
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

31
6

14
0

A
1

TEPZZ¥¥_6_4ZA_T
(11) EP 3 316 140 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.05.2018 Bulletin 2018/18

(21) Application number: 16306423.1

(22) Date of filing: 28.10.2016

(51) Int Cl.:
G06F 11/34 (2006.01) G06F 11/07 (2006.01)

G06F 11/36 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(71) Applicant: Alcatel Lucent
91620 Nozay (FR)

(72) Inventors:
• AGHASARYAN, Armen

91620 NOZAY (FR)

• BOUZID, Makram
91620 NOZAY (FR)

• KOSTADINOV, Dimitre Davidov
91620 NOZAY (FR)

• WOO, Thomas Y
MURRAY HILL, NJ New Jersey 07974-0636 (US)

(74) Representative: Loyer & Abello
9, rue Anatole de la Forge
75017 Paris (FR)

Remarks:
Amended claims in accordance with Rule 137(2)
EPC.

(54) IMPROVEMENTS IN OR RELATING TO DETERMINING PERFORMANCE IN A DISTRIBUTED
APPLICATION OR SYSTEM

(57) A method and system for determining system
problems within a defined controlled environment having
a least part of the environment linked with a virtual infra-
structure, the system problems being associated with the
treatment of a query instigated, in use, by a user, com-
prising: determining one or more nodes associated with
the treatment of the query; generating one or more stimuli
associated with the treatment of the query wherein the
or each stimulus are likely to perturb one or more re-
sources within the system; measuring data at the or each

node relating to the resources to determine the effect of
the or each stimuli at the or each node; identifying one
or more pairs of nodes which have a correlation in the
measured data; transforming the correlation into a causal
relationships where the cause is a measuring device
measuring the response and the consequences are the
other correlated measuring devices; generating a list of
causal relationships; and combining different causal re-
lationships into a causal model so that a chain of causal
propagations can be built.

EP 3 316 140 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Field of the Invention

[0001] The present invention relates to improvements
in or relating to methods, systems and equipment for de-
termining performance in a distributed application or sys-
tem, particularly to such methods, systems and equip-
ment for determining an automated test environment
which may determine latent performance degradations.

Background of the Invention

[0002] Modern network applications are highly com-
plex multi-tiered distributed systems which include a dy-
namic set of interdependent nodes often running in a
virtual cloud-based environment. In such environments,
software and hardware failure or a latent performance
degradation in a node can spread across some or all of
the nodes and result in a severe degradation of the overall
global system performances. The localization of an orig-
inal source for any such problems, is not straightforward
due to a lack of understanding of network dependencies.
[0003] Examples of distributed systems span from the
domain of web applications to emerging telecommunica-
tions technologies. An example of an emerging technol-
ogy is Network Function Virtualization (NFV), which
transforms network services such as load balancing, fire-
walls, or traffic analysis into software applications running
in a cloud-based infrastructure. NFV will be useful due
to its ability to anticipate, localize and fix any Quality of
Service (QoS) issues and failures.
[0004] One particular problem is latent performance
degradations. For instance, situations where shared re-
sources on a physical server are congested. This is often
referred to as "noisy neighbor problem", and may prop-
agate to other application nodes. This can result in a glo-
bal performance degradation perceived by the applica-
tion client (an end-user or another application). A further
problem in this environment is the lack of capability to
learn the behavior of a distributed application and auto-
matically build a dependency model for Quality of Service
management and root cause analysis. Typically this can
be implemented to some extent at a human level, but the
ability to automate such processes is still being sought.
[0005] There are many examples of application test
environments and niche tools for application modeling.
Unfortunately these do not tend to provide a methodical,
automated approach. For example, "TryStack" offers a
free large "OpenStack" cluster for developers to test ap-
plications, and "JMeter" may be used for testing the func-
tional behavior of web applications and measure their
performance under different input loads. Other examples
are passive application or infrastructure monitoring tools
such as "Packet-Beat" and "Nagios".
[0006] The information gathered from most test envi-
ronments and tools can be analyzed to learn the normal
behavior of a system and/or an application and discover

