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METHOD AND APPARATUS FOR
CHARACTERIZING WORKLOAD
SEQUENTIALITY FOR CACHE POLICY
OPTIMIZATION

BACKGROUND

[0001] This disclosure relates to computing systems and
related devices and methods, and, more particularly, to a
method and apparatus for characterizing workload sequen-
tiality for cache policy optimization.

SUMMARY

[0002] The following Summary and the Abstract set forth
at the end of this application are provided herein to introduce
some concepts discussed in the Detailed Description below.
The Summary and Abstract sections are not comprehensive
and are not intended to delineate the scope of protectable
subject matter, which is set forth by the claims presented
below.

[0003] All examples and features mentioned below can be
combined in any technically possible way.

[0004] In some embodiments, a method for characterizing
workload sequentiality for cache policy optimization
includes maintaining an IO trace data structure having a
rolling window of 1O traces describing access operations on
addresses of a storage volume. A page count data structure
is maintained that includes a list of all of the addresses of the
storage volume referenced by the 1O traces in the 10 trace
data structure. A list of sequences data structure is main-
tained that contains a list of all sequences of the addresses
of the storage volume that were accessed by the 1O traces in
the IO trace data structure. A sequence lengths data structure
is used to correlate each sequence in the list of sequences
data structure with a length of the sequence, and a histogram
data structure is used to correlate sequence lengths and a
number of how many of sequences of each length are
maintained in the sequence lengths data structure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 11is a functional block diagram of an example
storage system configured according to some embodiments.
[0006] FIG. 2 is a functional block diagram of an example
storage system showing the cache management aspects in
greater detail, according to some embodiments.

[0007] FIG. 3 is a functional block diagram of a portion of
an example storage system’s logical address space, accord-
ing to some embodiments.

[0008] FIG. 4 is a graph showing an example set of cache
requests.
[0009] FIG. 5A is a graph showing an example set of

cache requests over time.

[0010] FIG. 5B is a graph showing the example set of
cache requests of FIG. 5A sorted by address and discarding
repeated access to the same address.

[0011] FIG. 6 is a histogram of lengths of sequences
observed in a set of cache addresses.

[0012] FIGS. 7 and 8 are a functional block diagrams of
workloads contained in a workload 10 trace data structure,
at time (i=2 and i=3).

[0013] FIG. 9 is a functional block diagram representation
of a page count data structure correlating a page count with
a number of instances that the page appears in the workload
within the sliding window. The numbers included in the

May 13, 2021

example page count data structure shown in FIG. 8 correlate
to the example sliding window of 10 traces shown in the
workload of FIG. 7 at time (i=2).

[0014] FIG. 10 is a functional block diagram representa-
tion of an updated version of the page count data structure
of FIG. 9. The numbers included in the updated example
page count data structure shown in FIG. 10 correlate to the
example sliding window of IO traces shown in the workload
of FIG. 8 at time (i=3).

[0015] FIG. 11 is a functional block diagram of a list of
sequences data structure showing two examples of how the
list of sequences data structure changes in connection with
removal of an address from the sliding window of IO traces.
[0016] FIG. 12 is a functional block diagram of a sequence
lengths data structure and a histogram data structure show-
ing two examples of how the sequence lengths data structure
and histogram data structure change with removal of an
address from the sliding window of 1O traces. The numbers
included in the data structures shown in FIG. 12 correlate to
the example sequences included in the list of sequences data
structure shown in FIG. 11.

[0017] FIGS. 13 and 14 are functional block diagrams of
the list of sequences data structure showing four examples
(two examples in FIG. 13 and two examples in FIG. 14) of
how the list of sequences data structure changes in connec-
tion with insertion of an address into the sliding window of
10O traces.

[0018] FIG. 15 is functional block diagram of the
sequence lengths data structure and the histogram data
structure showing four examples of how the sequence
lengths data structure and histogram data structure change
with insertion of an address into the sliding window of 10
traces. The numbers included in the data structures shown in
FIG. 15 correlate to the example sequences included in the
list of sequences data structure shown in the examples
contained in FIGS. 13 and 14.

[0019] FIG. 16 is a flow chart of a method of removing an
address from the list of sequences data structure, according
to some embodiments.

[0020] FIG. 17 is a flow chart of a method of inserting an
address in the list of sequences data structure, according to
some embodiments.

[0021] FIG. 18 is a flow chart of block 1725 of FIG. 17,
providing additional details of the method of performing an
insert procedure to add a page to a list of sequences,
according to some embodiments.

DETAILED DESCRIPTION

[0022] FIG. 1is a functional block diagram of an example
storage system 100, in which data clients 110 have access to
storage resources provided by a storage array 112. As shown
in FIG. 1, in some embodiments the storage system 100 has
physical resources including a number of CPU processor
cores 114, operating system 116, cache 118, and other
physical resources.

[0023] Storage array 112 may be implemented using
numerous physical drives using different types of memory
technologies. In some embodiments the drives used to
implement storage array 112 are implemented using Non-
Volatile Memory (NVM) media technologies, such as
NAND-based flash, or higher-performing Storage Class
Memory (SCM) media technologies, such as 3D XPoint and
Resistive RAM (ReRAM). Storage array 112 may be
directly connected to the other components of the storage
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system 100 or may be connected to the other components of
the storage system 100, for example, by an InfiniBand (IB)
bus or fabric.

[0024] Data clients 110 act as hosts and provide access to
the storage resources provided by storage array 112. In some
embodiments, data clients 110 execute in emulations 120
instantiated in the context of the storage system 100. In some
embodiments, a hypervisor 122 abstracts the physical
resources of the storage system 100 from emulations 120,
and allocates physical resources of storage system 100 for
use by the emulations 120. Each emulation 120 has an
emulation operating system 122 and one or more application
processes running in the context of the emulation operating
system 122.

[0025] FIG. 2 is a functional block diagram of an example
storage system showing aspects of the storage system 100
associated with cache management, in greater detail accord-
ing to some embodiments. As shown in FIG. 2, the storage
system has data clients 110 that perform memory access
operations on the storage resources of the storage array 112.
As shown in FIG. 3, the storage resources of the storage
array 112, in some embodiments, are presented as logical
units (LUNSs) to the data clients 110. For example, as shown
in FIG. 3, a group of storage resources of the storage array
112 may be grouped into a storage resource pool 126. LUNs
implemented as separately addressable logical volumes are
then created and associated with the storage resource pool
126.

[0026] FIG. 2 is a functional block diagram of an example
storage system 100, such as the storage system 100 of FIG.
1. Data associated with data client 110 is stored in one or
more user filesystems, and each user file system is stored in
a separate logical storage volume, referred to herein as a
Logical Unit (LUN). A LUN is a logical construct which
enables the physical storage resources 110, 112 to be
abstracted from the data client 110. The logical storage
volume in some instances is referred to as “thin” if actual
physical storage resources of storage array 112 are only
allocated by the storage system 100 to the TL.U when used.
Thus, if a LUN is thin, the amount of physical storage
resources allocated to a LUN will increase and decrease over
time as the file system stored on the LUN increases and
decreases in size.

[0027] Resources meant for caching are usually shared
among several beneficiaries. Workloads from distinct appli-
cations or assigned to different LUNs have different Service
Level Agreements (SLAs). Example service levels may
include the expected average response time for an IO
operation on the TL.U, the number of IO operations that may
be performed on a given TLU, and other similar parameters.
One manner in which the storage system 100 seeks to meet
the SLLAs for the various data clients 110 is to optimize use
of the cache 118.

