114 may not perform writes to com

mand port 320 of module 120 in a deterministic order. In other
words, memory controller 114 may perform the writes of
command-tag pairs written to command port 320 in a differ
ent order than the instructions used to write these command
tag pairs were executed by CPU 112. In an embodiment, tag
field 321 can be used by processor 121 to determine an order
to execute commands communicated via command port 320.
CPU 112 may be instructed to assign tag field 321 values.
These tag field 321 values may be unique across the locations
in command port 320. These assigned tag field values of the
command-tag pairs may be used by processor 121 and/or
CPU 112 to determine: (a) whether a particular command-tag
pair has been written by memory controller 114 to module
120, and/or (2) what order to execute any received commands
once they are written by memory controller 114 to module
120.

For example, considera case where memory controller 114
writes a command-tag pair to location #1 of command port
320 first, then another command-tag pair to location #0 sec
ond, and then yet another command-tag pair to location #2
third. In this case, after the write to locations #1 has been
received, processor 121 can determine that it has not yet

10

15

25

30

35

40

45

50

55

60

65

6
received a (valid) command-tag pair for locations #0 and #2
because processor 121 has not received writes of command
tag pairs with the tag values associated with tag #1 or tag #3.

Also, after memory controller 114 has written command
tag pairs to location #1 of command port 320 first, location #0
second, and location #2 third, as is illustrated in FIG. 3,
location #0 received a command-tag pair associated with tag
#1s value, location #1 received a command-tag pair associ
ated with tag #2's value, and location #2 received a com
mand-tag pair associated tag #3's value regardless of the
actual order that the writes of these command-tag pairs to
module 120 occurred (and also regardless of the order that
CPU 112 executed the corresponding write instructions).
Thus, because the tag value of a command-tag pair does not
change based on the order that the command-tag pair was
written by memory controller 114 to module 120, processor
121 can use the tag values to determine an order to execute the
commands received from memory controller 114. In other
words, processor 121 can use the tag values associated with a
command (by the command-tag pairing) to determine an
order that these commands are executed eventhough memory
controller 114 (and/or CPU 112) may have written these
commands (and their associated tag value) to their respective
locations in command port 320 in a different order.
The tag values can also be used by processor 121 to deter

mine whether memory controller 114 and/or CPU 112 have
written the same command-tag pair to module 120 more than
once. For example, memory controller 114 may write the
same command-tag pair to module 120 because of a caching
policy implemented by CPU/MC subsystem 110. CPU 112
may, in order to attempt a retry of the command in a com
mand-tag pair that does not appear to have been executed
and/or received by module 120, execute write instructions
that cause memory controller 114 to write the same com
mand-tag pair to module 120. CPU 112 may assign tag values
to command-tag pairs that are unique. CPU 112 may assign
tag values to command-tag pairs that are unique over a given
set of writes (e.g., a single burst write) to command port 320.
CPU 112 may assign tag values to command-tag pairs that are
unique over a given set of writes that span the range of
addresses of command port 320.
CPU 112 may assign tag values to command-tag pairs that

are unique over at least two sets of writes that span the range
of addresses of command port 320. By looking for duplicate
tag values in the command-tag pairs that memory controller
writes to module 120 over the at least two sets of writes,
module 120 can determine whether memory controller 114
and/or CPU 112 has written the same command-tag pair to
module 120 more than once. In other words, module 120 can
ignore a command-tag pair that appears a second (or greater,
as the case may be) time over the two (or more) sets of writes
that are understood to have unique tag values.

For example, consider a case where command port 320
spans 128 column addresses. For a first set of command-tag
pair writes (e.g., a burst write) spanning these 128 column
addresses, CPU 112 may assign the tag values 0 to 127 one to
each column address. For a second set of command-tag pair
writes spanning the same 128 column addresses, CPU 112
may assign the tag values 128 to 255 one to each column
address. For a third set of command-tag pair writes spanning
the same 128 column addresses, CPU 112 may assign the tag
values 256 to 383 one to each column address.
When processor 121 receives a repeat tag value in the range

0-127 before it has received at least one command-tag pair
with a tag value in the range 128-255, processor 121 should
ignore the second (i.e., repeat) command-tag pair. When pro
cessor 121 receives a repeat tag value in the range 0-127 after

US 9,098,209 B2
7

it has received at least one command-tag pair with a tag value
in the range 128-255 it indicates that CPU 112 has started
overwriting command port 320 with a second (new) set of
command-tag pairs. If processor 121 receives a tag value in
the range 0-127 after it has received at least one command-tag
pair with a tag value in the range 128-255, processor 121 can
ignore command-tag pairs in the range 0-127. Since CPU 112
has started overwriting command port 320 with a second set
of command-tag pairs, processor 121 should ignore the com
mand-tag pairs with tag values in the range 0-127 in order to
avoid executing the same command twice.

