US 20210141799A1

a2y Patent Application Publication o) Pub. No.: US 2021/0141799 A1

a9y United States

Steedman Henderson

43) Pub. Date: May 13, 2021

(54) DIALOGUE SYSTEM, A METHOD OF
OBTAINING A RESPONSE FROM A
DIALOGUE SYSTEM, AND A METHOD OF
TRAINING A DIALOGUE SYSTEM

(71) Applicant: PolyAl Limited, London (GB)

(72) Inventor: Matthew Steedman Henderson,

Singapore (SG)
(21) Appl. No.: 17/137,722
(22) Filed: Dec. 30, 2020

Related U.S. Application Data
(63) Continuation of application No. 16/709,529, filed on

Dec. 10, 2019.
(30) Foreign Application Priority Data
Nov. 8,2019 (GB) cecevrevneccrcinceree 1916307.0

Publication Classification

(52) US.CL
CPC ... GOGF 16/24578 (2019.01); GO6N 3/0454
(2013.01); GOG6F 16/243 (2019.01); GO6N

3/08 (2013.01)

(57) ABSTRACT

A method of obtaining a response to a query inputted by a
user, the method comprising: receiving a user inputted
query; representing the user inputted query as a sequence of
embedding vectors using a first model; encoding the
sequence of embedding vectors to produce a context vector
using a second model; retrieving responses with associated
response vectors; scoring response vectors against the con-
text vector, wherein the scoring is a measure of the similarity
between the context vector and a response vector; and
outputting the responses with the closest response vectors,
wherein the first model is configured to segment a user
inputted query into a sequence of units from a vocabulary of
units and represent each unit in the sequence as an embed-
ding vector, wherein at least one of the units in the vocabu-
lary is an incomplete word, and wherein the first model
comprises parameters that are stored using eight bits per

(51) Int. CL parameter; and wherein the second model has been trained
GOG6F 16/2457 (2006.01) using corresponding queries and responses such that an
GO6N 3/08 (2006.01) encoding is used that maximises the similarity between the
GOG6F 16/242 (2006.01) response vector and context vector for a corresponding
GO6N 3/04 (2006.01) query and response.

100 \\\

|
101 —
h p
\ » rocessor S
- fnput » Output 103
105
4
v
Respanse selection
model
- i
/
J/ /
- /
111 //
/

109

Patent Application Publication = May 13, 2021 Sheet 1 of 14 US 2021/0141799 A1

i
)
S
S
oo
(M.
o
o
i
|
-
3
(0%
2
=
O
A
Q
op
e o 2
[o]
o
& K
M~
S
(=]
& e
N
£ g
e
a.
»
[
8
g
; o _
33
go
£E T
Qo
1%
Q
- o
a
oY
c - O
- i
/) \
\

111

US 2021/0141799 A1l

May 13, 2021 Sheet 2 of 14

Patent Application Publication

Z 94n3i4

Asanb
iosn

10¢

A

jopow 35414

sasuodsay
| N.
T jopow puoaas L1
‘\
d
> Fupoos
A L X N
11¢ \
Y
asuodsay
| ndino

// 601

US 2021/0141799 A1l

May 13, 2021 Sheet 3 of 14

Patent Application Publication

!

BUDSBG! 848 28000 811 1BUL ABS DINOA .

(' sesuodsay wwmmwmgmv

=
?..,.a...n....

...

(9) € 2in8i4

~ s ajepaoge aved By S

induy)

() € 2un8i4

pasised spaow el v payoem

¢

induy)

US 2021/0141799 A1l

May 13, 2021 Sheet 4 of 14

Patent Application Publication

(e) ¥ 24n8i4

S0vS

oS

1 10) A

c0vS

10vS

$9J03S

uo paseq (s)ssuodsas ay3 indinp

N

SJ03}03A 3suods

p=401s umc_mmw 40329A IXalU02 91035

3J JO UOI129]|02

4

N

10109A
IX21U0D e 01Ul SSuIppaga apodul

/

N

sguippagqwa
yim ezep ndui Juassiday

A

N

Aianb anladay

US 2021/0141799 A1l

May 13,2021 Sheet 5 of 14

Patent Application Publication

(9) ¥ 8ndi4

1S sasuodsas ay} 1nding
A

TUEINEISS] oes
30 210335 andWod pue JuRINeIS3S Yoea oy sosuodsal syl dnoig

607S \

L0zsl @seqeiep wouy sasuodsas w doy ay3 Ayiuap)

ON

\ .

$5550.d EOMUSOd

aAaneLIDY Y TA Jaipisse]) VGONW
SOA T~ lusyj e

- \

507S JOTISA 1X51U03 99Npoid 03 J9poIus
pauiesy Buisn papodue 51 aselyd
/

£0¢S PRI
JO MIIA 01U B Y3m Jueinelsas e, asesyd syndut sasn

A

107S
UO1IRI0]

J1y108ds e 03 duilejss
se psaiizuap st Asenb ayy

US 2021/0141799 A1l

May 13, 2021 Sheet 6 of 14

V

wiyliosje uolesiuad ol

Alejngeoop 4

{

L

Patent Application Publication

v

(e)g 2undi4

US 2021/0141799 A1l

May 13,2021 Sheet 7 of 14

Patent Application Publication

{(q)g 24n3i4

\ 01ss momm

T1sS /
| /

Buien siojeg

!
! \
| LHORSCIBALIDG ST “ LIOIIGIBARDO SHE FOSRG-Tud upohe
“Ba e wdiy \ “Fa v indy L TLION O} DEIINR

i .
. , . !

Buunpeas wposd Apsary I S xyaud Apsemn

{RUGESIBAUDG WL
ordion BUORERIBACS

A UPPE BU} 10 19800R
A3 \wﬁm L oy @ B ey sig T 10SS

»_ * ISEDETY
04 W SDEON 0 9 RO i i SRR vt
sHuppRtug swona o sued § sfeanpagie
ial s euo ufssy o pon ubesy] 1 AP B0 ulissy
inrin

vy

(253 «/rﬁ ullssy

) 1004
bv({‘y .\.)tc.\\.)

i

paxy; e YHPREGEIR MH Al Hppanue WAL ayl aRpdn

RS WK S5 BROLUS RDOUL IBPOIS [B0D BL YR
\ y15S e \ s0ss L
; & bammogpoon)
$ //tl
N TS SOUEIRRY 1 DEXL 3 605
Yol stppega sl pae e £ RGBS HIACOD IR U AN TSI MU o BlA

US 2021/0141799 A1l

May 13, 2021 Sheet 8 of 14

Patent Application Publication

Adp~ GURER- Hoos

T osruabrire
47 Suruaesy sutyoen w s~ dopssep pe~ Apd

(0)s 34n3i4

US 2021/0141799 A1l

May 13, 2021 Sheet 9 of 14

Patent Application Publication

()9 a4n3i4

509 —

S19°

LI19—

L0¢

Patent Application Publication

May 13, 2021 Sheet 10 of 14

syl

1200

resiired

£

PR DR E X PO

E

Straos Davice fatiea

US 2021/0141799 A1l

Figure 6(b)

US 2021/0141799 A1l

May 13, 2021 Sheet 11 of 14

Patent Application Publication

[34n3i4

£0L

SOL

sasuodsay wnduy
jopow payL [opow 384t
—— G0¢
A X
L02
[opow y3ino4 [Spow puodas \\
X f.\c T 102