[0028] Cache mechanisms are crucial to computer systems
such as storage arrays and compute clusters. Correctly
placing data with a high probability of being requested on
fast memory media can substantially reduce the response
times of input/output (I/O) requests. However, the diversity
and the unpredictability of the /O stream commonly nurture
the allocation of large memory areas for caching purposes.
Since dynamic random-access memory (DRAM) hardware
is expensive, it is important to properly assess cache sizes to
improve resource utilization.

May 13, 2021

[0029] Unfortunately, physical cache resources are lim-
ited, and the optimal cache area allocation may not be
apparent, which may lead to inadequate resource utilization
and SLA infringement.

[0030] As shown in FIG. 1, in some embodiments, one or
more of the emulations 122 instantiated on storage system
100 implements a cache management system 128 configured
to monitor use of cache 118 and adjust policies applied to the
cache 118 to optimize performance of the cache 118. For
example, as shown in FIG. 1, the cache management system
128 may allocate different volumes of the cache for use by
each of the TLUs, to optimize overall performance of the
cache. Likewise, the cache management system 128 may
change cache policies applied to portions of the cache 118 to
optimize overall performance of the cache 118 and, hence,
performance of the storage system 100.

[0031] Cache performance may be measured by looking at
what percentage of reads are able to be serviced from the
cache. If an address is requested by an application such as
data client 110, and the address is contained in the cache 118,
a cache hit occurs and the read request can be serviced from
the cache. If an address is requested by an application such
as data client 110, and the address is not contained in the
cache 118, a cache miss occurs and the read request must be
serviced from the discs of the storage array. The percentage
of cache hits is referred to herein as cache hit ratio.
[0032] There is no general rule that specifies the amount of
cache required to obtain a given cache hit ratio. The intrinsic
dynamics of the Least Recently Used (LRU) eviction policy
and the stochastic behavior of the workload makes the
functioning of the cache difficult to predict. Often, cache
sizes are set by experimenting with different sizes to assess
performance, which may be too costly or not viable in
certain situations.

[0033] It is possible to prefetch data into the cache in an
attempt to increase the hit rate associated with the cache.
Prefetching is a well-known technique to optimize cache
behavior. It exploits data locality with the assumption that
applications often request data residing in sequential
addresses in a given address space. Namely, when a device’s
operating system receives a data access request at a certain
address, A,, the system retrieves not only the content of that
location, but also the content of the N subsequent address
locations, {A,, |, ..., A}, before the application actually
requests the data from those other addresses. The operating
system then places the retrieved content in the cache 118,
which, by design, is a much faster media than the discs 113
of storage array 112 where the data originally resides. If the
application (e.g. data client 110) indeed requests data from
subsequent addresses, the operating system satisfies those
requests directly from the cache 118, instead of fetching data
from the slower media at each request.

[0034] Unfortunately, cache performance tends to be
affected as the workload changes over time. The frequency
of requests, their sizes, and how sequential the reads are can
change over time, and these changes can drastically affect
how much benefit the cache will provide. For example, if a
workload changes from initially having primarily sequential
requests, and then changes to having primarily random
requests, the cache performance can change dramatically.
[0035] Storage systems typically have a single prefetching
policy, with a cache policy that applies to the entire cache
and has a single fixed prefetch look-ahead window. This is
not ideal because several applications, with different data
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access patterns, may access the storage system resources
concurrently, and each access pattern traverses the address
space of the system distinctly. For instance, some workloads
might be sequential, while other workloads might be ran-
dom; some workloads might traverse the entire address
space, while other workloads might be concentrated in a
small range of addresses. A given prefetch policy may work
quite well with one workload access pattern, while gener-
ating excessive pollution when used with another workload
access pattern.

[0036] One way to determine whether a cache policy is
correctly being applied to the cache 118 is to measure cache
performance by simply calculating cache hits, misses, and
pollution levels. However, such measurements only indicate
how the cache policy is responding to the workload char-
acteristics. Alone, these measurements/indicators cannot
explain why a policy does not perform well at any given
point in time, or predict how changes to the cache policy are
likely to affect future cache behavior.

[0037] Unfortunately, determining the sequentiality of the
workload on a given LUN is not trivial. The cache manager
does not know what type of application is causing the
workload, but instead only has visibility to the IO traces
associated with the workload and whether the 10s were able
to be serviced from the cache. Additionally, the storage
system often is required to process an extremely large
number of IO requests in a very short period of time. One
approach would be to attempt to create a sorted sequence of
unique addresses related to I/O requests over a small rolling
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[0040] The method described herein relies on the exis-
tence of 1/O telemetry data that indicates how applications
traverse the address space of a storage system 100. As noted
above, in some embodiments the cache management system
does not know the type of application that generated the I/O,
but rather only has access to storage telemetry data, in the
form of 1/O traces. An 1O trace, as that term is used herein,
is a collection of pieces of information associated with an 10
operation that indicates what type of I/O operation the
application issued (e.g., ‘read’ or ‘write’), the size of the
operation, a timestamp associated with the operation, and in
indication of an address in the storage’s addressable space.
An example of such storage telemetry data is shown below
in Table I. In Table I.

[0041] fileid: An identification of the storage system

[0042] timestamp: The date and time of the request

[0043] op: The type of operation (read, write, control,
etc.)

[0044] cpu: The host controller in the system that

handled the request

[0045] tdev: An identification of a logical unit (LUN) of
a system
[0046] Iba: The logical block address accessed by the

request in the given LUN

[0047]
blocks

size: The size of the operation in number of

TABLE 1

(Example Storage Telemetry Data)

FileID  Timestamp Op tdev lba Size

/O (who) (when) (what) CPU (where) (how much)

0 0 33028 Write 61 166 4246591162 1

1 0 37843 Write 77 166 4246591163 1

2 1494 0 96355 Write 45 166 4246591164 1

3 1857 0 119314 Write 61 166 2015795053 1

4 1909 0 122740 Write 29 166 2015795054 1

5 1926 0 124447 Write 45 166 2015795055 1

[0048] The example storage telemetry data, in the form of

window, and use this sorted sequence to determine the
sequentiality of the workload. However, this is a computa-
tionally heavy process, and thus infeasible for practical
application in large scale storage environments.

[0038] In some embodiments, a set of data structures is
provided that collectively enable the sequentiality of a
workload to be calculated in real time in a computationally
efficient manner.

[0039] As shown in FIG. 3, system administrators often
subdivide storage offered by the storage array into many
logical units (LUNSs), each with its own addressable space
defined in logical blocks addresses (LBAs). Enterprise-
grade applications are configured in such way to leverage
the most out of the underlying storage configuration, and
sometimes even determine how the storage should be con-
figured. Since each LUN has its own logical address space,
in some embodiments the manner of characterizing the
sequentiality is implemented separately for each LUN. The
LUN may be allocated a separate portion of the cache 118
or may share the entirety of the cache with other LUNSs.
Regardless of how the cache 118 is implemented, however,
the process of characterizing the sequentiality is imple-
mented on a per-LUN basis.

1O traces shown in Table 1, shows several example traces
received by a particular system. This type of storage telem-
etry data is able to be collected in a storage system 100 and,
as discussed in greater detail herein, can be exploited to
reveal how I/O workloads and access patterns vary with time
by reflecting aspects of the seasonality of the operations
associated with them.

[0049] In the following discussion, the logical addressable
space, such as the logical address space of the LUNs shown
in FIG. 3, is considered to be segmented into blocks of
contiguous Logical Block Addresses (LBAs), referred to
herein as “pages”. For example, a storage system 100 may
use pages of 256 LBAs, which is equivalent to 128 kilo-
bytes. For convenience, this disclosure will use the term
“address” and “page” interchangeably to refer to the logical
block of data retrieved by a storage system 100 in response
to a read request. Different storage systems 100 may retrieve
different size blocks of data, depending on the implemen-
tation.

