
US 20190114161A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0114161 A1

Iyer et al . (43) Pub . Date : Apr . 18 , 2019

(54) ENFORCING SECURITY POLICIES FOR
SOFTWARE CONTAINERS

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

Publication Classification
(51) Int . CI .

G06F 8 / 61 (2006 . 01)
G06F 21 / 57 (2006 . 01)
G06F 2144 (2006 . 01)

(52) U . S . CI .
CPC G06F 8 / 63 (2013 . 01) ; G06F 21 / 57

(2013 . 01) ; G06F 2221 / 2101 (2013 . 01) ; G06F
21 / 577 (2013 . 01) ; G06F 2221 / 033 (2013 . 01) ;

G06F 21 / 44 (2013 . 01)

(72) Inventors : Sreekanth R . Iyer , Bangalore (IN) ;
Kaushal K . Kapadia , Ashok Nagar
(IN) ; Ravi K . Muthukrishnan ,
Bangalore (IN) ; Nataraj Nagaratnam ,
Cary , NC (US) ; Sulakshan
Vajipayajula , Bangalore (IN)

(57) ABSTRACT
(21) Appl . No . : 16 / 211 , 319
(22) Filed : Dec . 6 , 2018 In response to an attempt to install an instance of a container

in a production environment , a set of security criteria
associated with the container and features of the production
environment are compared . Based on the comparison , a
determination is made as to whether the features of the
production environment satisfy the set of security criteria .

Related U . S . Application Data
Continuation of application No . 15 / 097 , 313 , filed on
Apr . 13 , 2016 .

(63)

Container
Image A

331

Container
Image B
332 -

-

-

Local
Container
Registry

330
-

- Container
Instance A

321
-

Container Engine 323 To Private Container
Registry 510 (FIG . 5)

Host OS 324 User
301 -

- - - - - - - - - - - - -
Publication Module

340

Computer
320

? ? ? ? ? ? ? ? ? ?? ?? ? ? ? ? ? ? ? To Public Container
Registry 610 (FIG . 6) Security

Prerequisite File
312 _

Container Base
Layer Images

311 Source Code
Repository

310 — — — — — — — — — — — — — — —

Patent Application Publication Apr . 18 , 2019 Sheet 1 of 9 US 2019 / 0114161 A1

Container
100

Application Program
121 Application

Layer
112

Application Program
122

Script Program
123

Container
150

Middleware Program
124

Base
Layer
111

Base OS NNNNNNNN 125 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Root File System
126 ?????????????????????

??

Container Engine 140

OS Kemel 130

FIG . 1

Patent Application Publication Apr . 18 , 2019 Sheet 2 of 9 US 2019 / 0114161 A1

- 200

SELECT DESIRED CONTAINER BASE
LAYER IMAGE

201

BUILD COMPLETE CONTAINER IMAGE
ON CONTAINER BASE LAYER

202

STORE COMPLETED CONTAINER IMAGE
IN LOCAL CONTAINER REGISTRY

203

PUBLISH COMPLETED CONTAINER
IMAGE TO REMOTE CONTAINER

REGISTRY
204

FIG . 2

Container Image A
Container Image B 332

331

Patent Application Publication

Local Container Registry 330

Container Instance A 321
Container Engine 323

To Private Container
Registry 510 (FIG . 5)

User

Host OS 324

301

Apr . 18 , 2019 Sheet 3 of 9

Publication Module 340 VANNN
Computer - 320

-

- - - - - - - - -

- - - - - - - - -

- - - - - - - -

- - -

To Public Container
Registry 610 (FIG . 6)

Security Prerequisite File 312

Container Base I Layer Image 311

Source Code Repository 310

—

—

—

—

—

-

-

-

-

-

-

-

-

-

US 2019 / 0114161 A1

FIG . 3

Patent Application Publication Apr . 18 , 2019 Sheet 4 of 9 US 2019 / 0114161 A1

om 400 REVIEW / MODIFY SECURITY POLICIES
PERIODICALLY

401 YNN
RECEIVE REQUEST FROM PRODUCTION

ENVIRONMENT USER TO INSTALL
INSTANCE OF A CONTAINER IMAGE

402

NO
verrir

SECURITY POLICY
ASSOCIATED WITH THE
CONTAINER IMAGE ?

403
YES

NO PRODUCTION
ENVIRONMENT FEATURES
PREVIOUSLY MAPPED ?

405

YES GENERATE MAP OF PRODUCTION
ENVIRONMENT FEATURES

406

COMPARE MAPPED PRODUCTION
ENVIRONMENT FEATURES TO SET OF
SECURITY CRITERIA DICTATED BY THE

SECURITY POLICY
407

ALLOW INSTALLATION OF THE
INSTANCE OF THE CONTAINER IMAGE

TO BE COMPLETED

YES
IMPLEMENT ADDED SECURITY
FEATURES IN PRODUCTION

ENVIRONMENT typhhhhhhhyytyty SECURITY CRITERIA
SATISFIED ?