Likewise, when processor 121 receives a repeat tag value in
the range 128-255 after it has received at least one command
tag pair with a tag value in the range 256-383, this indicates
that CPU 112 has started overwriting command port 320 with
a third set of command-tag pairs. The tag values may be
reused (i.e., their values "wrapped around a maximum
value) by CPU 112. For example, CPU 112 may reuse the tag
values 0-127 after memory controller 114 sends the com
mand-tag pairs in the range 256-383. In other words, when
processor 121 receives a tag value in the range 256-383 after
it has received at least one command-tag pair with a tag value
in the range 0-127, this indicates that CPU 112 has started
overwriting command port 320 with the third set of com
mand-tag pairs.

Valid bit #1322 and valid bit #2 328 can be used by CPU
112 and processor 121 to determine whether memory con
troller 114 has written all of a command-tag pair to a particu
lar location. Memory controller 114 may perform a write to a
location of command port 320 using multiple write opera
tions to module 120. For example, consider the case of a write
to location #1 of command port 320. This write may be a
result of a single write instruction executed by CPU 112.
However, memory controller 114 may, for example, perform
the following (in order): (1) read the contents of location #1 of
command port 320; (2) after module 120 returns data associ
ated with location #1 of command port 320, memory control
ler 114 may replace only a portion of the data received from
module 120 with new data forming a (possibly nonsensical)
command-tag pair that is part new data and part retrieved
data; (3) this partially new command-tag pair is then written
to module 120; (4) at some later time, memory controller 114
may again read the contents of location #1 of command port
320; (5) after module 120 returns data associated with loca
tion #1 of command port 320 (which can be part old data and
part new data, or some arbitrary data), memory controller 114
may replace the remaining unwritten portion of the data
received from module 120 with the rest of the new data
(possibly thereby forming a command-tag pair that has a
complete new command-tag pair); and, (6) this new data
containing the remaining unwritten portion of the data is then
written to location #1.

To determine whether memory controller 114 has written
all of a command-tag pair to a particular location, CPU/MC
subsystem 110 and module 120 may cooperate in the follow
ing (example) manner: (a) when memory controller 114 first
reads the contents of location #1 of command port 320 (step
1, above), module 120 returns data associated with location
#1 that has valid bit #1 322 and valid bit H2 328 both set to
indicate that the data is invalid (e.g., both set to a logic “0”);
(b) when memory controller 114 replaces only portion of the
data received from module 120 with new data (step 2, above),
the new data has a corresponding valid bit set to indicate that
the data is valid (e.g., set to a logic “1”)—thus the command
tag pair formed from part new data and part retrieved data has
one valid bit 322 or 328 set to indicate valid data and one valid
bit 322 or 328 set to indicate that data is invalid; (c) when the

10

15

25

30

35

40

45

50

55

60

65

8
partially new command-tag pair entry is written to module
120 (step 3, above), processor 121 can determine that part of
the data is invalid from the one valid bit 322 or 328 which is
set to indicate that at least some data is invalid (e.g., from the
bit that is set to a logic “0”); (d) when memory controller 114
reads the contents of location #1 of command port 320 again
(step 4, above), processor 121 returns data associated with
location #1 that again has both valid bit 322 and 328 set to
indicate that at least Some data is invalid (e.g., both set to a
logic “0”, or one set to a logic “1” and one set to a logic “0”.
as appropriate); (e) memory controller 114 may then replace
the remaining unwritten data portion with the rest of the new
data thereby forming data that includes the unwritten data and
corresponding valid bit 322 or 328 set to indicate that its
respective part of the data is valid (step 5, above); and, (f)
when this data is written to location #1 by memory controller
114 (step 6, above), processor 121 can determine that the
remaining unwritten data portion has been received from
memory controller 114 by the state of the appropriate valid bit
#1 322 or valid bit #2 328 in the remaining portion. In an
embodiment, after the command of a command-tag pair is
executed, module 120 will return data associated with loca
tion #1 that has valid bit #1322 and valid bit #2 328 both set
to indicate that the data is invalid (return to step 1, above).

In FIG. 3, two valid bits 322 and 328 are illustrated. How
ever, it should be understood that the number of valid bits
should correspond to the number of parts that memory con
troller 114 may split the data when using multiple write
operations to module 120. For example, if memory controller
114 writes 64 bytes at a time, but may perform these writes by
using multiple writes of the new data in segments as small as
16 bytes, then 4 valid bits should be used. Each of these four
valid bits should be located in different 16 byte segments of
the 64 byte write data.