[0050] According to some embodiments, the cache man-
agement system first finds sequences in the traces of telem-
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etry data comprising collections of address related to sub-
sequent I/O requests that were sent to the same LUN. Next,
those patterns are used to compute a sequentiality histogram
for the LUN specitying how many sequences of each length
occurred in the set of traces being considered.

[0051] FIG. 4 is a graph showing an example set of 10
traces associated with an example set of cache requests.
Strictly speaking, two subsequent 1/O requests in a given
workload, {req,_,(Address,_,,Size,_,),req,(Address,,Size,)},
are sequential if and only if ,=Address,—(Address,_,+Size,_
1)=0. Therefore, finding sequences in some embodiments is
implemented by computing 9§, for every request and aggre-
gating addresses for which 8,=0. In FIG. 4 this is represented
by the set of traces i and i+1. Traces j and j+2 are not
sequential, because they are separated by 8=2.

[0052] FIG. 5A is a graph showing an example set of
cache requests over time. As shown in FIG. 5A, a given
workload (trace of 10s) may be generated by several parallel
processes accessing the storage across different address
ranges at the same time. As a result, the recorded telemetry
data, once serialized, can contain gaps in address ranges.
This is shown in FIG. 5A, where two 10s in the address
range of between 0 and 40 are separated by an 1O in the
10-20 address range.

[0053] FIG. 5B is a graph showing the example set of
cache requests of FIG. 5A sorted by address and discarding
repeated access to the same address. Specifically, as shown
in FIG. 5B, in some embodiments, to make the process of
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discarded. This is shown in FIG. 5B. The objective is to
collect the lengths of the sequences formed in this sorted

segment of addresses.

[0054]

not contribute to the definition of sequences.

[0055]

d,=Address,—(Address,_;+Size, |)=0. As a result,

allowed gap, in the end, is the average size of the requests
in the set, but other values could also be used. For example,
if the pre-fetch policy specifies that each time a page is
loaded, that the subsequent 8 pages should also be loaded, if
a gap occurs in the sorted unique addresses that is less than
8, the cache still would have benefitted from having the page
pre-loaded. Accordingly, in that instance a gap of up to 8
pages may be tolerated in the sequentiality calculation. The
algorithm returns all sequences found, defined by the start

address and the length.
TABLE 11

NolE-CHEN e NV N N U S

def find_ sequences(addresses, gap=1):

Find sequences in a sorted list of unique addresses, allowing a gap
between subsequent addresses. The gap enables us to take into account
the average size of the requests associated with the given addresses.

addresses: sorted list of unique addresses

gap: allowed gap between subsequent addresses
length = 1
start = addresses[0]

# accumulate sequences in a list
seq = [[start, length]]

# traverse all values in a given address list
for i in range(1, len(addresses)):

d = addresses[i]-addresses[i-1] # compute difference from previous value
if d <= gap: # if diff within allowed gap

length += d # add difference to total sequence length
else:

seq[-1][1] = length # complete current sequence

length = 1
start = addresses][i]
seq.append([start, length]) # create new sequence

# return all formed sequences
return seq

finding sequences easier, an 1O trace data structure (See
FIGS. 7-8) is used to hold a short history of the last n
addresses accessed in the precedent requests. A separate 10
trace data structure is used for each LUN of the system,
because each LUN has its own logical address space. The
addresses contained in the IO trace data structure are sorted
by address, and duplicate requests to the same address are

[0056]

traces.

Note, however, that gaps may still occur if
sequences are not strictly sequential. Since a prefetching
policy may still benefit from loading those addresses to
cache, the sequentiality condition is relaxed and some gaps
of fixed sizes in the sequences are allowed. Note also the
repeated accesses to the same address are discarded. While
being beneficial to any cache policy, repeated accesses do

The subroutine set forth below in Table II, written
in Python, shows one possible implementation of a sequence
finding algorithm. It receives, as input, a sorted list of n
unique addresses of a given LUN and an allowable gap,
which defaults to 1. Note that, once the addresses are sorted,
the sizes of the requests are no longer useful for computing

From this output, a histogram of the lengths of the
sequences observed in that set of addresses is computed. In
some embodiments, the histogram may take the form shown
in FIG. 6. Specifically, FIG. 6 is a histogram of an example
set of lengths of sequences of accesses to subsequent cache
addresses that were accessed by a preceding number of 10
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[0057] In some embodiments, the process of finding
sequences in a list of addresses is executed every time a new
1/0O request arrives. Additionally, before finding sequences,
the address of the pages in the list are sorted and dedupli-
cated. Subsequently, the resultant list is traversed to compute
the histogram of sequence lengths.

[0058] Additional details associated with composing the
histogram in a computationally efficient ware are set forth in
greater detail below. Of notable importance, the algorithm is
a linear-time algorithm that enables sequences to be found
and histograms associated with their lengths to be calculated
in a window of a given workload’s IO traces. As a sub-
product of the method, the intermediate data structures
generated include the sorted lists of unique addresses
requested during that window, which are also useful for
many cache policies that rely on sequentiality detection.
[0059] For the sake of simplicity and without loss of
generality, an explanation will be provided considering only
one LUN. The generalization of the method described herein
for application in a large-scale storage environment includ-
ing multiple LUNS is straightforward and should be apparent
to anyone skilled in the art.

[0060] FIG. 7 is a functional block diagram of an 1O trace
data structure 700, containing a representation of a work-
load’s 10 trace over time, with the requested pages being
ordered by time of request at time (i=2). The index i
indicates the start of a rolling window W of size w, ending
at a request i+w. FIG. 8 is a functional block diagram of the
10 trace data structure 700 at a subsequent increment of time
(1i=3). A new page (block 9) is added to the window and one
page (block 7) is removed. The index I, identifying the start
of the window, advances in the trace order each time a new
10 arrives on the LUN.

[0061] As shown in FIG. 7, in some embodiments the
workload’s 10 trace is represented for a given LUN, and
rolling window of its most recently requested pages is
loaded to the IO trace data structure and used to determine
the current sequentiality profile of the IO trace workload
contained in the window.

[0062] Let T be a workload’s I/O trace represented by a
sequence of page requests. For purposes of the method
described herein, requests of multiple pages can be consid-
ered a sequence of requests of a single page.

[0063] FIG. 7 shows an example [/O trace in a simplified
representation. Specifically, in FIG. 7 a window W is iden-
tified over a set of 1O traces with a starting index i=2, and
the size of the window is w. In the example shown in FIG.
7, and in further examples, boxes with numbers inside
represent page addresses that were accessed by 1O traces.
The figures use representative numbers for the page
addresses, the 1/O trace sizes, and show very short windows
of only a few pages for ease of explanation. In typical
environments the number of pages that make up a trace T is
very large, and, correspondingly, the window size W in an
actual implementation would include a very large number
(thousands or tens of thousands) of pages.

[0064] Note that the algorithm only considers the order in
which requests are processed, without regard for the time
between the actual requests. This is because the cache will
be static in between 1O traces, with nothing being added or
evicted, so the time when the traces arrive is immaterial to
calculating sequentiality.

[0065] FIG. 8 shows the example 1/O trace at the next
interval (i=3), once a subsequent trace associated with IO on
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address [9] has been added to the sliding window. Specifi-
cally, in FIG. 8, the sliding window has been moved forward
such that the starting index is located at i=3. This results in
address [7] being removed from the set of addresses con-
sidered in the sequentiality determination, and address [9]
being added to the set of addresses considered in the
sequentiality determination. Every time the sliding window
W is moved, one page is evicted and a new page is added.
This requires the sequentiality determination to be updated
each time the sliding window W is incremented.

[0066] As noted above, in some embodiments an efficient
way of characterizing the sequentiality of the workload is
provided, which may efficiently be implemented each time
the sliding window is updated such that the data structures
used to characterize the sequentiality of the workload are
able to be updated with each update of the sliding window
in real time in a computationally efficient manner.