A X

Y 13025 Y \

US 2021/0141799 A1l

May 13, 2021 Sheet 12 of 14

Patent Application Publication

g 24n3i4

€0L

ssucdsss

wudiy

SHUMPDSNUS

PRAGES

B HDOAES
BSOS

sgroous
BERSTHE

sHnposus
wronand

U oR

HORUBNE 88

S0l e pow

iR Y e

TAOAE DRDY

DA paat

sy oo

AR R o

(et icr
S PUIBSET

HRIR

IR

sORENpRY

g pas

CHeAE D

F]
g

Yo
P

S0¢

L0¢

Patent Application Publication = May 13, 2021 Sheet 13 of 14 US 2021/0141799 A1l

o
W
S
S

20

(R

US 2021/0141799 A1l

May 13, 2021 Sheet 14 of 14

Patent Application Publication

0T 94n3i4

(40

€0s

(z) uonenba jo uonpuny
$SOj SuISn U01399s Isuodsal
[EUOI1BSISAUOD pUE UOI1I9S

duiddew 1xa1u02 utesy Apuiof
A

10308A 9suodsas ay3 aulwialaQ

1ndui yaea 10§ J0139A IXa1U03 ay]} suluiiala(

s3uippaquwa se asuodsal Juasa.day
s3uippaguwa se elep 1nduj Juasaiday

10S

A

sasuodsau pue ejep ndul 9AI939Y

US 2021/0141799 Al

DIALOGUE SYSTEM, A METHOD OF
OBTAINING A RESPONSE FROM A
DIALOGUE SYSTEM, AND A METHOD OF
TRAINING A DIALOGUE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is based upon and claims the
benefit of priority from prior United Kingdom Application
number 1916307.0 filed on Nov. 8, 2019, the entire contents
of which are incorporated herein by reference.

FIELD

[0002] Embodiments described herein relate to methods of
obtaining a response to a query inputted by a user, methods
of training response retrieval systems to provide a response
to a query inputted by a user, and dialogue systems for
obtaining a response to a query inputted by a user.

BACKGROUND

[0003] Response retrieval systems such as computer
implemented dialogue systems or conversational user inter-
faces, for example chatbots or voice-based agents, are used
in many applications, for example search, recommendation,
booking, telephone help systems, customer service, e-bank-
ing etc.

[0004] Such dialogue systems may be constructed around
rigid ontologies, where conversations are modelled as a
sequence of actions that constrain slots to certain values.
This method of modelling dialogue presents two main
challenges. Firstly, it is difficult to collect data labelled with
these explicit semantic representations. Secondly, it con-
strains the types of dialogue the system can support, result-
ing in artificial conversations, and breakdowns when the
user does not understand what the system can and cannot
support.

BRIEF DESCRIPTION OF FIGURES

[0005] Embodiments described herein will now be
described with reference to the following figures:

[0006] FIG. 1 is a schematic illustration of a system in
accordance with an embodiment;

[0007] FIG. 2 is a schematic illustration of the functional
components of a response selection model which is used in
a dialogue system in accordance with an embodiment;
[0008] FIG. 3 (a) is a schematic illustration of an example
response selection performed by a dialogue system in accor-
dance with an embodiment;

[0009] FIG. 3 () is a schematic illustration of another
example response selection performed by a dialogue system
in accordance with an embodiment;

[0010] FIG. 4 (a) is a schematic illustration of a method of
obtaining a response to a query inputted by a user in
accordance with an embodiment;

[0011] FIG. 4 (b) is a schematic illustration of a method of
obtaining a response to a query inputted by a user in
accordance with an embodiment;

[0012] FIG. 5 (a) is schematic illustration of an example
of a first model which is used in a dialogue system in
accordance with an embodiment;

[0013] FIG. 5 (&) is a schematic illustration of two stages
used in a method of training a response retrieval system in
accordance with an embodiment and a stage used in a

May 13, 2021

method of obtaining a response to a query inputted by a user
in accordance with an embodiment;

[0014] FIG. 5 (¢) is a schematic illustration of an example
of subword tokenisation performed by a method according
to an embodiment;

[0015] FIG. 6 (a) is a schematic illustration of an example
of a second model which is used in a dialogue system in
accordance with an embodiment;

[0016] FIG. 6 (b)is a schematic illustration of the storage
requirements for a method of training a response retrieval
system in accordance with an embodiment;

[0017] FIG. 7 is a schematic illustration of a dual encoder
model used in a method of training a response retrieval
system in accordance with an embodiment;

[0018] FIG. 8 is a schematic illustration of a dual encoder
model used in a method of training a response retrieval
system in accordance with an embodiment;

[0019] FIG. 9 is a schematic illustration of how an encoder
which is used in a dialogue system in accordance with an
embodiment learns to read a particular sentence with atten-
tion weights stressed; and

[0020] FIG. 10 is a schematic illustration of a method of
training a dual encoder model in accordance with an
embodiment.

DESCRIPTION

[0021] According to a first aspect, there is provided a
method of obtaining a response to a query inputted by a user,
the method comprising:
[0022] receiving a user inputted query;
[0023] representing the user inputted query as a
sequence of embedding vectors using a first model;
[0024] encoding the sequence of embedding vectors to
produce a context vector using a second model;

[0025] retrieving responses with associated response
vectors;
[0026] scoring response vectors against the context vec-

tor, wherein the scoring is a measure of the similarity
between the context vector and a response vector; and

[0027] outputting the responses with the closest
response vectors,

[0028] wherein the first model is configured to segment
the user inputted query into a sequence of units from a
vocabulary of units and represent each unit in the
sequence as an embedding vector, wherein at least one
of the units in the vocabulary is an incomplete word,
and wherein the first model comprises parameters that
are stored using eight bits per parameter; and

[0029] wherein the second model has been trained using
corresponding queries and responses such that an
encoding is used that maximises the similarity between
the response vector and context vector for a corre-
sponding query and response.

[0030] The disclosed system addresses a technical prob-
lem tied to computer technology and arising in the realm of
computer networks, namely the technical problem of
resource utilization. The system achieves this by providing
a model which is configured to segment a user inputted
query into a sequence of units from a vocabulary of units and
represent each unit in the sequence as an embedding vector,
wherein at least one of the units in the vocabulary is an
incomplete word, and wherein the first model comprises
parameters that are stored using eight bits per parameter.
Quantising the stored parameters using eight bits enables the

US 2021/0141799 Al

model size to be reduced. Subword representation further
requires a reduced vocabulary, and therefore a reduced
number of embeddings to be stored. The model is therefore
memory efficient and training efficient, while maintaining
performance in a response selection task. Having a smaller
model in terms of the number of parameters and storage
required means that the model is more memory efficient and
can be stored on small devices, e.g., mobile phones or
tablets, with limited memory storage for example.

[0031] In an embodiment, the user inputted query is
received on a first device comprising a local memory; and
the parameters of the first model and the second model are
stored on the local memory.

[0032] One or more of the parameters of the second model
are stored using 16 bits per parameter. In an embodiment, all
of the parameters of the second model are stored using 16
bits per parameter. In an embodiment, the parameters of the
first model and the second model are less than 1 GB in size.
In an embodiment, there are 30 000 to 50 000 units in the
vocabulary.

[0033] The parameters of the first model that are stored
using eight bits per parameter are the elements of the
embedding vectors. The elements of the embedding vectors
representing each unit in the sequence are converted to a
higher precision representation before being input to the
second model.