FIG. 4 illustrates an example status port and example status
information format for communication via a memory inter
face. In FIG. 4, aperture 410 is divided into a command port
420, read status port 430, and DMA read/write data ports.
Aperture 410 may be used to communicate with module 120.
In an embodiment, each command port 420 entry is associ
ated with a corresponding read port 430 entry. Reads made
from an address in read status port 430 includes a unique tag
number field 421 and an associated status field that is divided
into further fields. This may be referred to herein as a tag
status pair. An example format that can be used to provide
data in response to a read from an address in status port 430 is
illustrated. The example status entry illustrated in FIG. 4
includes tag field 431, status field 432, size field 433, a
reserved or unused field 434, highest continuous tag (HCT)
field 435, first location tag (FLT) field 436, last executed tag
(LET) field 437, highest received tag (HRT) field 438, valid
bits field 439, time stamp field 440, and CRC field 441.

In an embodiment, the contents of the status-tag pairs sent
by module 120 in response to a read by memory controller
114 can be used by CPU/MC subsystem 110 to determine the
status of command-tag pairs written to command port 320.
For example, when memory controller 114 reads a location in
status port 430, the HCT field 435 returned by module 120
can indicate the tag value where all of the preceding (e.g.,
with lower valued tags) command-tag pairs to be executed
have been received by module 120. The LET field can indi
cate the tag value where all of the preceding (e.g., with lower
valued tags) commands have been executed by module 120.
The HRT field can indicate the tag value of the most subse
quent (e.g., highest valued tag) command-tag pair that has
been received.

US 9,098,209 B2

The contents of the status-tag pairs sent by module 120
(and therefore received by CPU/MC subsystem 110) may
also include, for example, a valid bits field 439 map that
indicates the status of each command-tag pair within a range
of tag values. Alternatively, the valid bits field 439 map can
indicate a status of each command-tag pairin association with
its address within command port 320. The first location tag
(FLT) field 436 can indicate a starting point for a range of tag
values that are associated with each bit in the valid bits field
439.

Each bit in valid bits field 439 can be associated with a
command-tag pair (and therefore a tag value). Each bit can
indicate a status associated with the respective command-tag
pair. For example, the corresponding bit in valid bits field 439
can be setto indicate when a command-tag pairis received for
that tag value. This corresponding bit can be reset to indicate
when that command has been executed. To illustrate, consider
a status-tag pair that has an 12 bit valid bits field 439 with the
contents 000011011110b (note: for this discussion, these bits
are numbered 0 to 11, left to right), an HCT value of 5, a LET
value of 3, and an HRT value of 10. This value indicates: (1)
the tag values associated with bits #6 and #11 have not been
received; (2) the command-tag pairs associated with bits #4,
#5, and #7-#10 have been received; and, (3) the commands
associated with bits #0-#3 have been executed by module
120.

In an embodiment, module 120 returns the most current
values (as reflected by the current state) for highest continu
ous tag (HCT) field 435, first location tag (FLT) field 436, last
executed tag (LET) field 437, highest received tag (HRT) field
438, valid bits field 439, and time stamp field 440 when
module 120 receives a read operation from memory control
ler 114. Module 120 returns these most current values regard
less of the location within status port 430 memory controller
114 reads. The time stamp field 440 received by CPU 112 can
be used by CPU 112 to determine which of status-tag pairs
read has the most current information. CPU 112 uses the
timestamp field 440 to determine which of status-tag pairs
read has the most current information because a CPU/MC
Subsystem 110 caching policy may result in out-of-order
reads from module 120, and/or reads being serviced by a
cache internal to CPU/MC subsystem 110. Thus, by time
stamping the content of data sent in response to each read
from status port 430, CPU 112 can determine which status
tag pair received has the most current information about the
state of module 120.
The status of command-tag pairs written to command port

320 (as determined by CPU 112 from the contents of the
status-tag pairs from module 120) can be used as a basis to
retry the communication of commands and/or command-tag
pairs. For example, after a threshold period of time, the con
tents of the valid bits field 439 may indicate a particular
command-tag pair has not been received. In response, CPU
112 may execute write instructions that may cause memory
controller 114 to write the same command-tag pair to module
120.
The status of command-tag pairs written to command port

320 (as determined by CPU 112 from the contents of the
status-tag pairs from module 120) can be used as a basis to
attempt to flush command-tag pairs not yet received by mod
ule 120 from CPU/MC subsystem 110. For example, after a
threshold period of time, the contents of the valid bits field
439 may indicate one or more command-tag pairs have not
been received. In response, CPU 112 may execute write
instructions to addresses other than command port 320 that
may cause memory controller 114 to write the missing com
mand-tag pair(s) to module 120.