[0067] Insome embodiments, W is defined to be a rolling
window over T since every new incoming request will cause
it to be updated. Typically, the request i+w includes the
newest request on a LUN in the storage system. The example
of FIG. 7 illustrates an intermediate state in which a new
request (address [9] on the right-hand side of FIG. 7) is
acknowledged by the LUN, but the sliding window has not
yet updated. FIG. 8 shows the state of the system once the
window W has been updated to reflect the new state, with the
new request on address [9] included in the sliding window,
and address [7] being evicted.

[0068] In some embodiments, an auxiliary data structure
Page Counts is used to store the number of occurrences of
each page in the window. The page counts data structure, in
some embodiments, is implemented as a hash map data
structure that is updated each time W is updated.

[0069] FIG. 9 is a functional block diagram representation
of an example page count data structure 900 correlating a
page count with a number of instances that the page appears
in the workload within the sliding window of the 10 trace
data structure 700. The numbers included in the example
page count data structure 900 shown in FIG. 9 correlate to
the example sliding window of IO traces shown in the
workload of FIG. 7.

[0070] FIG. 10 is a functional block diagram representa-
tion of an updated version of the page count data structure
900 of FIG. 9. The numbers included in the updated example
page count data structure 900 shown in FIG. 10 correlate to
the example sliding window of IO traces shown in the
workload of FIG. 8. As shown in FIG. 10, when the 1O trace
data structure 700 is updated to move from the state shown
in FIG. 7 to the state shown in FIG. 8, address [7] is removed
from the sliding window W and address [9] is added to the
sliding window W. Initially, the page count data structure
900 shown in FIG. 9 shows a page count of two on address
[7], and a page count of one on address [9]. The updated
page count data structure 900 shown in FIG. 10 shows a
page count of one on address [7] (-1 from FIG. 9) and a page
count of two on address [9] (+1 from FIG. 9). Accordingly,
each time a page is added to the sliding window or removed
from the sliding window the page count data structure 900
is updated to reflect the correct number of instances that the
page appears within the sliding window of the IO trace data
structure 700.

[0071] Insome embodiments, if an entry in the page count
data structure 900 is decremented to a value of zero, the
entry is deleted from the page count data structure 900. This
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avoid excessive memory consumption as the window pro-
gresses over the /O trace. In the explanations below, due to
the limited size of the examples, entries with a zero value in
the page count data structure 900 are not deleted for ease of
explanation. In some embodiments, if the page count data
structure 900 initially does not have an entry for a page,
when the page is added to the IO trace data structure 700, a
new entry associated with that page is added to the page
count data structure 900.

[0072] As noted above, a goal is to determine how many
sequences of addresses are contained in the window W, and
to determine the lengths of those addresses. In some embodi-
ments, two additional data structures are created that are
used to implement this process to enable a histogram of
sequence lengths to be created:

[0073] a doubly linked List of Sequences data structure
1100, which is a dynamic, “list-of-lists” data structure
that records all sequences found. In this structure, the
pages of the rolling window are sorted and dedupli-
cated; and

[0074] a hash map of Sequence Lengths data structure
1200, which records the length of each sequence in the
List of Sequences data structure, and is used to update
a histogram data structure H 1250.

[0075] The algorithm is invoked at every new incoming
request and builds, for a predetermined gap value, a list of
sequences. The list of sequences in some embodiments is a
list of groups of requests separated by at most gap address.
[0076] It is possible to consider an update to the window
W, as a combination of an initial removal of a page followed
by an insertion of the page. Table III, set forth below,
contains pseudocode for a process of updating the window
W.

TABLE III

UpdateSequencesHistogram(T, i, w, gap):
1. if i > 0:
m < T[i-1]
PageCount[rm] < PageCount[rm] - 1
if PageCount[rm] = 0:
Removal(rm, gap)
end if
end if
ad < T[i + w]
PageCount[ad] < PageCount[ad] + 1
Insertion(ad, gap)

SOV XN kW

—

[0077] Given the workload /O trace data T, the starting
index of the current window i, a window size w, the 1/O
workload from telemetry data and a gap value, this algo-
rithm builds the List of Sequences data structure 1100,
Sequence Lengths data structure 1200, and the histogram H
data structure 1250. The pseudocode contained in Table III
assumes global access to these data structures and, hence,
the pseudocode contained in Table IIT has no explicit return
statement, with the updated state of the structures being its
implicit return value.

[0078] In the pseudocode of Table I1I, global access to the
page count data structure 900 is assumed. As noted above,
normally when a page count reaches zero it would be deleted
from the page count data structure. In the following descrip-
tion, zero value entries are not deleted from the page count
data structure for easy of explanation.

[0079] Initially, all five data structures (IO trace data
structure 700, page count data structure 900, list of
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sequences data structure 1100, sequence lengths data struc-
ture 1200, and histogram data structure 1250) are empty. In
some embodiments, whenever a new request arrives or
leaves the window, a check is performed to determine
whether there is a correspondent entry for the page in the
page count data structure. In general, there are two kinds of
operations that can occur in the several data structures—a
first operation associated with a removal of a page from the
window and a second type of operation associated with an
insertion of a page into the window. In some embodiments,
removal operations are processed first and the insertion
operations are then processed after the removal operation
has been completed. It should be understood, however, that
the order of processing may be reversed by first causing the
insertion operation to be implemented and then the removal
operation to be implemented. Likewise, in some embodi-
ments a determination is made as to whether the page being
removed from the window is the same as the page being
added to the window. In this rare instance, no updates need
to be made to any of the data structures except to update the
10O trace data structure 700 itself.

[0080] Except for the first w requests, every new request
provokes the removal of the oldest request in the window.
Upon removal of a page from the window, the corresponding
entry for the page in the page count data structure is reduced
by 1. If the page count entry for the address is greater than
0 after being updated, removal of the age from the window
does not affect the sequentiality of the workload and no other
updates to the other data structures 1100, 1200, 1250, is
required. If removal of the page causes the Page Count entry
in the page count data structure 900 associated with the
removed page to become zero, that means that no other
instance of this page exists in the window. In such scenario,
a removal procedure is performed in the list of sequences
data structure 1100 and the other data structures 1200, 1250
are likewise updated. Specifically, the list of sequences data
structure is updated to remove the page from the sequence
in which it appears in the list of sequences data structure.
Removal of the page from the list of sequences will change
the lengths of the sequences which will affect the sequence
lengths data structure 1200 and the histogram data structure
1250.

[0081] It should be noted that, because duplicate pages are
removed, a page will appear in precisely one sequence in the
list of sequences data structure. The page may stand alone as
a sequence of one, or may be part of a larger sequence along
with other pages. Where the page is not part of a larger
sequence, removal of the page causes the sequence of one to
be removed from the list of sequences data structure. Where
the page is part of a lager sequence along with other pages,
removal of the page causes the larger sequence to be
shortened by one or causes the larger sequence to be split
into two shorter sequences, depending on the position of the
page within the larger sequence.

[0082] FIG. 11 is a functional block diagram of an
example list of sequences data structure 1100 showing two
examples of how the list of sequences data structure 1100
changes in connection with removal of an address from the
sliding window of 10O traces, when removal causes the page
count for that page to drop to zero in the page count data
structure 900. In both examples in FIG. 11 (case I and case
1I), address [9] is being removed from the list of sequences
data structure 1100.
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[0083] As shown in FIG. 11, focusing initially on case I,
the list of sequences data structure includes a first sequence
1105 and a second sequence 1110. The sequences are
included in a doubly linked list in which each entry (e.g.
1105, 1110) in the list of sequences data structure 1100
includes a pointer to the previous entry in the list and a
pointer to the following entry in the list. In some embodi-
ments, the entries in the list are the head ends of the
sequences. This is illustrated in FIG. 11 with double-ended
arrow 1115 extending from address [7] to address [13].
[0084] When a page is to be removed, the page’s location
is located in the list of sequences data structure and removed
from the sequence. The process then determines whether,
after removal of the page, the difference between the sub-
sequent and the preceding pages is larger than the gap
distance.

