US 20150124826A1

a2y Patent Application Publication o) Pub. No.: US 2015/0124826 A1

a9 United States

Edsall et al.

43) Pub. Date: May 7, 2015

(54) NETWORK FABRIC OVERLAY

(71) Applicant: Cisco Technology, Inc., San Jose, CA
(US)

(72) Inventors: Thomas James Edsall, Los Gatos, CA
(US); Navindra Yadav, Cupertino, CA
(US); Francisco M. Matus, Saratoga,
CA (US); Kit Chiu Chu, Fremont, CA
(US); Michael R. Smith, San Jose, CA
(US); Sameer Merchant, Sunnyvale,
CA (US); Krishna Doddapaneni,
Cupertino, CA (US); Satyam Sinha,
Sunnyvale, CA (US)

(21) Appl. No.: 14/530,550
(22) Filed: Oct. 31,2014

Related U.S. Application Data

(60) Provisional application No. 61/900,228, filed on Now.

5,2013.

Publication Classification

(51) Int.CL

HO4L 12/741 (2006.01)
(52) US.CL

CPC oo HO4L 45/74 (2013.01)
(57) ABSTRACT

Disclosed herein are methods of forwarding packets on a
network, such as a leaf-spine network having leaf devices and
spine devices. The methods may include receiving a packet at
an ingress leaf device, and determining based, at least in part,
on a header of the packet whether the packet is to be trans-
mitted to a spine device. The methods may further include
ascertaining based, at least in part, on a header of the packet
whether to perform encapsulation on the packet, encapsulat-
ing the packet according to a result of the ascertaining, and
then transmitting the packet to a spine device according to a
result of the determining. Also disclosed herein are network
apparatuses which include a processor and a memory, at least
one of the processor or the memory being configured to
perform some or all of the foregoing described methods.

Layer4 Layer3 tayer2

Encapsulation Header

Underlying TCP/UDP Packet

Patent Application Publication May 7, 2015 Sheet 1 of 9 US 2015/0124826 A1

A

Layer4 Layer3 Layer2

Encapsulation Header

FiIG. 1

Underlying TCP/UDP Packet

FIG. 2

Patent Application Publication May 7, 2015 Sheet 2 of 9 US 2015/0124826 A1

FIG. 3

May 7,2015 Sheet 3 of 9 US 2015/0124826 Al

Patent Application Publication

osy

srr

orr
poisnig joN l)
: DAL A,
NYTIXA i FHOAN

A

85¥

1
plemio

A|_.| d3t

A|_l. Qm_\/_

uies’
T oLy
06%

A\|ﬂ| FYDAN ———

[} paysniy

44
A. 7 JON ‘NYIXA
(134

paIsniL ‘NY XA

uopemsdesusy

(1144
¢ N (umouury 10} oN
(1134

AN

o9y

"9 ‘GINA .||_

218 "QINA 14
~p¢ ‘Ojul JI8pedY JoRIIXS
pue uogensdesus duig

UOIBJIISSE|D

al NY1A
yg-z) 1eixg |
| aNAwgvzaal L /
OINA =1 NWIA 121 benuoD osr
F4414
sor

19)0ed

L

4 jJayoed punoquy 'l.ﬂ

[11/4

pajsnif JoN ‘NVIXA lﬂ
0

paIsniL 'NYTXA

e GG¥

ozy
uopemsdesuy
{umouyun 10) oN m
oy

v "OIld

Patent Application Publication May 7, 2015 Sheet 4 of 9 US 2015/0124826 A1

FORWARDING TABLE (AT LEAF)

Identifier Adjacency Pointer Number of Paths | Physical Port | Class
AO2 A0S AD4 AQ8 Al10
VNID, IP
VNID, MAC

FIG. 5A

ADJACENCY TABLE (AT LEAF)

VNID | MAC | ENCAP PTR | CTRL | Physical Port
BO4 | BO6 | BOS B10 | B12

ENCAPSULATION TABLE (AT LEAF)

Address Physical Port
Cco4 C06

FIG. 5C

Patent Application Publication May 7, 2015 Sheet S of 9 US 2015/0124826 A1
MAPPING TABLE (AT SPINE)
fdentifier D02
VNID MAC or IP address | Address type | Locator
DO8 D06 D10 D04
FiG. 5D

LAYER 2 PROXY MAPPING TABLE (AT PROXY)

Identifier EQ2
VNID MAC Locator
EO6 EO8 E04
FIG. 5E

LAYER 3 PROXY MAPPING TABLE (AT PROXY)

ldentifier FO2

VNID
FO6

IP address
FO8

Address type
F10

Locator
FO4

FIG. 5F

Patent Application Publication May 7, 2015 Sheet 6 of 9 US 2015/0124826 A1

Adjacency T

Pointer 606 / Adjacency Table
. Forwarding ! j 616
Identifier 602, Tapie N i
—
004 Numberof
Paths 608 |
v v v
VNID MAC ENCAP CTRL
i 618 620 PTR 624
Flow (e.g., tuple) P 622
612 T
Hash o 0 L
" et0 0

Patent Application Publication May 7, 2015 Sheet 7 of 9 US 2015/0124826 A1

Receive
packet at leaf
device
702

) 4

Determine whether
packet is to be
fransmitted to a spine
device
704

N

Ascertain whether
to perform
encapsulation on
the packet
706

4

Encapsulate the
packet according
to a result of the
ascertaining
708

A
After encapsulating the
packet according to a
result of the ascertaining,
transmit the packet to a
spine device according to
a result of the determining
710

FIG. 7

Patent Application Publication May 7, 2015 Sheet 8 of 9 US 2015/0124826 A1

100

200
W

T-"""“-“'"'~-""'--"*"'-""'"':

|

| I Y
230 — | I e

L= ey i, w

N
— 215

: I 225
220 — | |

| {

| |

5 |

FIG. 9

Patent Application Publication

May 7, 2015 Sheet 9 of 9

US 2015/0124826 Al

o ALY
\‘ | = I
, WMI 315
Dol 13 1-4
: .
—l
325 : 1 \ 325
i
322 ~ |
I SN
iy o -
vo RS
EROONOO FIG. 10A-2
FIG. 10A-1
302
N
___ ‘
330 —— 335
§ L
; I i VAR
! i
o N~ SN~ NN]
— — 315
F— = = = 7 - - — - F - - - - — — o { - - - 1
§ {
{ }
} {
f {
b}
320 | 1 2 3 4
i T 325
{ i
i {
; e 305
310 —_

FIG. 10B

US 2015/0124826 Al

NETWORK FABRIC OVERLAY

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority from U.S. Provi-
sional Application No. 61/900,228, entitled “NETWORK
FABRIC OVERLAY,” by Edsall et al, filed on Nov. 5, 2013,
which is incorporated herein by reference in its entirety and
for all purposes.

BACKGROUND

[0002] An overlay based on, e.g., VXLAN (Virtual Exten-
sible LAN), may be used to virtualize a network’s physical
infrastructure. An overlay requires the data path at the edge of
the network to map from the Tenant end-point address in the
packet, a.k.a. its “identifier,” to the location of the end-point,
ak.a. its “locator”. This mapping occurs in a function that
may be referred to as a “Tunnel End-Point” or TEP.

[0003] The challenge of with this mapping is how to scale it
for very large, high performance data centers. The first prob-
lem with scale is that this mapping state must exist in a large
number of locations or TEPs. The mapping must be done in
every TEP where an end-point exists that wants to send a
packet across the network to another end-point. Potentially,
this is at every ingress point in the network.

[0004] The second problem with scale is that when an end-
point moves, i.e. its locator changes, the mapping state must
be updated across the network in all TEPs that have that
mapping.

[0005] One typical solution is to propagate the mapping to
all the TEPs all the time, including changes. A variation on
this is to pull the mapping state from a centralized database
when it is needed triggered by an exception in the TEP. This
latter approach typically has some difficulty in handling end-
point movement, i.e. the mapping being out-of-date. Both of
these solutions suffer from scale limitations imposed by the
central entity that holds the authoritative database of all map-
pings. It either has too much latency, not enough capacity, or
is too expensive. Another issue with this kind of implemen-
tation is that it can be difficult to push state to a large number
of'locations reliably. In large systems, it is almost guaranteed
that some failures will occur when pushing the state and then
the system has to deal with inconsistent state.

[0006] Another approach is to utilize layer 2 semantics and
do a “Flood and Learn” where packets that are addressed to
end-points whose identifier to locator mapping is not known
at the ingress TEP are flooded to all egress TEPs where the
end-point may exist. The locator to identity mapping of the
source of the tunneled packet is then learned at the egress TEP
so that subsequent traffic in the reverse direction does not
have to be flooded. This solution has the problem that flood-
ing behavior is generally considered to be very bad because of
packets being sent to devices that do not want to see them, and
it does not nicely support routing semantics in the fabric
because you would not want to flood across a router. In
addition, this solution does not address the problem with an
end-point moving and the previously learned state being out
of date.

SUMMARY

[0007] Disclosed herein are methods of forwarding packets
ona network, such as a leaf-spine network having leaf devices
and spine devices. In some embodiments, the methods

May 7, 2015

include receiving a packet at an ingress leaf device, and
determining based, at least in part, on a header of the packet
whether the packet is to be transmitted to a spine device. In
some embodiments, the methods may further include ascer-
taining based, at least in part, on a header of the packet
whether to perform encapsulation on the packet, and encap-
sulating the packet according to a result of the ascertaining. In
some embodiments, after encapsulating the packet according
to the result of the ascertaining, the methods may further
include transmitting the packet to a spine device according to
a result of the determining.

[0008] In some embodiments, the methods may include
determining whether the device from which the packet is
received is a trusted device, and in certain such embodiments,
the foregoing ascertaining is based, at least in part, upon
whether the device is a trusted device. In some embodiments,
the foregoing encapsulating is performed, at least in part, by
the leaf device. In some embodiments, the methods may
further include selecting one of two or more spine devices,
and the foregoing transmitting includes sending the packet to
the selected spine device. In some embodiments, the methods
may further include obtaining an identifier of a destination
device to which the packet is addressed from a header of the
packet, and determining by the leaf device that it does not
have a location of the destination device. In certain such
embodiments, the encapsulating is thus performed such that a
header of the packet identifies one or more proxies, and
wherein transmitting the packet includes transmitting the
packet to at least one of the one or more proxies.

[0009] In some embodiments, the methods may include
receiving the packet at an egress leaf device after being sent
from the spine, and adding the packet’s source identifier and
source locator to a forwarding table associated with said
egress leaf device when said source identifier and source
locator are not already present in said forwarding table. In
some embodiments, the methods may include adding the
packet’s source identifier to a forwarding table associated
with the ingress leaf device when said source identifier is not
already present in said forwarding table.

[0010] In some embodiments, the methods may include
sending the packet from the ingress leaf device to the spine,
and after receipt at the spine and when the packet’s destina-
tion locator is set to the proxy address, looking up the packet’s
destination identifier in a forwarding table associated with the
spine to determine the destination locator corresponding to
said destination identifier. In certain such embodiments, such
methods may further include replacing the proxy address in
the packet’s header with said destination locator after the
determining of said destination locator. In some embodi-
ments, the packet’s destination identifier is indicative of the
VNID associated with the end device which generated the
packet. In some embodiments, one or more forwarding tables
associated with the spine contain entries matching end device
identifiers with end device locators, the locators indicative of
aleaf device a given identified end device is connected to, but
wherein said one or more forwarding tables associated with
the spine do not contain information listing which port or
ports of said leaf device connect to said identified end device.
[0011] In some embodiments, the methods may include
setting the destination locator field of the packet’s encapsu-
lation to be a proxy address when the ingress leaf device does
not have an entry in its forwarding table corresponding to a
received packet’s destination identifier. In some embodi-
ments, the proxy address used to set the destination locator

US 2015/0124826 Al

field of the packet’s encapsulation is selected from several
possible proxy addresses based on a characteristic of the
received packet. In certain such embodiments, the proxy
address used to set the destination locator field of the packet’s
encapsulation is selected to be a proxy address for layer 3
packets when the received packet is a layer 3 packet, and a
different proxy address for layer 2 packets when the received
packet is a layer 2 packet. In some embodiments, the encap-
sulation applied at the ingress leaf device may include a class
indicator field, and wherein the class indicator field may be
set by said ingress leaf device based on a characteristic of the
packet. In certain such embodiments, a forwarding decision
may be made by one or more leaf and/or spine devices based
atleast in part on the value of the packet’s class indicator field.
[0012] Also disclosed herein are network apparatuses
which include a processor and a memory, at least one of the
processor or the memory being configured to perform some
or all of the foregoing described methods. In some embodi-
ments, at least one of the processor or memory may be con-
figured to receive a packet at a leaf device, determine based,
at least in part, on a header of the packet whether the packet is
to be transmitted to a spine device, ascertain based, at least in
part, on a header of the packet whether to perform encapsu-
lation on the packet, encapsulate the packet according to a
result of the ascertaining, and after encapsulating the packet
according to the result of the ascertaining, transmit the packet
to a spine device according to a result of the determining.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 schematically illustrates the format of an
TCP/IP packet.
[0014] FIG. 2 schematically illustrates the format of a

VXLAN encapsulated ethernet packet.

[0015] FIG. 3 schematically illustrates a simple example of
a leaf-spine network connecting two end devices A and B.
[0016] FIG. 4 illustrates sample logic which may be used
for the treatment of packets inbound to a VXLAN overlay
network.

[0017] FIG. 5A is a diagram illustrating an example for-
warding table that may be maintained by leaf devices in
accordance with various embodiments.

[0018] FIG. 5B is a diagram illustrating an example adja-
cency table that may be maintained by leaf devices in accor-
dance with various embodiments.

[0019] FIG.5C is a diagram illustrating an example encap-
sulation table that may be maintained by leaf devices in
accordance with various embodiments.

[0020] FIG. 5D is a diagram illustrating an example map-
ping table that may be maintained by a spine device, proxy, or
mapper in accordance with various embodiments.

[0021] FIG. 5E is a diagram illustrating an example layer 2
proxy mapping table that may be maintained by a proxy
device in accordance with various embodiments.

[0022] FIG. 5F is a diagram illustrating an example layer 3
proxy mapping table that may be maintained by a proxy
device in accordance with various embodiments.

[0023] FIG. 6 is a diagram illustrating an example mecha-
nism that may be used by a leaf device to forward a packet in
accordance with various embodiments.

[0024] FIG. 7 is a process flow diagram illustrating an
example of various decisions that a leaf device may make
before forwarding a packet.

May 7, 2015

[0025] FIG. 8 schematically illustrates a network made up
of'12 end devices which are connected through an access tier,
an aggregation tier, and a top-level core tier.

[0026] FIG. 9 schematically illustrates an example of a
leaf-spine network.

[0027] FIGS. 10A-1, 10A-2, and 10B schematically illus-
trate an example of a 3-tier leaf-spine network built from
4-port switches.

DETAILED DESCRIPTION

1. Overlay and Encapsulation Context and Overview

[0028] A. Introduction

[0029] One of the major challenges associated with imple-
menting a large-scale overlay network in very large, high
performance data centers involves scaling of the database
which provides the identifier/locator mapping function.
Some embodiments disclosed herein utilize a combination of
a centralized database of the mappings implemented in the
packet data path, at line rate, coupled with a caching mecha-
nism, again in the data path, at the tunnel end-point. In some
embodiments, such an overlay network may support
extremely large topologies, more than a million end-points,
minimal real-time software intervention, and near instanta-
neous response to moves and changes.

[0030] As described in detail below, in some embodiments,
the components of such an overlay network may include an
overlay encapsulation frame format, one or more types of
network devices, a mapping database, a proxy function, a
mapping cache, and a protocol for maintaining the mapping
database (e.g., the COOP protocol).

[0031] The network devices serving as components of the
physical infrastructure (apparatus(es)) making up the overlay
network may include one or more processors/processing
units/modules, one or more memories/memory units/mod-
ules, and multiple ports for connecting to and sending data to
and/or from other network devices, as well as the end devices
which connect to the overlay network. The one or more pro-
cessors employed in these network devices may be, for
example, general purpose CPUs running software imple-
menting various network functions, application specific inte-
grated circuits (ASICs) wherein various network functions
are implemented in hardware, some combination of the fore-
going, etc., as is appreciated by one of skill in this art. Like-
wise, the end devices which connect to the overlay network
may be any type of computer device which may generally be
connected to a computer network, as also appreciated by one
of skill in this art.

[0032] In some embodiments, the foregoing network
devices which form the physical infrastructure of the overlay
network may be leaf network devices and spine network
devices. Leaf and spine devices are linked in a fabric repre-
senting one type of physical infrastructure and network topol-
ogy on which an overlay network may run. A later section
presents various aspects of leaf-spine topologies. Thus, many
of' the features described in this and subsequent sections per-
tain to a leaf-spine network topologies. It should be appreci-
ated, however, that an overlay network may also be imple-
mented on other network topologies and/or employing other
types of network devices, and so many aspects of this disclo-
sure also pertain more generally to whatever physical infra-
structure and topology happen to be used to implement an
overlay network.

US 2015/0124826 Al

[0033] Certain disclosed embodiments use a combination
of a centralized mapping database in spine network devices
and a mapping cache in the leaf network devices to obtain
good performance and scale. Relevant components of this
solution may include: a global/centralized mapping database
located in (or locally accessible to) the spine devices which is
used in the packet forwarding process when there is a miss in
the mapping cache local to the leaf device having received the
packet (upon ingress to the network). In some embodiments,
the global/centralized mapping database is accessed via a
proxy address applied to the packet at the relevant leaf device.
[0034] Certain embodiments employ a bounce function
that will handle end-point moves. Packets sent to a leaf that
used to be the location where an end-point was attached are
“bounced” to the correct location. This allows the cached
copy of the mapping database to be out of sync and not cause
any forwarding problems.

[0035] This approach provides excellent scale and perfor-
mance. [t handles end-point moves with a minimum of
updates to nodes in the system. It controls the cost of the leaf
devices by caching only the part of the mapping database that
is actively being used by the leaf devices.

[0036] Amongthe benefits of overlay networks are efficient
implementation of workload mobility and workload any-
where. Workload mobility is the ability to move a server or
other end device from one place to another place on the
network without disruption. For example, a server A initially
may be attached to a first leaf device. Later server A is moved
to a second leaf device. The identity of server A is preserved
during the move, but its location has changed. Workplace
mobility allows the network to adapt to this move and provide
connections to server A at its new location on the network,
sometimes without dropping a connection. Workplace any-
where is a related concept. It is the ability of a network to
provide network services to an end device no matter where
that end device is attached to the network and for a given
workload or application to be deployed anywhere on the
network without consideration of the topology of the net-
work.

[0037] The concept of workplace mobility is frequently
explained in the context of switch maintenance. During main-
tenance, an attached physical server remains in place while an
associated virtual server is moved to a different switch. While
the virtual server is moved, all its TCP connections remain
intact. The TCP connections are identified by the operating
system by the IP and layer 4 addresses.

[0038] Flow is also maintained during workplace mobility.
[0039] A flow can be any collection of packets that have
something in common and that can be identified by fields in
the packets. The flow can be as specific or general as desired
but usually identifies a connection between a pair of devices.
TCP or UDP packets corresponding to a connection between
a pair of devices are the most common types of flows.
[0040] Such a flow may thus be identified and defined by
the following S-tuple:

[0041] 1.IP SA (source address)

[0042] 2. 1P DA (destination address)

[0043] 3. 14 S port (layer 4 source port)

[0044] 4.1.4 D port (a well know port number for protocol

running on the connection)

[0045] 5.TCP or UDP

[0046] The L4 S port is generally chosen by the server
initiating the connection from a range of values, the range
depending on the implementation of the networking stack in

May 7, 2015

the initiating server. In some cases, there may be multiple L4
S port numbers assigned for the same two devices communi-
cating using the same protocol. The multiple [.4 S port num-
bers identify different flows allowing for multiple parallel
communication channels/flows to improve performance
(e.g., node A is accessing a web server B and A opens 4
connections with B to improve performance, each having a
distinct L4 S port number).

[0047] In conventional networking, an IP address provides
both an identity and a location. Historically, this duality did
not matter. Servers did not move much. In modern networks
servers move, and when this happens, the network may
attempt to continue to send packets to the old location, not the
new location.

[0048] Various protocols have been devised for separating
location from identify. Examples include LISP (locator/iden-
tifier separation protocol—Cisco supported) Fabric Path,
VXLAN (proposed by Cisco, VMware, and others and sup-
ported by much of the industry), NVGRE (supported by
Microsoft), and STT (stateless transport tunneling—propri-
etary to VMware).

[0049] Each of these protocols separates location from
identity. When using such protocols, an end device can com-
municate with a another device based on identity (a specified
IP address) and the network can deliver the packet based on
location. Each of these protocols has its own distinct type of
overlay and frame encapsulation. For convenience in the fol-
lowing discussion, VXL AN will be described. Unless other-
wise noted, the described concepts can apply to other forms of
encapsulation.