408

NO YES

|
NOTIFY THE USER OF UNSATISFIED

SECURITY CRITERIA AND ASSOCIATED
SECURITY RISK

409

ADDED SECURITY FEATURES
AVAILABLE TO RESOLVE THE

SECURITY RISK ?
410

NO

DISALLOW INSTALLATION OF THE
INSTANCE OF THE CONTAINER IMAGE

412 FIG . 4

w

w

besten
en trenten

en te benteng

t

to the

water

w ww Container Image A 331

wwwwwww wie die Container Image B 332

Security Prerequisite File 312

1

Patent Application Publication

en

annen

met een commun www

com

o

aume anawem aman aman aman aman aman

men women

we wa

mwanae ameon annen aan and

From Publication Module 340 (FIG . 3)

Public Container Registry 510 w

Security Settings / Services API 561

Apr . 18 , 2019 Sheet 5 of 9

Container Engine 523

Security Enforcement Module 560

Host OS 524

Public Cloud Platform 570

Production Environment Mapping Module 550

FIG . 5

US 2019 / 0114161 A1

w

ww www won aw mo

Container Image A 331
Container Image B 332

Security Prerequisite File
ini win wind

Patent Application Publication

312

winin his win

From Publication Module 340 (FIG . 3)

Private Container Registry 610

1 -

-

-

-

-

-

-

-

-

-

-

-

w .

-

.

-

Container Engine 523

Apr . 18 , 2019 Sheet 6 of 9

Security Settings / Services API 561

Security Enforcement Module

AVAA VIVE VIVA

Host OS 524

560

*

*

*

*

*

*

*

YANANANANANANANANANANANANANANANAN

AV VAVAVAVAVAVAVAL

PRIVATE SERVER 670

Production Environment Mapping Module 550

FIG . 6

US 2019 / 0114161 A1

Patent Application Publication Apr . 18 , 2019 Sheet 7 of 9 US 2019 / 0114161 A1

Computer System Processor 702 701
CPU
702A

Memory 704 CPU
702B

Memory Controller Memory Bus
703 ????????????? 705

CPU
702C

U AAAAAAA KA

CPU
702D

VIIVVVVV

1 / 0 Bus Interface 710
wwwmmmmmmmmmmmmmmmmm AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA A A

NO Bus 708

Terminal
Interface

712

Storage
Interface

714

1 / 0 Device
Interface ???????????????

Network
Interface

718 716

FIG . 7

automation an d create the Patent Application Publication Apr . 18 , 2019 Sheet 8 of 9 US 2019 / 0114161 A1

IL 54C 54N
10

- - - - - - - . - - -

750 YYY -

3210
T

. . .

54A

.

O * . * * Ado)

XHOXRU MIX
Un

FIG . 8

Patent Application Publication Apr . 18 , 2019 Sheet 9 of 9 US 2019 / 0114161 A1

91 192 193 194 195

Workloads

/ / / / / / / / /
HORROR Management

?????????????????
WY

11 www w wwwwwwww ! IN

Virtualization
. .

. WORDS .

.

.

62
Hardware and Software

FIG . 9

US 2019 / 0114161 A1 Apr . 18 , 2019

ENFORCING SECURITY POLICIES FOR
SOFTWARE CONTAINERS

BACKGROUND
[0001] The present disclosure relates generally to the field
of data processing , and , more particularly , to implementing
security policies associated with software containers .
[0002] Computer virtualization has been utilized in a
variety of forms in modern computing . Early operating
systems provided memory virtualization , later computing
systems provided entire computer virtualization through
various Virtual Machine (VM) technologies and hypervi
sors .

[0014] FIG . 9 illustrates a diagram of abstraction model
layers , in accordance with embodiments of the present
disclosure .
10015] . While the embodiments described herein are ame
nable to various modifications and alternative forms , spe
cifics thereof have been shown by way of example in the
drawings and will be described in detail . It should be
understood , however , that the particular embodiments
described are not to be taken in a limiting sense . On the
contrary , the intention is to cover all modifications , equiva
lents , and alternatives falling within the spirit and scope of
the invention .

DETAILED DESCRIPTION
SUMMARY

10003) Embodiments of the present disclosure include a
method , computer program product , and system . In response
to an attempt to install an instance of a container in a
production environment , a set of security criteria associated
with the container and features of the production environ
ment are compared . Based on the comparison , a determina
tion is made as to whether the features of the production
environment satisfy the set of security criteria .
[0004] The above summary is not intended to describe
each illustrated embodiment or every implementation of the
present disclosure .

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] . The drawings included in the present disclosure are
incorporated into , and form part of , the specification . They
illustrate embodiments of the present disclosure and , along
with the description , serve to explain the principles of the
disclosure . The drawings are only illustrative of typical
embodiments and do not limit the disclosure .
[0006] FIG . 1 illustrates a diagram of an example con
tainer , in accordance with embodiments of the present
disclosure .
[0007] FIG . 2 illustrates a flow diagram of an example
method for developing a container image for use in produc
tion environments , in accordance with embodiments of the
present disclosure .
[0008] . FIG . 3 illustrates a block diagram of an example
container development environment , in accordance with
embodiments of the present disclosure .
[0009] FIG . 4 illustrates a flow diagram of an example
method for enforcing security policies associated with con
tainer instances , in accordance with embodiments of the
present disclosure .
[0010] FIG . 5 illustrates a block diagram of an environ
ment including a public registration container and a public
production environment , in accordance with embodiments
of the present disclosure .
[0011] FIG . 6 illustrates an environment including a pri
vate registration container and a private production envi
ronment , in accordance with embodiments of the present
disclosure
[0012] FIG . 7 illustrates a high - level block diagram of an
example computer system that may be used in implementing
embodiments of the present disclosure .
[0013] FIG . 8 illustrates a diagram of a cloud computing
environment , in accordance with embodiments of the pres
ent disclosure .