[0085] If, after removal of the page, the difference
between the previous and subsequent page in the previous
sequence is larger than the gap distance, the previous
sequence is split into two new sequences. This is shown in
case I in FIG. 11. Specifically, in this example the gap
distance is set to two. Initially, as shown on the left, before
removal of address [9], the list of sequences data structure
1100 included a sequence 1105 starting at address [7] and
including addresses [7], [9], and [10]. Upon removal of
address [9], the sequence 1105 would be changed to include
only addresses [7] and [10]. Since addresses [7] and [10] are
more than the gap distance of 2 away from each other, the
original sequence ([7], [9], [10]) is split into two new
sequences—a first sequence with a head address of [7] and
length 1, and a second sequence with a head address of [10]
and length 1. This is shown on the right-hand side of FIG.
11 in which the list of sequences data structure 1100 has
been updated. Specifically, sequence 1105 has been changed
to include only address [7], and a new sequence 1120 has
been added with a head address of [10]. Sequence 1110 has
not changed, except that the pointer of sequence 1110 has
been changed to point to the head of sequence 1120.
Similarly, the pointer of sequence 1105 has been changed to
point to sequence 1120 instead of the head address of
sequence 1110.

[0086] The second row of FIG. 11 (case II) shows an
example in which the list of sequences data structure 1100
initially includes a first sequence 1125 including addresses
[8], [9], and [10], and a second sequence 1130 including
address [13]. Upon removal of address [9] from the first
sequence 1125, the first sequence 1125 is changed to include
only addresses [8] and [10]. Since addresses [8] and [10] are
less than the gap distance of 2 away from each other, the
original sequence 1125 is reduced in length but is not split
into two new sequences. This is shown on the right-hand
side of FIG. 11, in which the list of sequences data structure
1100 has been updated. Specifically, sequence 1125 has been
changed to include only addresses [8] and [10]. Sequence
1130 has not changed. Since the head ends of sequences
1125 and 1130 have not changed, no changes are required to
the pointers of the doubly linked list.

[0087] FIG. 12 is a functional block diagram of a sequence
lengths data structure 1200 and a histogram data structure
1250 showing two examples of how the sequence lengths
data structure 1200 and histogram data structure 1250
change with removal of an address from the IO trace data
structure 700 causes the page count for the address to drop
to zero in the page count data structure 900. The numbers
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included in the data structures 1200, 1250 shown in FIG. 12
correlate to the example sequences (case I and case II)
included in the list of sequences data structures 1100 shown
in FIG. 11.

[0088] As shown in FIG. 12, in some embodiments the
sequence lengths data structure 1200 maintains a list of the
head end nodes of each sequence and the length of the
sequence. Looking at the list of sequences data structure
1100 for case I before removal of address [9], it is clear that
the list of sequences data structure includes one sequence
1105 having a starting address of [7] of length three (ad-
dresses [7], [9], [10]), and one sequence 1110 having a
starting address of [13] and a length of one (address 13). The
sequence lengths data structure shown in FIG. 12 contains
this data. Specifically, the sequence lengths data structure for
case I, before removal, shows that the sequence length data
structure 1200 includes two entries—a first entry with a head
address of [7] and length 3, and a second with a head address
of [13] and length 1. The particular addresses that are
contained in the sequences are not included in the sequence
lengths data structure—only the starting address and the
length of the sequence.

[0089] FIG. 12 also shows that after removal, the
sequences lengths data structure 1200 has three entries—a
first entry having a starting address of [7] and a length 1, a
second entry having a starting address of [10] and length 1,
and a third entry having a starting address of [13] and length
1. These entries correlate to the sequences contained in the
list of sequences data structure after removal of address [9]
for case 1.

[0090] Similarly, for case II, prior to removal of address
[9] the sequence lengths data structure 1200 has a first entry
having a starting address of [8] and length 3, and a second
entry having a starting address of [13] and length 1. After
removal of address [9], the sequence lengths data structure
1200 is updated to have a first entry having a starting address
of [8] and length 2, and a second entry having a starting
address of [13] and length 1. These entries correlate to the
sequences 1125, 1130 contained in the list of sequences data
structure 1100 (FIG. 11) after removal of address [9] for case
1I.

[0091] FIG. 12 also shows the histogram data structure
1250. In some embodiments, the histogram data structure
1250 is a list of sequence lengths and a count of how many
sequences of that length are contained in 1O traces of the
sliding window of 10 traces currently contained in the 10
trace data structure 700. FIG. 6 graphically shows an
example histogram data structure H 1250. In this example,
the sliding window includes 19 sequences of length 2, 12
sequences of length 3, 5 sequences of length 4, etc. The
histogram data structure 1250 uses the data contained in the
sequence lengths data structure 1200 to update the counts of
how many sequences of each length are contained in the
sliding window.

[0092] For example, as shown in FIG. 12, initially the
sequence lengths data structure 1200 contains one entry for
a sequence of length 3 and one entry for a sequence of length
1. Accordingly, the histogram data structure 1250 has two
entries, one entry for sequences of length 3 with a count
value of 1, and one entry for sequences of length 1 with a
count value of 1. After removal of address [9], the sequence
lengths data structure 1200 contains three entries sequences
having length 1 (with head addresses of [7], [13], [10]).
Accordingly, the histogram data structure 1250 has one entry



US 2021/0141738 Al

for sequences of length 1 with a count value of 3. The
histogram data structure 1250 in FIG. 12, as illustrated, also
has an entry for a sequence of length 3 with a count value
of 0, although this entry could be deleted.

[0093] Likewise, for case II, initially the sequence lengths
data structure 1200 contains one entry for a sequence of
length 3 and one entry for a sequence of length 1. Accord-
ingly, the histogram data structure 1250 has two entries, one
entry for sequences of length 3 with a count value of 1, and
one entry for sequences of length 1 with a count value of 1.
After removal of address [9], the sequence lengths data
structure 1200 contains one sequence having a length of 2,
and one sequence having length 1. Accordingly, the histo-
gram data structure 1250 is updated after removal of address
[9] to change the count value of sequences length 3 from 1
to 0, to update the count value of sequences of length 2 from
0to 1. The number of sequences of length 1 has not changed.
[0094] FIG. 16 is a flow chart of a method of removing an
address from the list of sequences data structure, according
to some embodiments. As depicted in FIGS. 11-12, and as
shown in FIG. 16, whenever an address is removed from the
window of traces of the 10 data structure 700 (FIG. 16,
block 1600), the page count for that address is updated
(block 1605) by reducing the entry corresponding to the
address in the page count data structure 900 by one (page
count for address=previous page count minus 1). A deter-
mination (block 1610) is then made as to whether the page
count for that address equals zero. If the page count does not
equal zero (a determination of NO at block 1610) the sliding
window still contains at least one instance of the page that
was just removed from the window. Accordingly, the other
data structures (1100, 1200, 1250) do not need to be updated
since removal of the page from the window will not affect
any of the sequences. Accordingly, the process of removing
the address from the window ends (block 1615).

