US 20170118192A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2017/0118192 Al

GARMARK et al.

43) Pub. Date: Apr. 27,2017

(54)

(71)
(72)

@

(22)

(63)

SYSTEMS AND METHODS FOR
CONTROLLING A LOCAL APPLICATION
THROUGH A WEB PAGE

Applicant: Spotify AB, Stockholm (SE)

Inventors: Sten GARMARK, Stockholm (SE);
Nicklas SODERLIND, Johanneshov
(SE); Samuel CYPRIAN, Stockholm
(SE); Aron LEVIN, Stockholm (SE);
Hannes GRAAH, Stockholm (SE);
Erik HARTWIG, Stockholm (SE);
Gunnar KREITZ, Hagersten (SE)

Appl. No.: 15/251,982

Filed: Aug. 30, 2016

Related U.S. Application Data

Continuation of application No. 14/446,174, filed on
Jul. 29, 2014, now Pat. No. 9,438,582, which is a
continuation of application No. 13/443,781, filed on
Apr. 10, 2012, now Pat. No. 8,898,766.

Client Computer
102-1

A

Publication Classification

(51) Int. CL
HO4L 29/06 (2006.01)
GOGF 17/22 (2006.01)
GOGF 9/54 (2006.01)
(52) US.CL
CPC oo HO4L 63/083 (2013.01); GOGF 9/54
(2013.01); GOGF 17/2247 (2013.01); HO4L
67/12 (2013.01)
(57) ABSTRACT

A system, computer-readable storage medium storing at
least one program, and a computer-implemented method for
controlling a local utility are disclosed. A first request
originating from an application and including a first token is
received at a local utility. The application received a web
page, including a plurality of links and the first token, from
a first server. The plurality of links are received by the
application from a second server. The first token is authen-
ticated. Authentication includes sending the first token to a
third server. In response to authenticating the first token, a
second token is generated at the local utility. The second
token is sent to the application for inclusion in subsequent
requests from the application.

Web Server
104

Client Computer
102-n

Qe

Digital
Certificate
302

Network 106

Domain Name Table

Domain Name | Network Address /
’example.com - 75.25.1.92 i // DNS Server
T Joopdomain.com 127.001 [114
. .
. ° /
° ° /

US 2017/0118192 A1l

Apr. 27,2017 Sheet 1 of 11

Patent Application Publication

1425
Janieg SNA

¢cl
JoAleg

SINPON

140)%
JaAIeS gapn

L ainbi4

L °

L4 °

d ®
L'00/CL W02 ulewopdoo| cwopuey
L'00/CL W02 ulewopdoo| Zwopuey
L'00/CL W02 ulewopdoo| | wopuey
L'00°/CL Wwoo urewopdoo|
¢6'L'9C'SL woo-a|dwexa

SS3IPPY JJOMIBN 3WeN Ulewoq

9|(e]l saweN uiewod

01 XJOMISN

// 8Ll

S|0EL
sWepN ulewo(q

vecl
8INPOIN]

ocl
sjojuo) —

AN 1eoo’

Ort AN 1e007
A

y

LoosLct
'SS8UpPPY HIOMIBN

[T JanleS gepn [e00T]

[a—

80} Jesmolg gepi

2ol
Jayindwon si)

US 2017/0118192 A1l

Apr. 27,2017 Sheet 2 of 11

Patent Application Publication

Z 2unbi14
r—————-—-—-—-— 1
_ |
_ |
| OFF AN 1eoo] |
_ 3 |
_ |
_ v | cmmwm_wo
| | Y 0
Loo/lct _ //
_ ‘SSaIppy YIoOMmJoN > ——1—_ PCl
_ _ WM< O INPOIN
_ Foo oo | ¥0Z .
| | ueny | | abessapy uinoy //
IR - /
_ | Al / aIT och
> T
| _ @ B oBe o s|o5uo)
_ RS N _ k d 9%M AN 18007
> c0¢ S
_ ¢l ‘_®>L®w JoAA |BO07 _ uW@D_U@W_ 01 Josmoig gapi
|l - — — |_ sbesse|y pepuz-usdo

20k

woisAg Jeindwon wal

US 2017/0118192 A1l

Apr. 27,2017 Sheet 3 of 11

Patent Application Publication

il
JaAlag SNQ

ccl
Janleg

SINPON

70l
JEYNETSGENY

¢ aunbi4

L 3
® ®
bt ®
1~ T100/21 woo ulewopdoo |
Z6'L'6C’s. B Hoo.m_o_c._mxm
$SoIppY WoMBN | SWeN urewoq
a|ge] aweN urewoq

90} omeN

aWeN ulewo(

y
40}

ajeolyie)
lewbia

vecl
SINPON

N

—_—

0cl
s|oJuo)

Ajnn (eson

OrT Aumn 1eoo

'

PNy (PR

L'00LC)
'$salppy YomeN

I T Janlag gapn 8007

<]
abed gapn

801 Jesmoug gapA

2oL
waisAg Jeindwod ual)

US 2017/0118192 A1l

Apr. 27,2017 Sheet 4 of 11

Patent Application Publication

1425
JaAJeg SNA

14012
JaAlag gopA

z0¢g
8jeole)
leybig

[] []

/ . .
26'1'G2'S. C_OO.G_QENXQ
SSalpPpy HIOMIoN suWeN ulewo(

s|qel swepN urewoq

901 YomieN

L= D

u-col
Jayndwod si)

A D

L-c0l
Jsindwo) wel

Patent Application Publication Apr. 27,2017 Sheet 5 of 11 US 2017/0118192 A1

Module Server Token Server
122 502

Web Server
104

Authentication Server
504

Network 106

A 4

Client Computer
102 Local Utility
110
Web Browser 108 I
Web Page 11 Local Web Server
o 112
Module
124
abmwp < o

Figure 5

US 2017/0118192 A1l

Apr. 27,2017 Sheet 6 of 11

Patent Application Publication

v9 ainbi4

¢09
sjonuoy —

soeghe|d

09
uolewoju] —
isliAeld

909
MOPUINy, ——
BuiAe|d MON

(ozt
sjoJiuoo AJjn [eao] Buipnioul) A

\/\/\/\/l\/\ll\\/\.ﬂl\l/\/\

« <L

"

pag 8814 :pIBUAYS pIBRUAT ¥

yongssepunyl o4V €

swy uadp :Asuinop 'g

azeH a|dind xupuaH wipr *|

Yongsiepuntyl :0a/0Y
Buike|d moN

3JOA paig 9214 pIRUAYS pPIBUAT

9JOA Yonujsispunyl :0a/ov

810A UQ Weslq yywsoisy

9JOA swy uado :Asuinop

310A aA07 01 APOQBWIOS :US3NY)

3J0A azeH ajdind :XupusH wif

Buog slJ0AB] JNOA U0} 810A

009 obed aepn

vcl SINPON

US 2017/0118192 A1l

Apr. 27,2017 Sheet 7 of 11

Patent Application Publication

<09
sjosuo)

yoeghie|d

09
uoleuLoU|
1siiheld

909

MOPUIAA
BuiAe|d moN

vcl SINPON

g9 ainbi4

E—

E—

E—

Kjlo oy1| spunos
1By} uolels
olpey e uelg

« <L

IsliAeld sioned
sJalad Aeld

piig 2914 :preufys pieud ¢

Buife|d s! yeuueH

spngsispunyl -oa/ov e

1eym JesH

swy uado :Aswinor 'z

\ azeH o|dind XupuaH Iwir “ |

yongsispunyy oaq/ov

syoel]
do] s.eul] Aeld

BuiAe|d mON

e@ll e@il e@/l e

oL99®

V/

Bed gopa

4 %°]
— SMUI UolealD
S|INPOA

Patent Application Publication Apr. 27,2017 Sheet 8 of 11 US 2017/0118192 A1

00

Receive, at a local utility, a first request originating from an application and
including a first token, wherein the application received a web page including a
plurality of links and the first token from a first server, and wherein the plurality | 702

of links were received by the application from a second server

Authenticate the first token, including sending the first token to a third server |-/~ 706

| Send the first token from the local utility to a third server — 707
L____________________I ____________________ -
| Receive, at the local utility, an authentication message from the third i ___— 708

In response to authenticating the first token, generate a second token atthe | ~ 710
local utility

Send the second token to the application for inclusion in subsequent requests | ~ 712
from the application

r |
: Receive a second request including a third token :—f 714
e 1 ________________________ a
L T | ~716
| Verify that the third token matches the second token |
I o 3
A S