5

10

15

25

30

35

40

45

50

55

60

65

10
FIG. 5 is a flowchart illustrating a method of communicat

ing via a memory interface. The steps illustrated in FIG. 5
may be performed by one or more elements of computer
system 100. A batch of packets with tag, opcode, and valid
bits is formed (504). For example, CPU 112 may assemble a
set of command-tag pairs. These command tag pairs may
include tag 321, opcode 323, a valid bit #1322, and a valid bit
#2 328. Valid bit #1322 and valid bit #2 328 may be, for
example, placed in different bytes, words, banks, and/or
pages such that if memory controller 114 were to perform a
read-modify-write operation, valid bits #1322 and valid bit
#2328 would not both be overwritten with new data during
the partial write step of the read-modify-write operation.

Optionally, no-operation (NOP) packets may be formed if
a command port will not be full (504). For example, CPU 112
may assemble in a memory a set of command-tag pairs that
specify no operation is to be performed. These NOP packets
can be used to pad the batch of packets formed in block 502 in
order to have a number of command-tag pairs that correspond
to the size of command port 320.
The packets are written to command port addresses (506).

For example, CPU 112 may execute instructions that write the
packets formed in block 502 (and optionally those in block
504, as appropriate) to the memory addresses that correspond
to command port 320. Optionally, the method may wait for a
period of time (508). Status port addresses are read (510). For
example, CPU 112 may execute instructions that read the
memory addresses that correspond to status port 430 (or
status port 330).
The tag status is evaluated (512). For example, CPU 112

may execute instructions that select the status-tag pair read in
block 510 with the latest timestamp. This status-tag pair may
then be evaluated to determine whether all of the commands
associated with the command-tag pairs written in block 506
have been received (i.e., tag status passes). If the tag status
passes, flow proceeds to block 518. If the tag status fails, flow
proceeds to block 516 (514).

If the tag status passes, it is determined whether there are
more commands to be executed (518). If there are no more
commands to be executed, flow terminates in block 520. If
there are more commands to be executed, flow proceeds to
block 502 to assemble another batch of packets. If the tag
status does not pass, it is determined whether to retry one or
more missing commands (516). If missing commands are not
to be retried, flow proceeds to block 508. This allows more
time for missing commands to be processed. If missing com
mands are to be retried, flow proceeds to block 502 so the
missing commands may be assembled into another batch of
packets.

FIG. 6 illustrates a read-modify-write operation. The read
modify-write operation illustrated in FIG. 6 may be per
formed by computer system 100. In FIG. 6, CPU 612 receives
and executes an instruction to write the data D0 to address A1
which resides in an address range of a command port of
module 620. In response to this instruction, CPU 612 couples
address A1 and data D0 to memory controller 614. Memory
controller 614 then issues a series of commands to module
620. The commands issued to module 620 include (in order,
but possibly with other commands intervening): (1) a first
read of address A1-this operation returns data to memory
controller 614 that has two parts D1 and D2; (2) a write of
address A1 with part D1 replaced by a corresponding part of
data D0; (3) a second read of address A1—this operation
returns data to memory controller 614 that has two parts D1
and the corresponding part of data D0 already written to
module 620; (4) a write of address A1 with part D2 replaced
by a corresponding remaining part of data D0.

US 9,098,209 B2
11

FIG. 7 illustrates an example command communication via
a memory interface when a read-modify-write operation is
performed by a memory controller. The operations illustrated
in FIG.7 may be performed by computer system 100. In FIG.
7, a CPU (e.g., CPU 112) receives and executes an instruction 5
to write the data D0 710 to address A1. Data D0 710 includes
a first valid bit 722 and a second valid bit 728. Both valid bit
722 and valid bit 728 are set to indicate data D0 710 is valid.

In response to the instruction to write the data D0710 to
address A1, a memory controller (e.g., memory controller 10
114) issues a read of address A1 to a module (e.g., module
120). The module returns data 701 to the memory controller.
The returned data 701 from the module includes the first valid
bit 722 and the Second valid bit 728. In the returned data 701
from the module, both valid bit 722 and valid bit 728 are set 15
to indicate data 701 is invalid (e.g., both are set to a logic “0”).
The memory controller replaces a portion of the returned data
701 with a portion of data D0 710 to form data 702. The
memory controller issues a write of data 702 to address A1.
As can be seen from data 702, the portion of data D0 710 that 20
has been combined with data 701 includes the second valid bit
728 which is set to indicate data 702 is valid. However, the
portion of data 701 that was not replaced with a correspond
ing portion of data D0 710 includes the unreplaced first valid
bit 728 which is set to indicate data 702 is invalid. Thus, when
the module receives data 702, the module can determine data
702 is not completely valid because at least one of the first
valid bit 722 and the second valid bit 728 indicate data 702 is
invalid.
The memory controller then issues a second read of

address A1 to the module. The module returns data 703
(which can be but is not necessarily identical to data 702)
to the memory controller. The returned data 703, like data
701, from the module includes the first valid bit 722 and the
second valid bit 728 is set to indicate data 703 is invalid.
The memory controller replaces another portion of the