[0034] In an embodiment, the first model is configured to
segment the user inputted query by: segmenting the user
inputted query into words, and matching units from the
vocabulary to parts of each word, starting with the longest
units.

[0035] The second model may comprise a transformer
network. The second model may comprise a repeated mod-
ule comprising a self-attention layer, a layer-normalization
step, a feedforward neural network and a further layer-
normalization step. The second model may further comprise
a positional encoding layer. The second model may further
comprise a multi-attention layer.

[0036] According to a second aspect, there is provided a
dialogue system for obtaining a response to a query inputted
by a user, the system comprising:

[0037] an input for receiving a user inputted query;
[0038] a processor, configured to:
[0039] represent the user inputted query as a

sequence of embedding vectors using a first model,
wherein the first model is configured to segment the
user inputted query into a sequence of units from a
vocabulary of units and represent each unit in the
sequence as an embedding vector, wherein at least
one of the units in the vocabulary is an incomplete
word;

[0040] encode the sequence of embedding vectors to
produce a context vector using a second model,
wherein the second model has been trained using
corresponding queries and responses such that an
encoding is used that maximises the similarity
between the response vector and the context vector
for a corresponding query and response;

[0041] retrieve responses with associated response
vectors;
[0042] score response vectors against the context

vector wherein the scoring is a measure of the
similarity between the context vector and a response
vector; and

May 13, 2021

[0043] select the responses with the closest response
vectors,

[0044] an output, configured to output speech or text
corresponding to the selected responses; and

[0045] alocal memory, configured to store a plurality of
parameters of the first model using eight bits per
parameter.

[0046] According to a third aspect, there is provided a
method of training a response retrieval system to provide a
response to a query inputted by a user, the method compris-
ing:

[0047] providing a set of training data, wherein the
training data set comprises queries and corresponding
responses;

[0048] representing each query as a first sequence of
vectors using a first model, wherein the first model is
configured to segment an inputted query into a
sequence of units from a vocabulary of units and
represent each unit in the sequence as an embedding
vector, wherein at least one of the units in the vocabu-
lary is an incomplete word, and wherein the first model
comprises parameters that are stored using eight bits
per parameter,

[0049] encoding each first sequence of embedding vec-
tors to produce a context vector using a second model;

[0050] representing each response as a second sequence
of vectors using a third model, wherein the third model
is configured to segment an inputted response into a
sequence of units from the vocabulary of units and
represent each unit in the sequence as an embedding
vector, wherein the third model uses at least some of the
parameters of the first model;

[0051] encoding each second sequence of embedding
vectors to produce a response vector using a fourth
model; and

[0052] jointly training the first, second, third and fourth
models using the condition that the similarity between
the context vector and the response vector is higher for
a corresponding response and query and that the simi-
larity between the context vector and the response
vector is lower for a random response and query.

[0053] In an embodiment, at least some of the parameters
of the second model are stored using a 16-bit floating point
representation. In an embodiment, the parameters of the first
model that are stored using eight bits per parameter and that
are shared with the third model are the elements of the
embedding vectors. In an embodiment, the fourth model
uses at least some of the parameters of the second model.
[0054] In an embodiment, the parameters of the first
model have a value between a minimum value and a
maximum value, and wherein the minimum value and the
maximum value are adjusted during training. In a further
embodiment, the parameters of the first model have a value
equal to one of 256 values equally spaced from the minimum
value to the maximum value, and wherein each of the 256
values is mapped to an integer from O to 255 which is
represented by 8 bits.

[0055] The methods are computer-implemented methods.
Since some methods in accordance with embodiments can
be implemented by software, some embodiments encompass
computer code provided to a general purpose computer on
any suitable carrier medium. The carrier medium can com-
prise any storage medium such as a floppy disk, a CD ROM,
a magnetic device or a programmable memory device, or

US 2021/0141799 Al

any transient medium such as any signal e.g. an electrical,
optical or microwave signal. The carrier medium may com-
prise a non-transitory computer readable storage medium.
According to a fourth aspect, there is provided a carrier
medium comprising computer readable code configured to
cause a computer to perform any of the above described
methods.

[0056] FIG. 1 is a schematic illustration of a dialogue
system 100 in accordance with an embodiment. The system
comprises an input 101, a processor 105, a working memory
111, an output 103, and storage 107. The system 100 may be
a mobile device such as a laptop, tablet computer, smart-
watch, or mobile phone for example. Alternatively, the
system 100 may be a computing system, for example an
end-user system that receives inputs from a user (e.g. via a
keyboard, screen or microphone) and provides output (e.g.
via a screen or speaker), or a server that receives input and
provides output over a network.

[0057] The processor 105 is coupled to the storage 107
and accesses the working memory 111. The processor 105
may comprise logic circuitry that responds to and processes
the instructions in code stored in the working memory 111.
In particular, when executed, a response selection model 109
is represented as a software product stored in the working
memory 111. Execution of the response selection model 109
by the processor 105 will cause embodiments as described
herein to be implemented.

[0058] The processor 105 also accesses the input module
101 and the output module 103. The input and output
modules or interfaces 101, 103 may be a single component
or may be divided into a separate input interface 101 and a
separate output interface 103. The input module 101
receives a query through an input, which may be a receiver
for receiving data from an external storage medium or a
network, a microphone, screen or a keyboard for example.
The output module 103 provides the response generated by
the processor 105 to an output such as a speaker or screen,
or a transmitter for transmitting data to an external storage
medium or a network for example.

[0059] Inanembodiment, the input provided is in the form
of text or audio, and the output is provided to the user in the
form of text or audio. It should be noted that the system can
be configured to work with one or both of text and audio
signals. Working with text interfaces (and not only audio)
can allow, for example, hearing impaired and mute people to
also use the system. If the input is in the form of audio, an
automatic speech recognition model may be included to
convert the input audio to text. Any type of speech recog-
nition process may be used, for example, a trained speech
recognition algorithm based on a neural network or Hidden
Markov Model may be used. If the output is to be in the form
of audio, a text to speech model is included. Any type of text
to speech generation model may be used.

[0060] The system may further comprise means of com-
munication with third-party services. For example, the sys-
tem may be configured to communicate with a restaurant
system when attempting to finalise a restaurant booking
process (to check availability for a particular date, time, and
number of people for example). The communication means
may comprise a connection to a communication network for
example.

[0061] The storage 107 is configured to communicate with
the processor 105. The storage 107 may contain data that is
used by the response selection model 109 when executed by

May 13, 2021

the processor 105. As illustrated, the storage 107 is local
memory that is contained in the device. Alternatively how-
ever, the storage 107 may be wholly or partly located
remotely, for example, using cloud based memory that can
be accessed remotely via a communication network (such as
the Internet). The response selection model 109 is stored in
the storage 107. For example, the response vectors and their
associated responses, and various parameters of the response
selection model 109 such as the embeddings and weights
and bias vectors in the encoder may be stored in the storage
107.

[0062] The response selection model 109 is placed in
working memory when executed. The working memory 111
of'a device is limited. For example, the working memory of
a mobile phone device may be limited to up to 12 GB. In
another example, the working memory of a mobile phone
device is 6 GB. Such devices may need to fit a number of
programs, for example a number of apps into the working
memory. Thus a more compact model, that can be executed
with limited RAM, is desirable.