[0016] Aspects of the present disclosure relate generally to
the field of data processing , and in particular to implement
ing security policies associated with software containers .
While the present disclosure is not necessarily limited to
such applications , various aspects of the disclosure may be
appreciated through a discussion of various examples using
this context .
[0017] Software containers (“ containers ”) have emerged
as a form of virtualization that allows isolated execution of
a program with regard to other programs of a computer . A
Linux Container (LXC) is an example of a software con
tainer . Other software container technologies includes jails ,
workload partitions , or containers implemented in other
types of operating systems .
[0018] Containers generally incorporate programs .
Executing a container entails running the programs within
the container on a computer . More specifically , containers
may execute by utilizing the environment and programming
interfaces of an underlying (i . e . , not included within the
container) host operating system (OS) of the computer . A
host OS (e . g . , a Linux operating system or Linux kernel)
may enable , initiate , or control execution of the programs
within the container . The host OS may also isolate the
operations of programs within the container from other
programs executing outside of the container and from
resources of the computer not required by the programs
within the container . A host OS may run a number of
different containers , or a number of instances of the same
container , on a single computer .
[0019] A container may utilize a complete host OS , or may
utilize only a host OS kernel . Programs executing within a
container may share the host OS (or OS kernel) with other
programs executing on the same computer , including pro
grams executing in other containers . Containers may offer
many features of VMs while requiring less memory (by
virtue of not requiring a complete instance of an operating
system for each instance of a container) , and executing with
lower system overhead (by virtue of directly utilizing the
underlying operating system kernel , versus an independent
operating system in a VM - hosted environment) .
[0020 Recently , software platforms , such as Docker , have
arisen that allow developers and administrators to build ,
export , and run applications in containers with relative ease .
These platforms may also reduce the difficulties and com
patibility concerns that arise when shifting a container from
a development environment to one or more production
environments . In some situations , however , problems may
still arise . In particular , when allowing a container to be
deployed in a production environment there may be a need

US 2019 / 0114161 A1 Apr . 18 , 2019

les

to ensure that the production environment has adequate
security features given the specific security requirements for
that container .
[0021] In some embodiments of the present disclosure , a
container developer or other user may be able to dictate and
enforce the security requirements that must be in place when
the container is installed in a production environment . This
may include production environments over which the con
tainer developer or other user has no control or with which
the user has no association (e . g . , a public cloud platform
operated by a third party that is independent of the user) . In
some embodiments , this may involve causing the features of
a production environment to be mapped (e . g . , enumerated ,
discovered) and then compared with security criteria asso
ciated with a particular container to be installed in the
production environment . The installation may be allowed to
complete in situations where the security criteria are satis
fied . If the security criteria are not satisfied , then the instal
lation may not be allowed to be completed . In some embodi
ments , unsatisfied security criteria may be analyzed in view
of the features of the production environment in order to
determine whether added security features may be used to
alleviate security risks associated with the unsatisfied secu
rity criteria .
[0022] Referring now FIG . 1 , shown is a diagram of an
example container 110 , in accordance with embodiments of
the present disclosure . In some embodiments , the container
110 may be a file that includes or references components ,
which may themselves be other files that contain programs
and data . Further , in some embodiments , a separate , but still
associated , file external to the container 110 may reference
the components of the container 110 . As shown , container
110 includes application programs 121 and 122 , a script
program 123 , middleware programs 124 , a base operating
system 125 (i . e . , components of an OS not included in an OS
kernel) , and a root file system 126 . The components of the
container 110 may be designed to execute utilizing a par
ticular , underlying operating system (or operating system
kernel) , such as OS kernel 130 .
[0023] Different components of the container 110 may be
encapsulated within layers . Together these layers may form
the completed container 110 . As shown , container 110 has a
base layer 111 and application layer 112 . In some embodi
ments , many other layers or different divisions of the
depicted layers 111 and 112 are possible . A layer may
encapsulate all the program and data components necessary
to perform a particular function within the environment on
which the container executes .
[0024] In some embodiments , layers of a container may be
combined into a hierarchical stack wherein one layer may be
defined with reference to one or more layers below that layer
in the stack . Components of one layer may replace , or may
augment , components of a lower layer . For example , base
layer 111 may include a component of OS kernel 130 , such
that the component included in base layer 111 replaces or
substitutes for the equivalent component of OS kernel 130 .
10025] . In some embodiments , additional programs may be
incorporated between a container and the OS kernel (or Host
OS) on which it operates . For example , as depicted , con
tainer engine 140 is incorporated between container 100 and
OS kernel 130 . As used herein , a container engine may refer
to a container management program that is used to manage
the building and execution of containers . Furthermore , in
some embodiments , multiple containers may run on a single