any component dependencies using state of the art meth-
odologies, such as time series correlations and causali-
ties inference algorithms. The identified dependencies
will generally only reflect normal behavioral modes and
would not take into account any failures or performance
degradation situations caused by computing resource in-
sufficiencies occurring in application or system nodes.
[0007] Other, more elaborated approaches involve an-
notating distributed application requests through modi-
fied middle-ware and common libraries, protocols and
software systems in order to derive a comprehensive
view of application behavior. These solutions are com-
putationally heavy and costly to implement.
[0008] A system called the "Sherlock" system derives
a probabilistic dependency graph between system com-
ponents and builds a multi-level probabilistic inference
model capturing the relationships between heterogene-
ous network components in enterprise networks. This
can be done only by analyzing network packet traces and
traceroute measurements. Typically, such systems op-
erate in a passive way and do not capture system de-
pendencies in any situations.
[0009] Spectrum-based fault localization approaches
keep track of components which take part in the execu-
tion of tasks together with their status (success or failure).
These approaches then provide a ranked list of fault can-
didates which could explain the observed task failures.
Spectrum-based fault localization approaches may de-
tect faults in unmonitored components. However, they
apply only to hard faults which cause tasks to fail and are
unable to detect performance degradation issues when
the task still succeeds.
[0010] There is currently no solution offering an auto-
mated test environment and tools to stimulate the distrib-
uted application in a globally coordinated way and derive
its complete behavioral model (including failures, latent
performance degradations, and the normal behaviors).
Thus a need exists to find a more expansive and func-
tional system and method for testing network nodes and
improving the handling of predictable network problems.
[0011] A further object of the present invention is to
overcome at least some of the problems associated with
existing systems, methods and equipment.

Summary of the Invention

[0012] According to one aspect of the present invention
there is provided a method of determining system prob-
lems within a defined controlled environment having a
least part of the environment linked with a virtual infra-
structure, the system problems being associated with the
treatment of a query instigated, in use, by a user, the
method comprising: determining one or more nodes as-
sociated with the treatment of the query; generating one
or more stimuli associated with the treatment of the query
wherein the or each stimulus are likely to perturb one or
more resources within the system; measuring data at the
or each node relating to the resources to determine the

1 2

EP 3 316 140 A1

3

5

10

15

20

25

30

35

40

45

50

55

effect of the or each stimuli at the or each node; identifying
one or more pairs of nodes which have a correlation in
the measured data; transforming the correlation into a
causal relationships where the cause is a measuring de-
vice measuring the perturbed resource and the conse-
quences are the other correlated measuring devices;
generating a list of causal relationships; and combining
different causal relationships into a causal model so that
a chain of causal propagations can be built.
[0013] According to a second aspect of the present
invention there is provided an automated sandbox de-
ployed in a controlled cloud environment having a least
part of the environment linked with a virtual infrastructure,
the sandbox for monitoring problems associated with the
treatment of a query instigated, in use, by a user, the
sandbox comprising: a determination module for deter-
mining one or more nodes associated with the treatment
of the query; a stimulus generating module for generating
one or more stimuli associated with the treatment of the
query wherein the or each stimulus are likely to perturb
one or more resources within the system; a measurement
device for measuring data at the or each node relating
to the resources to determine the effect of the or each
stimuli at the or each node; a correlation module for iden-
tifying one or more pairs of nodes which have a correla-
tion in the measured data; and a model creation module
for: transforming the correlation into a causal relation-
ships where the cause is the measuring device measur-
ing the perturbed resource and the consequences are
the other correlated measuring devices; generating a list
of causal relationships; combining different causal rela-
tionships into a causal model so that a chain of causal
propagations can be built.
[0014] Advantageously, various embodiments are pro-
vided by features as defined in the dependent claims.

Brief description of the drawings

[0015] The present invention will now be described, by
way of example, to the accompanying drawings in which:

Figure 1 is a block diagram of a distributed applica-
tion, according to an aspect of the present invention;

Figure 2 is a block diagram of a stimulus propagation
in a simple network, according to an aspect of the
present invention;

Figure 3 is a block diagram of an architecture for
application profiling, according to an aspect of the
present invention;

Figure 4 is a block diagram showing a sandbox ar-
chitecture, according to an embodiment of the
present invention;

Figure 5 is a diagram of connected tiles showing a
causal relationship, according to an embodiment of

the present invention;

Figure 6 is a flow diagram of the method steps for
determining performance degradation, according to
an embodiment of the present invention;

Figure 7 is a flow diagram of the method steps for
part of the processing method, according to an em-
bodiment of the present invention.