[0050] B. VXLAN/iVXLAN Packet Encapsulation Proto-
col
[0051] A TCP packet as created by a host or other network

attached device includes the following components, as shown
in Table I and FIG. 1:

TABLE I

TCP/UDP Ethernet Packet Format

L2 Destination MAC Address (“L2DA™)
Source MAC Address (“L2SA”)

L3 Destination IP Address (“IPDA” or “L3DA”)
Source IP Address (“IPSA” or “L3SA”™)

L4 Source Port (“L4SP™)

Destination Port (“L4DP”)

Payload Application Data

[0052] VXLAN encapsulates an ethernet packet by putting
a wrapper around it, specifically, the original packet is
wrapped in an outer encapsulating packet which employs
UDP and VXLAN as the encapsulating protocol. The outer
packet/wrapper basically consists of a new header, and the
original Ethernet packet is then carried as the payload of the
new encapsulating packet with the new VXL AN header. FIG.
2 provides an example where the original, or underlying,
packet is a TCP or UDP packet (however, generally any
ethernet packet may be encapsulated as such). As shown in
FIG. 2, the new encapsulation header includes an IP header
(L3) containing an IP destination address and an IP source
address, a UDP header (14) containing an [.4 source port and
L4 destination port, and finally a VXL AN header that carries
VXLAN specific information. It has a layer 2 header as well.
The payload of the outer/encapsulating packet is the original
underlying ethernet packet, such as a TCP or UDP packet (or
technically the original [.2 packet containing the TCP or UDP

US 2015/0124826 Al

packet). For complete details, see IETF draft, updated Oct.
17,2013 (VXLAN: A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks draft-mahalingam-
dutt-dcops-vxlan-05.txt), which is incorporated herein by ref-
erence in its entirety. A breakdown of the fields present in a
VXLAN encapsulation is as follows in Table II, again, as
shown in FIG. 2:

TABLE I

VXLAN Encapsulation

L2 Destination Address (could be Ethernet, etc.)
Source Address
(IP carrier identifier)

L3 Destination IP Address
Source IP Address

L4 UDP Destination Port (instead of using a well know port
address as in conventional L4 packet structures, it
identifies VXLAN)
UDP Source Port

L4+ VXLAN Reserved - 32 bits

Payload (underlying TCP or UDP packet)

[0053] Note that in some embodiments the VXT.AN encap-
sulation implies that the embedded network packet is an
Ethernet packet, and in such embodiments, this may avoid
having to reserve bits to identify the .2 packet format. How-
ever, in other embodiments, the VXLAN header may have
bits reserved for indicating what kind of packet is carried in
the payload.

[0054] The L3 source IP address in the encapsulation
header (see Table I and FIG. 2) may sometimes be referred to
as the “outer source address” or “source locator.” Likewise,
the L3 destination IP address in the encapsulation header
(also see Table I and FI1G. 2) may sometimes be referred to as
the “outer destination address” or “destination locator.”” The
“outer” modifier simply signifies that they belong to the outer
packet header—i.e. they are fields of the encapsulation. The
source locator corresponds to the network device (physical or
virtual) where the packet is being sent from—typically serv-
ing as the packet’s ingress point to the overlay network.
Likewise, the destination locator is the address of the network
device (physical or virtual) where the packet is being sent
to—typically serving as the packet’s egress point from the
overlay network. Analogously, the source address of the
underlying ethernet packet carried as payload in the VXLAN
encapsulation may be referred to as the “inner source
addresses” or “source identifier,” and likewise the destination
address of the underlying packet may be referred to as the
“inner destination address” or “destination identifier”” These
source and destination identifiers may be Layer 3 IP
addresses in the case of the inner/encapsulated packet being
an IP packet (such as a TCP or UDP packet, or packets
conforming to the ICMP, IGMP, SCTCP, RCP protocols), or
they may be layer 2 MAC addresses if the packet is not an IP
packet (e.g., it is a layer 2 packet), or if the packet is an IP
packet but is being bridged by the overlay network (rather
than routed).

[0055] The VXLAN encapsulation scheme/protocol
includes a reserved field referred to (perhaps slightly confus-
ingly) as the “VXLAN Header.” See FIG. 2. The VXLAN
Header contains information specific to the VXLAN proto-
col. In some implementations, a 24-bit “virtual network 1D”
(VNID) field of the VXLLAN Header is used to identify virtual
networks. Thus, a single physical network (e.g., based on a
leat/spine fabric) using VXLLAN encapsulation can support

May 7, 2015

over 16 million virtual networks. This is similar to the VSID
(virtual segment identifier) field in the NVGRE encapsulation
protocol. More generally, the VNID field carried in the
VXL AN Header represents one of three possible things: the
Virtual L3 context or VRF (“virtual routing and forwarding™)
for this packet, the bridge domain or BD for this packet, orthe
End-point group or EPG of the packet. The EPG meaning is
only used when doing the policy proxy function or certain
types of service insertion and in some cases when communi-
cating with devices external to the fabric that need to signal
the EPG using a VXLAN header. The VNID specifies the
layer 3 forwarding context or VRF when the packet is routed,
and the layer 2 forwarding context or BD when the packet is
bridged.

[0056] Insomeembodiments,a“VXLAN header,” in addi-
tion to having a VNID subfield, may also contain the other
subfields shown in Table III each containing information
about the packet as described in the table. In some embodi-
ments for instance, when VXL AN is used in end systems such
as a TEP embedded within a hypervisor virtual switch, the
switch may support the VNID, Source Group, Source Policy
Applied, and Destination Policy Applied bits shown in Table
I

[0057] Note that the VXL AN packet format is a superset of
the LISP packet format [LISP] and also aligns with the
OTVv2 packet format [OTVv2], and that prior to the submis-
sion of VXLAN, the packet encapsulation was submitted to
the IETF as L2 LISP. Differences between the VXLAN draft
and the L2 LISP draft include the optional usage of the
already declared LISP header fields. The Nonce and Locator
Status Bit fields are the most notable LISP header fields that
this would apply. Since these bits are used in LISP to signal
end-to-end information, a VXL AN header used in an overlay
network may leverage the 1.2 LISP draft but use the Nonce
and L.SB fields in a proprietary manner. See Table II1.

[0058] Referring again to Table I1I: The Source Group field
is a 16-bit field in the reserved portion of the VXLLAN header
(as shown in the table) that is used to carry source classifica-
tion information from the ingress TEP to the egress TEP. It is
used when applying policies to the packet. The destination
classification is assumed to be derived locally in the leaf
device: optionally on ingress and always on egress, i.e. the
destination classification is not carried in the packet.

[0059] Also shown in Table III are the “Source Policy
Applied” (SP), “Destination Policy Applied” (SP), and the
“Forwarding Exception Seen” (E) fields. The SP and DP bits
are used to indicate that polices have already been applied to
the packet and should not be applied again. If the ingress TEP
is able to apply the network policies before sending the packet
into the network, it will set these bits so that the egress TEP
does not re-apply them. When there is a cache miss, it is
possible that the network policies cannot be fully applied at
the ingress TEP because the destination class is not known. In
this case, the egress TEP must apply those policies. The
egress TEP knows that it must apply the policies by looking at
the SP and DP bits in the header. The E bit indicates that a
forwarding exception has occurred. It is normal for forward-
ing exceptions to occur in the network. This bit is simply used
to prevent multiple forwarding exceptions to occur on the
same packet to prevent potential loops. When a packet is sent
to the proxy, the Spine that performs the proxy function
should set this bit if it was not already set. If the bit was
already set, the Spine should drop the packet.

US 2015/0124826 Al

TABLE III

Subfields of the VXTL.AN Header Field

Bits Name Description

1 Nonce (N) Indicates the presence of the LISP Nonce field.
When set, it indicates that the LISP Nonce bits
are used in accordance with this specification.
Indicates the presence of the Locator Status Bits
field. When set, it indicates that the Locator
Status Bits are used in accordance with this
specification.

Indicates the presence of the VXLAN Network
ID (VNID) field. When set, it indicates that the

1 Locator (L)

1 Instance (I)

VNID field is valid.
1 Don’t Learn This field is only valid for packets with the
(DL) Nonce (N) bit set. When set, it indicates that the

receiving TEP should not learn the inner source
address to outer source TEP address binding.
This field is only valid for packets with the
Nonce (N) bit set. When set, it indicates that the
packet has experienced a forwarding exception
such as fast rerouting or bounce. If already set,
and another forwarding exception occurs to the
packet, the packet will be dropped to avoid
forwarding loops.

This field is only valid for packets with the
Nonce (N) bit set. When set, it indicates that the
source EPG-based policy (i.e. ingress security
ACL) has already been applied. This is set when
the packet is returning from a policy proxy back
to the original ingress switch. The original
ingress switch will use this bit to determine
whether or not to skip the ingress source EPG-
based policy. It may also be set by a vLeaf that
applies all of the applicable source policies to the
packet.

This field is only valid for packets with the
Nonce bit set. When set, it indicates that the
destination EPG-based policy (i.e. egress security
ACL) has already been applied. This is set when
the packet is returning from a policy proxy back
to the original egress switch. The original egress
switch will use this bit to determine whether or
not to skip the egress destination EPG-based
policy. It may also be set by a vLeaf that applies
all of the applicable destination policies to the
packet.

This field is only valid for packets with the
Nonce (N) bit set. It indicates the EPG of the
endpoint that sourced the original packet.

1 Forwarding
Exception
Seen (E)

1 Source Policy
Applied (SP)

1 Destination
Policy
Applied (DP)

16 Source Group

Furthermore, in some embodiments, in order to help mitigate
some of the risk associated with implementing a currently
evolving industry standardization effort in hardware, ASICs
implementing VXI.AN may, as a precaution, advantageously
utilize a programmable register to set the destination UDP
port for VXLAN.

[0060] Trusted and untrusted systems will be discussed in
greater detail below, however, with regards to details of the
VXLAN header, it is noted that only trusted systems may
have the ability to set the following bits since they directly
affect the security policy that is applied: Source Group,
Source Policy Applied, and Destination Policy Applied bits.

[0061] In further discussion, for convenience, the descrip-
tion of VXL AN encapsulation will be abbreviated, and unless
otherwise indicated the discussion that follows applies to
VXLAN and iVXLAN (iVXLAN being a variation/subtype
of VXLAN). Often, the parts that are most relevant are the
source and destination IP addresses. Note that other forms of
location/identity separating overlays may be used in place of
VXLAN.

May 7, 2015

[0062] C. Hashing to Distribute Flows

[0063] In conventional network protocols, a technique is
used to ensure that all packets of a given flow take the same
network path. By following the same path, the packets cannot
pass one another and are guaranteed to arrive in order, i.e., in
sequence they were sent. Additionally, conventional proto-
cols attempt to spread flows around the network to load bal-
ance. If two paths are available, a network may strive to direct
half the flows to one path and the other halfto the other path.
[0064] Networks statistically approximate an even distri-
bution of flows by hashing the flows based on packet infor-
mation that uniquely defines the flows. For example, when the
network encounters a packet, it may apply a hash function on
the portion of the header defining the flow. In other words, it
may apply the hash function on the 5-tuple (L3DA, L3SA,
LADP, L4SP, protocol type) (see Table I above). The hash
function returns a value identifying which of the available
network paths is used for the flow.

[0065] As is well understood, the hash function is a math-
ematical operation that takes as input a relative large number
of'bits and outputs a value in a smaller number of bits. Itis also
well known that a hash function is deterministic: it always
returns the same output for a given input. As an example, the
header of a TCP packet may be hashed to produce a three bit
output. That output specifies which of, e.g., 8 network paths to
direct the flow.

[0066] In some network contexts, it is possible for the
VXLAN packet encapsulation fields used to identify a flow
will have identical values for multiple flows. There will be
multiple flows with the same destination and same source,
and hence the same hash value. In VXLAN, the 1.4 destina-
tion port is always the same; it identifies VXLAN. If a given
L4 source port in the leaf/spine network is constant, then the
hash value will be the same. This may present a problem in a
leaf/spine fabric because the traffic will not be well balanced
across the available paths. The equipment determining which
path a flow should take may not recognize it is handling a
VXLAN packet. As such, it simply hashes information from
the fields of the VXLLAN encapsulation it perceives are part of
a conventional UDP or TCP packet. As a consequence, all
flows between two tunnel end points on the leaf tier will take
the same path through the fabric. For load balancing, it would
be desirable to distribute flows between the same source and
destination tunnel end points (or end devices) on the fabric
across multiple paths in the fabric.

[0067] There are many ways to address this issue. In one
approach, the network may choose a unique value of the
VXLAN L4 source port (a UDP source port) for each encap-
sulated flow. This allows the leaf/spine network to distribute
flows to different network paths on the leaf/spine fabric. One
way to accomplish this is by setting the value for the UDP 1.4
source port based on a function of the underlying flow defined
in the non-VXL AN portion of the packet. For example, a leaf
network device creating a VXLAN header may hash the
values in the underlying TCP or UDP packets that define a
flow. These values may be, for example, the entire 5-tuple
uniquely defining the flow in the underlying TCP/UDP
packet. The resulting hash value is inserted into the UDP L4
source port of the encapsulating header. When a device in the
leaf/spine fabric encounters such a packet, it hashes the
VXLAN encapsulation fields according to the standard pro-
tocol for determining flow paths and obtains an essentially
random value that determines the flow path through the leat/
spine fabric. This approach produces a highly entropic distri-

US 2015/0124826 Al

bution of flows in the fabric. The network devices making the
forwarding decisions need not understand VXLAN. They
simply consider the encapsulation header, which appears to
them as a conventional layer 4 packet header.

[0068] D. Overlays

[0069] VXL AN or other encapsulation may be used to
implement an overlay. As an example, a packet is delivered
from A to B on the simplified data center leaf/spine network
shown in FIG. 3. The network in FIG. 3 has leaf devices
L.1-L4 and spine devices S1 and S2 as well as end devices A
and B. Each of spine devices S1 and S2 connect to all the
leaves L1-L4. End device A is connected to leaf device L1 and
end device B is connected to leaf device L2.

[0070] 1. Conventional Approach

[0071] The network knows where end device B is located.
It examines a packet from end device A and sees that the
destination is end device B. To get to B, each network device
routes the packet according to its understanding of B’s loca-
tion. However if B moves, at least the spine nodes need to be
notified. This suggests a need to separate the identity and
location of B. Furthermore, in a conventional network, it may
not be possible to relocate B to another part of the network
due to placement of IP subnets in the network—i.e. B can
only be moved to a location in the network where its subnet
exists and often that subnet only exists in a very limited
number of locations.

[0072] 2. Encapsulation Approach

[0073] Assume the network shown in FIG. 3 contains a
mapping so that the spine devices know which leafdevice end
device B is attached to. Tables are maintained in the leaf
devices’ in forwarding logic. In some implementations, these
are similar to the forwarding tables maintained in conven-
tional networks. For example, a leaf network device might
have a forwarding table including the following information
(and much other information) shown in Table IV:

TABLE IV
Identifier Location
end device B Leaf L2
end device A Leaf L1

[0074] When a packet arrives from end device A that is
being sent to end device B, leaf device L1 looks up the
location of end device B (which is leaf device 1.2) and encap-
sulates the packet. It adds a VXLAN header (to L1 from L.2).
[0075] Encapsulation allows a network administrator to
move end device B around, from one leaf device to another
leaf device. In various embodiments, only the leaf device
tables are made aware of the details of B’s identity. The spine
devices S1 and S2 need not know details of the identity. They
only need to know where 1.2 is located on the overlay net-
work. After B is moved, the next packet arriving at .1 and
addressed to B is handled differently. .1 ’s updated table
instructs it that the current location of B is a different leaf
node. With this knowledge, .1 applies an encapsulation
header that identifies the new location of B.

[0076] This process has effectively separated each end
device’s location from identity. The individual spine devices
and end devices need not know the details of B’s location and
identity.

[0077] For purposes of this example, VXL AN is only used
to deliver the packet through the data center fabric. The

May 7, 2015

encapsulation (or lack of encapsulation) need not be part of
any network protocol outside the data center.

[0078] 3. Conventional Routing and Host Routes

[0079] A packet arrives at a router, which knows that it has
subnet 1 (e.g., 192.168.*.*) on interface 1 and subnet 2 (e.g.,
192.169.* *) oninterface 2. For routing to work efficiently, all
nodes connected on the port of interface 2 must be in the
192.169.*.* subnet. If one of these nodes moves, another
route needs to be created: e.g., the interface of the router to
which the node has moved must now identify not only its
original subnet(s) but the IP address of the moved node. This
route to the moved host outside the router interface’s origi-
nally configured subnet is called a host route. As more host
routes are created, network efficiency degrades. Many routes
need to be tracked and updated frequently.

[0080] In overlay routing, very few host routes need be
created, so the network performance does not degrade when
hosts move between ports on the leaf devices. The spine
devices need only keep track of leaf devices which seldom if
ever move. Also, the number of leaf devices is small com-
pared to the number of hosts so fewer routes have to be
handled in the overlay in general. The overlay encapsulation
identifies recipient leaf devices.

[0081] It should be understood that layer 2 networks also
allow movement of end devices without the penalty of creat-
ing host routes. However, layer 2 networks are fragile. They
are susceptible to broadcast storms and loops. They do not
support unlimited redundant paths. If a layer 3 network is
used, an overlay network effectively permits workload any-
where and mobility without the limitations of a layer 2 net-
work.

[0082] Note that two virtual networks may share the same
subnet in an overlay network. For example there may be a
virtual network #1 (say for tenant #1) and a virtual network #2
(say for tenant #2) in the same data center. The two networks
may each have the same sub-network (e.g., 192.168.5.%).
However, packets addressed to a shared IP address are cor-
rectly routed because the overlay network understands (via
the packet encapsulation) that the end devices corresponding
to the two networks reside on logically separate hardware or
logically separate networks. In fact, each set of end devices
corresponding to the two networks do not need to know that
the other set of end devices (or even the other network exists).
[0083] Insome implementations, a single leaf/spine fabric
using VXL AN encapsulation can have over 16 million net-
works. The network is identified in a VNID 24-bit field of the
VXLAN header.

[0084] 4. Virtualization and Live-Migration in an Overlay
Network

[0085] Server Virtualization via Hypervisors

[0086] Server virtualization is employed to make single

physical servers appear and function as multiple virtual serv-
ers on the network. In many implementations, these server
virtual machines (VMs) run atop a piece of software known in
the art as a “hypervisor” which sits as a layer of abstraction in
between the virtual servers and the underlying physical archi-
tecture. Perhaps the most well-known software package pro-
viding a hypervisor for server virtualization is produced by
VMWare, although other server virtualization packages are
provided by other vendors and some are open source.

[0087] Typically, through virtualization, a single physical
server can support something on the order of 10 or 100 virtual
servers running simultaneously. Widespread adoption of vir-
tualization technology is a consequence of the benefits it

US 2015/0124826 Al

provides. For example, server operating systems (OSes) may
variously provide different technical advantages (and disad-
vantages), and moreover different server OSes enable the use
of different software packages or applications depending on
which particular OSes particular software is designed for.
Another benefit is that each software application can run on
its own virtual server, lowering or eliminating the possibility
that individual software applications may conflict with one
another when running simultaneously on the same server.
[0088] Relatedly, allowing each application (or just a few
applications) to run on a dedicated virtual server can result in
better management and sharing of the underlying physical
resources (RAM, CPU, I/O bandwidth, network bandwidth,
etc.) the allocation of which then (in large part) becomes the
responsibility of the hypervisor and virtualization software.
Current server hardware architecture typically consists of one
or more multiple-core CPUs where, in some cases, each core
may concurrently run multiple threads at the hardware level
(e.g. Intel’s “Hyper-Threading” technology). A server virtu-
alization layer can help to maximize the efficient usage of all
these multiple cores and threads.

[0089] Finally, it is becoming more commonplace that the
end user’s local hardware (i.e., their desktop computer) is
being replaced by what s often referred to as a virtual desktop
infrastructure (VDI). In a typical VDI setup, each end user
operates their local keyboard, video display screen, and
mouse (KVM) to control—over the network—a desktop
environment running remotely on a server in the datacenter. A
well-known legacy example of this type of architecture is the
X-Windows system typically used in connection with UNIX
or UNIX-like (e.g. Linux) OSes. VDIs can result in signifi-
cant cost savings related to efficient shared hardware utiliza-
tion, particularly if individual end users typically only use a
fraction of the computing resources available on a typical
desktop computer. (E.g., only running a word processor, web
browser, and e-mail client on a modern CPU, as is common-
place.) Other VDI-related efficiencies relate to differences in
system administration costs—e.g., administering 100 virtual
desktops running on a single server, sharing applications, etc.
versus administering 100 individual physical desktops, local
copies of software packages requiring frequent updates, etc.
[0090] Thus, due to employment of server virtualization
technologies in the modern datacenter as well as the increas-
ingly common replacement of desktop computers with VDIs,
there is now often a virtualization layer present in modern
computing environments.

[0091] Live-Migration

[0092] A benefit of an overlay network in a virtualization
environment is “live migration” where a virtual server run-
ning atop one physical server may be moved to another physi-
cal server while the virtual server remains active with all its
network connections intact. (Within the context of VM Ware’s
products this is known as VMotion.) The separation of loca-
tion and identity provided by the overlay network (through
encapsulation) enables live migration by allowing each vir-
tual server to retain its identity—its assigned IP address as
viewed from outside the overlay network—despite its physi-
cal location within the fabric of the overlay having changed
from one physical server to another.