[0063] Usual procedures for the loading of software into
memory and the storage of data in the storage unit 107 apply.
The response selection model 109 can be embedded in
original equipment, or can be provided, as a whole or in part,
after manufacture. For instance, the response selection
model 109 can be introduced, as a whole, as a computer
program product, which may be in the form of a download,
or can be introduced via a computer program storage
medium, such as an optical disk. Alternatively, modifica-
tions to existing dialogue manager software can be made by
an update, or plug-in, to provide features of the above
described embodiment.

[0064] While it will be appreciated that the above embodi-
ments are applicable to any computing system, the example
computing system illustrated in FIG. 1 provides means
capable of putting an embodiment, as described herein, into
effect.

[0065] FIG. 2 is a schematic illustration of the functional
components of a response selection model 109 which is used
in a dialogue system in accordance with an embodiment.
The model is used for the task of conversational response
selection. In a response selection task, given an input
sentence, the goal is to identify the relevant response from
a large pool of stored candidate responses. The response
selection model 109 receives one input (a sentence or
several sentences provided in natural language through
speech or text by a user), and it aims to select the most
relevant responses out of R stored potential responses. In an
embodiment, R may be a large number, for example >100M
potential responses may be stored, or >1 billion responses
can be stored. The output of the model is a numerical score
that represents the fitness of each response to the provided
input, and a ranked list may be created based on the
numerical scores of all R (input, response) pairs. The
response is then selected based on the list. For example, the
response which is highest on the list may be selected, or an
alternative method of selection may be used.

[0066] The response model 109 receives user query 201 in
the form of text as input. If the user input is originally in the
form of audio, an automatic speech recognition model is
included to convert the input audio to text.

[0067] The user query 201 is represented by a sequence of
vectors, also referred to as embeddings, by a first model 205.
The operation of an example of a first model 205 will be

US 2021/0141799 Al

described further below in relation to FIG. 5(a). For a given
user input, the first model 205 represents the input as a
sequence of embeddings. Each embedding is vector having
a dimension D. In an embodiment, the dimension is 512. In
another embodiment, the dimension is 768. In a further
embodiment, D is 256.

[0068] Each embedding represents one of V units in a
vocabulary, or one of K special out of vocabulary units
which will be described later. The vocabulary comprises V
units which are used to represent language. The vocabulary
comprises enough units in order to suitably capture lan-
guage. In an example, V may be in the range of 30,000-50,
000. The embeddings for each unit of the vocabulary may be
stored in the storage 107, and placed in the working memory
111 as part of the model when the model is executed. The
memory required to store the V units increases with the size
of the vocabulary V.

[0069] Each element of the vectors is stored using P bits.
Therefore, the memory requirement for storing the embed-
dings for a vocabulary of V units is at least=VxDxP bits. The
embeddings with dimension D of the first model are stored
using P=8 bits per element. Each element of the embeddings
is stored using a computer number format that occupies 8
bits in computer memory. 8 bits are used to define 256
equally spaced values from a min value to a max value. Each
of the integer numbers from 0 to 255 may be represented by
the 8 bit format. Each integer number from 0 to 255 maps
to a higher precision format value between the min and max
value. This will be explained in further detail below.

[0070] Various parameters of the second model (e.g.
weights of the model) may also be stored using a floating-
point computer number format that occupies 16 bits or 32
bits in computer memory. According to an example, the
floating-point numbers may follow the IEEE 754 16-bit
half-precision and the 32-bit full precision formats respec-
tively.

[0071] The sequence of embeddings output from the first
model is converted to the higher precision format values.
Each element of each embedding is converted from the 8-bit
representation to the actual value in the higher precision
format. How this is done will be explained below. The
sequence of embeddings is then inputted to a second model
207. The second model 207 comprises a trained model, and
the operation and training of the second model 207 will be
described further below. The second model 207 is trained to
encode the sequence of embeddings representing a user
query 201 into an output vector referred to as a context
vector and shown as hy in the figure. In use, the second
model receives a sequence of token embeddings D from the
first model and outputs a context vector hy. Parameters of
the second model may be stored in the storage 107 for
example, and moved to the working memory 111 to be
executed.

[0072] The first model 205 and second model 207 together
may be referred to as an encoder 206, the encoder 206 being
configured to encode the user query 201 into a context vector
hy.

[0073] The context vector hy and a response vector h, are
compared in the scoring stage 211, wherein the scoring is a
measure of the similarity between the context vector and a
response vector. The scoring is used to select the output
response, for example the response with the closest response
vector may be output. In an embodiment, the similarity

May 13, 2021

between the context and response vectors is determined
using a similarity measure such as the cosine similarity.
[0074] The second model 207 has been trained so that an
input query produces a context vector which is similar to a
response vector h, for a suitable response. As will be
described in more detail below, the second model 207 has
been trained using corresponding queries and responses such
that an encoding is used that maximises the similarity
between the response vector and context vector for a cor-
responding query and response. In an example, the queries
and responses are selected from free text entries into social
networking engines, restaurant review sites et cetera. In an
example, a fully anonymized Reddit data set is used, com-
prising around 3.7B of comments in its conversational
threads.

[0075] FIG. 2 shows R responses stored in a response
database 209, with corresponding response vectors hy. The
database 209 represents a set of candidate responses from
which the dialogue system 109 selects the one or more best
responses. Fach of the R responses has an associated
response vector hy. In an example, the database 209 com-
prises pairs of a response (e.g. “The restaurant serves
Japanese food”) and vector hy. The database 209 is stored in
the storage 107, and moved to the working memory 111
during execution.

[0076] The R possible response vectors h, have been
generated during a training stage which will be described
further below. In use, each of the R response vectors hy is
compared against the context vector h, for a particular user
query in scoring module 211. The model 109 then outputs
one or more suitable responses from the collection of R
responses.

[0077] FIG. 3 (a) shows an example of response selection
which may be performed by a dialogue system in accor-
dance with an embodiment. A user provides an input “I
watched a great movie yesterday”. In this example, the input
is a statement, but is still referred to as a query. The term
query is used generally to refer to the user input. The
response selection model 109 then identifies the appropriate
response “It is nominated for the Golden Globe” from the
collection of stored R responses, where for illustrative
purposes R=6, but in practice R may be a large number. FI1G.
3 (b) shows another example of response selection which
may be performed by a dialogue system in accordance with
an embodiment. A user provides an input “Is that place
affordable?”. The response selection model 109 then iden-
tifies the appropriate response “I would say that prices are
reasonable.” from the collection of stored R responses,
where for illustrative purposes R=6, but in practice R may
be a large number.

[0078] FIG. 4 (a) is a flowchart showing a method of
obtaining a response to a query inputted by a user in
accordance with an embodiment. The method shows steps
that may be performed to generate the response shown in
FIG. 3 (a) and (b) for example.

[0079] In this example, in step S401, the user enters the
phrase “Is that place affordable?” In step S402 and S403, the
phrase is encoded using a trained encoder 206 to produce a
context vector hy. An example method of training the
encoder will be described with reference to FIGS. 7 to 10.
[0080] In an embodiment, the user speaks to provide the
phrase. The system 100 in this case comprises a speech
processing module (not shown) that converts the input
speech to text. This text is then used in the next stage.