Description of the Invention

[0016] In broad terms the present invention relates to
a fault model-based approach to network problems and
degradation in performance, which represents the global
system behavior as a combination of elementary behav-
ioral features such as "tiles". There is no need to explicitly
represent the global system using this approach. The
invention may be relevant to telecommunication net-
works and includes automatic learning of the elementary
behaviors. This gives rise to a global solution offering an
automated test environment and tools to stimulate a dis-
tributed application in a globally coordinated way and de-
rive its complete behavioral model (including failures, la-
tent performance degradations, and the normal behav-
iors). The invention encompasses the reuse and combi-
nation of some existing tools, in a globally coordinated
system which permits a series of controlled perturbations
to take place on computing resources and to derive any
causal dependencies associated with performance deg-
radation or failure propagation from one component to
another.
[0017] An embodiment of the invention provides a fully
automated sandbox deployed in a controlled cloud envi-
ronment. At any time there is one application running
within the sandbox so that the investigation of its behavior
can be carried out without interference from any other
application or process.
[0018] Referring to figure 1, a WordPress-based ap-
plication 100 is presented. The application 100 may com-
prise a load balancer 102, several web servers 104 and
a database 106. Each component is deployed on a sep-
arate virtual machine (VM) or node. In order to distribute
the load among the web servers, the load balancer uses
for example a Least Connections algorithm which com-
prises selecting the server that hosts the fewest number
of connections. In order to build a response to a query
108, a chosen web server makes requests to the data-
base and sends back the received response to the load
balancer which in turn replies to the query originator, as
will be described in greater detail below. A query is any
communication from a user requesting communication
with, or data from, an application.
[0019] Turning now to Figure 2, a first central process-
ing unit (CPU) 200 may be associated with a second CPU
202, a network 204 and a possible input load 206. The
association may be discovered by the present invention
by triggering a resource limitation on one node. The first

3 4

EP 3 316 140 A1

4

5

10

15

20

25

30

35

40

45

50

55

CPU and the second CPU are referred to as resources.
A node is any software program (e.g. running in a virtual
machine) which relies on or uses different computing re-
sources (CPU, network bandwidth, RAM, etc. and which
may be involved in the receipt and treatment of a query.
An alternative to a Virtual Machine is a Docker container;
which represent a virtualization technology alternative to
a virtual machine, and which is increasingly used in cloud
computing platforms..
[0020] By perturbing the first CPU it is possible to ob-
serve the immediate impact on the other nodes associ-
ated therewith. In this application the node which is per-
turbed is referred to as a primary node and the other
nodes are secondary or other nodes. In this case, the
second CPU 202, the neighboring network throughput in
another node 204 or response time of the global system.
The second CPU may correspond to a web server taking
up an additional charge which cannot be completed by
a first webserver co-associated with the first CPU. The
response time may be measured using a load balancer,
it will eventually carry the impact of the perturbation.
[0021] The CPU resource is perturbed by perturbing
CPU resource at a node. A node is also referred to as
an application node and may include a software module
such as a webserver, load balancer, data base, etc.; a
virtual machine; etc. A perturbation is a stress or strain
which is imposed on the resource to change it so that
any reaction thereto can be established. An impacted
resource may be local to the node where the perturbation
occurs or remote. Resources may include CPU capability
208; memory capability 210, local input/output capabili-
ties 212, network input/output capabilities 214and any
other appropriate capabilities. By perturbing a CPU re-
source capacity in one node the reaction of other nodes
can be measured and monitored.
[0022] Each individual perturbation acts as a stimulus
to the performance meters or measurement devices of
the node at which the perturbation occurs, and at any
other associated virtual machines or nodes and deter-
mines what makes them react accordingly. The stimulus
is also referred to as a root cause as it is this which may
give rise to problems within the network, system or a
predetermined set of nodes which have been identified
for analysis. The stimulus may cause a response from
each associated node and it is this that the invention
seeks to determine and model. By determining and mod-
eling the response or actions to a given stimulus an ac-
curate and automatic model of the system and its re-
sponses can be formed. In the example shown in figure
2, the stimulus is on the CPU, however it will be appre-
ciated that the stimulus could be applied elsewhere on
the node, for example the memory or any input/output
application or port.
[0023] The stimulus essentially propagates through
the system and any response from a node can be deter-
mined. As a result any correlations in the responses of
different nodes can be determined by an appropriate
measuring device or meter. This is important as it provide