[0093] Thus, the actual transfer of a virtual server from one
physical server to another—while keeping all its live connec-
tions intact (i.e., in the context of a “live migration” or VMo-
tion, etc.)—may be executed as follows: The network con-
nection between the two physical servers is used to copy and

May 7, 2015

transfer the memory contents (data and instructions) of the
original physical server which are relevant to the virtual
server being transferred to the new physical server. After this
initial copy/transfer is completed, subsequent copies may be
executed between the two physical servers to copy the
memory contents of the original physical server which have
changed since (or during) execution of the previous copy.
This updates the copy of the virtual server on the new
machine—done because the virtual server being transferred
continues to operate on the original physical server during the
copying process. Thus, subsequent copying may have to be
performed multiple times until the remaining differences are
so small, and the copy operations rapid enough, that the
virtual server may finally be taken offline for one last copy
operation to the new physical server, and then a full copy of
the virtual server on the new physical server may be “awak-
ened,” to replace its predecessor with all network connec-
tions, program applications, etc. intact. When the virtual
server wakes up running on the new physical server, it typi-
cally sends a gratuitous ARP. The network now knows that the
virtual server is at a new location and the old virtual server is
destroyed.

[0094] Live migration functionality is very useful because
of'the flexibility it provides in the datacenter. For example, the
technology allows a physical server to be taken down for
maintenance or replaced while the virtual servers it is sup-
porting may be seamlessly transferred to another physical
server thereby providing uninterrupted service. In a more
complicated scenario, virtual servers may be periodically
redistributed across the physical server infrastructure for pur-
poses of load balancing virtual sever utilization of this infra-
structure.

[0095]

[0096] The mapping database is a database maintained by
the fabric which contains the mapping from an “identifier”
associated with each end-point attached to the network to
each end-point’s “locator”—the address of the tunnel end-
point that the end device sits behind. The endpoint address
may be either the MAC address or the IP address of the
end-point plus the logical network that it is in (BD or VRF). A
particular end-point IP address may be associated with mul-
tiple TEPs. This would be an example of an “anycast” iden-
tifier address.

[0097] The mapping database is populated when end-
points are discovered in the network. This discovery happens
either through static configuration, first packet arrival, or
notification from external controllers such as a network
orchestration tool. In any case, the leaf devices are respon-
sible for communicating this discovery to the spine devices
through the COOP or LISP control protocol.

[0098] The spine devices keep a soft copy of the mapping
database and also program the proxy function based on this
database.

[0099] When an ingress leaf device forwards a packet, it
checks its local cache of the mapping database. If it does not
find the end-point address it is looking for, it will encapsulate
the packet to the proxy function residing in the spine. The
spine, upon receiving a packet addressed to its proxy function
will look up the destination identifier address in its forward-
ing tables that contain the entire mapping database. Based on
the result, it will re-encapsulate the packet to the correct
destination locator while retaining the original ingress source
locator address in the VXL AN encapsulation.

E. Brief Overview of the Mapping Database

US 2015/0124826 Al

[0100] When the packet is received from the fabric by the
egress leaf device it will check its local cache of the mapping
database and update the cache according to what is contained
in the packet. It will then remove the encapsulation and for-
ward the packet to its final destination.

[0101] In summary, the mapping database contains the
mapping from end device identifiers to end device locators. It
is populated through end device discovery as said devices
attach to the network, static configuration, and/or an external
controller. Finally, the mapping database is held in the spine
devices (or another device associated with the spine) in some
embodiments and, generally, it is cached in the leaf devices.
[0102] F. Division of Packet Forwarding Responsibilities
Between Leaf and Spine Devices in a VXLAN Leaf-Spine
Fabric Overlay Network

[0103] A simple example of a network having a leaf-spine
topology has already been shown in FIG. 3. This simple
network consisted of 2 spine devices S1 and S2 and 4 leaf
devices L1, L2, L3, and L4.

[0104] In a simple view, the leaf spine fabric can be logi-
cally divided by a line through the leaf devices to separate the
end devices and their corresponding leaf device ports from
the spine devices and their corresponding leaf device ports.
Packets flowing across this logical line into the fabric are
encapsulated. Packets flowing across the line out of the fabric
are de-encapsulated. In a more detailed view, the overlay
network boundaries are defined by tunnel end points, some of
which may exist outside the leaf devices. This more detailed
view of overlay network boundaries is presented below.

[0105] Inaddition a more detailed explanation of leaf-spine
topology is provided further below, however, the following
two subsections provide a brief overview of the roles leaf
devices and spine devices may serve in the context of an
overlay network.

[0106] 1.Overview of Leaf Devices and their Responsibili-
ties in a Logically Divided Network

[0107] Leafnetwork devices (“leafdevices,” for short) sit at
the edge of the fabric overlay serving as ingress and egress
points from the overlay network, and accordingly implement
the tunnel end-point (TEP) function (described in detail
below). In some embodiments, they are also responsible for
routing or bridging tenant packets as well as applying net-
work policies. In some embodiments, the leaf and spine func-
tions may be implemented in the same physical device to
optimize certain network scenarios.

[0108] As described in greater detail below, network traffic
entering and exiting the fabric overlay flows through a leaf
device (the spine devices only connect to leaf devices or other
spine devices in a different tier of the network). Connections
to external networks and to servers and other end points are
through the leaf devices. Leaf devices may perform the fol-
lowing functions, in addition to many others, to support the
overlay: implementation of the mapping cache, forwarding of
packets to the proxy function when there is a miss in the local
mapping cache, encapsulation of packets in a VXLAN
header, enforcement of network policies at ingress and
egress, and implementation of the “citizen” function of the
COOP protocol.

[0109] The local forwarding table/cache maintained by
each leaf network device may contain the MAC and IP
addresses of all end devices attached to it. The forwarding
table may also contain learned MAC and IP addresses of end
devices attached to other leaf devices. Such learned addresses

May 7, 2015

are typically cached and, in some embodiments, ultimately
aged out of the forwarding tables.

[0110] Collectively, the leaf devices note when an end
device moves or when a topology change occurs. In some
embodiments, the leaf devices may keep track of when a
topology change occurs within the fabric (e.g., one or more
links between spine and leaf devices goes up or down) using
routing protocols such as ISIS. Alternatives include BGP or
OSPF. In some embodiments, the leaf devices may track the
connection of new end devices to the network, the removal of
end devices from the network, and movement of end devices
within the network (e.g., moving a connection from one leaf
device to another) using COOP in conjunction with the proxy
function described herein. Alternatives to this approach
include using BGP or LISP to synchronize information
regarding end point connections to the leaf devices, or to
employ the typical flood and learn procedure (but at the
penalty of flood and learn’s inherent inefficiencies). How-
ever, in some embodiments, the leaf devices do not propagate
end point connection information to one another directly, but
instead they notify the spine network devices of end-point
discovery. Caching mechanisms then update the other leaf
devices as needed as described in detail herein.

[0111] The leaf network devices also perform packet
encapsulation. The spine devices receiving the encapsulated
packets, rapidly forward them to other network locations
based on the addresses in the encapsulating header. Examples
of the forwarding tables will be described below.

[0112] 2. Overview of Spine Devices and their Responsi-
bilities in a Logically Divided Network

[0113] Spine network devices (or “spine devices” or just
“spines,”, for short) connect the leaf devices. Typically, how-
ever, spine network devices are not directly connected to each
other, and nor do they serve as ingress or egress points from
the network. However, in networks having multiple tiers of
spine devices (as described below) spine network devices in
one tier may be connected to spine devices in a different tier.
An example of a 3-tier network having 2 tiers of spine net-
work devices (that are interconnected) is described in detail
below.

[0114] Insome embodiments, the spine devices are imple-
mented as Layer 3, [Pv4 switches. In a specific example, the
spine devices are 40 GB/s Ethernet switches. The spine
devices employ the proxy function (described herein) either
by hosting it themselves or being associated with a separate
device which hosts the proxy function. Thus, associated with
the spine devices is a master mapping database (described
below) which is used to efficiently route encapsulated packets
to the leaf devices making up the fabric. Note that unless
specified otherwise, when describing the operation of the
spine devices, it is to be assumed that they host the proxy
function, or otherwise have accessible the execution of the
proxy function when required. Thus, when a packet is
received at a spine device, it may check whether the packet’s
destination locator is a proxy address (in some embodiments,
there are multiple such proxy addresses as described below)
and, if so, performs the proxy function, replacing the proxy
address with the locator address of the TEP associated with
the packet’s destination, and forwards the packet accordingly.
If the packet’s destination locator address is not a proxy
address, then the spine device simply forwards the packet
according to standard and well understood forwarding
mechanisms (after lookup of the destination locator address
in its forwarding table). Additionally, in many ofthe embodi-

US 2015/0124826 Al

ments described below, the spine devices also host the
“QOracle” component of the COOP protocol.

[0115] Additional consequences and benefits of the logical
division of packet forwarding responsibilities between leaf
and spine devices is that the spine side of the line has rela-
tively few devices. An example of a very large network would
have about 500 network devices, including spine and leaf
devices. From a routing protocol perspective, this is a small
network. By contrast, the end device side of the line might
have 20,000 servers—say if there are approximately 500 leaf
devices each connecting 40 servers. Moreover, if each of the
40 physical servers supports 10 virtual machines, this gives a
network of about 200,000 network addresses. By dividing a
data center network in this way, the spine and any interior
network devices can run efficiently, without being hindered
by detailed information about end device location and con-
nectivity. Significant efficiencies result by dividing the net-
work between a relatively small number of interior network
devices which operate very fast and the leaf devices which
must keep track of a dramatically larger number of servers or
other end devices. In some embodiments, the ratio of end
devices to non-leaf interior network devices (e.g. spine
devices) is at least about 400:1. Often, the spine and any other
interior network devices have very fast interfaces, e.g., about
40 Gigabit/s or faster. Simplified routing permits available
hardware and software resources in the spine to focus on
performance.

[0116] The overlay network and associated encapsulation
permit the network to be divided as described. The leaf
devices responsible for encapsulation are also responsible for
maintaining details about the location and identity of the end
devices. Some of this information is masked from the spine
devices and any other internal network devices in the fabric.
It is masked because the leaf devices encapsulate packets
before they forward the packets to spine or interior devices in
the fabric. While, the leaf devices may have to be concerned
with address information in the underlying packet as well as
the encapsulation, while the spine devices typically have to be
concerned only with the address information in the encapsu-
lation portion.

[0117] Insome embodiments, the spine side of the divided
fabric runs a routing protocol optimized for small numbers of
addresses and the end device side of the fabric runs a routing
protocol optimized for a large number of addresses. Some
routing protocols are good for handling small numbers of
addresses. They rapidly converge. One example is ISIS. Other
routing protocols are better at handling large numbers of
addresses, although they may not converge as fast. One
example is BGP. In one example, the spine side runs ISIS and
the external side runs BGP. Regardless of the routing proto-
cols actually selected, one protocol is used to maintain infor-
mation about end device connectivity and the other protocol
is used to control routing within the fabric.

[0118] In some embodiments, the spine and interior net-
work devices run only a single protocol. Unlike routers in a
conventional network, they need not be concerned with mul-
tiple routing protocols. The leaf devices, of course, may have
to handle multiple routing protocols.

[0119] The logically divided overlay network on this data
center has various benefits. First, it provides capacity for a
large number of virtual networks. Using the 24 bit field in a
VXL AN header as described, the physical infrastructure can
support over 16 million virtual networks. Second, the spine
backbone can have extremely high performance. It need not

May 7, 2015

devote significant computational resources to routing table
upkeep or multiple routing protocols. Third, the network
design allows easy separation of location and identity. The
leaf devices keep track of location and identity in, for
example, mapping database tables as described here. Fourth,
the network can be multiprotocol without changing the spine;
e.g., the network can support IPv4 and IPv6 or other protocols
without the spine needing to support all of those protocols.
[0120] 3. Bridging-Routing Hybrid Network

[0121] Spanning tree is a protocol used to remove potential
loops in a layer 2 network. It does this by logically breaking
links in the network to create a non-cyclical graph over an
arbitrary topology. As a result, it removes all redundant paths
and some of the remaining paths are sub-optimal.

[0122] Spanning tree would remove much of the value of a
leat/spine topology. The massive path redundancy inherent in
the topology would be removed to eliminate potential layer 2
loops. Using layer 3 routing can overcome this limitation.
However, unfortunately some network equipment does not
use [P (or, for various reasons, is not operated in a mode that
supports IP) and therefore cannot generate packets that can be
routed. For example, a server may run network software that
is incapable of generating IP packets.

[0123] Routing can be performed on non IP packets using
encapsulation as described above. Routing permits redundant
paths between network nodes. So spanning tree is not neces-
sary and network performance is improved. In the implemen-
tations described herein, the data center supports layer 2
packets but it uses routing to deliver those packets across the
data center fabric. Routing enables multi-pathing. That is,
different flows between two end devices can take different
paths.

[0124] From some perspectives, the data center may appear
to be a layer 2 network. For example, the underlying packets
(the layer 2 packets that serve as the payload of VXLAN
packets) are not modified. They are effectively bridged
between leaf network devices when appropriate. The end
devices initiating communications on the network may
believe they are communicating by bridging at layer 2. They
create layer 2 packets having MAC addresses in the headers.
They may be unaware that the leaf devices are applying
encapsulation to facilitate routing within the leaf/spine net-
work.

[0125] This arrangement provides all the benefits of layer 3
networking without interfering with layer 2 networking. The
network does not care whether the end devices believe they
are bridging or routing.

[0126] 4. Leaf Node Identifies End Devices Attached to it
[0127] Each leaf network device determines and maintains
information about the end devices attached to it. [t may do this
by various techniques. Some of these involve intercepting
initial packets from the end device.

[0128] First Option: DHCP Request—A leaf device to
which an end device attaches, watches for DHCP requests
from the end device. When such request issues, the leaf device
intercepts the DHCP packet to learn the end device’s MAC
address. It then relays the request to a DHCP server which
issues the IP address and returns it to the leaf device which
then learns that IP address before passing the response on to
the end device. So the leaf device to which the end device is
attached knows both the IP address and the MAC address for
the newly attached device.

[0129] Second Option: Gratuitous ARP—The end device
knows its [P address from some other process (e.g., a VMware

US 2015/0124826 Al

process). The server announces its presence on the network
by issuing a gratuitous ARP. Leaf devices receiving the gra-
tuitous ARP learn the IP address and MAC address of the end
device from the gratuitous ARP packet.

[0130] Third Option: Some other packet—The end device
issues some other packet containing a source IP and source
MAC address.

[0131] Fourth Option: Some other non-IP packet—The end
device issues some other packet that contains a MAC address,
but not an IP address. In this case, the leaf device would learn
only the MAC address. If an IP address were to be used by the
end device at a later time, the corresponding IP address would
be learned at that time.

[0132] 5. Propagating Network Changes and Maintaining a
Mapping Database

[0133] By whatever means, a leaf device learns the MAC
and IP addresses for the end devices attached to it. The leaf
device then updates its local forwarding table with this infor-
mation.

[0134] It is possible that the other leaf devices could have
their mapping tables updated via a protocol such as BGP. In
implementations described here, the leaf devices do not
propagate the information using a traditional routing proto-
col. Rather they each maintain their own table which includes
information for each end device attached to the associated
leaf device. The information includes the identity of the
attached device and the port to which it attaches.

[0135] In some implementations, the leaf devices propa-
gate table information using the Council of Oracles Protocol
(COOP) or related protocol. COOP has “citizens” which get
information from “oracles” and/or sends information to
oracles. An oracle populates the mapping database with cur-
rent location-identity information for the overlay network end
points. Citizens provide updated information to the oracles,
which maintain the master database. Optionally, the citizens
query the oracles for information from the master database. In
certain implementations described herein, the citizens cache
information they learn from the master database but they do
not technically query the oracles for this information.

[0136] In certain implementations, an oracle exists with a
proxy function at one or more spine devices. The leaf device
citizens discover end points and changes in end points and
report those to the oracles. The protocol may employ a
mechanism designating certain oracles as the recipient for
certain discovery information about certain end nodes.

[0137] In this approach, the spine devices share reported
end node information with one another to keep up the com-
plete master database. The spine devices may communicate
among themselves using TCP connections. In certain
embodiments, the protocol is implemented without encapsu-
lation. For example, the leaf devices may communicate map-
ping database information to oracles via normal non-encap-
sulated networking and oracles may synchronize information
among themselves via normal, non-encapsulated networking.

[0138] Intheory, the oracles could sit at locations other than
spine devices. For example, they could be implemented in
leaf devices or on a separate server. Because there are rela-
tively few spine devices and packets must be forwarded
through spine devices anyway, the COOP oracles are conve-
niently located in the spine devices. The oracle devices (spine
devices or otherwise) can serve the proxy function by con-
sulting the mapper function, described elsewhere herein.

May 7, 2015

[0139] In general, transfer mechanisms other than COOP
may be employed to maintain and use the master database.
The LISP control protocol is another example.

[0140] In certain implementations, the leaf devices only
propagate newly learned information to the spine. They do
not propagate the information to other leaf devices. They
inform the spine of the identity of the attached device and the
leaf device to which it is attached. They may decide which
spine device to tell using a hash function (e.g., by hashing the
address of the attached device). Thus, particular spine devices
become the masters for particular end devices. As a conse-
quence, in some embodiments, the network is incapable of
having inconsistent location information for a particular end
device. However, in certain embodiments, the recipient spine
device synchronizes the newly learned information with other
spine devices. In this way, each device on the spine keeps a
full master list of all end devices attached to the leaf tier. In
other embodiments, the leaf device will select a spine device
at random. That spine device will then send this end-point
information to another spine device based on a hash of the
address of the end-point that has been discovered, thus effec-
tively accomplishing the same thing as above without the leaf
devices needing to determine which spine device to send to.

[0141] As mentioned above, local forwarding tables are
provided in the leaf devices. Typically these tables are not
identical across the various leaf devices. The forwarding
tables store the identities of the attached devices (e.g., MAC
and IP addresses among other information) and the leaf
devices to which they are attached (locators). The forwarding
logic associated using these tables may be implemented in
hardware. Each table may be relatively small compared to the
total number of end devices attached to the network.

[0142] The master mapping database is stored in the spine
devices. It represents a combination of all the information in
each of the leaf tier mapping tables. However, it does not
contain details of the end devices such as MAC to IP address
bindings. The spine device logic for accessing the mapping
database may be implemented in hardware in the spine
devices. This table is large enough to have an entry for every
attached device (virtual and physical). In some implementa-
tions, it may be large enough to support a million entries.

[0143] COOQOP orother similar protocols may allow efficient
scaling as the number of leaf devices increases. In some
embodiments, the effort to maintain necessary table informa-
tion increases substantially independently of the number of
leaf devices. Instead, in certain such embodiments, the table
maintenance effort scales with the number of spine devices,
which is typically a manageably small number.

[0144] 6. Process of Updating the Forwarding Tables and
Master Mapping Database—and Proxy

[0145] Among the pertinent features of the described over-
lay network are the following:

[0146] 1. Proxy—Using a proxy destination in the encap-
sulation when the leaf device receiving a new packet from an
attached end device does not know which other leaf device is
responsible for connecting the specified destination end
device; and

[0147] 2. Learning—A recipient leaf device learning about
end devices on other leaf devices by de-encapsulating packets
destined for devices on the recipient leaf. The recipient leaf
then updates its forwarding table so that it does not need to use
the proxy destination when forwarding packets destined for
devices in its table.

US 2015/0124826 Al

[0148] An ingress leaf device receives a packet with a des-
tination address. It checks for the address in its forwarding
table. If the address is not in its forwarding table, it sends the
packet to the proxy. Thus, in certain embodiments, the leaf
device simply determines whether the destination is local to it
or not. When it is not, the leaf device sends the packet to the
proxy, by encapsulating it with a destination locator address
of the proxy.

[0149] Insome embodiments, when the leaf device detects
amiss in its local forwarding table, it encapsulates the packet
with a destination address that is a proxy. In some implemen-
tations, the proxy address is a virtual address shared by all of
the spine devices. In one example, there are logically two
proxies used by the overlay, one for bridging (MAC address
of the destination stays constant as the packet makes its way
to the destination) and another for routing (the MAC address
changes at either the ingress leaf device or the egress leaf
device).

[0150] A spine device receiving the packet addressed to
proxy will look up the leaf network address for the destination
in its copy of the master mapping database. The spine device
will then replace the proxy address in the encapsulation
header with the locator address of the destination device (its
identifier). The leaf device receiving the encapsulated packet
will de-encapsulate it and send it to the addressed destination
device, which is attached to the recipient leaf device.

[0151] Additionally, the recipient leaf device may update
its local forwarding table with the source information (iden-
tifier and locator) learned from the encapsulated packet. If the
forwarding table already contains an entry for the packet’s
source, it will confirm that the entry has not changed. If
necessary, it will update the entry with the new location. As
mentioned, the leaf device’s forwarding tables store the iden-
tity of the devices and the leaf device locators to which they
are attached. Below, this document presents a mechanism by
which the leaf device may route and bridge packets for
ingress and egress on the overlay fabric.