US 2021/0141799 Al

[0081] The encoder is trained to output a vector (a context
vector h,) for an input query. The training has been per-
formed using queries and corresponding responses. The
encoder 206 has been trained so that the encoder 206 for a
query produces a context vector h, which is very similar to
a response vector h,, for a suitable response. The similarity
between the two vectors can be determined using a similar-
ity measure such as the cosine similarity (which is obtained
a5 (hyeh,)/(Ihyfhyd).

[0082] The R possible response vectors h, have been
generated off-line and reside in a database. Therefore, once
the phrase is encoded using the trained encoder and the hy
context vector is produced, the next stage S404 is to look for
a similar response vector for this context vector in the
response vector database 209. In one embodiment, similarity
is measured using cosine similarity. There are many possible
ways in which the search space can be optimised to look for
similar vectors however. In this example, the response
vector with the highest similarity measure is selected for
output.

[0083] The response may be output in a textual form in
S405, as shown in FIG. 3 (a) or (b). In a further embodiment,
the response is output as an audio signal, and a speech
synthesis module is used to output at least one or more of the
responses as synthesised speech.

[0084] The model targets response selection, which is
framed as a response retrieval task. The model combines
quantization with subword embeddings for compression of
a ranking model for response selection, allowing storage and
use of the model on devices with limited memory for
example.

[0085] FIG. 4(b) shows a flow chart of a method of
obtaining a response to a query inputted by a user in
accordance with an alternative embodiment. The method
described in relation to FIG. 4(a) lends itself to the one-shot
task of finding the most relevant responses in a given
context. However, in other applications, for example a
dialogue system used for finding a restaurant, the system
may need to support a dialogue flow where the user finds a
restaurant, and then asks questions about it. The example
relates to conversational search for restaurants, which is one
of various applications for which the encoder can be used.
A pre-trained model can be fine-tuned on various diverse
domains such as search for restaurants or other applications
however.

[0086] In this embodiment, the dialogue state is repre-
sented as the set of restaurants that are considered relevant.
This starts off as all the restaurants in the given city, and is
assumed to monotonically decrease in size as the conversa-
tion progresses, until the user converges to a single restau-
rant. A restaurant is only considered valid in the context of
a new user input if it has relevant responses corresponding
to it. Explicitly, the flow works as follows:

[0087] Instep S201, the system determines that the user is
interested in restaurants in a specific location. This could be
due to the system tracking the user’s location, the user
inputting this information in response to a prompt or due to
the user inputting this info in the absence of a prompt. A
parameter S is initialised as the set of restaurants in the city.
[0088] In step S203, the user inputs “a restaurant with a
nice view of the castle”. In step S205, the input phrase is
encoded in the same manner as has been described above.
[0089] In step S206, the encoded context vector produced
in step S205 is put through an intent classifier that will be

May 13, 2021

described below. If the intent classifier is negative then the
process transfers to step S207.

[0090] In step S207, given the encoded users input, all the
responses in the index pertaining to restaurants in S are
retrieved and the top m responses, ry, I,, . . . , I,, are taken
with corresponding cosine similarity scores: s,=s,= . . . =5,
[0091] Many methods can be used for a nearest neighbour
search for determining the top m responses. In an embodi-
ment, an approximate nearest neighbour search is performed
where the responses are clustered and the similarity of the
encoded context vector to the clusters is calculated. Such a
search can be considered to be a form of greedy routing in
k-Nearest Neighbor (k-NN) graphs. In an embodiment an
algorithm similar to Hierarchical Navigable Small World,
HNSW (https://arxiv.org/abs/1603.09320) is used.

[0092] Inaspecific embodiment, HNSW is used where the
graph index is hierarchical and searched through greedily.
[0093] In this example, there are multiple restaurants and
the restaurants also need to be ranked. In an embodiment,
this is performed by first computing probability scores
p;<exp(a s;) with:

[0094] for a >0 constant hyper-parameter.

[0095] In step S209, the responses for each restaurant are
grouped and a score q, for each restaurant e€S is determined

Qe=zpi

iiree

[0096] Update S to the smallest set of restaurants with
highest q whose q values sum up to more than a threshold
t

[0097] Next, in step S211 the most relevant responses for
S are collated and the top 2 are selected. If there are multiple
relevant restaurants, one response is shown from each.
[0098] When only one restaurant is relevant, the top N
responses are all shown.

[0099] A simple set of rules is used to provide a spoken
response for the system (e.g. “One review of X said

). The rules employ templates to allow a natural answer to
be provided. For example, if the user inputs a query that is
likely to return responses relating to multiple restaurants, for
example “Where is good for Indian food?”—a response will
be provided with templates such as “Check out these places

.7, “I found”. However, when the responses relate
to just one restaurant, the system might respond “According
to”, “Check out these results”

[0100] As noted above, the number of restaurants is
reduced as the dialogue progresses. When the user asks a
first question, N top responses are identified and these
correspond to S restaurants. When the user asks a follow-up
question, the context vector of the new query is generated
and this is compared with the response vectors for the
already identified S restaurants. Once a new set of responses
has been identified, only the restaurants (which are selected
from the former group of restaurants) with the q value that

US 2021/0141799 Al

sums to more than the threshold will be retained and so the
number of restaurants is continually reduced until there is
just one restaurant.

[0101] As noted above, in step S206, the encoded context
vector is put through an intent classifier. One or more
classifiers may be used. In an example, the system uses a set
of intent classifiers, to allow resetting the dialogue state, and
activating the table reservation flow.

[0102] In an embodiment, there are two dedicated classi-
fiers applied in step S206 for discrete intent classification.
For example, there are binary classifiers (i.e., the output of
the classifier is 1 (intent detected) or O (no intent detected))
for two discrete intents:

[0103] 1) restarting the conversation (i.e., restarting the
search space and starting from scratch); and

[0104] 2) transferring to the slot-based booking flow.
[0105] The two classifiers make use of the already-com-
puted h, vectors that represent the user’s latest text, and the
actual classifier architecture can be, for example, a one-layer
neural classifier with RelL.u non-linear activation function
and a 100-dimensional hidden layer.

[0106] In this example, a sigmoid function is used at the
output layer and the training objective used is a (binary)
cross-entropy loss function. The classifiers have to be
trained on a set of positive and negative examples: the set of
100 positive examples for both intents (1. restart, 2. transi-
tion to booking) has been manually created (e.g., for the
restart classifier positive examples are “Let’s start again”,
“Restart”, “Start over”, “Let’s do it again”), while a set of m
(m=500 in an example) negative examples has been ran-
domly sampled from the large pool of available responses.
For transition to booking, the intent classifier can be trained
on positive examples such as “I would like to book a table”,
“Do they have a table free?” etc.

[0107] If the intent classifier in step S206 is positive then
an alternative process is used such as a slot based booking
system or if the restart classifier is positive, then the system
starts at the beginning and does not presume that a restaurant
etc has been already selected.

[0108] FIG. 5 (a)is a schematic illustration of a first model
205 which may be used in a method in accordance with an
embodiment. The first model 205 converts a user query 201
into a sequence of embeddings. Each arbitrary input text is
first converted into a list of units, or tokens, which include
subwords, and these are then represented by stored embed-
dings corresponding to the units. The parameters of the
second model 207 are linked to this tokenization. The first
model converts any input text into a list of units from the
vocabulary V.