host OS and / or a single container engine . For example , as
depicted , a second container 150 also runs on OS kernel 130
and container engine 140 .
100261 In some embodiments , a container may effectively
be stored as a container image . In addition , each layer of the
container may also be an image that is combined with the
other layer images to make the container image . As viewed
by external programs and human users , an image may be
simply a file . An image may also be an isolated portion of
a file system . Files within an image may include program
files (e . g . , script files , source program files , or binary execut
able files) , data files , and directory structures that include
those program or data files .
[0027] . In some embodiments , a container may refer to an
executable (e . g . , run - time) entity that references a container
image and establishes a context for running a set of pro
grams using components of the container image . Further
more , as used herein , an instance of a container may be
deemed installed when it is utilizing components of a
particular container image .
[0028] Referring now to FIG . 2 , shown is a flow diagram
of an example method 200 for developing a container image
for use in production environments , in accordance with
embodiments of the present disclosure . In some embodi
ments , operations of the method 200 may be performed by
a user (e . g . , software developer) , a computer , or a combi
nation thereof . In some embodiments , operations of the
method 200 may be performed in a development environ
ment . The method may begin at operation 201 , wherein a
desired container base layer image is selected . In some
embodiments , the base layer image (and other layer images)
may be obtained from a file (or source code) repository . The
base layer image (and other layer images) may be a pre
designed standardized layer that is used by multiple devel
opers for a wide variety of different containers .
[0029] Per operation 202 , a completed container image
may be built (e . g . , created) on the container base layer . This
building may be performed manually , for example , by a
software developer utilizing a user interface to create the
container image and / or a configuration file describing the
container . In some embodiments , the user interface may be
part of a container manager program (e . g . , a user interface
associated with a container engine) . During the build , the
software developer may execute commands that sequen
tially assemble a container , such as by assembling layers of
the container from the lowest to highest in a stack of layers .
Also , the software developer may associate a file with a
container by direct inclusion of the file within a layer
incorporated within the container . Alternatively , associating
a file with a container may be accomplished by including a
reference in the container image to a location of the file .
[0030] After completion of the build , and per operation
203 , the completed container image may be stored in a local
container registry . This local container registry may be
accessible only to the software developer and the container
images stored therein may not be accessible (or deemed
ready for use in production environments . Per operation
204 , the software developer may publish the completed
container image to one or more remote container registries .
In some embodiments , these remote registries may be used
to hold multiple containers that are available to users for use
in production environments . Furthermore , in some embodi
ments , a remote registry may be accessible to only a
particular organization (e . g . , an enterprise that employs the

US 2019 / 0114161 A1 Apr . 18 , 2019

developer) , or may be generally accessible (e . g . , to a com
munity of software developers , who may be members of the
same or a variety of different organizations) .
[0031] Referring now to FIG . 3 , shown is a block diagram
of an example container development environment , in
accordance with embodiments of the present disclosure . In
the depicted example , a user 301 (e . g . , a software developer)
uses a computer 320 to develop containers for use in
production environments . The user 301 employs a container
engine 323 operating on the host OS 324 of his computer
320 to manage his container builds . To begin , once an
instance of the container engine 323 is executing on the
computer 320 , the user 301 obtains a container base layer
image 311 from the source code repository 310 . The user
301 then adds additional layer images (not shown) onto the
base layer image 311 to create a completed container
instance A 321 . This container is then stored , in this
example , in a local container registry (e . g . , local image
registry) 330 as container image A 331 . An additional
container image B 332 is also depicted as being stored in the
local container registry 330 .
[0032] . When the user 301 desires to provide containers to
others for production use , a publication module 340 (located
on the computer 320) obtains the container image A 331 and
container image B 332 from the local container registry 330
and pushes them to one or more remote container registries .
In the depicted example , these remote container registries
include a private container registry 510 and a public con
tainer registry 610 .
[0033] In some embodiments , the user 301 may desire to
associate one or more security prerequisite files 312 with
container images 331 and 332 before publishing them via
the publication module 340 . This may be done , for example ,
by associating the security prerequisite file 312 into the
container instance A 321 during the build of the that con
tainer (e . g . , by incorporating the security prerequisite file
312 within a layer of the container) . This may also be done ,
for example , by associating the security prerequisite file 312
with the container instance A 321 as the container is being
published (e . g . , by transmitting the security prerequisite file
312 with the container image A 331) to a remote container
registry .
[0034] By associating a security prerequisite file 312 with
a container image , a user 301 may be able to dictate policies
on a wide variety of security matters within production
environments where the containers are installed . For
example , security policies may relate to network security
(e . g . , container isolation) , file system security (e . g . , integrity
checking) , and event logging within the production envi
ronment . For a specific example , a security prerequisite file
312 may require that , within the production environment ,
traffic coming into the container only be allowed in through
a specific port . For another specific example , a security
prerequisite file 312 may require that the production envi
ronment have certain features implemented that will protect
the container from SQL injections , Denial - of - Service
attacks , or other cyberattacks .
[0035] Referring now to FIG . 4 , shown is a flow diagram
of an example method 400 for enforcing security policies
associated with container instances , in accordance with
embodiments of the present disclosure . In some embodi
ments , operations of the method 400 may be performed by
a user (e . g . , security administrator) , a computer , or a com
bination thereof . In some embodiments , operations of the