returned data 703 with the remaining portion of data D0 710
to form data 704. The memory controller issues a write of data
704 to address A1. As can be seen from data 704, both por
tions of data D0 710 have overwritten data 701. Thus, data
704 includes both the first valid bit 722 and the second valid
bit 728 set to indicate data 704 is valid. Thus, when the
module receives data 704, the module can determine that the
portion of data 704 associated with valid bit 722 is valid
because the first valid bit 722 indicates the portion of data 704
associated with valid bit 722 is valid. The Second valid bit 728
may indicate that data 704 is invalid. However, since data 702
indicated the portion of data 704 associated with valid bit 728
was valid, the module can construct a whole valid data block
from the two valid portions from data 702 and data 704.

FIG. 8 illustrates write squashing. The operations illus
trated in FIG.8 may be performed by computer system 100.
In FIG. 8, CPU 812 receives and executes an instruction to
write the data D0 to address A1 which resides in module 820.
CPU812 also receives and executes an instruction to write the
data D1 to address A1. CPU812 also receives and executes an
instruction to write the data D2 to address A1. CPU812 also
receives and executes an instruction to write the data D3 to
address A1. The collective response by CPU812 and memory
controller 814 to these four instructions is, however, that only
a single write command is issued to module 820 (e.g., a write
of D3 to address A1). Thus, even though CPU 812 executed
four write instructions which each wrote different data, mod
ule 820 only receives one write command. In other words, the
writes of data D0, D1, and D2 have been “squashed' and
module 820 is unaware that CPU812 executed these writes to
A1—even though A1 is in module 820's address space.

25

30

35

40

45

50

55

60

65

12
FIG. 9 illustrates an example detection of a squashed com

mand write. The operations illustrated in FIG. 9 may be
performed by computer system 100. In FIG. 9, a CPU (e.g.,
CPU 112) receives and executes an instruction to read data
910 from an address in a status port (e.g., status port 430) of
a module (e.g., module 120). In response, a memory control
ler (e.g., memory controller 114) issues a read of a location in
the status port to the module. The module returns data 901 to
the memory controller. The returned data 901 includes a valid
bit associated with a first tag (tag #1 valid bit) and a valid bit
associated with a second tag (tag #2 valid bit). The returned
data 901 received by the CPU from the memory controller as
data 910. Data 901 and data 910 have both tag #1 valid bit and
tag #2 valid bit set to indicate that both tag #1 and tag #2 have
not been received (or executed).
The CPU receives and executes an instruction to write data

D1911 to address A1. Address A1 is in a command port of the
module. Data D1 911 includes a tag field with a tag value
associated with tag #1. The rest of data D1 911 may be
command fields such that data D1911 comprises a command
tag pair, described herein. The CPU also receives and
executes an instruction to write data D2912 to address A1.
Data D2912 includes a tag field with a tag value associated
with tag #2. The rest of data D2912 may be command fields
Such that data D2 912 comprises a command-tag pair,
described herein.

In response to the instructions to write data D1 911 to
address A1, and to write data D2 912 to address A1, the
memory controller issues a write of data 902 to the module.
Data 902 corresponds to data D2912. Accordingly, the mod
ule receives the command-tag pair associated with tag #2.
However, in FIG. 9, the module does not receive the com
mand-tag pair associated with tag #1.
The CPU receives and executes an instruction to read data

913 from an address in the status port of the module. In
response, the memory controller issues a read of a location in
the status port to the module. The module returns data 903 to
the memory controller. Because the module has received a
command-tag pair associated with tag #2, the module sets the
tag #2 valid bit in data 903 to indicate that tag #2 has been
received. Because the module has not received a command
tag pair associated with tag #1, the module sets the tag #1
valid bit in data 903 to indicate that tag #1 has not been
received.
The returned data 903 is received by the CPU from the

memory controller as data 913. Data 913 has tag #1 valid bit
set to indicate that tag #1 has not been received and tag #2
valid bit set to indicate that tag #2 has been received. Thus,
when the CPU receives data 913, the CPU can determine that
data 911 (and therefore the command-tag pair associated with
tag #1) has not been received by the module. In response to
determining that the command-tag pair associated with tag #1
has not been received by the module, the CPU may decide to
retry writing data 911 to the module. This retry write may be
to a different address than A1.

FIG.10 illustrates another example detection of a squashed
command write. The operations illustrated in FIG. 10 may be
performed by computer system 100. In FIG. 10, a CPU (e.g.,
CPU 112) receives and executes an instruction to read data
1010 from an address in a status port (e.g., status port 430) of
a module (e.g., module 120). In response, a memory control
ler (e.g., memory controller 114) issues a read of a location in
the status port to the module. The module returns data 1001 to
the memory controller. The returned data 1001 includes a
status field, a last executed tag field, and a last received tag
field. The returned data 1001 received by the CPU from the

US 9,098,209 B2
13

memory controller as data 1010. Data 1001 and data 1010
have the status field set to indicate that there is not an error.