Figure 7

Patent Application Publication Apr. 27,2017 Sheet 9 of 11 US 2017/0118192 A1

Client Computer

ﬂ\

CMEMORY)J :Z
802 Operating System _~
3 — Communications Module _~ 814
g CPU(s) E User Interface Module _~ 816
3 - Web Browser |~ 108
T~ |Local utiity |~ 110
805 \ Local Web Server L~ 112

N~

User Interface

Display

I4

— 806

Input Device(s) N— 807

804 Network
— Communications
Interface

Figure 8

Patent Application Publication

Module Server

Q\‘

902

Apr. 27,2017 Sheet 10 of 11 US 2017/0118192 A1

3 — /MEMORYDI 910
3 crus) E — o1
= — Operating System -
901 Communications Module s 914
~N
User Interface Module _~ 916
Q05 918
\ Module Creation Module -
User Interface N— I
Display — 905
Input Device(s) N— 907
Q04 Network
! Communications
Interface

Figure 9

Patent Application Publication Apr. 27,2017 Sheet 11 of 11 US 2017/0118192 A1l

Authentication

Server
504 N

1002
- = /MEMORY>I1O1O
= CPU(s) E ~——
- (s) — _ |~ 1012
- — Operating System
1001\ Communications Module 1014
User Interface Module |~ 1016
1005
\ Authentication Module -~ 1018
User Interface N— /
Display ~— 1006

Input Device(s) N— 1007

1004 Network
N\ Communications
Interface

Figure 10

US 2017/0118192 Al

SYSTEMS AND METHODS FOR
CONTROLLING A LOCAL APPLICATION
THROUGH A WEB PAGE

TECHNICAL FIELD

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 14/446,174, filed Jul. 29, 2014 which is a
continuation of U.S. application Ser. No. 13/443,781, filed
Apr. 10, 2012 (now U.S. Pat. No. 8,898,766), which appli-
cations are incorporated by reference herein in their entire-
ties.

BACKGROUND

[0002] Modern computers allow users to consume mul-
tiple different types of media, including text, still images,
video, and audio, in addition to providing other functional-
ities, such as web browsing. As computers have becoming
more interactive and powerful, users are increasingly storing
and consuming media directly on their computers. Also,
users are spending more and more time online, reading
news, web logs (blogs), and online magazines, as well as
visiting social networking sites. However, in many computer
systems, media playback software, such as a music player,
is discrete from web access software, such as a web browser.
Accordingly, users are required to switch between the dis-
played web browser and the music player in order to adjust
or change the playback of the music or to view status
information of the music player. Having to navigate among
different applications, however, can be inefficient and incon-
venient.

[0003] Currently, it is difficult for a web page to commu-
nicate to a locally stored and executed media player (or any
other local utility) such that either the local media software
or the web page can send information to the other when it is
desirable to do so. Accordingly, it would be beneficial to
provide systems and methods that solve these and other
problems associated with providing communication
between a local media player and a web browser.

SUMMARY OF THE INVENTION

[0004] Accordingly, there is a need for systems and meth-
ods that allow fast, efficient, and secure communications
between applications, such as web browsers, and local
utilities. In accordance with some embodiments, a method is
performed at an electronic device with a processor and
memory. The method includes receiving, at a local utility, a
first request originating from an application and including a
first token. The application received a web page including a
plurality of links and the first token from a first server. The
plurality of links were received by the application from a
second server. The method further includes authenticating
the first token, including sending the first token to a third
server. The method further includes, in response to authen-
ticating the first token, generating a second token at the local
utility. The method further includes sending the second
token to the application for inclusion in subsequent requests
from the application.

[0005] In some embodiments, the method further includes
receiving a second request including a third token, and
verifying that the third token matches the second token. If
the second and third tokens match, the method includes
taking one or more actions based on the content of the

Apr. 27,2017

second request. If the second and third tokens do not match,
the method includes taking no action based on the content of
the second request.

[0006] In some embodiments, authenticating the first
token includes sending the first token from the local utility
to a third server, and receiving, at the local utility, an
authentication message from the third server.

[0007] In some embodiments, the application is a web
browser, and the local utility is a media player. In some
embodiments, the local utility includes a web server that
communicates with the local utility and the application (e.g.,
the web browser). In some embodiments, the plurality of
links are included in a module. In some embodiments, the
module is an iframe. In some embodiments, the links
correspond to local utility control commands and/or local
utility status requests. In some embodiments, the links are
uniform resource locators (URLSs).

[0008] In accordance with some embodiments, an elec-
tronic device including one or more processors, memory,
and one or more programs stored in the memory and
configured to be executed by the one or more processors
include instructions for performing the operations of any of
the methods described above. In accordance with some
embodiments, a non-transitory computer readable storage
medium has stored therein instructions which, when
executed by an electronic device, cause the device to per-
form the operations of any of the methods described above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The embodiments disclosed herein are illustrated
by way of example, and not by way of limitation, in the
figures of the accompanying drawings. Like reference
numerals refer to corresponding parts throughout the draw-
ings.

[0010] FIG. 1 is a block diagram illustrating a client-
server environment, according to some embodiments.
[0011] FIG. 2 is a block diagram illustrating a client
computer system, according to some embodiments.

[0012] FIGS. 3-5 are block diagrams illustrating client-
server environments, according to some embodiments.
[0013] FIGS. 6A-6B are block diagrams illustrating web
pages, according to some embodiments.

[0014] FIG. 7 illustrates a flowchart of a method for
controlling a local utility, according to some embodiments.
[0015] FIG. 8 is a block diagram illustrating a client
computer system, according to some embodiments.

[0016] FIGS. 9-10 are a block diagrams illustrating server
computer systems, according to some embodiments.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0017] The systems and methods described herein enable
bidirectional and continuous communication between two
applications that are executed at a client computer. In
particular, the disclosed embodiments enable a user to
control and interact with certain aspects of locally executed
utilities (such as media players, download managers, camera
control applications, photo/video editors, etc.) through con-
trols that are included in web pages displayed in a local
application, such as a web browser. The systems and meth-
ods described herein also provide a way to create modules
that include control elements for local utilities (such as
control buttons, status windows, etc.) for inclusion in web

pages.

US 2017/0118192 Al

[0018] While web pages used to offer only limited func-
tions (such as simple text and image display), they are now
capable of performing functions that were previously pro-
vided by dedicated, locally stored and executed software.
For example, web pages can now allow a user to stream
music to their computer, or take control of a local webcam
to take videos or photographs. However, while such func-
tions may be provided by browser-based solutions (e.g.,
plug-ins such as JAVA™, QUICKTIME™, FLLASH™, and
the like), locally stored and executed software is still often
more effective or convenient than browser-based solutions.
For example, media player applications are often most
effective when they have direct access to and control over a
computer’s local file structure, so that they can access,
analyze, organize, and playback stored media files quickly
and efficiently.

[0019] Moreover, locally stored and executed applications
may provide additional services or functions that are difficult
to implement with browser-based solutions. For example, a
local media player may be configured to automatically post
status updates identifying recently played songs to a social
networking site. In another example, a local media player
may track a user’s media consumption history so that a
media service associated with the media player can provide
suggestions of new media items that are relevant to the
user’s tastes. In some cases, it is difficult to implement these
features in a web page or with browser plug-ins. Moreover,
if a local utility already exists that performs these functions,
it may be more efficient to use the local utility than attempt
to recreate them in a web browser environment.

[0020] But while it is advantageous for certain types of
applications to be stored and executed locally, it may be
difficult and/or inefficient to control such applications from
a web browser. For example, if a user is surfing the web
while listening to music, the user would have to constantly
change windows between a web browser and the local media
player in order to change tracks, adjust volume, etc. Further,
consider the case where a user navigates a web browser to
a web page that provides an option to stream a particular
song or playlist. Liking the particular song that is suggested,
the user starts the music and continues browsing the web.
Later, the user comes across a web page in a different
browser window or tab that provides an option to stream a
new song. If the user selects the new song, both songs would
be played simultaneously because there is no way for one
web page to know that another has initiated audio playback
of a new song. The user is thus forced to spend time
navigating among the open browser instances to locate the
web page that is providing the unwanted music, stop that
music, navigate back to the new page, and finally start the
new music. This is inconvenient. In light of these and other
problems, it would be beneficial to provide modules for
inclusion in web pages that enable control of and interaction
with local applications without having to leave the web
browser environment or direct attention away from the web
page. Moreover, it would be beneficial to allow web page
creators and administrators to quickly and easily create
modules for inclusion into web pages, without requiring
extensive programming, to enable the communication
between the local utility and the web browser.