method 400 may be performed within a production envi
ronment , for example , by an installation manager program .
The method 400 may begin at operation 401 , wherein
security policies associated with container images stored in
registries are periodically reviewed and , in some cases ,
modified . These modifications may be made in response to
a variety of new conditions . For example , these conditions
may include changes in corporate security protocols or
security updates made in response to newly discovered
vulnerabilities .
[00361 Per operation 402 , a request is received from a
production environment user to install an instance of a
specific container in his production environment . In some
embodiments , the production environment user may be a
computer or application running within the production envi
ronment , rather than a human user . Per operation 403 , a
determination is made as to whether there is a security policy
currently associated with an image of the requested con
tainer . If not , then , per operation 404 , the installation of the
container in the production environment is allowed without
any security check of that environment . If , however , there is
a security policy associated with the image , then , per opera
tion 405 , another determination may be made as to whether
the features of the production environment have been pre
viously mapped . If no such map exists , then , per operation
406 , a map of production environment features may be
generated .
[0037] In some embodiments , the production environment
map may be designed to include a listing (or table) of aspects
of the production environment that are relevant to the
relative security of that environment . Specifically , the map
may include information about the production environ
ment ' s operating system , firewalls , security patches , soft
ware restriction policies , and public key policies , among
other features . It may include a list of security services that
are supported in the production environment . In some
embodiments , the map may be generated based on an
automated audit of the production environment (e . g . , one
performed by a trusted third - party) . In other embodiments ,
the map may be generated based on information provided by
the user of the production environment (e . g . , in the form of
responses to a security survey) . In some embodiments ,
generating the map may involve enumerating a correlation
between a security requirement and a particular feature of
the production environment that satisfies the security
requirement . In some embodiments , generating the map may
involve matching the discovered security settings in the
production environment with various security categories .
For example , a category may be whether or not the produc
tion environment employs a firewall . Thus , the concern may
not be the particular type of firewall that the production
environment employs but rather whether one is employed at
all or whether the production environment (or the organi
zation controlling the production environment) allows the
use of a firewall if required by a security policy associated
with a container image . This type of category matching may
produce less detailed , but perhaps more easily used , maps .
[0038] Once the map is generated , per operation 406 , or a
previously generated map is retrieved , then , per operation
407 , the mapped production environment features may be
compared to a set of security criteria that are dictated by the
security policy associated with the container . Per operation
408 , a determination is made as to whether the set of security
criteria are satisfied . If so , then , per operation 404 , the

US 2019 / 0114161 A1 Apr . 18 , 2019

installation of the container in the production environment is
allowed . If at least one of the set of security criteria is not
satisfied , then , per operation 409 , the user is notified of the
unsatisfied security criteria and the security risk posed by
this lapse .
[0039] Per operation 410 , a determination is made as to
whether there are added security features available to
resolve the identified security risk . In some embodiments ,
this may involve determining whether features of the pro
duction environment can be modified so as to alleviate the
risk . For another example , this may involve determining
whether a monitoring service is available outside of the
production environment and determining whether the user
would accept the installation of such a service . In some
embodiments , a monitoring service solution may be
employed within the production environment but outside of
the container being installed . In other embodiments , the
monitoring service may be integrated directly into the con
tainer .
[0040] If a determination is made in operation 410 that no
added security features are available (e . g . , because the
particular security policy does not allow for any deviations
from the set of security criteria or because the user does not
desire to implement an added security feature after it is
identified) , then , per operation 412 , the installation of the
container instance in the production environment is disal
lowed . Alternatively , if security features are determined to
be available in operation 410 , then , per operation 411 , the
added security features may be implemented in the produc
tion environment , and , per operation 404 , the installation of
the container instance may be allowed to be completed . In
some embodiments , the added security features may be
added and / or adjusted automatically depending on the
implemented security policies .
[0041] While an example embodiment of the method 400
is described herein , many variants on this method may be
possible . For example , in some embodiments , after a user is
notified of an unsatisfied security criteria (per operation
409) , the user may be able to ignore the risk and proceed
with the installation , even against the recommendation of
the computer (or installation manager) performing the
method . For another example , in some embodiments , a
monitoring service may be required within the production
environment any time that the container is installed therein .
This monitoring service may be used to continuously
enforce certain of the security criteria . If the monitoring
service detects an unacceptable deviation from the security
criteria the container may be automatically shut down and / or
uninstalled . For yet another example , in some embodiments ,
before a second container is linked to an installed container
that has an associated security policy , a security audit of the
second container may be required . This security audit may
include requiring the features second container to be mapped
(as described above) and then have that map compared with
security criteria in order to determine whether there are any
risks involved with linking the second container to the
installed container .
[0042] Referring now to FIG . 5 , shown is a block diagram
of an environment including a public registration container
and a public production environment , in accordance with
embodiments of the present disclosure . As shown , container
image A 331 , container image B 332 , and security prereq
uisite file 312 are stored in public container registry 510 after
having been received from publication module 340 of FIG .