evidence of any causal relationship between nodes
which may be impacted by a specific type of perturbation.
Each stimulus provides the opportunity to model a set of
elementary causal relationships between resource
states. The model and correlations can be combined to
represent more complex fault propagation trajectories
across the entire topology of nodes. The set of possible
causal relationships associated with each stimulus pro-
vides a causal fault propagation model which can be used
for fault localization in real-time.
[0024] It should be noted that the present invention pro-
vides a capability to link correlation analysis of a response
with a causal effect. If there is a reaction from a specific
node, i.e. there is a correlation between the specific node
and the primary node (that at which the perturbation oc-
curs) there must be a causal link between the specific
node and the primary node. This concept has previously
been theoretically possible but has not been achievable
in reality. However, the present invention has achieved
this linkage in practice as will be described in greater
detail below.
[0025] The general architecture of the system 300, ac-
cording to the present invention is shown in Figure 3. The
system makes use of a distributed application profiling
approach and is comprised of a number of modules. A
sandbox 302 is in operational connection with a cloud
infrastructure 304, such as an OpenStack-based cloud
infrastructure which is monitored by a monitoring module
306. Data is stored in a storage module 308. The sandbox
302 includes a deployment module 310, an execution
module 312 and an individual stimuli module 314. The
OpenStack-based cloud infrastructure 304 includes a
physical machine (physical host or server) 316 which
may include a Linux operating system 318 and a hyper-
visor 320. In addition the physical machine may be sup-
port or execute a virtual machine 322 also operating an
operating system such as Linux 324.
[0026] The monitoring module 306 is capable of mon-
itoring any relevant performance metering data from the
system and store the data in the data storage module.
The stored data can then be exploited for different pur-
poses, e.g. for learning causal models 326 (without any
prior expertise on their behavior) and therefore for ena-
bling the root cause analysis of failures and latent per-
formance degradations propagating between the appli-
cation nodes. Another example of the stored data exploi-
tation includes an early testing of an application (before
its operational deployment) under different resource lim-
itations, allowing the identification of resource bottle-
necks, and to define adequate capacity dimensioning
policies or to estimate operational costs. Discovery of
anomaly detection schemes (e.g. learning the adequate
alarm generation thresholds) is yet another usage of the
collected data. The data may also enable the building of
a platform with labeled data generation capability for test-
ing various correlation, causality inference and machine
learning techniques.
[0027] Figure 4 shows a more detailed diagram of the

5 6

EP 3 316 140 A1

5

5

10

15

20

25

30

35

40

45

50

55

sandbox architecture. The entire process of sandbox de-
ployment 310 can be automated by the sandbox execu-
tion module 312 using one or more orchestration and
configuration engines 400, 402. There may be two dif-
ferent types of orchestration based module, one of which
is, for example, an Ansible based orchestration module
400 which is driven by a stimuli playbook 404 and the
other of which may be a Python based orchestration mod-
ule 402 which is driven by a JavaScript stimuli scenario
module 406. Other forms of orchestration module may
be used instead of the two examples mentioned above.
The execution process of the sandbox can alternatively
be orchestrated through an appropriate graphical user
interface (GUI). The stimulation playbook or scenario
module can be put together manually by a user or auto-
mated by an appropriate module.
[0028] The sandbox deployment module 310 includes
a fact collection module 408, a module for activation and
control of monitoring tools 410, and an application load
generation module 412.
[0029] As part of the sandbox deployment process a
phase of data collection is carried out using, for example,
an OpenStack Nova API (not shown) and some Linux
kernel functions 418. The fact collection automatically
discovers the application nodes deployed on a private
cloud. The fact collection may also include the discovery
of the allocated resource capacities of each node. The
fact collection may also capture data from other places
depending on the nature of stimulus or perturbation and
the analysis being performed.
[0030] The sandbox may perform resource monitoring
306 on at least three layers, such as: a cloud or physical
layer, a virtual layer and at an application layer. This is
done using various tools including, for example, Open-
Stack Ceilometer, Packetbeat and other metering agents
or applications. The appropriate tool may be activated
automatically during the execution of a test series as will
be described below.
[0031] The orchestrator 400 or 402 may also activate
the application load generator 412. For example, if the
application accepts RESTful queries, a load generation
tool such as Jmeter may be used to emulate a set of
users executing sample queries. Representational state
transfer (REST) or RESTful web services are one way
of providing interoperability between computer systems
on the internet. REST-compliant web services allow re-
questing systems to access and manipulate textual rep-
resentations of web resources using a uniform and pre-
defined set of stateless operations.
[0032] In the execution process 312, the sandbox re-
ceives one or more input stimulus policies (not shown)
which specify the perturbations to be applied to each re-
source type, one resource at a time. A stimulation policy
may comprise one or more individual policies or stimuli
or may include more or more orchestration policies. A
different orchestration policy may include the same stim-
uli in a different order or a completely different set of
stimuli. A typical stimulus policy specifies an interval of