[0109] The first model 205 represents each unit of text
with an embedding, which is a vector of length D. A unit of
text corresponds to a sequence of one or more characters. A
stored vocabulary comprises a set of units, and the corre-
sponding embeddings. The vocabulary comprises units of
text which are “subwords”. A subword is an incomplete
word. There may also be units corresponding to complete
words in the vocabulary. For example, the word “certainly”
may comprise the units “_certain” and “-ly”. By complete or
full words, it is meant that the words are valid English words
(or valid words in the language used by the system). For
example, the word “develops” can be segmented into _de-
velop and -s (where _develop is a valid English word).
Similarly, conversational can be segmented into _conversa-
tion and -al.

May 13, 2021

[0110] The set of units forming the vocabulary is deter-
mined during a pre-training stage, which will be described
in further detail below. Complete words that are more
frequent in the training data are more likely to be included
in the vocabulary. Words such as it, includes, and words may
all exist in the vocabulary V, so they are not actually
segmented by the tokenisation model during use, i.e. these
are tokenized as _it, _includes, and _words. Rare and
out-of-vocabulary words such as mockumentary and flexi-
tarian will be segmented into smaller subword units during
use for example.

[0111] The set of units form a vocabulary, comprising V
units. The units (i.e. the string of characters forming the unit)
and the corresponding embeddings (the numerical vector of
length D) are stored in the storage 107, for example in a
look-up table. The vocabulary of units, i.e. the set of units,
is learned from data during the pre-training stage, and the
embeddings corresponding to each unit are also learned
during the training stage. An input unit query is converted to
a sequence of stored units. The units are then replaced with
the stored embeddings corresponding to the units.

[0112] Using a vocabulary including subword units means
that a smaller vocabulary size can be used compared to a
word level vocabulary for example. For example, a word
level vocabulary may require ~1M words in order to capture
a language, whereas a vocabulary including subword level
units may capture the same number of words using ~40K
units, which represents around a x25 reduction in V. In an
embodiment, the vocabulary comprises 30,000-50,000 units,
at least some of which are subword units.

[0113] Subword-level tokenization also allows for a
simple and straightforward processing of out-of-vocabulary
(OOV) words, i.e. words that have not been seen during
training. The OOV words are broken down into units which
exist in the vocabulary V. For example, the vocabulary may
comprise the word “certain”, but when the first model 205
encounters the word “certainly”, it is able to break it down
into the subwords “_certain” and “-ly”.

[0114] Although the example described here relates to
English language, subword tokenisation works well for
many languages, and the same methods can be applied to
systems based on other languages.

[0115] FIG. 5 (a) is a schematic illustration of a first model
205 which may be used in a method in accordance with an
embodiment. The first model 205 uses a stored vocabulary
509 of size V. The first model 205 comprises a tokenisation
algorithm 501 that is configured to segment an input text
string into a sequence of units, where each unit is contained
in the vocabulary 509. The vocabulary 509 comprises a
database having V units and their corresponding embed-
dings, as well as K additional embeddings which will be
described below. In an embodiment, V is 32,000.

[0116] Prior to using the first model 205 to segment an
input text string into a sequence of units, either for inference
or training, a vocabulary 509 comprising V units is learned.
How the vocabulary 509 is learnt is described further below.
[0117] To apply the first model 205 to input text from the
user, an algorithm performing parameter-less matching of
sequences of characters from the input text, starting from the
beginning of the word, to the units in the vocabulary V is
used, referred to here as a tokenisation algorithm 501. The
tokenisation algorithm 501 is not a training algorithm and
does not use learned parameters. The learned parameters of
the first model 205 are the elements of the embeddings. A

US 2021/0141799 Al

greedy pattern matching approach may be used, an example
of which is explained below. With the greedy pattern match-
ing, there is no need to store further model parameters for the
tokenisation algorithm 501, only a vocabulary 509 is stored.
The tokenisation algorithm 501 can be used on any stored
vocabulary, i.e. if the vocabulary 509 is changed, the same
tokenisation algorithm 501 can be used.

[0118] An example of a tokenisation algorithm is the
tensor2tensor SubwordTextEncoder module described in
Vaswani, Ashish, et al. “Tensor2tensor for neural machine
translation.” arXiv preprint arXiv:1803.07416 (2018), the
contents of which are incorporated herein by reference. An
example of such an algorithm is given at https://github.com/
tensorflow/tensor2tensor/blob/
df4a50be8db63d36bb2391eladc04558c0e8elc9/
tensor2tensor/data_generators/text_encoder.py#L.400, the
contents of which are incorporated herein by reference.
[0119] FIG. 5(b) shows a flowchart illustrating the opera-
tion of the first model 205. In particular, the part labelled
“Inference” shows the operation of the first model 205. The
“Before training” and “Training” parts of the figure will be
described later. As has been described above, a vocabulary
of V units is generated in the pre-training stage, each unit
corresponding to a stored embedding which is learned
during training. An additional K stored embeddings are also
learned during the training stage. 00V characters encoun-
tered during the tokenisation step are assigned one of the K
embeddings, as will be described below. For each word, the
tokenisation algorithm always picks the longest unit that
matches the beginning of the given word, and this is
repeated, always picking the longest unit from the vocabu-
lary that matches the beginning of what is still available of
the given word. If no units from the vocabulary match, the
first character of the word is assigned to one of the K
embeddings, and the method continues, matching the begin-
ning of what remains of the word to a unit from the
vocabulary as before. The beginning of the word is also
described as a prefix.

[0120] In the example shown, an input text “new
conver$#tion” is provided as input during step S510. This is
divided into words, “new” and “conver$#tion”. The vocabu-

[P LI TIR

lary V in this example comprises the relevant units “a”, “c”,
“con” “er”, “this”, “new”, “conv”, “tion”, “ation”, “conver-
sation”, as well as other units. In step S511, the words “new”
and “conver$#tion” are tokenised using greedy prefix
matching. The units in the vocabulary are compared to the
characters starting from the beginning of the word, and
starting from the longest units. Thus for the word
“conver$#tion”, the unit “ation” will be compared with the
first five characters of the word first, and determined not to
match, then the unit “conv” will be compared with the first
four characters of the word and be determined to match. The
next comparison will be taken with the remaining word,
“er$#tion”, and the unit “er” will be determined as the
longest unit that matches. The next comparison will be taken
with the remaining word “$#tion”. In this case, the first
character $ does not exist in any of the units in the vocabu-
lary, thus none of the units will match. The first character is
therefore “escaped”, and assigned one of the K embeddings
reserved for out of vocabulary characters. This process is
continued until the end of the word.

[0121] By “prefix” it is meant ‘preceding sequences of
characters’. During the greedy matching, it is started from
the beginning of the word. For each word it always picks the

May 13, 2021

longest subword that matches the prefix (i.e., the beginning)
of what is still available (non-segmented) of the given word.

[0122] After the subword tokenisation step S511, the units
that are present in the vocabulary, e.g. “new”, “conv”, “er”
and “ion” are each replaced with their respective embed-
dings in step S512. OOV characters such as “$” and “#” are
assigned one of the K additional embeddings in step S513.
In step S514, the embedded representation of the input text
is output.

[0123] The tokenisation algorithm 501 shown in FIG. 5(54)
is configured to perform the following steps:

[0124] Initial word-level tokenization: divide the entire
text into a set of “words”, where a “word” is a unicode
string of either all alphanumeric or all non-alphanu-
meric characters. Two “words” are assumed to be
divided by a single space (or more spaces). All spaces
that are between two alphanumeric “words™ are then
removed.