3 . In some embodiments , the public container registry 510
may include many additional container images (e . g . , hun
dreds) and additional security perquisite files received from
a variety of different sources .
[0043] Also shown are a security enforcement module 560
and a production environment mapping module 550 . In
some embodiments , these two modules may coordinate to
evaluate the security features of production environments
(such as public cloud platform 570) that attempt to install
container images from public container registry 510 . Spe
cifically , the production environment mapping module 550
may be responsible for identifying the relevant features of a
production environment under evaluation . In some embodi
ments , the production environment mapping module 550
may (either directly or through a security settings / services
API 561) generate a security map of a production environ
ment based on the features discovered therein . Furthermore ,
the production environment mapping module 550 may store
these security feature maps until they are needed by the
corresponding security enforcement module 560 . In some
embodiments , the environment mapping module 550 may
leverage a separate service that is designed to locate the
relevant features of the production environment . Further
more , in some embodiments , the environment mapping
module 550 (or an associated service) may use a XML or
JSON file to act as a security feature map or to otherwise list
relevant features of the production environment . The secu
rity enforcement module 560 may be configured to compare
features described in a feature map to a set of security
criteria dictated by a security prerequisite file associated
with a container image to be installed .
[0044] Shown as connected to security enforcement mod
ule 560 , the production environment mapping module 550 .
and the public cloud platform 570 is the security settings /
services API 561 . In some embodiments , this API may be
used by a computer program that allows individuals (e . g . ,
security administrators) to modify container security crite
ria , for example , by changing the security prerequisite file
with which a particular container image is associated . Fur
thermore , in some embodiments , the security enforcement
module 560 may , either through API 561 or through a direct
connection with public cloud platform 570 , attempt to
enforce security criteria on the public cloud platform 570 .
This enforcement may involve the security enforcement
module 560 either allowing or disallowing the installation of
an instance of a container image of the public cloud platform
570 depending on whether security criteria are met . In some
embodiments , the interaction between the security enforce
ment module 560 and the public cloud platform 570 may be
taken a step further in that the security enforcement module
560 (either directly or through API 561) may be able to make
modifications to the settings of features within the public
cloud platform 570 in order to ensure that the security
criteria are met and / or are continued to be maintained . This
may involve , for example , the security enforcement module
560 modifying firewall settings in the cloud platform 570 in
response to determining that the settings do not meet secu
rity criteria without the modification .
100451 . An example scenario that may occur in the envi
ronment of shown in FIG . 5 will now be described . In this
scenario , a user (e . g . , human user or a computer program) is
operating within the public cloud platform 570 and has
access to an established host OS 524 and container engine
523 . The user requests installation of an instance of con

US 2019 / 0114161 A1 Apr . 18 , 2019

tainer image A 331 on the container engine 523 . Upon
receiving this request , the security enforcement module 560
determines that container image A 331 is associated with
security prerequisite file 312 . Accordingly , the security
enforcement module 560 obtains the security prerequisite
file 312 from the public container registry 510 and also
obtains a feature map of the public cloud platform 570 from
the production environment mapping module 550 . The secu
rity enforcement module 560 then compares the set of
security criteria included in the security prerequisite file 312
with the features of the public cloud platform 570 (as
described in the feature map) .
[0046] Continuing this example scenario , there are several
different outcomes that can result based on this security
comparison . One potential outcome is that the security
enforcement module 560 could determine that the features
of the public cloud platform 570 satisfy the security criteria .
In this situation , the user would be allowed to install
container A and an instance of container A would begin
executing on the container engine 523 . Another potential
outcome is the security module could determine that the
features of the public cloud platform 570 do not satisfy at
least one of the security criteria . In this situation , depending
on the security settings in place , the security enforcement
module 560 could respond to this failure by disallowing the
installation of the container A or by allowing the installation
only after added security features (e . g . , a monitoring feature)
are employed within the public cloud platform 570 . In
another embodiment , the security enforcement module 560
could respond to this failure by automatically modifying
features within the public cloud platform 570 so that the
security criteria are thereafter met .
10047] Referring now to FIG . 6 , shown is an environment
including a private registration container and a private
production environment , in accordance with embodiments
of the present disclosure . The environment of FIG . 6 may be
employed , for example , in a corporate setting or other
environment where the publication and use of the container
images is limited to those within a select group of related
users . As compared to the environment shown in FIG . 5 , the
environment of FIG . 6 includes a private server 670 (as an
alternative to public cloud platform 570) and a private
container registry 610 (as an alternative to public container
registry 510) . In some embodiments , the security criteria
associated with the container images stored in the private
container registry 610 may be adjusted by a user such as a
corporate system administrator that utilizes the security
settings API 561 . In this way the system administrator may
be able to dynamically adjust security policies depending on
new and changing security risks that he perceives .
[0048] Referring now to FIG . 7 , shown is a high - level
block diagram of an example computer system (i . e . , com
puter) 701 that may be used in implementing one or more of
the methods or modules , and any related functions or
operations , described herein (e . g . , using one or more pro
cessor circuits or computer processors of the computer) , in
accordance with embodiments of the present disclosure . In
some embodiments , the major components of the computer
system 701 may comprise one or more CPUs 702 , a memory
subsystem 704 , a terminal interface 712 , a storage interface
714 , an I / O (Input / Output) device interface 716 , and a
network interface 718 , all of which may be communica
tively coupled , directly or indirectly , for inter - component