resource capacity values (e.g. 100%; 90%; 80% and so
on) and a step size (e.g. 10%) within the interval to raise
or lower the level of the capacity perturbations. The sand-
box may support any number of stimuli of which three
types are described in greater detail below.
[0033] One type of stimulus is a negative resource
stimulus 420 which represents a low resource consump-
tion given the application load. This may be brought about
by an intrinsic lack of resource or because of resource
overprovisioning, i.e. another node on the same physical
cloud concurrently consumes the same limited resource.
This negative resource stimulus can be emulated in a
number of different ways: for example, by dynamically
restricting the resource quotas for a given node.
[0034] Stimulus Enforcement Negative perturbations
aim at dynamically restricting the nodes resource capac-
ities: the memory (RAM) quota, CPU time available for
the node, the disk I/O bandwidth, and the network I/O
bandwidth. The first three resource types are addressed
by using a toolkit, such as Libvirt 422, on a multi-hyper-
visor API 320 which can interact with the virtualization
capabilities of Linux versions. The hypervisor and the
associated library are tasked with controlling the manner
in which virtualization occurs and is it important to analyze
responses at this layer in a cloud environment. Network
perturbations are done using a Linux kernel 418 tool such
as ’traffic control’ or any other appropriate tool. This type
of perturbation is that which is most likely to be used to
determine issues at the virtualization layer.
[0035] A second type of stimulus is a positive resource
stimulus 424 which represents a high resource consump-
tion given the application load. This may be brought about
by the presence of a malware, or an ongoing software
update at the node. This negative resource stimulus can
be emulated in a number of different ways: for example,
with the help of a parasite process internal to the node,
which consume the given resource.
[0036] Positive perturbations are carried out by launch-
ing parasite processes co-located with the application
nodes on the same node. To create a CPU and RAM
overconsumption a stress tool 426 can be used which
launches a desired number of dummy processes which
consume the CPU or allocate/free memory. To change
network bandwidth a pair of client-server threads are
launched which communicate together and occupy the
incoming/outgoing network bandwidth. Finally, a stimu-
lus on disk is generated through custom scripts executing
read and write operations with random data.
[0037] A third type of stimulus is a positive load stim-
ulus 424 which comprises creating a resource deficiency
by increasing the application load. In the previous exam-
ples, the resource consumption levels reveal anomalies
or failures, here the resource insufficiency is typically in
some way normal and reveals a bottleneck.
[0038] Positive load perturbation entails changing the
request rate at which queries are sent to the application.
This is done by gradually increasing the number of user
threads in a module such as Jmeter.

7 8

EP 3 316 140 A1

6

5

10

15

20

25

30

35

40

45

50

55

[0039] Each stimulus creates a set of perturbations in
one or more resources which expand across the network
at one or more of the layers mentioned above. Measure-
ments of resources at any node can then be made using
appropriate meters or other measuring devices. The
nodes from which measurements are made will depend
on the tests and analyses being carried out. The meas-
urements will be collected and returned to the primary
node or to any other appropriate monitoring module at
the primary node or elsewhere. The measurements will
be analyzed and results determined.
[0040] All the measurements as well as stimulus
events (including timestamps, stimulated resource, and
the applied parameters) are stored in a database. The
data can be extracted from the database for batch
processing or replayed to emulate a real-time flow of the
data.
[0041] There a many possible usages of the data col-
lected within the application profiling sandbox to deter-
mine one or more problems or potential problems in the
network or system. These include the following: discov-
ery of anomaly detection schemes such as alert learning;
resource bottleneck detection or identification of sensi-
tive resources; general purpose testing of an application
before operational deployment, application capacity test-
ing and operational cost estimation. In an embodiment
of the present invention, a focus is on a causal model
derivation.
[0042] Causal model learning is essential to model-
based fault diagnosis approaches which rely on a prior
knowledge of causal relationships between monitored
entities or nodes. The present invention proves for a fault
model which can be automatically built within a defined
controlled environment. Any appropriate causal model
could be used and examples are set out below.
[0043] Referring to figure 5, a causal model may rely
on elementary fault behaviors, for example a so-called
tile. A tile is defined for a node type (e.g. Webserver,
Load Balancer, Database, etc.) and is composed of a
hidden part which may comprise pre-conditions and post-
conditions in different resource types, and a visible part
which may comprise alarms and the like. The tile has a
likelihood score, based on the likelihood of it being trig-
gered wherever certain conditions are satisfied. A set of
tiles can be made into a puzzle to represent a fault prop-
agation across a distributed system. The set of tiles are
generally connected in a way to match their respective
post- and pre-conditions. As a result, the connected tiles
form a causal relationship. The example illustrated shows
how the tiles representing two fault situations can be con-
nected: the left side tile 500 represents an alarm on CPU
insufficiency on a web-server, and the right one 502 rep-
resents an alarm on excessive response time on a load
balancer. A small number of simple tiles like these can
be used to represent a complex fault propagation pattern
504.
[0044] The modelling framework is very robust with re-
spect to the alarm generation mechanism as the tiles can