[0095] If removal of the address from the IO trace data
structure 700 causes the page count for the address to equal
zero in the page count data structure 900 (a determination of
YES at block 1610), removal of the address will affect at
least one sequence and, accordingly, all the other data
structures (1100, 1200, 1250) need to be updated. Accord-
ingly, as shown in FIG. 16, the address is located in the list
of sequences data structure 1100 and removed from the list
of sequences data structure 1100 (block 1620). This is
described in greater detail above in connection with the
description of FIG. 11. Removal of the address can result in
two different updates depending on the location of the
address in the sequence and the characteristics of the
sequence that contain the address. Specifically, removal of
the address can result in splitting of a previous sequence into
two new sequences (block 1625) or removal of the address
can result in shortening of the previous sequence (block
1630). Shortening a previous sequence can be implemented
by removing the address from the front of the sequence,
middle of the sequence, or the end of the sequence. Where
the address is the only address in the sequence, removal of
the address can result in the total removal of the sequence.
As discussed in greater detail above, removal of the address
can result not only in adjusting the sequences themselves,
but also results in reorganization of the pointers of the
double linked list to cause the pointers to point to the correct
entries in the updated list of sequences data structure.
[0096] After updating the list of sequences data structure
1100, the sequence lengths data structure 1200 is updated
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(block 1635) and the histogram data structure 1250 is
updated (block 1640). Additional details associated with
updating the sequence lengths data structure 1200 and
histogram data structure 1250 are provided above in con-
nection with FIG. 12. Once all the data structures are
updated, the process ends (block 1615).

[0097] In some embodiments, the list of sequences data
structure 1100 is a double linked list, and the sequence
lengths data structure 1200 is implemented as a hash map.
Use of these types of data structures enables all updates to
be implemented in O(1) time complexity, which enables
these updates to occur in real time every time an address is
removed from the window of traces maintained by the 10
trace data structure 700. Accordingly, it is possible using this
set of data structures to maintain an updated histogram of
sequence lengths contained in the sliding window of traces.
Knowledge about the type of accesses occurring in the
sliding window, and the lengths of sequences seen in the 10
traces during the window, enables a more intelligent cache
prefetching policy to be implemented by the cache manage-
ment system 128 on the cache 118 to optimize performance
of the cache 118.

[0098] FIGS. 13 and 14 are functional block diagrams of
the list of sequences data structure 1100 showing four
examples (two examples in FIG. 13 and two examples in
FIG. 14) of how the list of sequences data structure 1100
changes in connection with insertion of an address into the
sliding window of 1O traces maintained by the IO trace data
structure 700.

[0099] FIG. 15 is functional block diagram of the
sequence lengths data structure and the histogram data
structure 1250 showing four examples of how the sequence
lengths data structure 1200 and histogram data structure
1250 change with insertion of an address from the sliding
window of IO traces. The numbers included in the data
structures shown in FIG. 15 correlate to the example
sequences included in the list of sequences data structure
1100 shown in the examples contained in FIGS. 13 and 14.
[0100] When an address is inserted into the window (FIG.
17, block 1700), the page count entry associated with the
address is incremented in the page count data structure 900.
If the initial page count entry associated with the address is
greater than zero (before being incremented), the page
already has been inserted into the various other data struc-
tures (1100, 1200, 1250) and no additional updates to the
other data structures (1100, 1200, 1250) are required.
Accordingly, the page count entry for the address is incre-
mented by one in the page count data structure 900 and the
process ends (block 1715).

[0101] If the page count entry for the address in the page
count data structure is initially zero, adding the page will
change at least one sequence in the list of sequences data
structure, which will concomitantly affect the sequence
lengths data structure and histogram data structure. Accord-
ingly, if the page count for the address in the page count data
structure is initially zero (or is equal to 1 after the page count
has been incremented), an insertion process is performed in
the list of sequences data structure and the other data
structures are updated accordingly.

[0102] FIGS. 13 and 14 show four example cases of how
insertion of a page might affect the sequences in the list of
sequences data structure. FIG. 17 is a flow chart of a method
of'inserting an address in the list of sequences data structure,
according to some embodiments, and FIG. 18 is a flow chart
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of the method step 1725 of FIG. 7 providing additional
details of the method of performing an insert procedure to
add a page to a list of sequences, according to some
embodiments.

[0103] As shown in FIG. 17, in connection with insertion
of an address (block 1700), a determination is made (block
1705) as to whether the initial page count for the address is
greater than zero (a determination of YES at block 1705). If
the initial page count for the address is greater than zero, the
page already has been inserted into the sequences and no
additional updates need to be made to any of the other data
structures. Accordingly, the page count for the address is
updated (block 1710) in the page count data structure (page
count for address=previous page count plus 1) and the
process ends (block 1715).

[0104] If the page count for the address is equal to zero (a
determination of NO at block 1705) the page does not exist
in the data structures and the data structures will need to be
updated. Accordingly, the process finds the correct place to
insert the address in the list of sequences data structure 1100
(block 1720). In some embodiments, the list of sequences
data structure 1100 is an ordered list of sequences, in which
the sequences are ordered according to the address value of
the first node in the sequence. Accordingly, in some embodi-
ments determining the correct place to insert the address in
the list of sequences data structure 1100 includes determin-
ing if the address should be added to an existing sequence or
if the address should be inserted into the list of sequences
data structure 1100 as a new sequence.

[0105] Once the correct location for the address has been
located, an insert procedure is performed to add the address
to the sequences contained in the list of sequences data
structure 1100 (block 1725). The insert procedure of block
1725 is described in greater detail in connection with FIG.
18, and examples are provided below in connection with
FIGS. 13-14.

[0106] Once the sequences in the list of sequences data
structure 1100 are updated, the sequence lengths contained
in the sequence lengths data structure 1200 are updated
(block 1730) and the sequence length counts in the histo-
gram data structure 12250 are updated (block 1735).
Examples of how updating the sequence lengths data struc-
ture and histogram data structure is implemented are dis-
cussed below in connection with FIG. 15.

[0107] FIG. 18 shows the process of block 1725 in greater
detail. As shown in FIG. 18, in some embodiments, once the
location of where the address should be inserted is located,
an insert procedure is performed on the sequences contained
in the list of sequences data structure 1100 (FIG. 17, block
1725) by adding the address as a new sequence in the list of
sequences data structure 1100, or adjusting one or more of
the previous sequences to accommodate the new address. In
particular, depending on the sequences that existed in the list
of sequences data structure, insertion of the address may
cause a new sequence to be created, may cause the address
to be inserted into the middle of a previously existing
sequence, or may cause the address to be joined at the head
or tail of a previously existing sequence. In some instances,
joining the new address to the head or tail of a previously
existing sequence can cause the two adjacent sequences to
be concatenated.

[0108] Inserting an address into the middle of an existing
sequence causes the sequence length for that sequence to
increase by one. The sequence within the list of sequences
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data structure 1100 is changed to include the address, and the
other data structures 1200, 1250 are updated to reflect the
new sequence length of that sequence.

[0109] Where an address is not being inserted into the
middle of an existing sequence, the particular effect the
insertion process has on the existing sequences depends on
two factors (FIG. 18, blocks 1800 and 1805). Specifically, a
first determination is made as to whether a difference
between the address being inserted and the tail address of the
preceding sequence is larger than the gap distance (block
1800). A second determination is made as to whether a
difference between the address being inserted and the head
address of a subsequent sequence is larger than the gap
distance (block 1805). These determinations (1800, 1805)
can be implemented in either order or simultaneously.

[0110] If'the difference between the address being inserted
and the tail address of the preceding sequence is larger than
the gap distance (a determination of YES at block 1800), the
address cannot be added to the preceding sequence. If the
difference between the address being inserted and the tail
address of the preceding sequence is smaller than the gap
distance (a determination of NO at block 1800), the address
can be added to the tail of the preceding sequence.