The CPU receives and executes an instruction to write data
D1 1011 to address A1. Address A1 is in a command port of
the module. Data D1 1011 includes a tag field with a tag value
associated with tag #1. The rest of data D1 1011 may be
command fields such that data D1 1011 comprises a com
mand-tag pair, described herein. The CPU also receives and
executes an instruction to write data D2 1012 to address A1.
Data D2 1012 includes a tag field with a tag value associated
with tag #2. The rest of data D2 1012 may be command fields
Such that data D2 1012 comprises a command-tag pair,
described herein. The CPU also receives and executes an
instruction to write data D31013 to address A1. Data D31013
includes a tag field with a tag value associated with tag #3.
The rest of data D3 1013 may be command fields such that
data D3 1013 comprises a command-tag pair, described
herein.

In response to the instructions to write data D1 1011 to
address A1, to write data D2 1012 to address A1, and to write
data D3 1013 to address A1, the memory controller issues a
write of data 1002 to the module and a write of data 1003 to
the module. Data 1002 corresponds to data D1 1011. Data
1003 corresponds to data D3 1013. Accordingly, the module
receives the command-tag pair associated with tag #1 and the
command-tag pair associated with tag #3. However, in FIG.
10, the module does not receive the command-tag pair asso
ciated with tag #2.
The module may execute the command-tag pair associated

with tag #1. The CPU receives and executes an instruction to
read data 1014 from an address in the status port of the
module. In response, the memory controller issues a read of a
location in the status port to the module. The module returns
data 1004 to the memory controller.

If the module has not yet executed the command-tag pair
associated with tag #1, because the module has received a
command-tag pair associated with tag #3 thereby overwriting
tag #1, the module sets the status field to indicate an “over
flow error to indicate that tag #1 was overwritten before it
was executed. The last received tag field can be set to indicate
tag #3 was received.

If the module has executed the command-tag pair associ
ated with tag #1, because the module received tag #3 without
first receiving tag #2, the module sets the status field to indi
cate an “out-of-order error occurred as a result of the write of
tag #2 being squashed. The last executed tag field can be setto
indicate that tag #1 was executed.

The returned data 1004 is received by the CPU from the
memory controller as data 1014. Data 1014 has the status
field, last received tag, and last executed tag fields set as
appropriate. Thus, when the CPU receives data 1014, the
CPU can determine whether data 1012 (and therefore the
command-tag pair associated with tag #2) has been received
by the module. The CPU can also determine whether data
1011 (and therefore the command-tag pair associated with tag
#1) has been received and/or executed by the module. In
response to determining that the command-tag pair associ
ated with tag #2 has not been received by the module, the CPU
may decide to retry writing data 1012 to the module. This
retry write may be to a different address than A1.

FIG. 11 illustrates a method of communicating commands
via a memory interface. The steps illustrated in FIG. 11 may
be performed by one or more elements of computer system
100. A first write transaction addressed to a first location in an
instruction queue in a memory space of a module is received

5

10

15

25

30

35

40

45

50

55

60

65

14
(1102). For example, module 120 may receive, from memory
controller 114, a first write transaction directed to location 0
(Zero) in command port 320.

First data corresponding to the first write transaction that
includes a first instruction to be executed by the module and
a first reference tag is received (1104). For example, module
120 may receive a command-tag pair having a first (e.g., tag
#1) tag field 321 value. The opcode field 323 may specify an
instruction (or command) to be executed by module 120.
A second write transaction addressed to a second location

in the instruction queue in the memory space of the module is
received (1106). For example, module 120 may receive, from
memory controller 114, a second write transaction directed to
location 1 (one) in command port 320.

Second data corresponding to the second write transaction
that includes a second instruction to be executed by the mod
ule and a second reference tag is received (1108). For
example, module 120 may receive a command-tag pair hav
inga second (e.g., tag #2) tag field 321 value. The opcode field
323 of this second command-tag pair may specify an instruc
tion (or command) to be executed by module 120.
The first reference tag may include first instruction order

bits and the second reference tag may include second instruc
tion order bits. For example, certain bits of tag field 321 may
specify the order that the first instruction and the second
instruction are to be executed. Bits of tag field 321 may be
used for other purposes—such as ensuring that tag values are
unique, or have specified uniqueness over selected address
ranges.
The first reference tag may be associated with a first write

completion indicator and a second write completion indica
tor. For example, the first reference tag may be associated
with valid bit #1 322 and valid bit #2 328. The first write
completion indicator may communicate that a first portion of
the first data has been received by the module. The second
write completion indicator may communicate that a second
portion of the first data has been received by the module.
The module may also receive, from the memory controller,