[0021] Accordingly, the ideas and embodiments discussed
herein enable a seamless user experience between locally
stored and executed utilities (such as a media player) and
web pages and other remote content (collectively, a “web

Apr. 27,2017

page”) retrieved by and/or displayed in a separate applica-
tion (such as a web browser). The disclosed systems and
methods allow a user to control the local utilities without
navigating away from a web page. Moreover, the disclosed
systems and methods can allow control of a single local
utility through multiple different modules and/or web pages,
which helps to avoid control conflicts, such as the simulta-
neous music playback scenario described above. In some
cases, the disclosed embodiments may be employed by
entities seeking to improve the convenience and accessibil-
ity of the local applications that they provide to consumers,
as well as to allow seamless integration with other resources
such as web pages that users may visit.

[0022] Attention is now directed to the figures, and in
particular FIG. 1, which illustrates a block diagram of a
client-server environment, according to some embodiments.
The client-server environment includes a client computer
system 102, a web server 104, a module server 122, a DNS
server 114, and a network 106.

[0023] The client computer system 102 (“client computer
102”) includes a web browser 108, a local web server 112,
and a local utility 110. The web browser 108 is configured
to retrieve and/or display a web page 116. Using the systems
and methods disclosed below, the client computer 102
permits a user to interact with the local utility 110 via the
web browser 108, rather than requiring the user to interact
with the local utility 110 in a separate window or application
environment.

[0024] Insomeembodiments, a web page 116 is sent to the
client computer 102 by the web server 104. For example, the
web page 116 may be a blog or a social networking web page
that is retrieved from a web server 104 at the request of a
user. Of course, and as noted above, the web page 116 may
be and/or include any type of remote content, including
e-commerce, news, entertainment, media, and/or other web
pages. In some embodiments, the web page 116 includes a
plurality of links that are configured to initiate communica-
tions between the web browser 108 and the local web server
112. In some embodiments, the links are associated with
local utility controls 120. Links associated with the local
utility controls 120 are also referred to herein as local utility
control links. In some embodiments, the links are html
elements that are programmatically associated with the local
utility controls 120.

[0025] In some embodiments the local utility 110 is a
media player (e.g., a media player that is configured to play
locally or remotely stored media), and the local utility
controls 120 include graphical elements that, when selected,
cause the local utility to perform media playback or viewing
functions, such as play, pause, stop, skip, etc. (A user may
select the graphical elements in any appropriate manner,
such as a mouse click, a keyboard input, a touch input, a
voice input, etc.) In some embodiments, the local utility
controls 120 include output elements, such as a “now
playing” window, that show information about media that is
currently being played by the media player.

[0026] In some embodiments, the links are not directly
associated with output elements or selectable elements, but
rather enable other necessary or desirable communications
between the web browser 108 and the local web server 112.
Further, while the following disclosure frequently refers to
local utility “controls,” the teachings are applicable to any
elements in a web page that send requests (e.g., http
requests) to the local utility 110. The requests may change an

US 2017/0118192 Al

operating condition of the local utility 110 (e.g., skip a
track), request information from the local utility (e.g., “now
playing” information), or cause the local utility 110 to take
any other action.

[0027] Insome embodiments, the local utility controls 120
and their associated local utility control links are contained
in a module 124 that is received from the module server 122.
In some embodiments, the web page 116 includes an html
element or other computer code that causes the module (i.e.,
the contents of the module) to be downloaded from the
module server 122 for inclusion in the web page 116. In
some embodiments, the module 124 is an inline frame. (An
inline frame causes a document to be embedded within
another document.) In some embodiments, the module is an
inline frame defined by an html iframe element in the web
page 116. Modules may include local utility controls 120 for
various different types of local utilities, such as media
players and viewers, camera or webcam control applica-
tions, download managers, etc. A module may sometimes be
described as a “widget” for controlling and/or viewing
certain aspects of the local utility 110. Modules, their
contents, and how they are created are discussed below with
reference to FIGS. 6A-B.

[0028] The local web server 112 communicates with the
local utility 110, such that requests issued from the web
browser 108, such as http requests, are received by the local
web server 112, and information from the requests is trans-
mitted or otherwise provided to the local utility 110. It
should be appreciated that in the present discussion, com-
municating with the local web server 112 may be considered
to be the same as communicating with the local utility 110,
as the local web server 112 acts as a front end for the local
utility 110. In some embodiments, the local web server 112
is programmatically integrated with the local utility 110, and
acts as a dedicated interface between the local utility 110 and
the local web browser 108 (and/or other local or remote
applications). In some embodiments, the local utility 110
and the local web server 112 are part of the same software
application, and operations or functions that are described
herein as being performed or provided by one may be
performed or provided by the other.

[0029] In some embodiments, the web browser 108 com-
municates with the local web server 112 via internet protocol
(IP) communications. For example, in some embodiments,
the links in the web page 116 (e.g., the links associated with
the local utility controls 120) are uniform resource locators
(URLs) that, when executed, cause the web browser 108 to
send a hypertext transfer protocol (http) request to a par-
ticular IP address. In some embodiments, http requests
include parameters and/or commands that are recognized by
the local web server 112 and/or the local utility 110, and that
will cause the local utility 110 to take some action. In
embodiments where the local utility 110 is a media player,
the parameters and/or commands may cause the media
player to perform a playback control function (e.g., stop,
play, skip, etc.), or may cause the media player to provide
requested information to the web browser 108 (e.g., the
currently played song, the most recently played album, etc.).

[0030] In order for the local web server 112 to receive http
requests from the web browser 108 when a local utility
control 120 is executed, the local utility control link must be
directed to the IP address of the local web server 112. This
functionality may be provided by associating the local web

Apr. 27,2017

server 112 with a loopback address, and linking the loopback
address to a predefined domain name.

[0031] Specifically, in some embodiments, the local web
server 112 is associated with the loopback address (or
loopback network address) of the client computer 102. As
used herein, a loopback address is a self-referencing address,
such that communications (including IP communications)
issued from a computer and addressed to the loopback
address will be received by the same computer. In embodi-
ments where IPv4 protocol communications are used, the
loopback network address of a computer corresponds to an
IP address of 127.0.0.1 (as shown in FIG. 1). In some
embodiments, other loopback network addresses are used.

[0032] In order for the web browser 108 to send an http
request to the local web server 112, the web page 116 may
include a link associated with a URL such as “http://127.0.
0.1/[command].” (As described in detail below, the [com-
mand] portion of the URL may be configured to cause the
local utility 110 to perform some action.) When the link is
executed, the web browser 108 will send an http request to
the IP address 127.0.0.1, which corresponds to the local web
server 112. Thus, communications are enabled between the
web browser 108 and the local web server 112 (and hence
the local utility 110).

[0033] For various reasons, however, it may not be prac-
tical to include the loopback address directly in the URLs of
the local utility control links (i.e., by hard-coding 127.0.0.1
into the URL). For example, security features used in some
embodiments of the present invention are not possible if the
URLs are addressed directly to the loopback address. Rather,
it may be beneficial to use a domain name rather than an IP
address in the URL. Thus, one or more external domain
names may be registered in a domain name system and
associated with the loopback address. As shown in FIG. 1,
a domain name system (DNS) server 114 includes a domain
name table 118. A domain name table maps domain names
to network addresses (such as IP addresses). When a web
browser issues an http request to a URL, DNS servers are
typically used to convert the domain in the URL into an
actual network address. For example, a browser issuing an
http request to the URL www.Example.com/home, will need
to determine an actual network address from which to
request the “home” page. In order to do so, the web browser
108 communicates with the DNS server 114, requesting a
network address (e.g., an IP address) for the domain
“Example.com.” As shown in FIG. 1, the domain name table
118 correlates the domain “Example.com” with an IP
address of 75.25.1.92, which the DNS server 114 will return
to the web browser 108. The web browser 108 then sends its
request for the page “/home” (and indeed any other com-
munications intended for “Example.com™) to the IP address
of 75.25.1.92.

[0034] In some embodiments, in order to facilitate com-
munication between the web browser 108 and the local
utility 110 on the client computer 102, a domain may be
registered in a domain name system, where the domain is
associated with the loopback address. As shown in FIG. 1,
the domain name table 118 includes an entry for the domain
“loopdomain.com,” which is associated with the loopback
network address of 127.0.0.1.