[0111] If the difference between the address being inserted
and the head address of the subsequent sequence is larger
than the gap distance (a determination of YES at block
1805), the address cannot be added to the subsequent
sequence. If the difference between the address being
inserted and the head address of the subsequent sequence is
smaller than the gap distance (a determination of NO at
block 1805), the address can be added at the head of to the
subsequent sequence.

[0112] The combination of these two determinations
(blocks 1800 and 1805) determines the result of the insertion
process. Specifically, as shown in FIG. 18, if the difference
between the address being inserted and the tail address of the
preceding sequence is larger than the gap distance (a deter-
mination of YES at block 1800), AND the difference
between the address being inserted and the head address of
the subsequent sequence is larger than the gap distance (a
determination of YES at block 1805), the block cannot be
joined to either the previous or the subsequent sequence and
will be inserted into the list of sequences as new sequence
(block 1810).

[0113] If'the difference between the address being inserted
and the tail address of the preceding sequence is smaller than
the gap distance (a determination of NO at block 1800),
AND the difference between the address being inserted and
the head address of the subsequent sequence is smaller than
the gap distance (a determination of NO at block 1805), the
address can be added to both the preceding sequence and the
subsequent sequence. Accordingly, adding the address to the
list of sequences results in concatenating the preceding
sequence and subsequent sequence with the arriving page
in-between (block 1815).

[0114] If'the difference between the address being inserted
and the tail address of the preceding sequence is smaller than
the gap distance (a determination of NO at block 1800),
AND the difference between the address being inserted and
the head address of the subsequent sequence is larger than
the gap distance (a determination of YES at block 1805), the
address is inserted at the tail of the preceding sequence
(block 1820).
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[0115] If'the difference between the address being inserted
and the tail address of the preceding sequence is larger than
the gap distance (a determination of YES at block 1800),
AND the difference between the address being inserted and
the head address of the subsequent sequence is smaller than
the gap distance (a determination of NO at block 1805), the
address is inserted at the start of the subsequent sequence
(block 1825).

[0116] Whenever the head address of a sequence changes,
or if a new sequence is added to the list of sequences data
structure 1100, for example in blocks 1810, 1825, and 1815,
the pointers contained in the associated entries are updated
to maintain the double linked list data structure.

[0117] FIGS. 13-14 illustrate application of FIG. 18. As
shown in FIG. 13, in case I the list of sequences data
structure includes two sequences, a first sequence 1305
containing address [7] and a second sequence 1310 contain-
ing addresses [13] and [15]. It is assumed, in each of the
examples shown in FIGS. 13-14, that the gap distance is 2.
If address [10] is inserted, it is more than the gap distance
of 2 away from the tail address [7] of the first sequence 1305
(10-7>2) and is also more than the gap distance away from
the head address of the second sequence 1310 (13-10>2).
Accordingly, as shown in the right-hand side, after insertion
of address [10], the list of sequences data structure 1100
includes three sequences, 1305 and 1310 which are
unchanged, and a new sequence 1315 containing address
[10].

[0118] In case II, initially the list of sequences data struc-
ture includes two sequences, a first sequence 1320 contain-
ing address [9] and a second sequence 1325 containing
addresses [13] and [15].

[0119] Ifaddress [11] is inserted, it is less than or equal to
the gap distance of 2 away from the tail address [9] of the
first sequence 1305 (11-9<2) and is also less than or equal
to the gap distance away from the head address [13] of the
second sequence 1325 (13-11<2). Accordingly, as shown in
the right-hand side of case I, after insertion of address [11],
the previous two sequences 1320 and 1325 are concatenated
with address [11] in-between, such that the list of sequences
data structure includes only one sequence 1330 containing
addresses [9], [11], [13], and [15].

[0120] In FIG. 14, case III, initially the list of sequences
data structure 1100 includes two sequences, a first sequence
1335 containing address [9] and a second sequence 1340
containing addresses [13] and [15]. If address [10] is
inserted, it is less than or equal to the gap distance of 2 away
from the tail address [9] of the first sequence 1335 (10-9<2)
and is greater than the gap distance away from the head
address [13] of the second sequence 1340 (13-10>2).
Accordingly, insertion of address [10] will cause address
[10] to be joined to the tail of the first sequence 1335, such
that the list of sequences data structure 1100 after insertion
of'address [10] includes sequence 1345 containing addresses
[9] and [10], and sequence 1340 which is unchanged.
[0121] In FIG. 14, case IV, initially the list of sequences
data structure includes two sequences, a first sequence 1335
containing address [9] and a second sequence 1340 contain-
ing addresses [13] and [15]. If address [12] is inserted, it is
greater than the gap distance of 2 away from the tail address
[9] of the first sequence 1335 (12-9>2), and is less than the
gap distance of 2 away from the head address [13] of the
second sequence 1340 (13-12<2). Accordingly, insertion of
address [12] will cause address [12] to be joined to the head
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of the second sequence 1340, such that the list of sequences
data structure 1100 after insertion of address [12] includes
sequence 1335 which contains the same addresses as prior to
insertion, and sequence 1350 which contains addresses [12],
[13], [15]. Because insertion of address [12] causes the head
address of one of the sequences to change, the pointers of the
doubly linked list are updated to reflect the new head values
of the entries in the list of sequences data structure 1100.
[0122] FIG. 15 is functional block diagram of the
sequence lengths data structure and the histogram data
structure 1250 showing four examples of how the sequence
lengths data structure 1200 and histogram data structure
1250 change with insertion of an address into the list of
sequences data structure 1100. The numbers included in the
data structures 1200, 1250 shown in FIG. 15 correlate to the
example sequences included in the list of sequences data
structure 1100 shown in the examples contained in FIGS. 13
and 14.

[0123] As shown in FIG. 15, when insertion of an address
causes a new sequence to be created, as in case i in FIG. 13,
a new entry is created in the sequence lengths data structure
1200 associating the head address of the new sequence with
the length 1. When two sequences are joined, as in case II,
the length of the sequence preceding the arriving page is
incremented by one plus the length of the second sequence,
and the entry corresponding to the second sequence is
deleted. When the length of one sequence is increased by
one, as in cases Il and IV of FIG. 14, only the length of the
affected entries are incremented. Additionally, when the
address is joined to the head of the subsequent sequence, as
is the situation in case IV, the head of the sequence is
updated in the sequence lengths data structure 1200 as well.
[0124] The histogram data structure 1250 is also updated
in connection with an insertion operation. Every time the
sequence lengths data structure 1200 changes, the histogram
data structure 1250 needs to be updated. For case I, in which
a new sequence is created, the only change to the histogram
data structure 1250 is to increment the counter associated
with sequences of length 1. For case II, in which two
sequences are joined, at most three entries are updated.
Specifically, the counters associated with the original
lengths of the two joined sequences are decremented by one,
and the counter associated with the length of the new
resultant sequence is incremented by one. For cases 111 and
1V, in which only one sequence length increases, the counter
associated with the original length of the sequence that
changed is decremented by 1, and the counter associated
with the new sequence length is incremented by 1.

[0125] Table IV, below, shows the time complexity of
computing sequentiality of an 10 workload using a normal
sorting process. As shown in Table 1V, if a normal sorting
process is used to order the address in the 1O trace data
structure 700, the time complexity of determining the
sequences from a set of W traces is on the order of w log(w).
Since w, in practical implementations, may encompass many
thousands of traces, using a normal sorting process to
calculate the sequentiality of the traces becomes impractical
with a large data set (large W).