communication via a memory bus 703 , an I / O bus 708 , and
an I / O bus interface unit 710 .
[0049] The computer system 701 may contain one or more
general - purpose programmable central processing units
(CPUs) 702A , 702B , 702C , and 702D , herein generically
referred to as the CPU 702 . In some embodiments , the
computer system 701 may contain multiple processors typi
cal of a relatively large system ; however , in other embodi
ments the computer system 701 may alternatively be a single
CPU system . Each CPU 702 may execute instructions stored
in the memory subsystem 704 and may comprise one or
more levels of on - board cache .
[0050] In some embodiments , the memory subsystem 704
may comprise a random - access semiconductor memory ,
storage device , or storage medium (either volatile or non
volatile) for storing data and programs . In some embodi
ments , the memory subsystem 704 may represent the entire
virtual memory of the computer system 701 , and may also
include the virtual memory of other computer systems
coupled to the computer system 701 or connected via a
network . The memory subsystem 704 may be conceptually
a single monolithic entity , but , in some embodiments , the
memory subsystem 704 may be a more complex arrange
ment , such as a hierarchy of caches and other memory
devices . For example , memory may exist in multiple levels
of caches , and these caches may be further divided by
function , so that one cache holds instructions while another
holds non - instruction data , which is used by the processor or
processors . Memory may be further distributed and associ
ated with different CPUs or sets of CPUs , as is known in any
of various so - called non - uniform memory access (NUMA)
computer architectures . In some embodiments , the main
memory or memory subsystem 704 may contain elements
for control and flow of memory used by the CPU 702 . This
may include a memory controller 705 .
[0051] Although the memory bus 703 is shown in FIG . 7
as a single bus structure providing a direct communication
path among the CPUs 702 , the memory subsystem 704 , and
the I / O bus interface 710 , the memory bus 703 may , in some
embodiments , comprise multiple different buses or commu
nication paths , which may be arranged in any of various
forms , such as point - to - point links in hierarchical , star or
web configurations , multiple hierarchical buses , parallel and
redundant paths , or any other appropriate type of configu
ration . Furthermore , while the I / O bus interface 710 and the
I / O bus 708 are shown as single respective units , the
computer system 701 may , in some embodiments , contain
multiple I / O bus interface units 710 , multiple I / O buses 708 ,
or both . Further , while multiple I / O interface units are
shown , which separate the I / O bus 708 from various com
munications paths running to the various 1 / 0 devices , in
other embodiments some or all of the I / O devices may be
connected directly to one or more system I / O buses .
[0052] In some embodiments , the computer system 701
may be a multi - user mainframe computer system , a single
user system , or a server computer or similar device that has
little or no direct user interface , but receives requests from
other computer systems (clients) . Further , in some embodi
ments , the computer system 571 may be implemented as a
desktop computer , portable computer , laptop or notebook
computer , tablet computer , pocket computer , telephone ,
smart phone , mobile device , or any other appropriate type of
electronic device .

US 2019 / 0114161 A1 Apr . 18 , 2019

illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and / or
network addressable connection (e . g . , using a web browser) .
[0073] Referring now to FIG . 9 , a set of functional
abstraction layers provided by cloud computing environ
ment 50 (FIG . 8) is shown . It should be understood in
advance that the components , layers , and functions shown in
FIG . 9 are intended to be illustrative only and embodiments
of the invention are not limited thereto . As depicted , the
following layers and corresponding functions are provided :
10074) Hardware and software layer 60 includes hardware
and software components . Examples of hardware compo
nents include : mainframes 61 ; RISC (Reduced Instruction
Set Computer) architecture based servers 62 ; servers 63 ;
blade servers 64 ; storage devices 65 ; and networks and
networking components 66 . In some embodiments , software
components include network application server software 67
and database software 68 .
[0075] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided : virtual servers 71 ; virtual storage 72 ;
virtual networks 73 , including virtual private networks ;
virtual applications and operating systems 74 ; and virtual
clients 75 .
10076] In one example , management layer 80 may provide
the functions described below . Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment . Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment , and billing or invoicing for
consumption of these resources . In one example , these
resources may include application software licenses . Secu
rity provides identity verification for cloud consumers and
tasks , as well as protection for data and other resources . User
portal 83 provides access to the cloud computing environ
ment for consumers and system administrators . Service level
management 84 provides cloud computing resource alloca
tion and management such that required service levels are
met . Service Level Agreement (SLA) planning and fulfill
ment 85 provide pre - arrangement for , and procurement of ,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA .
[0077] Workloads layer 90 provides examples of function
ality for which the cloud computing environment may be
utilized . Examples of workloads and functions which may
be provided from this layer include : mapping and navigation
91 ; software development and lifecycle management 92 ;
virtual classroom education delivery 93 ; data analytics pro
cessing 94 ; transaction processing 95 ; and mobile desktop
96 .
[0078] As discussed in more detail herein , it is contem
plated that some or all of the operations of some of the
embodiments of methods described herein may be per
formed in alternative orders or may not be performed at all ;
furthermore , multiple operations may occur at the same time
or as an internal part of a larger process .
[0079] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .

10080] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0081] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers , and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0082] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or
either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C + + or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user ' s computer ,
partly on the user ' s computer , as a stand - alone software
package , partly on the user ' s computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user ' s computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec
tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer

US 2019 / 0114161 A1 Apr . 18 , 2019

readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present invention .
[0083] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0084] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0085] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0086] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .
[0087] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the

art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .
[0088] Although the present invention has been described
in terms of specific embodiments , it is anticipated that
alterations and modification thereof will become apparent to
the skilled in the art . Therefore , it is intended that the
following claims be interpreted as covering all such altera
tions and modifications as fall within the true spirit and
scope of the invention .
What is claimed is :
1 . A computer - implemented method comprising :
comparing , in response to an attempt to install an instance
of a container image in a production environment , a set
of security criteria associated with the container image
and features of the production environment , wherein
the container instance comprises a run - time entity that
is configured to utilize referenced components of the
container image while executing upon on operating
system kernel of the production environment , wherein
the comparing the set of security criteria associated
with the container image and the features of the pro
duction environment comprises comparing the set of
security criteria to a pre - established map of the security
functionalities of the production environment , wherein
the pre - established map is created based on an audit of
the features of the production environment , and
wherein the comparing the set of security criteria to the
pre - established map of the security functionalities of
the production environment comprises :
generating , based on the audit , a listing of the features
of the production environment ; and

enumerating , for each particular security criterion of
the set of security criteria , correlations between the
particular security criterion and corresponding par
ticular listed features that satisfy that particular secu
rity criterion ; and

determining , based on the comparing , whether the fea
tures of the production environment satisfy the set of
security criteria .