[0152] Thus, the leaf devices’ forwarding tables include
some entries for attached devices (which may be obtained by
intercepting packets from attached devices) and other entries
learned from source addresses in received encapsulated pack-
ets destined for attached devices. In some implementations,
the learned entries for devices attached to other leaf devices
are cached and aged out after a period of time. By contrast, the
entries for the attached devices are not aged out or are aged
out much more slowly.

[0153] The ingress leaf device’s local forwarding table
sometimes includes an entry for the destination of a packet on
a remote leaf device. In such cases, the ingress leaf device
creates an encapsulation based on the content of the forward-
ing table without using the proxy address and forwards the
packet on the overlay network. Of course, if the ingress leaf
device is attached to both the source and destination end
nodes, it need not send the packet on the overlay network nor
encapsulate the packet.

II. Tunnel Encapsulation Points

[0154] A tunnel encapsulation point (TEP) generally rep-
resents a point of ingress to and/or egress from an overlay
network such as one implementing VXLAN. To enter a
VXLAN overlay network, a packet passes through a TEP
where a VXL AN encapsulation is applied to the packet. To
exit the VXL AN overlay network, the packet passes through
a TEP where its VXLAN encapsulation is removed. Thus,

May 7, 2015

packets arriving at the network will be encapsulated by a TEP
and sent across the network to another TEP where they will be
de-encapsulated.

[0155] While the discussion in this section assumes that the
overlay network encapsulation is VXLAN, other types of
overlay encapsulation may be substituted as understood by
those of skill in the art.

[0156] TEPs can be viewed as encapsulation/de-encapsu-
lation functions within the fabric of the leaf-spine network.
Each leaf and spine network device typically contains a TEP,
and each TEP is typically associated with an IP address,
which, in some embodiments, is shared with the leaf or spine
network device on which the TEP resides. Thus, TEPs may be
viewed as devices sitting on the network.

[0157] TEPs can be conceptualized as performing encap-
sulation/de-encapsulation as described above, however, in
practice, short-cuts may be taken to re-encapsulate a packet
which arrives already having an encapsulation. For example,
a packet arriving at a spine network device of a leaf-spine
network already has a VXLAN encapsulation (applied by a
leaf network device) and the re-encapsulation to be applied at
the spine network device typically only involves replacing the
proxy address in the IP destination address field with the
correct destination address of the packet’s intended recipient
device (assuming the leaf network device doing the original
encapsulation did not have this information available). Thus,
when a spine TEP is performing this proxy mapping function,
rather than strip the previous VXLAN encapsulation and
reapply a new one with the correct destination address, typi-
cally just the destination address field of the already-present
VXLAN encapsulation is modified.

[0158] Nevertheless, this proxy service is typically concep-
tualized as occurring outside the overlay network, for
example, by the following sequence: a VXL AN encapsulated
packet arrives at the TEP having the proxy mapping function,
the packet exits the overlay network, the TEP applies the
proxy mapping function to the packet giving it the correct
destination IP address, and the re-encapsulated packet is then
sent back through the TEP into the overlay network. How-
ever, while this is a useful conceptual view, it should be
understood that in some embodiments, what actually occurs
is a modification of the already present VXL AN header by the
proxy mapping function. In this manner, the TEPs in the spine
may provide the proxy function described in greater detail
elsewhere in this disclosure.

[0159] Generally, the leaf and spine network devices each
contain a single TEP. However, in some circumstances, it may
be advantageous for a leaf or spine network device to have
multiple TEPs. For example, in some implementations, there
are two TEPs in each spine device, one for a layer 2 proxy and
another for a layer 3 proxy. In some embodiments, having
multiple TEPs per leaf and/or spine network device may
enable an overlay network to provide multiple topologies for
managing different types of traffic flows going to the same
endpoint.

[0160] In one such scenario, network traffic classified as
low-latency (benefiting from low response time) is routed on
a low-latency path by encapsulating packets at a first TEP
primarily dedicated to low latency traffic, and network traffic
related to bulk file-transfer (where overall bandwidth is more
important than response time and some intermittent delays
are acceptable) is routed on a high-bandwidth path by encap-
sulating packets at a second TEP primarily dedicated to high-
bandwidth traffic. For example, encapsulation at the low-

US 2015/0124826 Al

latency TEP might route packets along a path which traverses
a low-latency spine switch. Generally, a cost will be associ-
ated with each path/topology according to the type of packet
being routed, the network’s current load, and more specifi-
cally, the current utilization of each path. Then, load balanc-
ing along the multiple paths/topologies may be governed by
the assigned costs. In this manner, if for some reason the
low-latency path/topology is unavailable (e.g., a link failure
has occurred) its associated cost will become higher than the
high-bandwidth path/topology, even for low-latency packets,
and thus all packets will still reach their intended end points.
[0161] A. Extension of the VXLAN Overlay Network into
a Server Virtualization Layer

[0162] Insome cases a TEP may be implemented on anend
device such as a server or some other device which is not a
dedicated networking device (i.e. a TEP may be associated
with a device other than a switch, router, leaf device, etc.). In
the context of a leaf-spine fabric overlay network, this would
mean, for example, that the end device understands and uses
the encapsulation protocol of the leaf-spine fabric overlay
network.

[0163] Forexample, as discussed herein, “servers” within a
modern datacenter are now oftentimes actually virtual
machines that run within a virtualization layer—oftentimes
referred to as a “hypervisor”—implemented by one or more
underlying physical servers and associated software. By
implementing one or more TEPs within said virtualization
layer, the overlay network may be extended into the server
virtualization layer.

[0164] In some embodiments, a VXLAN-based overlay
network may be extended into such a server virtualization
layer by running a VXIL.AN-capable virtual switch and TEP
(hereinafter “V-switch™) within the hypervisor running on
one or more physical servers. The V-switch may be software
provided by the vendor of the leaf-spine network infrastruc-
ture (e.g., Insieme, Inc., Cisco Systems, etc.), or it may be
provided by the vendor of the server virtualization software
(e.g., VMWare, Microsoft, open source, etc.), or it may be
provided by another party, since VXILAN is an open-standard
supported by a variety of vendors. However, if the V-switch is
developed to work specifically with the architecture of the
leaf-spine network, then it may be designed to function in
concert with the leaf-spine network, for example, by applying
policy to network traffic at the V-switch, in addition to pro-
viding the basic VXLAN-encapsulation/de-encapsulation
functionality.

[0165] Thus, in some embodiments, a specific V-switch
designed to work with a leaf-spine network (as described
above) may be installed in the hypervisor of a server virtual-
ization software package provided by another vendor. When
this is done, the functionality provided by the V-Switch mim-
ics that provided by a leaf network device, albeit in software.
For example, network traffic policies generally applied at a
leaf network device may now be applied at the V-switch. In
effect, such a V-switch extends a virtual boundary of the
overlay network into the hypervisor. As explained elsewhere,
an advantage of running a VXLAN overlay network within
the server virtualization layer is that it can support over 16
million virtual networks (since in the VXLAN header, the
VNID field 24-bits wide), whereas a conventional Layer 2
VLAN can only support 4096 distinct virtual networks (due
to its 12-bit network ID field). However, despite the attendant
advantages of running a VXL AN overlay network within the
server virtualization layer, it should be understood that such a

May 7, 2015

configuration is not required of that virtual network for its
connection to a network which does employ a VXL AN over-
lay, such as the leaf-spine fabric overlay architectures
described herein.

[0166] In some embodiments, a TEP on a leaf device or
running in the context of a V-switch within a hypervisor may
not only apply encapsulation to un-encapsulated packets, but
may also replace encapsulation in one format with encapsu-
lation in a different format that is compatible with the overlay
network fabric. This may be necessary where an outside
overlay network terminates at the TEP for the network under
consideration. A TEP may in some cases treat an encapsu-
lated packet as un-encapsulated when the encapsulation
implements a function that should not be perturbed by the
fabric, e.g., the encapsulation implements an overlay network
running on top of the overlay network under consideration.
Such encapsulation should remain intact so it can be pro-
cessed when the packet exits the overlay network under con-
sideration.

[0167] VLANS virtualize layer 2 networks, allowing reuse
of MAC addresses but not IP addresses. In a large data center,
there may be a very large number of end devices and associ-
ated IP addresses. Therefore, the virtualization technology on
the end device must be able to support this many nodes. It
must do this using a large mapping database as described
elsewhere herein. Any time a virtual machine moves, all the
mapping database entries for that that machine must be
updated. In a large network having hundreds of physical
machines, each with many virtual machines, millions of
updates may be required. A virtual switch is well adapted to
handle management of its part of the mapping database and/
or other network administration in comparison to a conven-
tional hypervisor. It also synchronizes well with the fabric
leaf and spine network devices that have their own TEPs.
[0168] B. Encapsulation of Trusted Versus Non-Trusted
Packets Entering the Overlay Network

[0169] Packets entering the VXLAN fabric overlay net-
work (at a TEP, typically residing on a leaf device, but also in
aV-Switch) are treated differently depending on whether they
are VXL AN encapsulated or not. If an inbound packet is not
VXLAN encapsulated, then it is either un-encapsulated, or it
is encapsulated with something other than VXLAN, such as
NvGRE. If an inbound packet does have a preexisting
VXLAN encapsulation, then the question is whether the
packet is a trusted VXLAN encapsulated packet or an
untrusted VXL AN encapsulated packet.

[0170] Sample logic is displayed in FIG. 4 which illustrates
the different treatments of inbound packets based on the
foregoing distinctions. As shown in the figure, an inbound
packet at 401 is classified via packet classification logic block
405 into 4 categories: no (or unknown) encapsulation (410),
trusted VXLAN encapsulation (420), untrusted VXLAN
encapsulation (430), and NvGRE (or other known non-VX-
LAN protocol) encapsulation (440).

[0171] In the simplest case, the inbound packet already
possesses a trusted VXLAN encapsulation (420) and, in this
case, the packet simply retains its preexisting encapsulation
and is forwarded as-is onto the network via logic block 480.
The network device need make no modification to the packet.
For the other cases (410, 430, and 440), a VXL.AN encapsu-
lation will be applied to (or modified in) the inbound packet at
tunnel encapsulation point (TEP) 470.

[0172] For a packet lacking an encapsulation (or having an
unknown encapsulation), i.e., case 410, the packet’s 12-bit

US 2015/0124826 Al

VLAN ID is extracted at logic block 450 and converted at
logic block 452 to a 24-Bit VNID (see details below), which
is then passed to mapping function logic block 460 which
determines the appropriate encapsulation (VXL AN) header
to be applied to the inbound packet. This information (desig-
nating the appropriate encapsulation header) is passed from
mapping function logic block 460 to TEP 470, which actually
applies the designated encapsulation header to the inbound
packet entering the TEP at 458. Once appropriately encapsu-
lated, the packet is forwarded onto the network at forwarding
logic block 480.

[0173] Similarly, for an inbound packet having a preexist-
ing untrusted VXL AN encapsulation, i.e. case 430, or having
another encapsulation (e.g., NvGRE encapsulation), i.c. case
440, the packet will have its encapsulation stripped and its
24-bit VNID extracted at 455. Note that in the case 440 of an
inbound NvGRE encapsulated packet, it will have its NvGRE
encapsulation converted to VXLAN at 445 prior to having its
encapsulation analyzed (and stripped) at 455. In either case,
information regarding the prior encapsulation, including the
24-bit VNID is passed from logic block 455 to mapping
function logic block 460 which, as with the case of an un-
encapsulated packet, determines the appropriate encapsula-
tion to be applied at TEP 470. After TEP 470 applies the
encapsulation, the packet is forwarded at logic block 480.

[0174] Packets forwarded from a V-switch designed to
work with the leaf-spine network are typically treated as
having a trusted encapsulation and therefore forwarded as-is
(e.g., case 420 in FIG. 4). This is because the V-switch func-
tions like a leaf network device within the leaf-spine network
and applies exactly the same encapsulation, as determined by
a mapping table which is synchronized and updated in the
same manner as those stored in the physical leaf network
devices. Which V-switches and their associated virtual serv-
ers are trusted, and which are not, may be determined at the
TEP ofthe relevant leaf network device via IP address lookup
in a table residing on the leaf network device—the entries in
the table set by configuration. Packets entering the network
via certain designated ports of the various leaf network
devices may also be designed as trusted (for example, by a
setting a switch on the physical port). On the other hand, if an
inbound VXL AN-encapsulated packet is not trusted (e.g.,
FIG. 4, case 430), then its VXLAN header is stripped if the
header can be identified, and a new VXL AN-encapsulation is
determined via a mapping function and applied at the appro-
priate TEP (e.g., in FIG. 4, determined at mapping function
logic block 460 and applied at TEP 470). Thus, in some
embodiments, the VXL AN fabric overly network may distin-
guish between trusted and untrusted packets by determining
whether the TEP through which the packets are received is
classified as receiving trusted or untrusted packets, and this
may be done by checking a table of TEPs which marks TEPs
as trusted or untrusted, for instance, classifying trusted TEPs
as those that are on a leaf network device and those that are
provided as trusted V-switches running in a virtualization
environment (e.g., within a hypervisor).

[0175] As indicated above with respect to FIG. 4, if a new
VXLAN encapsulation is to be applied to an inbound packet
at the TEP (because the packet has no encapsulation, or
because it has an encapsulation other than VXLAN, or
because the VXLAN encapsulation it has is untrusted), the
virtual network to which the inbound packet belongs, if any,
needs to be identified and captured in the packet’s new
VXLAN encapsulation. Specifically, a VNID which identi-

May 7, 2015

fies the inbound packet’s virtual network is determined and
stored in the VNID field of the VXLAN header of the applied
VXLAN encapsulation. Thus, for example, if the inbound
packet has no encapsulation, then its 12-bit VL AN identifier
is converted into a 24-bit VNID (e.g., at logic block 452 in
FIG. 4) and stored in the VXILAN header of the new encap-
sulation. One advantage of treating un-encapsulated packets
in this manner—assigning them a 24-bit VNID in the context
of the overlay network—is that it effectively makes the
VLAN local to what is outside the overlay network beyond
this particular TEP. Likewise, if the inbound packet is
NvGRE encapsulated, then the 24-bit VSID (virtual segment
identifier) within the NvGRE encapsulation is extracted into
a corresponding 24-bit VNID (e.g., at logic block 455 in FIG.
4). Similarly, network identifiers may also be extracted from
other encapsulation formats, and possibly converted to 24-bit
VNID, as long as this other encapsulation format is under-
stood by a network device’s inbound packet handling logic
(e.g. FIG. 4), mapping function logic, TEP, etc. Finally,
another possibility is that the VNID field of the encapsulation
header may be set based on information other than what is
carried in virtual network-identifying field of the received/
un-encapsulated packet. For instance, the physical port
through which the un-encapsulated packet is received by the
leaf device may be used to set the VNID in the encapsulation
header. (This may be programmed into the leaf device as
per-port configuration.) Other possibilities include using the
source and/or destination IP and/or MAC address of the
received packet, or any other information carried in the
received packet which might be advantageously used to iden-
tify the packet for purposes of applying policy, etc.

[0176] As described above, generally any prior encapsula-
tion is stripped prior to applying the new VXLAN encapsu-
lation, however, in some configurations, the prior encapsula-
tion is retained and ignored by treating it as part of the
packet’s payload. In some embodiments, this may be set via
port-configuration (for example, by setting a physical switch
on the port). In particular, if VXL AN-encapsulated packets
are not expected on a particular port, then the port could be set
to ignore all encapsulations and just treat the entire packet,
including any encapsulation, as payload for the subsequent
VXLAN encapsulation. This could be useful, for example, if
it is intended that another overlay network be operated on top
of the fabric overlay network described herein, because pre-
serving the inbound packet’s prior encapsulation (the encap-
sulation of the other overlay network) allows the other overly
network to operate seamlessly without relying on (or even
knowing) that another encapsulation is being used (atop its
own) to transmit its packets. It should also be noted that a
packet’s pre-existing encapsulation will not be stripped—and
therefore treated as payload—if the encapsulation is not
known and therefore cannot be identified by the TEP.

[0177] Finally, it is noted that “trust” may be implemented
at multiple levels. For example, there may be a situation
where a particular ingress point to the fabric overlay network
is trusted for applying policies but not trusted to apply an
encapsulation that is optimized for the fabric. In this situation,
aTEP at aleaf device, for example, may preserve the policies
but rebuild the encapsulation header using information that is
most appropriate for the overlay network under consider-
ation.

US 2015/0124826 Al

[0178] C. Termination and Re-Initiation of the Overlay
Network to Improve Scalability

[0179] Server virtualization and extension of the overlay
network into the server virtualization layer may provide some
or all the benefits described above, but in some cases it also
presents a significant challenge. Because, virtualization of the
datacenter effectively replaces each physical server with
some number of virtual servers, virtualization may vastly
increase the effective number of end devices on the network
generating and receiving network traffic. For example, if each
physical server connected to the network is used to support
200 virtual servers, then the size of the network has effec-
tively increased by a factor of 200 versus its size in the
absence of virtualization.

[0180] The problem is particularly manifest in the use and
maintenance of the mapping database, both the complete
database stored in the spine network devices, and the subsets
associated with various end devices stored locally at the leaf
network devices. The basic problem is that as a consequence
of' the virtualization framework, the mapping database has to
retain the location and identity of each and every virtual
server/machine (VM) in order to properly encapsulate pack-
ets for the overlay network.

[0181] Therefore, due to these scalability concerns, there
may be advantages to be had by actually not extending the
overly network into the server virtualization layer provided
by each physical server connected to the network. If it doesn’t
extend into the server virtualization layer, then the boundary
of the overly network coincides with the TEPs of the leaf
network devices. Of course, it should be understood that
whether or not the overlay network extends into the server
virtualization layer may be individually configured for each
physical server, and in some situations, individually config-
ured for different virtual servers residing on the same physical
server.

[0182] Ifthe boundary ofthe overly network coincides with
the TEP of the leaf network devices, it is still possible to have
a VXLAN overlay network running within the server virtu-
alization layer, but if this is so, it may basically be viewed as
a separate overlay network. In this situation, the two overlay
networks may be collectively viewed as originating at the
TEPs of the V-switches within the server virtualization layer,
terminating at the TEPs of the leaf network devices, and
reinitiating at the TEPs of the leaf network devices. One
consequence of this termination and re-initiation of the
VXLAN overlay network is that a leaf network device serving
as an ingress point to the overlay network upon receipt a
VXLAN encapsulated packet typically replaces the source
locator of the encapsulation header with the source locator
address associated with its TEP, even if the packet’s prior
encapsulation is trusted. Likewise, packets egressing from the
overlay network at a leaf network device but retaining their
VXLAN encapsulation in the termination/re-initiation con-
text also typically have the source locator field of their
VXLAN encapsulation replaced with the address of the
egress leaf device’s TEP. In contrast, if the overlay network is
extended into the server virtualization layer via V-switches
running on the servers connected to the leaf devices, then the
boundary of the overlay network logically coincides with the
TEPs of these V-switches rather than the TEPs of the physical
leaf devices, and therefore packets traversing these leaf
devices do not have the source locator field of their VXLAN
encapsulation modified by the leaf devices.

May 7, 2015

[0183] Onescenario where the termination and re-initiation
view is particularly useful is where there are non-trusted
V-switches in the hypervisors of the physical servers con-
nected to the network. In the not-trusted scenario, each leaf
network device already redoes the packets’ VXLAN encap-
sulations when it receives them from the V-switches. There-
fore, between the hypervisors of the physical servers and the
leaf network devices there can be considered to be the termi-
nation of one overlay network (the hypervisor network) and
the initiation of another (the leaf-spine network).

[0184] Thus, using this scenario as an example, packets
sent by a virtual server running within a hypervisor will be
first encapsulated when they leave the hypervisor and physi-
cal server, and then be re-encapsulated by the leaf network
device upon receipt. Because of this re-encapsulation at the
leafnetwork device, the original encapsulation applied within
the virtualized network of the hypervisor need not be based on
knowledge of the locations of all devices on the leaf-spine
network. Instead the mapping database used by the TEP
within the hypervisor need only be aware of the identities (IP
addresses) of the virtual servers running within the hypervi-
sor, and in addition, the IP address of the TEP corresponding
to the connecting leaf network device. As a result, the map-
ping database used by the hypervisor’s TEP can be a much
smaller database, which dramatically improves the scaling
properties of such a leaf-spine network. Leaf network devices
typically have the same number of downlink TEPs as they
have downlink ports, but the number of TEPs in the hypervi-
sor’s virtual switch is typically only 2. One which applies
some encapsulation to traffic bound for the VMs within the
hypervisor, i.e. its own TEP address, and another which
encapsulates traffic bound for the leaf network device.
[0185] While, this termination/re-initiation paradigm has
been described in the context of connections with untrusted
V-switches, it should be noted that it can also be implemented
in the context of trusted devices. In some implementations, a
trusted packet is re-encapsulated to improve scale through the
overlay network.

II1. Forwarding Using Mapping Databases

[0186] A. Introduction and Context

[0187] As explained, the mapping database maps identities
(or identifiers) to locations (or locators). In one way of view-
ing the distinction between identities and locations, the loca-
tion is the “outer” address while the identity is the “inner”
address. The outer address is in the encapsulation header
(e.g., VXLAN or NVGRE header), while the inner address is
in the encapsulated packet. As an end device moves between
positions on a network, its location changes but its identity
may stay the same due to the separation of location from
identity provided by the overlay network.