a first read transaction addressed to a first location in status
area in the memory space of the module. For example, mod
ule 120 may receive a read transaction addressed to a location
in status port 430. In response to the first read transaction, the
module may send third data that includes an indicator of a
status of the first write transaction. This indicator of status
may indicate whether the first transaction has been received
by the module. This indicator of status may indicate whether
a command in the first transaction has been executed by the
module.
The devices, circuits, modules, CPUs, controllers, proces

sors, memory, and systems described above may be imple
mented in computer systems, or include components that are
stored by computer systems. The systems described above
may also contain one or more components that can be stored
on a computer readable medium. Devices, circuits, modules,
CPUs, controllers, processors, memory, and systems
described herein may be implemented using computer-aided
design tools available in the art, and embodied by computer
readable files containing software descriptions of Such cir
cuits. This includes, but is not limited to one or more elements
of computer system 100, CPU 112, memory controller 114,
and modules 120, and their components. These software
descriptions may be: behavioral, register transfer, logic com
ponent, transistor and layout geometry-level descriptions.
Moreover, the Software descriptions may be stored on Storage
media or communicated by carrier waves.

Data formats in which such descriptions may be imple
mented include, but are not limited to: formats Supporting

US 9,098,209 B2
15

behavioral languages like C, formats Supporting register
transfer level (RTL) languages like Verilog and VHDL, for
mats Supporting geometry description languages (such as
GDSII, GDSIII, GDSIV. CIF, and MEBES), and other suit
able formats and languages. Moreover, data transfers of Such
files on machine-readable media may be done electronically
over the diverse media on the Internet or, for example, via
email. Note that physical files may be implemented on
machine-readable media Such as: 4 mm magnetic tape, 8 mm
magnetic tape, 3/2 inch floppy media, CDs, DVDs, and so on.

FIG. 12 illustrates a block diagram of a computer system.
Computer system 1200 includes communication interface
1220, processing system 1230, storage system 1240, and user
interface 1260. Processing system 1230 is operatively
coupled to storage system 1240. Storage system 1240 stores
software 1250 and data 1270. Computer system 1200 may
include memory system 100. Processing system 1230 is
operatively coupled to communication interface 1220 and
user interface 1260. Computer system 1200 may comprise a
programmed general-purpose computer. Computer system
1200 may include a microprocessor. Computer system 1200
may comprise programmable or special purpose circuitry.
Computer system 1200 may be distributed among multiple
devices, processors, storage, and/or interfaces that together
comprise elements 1220-1270.

Communication interface 1220 may comprise a network
interface, modem, port, bus, link, transceiver, or other com
munication device. Communication interface 1220 may be
distributed among multiple communication devices. Process
ing system 1230 may comprise a microprocessor, microcon
troller, logic circuit, or other processing device. Processing
system 1230 may be distributed among multiple processing
devices. User interface 1260 may comprise a keyboard,
mouse, Voice recognition interface, microphone and speak
ers, graphical display, touch screen, or other type of user
interface device. User interface 1260 may be distributed
among multiple interface devices. Storage system 1240 may
comprise a disk, tape, integrated circuit, RAM, ROM,
EEPROM, flash memory, network storage, server, or other
memory function. Storage system 1240 may include com
puter readable medium. Storage system 1240 may be distrib
uted among multiple memory devices.

Processing system 1230 retrieves and executes software
1250 from storage system 1240. Processing system 1230 may
retrieve and store data 1270. Processing system 1230 may
also retrieve and store data via communication interface
1220. Processing system 1230 may create or modify software
1250 or data 1270 to achieve a tangible result. Processing
system 1230 may control communication interface 1220 or
user interface 1260 to achieve a tangible result. Processing
system 1230 may retrieve and execute remotely stored soft
ware via communication interface 1220.

Software 1250 and remotely stored software may comprise
an operating system, utilities, drivers, networking Software,
and other Software typically executed by a computer system.
Software 1250 may comprise an application program, applet,
firmware, or other form of machine-readable processing
instructions typically executed by a computer system. When
executed by processing system 1230, software 1250 or
remotely stored software may direct computer system 1200 to
operate.
The foregoing description of the invention has been pre

sented for purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to the
precise form disclosed, and other modifications and varia
tions may be possible in light of the above teachings. The
embodiment was chosen and described in order to best

10

15

25

30

35

40

45

50

55

60

65

16
explain the principles of the invention and its practical appli
cation to thereby enable others skilled in the art to best utilize
the invention in various embodiments and various modifica
tions as are Suited to the particular use contemplated. It is
intended that the appended claims be construed to include
other alternative embodiments of the invention except insofar
as limited by the prior art.
What is claimed is:
1. A module, comprising:
a memory interface configured to interface with a memory

controller, the memory interface including a memory
data interface and a memory command/address inter
face; and,

the module to execute instructions received via the
memory data interface from the memory controller, the
instructions to be addressed to a memory space of the
module that includes an instruction queue, the instruc
tion queue comprising a plurality of column addresses,

wherein the instructions received via the memory data
interface include command tag pairs, each command tag
pair including a tag value corresponding to an instruc
tion order bit and a command associated with the
instruction order bit,

wherein the instruction order bits determine a relative order
of the instructions and the execution of instructions are
reordered using the instruction order bits.