[0125] Subword-level tokenization of “words”, includ-
ing escaping OOV characters: The selection of units is
done in a greedy fashion from beginning to end. Each
unit from the vocabulary is considered in turn. For each
unit from the vocabulary that is a subunit of a word, the
unit is returned, with an underscore “_” appended to its
end. The list is extracted in order, choosing the longest
unit in the vocabulary V that matches a prefix of the
remaining portion of the encoded “word”. In this step,
all underscore and OOV characters which are not
included in any of the units of the vocabulary are
escaped. Fach “unit” is formatted to begin with an
underscore, or may be formatted to end with an under-
score.

[0126] Final concatenation: All units are concatenated
in a list. The concatenation operation is invertible
because the trailing underscores signal the initial
“word”-level tokenization.

[0127] FIG. 5(c) shows examples of tokenisation of input
text performed by the tokenisation algorithm 501. An input
string 501 such as “PolyAl develops a machine learning
platform for conversational artificial intelligence.” is seg-
mented into sequence of units 503, for example: “_poly -ai
_develop -s _a _machine _learning _platform _for _conver-
sation—al _artificial _intelligence _.” In this example, each
word begins with an underscore.

[0128] Where a word comprises two or more units, each
unit is preceded with a hyphen. Other examples of segmen-
tation are also shown in FIG. 5(¢). A list of all units from the
input query is constructed. Each item from the list of
concatenated units will then be assigned an embedding.

[0129] Each unit in the sequence is then replaced by its
embedding. Each unit from the vocabulary V is associated
with a D-dimensional embedding representation, and each
additional 00V “unit” is assigned one of K additional
D-dimensional stored embedding representations. Each unit
in the sequence is used to retrieve the corresponding embed-
ding from the database. Thus, when a sequence has N units,
then a sequence of N embeddings is output. In the example
shown in FIG. 5 (a), the output 507 of the first model 207
is a NxD matrix, where each of the N rows represents one
of the units in the sequence.

[0130] The sequence of embeddings is then provided as
input to the second model 207. These embeddings are stored
parameters of the first model 205. These parameters are

US 2021/0141799 Al

learned in the training phase and are then used directly,
relying on a learned lookup table.

[0131] As has been described above, the set of IVI+K
embeddings is stored, where each element of each embed-
ding is stored using an 8 bit representation. The 8 bits are
used to define 256 equally spaced values from a min value
to a max value. Each of the integer numbers from 0 to 255
may be represented by the 8 bit format. Each integer number
from 0 to 255 maps to one of the float 32 format values from
the min to max value. The first model outputs a sequence of
embeddings, where each element of each embedding is an 8
bit representation of a number from 0 to 255. A step of
converting this number to the corresponding float 32 format
value (from the min value to the max value) is then per-
formed, before inputting the higher precision version
embeddings into the second model 207. The conversion may
be performed in various ways. For example, a look-up table
may be stored, in which each value from 0 to 255 is mapped
to the corresponding value in float 32 format (from min to
max). Alternatively, a function which performs re-centering
and scaling of the integer number n between 0 and 255 to the
corresponding float 32 format value from min to max is
used. The function min+{n(max-min)/256} may be used to
convert n to the embedding value for example.

[0132] FIG. 6 (a) is a schematic illustration of a second
model 207 which is used in a method in accordance with an
embodiment. Although an example architecture is shown,
various neural network architectures may be used to encode
the input queries, for example recurrent (e.g. LSTM or
bidirectional LSTM) or convolutional neural networks can
be used, or an even a simple neural network. In the example
illustrated in FIG. 6 (a), a neural network architecture based
on a “Transformer Network” is used.

[0133] A transformer network is a sequence to sequence
network that does not comprise any recurrent networks. The
transformer network comprises an encoder part and a
decoder part during training. The encoder part is used during
inference, and is shown in FIG. 6(a). The encoder part and
decoder part comprise two or more repeating modules, or
blocks. Each module comprises at least one attention layer.
The transformer comprises one or more attention mecha-
nisms which are sequence-to-sequence information that dis-
pense of stepwise sequential nature.

[0134] The second model 207 comprises a “positional
encodings” step 601. The input to this step comprises the
sequence of embeddings output from the first model 205,
which is a list of vectors each having length D, where each
element of each vector has been converted into float 32
format as described above. The parameters of the second
model, for example the weights, may be stored in float 16
format. The operations performed may be performed in float
32 format, so that the output of each layer, and input into
each subsequent layer, comprises elements which are stored
as float 32 format. The elements of the context vector output
from the second model 207 are float 32 format.

[0135] In an example, the length of the sequence of
embeddings output from the first model 205 fed into the
second model 207 is truncated to 60 units. Referring to the
output 507 in FIG. 5 (a), N=60 in this example. In case the
output 507 is shorter than N=60, the sequence is padded
accordingly so that all the sequences are of the same length.
Padding masking is applied to mitigate any effect of the
padding on further computations. Various methods of mask-
ing out the padding are known and may be used. Masking

May 13, 2021

may be implemented by including indicator variables which
denote which parts of the sequence have been padded and
which come from the original sequence in a mask tensor. A
TensorFlow sequence_mask function may be used for this
purpose.

[0136] In step 601, the subword embeddings sequence is
augmented with positional encodings. The positional encod-
ings are in the form of vectors of length D, with one
positional encoding vector corresponding to each embed-
ding in the input sequence. The positional encoding vector
is summed with the corresponding embedding in the
sequence. The positional encodings step 601 thus outputs a
sequence of vectors, where the sequence is the same length
as the input sequence of embeddings, and each of the vectors
output from the positional encodings stage 601 also has
length D.

[0137] Various methods of generating the positional
encoding vectors may be used, for example the positional
encodings may be learned as parameters of the second
model, or fixed (for example each element may be some
function of the position of the unit in the sequence). Adding
the positional encodings captures information about the
position of the unit in the sequence. According to an
example, the positional encoding is formed by the functions
PE(posf_igsin(pos/l00002i/D) and PE,,, 5. y=cos(pos/
10000%?), where pos is the position and i is the dimension.
According to another example, a vector at position pos in the
sequence is added t0 X s 100 11y @010 Y, 00 47y, Where
mod is the modulo operator and where X is a bank of
encodings with 11 vectors and Y is a bank of encodings with
47 vectors. In the latter example, up to 47x 11 positions can
be generalised by the network.

[0138] The sequence of vectors output from the positional
encodings step 601 is then fed into a first block of a set of
M repeating blocks 603. In the example shown in FIG. 6,
M=6. For simplicity, a single block 603 is shown in the
figure, with the repetition indicated by “x6”. The output
sequence of each block 603 is fed as an input to the next
block 603. The output of the final block 603 is a sequence
of vectors, in this case the sequence having the same length
as the sequence output from the first model 205. In an
embodiment, each block 603 receives a sequence of vectors
each of length D, and outputs a sequence of vectors, each of
length D.

[0139] Each block 603 comprises a self-attention layer
605, a layer-normalization step 609, a feedforward neural
network 607 and a further layer-normalization step 611. In
the embodiment described below, the self-attention layer
605 uses single head attention. Self-attention layers having
multi heads could also be used, however it was empirically
determined that a self-attention layer having a single head
was quicker to train and the performance was did not differ
significantly from multi headed attention.