[0188] Location: The destination address in the encapsula-
tion identifies a TEP, which has a location on the network.
Thus, each entry in the mapping database may be uniquely
identified by a distinct destination address of a network TEP.
In some implementations, this location is identified by an IP
v4 address, while in other implementations the location is
identified by an IP v6 address. Other types of tunnel encap-
sulation could use other location identifiers.

[0189] Identity: In some implementations, the identifier in
the mapping database includes one or more of a MAC
address, an IP v4 address, and an IP v6 address. The choice
depends on the stack used to forward the packet, which gen-
erally reflects the capability of the source and destination end

US 2015/0124826 Al

devices. Further, some implementations require both an
address and a context to uniquely identify each network iden-
tifier. The context may be a virtual network identifier such as
a VNID. Therefore, in some implementations, the unique
identifier for an entry in the master database is made from a
virtual network identifier and a destination address. Again,
the destination address may be a MAC address or an IP
address. In some implementations, the entire VNID and des-
tination address of an end device are combined in a fixed size
value (e.g., a 56 bit field). This value may serve as a key into
the network forwarding table.

[0190] The overlay network may learn the identity of a new
device by capturing its first packet and examining the source
information, including the virtual network, if any, to which it
belongs. The leaf device may communicate this information
by a protocol such as COOP or LISP. The overlay network
already knows the location of the new device. It may be the
leaf network device to which the new device is attached. The
location is specified by the TEP address (facing the overlay
network under consideration).

[0191] In the complete version of the mapping database,
there are entries for all end devices, many of which may be
virtual end devices. The virtual end devices may correspond
to virtual interfaces (e.g., VNICs) attached to the overlay
network TEPs.

[0192] The overlay network maintains two flavors of the
mapping database: one in the spine tier and the other in the
leaf tier. The one in the spine tier has more entries but fewer
pieces of information about each entry. The spine tier version
maintains a separate entry for each end device attached to the
overlay network, but in some embodiments, less information
is kept about each record. In some cases, only two pieces of
information are required at the spine level: identities and
locations. Other information may be superfluous for purposes
of'the spine devices’ functions. As explained, the identity may
be an end device’s address (MAC or IP) and context (e.g.,
virtual network), while the location may be a TEP IP address
on the overlay network. Logic for accessing the spine device
database may be implemented in hardware, software, or a
combination thereof. In some embodiments the spine device
database described above may be located someplace other
than in the spine. The mapping database and the associated
proxy function may be located on one or more of the network
devices of the spine tier, or the mapping database may be
located on—and the proxy function performed by—another
network device which is associated with and accessible to the
network devices of the spine tier.

[0193] At the leaf level, more information is kept such as
physical port information for leaf device forwarding outside
the fabric. In certain embodiments, the leaf level mapping
database required for the overlay function is merged with one
or more other conventional components such the forwarding
database required for normal routing. Policy information may
be stored in the merged database.

[0194] Example tables that may be maintained by leaf
devices, spine devices, proxies, and/or other devices will be
described in further detail below. Any of these tables may be
implemented in software and/or hardware.

[0195] B. Packet Forwarding at Leaf Devices Using For-
warding Tables
[0196] When a leaf device receives a packet addressed to a

destination end device, the leaf device looks up information
pertinent to the forwarding of the packet. From this informa-
tion, the leaf device may determine the appropriate device or

May 7, 2015

tunnel endpoint to which the packet should be forwarded and
possibly the network context. For example, the leaf device
may obtain an address (e.g., [P address) for a tunnel endpoint
(TEP) to which the packet is to be forwarded. In addition, the
leaf device may determine whether encapsulation is appro-
priate and, if so, obtain further information for use in encap-
sulating the packet. The leaf device may encapsulate the
packet, as appropriate, and forward the packet to the appro-
priate TEP or device (e.g., where the end device is local to the
leaf device). The leaf device also should be able to bridge or
route packets to end devices attached to it.

[0197] The leaf device obtains forwarding information
from one or more tables. The leaf device uses identifier infor-
mation about the destination device to look up location infor-
mation. If the leaf device has stored or cached a current
location of the end device and such location is on a different
leaf device, the forwarding leaf device may encapsulate the
packet, as appropriate, and forward the packet to a spine
device. However, if the leaf device does not have a location of
the end device, it may encapsulate the packet, as appropriate,
and forward the packet to a device hosting a proxy function
that is capable of inserting the location of the end device into
the encapsulation header of the packet. The proxy function
may be implemented at spine or leaf devices, or at a separate
device such as a server.

[0198] 1. Detailed Description of Sample Tables Main-
tained By Leaf Devices

[0199] When a leaf device receives a packet, it may look up
an identifier of the end device in its local forwarding/database
table(s). While the leaf device may maintain a single local
forwarding table that contains information pertinent to packet
forwarding, in the examples set forth below, the leaf device
maintains three separate local tables that are used in combi-
nation to bridge, route, and/or encapsulate the packet, as
appropriate. These tables include a forwarding table, adja-
cency table, and encapsulation table, which will be described
in further detail below with reference to FIGS. 5A, 5B, and
5C. FIG. 5A is a diagram illustrating an example forwarding
table that may be maintained by leaf devices in accordance
with various embodiments. FIG. 5B is a diagram illustrating
an example adjacency table that may be maintained by leaf
devices in accordance with various embodiments. FIG. 5C is
a diagram illustrating an example encapsulation table that
may be maintained by leaf devices in accordance with various
embodiments.

Forwarding Table

[0200] FIG. 5A is a diagram illustrating an example for-
warding table that may be maintained by a leaf device in
accordance with various embodiments. As shown in this
example, each entry in the forwarding table may include an
identifier A02. The identifier AO2 may include an address
such as a MAC address and/or IP address. In addition, the
identifier AO2 may further include a Virtual Network Identi-
fier (VNID). Thus, each entry in the forwarding table may
include an address and a VNID. To uniquely identify a device,
it may be identified by its VNID and IP address or, alterna-
tively, its VNID and MAC address. In addition, each entry in
the forwarding table may further include at least one indicator
that classifies the address as a MAC address or an IP address.
Where the entry’s address is an IP address, at least one indi-
cator may indicate whether the IP address is an 1Pv4 or IPv6
address.

US 2015/0124826 Al

[0201] Each entry in the forwarding table may further
include a number of paths A0O4 that are possible. More par-
ticularly, where an IP address is associated with two or more
devices, there will be more than one possible path to these
different devices.

[0202] While the forwarding table may be implemented as
a single table, the forwarding table in the depicted example is
subdivided into multiple tables such as a forwarding/cache
table, an adjacency table, and an encapsulation table, which
will be described in further detail below with reference to
FIG. 5B and FIG. 5C, respectively.

[0203] In this embodiment, each entry in the forwarding
table may further include an adjacency pointer AO6 (or
address) into an adjacency table, as will be described in fur-
ther detail below.

[0204] The forwarding table may also include policy infor-
mation thatisto be applied to the device. In the example of the
forwarding table shown in FIG. 5A, each entry includes a
class A10 indicating a group in which the end device corre-
sponding to the entry is categorized. The policies correspond-
ing to the class may then be applied to the packet.

[0205] Policies between groups may be applied by looking
up the class of the source address and the class of the desti-
nation address. For example, one group within one company
may be prevented from communicating to another group
within the company.

[0206] In some embodiments, the leaf device may age out
entries in its forwarding table. This may be accomplished by
periodically deleting entries from the tables when those
entries have been in the tables for longer than a threshold
period of time. It may be desirable to age out only those
entries that were created using information learned from data
packets received via forwarding on the fabric. In other words,
those entries generated using information obtained from
packets received from outside the fabric may not be aged out
or, alternatively, may be aged out after a different (e.g.,
longer) threshold period of time. Accordingly, entries that do
not correspond to local end devices may be aged out periodi-
cally to ensure that memory is not unnecessarily consumed.

Adjacency Table

[0207] FIG. 5B is a diagram illustrating an example adja-
cency table that may be maintained by leaf devices in accor-
dance with various embodiments. Once an adjacency pointer
is identified from its forwarding table, the leaf device may
access the corresponding entry in the adjacency table.
[0208] Each entry in the adjacency table may include a
VNID field B04 including the VNID, and a MAC field B06
including a MAC address.

[0209] The entry may include encapsulation information
such as a TEP IP address to which the packet is to be for-
warded. However, the encapsulation information may occupy
alarge number of bits. For example, each TEP IP address may
consume 32 bits. Rather than storing the relatively few TEP IP
addresses repeatedly in the adjacency table and consuming
memory unnecessarily, the TEP IP address may be stored in a
separate encapsulation table. More particularly, the entry in
the adjacency table may include an encapsulation (ENCAP)
pointer BO8 (or address) that points to an entry in an encap-
sulation table, where the entry in the encapsulation table
includes the TEP IP address. An example encapsulation table
will be described in further detail below with reference to
FIG. 5C.

May 7, 2015

[0210] Each entry in the adjacency table may further
include CTRL bit(s) B10, which may indicate whether the
packet is to be sent via an uplink to the fabric (e.g., to a spine
device) or via a downlink (e.g., to a local end device), and
therefore may indicate whether the packet is to be encapsu-
lated and, if so, a type of encapsulation (e.g., VXLAN,
NVGRE). Therefore, the CTRL bits may be used to ascertain
whether to encapsulate the packet and, if so, how to encap-
sulate the packet.

[0211] Wherethe deviceidentified by the adjacency pointer
AO06 is connected to a physical port of the leaf device, the
entry may include an identifier of the physical port B12 of the
leaf device. Alternatively, the forwarding/cache table may
include the leaf device physical port AO8.

Encapsulation Table

[0212] The encapsulation information output by the adja-
cency table, BOS, is a pointer to an encapsulation table. FIG.
5C is a diagram illustrating an example encapsulation table
that may be maintained by leaf devices in accordance with
various embodiments. The encapsulation table may include a
single field which includes a TEP IP address C04. In some
embodiments, for each entry, C04 may store a 32-bit IP v4
address or a 128-bit IP v6 address. In some embodiments,
each entry may have an additional field CO6 which indicates
which ports of the leaf device may be used to send packets. In
some embodiments, the encapsulation table may also addi-
tionally include a list of available spine devices (not shown in
FIG. 5C) for receiving encapsulated packets forwarded to the
destination address.

[0213] The total number of TEPs is the total number of
encapsulations required in the overlay network. There may be
a few hundred or a thousand of these, yet there are many
thousands of destination addresses, i.e. identifiers, for the
network. Therefore, use of an encapsulation table potentially
saves a great amount of memory space, since rather than
repeat the encapsulations for each identifier address, the adja-
cencies table may simply provide a pointer into the encapsu-
lation table.

[0214] 2. Example Process Performed at the Leaf Devices
[0215] While many implementations are possible, one
example of a forwarding process is provided here. It may be
implemented in hardware. The process involves obtaining
destination identifier information from an inbound packet and
determining network location information from the leaf ver-
sion of the mapping database. This process is used for for-
warding packets and is separate from the learning function
performed by the leaf devices.

[0216] In some cases, upon receiving a packet, the leaf
device may ascertain a tunnel end point (TEP) of a spine
device or proxy and send the packet to the proxy. In some
cases, the leaf device may identify the TEP of the end device
using information available to the leaf device. In some cases,
the leaf device may bridge or route a packet without encap-
sulation. In some cases, the leaf device may bridge or route a
packet and then perform the encapsulation. The leaf device’s
mapping function may be accomplished by performing a look
up in a table such as a forwarding table. In some embodi-
ments, the forwarding table may be subdivided into further
tables, which may include an adjacency table and encapsula-
tion table, as described herein.

[0217] The destination MAC address specified in a header
of the packet may be used to determine whether the packet
should be bridged or routed (as determined by the source end

US 2015/0124826 Al

node’s network logic). More particularly, if the destination
MAC address is the MAC address of a default router, then the
packet was intended to be routed, and otherwise, the packet
was intended to be bridged. The leaf device’s forwarding
logic may have a list of default router MAC addresses that it
checks to determine whether to bridge or route. In many
implementations, leaf devices themselves serve as default
routers. Regardless, when an attached end device sends a
packet to be routed, the leaf device recognizes this by the
packet’s destination MAC address, which may, in some cases,
be that of the leaf device receiving the packet.

[0218] The leaf device may then construct a destination
identifier, which is used as a key to the forwarding table. If the
packet is to be bridged, the VNID and destination MAC
address may be used by the leaf device as a key to the for-
warding table. However, if the packet is to be routed, the
VNID and the IP address may be used as a key to the forward-
ing table. In some embodiments, the VNID may be a layer 2
VNID ora layer 3 VNID. More particularly, if the packet is to
be bridged, the VNID is a layer 2 VNID; if the packet is to be
routed, the VNID is a layer 3 VNID. More specifically, as
explained above, the VNID may be a 24-bit field in certain
types of encapsulation, such as VXLLAN. Which form is used
depends on whether the packet is being bridged or routed. A
“type” field indicating the type of address may also be con-
structed from header information in the received packet when
more than one type of address may be encountered (MAC,
1Pv4, or IPv6, for example). Note that the proxy function of
the spine device forwarding logic (residing on the spine
devices themselves or on a separate proxy device) may also
obtain and interpret the destination identifier—again which
may contain a VNID together with an IP or MAC address and
in some embodiments an address-type field. Once the appro-
priate entry in a forwarding table is identified using a desti-
nation identifier constructed as set forth above, a number of
paths and adjacency pointer may be obtained from the entry in
the forwarding table. If the number of paths is one, the adja-
cency pointer may be used to look up the corresponding entry
in the adjacency table. If the number of paths is greater than
one, arandomized offset based on a hash of the packet may be
added to the adjacency pointer to create a new adjacency
pointer. The CTRL bit(s) in the adjacency table entry may be
used to determine whether the packet is being sent to the
fabric. In addition, a corresponding TEP IP address may be
obtained. More particularly, rather than storing the TEP IP
address multiple times in the adjacency table and consuming
memory unnecessarily, the TEP IP address may be stored in a
separate encapsulation table. Therefore, the ENCAP pointer
may be obtained from the adjacency table, where the ENCAP
pointer is used to obtain a TEP IP address from a correspond-
ing entry in the encapsulation table.

[0219] If the packet is not being sent to the fabric, the leaf
device may determine whether to encapsulate or not and
which physical port to use, for instance as specified in the
adjacency table, and the packet may be sent via said physical
port.

[0220] Assuming that the packet is being sent to the fabric,
the leaf device may determine a spine device to which the
packet should be routed or bridged. In some embodiments,
load balancing may be performed during the selection of a
spine device.

[0221] FIG. 6 is a diagram illustrating an example mecha-
nism that may be used by a leaf device to forward a packet in
accordance with various embodiments. In some implementa-

May 7, 2015

tions, the mechanism is implemented in hardware. However,
the mechanism may also be implemented, at least in part, in
software.

[0222] As shown in FIG. 6, a leaf device may look up a
destination identifier 602, which may be constructed as set
forth above, in its forwarding table 604 to obtain an adjacency
pointer 606 and number of paths 608. In addition, a hash
function 610 may be applied to flow information such as a
S-tuple for the flow, as shown at 612. A modulo function 612
may be applied to the hash of the 5-tuple and the number of
paths 608, and the resulting number may be used to load
balance among TEPs that have paths to the destination. For
example, where the number of paths is 1, the result may
always be 0; but where the number of paths is 2, for example,
the result may be 0 or 1; and, more generally, when the
number of paths is a positive integer n, the result may be a
positive integer in the range 0 to n-1 which determines which
of the n paths the packets should traverse. Thus, in some
embodiments, this number may be added at 614 to the adja-
cency pointer 606, and the result may be used to perform a
look up in an adjacency table 616 in order to identify a TEP.
Due to multiple paths, there may be two different possible
tunnel endpoints that may be selected, TEP1 and TEP2. Thus,
if appropriate, the leaf forwarding logic accesses the encap-
sulation table, and for packets directed into the network fab-
ric, the encapsulation table may provide a TEP IP address of
the overlay destination and, in some embodiments, a list of
available spine devices, the multiple spines devices made
available for load balancing.

[0223] In this example, an entry in the adjacency table 616
may be identified as a result of the look up. For example, the
entry in the adjacency table 616 may include a VNID 618,
destination MAC 620, ENCAP PTR 622 (to a TEP IP
address), and CTRL bit(s) 624. Which of these fields is used
for forwarding depends on whether the packet is to be bridged
orrouted. As explained, a leaf device makes a bridging versus
routing decision by examining the destination MAC address
of'an incoming packet. If the MAC address is that of a router,
the source intends the packet to be routed. Otherwise, it is to
be bridged. If the packet is to be bridged, the VNID is not
changed and the MAC address is not changed. However, the
leaf device may still need to apply encapsulation, which pro-
vides the address of the TEP, which also exists in the proxy
mapping database located in the spine tier.

[0224] The control bits can provide instructions for various
purposes such as limitations on available fields. In some
implementations, the bits may specify whether the TTL field
of the IP packet should be decremented or whether, when
routing, to replace the MAC address or not.

[0225] Referring again to FIG. 6, the leaf device may
encapsulate the packet and send the packet to the TEP IP
address given through ENCAP pointer 622. More particu-
larly, the packet may be encapsulated at a TEP of the leaf
device. The information in the adjacency table entry and
encapsulation table entry may be used to encapsulate the
packet.

[0226] Ifthepacketisnotbeing sentto the fabric, the packet
may be encapsulated or otherwise modified to reach the des-
tination. Such modification may include replacing the VNID
with the VNID 618 from the table and/or destination MAC
620, as appropriate, and sending the packet via a physical
port. In some embodiments, the leaf forwarding logic may

US 2015/0124826 Al

provide physical port identifiers for packets directed outside
of the overlay network via entries in the leaf device’s adja-
cencies table.

[0227] Note that if the destination identifier upon lookup in
the leaf forwarding table/database cache results in a “miss,” a
fixed (default) adjacency entry is returned. This will provide
an encapsulation for the proxy TEP on the spine, which may
be different depending on whether the underlying packet is a
layer 2 packet or a layer 3 packet. In some implementations,
the spine device acting as the proxy TEP is chosen by a
function such as a hash. In other implementations, the spine
device proxy TEP is pre-set for a given leaf device. In some
cases, the table provides multiple options for proxy TEP
addresses chosen based on the input destination identity from
the packet.

[0228] With regards to routing, as explained, the forward-
ing logic of the leaf device receiving the inbound packet may
make the determination that it must route the packet. In order
to preserve the external routing semantics expected by
devices external to the overlay network, the forwarding logic
of' the receiving leaf device will change the received packet’s
MAC address to the appropriate destination MAC address
and also apply the appropriate VNID and decrement the TTL.
The modification is done to the appropriate layer 2 fields of
the underlying packet, and not to the encapsulation header.
This contrasts with the semantics of bridging, where the
underlying packet’s destination MAC address remains unal-
tered through the forwarding process.

[0229] Thus, in the routing context, the forwarding logic of
the receiving leaf device replaces the MAC address of the
destination (or possibly the next hop router) in the underlying
packet (not in the encapsulation), and in the example pre-
sented above, it does this by taking the MAC address output
of the adjacency table. The leaf device then applies the new
destination MAC address to the underlying packet before
forwarding to the fabric (or to a network outside the fabric).
For routing into the fabric, it must also apply the appropriate
encapsulation for the overlay network. The leaf device may
also need to apply the correct VNID for the destination. It also
gets this information from the adjacency table. Forwarding
tables in classical routers provide destination MAC address
and VLAN combinations. Again, for comparison, when the
packet is to be bridged, the VNID and the destination MAC
address are maintained in the packet, but the encapsulation, if
needed, is obtained from the adjacency and encapsulation
tables.

[0230] Note that when routing into the fabric (ingress), the
MAC address of the next router may be the MAC address of
aleaf device attached to the destination end device. The MAC
address of all leaf devices (acting as routers) is the same in
some embodiments. Therefore, it is a simple matter to iden-
tify the MAC address of the router in the overlay fabric when
routing into the fabric. All that needs to be known about the
ultimate end device is its IP address and possibly the virtual
network identifier.

[0231] When routing out of the fabric (egress), the destina-
tion end device may be local to the leaf device, in which case
the leaf device knows the destination’s MAC address from the
local version of the mapping database, as implemented in the
adjacency table in the depicted embodiment.

[0232] Also note, in some embodiments, the leaf devices’
versions of the mapping database may include a “class” field
for implementing policy. Policy can be applied by the leaf
devices at the ingress leaf device or at the egress leaf device.