take into account missing observations. Tiles with no ob-
served alarm can still contribute to the fault propagation
and will impact the global likelihood of the propagation
pattern occurring.
[0045] A first step in the analysis of data generated by
the sandbox comprises the identification of pairs of cor-
related performance meters for each stimulus. A Pearson
correlation coefficient may be used for the correlation
process. Other correlation or matching techniques are
also possible. Any meter pairs below a predetermined
threshold on the coefficient may be filtered out from fur-
ther analysis. The meters can be replaced with corre-
sponding alarms triggered on lower and upper thresholds
or any other appropriate measuring device.
[0046] A tile-based model of the system being tested
can then be derived. This can be carried out in a number
of different ways.
[0047] The sandbox provides one or more basic truths
on one or more root causes for a problem in the network,
set of nodes or system. One root cause can be generated
for each stimulus. Moreover, each stimulus can be as-
sociated with a specific measuring device. For example,
CPU limitation on a given node can be observed using
a CPU utilization meter. This means that the correlated
pairs of measuring devices or alarms identified in the
matching or correlation techniques above can now be
transformed into causal relationships where the cause is
the measuring device directly measuring the stimulated
resource and the consequences are the other correlated
measuring devices. The correlated pairs where neither
of the two meters measures the stimulated resource will
be skipped. In a first instance, local causal relationships
may be identified. Local causal relationships are those
where the consequences are measured on the same ap-
plication node as the generated stimulus or root cause.
For example, the CPU limitation may cause a drop in
network bandwidth consumption. In a next stage distant
consequences can be determined. Distant or remote
consequences can cause the primary node to give rise
to a traffic limitation or other response at a distant node.
[0048] In addition, these distant consequences as de-
termined by an appropriate measuring device, can also
give rise to causes in the case of their own local stimuli.
The introduction of hidden variables such as for example,
pre-/post-conditions enables a multiple possible depend-
ency scenario to represent in a compact way with a small
number of elementary tiles (see 504). The likelihood of
a given tile being triggered in a predetermined condition
is derived by aggregating correlation coefficients asso-
ciated with different resource instances of the same type
conforming to the same tile. It should be noted that: the
tiles are defined in terms of node types and resource
types and therefore when a tile is derived evidence is
obtained from different instances of correlations between
meters of respective node and resource types. As a re-
sult, the tile’s likelihood may be computed as an aggre-
gated value of the underlying evidence; for example, an
average value of their correlation coefficients.

9 10

EP 3 316 140 A1

7

5

10

15

20

25

30

35

40

45

50

55

[0049] An important element of the present invention,
is the ability to learn and to model the behavior at the
virtual layer. A causal model may be formed by combining
different causal relationships into the model so that a
chain of causal propagations can be built. A model can
be used in real-time for a different instantiation or deploy-
ment of the same application, e.g. a deployment with a
different number of nodes (of the same types as those
experimented within the sandbox). Each individual tile
represents an elementary causal dependence between
two sets of resource conditions. The model is a collection
of all the tiles, so that they can be connected to represent
more complex fault propagations eventually spanning
across multiple nodes.
[0050] Referring now to figure 6 the method steps of
the present invention will now be described. In a first step
600 the primary node is identified. This step may be re-
peated for a different primary node, i.e. looping through
a set of primary nodes, covering eventually all the nodes
of the applications in the role of a primary node. In step
602 a stimulus or stimuli policy is identified. At step 604
the stimuli are enacted and at step 606 nodes at which
measurements are to be made are identified. The data
from the identified nodes is collected at step 608. The
nodes of interest are identified at step 610, as will be
described in more detail in figure 7. Data is analyzed at
step 612 from the nodes of interest. This enables a causal
relationship between nodes to be derived at step 614.
The model is then defined at step 616.
[0051] Referring now to figure 7 the method steps of
part of the data processing steps of the present invention
will now be described. In a first step 700 the data from
the identified nodes is collected. In step 702 this data is
collected from one of more interfaces. In step 704 data
is collected from one or more applications within the sys-
tem. At step 706 the data is collected from the virtualiza-
tion layer. The response data from one of more pairs of
node is analyzed to determine a correlation or match at
step 708. This enables causal relationships to be derived
in step 710 and the model may be defined in step 712.
If required the model may be redefined at step 714 if
changes are made or more data is collected.
[0052] In the example shown in figure 7 measurements
are made at different layers: the "application" layer, the
"virtual" layer (e.g. monitoring Virtual Machines or Docker
containers), and "physical" layer. In one embodiment
measurements are made and data collected at all layers.
However, it will be appreciated that it is not necessary to
conduct the collection and analysis at all layers in all em-
bodiment. In addition, it should be noted that the data
collected at the different layers may include one or more
of the nodes associated with each respective layer or
may include one or more nodes from only one or more
selected types of layer. The three layers mentioned are
examples and are not restricted to the three described
and may include more or less different layers.
[0053] A main component is any computer related in-
vention is a physical machine or computer, which may