[0035] The DNS entry associating “loopdomain.com”
with a loopback address may be used in conjunction with the
links in the web page 116 as described above. Specifically,
instead of hard-coding the loopback IP address in the local

US 2017/0118192 Al

utility control links, the links may be associated with a URL
such as “http://loopdomain.com/[command].” Because this
domain is mapped, via domain name table 118, to the
loopback address, any http requests addressed to this domain
are sent from the web browser 108 to the local web server
112 directly, without being sent to any other computers (and
indeed without ever leaving the local client computer 102).
However, because the URL is associated with an external
domain name, rather than simply an IP address, several other
features and benefits may be achieved, such as those dis-
cussed below with reference to FIG. 3.

[0036] In order to communicate via IP protocol, the web
browser 108 and the local web server 112 use several
techniques to establish and maintain open communication
channels. In some embodiments, the web browser 108 must
communicate with the local web server 112 using an open
port, such as an open TCP/UDP port. In some embodiments,
the web browser 108 uses a port scanning technique to
identify an available port on the local web server 112. For
example, in some embodiments, the web page 116 and/or the
web browser 108 attempt to connect to the local web server
112 by finding the first available port in a predefined port
range. Once an open port is identified, the web browser 108
will communicate to the local web server 112 via that port.
[0037] However, no open port on the local web server 112
will be found if the server is not running on the client
computer 102 when the web browser 108 is attempting to
identify an open port. In some cases, failing to identify an
open port indicates to the web browser 108 (or to a script or
other code in the web page 116) that the local utility 110 is
not currently running on the client computer 102. Thus, the
web browser 108 may be configured to automatically launch
the local utility 110. (For the purposes of this discussion,
launching the local utility 110 includes launching the local
web server 112.) In some embodiments, this is achieved
using a custom URI scheme that is recognized by an
operating system of the client computer 102. In some
embodiments, the web page 116 may include a link that uses
the custom URI scheme, and contains a command to launch
the local utility 110. When this link is executed by the
browser (after no open ports are identified), the client
computer 102 launches the local utility 110 so that commu-
nication with the web browser 108 may be established.
[0038] Inoneexample, if'auser is viewing a web page that
includes a media player widget, and the user selects a “play”
command, the web browser 108 will attempt to communi-
cate with the local utility 110 via the port scanning method
described above. If the local utility 110 is not running, the
web browser 108 will execute a link using the custom URI
scheme to launch the local utility 110, and thereafter suc-
cessfully communicate the command to play the selected
song.

[0039] FIG. 2 is a block diagram illustrating how real-
time, bidirectional communications may be established
between the web browser 108 and the local server 112 in a
client computer system 102. In http communications, web
servers may not initiate uninvited communications with a
web browser at a client computer. Rather, web servers may
only respond to requests issued by a web browser. Thus,
while communications pass between web browsers and web
servers, all communications must be first initiated by the
web browser. But in certain situations, a web server should
be permitted to send information to a web browser without
a specific request for it. For example, it may be beneficial for

Apr. 27,2017

a local media player application to send information about a
currently played song, such as to populate a “now playing”
window in a media player widget in a web page. And, the
local media player should be able to send updated informa-
tion about the currently played song whenever updates
occur, not merely when the web browser requests an update.
[0040] In some embodiments, as shown in FIG. 2, the web
page 116 is configured to send an open-ended message
request 202 to the local web server 112. In some embodi-
ments, the open-ended message request 202 is sent from the
web browser 108 immediately upon loading of the web page
116, such that any information that the local utility 110
wants to send to the web browser 108 may be sent in
response to the message at any time thereafter. In some
embodiments, the open-ended message request 202 is a
request for any type of information that the local utility 110
wants to provide to the web browser 108. In some embodi-
ments, the open-ended message request 202 is a request for
a predefined category of information, such as a currently
playing song, in embodiments where the local utility 110 is
a media player.

[0041] Once the local web server 112 receives the open-
ended message request 202, the local web server 112 takes
no action with respect to the request until the local utility 110
determines that there is some information to be sent to the
web browser 108. In some cases, the local utility 110 will not
have any information to send to the web browser 108
immediately after the open-ended message request 202 is
received. Thus, the local web server 112 awaits an event that
requires sending a return message 204. When such an event
occurs, the local web server 112 sends the return message
204 to the web browser 108. In some embodiments, the web
browser 108 then immediately sends another open-ended
message request 202 to the local web server 112 so that there
is always a pending request. In this way, the local web server
112 can send “unsolicited” information to the web browser
108 via the open open-ended message request 202.

[0042] On the other hand, when the web browser 108 is
ready to issue a command to the local web server 112, such
as when a user has selected one of the local utility controls
120, the web browser 108 will simply issue the command
206. Because the web browser 108 does not need an
invitation to send the request, the command 206 may be sent
at any time. In some embodiments, the command 206 is part
of'an http request. Using commands 206 and the open-ended
message requests 202, continuous and bidirectional commu-
nication is enabled between the local web server 112 and the
web browser 108.

[0043] In some embodiments, the web browser 108
requires several connections with the local web server 112 in
order to facilitate all of the communications required by the
web page 116 and/or the module 124. This may present a
problem, because some browsers limit the number of simul-
taneous connections to any single server. In some cases,
though, a web page 116 may require more than the maxi-
mum number of server connections in order to enable the
desired level of interactivity with the local utility 110. For
example, a user may have multiple web pages open in a
single browser, where multiple web pages have local utility
controls 120 in communication with the local utility 110.
Accordingly, it is possible for the browser to quickly exceed
the maximum allowable number of simultaneous connec-
tions to the local web server 112. Further, the problem may
be exacerbated by the open-ended message requests

US 2017/0118192 Al

described above, because maintaining the pending requests
may persistently occupy numerous available connections.
[0044] This problem may be avoided by connecting to the
local web server 112 through multiple subdomains. Specifi-
cally, a domain associated with the loopback address may be
divided into multiple subdomains, such as random1.loop-
domain.com, random2.loopdomain.com, etc. In some
embodiments, as shown in the domain name table 118 in
FIG. 1, these subdomains are each associated with the
loopback address (in this case 127.0.0.1). Links in the web
page 116 that are intended to initiate communications with
the local web server 112 may be distributed among these
subdomains, so that any request from the web browser 108
to any of these subdomains will be directed to the local web
server 112. And because the requests are sent to different
domain names, the web browser 108 will register the
requests as being directed to different servers, and will,
therefore, not limit the number of open connections.
[0045] FIG. 3 is a block diagram illustrating how com-
munications may be established between a web browser 108
and a local web server 112 where the web page 116 is
received via a secure protocol, according to some embodi-
ments.

[0046] In some instances, web pages are sent to web
browsers via a secure protocol, such as hypertext transfer
protocol secure (https). Web browsers, however, are config-
ured to issue alerts or warnings to a user when a web page
includes https content as well as http content. Thus, if web
page 116 is received by the web browser 108 via https (e.g.,
https://'www.Example.com), but the local utility controls 120
are associated with regular http (e.g., http://www.loopdo-
main.com/[control]), the web browser 108 may display
warning messages to the user. Thus, it is beneficial to allow
the web browser 108 and the local web server 112 to
communicate via https. Among other benefits, this will avoid
triggering warning messages in the web browser 108.
[0047] Before it may freely communicate with a web
server via secure protocol, a web browser must establish a
secure communication channel with the web server. A secure
communication channel describes an authenticated and/or
secure session between two or more devices for the purposes
of protected communications. A secure communication
channel presupposes a successful authentication routine
between the two devices. Secure communication channels
may be established through a routine that includes transfer-
ring a digital certificate from a remote server to a client
computer. In some embodiments, the web browser 108 and
the local web server 112 establish a secure communication
channel using this type of authentication routine. Specifi-
cally, in some embodiments, the local web server 112 stores
a digital certificate 302 that the web browser 108 may
request from the web server 112 in order to authenticate the
web server 112. In some embodiments, the digital certificate
302 contains a public key with which the web browser 108
encrypts one or more messages that are sent to the local web
server 112.

[0048] In typical computer networking usage, digital cer-
tificates are uniquely associated with a single domain (in-
cluding its subdomains). In some cases, in order for authen-
tication to succeed, the digital certificate must be associated
with the same domain to which a certificate request is sent.
For example, if a certificate request is sent from a web
browser to a server associated with www.BankPage.com,
and the server returns a digital certificate that is associated

Apr. 27,2017

with www.EvilPage.com, then the web browser 108 will
recognize that there is a mismatch between the domain of the
request (BankPage.com) and the domain of the certificate
(EvilPage.com). This may occur, for example, if a server
from EvilPage.com is masquerading as a server from Bank-
Page.com, attempting to intercept communications intended
for BankPage.com. Because of the domain mismatch,
though, the authentication will fail, and the web browser will
not communicate further with the server from EvilPage.com.
[0049] As noted above, in some embodiments the local
utility controls 120 are associated with links to an external
domain (e.g., loopdomain.com). Thus, in order for the local
web browser 108 to establish a secure communication
channel with the local web server 112 using the above
described authentication process, the local web server 108
must have a digital certificate associated with that same
domain. Accordingly, in some embodiments, the local web
server 112 stores a digital certificate 302 that is associated
with the same domain of the local utility control links (e.g.,
loopdomain.com).