TABLE 1V
Time
Step Description Complexity
1 Remove duplicate pages from window O(w)
2 Update slice window (queue) o(1)
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TABLE IV-continued

Time
Step Description Complexity
3 Sort the pages of the window O(w log(w))
4 Compute sequence lengths and O(w)
histogram from scratch
Total complexity O(w log(w))
[0126] Table 5, below, shows the time complexity for the

algorithm described herein for computing the sequentiality
in a I/O workload using the data structures 700, 900, 1100,
1200, 1250. As shown in table 5, using the data structures
700, 900, 1100, 1200, 1250, as described herein, enables the
time complexity of determining the sequentiality of the
workload on the LUN from order O(w log(w)) to order
O(w). This results in a dramatic reduction in the amount of
processing resources required to implement the sequentiality
determination. Additionally, the sequentiality determination
is only necessary when a new address is inserted into the
page count data structure 900 or if the page count for an
address is reduced to zero in the page count data structure
900. Accordingly, the insertion and deletion processes asso-
ciated with updating data structures 1100, 1200, and 1250
are not required to be implemented in every instance, thus
further adding to the computational efficiency of the
described process of determining sequentiality of the work-
load.

TABLE 5
Time

Step  Description Complexity
1 Insertion sort in the double linked list implementing O(w)

the list of sequences data structure 1100
2 Update slice window contained in the IO trace data O(1)

structure 700
3 Update page count data structure 900 o)
4 Update sequence lengths data structure 1200 o)
5 Update histogram data structure 1200 o)
6 Remove page from double linked list implementing O(w)

the list of sequences data structure 1100

Total complexity O(w)
[0127] The methods described herein may be imple-

mented as software configured to be executed in control
logic such as contained in a Central Processing Unit (CPU)
or Graphics Processing Unit (GPU) of an electronic device
such as a computer. In particular, the functions described
herein may be implemented as sets of program instructions
stored on a non-transitory tangible computer readable stor-
age medium. The program instructions may be implemented
utilizing programming techniques known to those of ordi-
nary skill in the art. Program instructions may be stored in
a computer readable memory within the computer or loaded
onto the computer and executed on computer’s micropro-
cessor. However, it will be apparent to a skilled artisan that
all logic described herein can be embodied using discrete
components, integrated circuitry, programmable logic used
in conjunction with a programmable logic device such as a
Field Programmable Gate Array (FPGA) or microprocessor,
or any other device including any combination thereof.
Programmable logic can be fixed temporarily or perma-
nently in a tangible computer readable medium such as
random-access memory, a computer memory, a disk, or
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other storage medium. All such embodiments are intended to
fall within the scope of the present invention.

[0128] Throughout the entirety of the present disclosure,
use of the articles “a” or “an” to modify a noun may be
understood to be used for convenience and to include one,
or more than one of the modified noun, unless otherwise
specifically stated.

[0129] Elements, components, modules, and/or parts
thereof that are described and/or otherwise portrayed
through the figures to communicate with, be associated with,
and/or be based on, something else, may be understood to so
communicate, be associated with, and or be based on in a
direct and/or indirect manner, unless otherwise stipulated
herein.

[0130] Various changes and modifications of the embodi-
ments shown in the drawings and described in the specifi-
cation may be made within the spirit and scope of the present
invention. Accordingly, it is intended that all matter con-
tained in the above description and shown in the accompa-
nying drawings be interpreted in an illustrative and not in a
limiting sense. The invention is limited only as defined in the
following claims and the equivalents thereto.

What is claimed is:

1. A method for optimizing performance of a storage
system, comprising the steps of:

maintaining an 1O trace data structure having a rolling

window of 1O traces describing access operations on
addresses of a storage volume;
maintaining a page count data structure having a list of all
of the addresses of the storage volume referenced by
the 1O traces in the 10 trace data structure;

maintaining a list of sequences data structure containing
sequences of the addresses of the storage volume
referenced by the 1O traces in the 1O trace data struc-
ture;

maintaining a sequence lengths data structure correlating

each sequence in the list of sequences data structure
with a length of the sequence; and

maintaining a histogram data structure correlating

sequence lengths and a number of how many of
sequences of that length are maintained in the sequence
lengths data structure.

2. The method of claim 1, further comprising updating the
1O trace data structure to remove a first IO trace from the
rolling window of 1O traces.

3. The method of claim 2, further comprising updating the
page count data structure to decrement a page count of a first
address associated with the removed first IO trace.

4. The method of claim 3, wherein if a result of decre-
menting the page count of the first address causes the page
count for the first address to be equal to zero, the method
further comprising updating the list of sequences data struc-
ture to remove the first address from a first sequence
containing the first address.

5. The method of claim 4, wherein if the first address is
intermediate a head address of the first sequence and a tail
address of the first sequence, and removal of the first address
causes a pair of adjacent addresses in the sequence to be
greater than a gap distance away from each other, the step of
updating the list of sequences data structure comprises
creating two new sequences from the first sequence.

6. The method of claim 5, wherein a first of the two new
sequence includes all elements of the first sequence before
the removed first address and a second of the two new
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sequence comprises all the elements of the first sequence
after the removed first address.

7. The method of claim 4, further comprising updating the
sequence lengths data structure after removing the first
address from the list of sequences data structure; and updat-
ing the histogram data structure after removing the first
address from the list of sequences data structure.

8. The method of claim 1, further comprising updating the
10O trace data structure to insert a second IO trace into the
rolling window of 10O traces.

9. The method of claim 8, further comprising updating the
page count data structure to increment a page count of a
second address associated with the inserted second 1O trace.

10. The method of claim 9, wherein if a result of incre-
menting the page count of the second address causes the
page count for the second address to be equal to one, the
method further comprising determining a correct place to
insert the second address in the list of sequences data
structure.

11. The method of claim 10, wherein if the correct place
to insert the second address in the list of sequences data
structure is in a middle of a previous sequence contained by
the list of sequences data structure, performing an insert
procedure to add the second address to the previous
sequence.

12. The method of claim 10, wherein if the correct place
to insert the second address in the list of sequences data
structure is in between two previous sequences contained by
the list of sequences data structure, performing an insert
procedure to add the second address as a new sequence in
the list of sequences data structure.

13. The method of claim 10, wherein if the correct place
to insert the second address in the list of sequences data
structure is at a head or tail of a first of the previous
sequences contained by the list of sequences data structure,
performing an insert procedure to add the second address as
a new head address or new tail address of the first of the
previous sequences in the list of sequences data structure.

14. The method of claim 13, wherein if the second address
is inserted as the new head address of the first of the previous
sequences in the list of sequences data structure, and the
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second address is less than a gap distance away from a tail
address of a second of the previous sequences in the list of
sequences data structure, the method further comprising the
step of joining the first of the previous sequences and the
second of the previous sequences in the list of sequences
data structure.

15. The method of claim 13, wherein if the second address
is inserted as the new tail address of the first of the previous
sequences in the list of sequences data structure, and the
second address is less than a gap distance away from a head
address of a second of the previous sequences in the list of
sequences data structure, the method further comprising the
step of joining the first of the previous sequences and the
second of the previous sequences in the list of sequences
data structure.

16. The method of claim 10, further comprising updating
the sequence lengths data structure after inserting the second
address into the list of sequences data structure.

17. The method of claim 16, further comprising updating
the histogram data structure after inserting the second
address into the list of sequences data structure.

18. The method of claim 1, wherein the list of sequences
data structure is a double linked list of the sequences of the
addresses of the storage volume referenced by the IO traces
in the 10 trace data structure, with duplicate addresses
removed.

19. The method of claim 18, wherein list of sequences
data structure is an ordered list of sequences based on a head
address of each sequence, and wherein each sequence other
than a first sequence and last sequence, has a respective first
pointer to a previous sequence in the list of sequences data
structure and a respective second pointer to a subsequent
sequence in the list of sequences data structure.

20. The method of claim 1, wherein the storage system
comprises a cache, and the method further comprising
adjusting a cache policy applied to the cache based on the
content of the histogram data structure.
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