2 . The method of claim 1 , wherein the attempt to install
the container instance includes obtaining the container
image from a container registry that includes a plurality of
different container images , further comprising :

receiving , at the container registry , the container image ,
wherein the container image as received includes an
associated security prerequisite file that includes the set
of security criteria .

3 . The method of claim 1 , further comprising :
determining that the features of the production environ
ment do not satisfy at least one criterion of the set of
security criteria ;

identifying , based on an identity of the not satisfied at
least one criterion , a risk associated with the installa
tion of the container instance ; and

providing the identified risk to a user that is attempting the
installation .

4 . A computer program product comprising a computer
readable storage medium , wherein the computer readable
storage medium is not a transitory signal per se , the com

US 2019 / 0114161 A1 Apr . 18 , 2019

puter readable storage medium having program instructions
embodied therewith , the programs instructions configured ,
when executed by at least one computer , to cause the at least
one computer to perform a method comprising :

comparing , in response to an attempt to install an instance
of a container image in a production environment , a set
of security criteria associated with the container image
and features of the production environment , wherein
the container instance comprises a run - time entity that
is configured to utilize referenced components of the
container image while executing upon on operating
system kernel of the production environment , wherein
the comparing the set of security criteria associated
with the container image and the features of the pro
duction environment comprises comparing the set of
security criteria to a pre - established map of the security
functionalities of the production environment , wherein
the pre - established map is created based on an audit of
the features of the production environment , and
wherein the comparing the set of security criteria to the
pre - established map of the security functionalities of
the production environment comprises :
generating , based on the audit , a listing of the features
of the production environment ; and

enumerating , for each particular security criterion of
the set of security criteria , correlations between the
particular security criterion and corresponding par
ticular listed features that satisfy that particular secu
rity criterion ; and

determining , based on the comparing , whether the fea
tures of the production environment satisfy the set of
security criteria .

5 . The computer program product of claim 3 , wherein the
attempt to install the container instance includes obtaining
the container image from a container registry that includes
a plurality of different container images , and wherein the
method further comprises :

receiving , at the container registry , the container image ,
wherein the container image as received includes an
associated security prerequisite file that includes the set
of security criteria .

6 . The computer program product of claim 3 , wherein the
method further comprises :

determining that the features of the production environ
ment do not satisfy at least one criterion of the set of
security criteria ;

identifying , based on an identity of the not satisfied at
least one criterion , a risk associated with the installa
tion of the container instance ; and

providing the identified risk to a user that is attempting the
installation .

7 . A system comprising :
at least one memory ; and
at least one processor in communication with the at least

one memory , the at least one processor configured to
obtain instructions from the memory that cause the at
least one processor to perform a method comprising :
comparing , in response to an attempt to install an

instance of a container image in a production envi
ronment , a set of security criteria associated with the

container image and features of the production envi
ronment , wherein the container instance comprises a
run - time entity that is configured to utilize refer
enced components of the container image while
executing upon on operating system kernel of the
production environment , wherein the attempt to
install the container instance includes obtaining the
container image from a container registry that
includes a plurality of different container images ,
wherein the container image as received at the con
tainer registry includes an associated security pre
requisite file that includes the set of security criteria ,
wherein the comparing the set of security criteria
associated with the container image and the features
of the production environment comprises comparing
the set of security criteria to a pre - established map of
the security functionalities of the production envi
ronment , and wherein the pre - established map is
created based on an audit of the features of the
production environment ;

determining , based on the comparing the set of security
criteria associated with the container image and the
features of the production environment , whether the
features of the production environment satisfy the set
of security criteria ;

determining that the features of the production envi
ronment do not satisfy at least one criterion of the set
of security criteria ;

identifying , based on an identity of the not satisfied at
least one criterion , a risk associated with the instal
lation of the container instance ;

providing an added security feature to the production
environment to alleviate the identified risk ; and

allowing , based on the added security feature , the
attempted installation to be completed .

8 . The system of claim 7 , wherein the set security criteria
dictates container isolation security polices within the pro
duction environment by requiring that the features of the
production environment be configured to allow traffic into
the container instance only through a specific port .

9 . The system of claim 7 , wherein the providing the added
security feature comprises installing a monitoring service
within the production environment but outside of the con
tainer instance .

10 . The system of claim 9 , wherein the installed moni
toring service is configured to continuously enforce at least
one security criterion of the set of security criteria by
automatically shutting down the container instance , after the
attempted installation is completed , in response to detecting
a deviation from that at least one security criterion .

11 . The system of claim 7 , wherein the security prereq
uisite file is incorporated into the container image as
received .

12 . The system of claim 7 , wherein the security criteria
are associated with the container image by a developer of the
container during a build of the container image , and wherein
the developer is not associated with the production environ
ment .