[0050] Attention is returned to FIG. 3, which illustrates an
embodiment where the local utility control links specify
https protocol, and refer to the external domain “loopdo-
main.com.” For example, a local utility control 120 may be
a “play” button, and may be associated with the following
link: https://loopdomain.com/[play command]. Upon
executing this link (such as in response to a user’s selection
of a play button in the web page 116), the web browser 108
will attempt to establish a secure communication channel
with the server at the address supplied by the DNS server
114. As shown in FIG. 3, the address for loopdomain.com is
the loopback address, so the web browser 108 will send a
request for a digital certificate to the local web server 112.
In response, the local web server 112 will send the digital
certificate 302 (associated with loopdomain.com) to the web
browser 108. In this case, the browser 108 requested a
certificate from loopdomain.com (because the executed link
was addressed to that domain), and received, from the local
web server 112, a certificate associated with that domain.
Thus, the web browser 108 confirms that the certificate is
associated with the same domain as the request, thus com-
pleting this portion of the authentication routine and estab-
lishing a secure communication channel between the web
browser 108 and local web server 112.

[0051] In some embodiments, the digital certificate 302 is
bundled with the local web server 112 when it is provided to
a user of the client computer. In some embodiments, the
digital certificate 302 is copied and included in every
instance of the local web server 112. In some embodiments,
the digital certificate 302 is a wildcard certificate, such that
the certificate authenticates any subdomain associated with
the parent domain (e.g., randoml.loopdomain.com, ran-
dom2.loopdomain.com, etc.). In other embodiments, the
user obtains and/or installs the digital certificate when he
first executes the local web server. In yet other embodi-
ments, the user periodically updates and/or otherwise
replaces the digital certificate.

[0052] The foregoing discussion describes an authentica-
tion process in terms of the https protocol, but the concepts
disclosed also apply to other secure protocols and authen-
tication techniques. Moreover, while digital certificates for
https implementations are described, other types of authen-
tication tokens, certificates, and routines may be used in
place of those specifically described above. And while

US 2017/0118192 Al

certain aspects of an authentication process are described
above, other steps and/or procedures that are not discussed
may be included. For example, the authentication process
may establish encryption codes or keys to be used for the
secure communication channel.

[0053] FIG. 4 is a block diagram illustrating multiple
client computers 102-1-102-» in a client-server environ-
ment, according to some embodiments. As described above,
the digital certificate 302 may be included in the local web
server that is installed in each client computer 102-». For
example, if a company distributes media player software
that includes a local utility (e.g., a media player application)
and an associated local web server, each software package
will include a copy of the digital certificate 302. Thus, the
same digital certificate 302 (or identical copies of a single
digital certificate) will be resident on each client computer
102-n.

[0054] Digital certificates 302 are typically closely
guarded, and they are not intended to be shared outside the
organization that owns the certificate. Accordingly, the digi-
tal certificate 302 may be considered to be compromised
when used as described in FIGS. 3-4, because copies are
resident on different computers that are not owned or con-
trolled by the certificate owner. Indeed, the client computers
are associated with the users of the software packages, and
not the party to whom the certificate was issued.

[0055] Typically, a compromised security certificate is a
serious security concern. For example, if the digital certifi-
cate for a checkout page of an online commerce website is
compromised, communications between clients and the
server of the commerce website might be intercepted by
malicious third parties. However, the fact that the certificate
is compromised does not create a similar security risk in the
above described embodiments. Rather, the encrypted com-
munications simply loop back to the client computer itself,
so the secure messages never actually leave the client
computer. These internal communications are not easily
intercepted or otherwise tampered with by malicious parties.

[0056] Insome cases, the local web server 112 should only
accept commands and requests from an authorized module
124 in order to prevent malicious web pages from commu-
nicating with the local utility 110 to perform undesirable
operations or access sensitive data. For example, if the local
utility 110 is a camera control application, a malicious web
page may attempt to activate an attached webcam and
capture unauthorized images. Or, a malicious web page may
attempt to extract media access history from a media player.
The local web server 112 should therefore be able to
determine whether requests from a web page are authorized,
and prevent those requests that are not. An example method
according to an embodiment of the present invention is
discussed with reference to FIG. 5.

[0057] FIG. 5 illustrates a block diagram of a client-server
environment in accordance with some embodiments. The
client-server environment includes the client computer 102,
the web server 104, the module server 122, a token server
502, and an authentication server 504, each coupled to the
network 106. The client computer 102 includes a web
browser 108, a local utility 110, and a local web server 112,
as described above in reference to FIG. 1. In some embodi-
ments, the module server 122, the token server 502, and the
authentication server 504 are all associated with a common
entity or service provider.

Apr. 27,2017

[0058] Insome embodiments, a token passing procedure is
used to establish authenticated communications between the
module 124 and the local web server 112, as described
below with reference to the client-server environment of
FIG. 5.

[0059] The web browser 108 is configured to receive a
web page 116 from the web server 104. In some embodi-
ments, the web page 116 includes a reference to a module
124 that includes local utility controls 120, where the
module (and/or the contents of the module, including the
local utility controls 120 and local utility control links) is
received from the module server 122. In some embodiments,
the web server 104 and the module server 122 are associated
with different domains. In some embodiments, the reference
to the module is an html iframe element associated with a
URL of the module server 122.

[0060] When the web browser 108 receives the web page
116 from the web server 104, the web browser 108 will then
contact the module server 122 to receive the module 124. In
some embodiments, in response to receiving the request for
the module 124, the module server 122 requests and receives
a first token from the token server 502. The module server
122, then sends the module 124 and the first token to the web
browser 108. In some embodiments, the token is a character
string, file, or any other information that can be included in
http communications or otherwise shared between comput-
ers.

[0061] Next, the first token is sent from the web browser
108 to the local web server 112. In some embodiments, the
module 124 is configured to send the first token to the local
web server 112 along with an http request initiated by the
execution of a link included in the module 124. If no token
is included in a request to the local web server 112, the
request will be ignored. If the first token is included in a
request, the token is passed from the local web server 112 to
the local utility 110 for authentication.

[0062] In some embodiments, in order to authenticate the
first token, the local utility 110 sends the first token to the
authentication server 504. The authentication server 504
confirms, using the token server 502, whether the token
server 502 actually issued the first token. The authentication
server 504 then replies to the local utility 110 whether the
first token is authentic (e.g., whether the first token was
issued by the token server 502 to the module 124).

[0063] If the reply from the authentication server 504
indicates that the first token was not issued by the token
server 502, the local utility will ignore the request from the
web browser 108, and take no further action with respect to
any commands contained therein. If the reply indicates that
the first token is authentic, the local utility 110 (and/or the
local web server 112) will generate a second token, and the
web server 112 will send the second token to the module
124. The module 124 then includes the second token in all
subsequent requests to the local web server 112, and the
local web server 112 will only take action on requests that
include the second token.

[0064] In some embodiments, the only permissible com-
munications between the local web server 112 and the web
browser 108 are those that originate from a module provided
by the module server 122. The above-described token pass-
ing method thus prevents unauthorized communications
between a web page and the local web server 112, because
only requests that include a valid second token will be

US 2017/0118192 Al

recognized, and a valid second token can be acquired only
after authentication of the first token by the authentication
server 504.

[0065] The foregoing describes aspects of how to enable
continuous and bidirectional communications between a
web browser 108 and a local utility 110 in order to allow a
user to interact with the local utility 110 via a web page
received from a remote source. One aspect relates to pro-
viding local utility controls 120 in the web page 116. Aspects
of the local utility controls 120 and the module 124 are
discussed with reference to FIGS. 6A-B.

[0066] FIG. 6A is a block diagram illustrating a web page
600 and the module 124 according to some embodiments.
The module 124 includes several local utility controls 120
for controlling and providing information about a local
utility 110 that is a media player. In some embodiments, the
local utility controls 120 include playback controls 602,
playlist information 604, and a now playing window 606. In
some embodiments, the module 124 is capable of displaying
other information, such as images (e.g., album art), text
(e.g., lyrics), scrolling and/or synchronized text (e.g., kara-
oke display), videos (e.g., music videos), and the like.
Different combinations of local utility controls 120, includ-
ing different, more, or fewer controls are also possible.
Moreover, the type of local utility controls 120 in the module
124 will depend on the particular type of local utility 110
with which they are configured to communicate.