May 7, 2015

[0233] 3. Leaf Devices Directing Packets to the Proxy
Function
[0234] In the event that the leaf device does not have an

entry in its forwarding table for a given destination end
device, the leaf device may encapsulate the packet with a
proxy IP address in the destination locator IP address field and
forward the packet to a proxy address of a proxy. Then, as
described in further detail elsewhere herein, upon receiving
the encapsulated packet, the proxy function operates by pars-
ing through the encapsulation and extracting the destination
identifier associated with the underlying tenant packet. The
proxy function then looks up this destination identifier in the
mapping database to determine the appropriate destination
locator for the packet, and uses this address to replace the
proxy’s IP address in the destination locator field of the
encapsulation header. Typically, the destination locator used
to replace the proxy’s address is the address of the TEP
associated with the target end device (e.g., an IP address of the
destination leaf device connecting the destination end
device). Once labeled with the appropriate destination locator
address, the packet is forwarded on to its destination. The
proxy functionality may be implemented at one or more spine
devices or at one or more other devices such as special and/or
dedicated proxy devices. In some embodiments, the proxy
function located on the spine or elsewhere may be accessed
through an “anycast” address. In any event, since generally
the proxy function is accessed through its IP address, it can
reside anywhere there is L3 connectivity. Note that the only
field of the encapsulation header which is changed is the
destination locator field. No other fields of the encapsulation
header, and no fields of the underlying tenant packet are
altered by operation of the proxy function. By preserving the
original source fields of the iVXLAN header and underlying
packet, the egress leaf device receiving the packet is able to
cache the results correctly.

[0235] Thus, upon receipt of an inbound packet addressed
to an end device which the receiving leaf device does not have
in its local forwarding table, the leaf device may obtain a
proxy address associated with one or more devices configured
to perform proxy functionality. In some embodiments, the
leaf device may perform a look up for the destination identi-
fier in its forwarding table to obtain an adjacency pointer to an
entry in the adjacency table. If the identifier is not present in
the forwarding table, a default entry to the adjacency table
may be returned. The entry in the adjacency table may include
a proxy address associated with one or more devices config-
ured to perform proxy functionality.

[0236] As explained, the proxies may be maintained at one
or more devices such as a spine device which may include a
layer 2 proxy and a layer 3 proxy. Where the packet is to be
bridged, the packet may be sent to the layer 2 proxy. Alterna-
tively, where the packet is to be routed, the packet may be sent
to the layer 3 proxy.

[0237] To implement forwarding to both the layer 2 and
layer 3 proxies, the forwarding table may include two differ-
ent entries for a given device. More particularly, an identifier
including a VNID and MAC address may correspond to a
layer 2 entry, while an identifier including a Virtual Network
Identifier (VNID) and IP address may correspond to a layer 3
entry. Thus, a layer 2 key to the forwarding table may include
the VNID and MAC address, while a layer 3 key to the
forwarding table may include the VNID and IP address. The
layer 2 entry may include an adjacency pointer to a first entry
in the adjacency table which has an encapsulation pointer to

US 2015/0124826 Al

afirstentry in the encapsulation table, enabling a TEP address
of'the layer 2 proxy to be obtained. Similarly, the layer 3 entry
in the forwarding table may include an adjacency pointer to a
second entry in the adjacency table that has an encapsulation
pointer to a second entry in the encapsulation table, enabling
a TEP address of the layer 3 proxy to be obtained.

[0238] C. Packet Forwarding at Spine Devices Using For-
warding Tables
[0239] Example tables that may be maintained by spine

devices and proxies are described in further detail below. Any
of these tables may be implemented in software and/or hard-
ware and/or a combination of software and hardware.
[0240] As described above, in the event that a leaf device
does not have a locator for a particular end device identifier in
its local mapping table(s)/cache, the leaf device may send the
packet to a proxy so that the proxy may look up the locator for
the end device in one or more forwarding tables associated
with the proxy function.

[0241] In various embodiments, the proxy function is
implemented at a spine device. However, a proxy device need
not be implemented in the spine. For example, a proxy may be
implemented by a device such as a server that is separate from
the spine and leaf devices.

[0242] When implemented at the spine, typically the proxy
function is associated with (or accessible to) each spine
device and the proxy function has access to the complete
mapping database. However, it should also be understood
that, in certain implementations, the proxy is provided in a
subset of the spine devices, and that in certain implementa-
tions, the mapping database may be split across multiple
proxies.

[0243] It is additionally noted that caching of the mapping
database at the leaf devices also helps to alleviate any hotspots
on the spine that might result from a proxy configuration
wherein the mapping database is split across multiple proxies
or spine devices; or hotspots that may result from the proxy
function only being provided at a subset of the spine devices.
[0244] 1. Detailed Description of Sample Tables Main-
tained By Spine/Proxy Devices

[0245] Proxy mapping table(s) may be maintained by each
proxy device to enable the proxy device to forward packets.
Where the proxies are implemented in the spine, the proxy
mapping table(s) may be implemented as a mapping table
such as that described below with reference to FIG. 5D.
[0246] Insome embodiments, a proxy may act as a layer 2
proxy or a layer 3 proxy. For example, a layer 2 proxy may
maintain a layer 2 proxy mapping table, while a layer 3 proxy
may maintain a layer 3 proxy mapping table. In some imple-
mentations, a first proxy may maintain the layer 2 proxy
mapping table, while a second proxy may maintain the layer
3 proxy mapping table. In other implementations, a single
proxy may maintain both the layer 2 proxy mapping table and
the layer 3 mapping table or an equivalent combined table.
Thus, although shown and described below as two separate
tables, the layer 2 proxy mapping table and layer 3 proxy
mapping table may be combined into a single table. Further,
as discussed below, where the proxy is implemented in the
spine, the single table may be maintained by the spine device.
[0247] FIGS. 5D, 5E, and 5F present forwarding/database
tables that may be used in spine network devices and/or
related proxy-function devices in certain embodiments. FI1G.
5D is a diagram illustrating an example mapping table that
may be maintained by a spine device, proxy, or mapper in
accordance with various embodiments. FIG. 5E is a diagram

May 7, 2015

illustrating an example layer 2 proxy mapping table that may
be maintained by a proxy device in accordance with various
embodiments. FIG. 5F is a diagram illustrating an example
layer 3 proxy mapping table that may be maintained by a
proxy device in accordance with various embodiments.

Mapping Tables

[0248] When a spine device receives a packet, it may for-
ward the packet to its intended destination. The spine device
may be able to forward the packet using information obtained
from the packet header. As explained, the spine device may
also serve the role of a proxy to identify locations for end
devices whose locations are unknown to the leaf devices. In
such instances, the spine device may ascertain the location of
the destination end device and insert the locator in the packet
header. In some embodiments, the spine device may perform
a look up using its mapping table. A similar process may be
performed by a non-spine device serving the role of proxy or
mapper.

[0249] FIG. 5D is a diagram illustrating an example map-
ping table that may be maintained by a spine device, proxy, or
mapper in accordance with various embodiments. Generally,
the mapping table maps identity to location. As an end device
moves within the network, its identity does not change. How-
ever, its location does change. Broadly speaking, the mapping
table/database keeps track of these changing locations by
maintaining a correspondence between packet destination
identities and destination locators.

[0250] In this example, each entry in FIG. 5D includes an
identifier D02 and a locator D04. The identifier D02 may
include an address DOG6 such as a MAC address or IP address.
In addition, the identifier DO2 may include a Virtual Network
Identifier (VNID) DO08. The identifier D02 may further
include an an address type field D010 that indicates whether
the address is a MAC address or IP address, as well as whether
an IP address is a IPv4 or IPv6 address. In some embodi-
ments, a single identifier may be generated from the VNID
and the address, enabling a look up to be performed in the
mapping table using a single value.

[0251] The locator D04 may include an IP address identi-
fying a location of the device, which may be a TEP. For
example, the locator D04 may identify an IP address of a leaf
device.

[0252] The spine devices are aware of the locations (TEPs)
of'all leaf devices. Therefore, once the spine device obtains a
locator identifying an IP address of a leaf device, the spine
device may forward the packet to the leaf device.

[0253] FIG. 5E is a diagram illustrating an example layer 2
proxy mapping table that may be maintained by a proxy in
accordance with various embodiments. As shown in this
example, the layer 2 proxy mapping table may include an
identifier E02 and a locator EO4. The identifier EO2 may
include a VNID E06 and a MAC address EO8.

[0254] FIG. 5F is a diagram illustrating an example layer 3
proxy mapping table that may be maintained by a proxy in
accordance with various embodiments. The layer 3 proxy
mapping table may include an identifier FO2 and a locator
FO4. The identifier FO2 may include a VNID F06, an IP
address FO8, and also may include an address type F10. The
address type F10 may indicate whether the IP address FOS8 is
an IPv4 address or an IPv6 address.

[0255] Thus, upon receiving the packet, the proxy (e.g., a
spine device hosting the proxy function) performs a look up in
its mapping table(s) to obtain a locator, which is specified by

US 2015/0124826 Al

an [P address. Where the proxy is a layer 2 proxy, the layer 2
proxy may perform a look up in its mapping table such as F1G.
5E using the VNID and MAC address to obtain the IP address.
Alternatively, where the proxy is a layer 3 proxy, the layer 3
proxy may perform a look up in its mapping table using the
VNID and IP address to obtain the IP address. The proxy then
replaces the proxy IP address in the encapsulated packet with
the destination IP address and forwards the encapsulated
packet.

[0256] FIG. 7 is a process flow diagram illustrating an
example of various decisions that a leaf device may make
before forwarding a packet. A leaf device may receive a
packet addressed to a destination end device at 702. If the
packet is a fully trusted encapsulated packet, it can forwarded
as is without adjusting any portion of the header or applying
encapsulation. The following decisions, to the extent they are
made by a leaf device, need not be performed in the order
listed.

[0257] The leaf device determines whether the packet is to
be transmitted into the fabric or outside the fabric at 704. For
example, the leaf device may perform a look up for an iden-
tifier of the end device in its mapping database and ascertain
from the ENCAP PTR field BO8 and corresponding entry in
the encapsulation table whether the packet is to be sent into
the fabric. The CTRL field B10 of the adjacency table then
indicates whether to use the encapsulation or not. Also, in
addition to directing the packet “into the fabric,” the forego-
ing entry in the encapsulation table may instead provide an
indication that the packet is to be sent “outside the fabric”
through one of the listed output ports.

[0258] The leaf device may ascertain based, at least in part,
on a header ofthe packet whether to perform encapsulation on
the packet at 706. The packet will identify the device from
which the packet was received. In some embodiments, the
leaf device may determine whether the device from which the
packet is received is a trusted device. The leaf device may
ascertain whether to perform encapsulation on the packet
based, at least in part, upon whether the device is at least
partially trusted device, as described herein.

[0259] In addition, the leaf device may determine (e.g.,
from the header(s) of the packet) whether the packet has
previously been encapsulated (e.g., whether the packet is
currently encapsulated). Where the leaf device determines
that the packet has previously been encapsulated, the leaf
device may determine a type of encapsulation of the packet.
The leaf device may ascertain whether to perform encapsu-
lation on the packet based, at least in part, upon the type of
encapsulation of the packet, as described above. The leaf
device may choose to leave an existing encapsulation or
remove an existing encapsulation and re-encapsulate using
encapsulation required by the overlay network. This may be
appropriate when transferring a packet from one overlay net-
work (employing a first encapsulation format) to the overlay
network of the leaf spine fabric that is the current focus.
[0260] Where the packet is to be transmitted downward via
a port of the leaf device, the leaf device may obtain informa-
tion indicating whether encapsulation is appropriate and, if
s0, the type of encapsulation to be performed.

[0261] The leaf device may encapsulate the packet accord-
ing to a result of the ascertaining at 708. More particularly,
where the leaf device determines that the packet should be
encapsulated, the leaf device may encapsulate the packet
(e.g., with a VXL AN header). After encapsulating the packet
according to the result of the ascertaining, the leaf device may

May 7, 2015

transmit the packet to a spine device according to a result of
the determining at 710. The packet may be encapsulated and
transmitted using tables such as a forwarding table, adjacency
table, and encapsulation table, as described herein with ref-
erence to FIG. 6.

[0262] To determine an appropriate TEP to which the
packet is to be transmitted on the overlay network, the leaf
device may ascertain an identifier of an end device (destina-
tion device) to which the packet is addressed from a header of
the packet. The leaf device may then determine whether it has
stored a location of the end device (a tunnel endpoint
address).

[0263] Where the leaf device determines that it has a loca-
tion of the end device, the leaf device may forward the packet
to an appropriate spine device. For example, the spine device
may be selected based, at least in part, on an identifier of an
end device (destination device) ascertained from a header of
the packet and/or a flow associated with the packet. The
packet may be encapsulated and transmitted to the selected
spine device.

[0264] Ifthe leaf device determines that it does not have a
location of the end device, the packet may be encapsulated
such that a header of the packet identifies a proxy. Once
encapsulated, the packet may be transmitted to the proxy. In
some instances, the proxy may be selected from among two or
more proxies. For example, the proxy may be selected based,
at least in part, on an identifier of an end device (destination
device) ascertained from a header of the packet and/or a flow
associated with the packet. In some embodiments, the proxy
may be selected from a layer 2 proxy and a layer 3 proxy. As
described above, a proxy may be implemented in a spine
device, but need not be implemented in the spine. For
example, the proxy may be implemented in a device such as
a server that is separate from the spine and the leaf devices.
[0265] Where a proxy receives the packet, it replaces the
proxy address in the destination IP address field with the
destination TEP IP address and transmits the packet. For
example, the packet may be transmitted to the spine by the
proxy. The spine may then transmit the packet to its intended
destination.

[0266] 2. End Devices and Default Routers

[0267] Anend device may learn an IP address of its default
router via some mechanism such as ARP. When the end
device wants to send a packet, it compares its subnet with the
subnet of the destination device. If the subnets match, it will
send an ARP request identifying a MAC address of the des-
tination device. In response, it will receive the MAC address
of the destination device. The end device will then send the
packet to that MAC address and a router is not needed.
[0268] If the subnets are not the same, the end device will
send an ARP request identifying the IP address of its config-
ured default router. In response, it will receive the MAC
address of the default router having that IP address. Typically,
the default router is the leaf device to which the end node is
attached. In some embodiments, all of the leaf nodes may be
configured (e.g., via a controller) with the same MAC
address. In this way, the end-devices devices do not have to
keep track of separate MAC addresses for the various leaf
devices on the network to which they may be attached.
[0269] 3.LeafDevice Learning of New/Moved End Device
Location/Identity Information; Populating the Local Map-
ping Table/Cache

[0270] The leaf devices may learn location and identity
information pertaining to end devices and store this informa-

US 2015/0124826 Al

tion in its local mapping table(s). More particularly, a leaf
device may learn information from packets received from the
network via its uplinks or from the end devices connected to
it. Such packets may include data packets, gratuitous ARP
and DHCP requests.

[0271] When a leaf device receives a packet from an end
device connected to it, it learns the end device’s identity and
associates it with its location, which is an address of the leaf
device. More particularly, the location may include an IP
address of the leaf device’s TEP that received the packet.
[0272] Learning is also done (by the leaf devices) when
packets egress the overlay network through the leaf devices.
At packet egress, the leaf device accesses its local mapping
cache, looks up the packet’s source identifier, and if there is a
miss, the leaf device populates its cache with a new cache
entry consisting of the packet’s source identifier (qualified by
the VNID), source locator, and also the SClass fields from the
iVXLAN header. (The SClass is later used as the DClass
(destination class) for packets traversing in the reverse direc-
tion.) In a similar fashion, if there is a hit when looking up the
source identifier but the locator and/or Class field in the table
are different from those in the packet, the entry is updated
with the information in the packet. As discussed previously,
since this learned identity/location information does not cor-
respond to a locally attached end device, these cached entries
are aged out—i.e., they are removed from the local mapping
table when they are not used for some specified time interval.
[0273] 4. Pre-Populating of the Leaf Device Local Map-
ping Table/Cache

[0274] In some embodiments, each leaf device local map-
ping table/cache may be pre-populated with all identifiers that
are local to the leaf device. These entries are not aged-out (as
just described) and are only removed from the local mapping
table/cache when a particular identifier is known to have
moved, or the associated end device is confirmed to no longer
be active via local probes on the leaf device or other appro-
priate mechanisms.

[0275] In some embodiments, each leaf device local map-
ping table/cache may also be pre-populated with one or more
longest prefix match (LPM) entries which represent routes to
one or more WAN interfaces attached to the fabric. In some
embodiments, these are made present because the proxy func-
tion is more efficient if it is limited to only doing fully-
qualified exact match lookups (LPM lookups may not be
supported)—it may not be practical to enumerate all the pos-
sible destination identifier addresses outside of the fabric that
an end-point may want to communicate with. This is why the
WAN routes may need to be pre-populated in the mapping
caches.

[0276] Similarly, in some embodiments, multicast lookups
are not be supported by the proxy function. In such cases,
multicast addresses may also need (depending on the embodi-
ment) to be statically placed into the mapping caches along
with the other static entries.

[0277] 5. Communication of Learned Location/Identity
Information from Leaf Devices to Spine and Proxy Devices,
and to Other Leaf Devices

[0278] The leaf devices may transmit learned information
to the proxies, enabling the proxies to update their mapping
tables. Since packets routed to the network are transmitted to
one of the spine devices, by placing the proxies in the spine
devices, no further hops are taken in the transmission of the
packets. However, it is also possible to place the proxies at a
server or leaf device.

May 7, 2015

[0279] In some embodiments, a separate mapper may
maintain a mapping table. Such a mapper may be a trusted
device. Packets may be routed by leaf devices directly to the
mapper, enabling the mapper to forward the packets. Alter-
natively, a proxy may query the mapper, as appropriate. When
the mapper receives a request from a proxy, the mapper may
return the requested information to the proxy so that the proxy
can forward the packets.

[0280] A leaf device may communicate the information
pertaining to connected end devices to a single spine or proxy
address. The spine or proxy address may be selected, for
example, based upon an identity of the end device. In some
instances, the proxy address may be a virtual address associ-
ated with more than one spine device or proxy.

[0281] In accordance with various embodiments, a proto-
col such as Border Gateway Protocol (BGP) or COOP may be
used by the leaf devices to communicate information pertain-
ing to connected end devices to the spine and/or proxy
devices. The spine devices may also share learned identify/
location information pertaining to end devices via a protocol
such as the COOP protocol.

[0282] Through the use of the COOP protocol, the leaf
devices may operate as citizens to communicate information
to oracles at the proxies, and upon receiving the information
from a citizen, the oracle(s) may populate or update the map-
ping table. The oracle(s) may also insure that each copy of the
mapping database is consistent across the spine and proxy
devices. Moreover, when an entry that already exists in the
mapping database changes, the COOP protocol may be used
to inform the leaf device whose citizen module created the
entry that the entry is being changed. This gives that original
leaf device an opportunity to take appropriate action such as
creating a “bounce entry” in its local mapping table/cache.
“Bounce entries” are described further below. Furthermore,
while it is possible for a leaf device’s citizen module to send
information to a single oracle, the citizen may also send the
information to a virtual IP address associated with multiple
oracles.

[0283]

[0284] When an end device is moved and arrives at its new
location, it will ARP for itself (gratuitous ARP or a reverse
ARP). Learning the new location may occur after the for-
warding of one or more packets to the old location. A packet
arriving at the old TEP (often a leaf device) corresponding to
the end device’s prior location cannot be locally forwarded to
the end device, because the end device is no longer attached
there.

[0285] To deal with this situation, in certain embodiments,
a leaf device may create a so-called “bounce entry” in its
forwarding table upon notification that an end device that was
local to it moves to another leaf device (i.e. it is no longer
local). This bounce entry is a mapping from the end device’s
unchanged identifier to its new location (TEP) on the net-
work. When a bounce entry is hit upon by a packet that is
received from the network, it is “bounced”—i.e., it is sent
back into the fabric with the encapsulation identified by the
bounce entry, specifically the new destination locator
address. However, the source locator address of the packet is
not modified. This action is similar to the proxy function, but
executed at the leaf device of the end device’s prior location.
This bounced packet will then be forwarded to the new leaf
device, which will update its cache with the proper source
information.

6. Bouncing at Leaf Devices

US 2015/0124826 Al

[0286] The bounce entry may remain in effect until all of
the cached entries of the end device identifier have been
updated with the new locator information or have been aged
out. This is bounded by the aging time of the cache on all the
other leaf devices on the fabric.

[0287] 7. Policy Enforcement at Leaf Devices

[0288] In some embodiments, the basic mechanism of
policy enforcement is as follows: Policies may be based on
source class, destination class, and packet fields. The source
class and destination class are generally a function of the
source or destination end device identifier. Policies are
applied at the ingress leaf device when all fields necessary to
apply policy to a particular packet are known when the packet
is received by the ingress leaf device.

[0289] However, it is possible that there are some polices
which depend upon the packet’s destination class, and thus,
when there is a miss in the ingress leaf device’s local mapping
cache, policy cannot be determined or applied at ingress.
When the destination class cannot be determined at ingress
and there are policies that depend upon this class, the policy
applied (SP, DP) bits are not set and the packet is forwarded
normally, i.e. to the egress leaf device via the proxy function.
At the egress leaf device, since it generally has a static entry
for all locally attached end device identifiers, the mapping
cache lookup will return the destination class of the packet. At
this point—i.e., at the egress leaf device—policy can then
always be applied (since the source class is carried in the
iVXLAN header, since the destination class has been deter-
mined via look-up, and since the remaining fields (upon
which policy may potentially be based) are carried in the
packet itself).