be equipped with at least a processor, memory, a number
of data storage devices, keyboard, mouse, display etc.
The computer can also include any other necessary hard-
ware, such as a printer, other types of CAD input devices,
and an optical (e.g., laser) scanner or other means suit-
able for detecting data associate with the one or more
stimuli. The computer is also equipped with appropriate
software for the functions required to be carried out by
the system. The system may operate on a single device
or over multiple devices connected for communication
via a network. The software may be provided as a com-
puter program comprising program code for the execu-
tion of any method or process when the program is car-
ried out on a computer or computer system.
[0054] It will be appreciated that the system and meth-
od has been described with reference to a number of
different embodiments. These embodiments are not in-
tended to be limitative and many variations are possible
which will still fall within the scope of the present inven-
tion. The invention may be implemented in software,
hardware or any combination thereof. Elements that are
now illustrated as software can be changed to equivalent
hardware elements and vice versa.

Claims

1. A method of determining system problems within a
defined controlled environment having a least part
of the environment linked with a virtual infrastructure,
the system problems being associated with the treat-
ment of a query instigated, in use, by a user, the
method comprising:

determining one or more nodes associated with
the treatment of the query;
generating one or more stimuli associated with
the treatment of the query wherein the or each
stimulus are likely to perturb one or more re-
sources within the system;
measuring data at the or each node relating to
the resources to determine the effect of the or
each stimuli at the or each node;
identifying one or more pairs of nodes which
have a correlation in the measured data;
transforming the correlation into a causal rela-
tionships where the cause is a measuring device
directly measuring the stimulated resource and
the consequences are the other correlated
measuring devices;
generating a list of causal relationships; and
combining different causal relationships into a
causal model so that a chain of causal propa-
gations can be built..

2. A method according to claim 1 wherein the or each
stimulus creates a set of perturbations in one or more
resources which expand across the system at one

11 12

EP 3 316 140 A1

8

5

10

15

20

25

30

35

40

45

50

55

or more layers.

3. A method according to claim 2, wherein the layers
include a cloud or physical layer, a virtual layer and
at an application layer.

4. A method according to any preceding claim, further
comprising identifying local causal relationships.

5. A method according to any preceding claim, further
comprising identifying remote causal relationships.

6. A method according to any preceding claim, so as
to provide a solution associated with at least one of
the list consisting of discovery of anomaly detection
schemes; alert learning; resource bottleneck detec-
tion; identification of sensitive resources; general
purpose testing of an application before operational
deployment, application capacity testing; and oper-
ational cost estimation, labelled data generation for
supervised causality inference and machine learning
techniques.

7. A method according to any preceding claim, wherein
the stimuli comprise at least one of a negative re-
source stimulus, a positive resource stimulus and a
positive load stimulus.

8. A method according to any preceding claim, wherein,
the causal model is built up based on elementary
fault behaviors.

9. A method according to claim 8, wherein the elemen-
tary fault behaviors comprise one or more tiles de-
fined for a predetermined application node types and
computing resource types.

10. A method according to claim 9, wherein the or each
tile includes a hidden part, such as pre-conditions
and post-conditions, and a visible part such as
alarms.

11. A method according to claim 9 or claim 10, wherein
two or more tiles are combined to form a complex tile.

12. An automated sandbox deployed in a controlled
cloud environment having a least part of the envi-
ronment linked with a virtual infrastructure, the sand-
box for monitoring problems associated with the
treatment of a query instigated, in use, by a user, the
sandbox comprising:

a determination module for determining one or
more nodes associated with the treatment of the
query;
a stimulus generating module for generating one
or more stimuli associated with the treatment of
the query wherein the or each stimulus are likely

to perturb one or more resources within the sys-
tem;
a measurement device for measuring data at
the or each node relating to the resources to
determine the effect of the or each stimuli at the
or each node;
a correlation module for identifying one or more
pairs of nodes which have a correlation in the
measured data; and
a model creation module for:

transforming the correlation into a causal re-
lationships where the cause is the measur-
ing device directly measuring the stimulated
resource and the consequences are the
other correlated measuring devices;
generating a list of causal relationships;
combining different causal relationships in-
to a causal model so that a chain of causal
propagations can be built..