[0067] As described above, in some embodiments, the
module 124 is an inline frame, which may be defined by an
html iframe element. In some embodiments, the contents of
the inline frame are received from a remote server (e.g., the
module server 122). In some embodiments, the html of the
web page 600 includes a link that specifies to the module
server 122 exactly what local utility controls 120 should be
included in the module 120. In some embodiments, the link
specifies other aspects of the module 124 as well. If the
module 124 is a media player widget, for example, the link
can specify what songs the widget should offer to the user.
[0068] Specifically, a web page creator may want to
include in a web page 600 a widget that is configured to
allow a web page visitor to play a certain song, playlist,
album, radio station, etc. This way, the web page 600 can
provide a customized and unique user experience for its
visitors. Accordingly, the web creator may use a module
creation service that provides customized modules for inclu-
sion into web pages, and specify exactly what song or songs
(or other media type) should be included in the module 124.
The service may provide a custom link (e.g., URL) that
corresponds to the specific module contents requested by the
creator. By including this custom link in the web page 600,
the module will be populated with exactly what the creator
requested. And, as described in detail above, when a visitor
requests playback of a song offered in the module 120, the
web page 600 will communicate with the local utility 110 in
order to initiate playback of the song. (In embodiments
where the local utility 110 is a media player, the media
player may access locally stored files to play the user’s
selection, or may receive the media from an external media
provider. In some embodiments the media provider is asso-
ciated with the module creation service.)

[0069] In some embodiments, the custom link is a URL
that is addressed to the domain associated with the module
server 122, and includes a unique character string that is
recognized by the module server 122. In some embodiments,

Apr. 27,2017

the unique character string is provided by the module server
122 in response to a request to provide a custom link for a
module 124 with particular content. For example, a web
page creator may request (from the module server 122) a
module populated with the creator’s favorite album or
playlist. In return, the module server 122 creates a custom
link including the unique character string and provides it to
the web page creator. When the custom link is executed
(causing the web browser 108 to make an http request that
includes the character string to the module server 122), the
module server 122 determines the requested module content
based on the character string, and provides that content to
the web browser 108.

[0070] In some embodiments, the contents of the module
124 are established automatically and in real-time by the
web page 600. In some embodiments, the web page 600
includes code (e.g., a script) that requests a custom link from
the module server 122 based on dynamically generated
information. For example, a web page 600 may display a list
of songs, and allow users to vote for their favorites. When
loaded by a web browser, the web page 600 may request a
custom link from the module server 122 based on the current
top-rated songs. Accordingly, as the voting results change
over time, or as new songs are added to and others are
removed from the voting list, the contents of the module
(that is created when the web page 600 is loaded) will
change accordingly.

[0071] Insome embodiments where the local utility 110 is
a media player, the module 124 does not provide predeter-
mined media options to a user, but rather acts as a window
to the current status of the media player. For example,
instead of showing a song, album, or playlist that the web
page specifies, the module 124 shows the user’s currently
selected playlist and “now playing” information. Accord-
ingly, this module 124 may simply be provided by the web
page 600 as a convenience to the user, so that they do not
have to navigate away from the web page 600 in order to
control their media player.

[0072] FIG. 6B is a block diagram illustrating a web page
610 and a module 124 according to some embodiments. Like
web page 600, web page 610 includes a module 124 that
includes local utility controls 120 including a now playing
window 606, playlist information 604, and playback con-
trols 602. (As noted above, many different combinations of
local utility controls 120 may be included in the module
124.) Web page 610 also includes several module creation
links 612. In some embodiments, module creation links 612
are associated with code (e.g., a script) that will request a
custom link from the module server 122 when the module
creation links 612 are executed. In some embodiments,
when a module creation link 612 is selected (causing the
web browser 108 to make an http request that includes the
character string to the module server 122), the module server
122 creates a module in accordance with information con-
tained in the request. The module can then be included in the
web page 610 for display to a user.

[0073] In some embodiments, the module creation links
612 are associated with information shared by other people
or entities. In some embodiments, the module creation links
612 may be associated with information provided by mem-
bers of a social network. For example, the web page 610
may be associated with a social network where users can
share information, such as information about their media
consumption (including their media access history, stored

US 2017/0118192 Al

playlists, favorite songs, and the like). In some embodi-
ments, users share such information by posting the infor-
mation to a web page, and/or by allowing access by the
social network to their personal information (e.g., by retriev-
ing information from the user’s media player or media
service to which the user subscribes).

[0074] The web page 610, or the provider thereof, may use
this information to create and/or provide module creation
links 612 that are based on the users’ information. The
module creation links 612 may then be presented to other
users so that they can create modules based on that infor-
mation. (To protect privacy, module creation links 612 based
on one user’s information may be provided only to others
with whom the user has authorized such sharing.) As shown
in FIG. 6B, the module creation links 612 may allow a user
to create modules based on another user’s top tracks, another
user’s favorite playlist, and/or what another user is currently
playing. A module creation link 612 may also allow a user
to start a radio station that “sounds like” another user.
[0075] A user’s “top” or “favorite” songs or playlists may
include those that are most frequently played, most recently
played, highest rated, etc. And while the example module
creation links 612 shown in FIG. 6B mention “tracks” and
“playlists,” these links may be based on any media infor-
mation or classification, such as songs, playlists, albums,
artists, genres, radio stations, musical themes, etc.

[0076] In some embodiments, what another user is “cur-
rently playing” is based on a module that was recently
created for that user. For example, some web pages are able
to request and/or display the modules, but are unable to
identify real-time status of the module (or the local utility)
after it is created. Thus, while it may not be able to determine
with certainty what song or playlist is actually active at any
given user, the web page and/or web page provider may have
a record of what modules were recently created on any given
user’s behalf.

[0077] In some embodiments, module creation links 612
may use a music selection algorithm to determine what
songs, artists, genres, etc., to include in a module 124. For
example, if a user selects a module creation link that is
configured to start a radio station that sounds like a particular
user, it may be necessary to determine what that user
“sounds like” (i.e., a musical fingerprint based on that user’s
tastes and/or preferences) and then select songs that match
that description. In some embodiments, the musical finger-
print of a user is based on their most frequently played, most
recently played, or highest rated songs, artist, genres, etc.
The musical fingerprint is then used to seed a music selec-
tion algorithm that provides music (e.g., song identifiers) for
inclusion into the module 124. In some embodiments, the
musical selection algorithm is provided by the web server
104, the module server 122, the provider of the web page
610, or any other remote source.

[0078] FIG. 7 is a flow chart representing a method 700 for
controlling a local utility, according to some embodiments.
The method 700 is performed at a client computer (e.g., the
client computer 102) having at least one processor and
memory, the memory storing instructions for execution by
the processor. In some embodiments, the method 700 is
performed at the local computer 102, including any of the
local utility 110, the local web server 112, and/or the web
browser 108.

[0079] A local utility at a client computer receives a first
request originating from an application and including a first

Apr. 27,2017

token (702), wherein the application received a web page
including a plurality of links and the first token from a first
server. The plurality of links were received by the applica-
tion from a second server.

[0080] In some embodiments, the local utility is software
that is stored and executed by the client computer. In some
embodiments, the application is any application that is
capable of displaying and/or rendering information received
from remote server, such as the web browser 108.

[0081] In some embodiments, the web page is coded in
hypertext markup language (http), and/or other types, stan-
dards, or styles of programming languages, scripts, execut-
able functions, etc. In some embodiments, the plurality of
links and the first token are in a module within the web page.
In some embodiments, the module is an iframe. As described
above, the plurality of links may be uniform resource
locators (URLs), and may specify any appropriate protocol,
including hypertext transfer protocol, or hypertext transfer
protocol secure. In some embodiments, one or more of the
plurality of links are associated with a domain that resolves
to a loopback network address (e.g., 127.0.0.1, *.loopdo-
main.com, etc.).

[0082] In some embodiments, the web page includes one
or more local utility control elements each associated with
one or more of the plurality of links. Examples of local
utility control elements are described above. In some
embodiments, the local utility control elements are select-
able by a user (e.g., control buttons); in some embodiments,
they are not selectable, and they only provide status infor-
mation or other output to the user (e.g., status windows). In
embodiments where the local utility is a media player, the
local utility control elements may be media player control
elements, and may cause the local utility to perform one or
more of: playing a media file, stopping a media file, pausing
a media file, fast forwarding a media file, rewinding a media
file, skipping a media file, changing a playback order of a
playlist, adding a media file to a playlist, purchasing a media
file, adding a media file to a local library, and removing a
media file from a playlist.