IV. Leat-Spine Network Architecture

[0290] A. Introduction

[0291] In order to meet the demands of a worldwide user
base, the modern datacenter may be composed of hundreds,
thousands, or even tens of thousands of data servers. How-
ever, a large number of servers within a datacenter places a
corresponding high demand on the datacenter’s networking
infrastructure. Network traffic taxing this infrastructure may
represent communications between servers within the data-
center itself, or it may represent requests for information or
services originating outside the datacenter, such as from cli-
ent computers located throughout the worldwide internet
(hereinafter just “internet”). With regards to the latter, the
total number of servers in a datacenter is typically many times
the total number of connections to the internet, and so the
sharing of a limited number of internet connections between
many servers is typically an important consideration.

[0292] B. “Access-Aggregation-Core” Network Architec-
ture
[0293] Datacenter network design may follow a variety of

topological paradigms—a given topology just referring to the
system of networking lines/links which carry network traffic
(i.e., data) and the networking switches, which control the
flow of traffic over the lines/links in the network. One of the
most common topological paradigms in use today is the
aptly-named “access-aggregation-core” architecture. As the
“core” part of the name suggests, such an architecture follows
a hierarchical paradigm, wherein information traveling
between hypothetical points A and B, first travel up the hier-
archy away from point A and then back down the hierarchy
towards point B. For communication from point A and an
external, for example connected to the internet, device, the

May 7, 2015

traffic travels up the hierarchy away from A towards the core
and then goes directly from the core to the internet.

[0294] FIG. 8 schematically illustrates a simple network
100 made up of 12 “end devices” 110 (e.g., servers) which,
following the “access-aggregation-core” (AAC) model, are
connected through an access tier 120, an aggregation tier 130,
and a top-level core tier 140. Within each tier are “network
devices” 125 (e.g., ethernet switches or routers) each of
which controls flow of network traffic over various “links”
115 (e.g., ethernet cable) between it and the other network
devices 125 and ultimately to and from end devices 110. As
shown in FIG. 1, it is access tier 120 which provides each end
device 110 with immediate access to the network. From there,
traffic may pass to the aggregation tier 130, and then to the
coretier 140, depending on its final destination. It is noted that
for traffic whose final destination is within the network 100
shown in FIG. 1, how far up the hierarchy the traffic must be
directed to reach this destination depends on the location of
the destination within the network. Traffic whose final desti-
nation is outside the network shown in FIG. 1—e.g., to some
server on the worldwide internet—will typically travel all the
way up the hierarchy, since the connection or connections to
the outside internet typically reside in the core tier. It is also
noted that while FIG. 1 portrays each network device 125
identically for purposes of illustration, actual hardware
implementations of such devices may possess substantial dif-
ferences depending on whether the device is located in the
access tier 120, the aggregation tier 130, or the core tier 140.
For one thing, the single network device in the core tier 140 of
FIG. 1 would typically route more traffic (for the reasons just
described) than those network devices in the other layers, and
so0 it’s hardware would be chosen accordingly. Moreover,
differing hardware implementations in one tier versus another
may be dictated by whether the devices in each tier do bridg-
ing or routing, or both. For instance, the access tier typically
does only bridging, the aggregation tier a combination of
bridging and routing—bridging and routing between inter-
faces going to the access tier and routing to all others—and
the core tier, only routing. Note that the term “end device” 110
refers to a device connected to the network which is identified
on the network and uses the network to communicate with
other devices connected to the network. As such, the end
device 110 may be personal computer, a workstation, a server,
or a device which may not be a computer per se such as, for
example, a network printer, scanner, network storage device,
etc. Also note that while a computer, server, workstation, etc.
may be a physical device having one or more processors (each
potentially having one or more cores) connected to an array of
random-access memory (RAM) and possibly a non-volatile
storage medium (such as a magnetic disc, flash drive, optical
disc, magnetic tape, etc.), an end device 110 may also be a
virtual device, such as a virtualized server running in a virtu-
alization environment—such as VMWare—atop an actual
physical server. Finally, it is also noted that in some embodi-
ments, what is designated as an “end device,” may actually
refer to multiple computers, the distinction being that for
purposes of network topology they share the same connection
to the network and therefore operate substantially as a single
networked unit.

[0295] FIG. 8 illustrates the hierarchal connectivity of a
access-aggregation-core (AAC) network model and shows
that, from core to end device, the architecture follows a tree
structure or graph—meaning that each network device within
the network is only connected to a single device above it in the

US 2015/0124826 Al

hierarchy, but is potentially connected to multiple network
devices below it. The tree structure also implies, as seen from
the figure, that there is a single unique path—i.e., sequence of
links—connecting any two end devices on the network. How-
ever, though each pair of end devices is connected by a unique
path, paths between different pairs of end devices may, but not
necessarily, use the same links along some portion of their
route. For example, with regards to the specific network
shown in FIG. 8, the end devices 110 labeled A and F (here-
inafter “end device A” and so forth) communicate over a path
through network devices 1, II, and then 3. Likewise end
devices I and J communicate over a path through network
devices 4, III, and then 5, and so these two paths do not
overlap (i.e. the paths have no links in common). However, if
end device A instead communicates with end device K (while
I communicates with J), then both paths pass through network
devices Il and 5 (and the link adjoining devices III and 5).

[0296] Shared usage of links and network devices (such as
just described) leads to bottlenecks in a network exhibiting a
tree structure architecture like the access-aggregation-core
(AAC) network shown in FIG. 8. For sake of simplicity,
assume that in a given AAC network, data transmission over
each link and through each network device is limited to the
same maximum data transmission rate, and that each end
device on this network can send and receive data at this
maximum rate as well. In other words, the same bandwidth
limitation applies to the whole network. If this is so, then
referring again to FIG. 8, end devices A and B are able to
communicate at full bandwidth, while end devices I and J are
also communicating at full bandwidth. However, to use the
previous example, if end device A attempts to communicate
with end device K while end device I is communicating with
end device J, then “blocking” occurs—e.g., either both pairs
of end devices communicate at half maximum bandwidth, or
they communicate at full bandwidth sequentially, one pair
waiting for the other pair to finish. Obviously, the situation
becomes much worse in a AAC network if many end devices
which are topologically-separate from each other (i.e., their
communication paths involve many links) attempt to simul-
taneously communicate with one another at full bandwidth.

[0297] Though the blocking problem is an inevitable con-
sequence of the tree-structure paradigm, various solutions
have been developed within this paradigm to lessen the
impact of the problem. One technique is to build redundancy
into the network by adding additional links between high
traffic nodes in the network. In reference to FIG. 8, this might
mean adding extra links between the core tier network device
1, and the aggregation tier network devices II and III. Ether-
channel and split-etherchannel and the like are examples
implementing such an approach. Alternatively, instead of
adding more links, standard-bandwidth links may be replaced
by higher-bandwidth links, but the effect is essentially the
same, albeit the consequences of link failure will be more
severe versus having redundant links. With regards to link
failure, it is noted in reference to FIG. 8 that even if redundant
links are employed between the core and aggregation tiers, 1
link failure out of 4 in this simple example would reduce the
network’s bisectional bandwidth by a factor of 2. (“Bisec-
tional bandwidth” is discussed in detail below.) Thus, it is
evident that even with built-in redundancy, a tree-structured
network architecture has inherent limitations, and, of course,
there are costs associated with implementing hardware-based
redundancy.

May 7, 2015

[0298] C. “Leaf-Spine” Network Architecture

[0299] Another way of addressing the ubiquitous “block-
ing” problem manifested in the modern datacenter’s network-
ing infrastructure is to design a new network around a topo-
logical paradigm where blocking does not present as much of
aninherent problem. One such topology is often referred to as
a “multi-rooted tree” topology (as opposed to a “tree”), which
can be said to embody a full bi-partite graph if each spine
network device is connected to each Leaf network device and
vice versa. Networks based on this topology are oftentimes
referred to as “Clos Networks,” “flat networks,” “multi-
rooted networks,” “fat trees”, or just as “multi-rooted trees.”
In the disclosure that follows, a “leaf-spine” network archi-
tecture designed around the concept of a “multi-rooted tree”
topology will be described. While it is true that real-world
networks are unlikely to completely eliminate the “blocking”
problem, the described “leaf-spine” network architecture, as
well as others based on “multi-rooted tree” topologies, are
designed so that blocking does not occur to the same extent as
in traditional network architectures.

[0300] Roughly speaking, leaf-spine networks lessen the
blocking problem experienced by traditional networks by
being less hierarchical and, moreover, by including consid-
erable active path redundancy. In analogy to microprocessor
design where increased performance is realized through
multi-core or multi-processor parallelization rather than sim-
ply by increasing processor clock speed, a leaf-spine network
realizes higher performance, at least to a certain extent, by
building the network “out” instead of building it “up” in a
hierarchical fashion. Thus, a leaf-spine network in its basic
form consists of two-tiers, a spine tier and leaf tier. Network
devices within the leaf tier—i.e. “leaf network devices”—
provide connections to all the end devices, and network
devices within the spine tier—i.e., “spine network devices”—
provide connections among the leaf network devices. Note
that in a prototypical leaf-spine network, leaf network devices
do not directly communicate with each other, and the same is
true of spine network devices. Moreover, in contrast to an
AAC network, a leaf-spine network in its basic form has no
third core tier connecting the network devices within the
second tier to a much smaller number of core network device
(s), typically configured in a redundant fashion, which then
connect to the outside internet. Instead, the third tier core is
absent and connection to the internet is provided through one
of the leaf network devices, again effectively making the
network less hierarchical. Notably, internet connectivity
through a leaf network device avoids forming a traffic hotspot
on the spine which would tend to bog down traffic not trav-
elling to and from the outside internet.

[0301] It should be noted that very large leaf-spine net-
works may actually be formed from 3 tiers of network
devices. As described in more detail below, in these configu-
rations, the third tier may function as a “spine” which con-
nects “leaves” formed from first and second tier network
devices, but a 3-tier leaf-spine network still works very dif-
ferently than a traditional AAC network due to the fact that it
maintains the multi-rooted tree topology as well as other
features. To present a simple example, the top tier of a 3-tier
leaf-spine network still does not directly provide the internet
connection(s), that still being provided through a leaf network
device, as in a basic 2-tier leaf-spine network.

[0302] FIG. 9 schematically illustrates a particular example
of'abasicleaf-spine network 200. To a certain extent, network
200 is analogous (or is the counterpart of) the AAC network

US 2015/0124826 Al

100 shown in FIG. 8. Both provide connectivity for 12 end
devices which directly connect to 5 network devices in a first
tier, in the case of network 200, to the 5 leaf network devices
225 of leaf tier 220, which are analogous to the 5 network
devices 125 of the access tier 120 of the AAC network 100.
However, moving on to the second tier, unlike the AAC net-
work 100 which has a 2-network device aggregation tier 130
and a 1-network device core tier 140, the leaf-spine network
200 employs just a single additional tier, the spine tier 230,
which consists of 3 spine-network devices 235.

[0303] Though in FIGS. 8 and 9 the total number of net-
work devices in the higher tiers remains the same, the con-
nectivity of these devices is quite different. FIG. 9 shows that
in a prototypical leaf-spine network, every leaf network
device 225 is connected to multiple spine network devices
235 creating the so-called “multi-rooted tree” topology—
differing from the ordinary tree topology of an AAC network
where each network device is connected to only one network
device above it in the hierarchy. As a consequence and unlike
an AAC network, in a leaf-spine network there are multiple
paths of communication between any pair of leaf network
devices 225, and thus also between any pair of end devices
210 connected to different leaf network devices. The multi-
path topology which joins the end devices in these networks
is a characteristic which helps to reduce the extent to which
“blocking” poses a problem. Moreover, leaf-spine networks
are such that if a sufficient number of spine network devices
are connected with sufficient bandwidth to the leaf network
devices, a leaf-spine network may provide what is referred to
as “full bisectional bandwidth,” as described in more detail
below. Furthermore, by adding additional tiers (such as a third
tier as mentioned above and as described in greater detail
below), a network of arbitrary size can be built that still
provides “full bisectional bandwidth.”

[0304] To illustrate, consider analogously to the example
described above, communication between end device A and
end device K simultaneous with communication between end
devices I and J, which led to blocking in AAC network 100. As
shown in FIG. 9, in the leaf-spine network 200, there are three
paths connecting end device A with end device K and three
different paths connecting end device I with end device J
illustrating that no blocking problem arises. Again, assuming
all links in the network provide equal bandwidth, the two
pairs of end devices each have available 3 times the required
bandwidth for max rate communication and thus the network
is non-blocking in this scenario.

[0305] As a second example, consider the scenario of
simultaneous communication between end devices A and F
and between end devices B and G which will clearly also lead
to blocking in AAC network 100. In the leaf-spine network
200, although two leaf network devices 225 are shared
between the four end devices 210, specifically network
devices 1 and 3, there are still three paths of communication
between these two devices (one through each of the three
spine network devices 1, II, and I1I) and therefore there are
three paths collectively available to the two pairs of end
devices. Thus, it is seen that this scenario is also non-blocking
(unlike FIG. 8) because each pair of end devices still has
access to 1.5 times the bandwidth required for max rate com-
munication.

[0306] As a third example, consider the scenario of simul-
taneous communication between three pairs of end devices—
between A and F, between B and G, and between C and H. In
AAC network 100, this results in each pair of end devices

May 7, 2015

having %4 the bandwidth required for full rate communica-
tion, but in leaf-spine network 200, once again, since 3 paths
are available, each pair has exactly the bandwidth it needs for
full rate communication. Thus, in a leaf-spine network having
single links of equal bandwidth connecting devices, as long as
the number of spine network devices 235 is equal to or greater
than the number of end devices 210 which may be connected
to any single leaf network device 225, then the network will
have enough bandwidth for simultaneous full-rate communi-
cation between the end devices connected to the network.

[0307] More generally, the extent to which a given network
is non-blocking may be characterized by the network’s
“bisectional bandwidth,” which is determined by dividing a
network that has N end devices attached to it into 2 equal sized
groups of size N/2, and determining the total bandwidth avail-
able for communication between the two groups. If this is
done for all possible divisions into groups of size N/2, the
minimum bandwidth over all such divisions is the “bisec-
tional bandwidth” of the network. Based on this definition, a
network may then be said to have “full bisectional band-
width” and have the property of being “fully non-blocking” if
each leafnetwork device’s total uplink bandwidth to the spine
tier 230 (the sum of the bandwidths of all links connecting the
leaf network device 225 to any spine network device 235) is
at least equal to the maximum downlink bandwidth to end
devices associated with any of the leaf network devices on the
network.

[0308] To be precise, when a network is said to be “fully
non-blocking” it means that no “admissible” set of simulta-
neous communications between end devices on the network
will block—the admissibility constraint simply meaning that
the non-blocking property only applies to sets of communi-
cations that do not direct more network traffic at a particular
end device than that end device can accept as a consequence
of its own bandwidth limitations. Whether a set of commu-
nications is “admissible” may therefore be characterized as a
consequence of each end device’s own bandwidth limitations
(assumed here equal to the bandwidth limitation of each end
device’s link to the network), rather than arising from the
topological properties of the network per se. Therefore, sub-
ject to the admissibility constraint, in a non-blocking leat-
spine network, all the end devices on the network may simul-
taneously communicate with each other without blocking, so
long as each end device’s own bandwidth limitations are not
implicated.

[0309] The leaf-spine network 200 thus exhibits full bisec-
tional bandwidth because each leaf network device has at
least as much bandwidth to the spine tier (i.e., summing
bandwidth over all links to spine network devices) as it does
bandwidth to the end devices to which it is connected (i.e.,
summing bandwidth over all links to end devices). To illus-
trate the non-blocking property of network 200 with respect
to admissible sets of communications, consider that if the 12
end devices in FIG. 9 are arbitrarily divided into 6 pairs,
simultaneous communications between the 6 pairs are admis-
sible, and thus may occur without blocking in network 200. In
addition, it is noted that the non-blocking property of leat-
spine network 200 will be preserved if up to 15 end devices
are connected, 3 to each of the 5 leaf network devices.
[0310] To implement leaf-spine network 200, the leaf tier
220 would typically be formed from 5 ethernet switches of 6
ports or more, and the spine tier 230 from 3 ethernet switches
of'5 ports or more. The number of end devices which may be
connected is then the number of leaf tier switches j multiplied

US 2015/0124826 Al

by %4 the number of ports n on each leaf tier switch, or %2 j-n,
which for the network of FIG. 9 is ¥5-5-6=15. Furthermore,
the number of ports m on each spine tier switch is equal to the
number of leaf tier switches j (so long as the maximum
number of leaf tier switches are used), and so the total number
of'end devices is also given by %2 ‘m-n, where m is the number
of'ports on the spine tier switches, and n is the number of ports
on the leaf tier switches.

[0311] However, not every network is required to be non-
blocking and, depending on the purpose for which a particular
network is built and the network’s anticipated loads, a fully
non-blocking network may simply not be cost-effective. Nev-
ertheless, leaf-spine networks still provide advantages over
traditional networks, and they can be made more cost-effec-
tive, when appropriate, by reducing the number of devices
used in the spine tier, or by reducing the link bandwidth
between individual spine and leaf tier devices, or both. In
some cases, the cost-savings associated with using fewer
spine-network devices can be achieved without a correspond-
ing reduction in bandwidth between the leaf and spine tiers by
using a leaf-to-spine link speed which is greater than the link
speed between the leaf tier and the end devices. If the leaf-
to-spine link speed is chosen to be high enough, a leaf-spine
network may still be made to be fully non-blocking—despite
saving costs by using fewer spine network devices.

[0312] The extent to which a network having fewer spine
tier devices is non-blocking is given by the ratio of bandwidth
from leaf network device to spine tier versus bandwidth from
leaf network device to end devices. By adjusting this ratio, an
appropriate balance between cost and performance can be
dialed in. In FIG. 9, for example, assuming links have equal
bandwidth, one spine network device 235 could be eliminated
if a non-blocking ratio of %3 was acceptable. This would
imply that if 3 end devices connected to a single leaf network
device attempt simultaneous communication to 3 or more end
devices attached to other leaf networking devices, only %5 of
the required bandwidth would be available. This is also
referred to as “oversubscription.” In this case, the “oversub-
scription rate” would be 1.5, since 1.5=(24)7".

[0313] This concept of oversubscription and building cost-
effective networks having fewer than optimal spine network
devices also illustrates the improved failure domain provided
by leaf-spine networks versus their traditional counterparts.
In a traditional AAC network, if a device in the aggregation
tier fails, then every device below it in the network’s hierar-
chy will become inaccessible until the device can be restored
to operation. Furthermore, even if redundancy is built-in to
that particular device, or if it is paired with a redundant
device, or if it is a link to the device which has failed and there
are redundant links in place, such a failure will still resultin a
50% reduction in bandwidth, or a doubling of the oversub-
scription. In contrast, redundancy is intrinsically built into a
leaf-spine network and such redundancy is much more exten-
sive. Thus, as illustrated by the usefulness of purposefully
assembling a leaf-spine network with fewer spine network
devices than is optimal, absence or failure of a single device
in the spine (or link to the spine) will only typically reduce
bandwidth by 1/k where k is the total number of spine net-
work devices.

[0314] It is also noted once more that in some networks
having fewer than the optimal number of spine network
devices (e.g., less than the number of end devices connecting
to the leaf network devices), the oversubscription rate may
still be reduced (or eliminated) by the use of higher bandwidth

May 7, 2015

links between the leaf and spine network devices relative to
those used to connect end devices to the leaf network devices.
[0315] D. Example “Leaf-Spine” Network Architecture
[0316] The following describes a sample implementation
of a leaf-spine network architecture. It is to be understood,
however, that the specific details presented here are for pur-
poses of illustration only, and are not to be viewed in any
manner as limiting the concepts disclosed herein. With this in
mind, leaf-spine networks may be implemented as follows:
[0317] Leaf network devices may be implemented as eth-
ernet switches having: (1) 48 ports for connecting up to 48 end
devices (e.g., servers) at data transmission speeds of 10 GB/s
(gigabits per second)—i.e. ‘downlink ports’; and (ii) 12 ports
for connecting to up to 12 spine network devices at data
transmission speeds of 40 GB/s—i.e. “uplink ports.” Thus,
each leaf network device has 480 GB/s total bandwidth avail-
able for server connections and an equivalent 480 GB/s total
bandwidth available for connections to the spine tier. More
generally, leaf network devices may be chosen to have a
number of ports in the range of 10 to 50 ports, or 20 to 100
ports, or 50 to 1000 ports, or 100 to 2000 ports, wherein some
fraction of the total number of ports are used to connect end
devices (‘downlink ports’) and some fraction are used to
connect to spine network devices (‘uplink ports’). In some
embodiments, the ratio of uplink to downlink ports of a leaf
network device may be 1:1, or 1:2, or 1:4, or the aforemen-
tioned ratio may be in the range of'1:1 to 1:20, or 1:1 to 1:10,
or 1:1 to 1:5, or 1:2 to 1:5. Likewise, the uplink ports for
connection to the spine tier may have the same bandwidth as
the downlink ports used for end device connection, or they
may have different bandwidths, and in some embodiments,
higher bandwidths. For instance, in some embodiments,
uplink ports may have bandwidths which are in a range of 1 to
100 times, or 1 to 50 times, or 1 to 10 times, or 1 to 5 times, or
2 to 5 times the bandwidth of downlink ports.