2. The module of claim 1, wherein the memory space
further includes a status register space, a plurality of status
register space entries each corresponding to a respective entry
in the instruction queue.

3. The module of claim 2, wherein each of the status reg
ister space entries, when read by the memory controller,
include an indicator of a status of the corresponding entry in
the instruction queue.

4. The module of claim 3, wherein the indicator of the
status of an entry in the instruction queue, as read by the
memory controller, indicates whether the corresponding
entry in the instruction queue has been executed by the mod
ule.

5. The module of claim 3, wherein the indicator of the
status of an entry in the instruction queue, as read by the
memory controller, indicates whether the corresponding
entry in the instruction queue has been received by the mod
ule.

6. The module of claim 1, wherein the instruction queue is
managed as a circular buffer.

7. A method of operating a module, comprising:
receiving from a memory controller, via a memory com

mand/address interface, a first write transaction
addressed to a first location in an instruction queue in a
memory space of the module, the instruction queue com
prising a plurality of column addresses;

receiving, via a memory data interface, and by the module,
first data corresponding to the first write transaction, the
first data including a first instruction to be executed by
the module and a first reference tag:

receiving from the memory controller, via the memory
interface, a second write transaction addressed to a sec
ond location in the instruction queue in the memory
space of the module:

receiving, via the memory data interface, and by the mod
ule, second data corresponding to the second write trans
action, the second data including a second instruction to
be executed by the module and a second reference tag:

wherein the first reference tag includes first instruction
order bits and the second reference tag includes second
instruction order bits, the values of the first and second

US 9,098,209 B2
17 18

instruction order bits determining a relative order the a data interface to receive a first plurality of data transfers
first instruction and the second instruction are to be respectively corresponding to the first plurality of write
executed by the module; and commands from the memory controller, the first plural

reordering the execution of the first and second instructions ity of data transfers each indicating a respective com
using the first and second instruction order bits. 5

8. The method of claim 7, wherein the first reference tag is
associated with a first write completion indicator and a sec
ond write completion indicator, the first write completion

mand to be executed by the module,
wherein the first plurality of data transfers received via the

data interface include command tag pairs, each com
indicator communicating when a first portion of said first data mand tag pair including a tag Value corresponding to an
has been received by the module and the second write 10 instruction order bit and a command associated with the
completion indicator communicating when a second portion instruction order bit,
of said first data has been received by the module. wherein the instruction order bits determine a relative order

9. The method of claim 7, further comprising: of the commands and the execution of the commands are
receiving from the memory controller, via the memory reordered using the instruction order bits.

interface, a first read transaction addressed to a first
location in status area in the memory space of the mod- 1
ule; and,

in response to the first read transaction, sending, via the
memory data interface, third data that includes an indi

14. The module of claim 13, wherein the command/address
interface is to receive a first plurality of read commands and
first plurality of read addresses from the memory controller,
the first plurality of read addresses to be in a status port

cator of a status of the first write transaction. address space of the module;
10. The method of claim 9, wherein the indicator of the 20 and wherein the data interface is to send a second plurality

status of the first write transaction includes an indicator of of data transfers respectively corresponding to the first
whether the first write transaction has been received by the plurality of read commands, the second plurality of data
module. transfers each including status indicators that respec

11. The method of claim 9, wherein the indicator of the
status of the first write transaction includes an indicator of as
whether the first instruction has been successfully executed
by the module.

12. The method of claim 9, wherein the first reference tag
includes first ordering bits and the third data includes second
ordering bits that have the same value as the first ordering bits.

13. A module, comprising:
a command/address interface to receive a first plurality of

write commands and first plurality of write addresses
from a memory controller, the first plurality of write
addresses to be in a command port address space of the
module; and, k

tively indicate a status of the first plurality of write
commands.

15. The module of claim 14, wherein the status indicators
signal whether a corresponding one of the first plurality of
write commands has been received by the module.

16. The module of claim 14, wherein the status indicators
signal whether a corresponding one of the first plurality of
write commands has been executed by the module.

17. The module of claim 14, wherein the second plurality
of data transfers each include a plurality of different valued
Status tags.