[0083] In some embodiments, the local utility is a media
player capable of storing, playing, and/or editing media such
as music and/or video. In some embodiments, the local
utility is a download manager. In some embodiments, the
local utility includes a web server (e.g., local web server
112) that is coupled with and communicates with the local
utility. In some embodiments, the first request including the
first token is received at the web server, which passes the
first token to the local utility.

[0084] Returning to FIG. 7, the method 700 further
includes authenticating the first token, including sending the
first token to a third server (706). In some embodiments,
authenticating the first token includes sending the first token
from the local utility to a third server (707), and receiving,
at the local utility, an authentication message from the third
server (708). In some embodiments, the authentication mes-
sage indicates that the first token was issued by the second
server. In some embodiments, the first token is sent to the
third server from the local utility.

[0085] The method 700 further includes, in response to
authenticating the first token, generating a second token at
the local utility (710). The second token is sent to the
application for inclusion in subsequent requests from the

US 2017/0118192 Al

application (712). In some embodiments, the second token is
sent to the application by a local web server of the local
utility.

[0086] In some embodiments, the method includes receiv-
ing a second request including a third token (714). In some
embodiments, the second request is sent from the applica-
tion (e.g., the web browser 108), and received by the local
utility (e.g., the local utility 110 and/or the local web server
112). In some embodiments, the second request is an html
request that includes the third token and either one or more
local utility control commands, one or more local utility
status request, or any combination thereof. In some embodi-
ments, the request is a character string that is recognizable
by the local utility and/or the local web server, and causes
the local utility and/or the web server to take some action.
In some embodiments, the payload is a file or other data
structure.

[0087] In some embodiments, the method includes veri-
fying that the third token matches the second token (716). If
the second and third tokens match, one or more actions
based on the content of the second request are taken (718).
If the second and third tokens do not match, no action based
on the content of the second request is taken (720). By
verifying that the third token matches the second token (i.e.,
is the same token), the local utility verifies that the second
request was issued by the same module that was previously
authenticated using the first token (as described above with
reference to FIG. 5).

[0088] The method 700 may include receiving a first
request and a second request. In some embodiments, at least
one of the first request or the second request are sent to the
local utility, from the application, in response to executing
one of the plurality of links at the application. For example,
either or both of the first and second requests may be sent by
the application in response to a user selection of a control
element associated with a link, or in response to an appli-
cation (e.g., the web browser) executing the link in conjunc-
tion with processing, displaying, or rendering the web page.

[0089] In embodiments where the executed link is user
selectable, the application may receive a user selection of the
link prior to executing the link, and send the at least one first
request or second request from the application to the local
utility in response to the user selection. In some embodi-
ments, the user selects the link by selecting one of the local
utility controls, as described above. In embodiments where
the executed link is not user selectable, the client computer
may process the web page, and send the at least one first
request or second request from the application to the local
utility in response to the processing of the web page.

[0090] FIG. 8 is a block diagram illustrating a client
computer 102, according to some implementations. The
client computer 102 typically includes one or more process-
ing units (CPUs, sometimes called processors) 802 for
executing programs (e.g., programs stored in memory 810),
one or more network or other communications interfaces
804, user interface 805, memory 810, and one or more
communication buses 801 for interconnecting these compo-
nents. The communication buses 801 may include circuitry
(sometimes called a chipset) that interconnects and controls
communications between system components. In some
embodiments, the user interface 805 comprises a display
806 and input device(s) 807 (e.g., keyboard, mouse, touch-
screen, keypads, etc.).

Apr. 27,2017

[0091] Memory 810 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM or other
random access solid state memory devices; and typically
includes non-volatile memory, such as one or more magnetic
disk storage devices, optical disk storage devices, flash
memory devices, or other non-volatile solid state storage
devices. Memory 810 optionally includes one or more
storage devices remotely located from the CPU(s) 802.
Memory 810, or alternately the non-volatile memory
devices(s) within memory 810, comprises a non-transitory
computer readable storage medium. In some implementa-
tions, memory 810 or the computer readable storage
medium of memory 810 stores the following programs,
modules, and data structures, or a subset thereof:

[0092] an operating system 812 that includes proce-
dures for handling various basic system services and
for performing hardware dependent tasks;

[0093] a communications module 814 that is used for
connecting the client computer 102 to other computers
(e.g., the web server 104, the module server 122, the
token server 502, and/or the DNS server 114) via the
one or more communication interfaces 804 (wired or
wireless) and one or more communication networks
106, such as the Internet, other wide area networks,
local area networks, metropolitan area networks, and so
on;

[0094] a user interface module 816 that receives com-
mands from the user via the input device(s) 807 and
generates user interface objects in the display device
806;

[0095] a web browser 108 that receives and displays
information resources, and is configured to communi-
cate with web servers (e.g., the web server 104, the
module server 122, the DNS server 114, and/or the
local web server 112);

[0096] a local utility 110 that provides one or more
computer-based functions to a user; and

[0097] a local web server 112 that communicates with
the local utility 110 and/or other sources, such as the
web browser 108.

[0098] In some embodiments, the web browser 108 is any
program, software, or application that is capable of receiving
and/or displaying an information resource. In some embodi-
ments, an information resource is a web page. In some
embodiments, the web page is written in or includes hyper-
text markup language, although web pages may include or
be written in additional and/or different languages as well.

[0099] In some embodiments, the local utility 110 is any
program, software, or application that provides one or more
computer-based functions to a user. In some embodiments,
the local utility is a media player. In some embodiments, the
local utility is a download manager. In some embodiments,
the local utility is camera or printer control software. In
some embodiments, the local utility is a media editor. The
local utility 110 may communicate with the local web server
112, as well as other computers, servers, and systems, such
as the web server 104, the module server 122, the token
server 502, and the authentication module 504, among
others.

[0100] In some embodiments, the local web server 112
receives information from the web browser 108, and passes
the information to the local utility 110. Information that is

US 2017/0118192 Al

received from the web browser 108 is described above. In
some embodiments, the information is one or more http
requests.

[0101] Insome implementations, the programs or modules
identified above correspond to sets of instructions for per-
forming a function or method described above, including
those described with reference to FIGS. 1-6. The sets of
instructions can be executed by one or more processors (e.g.,
the CPUs 802). The above identified modules or programs
(i.e., sets of instructions) need not be implemented as
separate software programs, procedures, or modules, and
thus various subsets of these programs or modules may be
combined or otherwise re-arranged in various implementa-
tions. In some implementations, memory 810 stores a subset
of the modules and data structures identified above. Fur-
thermore, memory 810 may store additional modules and
data structures not described above.

[0102] FIG. 9 is a block diagram illustrating a module
server 122, according to some embodiments. The module
server 122 typically includes one or more processing units
(CPUs, sometimes called processors) 902 for executing
programs (e.g., programs stored in memory 910), one or
more network or other communications interfaces 904, an
optional user interface 905, memory 910, and one or more
communication buses 901 for interconnecting these compo-
nents. The communication buses 901 may include circuitry
(sometimes called a chipset) that interconnects and controls
communications between system components. In some
embodiments, the user interface 905 comprises a display
906 and input device(s) 907 (e.g., keyboard, mouse, touch-
screen, keypads, etc.).

[0103] Memory 910 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM or other
random access solid state memory devices; and typically
includes non-volatile memory, such as one or more magnetic
disk storage devices, optical disk storage devices, flash
memory devices, or other non-volatile solid state storage
devices. Memory 910 optionally includes one or more
storage devices remotely located from the CPU(s) 902.
Memory 910, or alternately the non-volatile memory
devices(s) within memory 910, comprises a non-transitory
computer readable storage medium. In some implementa-
tions, memory 910 or the computer readable storage
medium of memory 910 stores the following programs,
modules, and data structures, or a subset thereof:

[0104] an operating system 912 that includes proce-
dures for handling various basic system services and
for performing hardware dependent tasks;

[0105] a communications module 914 that is used for
connecting the module server 122 to other computers
(e.g., the client computer 102, the web server 104, the
token server 502, and/or the DNS server 114) via the
one or more communication interfaces 904 (wired or
wireless) and one or more communication networks
106, such as the Internet, other wide area networks,
local area networks, metropolitan area networks, and so
on;

[0106] an optional user interface module 916 that
receives commands from the user via the input device
(s) 907 and generates user interface objects in the
display device 906; and

[0107] a module creation module 918 that generates
modules for inclusion into web pages.