13. A system according to claim 12, wherein the or each
stimulus creates a set of perturbations in one or more
resources which expand across the system at one
or more layers.

14. A system according to claim 13, wherein the layers
include a cloud or physical layer, a virtual layer and
at an application layer.

15. A computer program comprising program code for
the execution of the method according to any one of
claims 1 to 11 when the program is carried out on a
computer or computer system.

Amended claims in accordance with Rule 137(2)
EPC.

1. A method of determining system problems within a
defined controlled environment having a least part
of the environment linked with a virtual infrastructure,
the system problems being associated with the treat-
ment of a query instigated, in use, by a user, the
method comprising:

determining one or more nodes associated with
the treatment of the query, wherein a node is an
element selected in the list consisting in a Virtual
Machine, a software program, and a CPU;
generating one or more stimuli associated with
the treatment of the query wherein the or each
stimulus are likely to perturb one or more re-
sources within the system;
measuring data at the or each node relating to
the resources to determine the effect of the or
each stimuli at the or each node;
identifying one or more pairs of nodes which

13 14

EP 3 316 140 A1

9

5

10

15

20

25

30

35

40

45

50

55

have a correlation in the measured data;
transforming the correlation into a causal rela-
tionships where the cause is a measuring device
directly measuring the stimulated resource and
the consequences are the other correlated
measuring devices;
generating a list of causal relationships; and
combining different causal relationships into a
causal model so that a chain of causal propa-
gations can be built, wherein the stimuli com-
prise at least one of a negative resource stimu-
lus, a positive resource stimulus and a positive
load stimulus.

2. A method according to claim 1 wherein the or each
stimulus creates a set of perturbations in one or more
resources which expand across the system at one
or more layers.

3. A method according to claim 2, wherein the layers
include a cloud or physical layer, a virtual layer and
at an application layer.

4. A method according to any preceding claim, further
comprising identifying local causal relationships.

5. A method according to any preceding claim, further
comprising identifying remote causal relationships.

6. A method according to any preceding claim, so as
to provide a solution associated with at least one of
the list consisting of discovery of anomaly detection
schemes; alert learning; resource bottleneck detec-
tion; identification of sensitive resources; general
purpose testing of an application before operational
deployment, application capacity testing; and oper-
ational cost estimation, labelled data generation for
supervised causality inference and machine learning
techniques.

7. A method according to any preceding claim, wherein,
the causal model is built up based on elementary
fault behaviors.

8. A method according to claim 8, wherein the elemen-
tary fault behaviors comprise one or more tiles de-
fined for a predetermined application node types and
computing resource types.

9. A method according to claim 9, wherein the or each
tile includes a hidden part, such as pre-conditions
and post-conditions, and a visible part such as
alarms.

10. A method according to claim 9 or claim 10, wherein
two or more tiles are combined to form a complex tile.

11. An automated sandbox deployed in a controlled

cloud environment having a least part of the envi-
ronment linked with a virtual infrastructure, the sand-
box for monitoring problems associated with the
treatment of a query instigated, in use, by a user, the
sandbox comprising:

a determination module for determining one or
more nodes associated with the treatment of the
query;
a stimulus generating module for generating one
or more stimuli associated with the treatment of
the query wherein the or each stimulus are likely
to perturb one or more resources within the sys-
tem;
a measurement device for measuring data at
the or each node relating to the resources to
determine the effect of the or each stimuli at the
or each node;
a correlation module for identifying one or more
pairs of nodes which have a correlation in the
measured data; and
a model creation module for:

transforming the correlation into a causal re-
lationships where the cause is the measur-
ing device directly measuring the stimulated
resource and the consequences are the
other correlated measuring devices;
generating a list of causal relationships;
combining different causal relationships in-
to a causal model so that a chain of causal
propagations can be built..

12. A system according to claim 12, wherein the or each
stimulus creates a set of perturbations in one or more
resources which expand across the system at one
or more layers.

13. A system according to claim 13, wherein the layers
include a cloud or physical layer, a virtual layer and
at an application layer.

14. A computer program comprising program code for
the execution of the method according to any one of
claims 1 to 11 when the program is carried out on a
computer or computer system.

15 16

EP 3 316 140 A1

10

EP 3 316 140 A1

11

EP 3 316 140 A1

12

EP 3 316 140 A1

13

5

10

15

20

25

30

35

40

45

50

55

EP 3 316 140 A1

14

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