[0318] Moreover, depending on the embodiment, leaf net-
work devices may be switches having a fixed number of ports,
or they may be modular, wherein the number of ports in a leaf
network device may be increased by adding additional mod-
ules. The leaf network device just described having 48 10
GB/s downlink ports (for end device connection) and 12 40
GB/s uplink ports (for spine tier connection) may be a fixed-
sized switch, and is sometimes referred to as a “Top-of-Rack’
switch. Fixed-sized switches having a larger number of ports
are also possible, however, typically ranging in size from 50
to 150 ports, or more specifically from 48 to 128 ports, and
may or may not have additional uplink ports (for communi-
cation to the spine tier) potentially of higher bandwidth than
the downlink ports. In modular leaf network devices, the
number of ports obviously depends on how many modules are
employed. In some embodiments, ports are added via multi-
port line cards in similar manner to that described below with
regards to modular spine network devices.

[0319] Spine network devices may be implemented as eth-
ernet switches having 576 ports for connecting with up to 576
leaf network devices at data transmission speeds of 40 GB/s.
More generally, spine network devices may be chosen to have
a number of ports for leaf network device connections in the
range of 10 to 50 ports, or 20 to 100 ports, or 50 to 1000 ports,
or 100 to 2000 ports. In some embodiments, ports may be
added to a spine network device in modular fashion. For
example, a module for adding ports to a spine network device
may contain a number of ports in a range of 10 to 50 ports, or
20 to 100 ports. In this manner, the number of ports in the

US 2015/0124826 Al

spine network devices of a growing network may be increased
as needed by adding line cards, each providing some number
of ports. Thus, for example, a 36-port spine network device
could be assembled from a single 36-port line card, a 72-port
spine network device from two 36-port line cards, a 108-port
spine network device from a trio of 36-port line cards, a
576-port spine network device could be assembled from 16
36-port line cards, and so on.

[0320] Links betweenthe spine and leaftiers may be imple-
mented as 40 GB/s-capable ethernet cable (such as appropri-
ate fiber optic cable) or the like, and server links to the leaf tier
may be implemented as 10 GB/s-capable ethernet cable or the
like. More generally, links, e.g. cables, for connecting spine
network devices to leaf network devices may have band-
widths which are in a range of 1 GB/s to 1000 GB/s, or 10
GB/s to 100 GB/s, or 20 GB/s to 50 GB/s. Likewise, links, e.g.
cables, for connecting leaf network devices to end devices
may have bandwidths which are in a range of 10 MB/s to 100
GB/s, or 1 GB/s to 50 GB/s, or 5 GB/s to 20 GB/s. In some
embodiments, as indicated above, links, e.g. cables, between
leaf network devices and spine network devices may have
higher bandwidth than links, e.g. cable, between leaf network
devices and end devices. For instance, in some embodiments,
links, e.g. cables, for connecting leaf network devices to spine
network devices may have bandwidths which are in a range of
1to 100 times, or 1 to 50 times, or 1 to 10times, or 1 to 5 times,
or 2 to 5 times the bandwidth of links, e.g. cables, used to
connect leaf network devices to end devices.

[0321] In the particular example of each spine network
device implemented as a 576-port @ 40 GB/s switch and each
leaf network device implemented as a 48-port @ 10 GB/s
downlink & 12-port @ 40 GB/s uplink switch, the network
can have up to 576 leaf network devices each of which can
connect up to 48 servers, and so the leaf-spine network archi-
tecture can support up to 576-48=27,648 servers. And, in this
particular example, due to the maximum leaf-to-spine trans-
mission rate (of 40 GB/s) being 4 times that of the maximum
leaf-to-server transmission rate (of 10 GB/s), such a network
having 12 spine network devices is fully non-blocking and
has full cross-sectional bandwidth.

[0322] As described above, the network architect can bal-
ance cost with oversubscription by adjusting the number of
spine network devices. In this example, a setup employing
576-port switches as spine network devices may typically
employ 4 spine network devices which, in a network of 576
leaf network devices, corresponds to an oversubscription rate
of3:1. Adding a set of 4 more 576-port spine network devices
changes the oversubscription rate to 3:2, and so forth.
[0323] Datacenters typically consist of servers mounted in
racks. Thus, in a typical setup, one leaf network device, such
as the “Top-of-Rack’ device described above, can be placed in
each rack providing connectivity for up to 48 rack-mounted
servers. The total network then may consist of up to 576 of
these racks connected via their leaf-network devices to a
spine-tier rack containing between 4 and 12 576-port spine
tier devices.

[0324] 1. Leaf-Spine Network Architectures Formed from
More than Two Tiers of Network Devices

[0325] The two-tier leaf-spine network architecture
described above having 576-port @ 40 GB/s switches as
spine network devices and 48-port @ 10 GB/s downlink &
12-port @ 40 GB/s uplink switches as leaf network devices
can support a network of up to 27,648 servers, and while this
may be adequate for most datacenters, it may not be adequate

May 7, 2015

for all. Even larger networks can be created by employing
spine tier devices with more than 576 ports accompanied by a
corresponding increased number of leaf tier devices. How-
ever, another mechanism for assembling a larger network is to
employ a multi-rooted tree topology built from more than two
tiers of network devices—e.g., forming the network from 3
tiers of network devices, or from 4 tiers of network devices,
etc.

[0326] One simple example of a 3-tier leaf-spine network
may be built from just 4-port switches and this is schemati-
cally illustrated in FIGS. 10A-1, 10A-2, and 10B, in order to
convey the general principle. Of course, it is to be understood
that to build a large 3-tier network, larger switches would be
employed. FIG. 10A-1 shows 4 4-port switches 322 (labeled
“1-1,7 “1-2,” “1-3,” “1-4”) connected to form a 2-tier leaf-
spine network 301 for connecting 4 end devices 310 (labeled
“A)“B,” “C,” “D”) with switches 1-1 and 1-2 serving as leaf
network devices, and switches 1-3 and 1-4 serving as spine
network devices. Note that a leaf-spine network assembled
from 4-port switches would generally support a network of 8
end devices 310, connected through 2 spine-network devices
and 4 leaf network devices, but here, half the ports on the
switches serving as spine network devices, switches 1-3 and
1-4, have their links pointed upward in FIG. 10A-1 to sche-
matically indicate these links are reserved for uplink connec-
tion to a third tier. With the 4 4-port switches 322 connected
in this manner, they may collectively be viewed as function-
ing as an 8 port switch 325, as schematically illustrated in
FIG. 10A-2 (and labeled “1”), with 4 downlinks 305 to poten-
tial end devices 310 and 4 uplinks 315 to a potential third tier.
Such an effective 8-port switch may then serve as a building-
block for a 3-tier leaf-spine network.

[0327] FIG. 10B then shows how a 3-tier leaf-spine net-
work 302 may be assembled from these 8-port building
blocks. As shown in the figure, 4 8-port building blocks 325
may effectively serve as 4 leaf-network devices (labeled “1,”
“2,7 3, “4.”) in the leaf tier 320 of network 302. The spine
tier 330 of network 302 is formed from 4 additional 4-port
switches 335 (labeled “L” “I1,” “II1,” “IV”), similar to those
used to form each S-port leaf network device 325. Thus, when
viewed in terms of 4-port switches, network 302 consists of 3
tiers with 8 4-port switches in the bottom tier, 8 4-port
switches in the middle tier, and 4 4-port switches in the top
tier, though this network may still be viewed as having a leaf
tier 320 and spine tier 330, as just described. It is seen in the
figure, that network 302 may connect up to 16 end devices
310. Generalizing this, it is noted that a 3-tier leaf-spine
network may connect a total number of end devices equal to
Va-l'm-n, where 1, m, and n are the number of ports in the
devices forming the top, middle, and bottom tiers, respec-
tively (e.g., in FIG. 10B, %/4-4-:4-4=16). Thus, if n-port devices
are used to build a network, the size of a 3-tier leaf-spine
network scales as approximately n°, whereas the size of a
2-tier leaf-spine network scales only as n®. Accordingly, leaf-
spine network architectures employing 3 tiers of network
devices open up the possibility of efficiently assembling even
larger networks.

V. Example of Packet Walk Through

[0328] A. Normal Forwarding

[0329] The following constitutes a detailed example of net-
work operation and packet forwarding “walk-through™ con-
sistent with some embodiments of the fabric overlay network
described herein. However, since the following description

US 2015/0124826 Al

only constitutes a particular example, the specific details
recited should be viewed as illustrative rather than restrictive,
and in no manner be viewed as limiting the more detailed
description of concepts and embodiments provided above.
[0330] When the leaf-spine fabric overlay network initially
powers on, the mapping database is empty and the local
mapping tables/caches associated with the leaf devices are
empty. The locator addresses of the TEPs at the leafand proxy
devices are configured by an Integrated Fabric Controller,
IFC, using an object oriented data model application pro-
gramming interface (API). The reachability of these
addresses is understood through a protocol such as ISIS.
[0331] Wide area network (WAN) routes are imported at
the edge of the network fabric and distributed via, e.g., iBGP
running between the leaf and spine devices in the fabric. The
leaf devices populate their local mapping tables/caches with
these WAN routes.

[0332] Whena leaf device discovers anew end-point, either
based on packet arrival such as a gratuitous ARP or via the
management API, it will tell its COOP Citizen process about
that end-point and its locator, i.e. its own TEP address. The
COOP Citizen will then inform the COOP Oracles which will
then sync that information into the mapping database in the
Spines. The mapping database will then populate the proxy
function in the Spines with this mapping.

[0333] When an end point sends its first packet to another
end point, the receiving/ingress leaf device will look up the
destination identifier address, either MAC or IP, in its map-
ping cache. Assuming initially this will be a miss, the leaf
device will then encapsulate the packet in an iVXIL.AN header
and send it to the appropriate proxy address.

[0334] The proxy, upon receiving the packet, will extract
the inner destination identifier address, MAC or IP depending
on the proxy, and will look that address up in its mapping
database. The result will be the destination locator and the
interface to send the packet out of. The proxy will then replace
the destination locator address of the packet’s encapsulation
header with the new destination locator address and send the
packet to that TEP.

[0335] The egress TEP will lookup the destination identi-
fier address in its local mapping cache when the packet is
received. In some embodiments this will never result in a miss
as this mapping cache is always populated with the addresses
of'the end devices locally attached to it. And, in this embodi-
ment, if the network did not yet know about the end point, the
packet would have been dropped in the spine. The results of
this lookup in the local mapping cache/table are used to
forward the packet to the attached end device, as well as to get
the destination class of the local end point for use in policy
enforcement. The egress leaf device will then apply the
appropriate policies as a result of this look up and, if the
packet should be forwarded (i.e., the looked-up policy
doesn’t forbid it), forward it.

[0336] The egress leaf device will also lookup the source
identifier in its local mapping cache. If there is a miss, a new
entry is created from the content of the packet. If there is a hit,
but the content of the entry does not match that of the table,
the table entry is updated. Either way, in this embodiment, the
mapping cache will now hold the necessary information for a
packet that travels in the opposite direction.

[0337] This end point has now received this first packet and,
of course, it may respond to it. When it does respond, the
ingress leaf device (the previous egress leaf device) will
lookup the new incoming packet’s destination identifier and

May 7, 2015

have a hit in the mapping cache on the entry which was cached
from the previous packet traveling in the reverse direction.
This entry will contain the policy class of the destination,
DClass. The DClass combined with the source policy class,
SClass, also derived locally, combined with fields from the
packet are then checked via a logic block (hardware or soft-
ware) configured to apply access policy (e.g., determine
whether the packet should be dropped or not, re-routed, re-
encapsulated using an alternative encapsulation). For
instance, in some embodiments, this overriding policy deci-
sion would be based on a policy defined by an administrator
via an integrated fabric controller (IFC) and may be used to
redirect traffic to an alternate location on the network to apply,
for example, some service such as intrusion detection or
stateful firewalling. In some embodiments, the logic block for
applying access policy may be implemented in a content-
addressable memory (CAM). The appropriate policy is then
applied and, assuming the packet should not be dropped, the
packet is encapsulated with the destination locator address
returned from the mapping cache and the policy applied bits
are set (in the encapsulation header) Finally the packet is
forwarded to the destination TEP specified by its destination
locator, whose reachability is known, e.g., through ISIS.
[0338] In this case, the spine device which receives the
packet can simply forward it based on the destination locator
address, i.e. the outer IP address, since it was known at ingress
leafdevice and applied to the packet. (If it hadn’t been known,
the destination locator field would have been set by the leafto
one of the proxy addresses, and the proxy function would be
applied before forwarding from the spine, as described in
detail above.)

[0339] The egress leaf device will do the mapping cache
lookup on both source and destination identifier addresses to
update the cache appropriately and to determine where to
send the packet. Since the policy applied bits are set, no policy
will be applied in the egress leaf device.

[0340] At this point, the mapping cache on both leaf
devices has been updated to contain an entry associated with
the end device locally attached to the other leaf device. All
subsequent traffic will hit those cached entries.

[0341] B. Forwarding After an End Point Move

[0342] The following continues the previous example in
order to illustrate an example ofhow a fabric-overlay network
may handle an end-point move. Once again, this example is to
be understood as a specific illustrative example rather than in
any manner being construed as limiting to the more general
disclosure and concepts provided herein.

[0343] After the normal start-up and forwarding operations
just described, the leaf device-local mapping tables/caches
are populated with appropriate entries.

[0344] For the purposes of this description, assume that
end-point “Foo” initially is attached to leaf device “A” and
then moves to leaf device “B”.

[0345] When Foo moves from leaf device A to leaf device
B, it will send a gratuitous ARP (GARP), to signal to the
network its new location. The leaf device initially receiving
the GARP packet will process it as well as forward it through
the network.

[0346] This GARP (originating from leaf device B) will be
forwarded to leaf device A since that is where the network
thinks Foo is located when the GARP packet enters the over-
lay network (at leaf device B). On the egress path, leaf device
A will see that Foo was previously a locally attached end point
and is now attached to a different leaf device B. Accordingly,

US 2015/0124826 Al

leaf device A will update its cache entry for Foo to be a
“Bounce” entry pointing to leaf device B.

[0347] On leaf device B, upon receiving a copy of the
GARP packet it will process it by updating its local mapping
cache with a static entry for Foo and then it will inform the
centralized mapping database of the update for Foo through
the COOP protocol.

[0348] The spine devices will reprogram their local proxies
with the new mapping information for Foo. In addition one of
the spine devices will inform leaf device A that Foo has
moved. Ifleaf device A received the GARP previously, which
typically it would, then leaf device A takes no action. If the
GARP was notreceived by leaf device A for any reason, it will
install the Bounce entry in its mapping cache as if it had
received the GARP. This provides protection against loss of
the GARP packet(s).

[0349] At this point, leaf device A has a bounce entry for
Foo pointing to leaf device B, leaf device B has a local entry
for Foo, and the mapping database in the spine and/or proxy
devices has a mapping entry for Foo pointing to leaf device B.
[0350] When a second end device now sends a packet to
Foo, there are two possible scenarios. First, it may have a hit
in its local mapping cache and that entry will likely point to
leaf device A, i.e., it will be stale. In this case, the packet will
be forwarded to leaf device A and will hit the bounce entry for
Foo in leaf device A. This bounce entry will indicate to leaf
device A to forward the packet on to leaf device B, but leave
the source locator information unchanged and set the for-
warding exception bit so that the packet when it arrives at leaf
device B will look as if it was sent there directly from the leaf
device where the second device was attached. Leaf device B
can then do its normal caching algorithm on this packet.
When Foo responds to the second end device, the cache in the
leaf where the second end device is attached will then be
updated with Foo’s new location, and all subsequent packets
from the second device to Foo will be appropriately sent to
leaf device B.

[0351] The second scenario is that the remote ingress leaf
device to which the second end device is attached has a miss
when looking up Foo in its local mapping cache/table. In this
case, it will forward the packet to the proxy and the proxy will
have the up-to-date mapping information, i.e. Foo maps to
leaf device B. The packet is then forwarded normally.
[0352] Insummary, when an end device moves, forwarding
tables/caches are updated at three locations in the network
(and potentially more) so that packets are properly and effi-
ciently delivered to the new location: (i) the leaf device con-
stituting the new location where the device is attached so this
leaf device can forward out its local port correctly, (ii) the leaf
device constituting the old location where the device was
attached so it can install a bounce entry pointing to the new
location, and (iii) the spine so that subsequent cache misses
are sent directly to the correct location. Other leaf devices
may also have their local mapping caches/tables updated with
entries for the moved end device if their attached end devices
send packets to and/or from the moved end device. On the
other hand, leaf devices not transmitting packets to and/or
from the moved end device will have their stale cache entries
corresponding to this device aged out.

VI. Other Embodiments

[0353] Although the foregoing processes, methods, tech-
niques, operations, systems, apparatuses, devices, hardware,
software, etc. have been described in some detail for the

May 7, 2015

purpose of promoting clarity of understanding, it will be
apparent to one of ordinary skill in the art that certain changes,
modifications, and alternate implementation that may be
practiced within the scope of the appended claims. Accord-
ingly, the disclosed embodiments are to be considered as
illustrative and not restrictive, and the scope of each appended
claim is notto be inappropriately limited to the specific details
of the embodiments described herein.

We claim:

1. A method, comprising:

receiving a packet at an ingress leaf device;

determining based, at least in part, on a header of the packet

whether the packet is to be transmitted to a spine device;
ascertaining based, at least in part, on a header of the packet
whether to perform encapsulation on the packet;
encapsulating the packet according to a result of the ascer-
taining; and
after encapsulating the packet according to the result of the
ascertaining, transmitting the packet to a spine device
according to a result of the determining.

2. The method of claim 1, wherein the packet is received
from a device, the method further comprising:

determining whether the device is a trusted device;

wherein ascertaining is based, atleast in part, upon whether

the device is a trusted device.

3. The method of claim 1, further comprising:

determining that the packet has previously been encapsu-

lated; and

determining a type of encapsulation of the packet;

wherein ascertaining is performed based, at least in part,

upon the type of encapsulation of the packet.

4. The method of claim 1, wherein ascertaining is per-
formed based, at least in part, upon whether the packet isto be
transmitted to a spine device.

5. The method of claim 1, wherein encapsulating is per-
formed, at least in part, by the leaf device.

6. The method of claim 1, further comprising:

selecting one of two or more spine devices;

wherein transmitting comprises sending the packet to the

selected spine device.

7. The method of claim 6, wherein selecting one of the two
or more spine devices is performed based, at least in part,
upon an identifier of the end device in a header of the packet.

8. The method of claim 7, wherein selecting one of the two
or more spine devices is further performed based, at least in
part, upon a flow associated with the packet.

9. The method of claim 1, further comprising:

selecting one of two or more proxies;

wherein transmitting comprises sending the packet to the

selected proxy.

10. The method of claim 9, wherein selecting one of the
two or more proxies is performed based, at least in part, upon
an identifier of the end device in a header of the packet.

11. The method of claim 10, wherein selecting one of the
two or more proxies is further performed based, at least in
part, upon a flow associated with the packet.

12. The method of claim 1, further comprising:

obtaining an identifier of a destination device to which the

packet is addressed from a header of the packet; and

determining by the leaf device that it does not have a

location of the destination device;

wherein encapsulating is performed such that a header of

the packet identifies one or more proxies, and wherein

US 2015/0124826 Al

transmitting the packet comprises transmitting the
packet to at least one of the one or more proxies.
13. The method of claim 12, wherein the one or more
proxies are implemented in one or more servers.
14. The method of claim 12, wherein the one or more
proxies are implemented in one or more spine devices.
15. The method of claim 12, wherein at least one of the one
or more proxies is a layer 2 proxy.
16. The method of claim 12, wherein at least one of the one
or more proxies is a layer 3 proxy.
17. A method, comprising:
receiving a packet at an ingress leaf device;
determining based, at leastin part, on a header of the packet
that the packet is to be transmitted to a spine device.
ascertaining based, at leastin part, on a header of the packet
whether to perform encapsulation on the packet;
encapsulating the packet according to a result of the ascer-
taining; and
after encapsulating the packet according to the result of the
ascertaining, transmitting the packet to a spine device.
18. An apparatus, comprising:
a processor; and
a memory, at least one of the processor or the memory
being configured to:
receive a packet at a leaf device;

May 7, 2015

determine based, at least in part, on a header of the packet
whether the packet is to be transmitted to a spine device.

ascertain based, at least in part, on a header of the packet
whether to perform encapsulation on the packet;

encapsulate the packet according to a result of the ascer-
taining; and

after encapsulating the packet according to the result of the
ascertaining, transmit the packet to a spine device
according to a result of the determining.

19. The apparatus of claim 18, wherein the memory and/or

processor are configured to perform the method of claim 12.

20. An apparatus, comprising:

means for receiving a packet at a leaf device;

means for determining based, atleast in part, on a header of
the packet whether the packet is to be transmitted to a
spine device.

means for ascertaining based, atleast in part, on a header of
the packet whether to perform encapsulation on the
packet;

means for encapsulating the packet according to a result of
the ascertaining; and

means for transmitting the packet to a spine device, after
encapsulating the packet according to the result of the
ascertaining, according to a result of the determining.

#* #* #* #* #*