Apr. 27,2017

[0108] Insome embodiments, the module creation module
918 receives a specification for the contents of a module to
be provided to a separate computer. For example, the
module creation module 918 may receive a module speci-
fication from a web page creator or a web page itself (as
described above). In some embodiments, the module is a
media player widget, and the specification includes song
identifiers, playlist identifiers, album identifiers, radio sta-
tion identifiers, display parameters, and/or any other infor-
mation.

[0109] Insome embodiments, the module creation module
918 creates a module according to the specification, and
stores the module in association with a module identifier.
When the module is requested (e.g., by an http request
including the module identifier), the module server 122 may
send the stored module to the requesting device (e.g., the
client computer 102).

[0110] In other embodiments, the module creation module
918 does not create and store a module upon receipt of the
module specification, but rather assigns a module identifier
to the specification. When the module is requested (e.g., by
an http request including the module identifier), the module
creation module 918 creates the module in real time, and
sends the module to the requesting device (e.g., the client
computer 102).

[0111] In some implementations, the programs or modules
identified above correspond to sets instructions for perform-
ing a function or method described above, including those
described with reference to FIGS. 1-6. The sets of instruc-
tions can be executed by one or more processors (e.g., the
CPUs 902). The above identified modules or programs (i.e.,
sets of instructions) need not be implemented as separate
software programs, procedures, or modules, and thus vari-
ous subsets of these programs or modules may be combined
or otherwise re-arranged in various implementations. In
some implementations, memory 910 stores a subset of the
modules and data structures identified above. Furthermore,
memory 910 may store additional modules and data struc-
tures not described above.

[0112] FIG. 10 is a block diagram illustrating an authen-
tication server 504, according to some embodiments. The
authentication server 504 typically includes one or more
processing units (CPUs, sometimes called processors) 1002
for executing programs (e.g., programs stored in memory
1010), one or more network or other communications inter-
faces 1004, an optional user interface 1005, memory 1010,
and one or more communication buses 1001 for intercon-
necting these components. The communication buses 1001
may include circuitry (sometimes called a chipset) that
interconnects and controls communications between system
components. In some embodiments, the user interface 1005
comprises a display 1006 and input device(s) 1007 (e.g.,
keyboard, mouse, touchscreen, keypads, etc.).

[0113] Memory 1010 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM or other
random access solid state memory devices; and typically
includes non-volatile memory, such as one or more magnetic
disk storage devices, optical disk storage devices, flash
memory devices, or other non-volatile solid state storage
devices. Memory 1010 optionally includes one or more
storage devices remotely located from the CPU(s) 1002.
Memory 1010, or alternately the non-volatile memory
devices(s) within memory 1010, comprises a non-transitory
computer readable storage medium. In some implementa-

US 2017/0118192 Al

tions, memory 1010 or the computer readable storage
medium of memory 1010 stores the following programs,
modules, and data structures, or a subset thereof:

[0114] an operating system 1012 that includes proce-
dures for handling various basic system services and
for performing hardware dependent tasks;

[0115] a communications module 1014 that is used for
connecting the authentication server 504 to other com-
puters (e.g., the client computer 102, the web server
104, the token server 502, and/or the DNS server 114)
via the one or more communication interfaces 1004
(wired or wireless) and one or more communication
networks 106, such as the Internet, other wide area
networks, local area networks, metropolitan area net-
works, and so on;

[0116] an optional user interface module 1016 that
receives commands from the user via the input device
(s) 1007 and generates user interface objects in the
display device 1006; and

[0117] an authentication module 1018 that authenticates
communications and/or tokens.

[0118] In some embodiments, the authentication module
1018 confirms whether a communication should be trusted
based on information contained in the communication. In
some embodiments, the authentication module 1018
receives a request to authenticate a communication, where
the request includes a token. In some embodiments, the
authentication module 1018 determines whether the token is
authentic (e.g., whether the token was previously issued in
order to authenticate one or more communications), and
sends a return message to the requesting device indicating
whether or not the token is authentic. Some of the functions
that may be provided by the authentication server 504 are
described in more detail above with reference to FIG. 5.
[0119] In some implementations, the programs or modules
identified above correspond to sets instructions for perform-
ing a function or method described above, including those
described with reference to FIGS. 1-6. The sets of instruc-
tions can be executed by one or more processors (e.g., the
CPUs 1002). The above identified modules or programs
(i.e., sets of instructions) need not be implemented as
separate software programs, procedures, or modules, and
thus various subsets of these programs or modules may be
combined or otherwise re-arranged in various implementa-
tions. In some implementations, memory 1010 stores a
subset of the modules and data structures identified above.
Furthermore, memory 1010 may store additional modules
and data structures not described above.

[0120] Although FIGS. 8-10 show client and server com-
puters, these Figures are intended more as functional
descriptions of the various features which may be present in
these computers than as structural schematics of the imple-
mentations described herein. In practice, and as recognized
by those of ordinary skill in the art, items shown separately
could be combined and some items could be separated. For
example, some items shown separately in FIGS. 8-10 could
be implemented in single modules or data structures.
[0121] Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, opera-
tions, and data stores are somewhat arbitrary, and particular
operations are illustrated in the context of specific illustra-
tive configurations. Other allocations of functionality are
envisioned and may fall within the scope of the implemen-

Apr. 27,2017

tations. In general, structures and functionality presented as
separate components in the example configurations may be
implemented as a combined structure or component. Simi-
larly, structures and functionality presented as a single
component may be implemented as separate components.
These and other variations, modifications, additions, and
improvements fall within the scope of the described imple-
mentations.

[0122] The foregoing description, for purpose of explana-
tion, has been described with reference to specific embodi-
ments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the disclosed ideas to
the precise forms disclosed. Many modifications and varia-
tions are possible in view of the above teachings. The
embodiments were chosen and described in order to best
explain the principles and practical applications of the
disclosed ideas, to thereby enable others skilled in the art to
best utilize them in various embodiments with various
modifications as are suited to the particular use contem-
plated.

[0123] Moreover, in the preceding description, numerous
specific details are set forth to provide a thorough under-
standing of the presented ideas. However, it will be apparent
to one of ordinary skill in the art that these ideas may be
practiced without these particular details. In other instances,
methods, procedures, components, and networks that are
well known to those of ordinary skill in the art are not
described in detail to avoid obscuring aspects of the ideas
presented herein.

[0124] It will also be understood that, although the terms
“first,” “second,” etc. may be used herein to describe various
elements, these elements should not be limited by these
terms. These terms are only used to distinguish one element
from another. For example, a first server could be termed a
second server, and, similarly, a second server could be
termed a first server, without changing the meaning of the
description, so long as all occurrences of the “first server”
are renamed consistently and all occurrences of the “second
server” are renamed consistently.

[0125] Further, the terminology used herein is for the
purpose of describing particular embodiments only and is
not intended to be limiting of the claims. As used in the
description of the implementations and the appended claims,
the singular forms “a”, “an” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. It will also be understood that the term
“and/or” as used herein refers to and encompasses any and
all possible combinations of one or more of the associated
listed items. It will be further understood that the terms
“comprises” and/or “comprising,” when used in this speci-
fication, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

[0126] Finally, as used herein, the term “if” may be
construed to mean “when” or “upon” or “in response to
determining” or “in accordance with a determination” or “in
response to detecting,” that a stated condition precedent is
true, depending on the context. Similarly, the phrase “if it is
determined (that a stated condition precedent is true)” or “if
(a stated condition precedent is true)” or “when (a stated
condition precedent is true)” may be construed to mean
“upon determining” or “in response to determining” or “in

US 2017/0118192 Al Apr. 27,2017
12

accordance with a determination” or “upon detecting” or “in
response to detecting” that the stated condition precedent is
true, depending on the context.
What is claimed is:
1. A computer-implemented method for controlling a
local utility, comprising:
at a client computer having a processor and memory
storing instructions for execution by the processor:
at a local utility:
receiving a first request originating from a web
browser executed by the client computer, the first
request including a first token;
sending the first token to an authentication server for
authentication, wherein the authentication server
is remote from the client computer;
in response to authentication of the first token, send-
ing a second token to the web browser for inclu-
sion in subsequent requests from the web browser
to the local utility;
receiving a second request from the web browser,
wherein the second request includes the second
token and one or both of a local utility control
command and a local utility status request; and
in response to receiving the second request from the
web browser including the second token, taking
one or more actions based on one or both of the
local utility control command and the local utility
status request.

#* #* #* #* #*