[0140] The self-attention layer 605 comprises three stored
matrices of weights, where the weights are trainable param-
eters of the second model 207. The matrices may be referred
to as the “query weight matrix” W ,, the “key weight matrix”
Wy and the “value weight matrix” W,. Each matrix has a
number of rows equal to the embedding length D. The
number of columns may be selected as a hyperparameter. In
an embodiment, each matrix has dimension D x D. In
another example, when D=512, each matrix has dimension
512x64. The sequence of embeddings input to the block is
combined to form an input matrix, where each embedding

US 2021/0141799 Al

forms a row of the input matrix. The input matrix X has a
number of rows equal to the number of embeddings in the
input sequence, N, and a number of columns equal to D. The
matrix product of the input matrix with each of the weight
matrices is taken, resulting in three output matrices, the
query matrix Q, the key matrix K and the value matrix V
(where Q=XW,, K=XW and V=XW,). Each of the query
matrix, key matrix and the value matrix has a number of
rows equal to the number of embeddings in the input
sequence, and a number of columns equal to the number of
columns of the weight matrices, which in an embodiment
may be set to D.

[0141] The output of the self attention layer is then cal-
culated. The output is a matrix O, which is calculated by the
following matrix calculation:

K" }V

0= sofrmax{ -

[0142] where c is a constant. In an embodiment, ¢ is equal
to the square root of the number of columns of the key
weight matrix. In an example, when each matrix W, W or
W, has dimension 512x64, ¢c=V64. The softmax operation
normalizes the values. The output matrix O has the same
number of rows as the input matrix, N, and the number of
columns is equal to the number of columns of the weight
matrices. In an embodiment, the output matrix also has the
same number of columns as the input matrix, D. Thus 0 is
an NxD matrix. The self-attention layer 605 allows the
model to incorporate a representation of other units in the
sequence into the encoding of the current unit.

[0143] In an embodiment, the above M blocks 603 have a
kernel dimensionality of 2048, a projection dimension of 64,
and an embedding dimension of D=512 at the input and
output.

[0144] In an alternative example, while there are M repeat-
ing blocks 603, the self attention layer 605 of each block is
constrained to attend to different numbers of positions for
each token. In an example with M=6, one block is con-
strained to attending over positions =3 for each token,
another block is constrained to attend to positions =5 for
each token, and the four remaining blocks are constrained to
attending over positions +48 for each token to help the
model generalise to long sequences. This involves having
growing values [3, 5, 48, 48, 48, 48] of maximum relative
attention as it is progressed through the blocks. This helps
the architecture to generalize to long sequences and distant
dependencies, guiding training so that earlier layers are
forced to group together meanings at the phrase level before
later layers model larger patterns. This is implemented by
using weight matrices of different dimensionality according
to the layer-specific value, i.e. by selecting the number of
columns.

[0145] The output matrix O is input to the layer-normal-
ization step 609, in which it is summed with the input matrix
X, and a layer-norm operation applied to the resulting
matrix. Each row of the resulting matrix is then fed into the
feed forward neural network sequentially.

[0146] The feed forward neural network 607 is a fully-
connected feed-forward network (FFN) which is applied to
each input vector separately and identically. In an embodi-
ment, the FFN comprises two linear transformations with a
ReLU activation in between. In an embodiment, the dimen-

May 13, 2021

sionality of the input and output of these FFNs is D. In a
further embodiment, the dimensionality of the hidden layers
in each FFN is set also to D.

[0147] A further layer-normalisation step 611 is then per-
formed to the output of the feed forward neural network 607,
and the sequence of vectors is taken as input to the next
block 603.

[0148] The output of the final block 603 is taken as input
to a two headed self-attention layer 613. The two self
attention heads each compute weights for a weighted sum,
which is scaled by the square root of the sequence length in
the square-root-of-N reduction layer 615. The use of two
headed attention improves the model’s ability to focus on
different positions compared to single headed attention,
whilst still being relatively quick and efficient to train, and
using less parameters to obtain similar results than an
8-headed attention for example. The two-headed self atten-
tion layer 613 has a projection dimension of 64 and a
concatenated embedding dimension of 2D=1024. Including
the two headed self attention layer 613 increases the ability
to incorporate a representation of other units in the sequence
into the encoding of the current unit. The use of two headed
self-attention improves the model’s ability to focus on
different positions and to capture the relationships between
a subword and another based on its position in the sequence.
Two query weight matrices, two key weight matrices and
two value weight matrices are used, each being randomly
initialized and learned during training. Two representation
subspaces are thus included.

[0149] In this layer, the output sequence of vectors from
the final block 603 is combined to form an input matrix,
where each vector forms a row of the input matrix. The input
matrix is taken separately into two separate self attention
layers which operate in the same manner as has been
described above, but with independent weight matrices. The
weight matrices may also be DxD matrices. Two output
matrices are generated, each being an NxD matrix, which
are concatenated to form an Nx2D matrix. The weight
matrices are also trainable parameters of the model. The two
headed self-attention has a projection dimension of 64. In
alternative embodiments, more than two self attention heads,
e.g. 8 self attention heads, are used. In yet another embodi-
ment, a single self attention head is used.

[0150] The output matrix is then reduced with square-root-
of-N reduction 615 to convert the sequence to a single
fixed-dimensional vector. In the embodiment above with
two headed self attention 613, the output has an dimensions
of Nx2D, where D=512. The N values for each column of
the output matrix are summed, and then each resulting value
is divided by the square root of N, resulting in an output
vector of 2D values. This reduction step normalizes the
representation of the sequence into a [.2-normalised vector
of fixed dimensionality 2D, where the dimensionality is
2*%512=1024 in an example, after concatenation of the
representations from the final 2-headed self-attention. The
output is divided by the square root of the sequence length
N. The attention weight a,, is computed for each pair of
subwords such that % a,=1. The reduced output is then %, (Z,
a, wVN.

[0151] The reduced output of dimension 2D is taken as
input to the final feed forward layer 617, which outputs the
context vector h,, having length D. The reduced represen-
tation is passed through a series of H fully connected
n-dimensional feed-forward hidden layers with GELU as the

US 2021/0141799 Al

non-linear activation, defined as: GELU(x)=x-sigmoid(1.
702*x). In an example, H=3, and n=1, 024. The final layer
feed forward layer 617 is linear and maps the text into the
final D-dimensional (D=512) representation h, for the input
text.

[0152] The second model 207 is a subword-based model,
in other words it takes as input representations of units
(including subwords) of the input text. The second model
207 is trained to build sequential representations.

[0153] A method of training a response retrieval system to
provide a response to a query inputted by a user in accor-
dance with an embodiment will now be described.

[0154] Prior to training the first model 205 and the second
model 207, the vocabulary of units used by the tokenisation
algorithm 501 of the first model 205 is first learned in a
pre-training stage. FIG. 5(b) shows a flowchart illustrating
the steps performed to learn the vocabulary of units, in the
stage labelled “Before Training”. The vocabulary is some-
times referred to as a “subword vocabulary”, although, as
has been explained previously, the vocabulary may also
comprise complete words. This is done using a subset of the
training data, which comprises inputs and responses. An
alternative training data set may be used to learn the vocabu-
lary 509 of the first model 205, however in this example a
subset of the same training data used to train the rest of the
model (i.e. inputs and responses) is used. In the example
shown, this is a subset of a Reddit conversational corpus
comprising 10M conversation.

[0155] Step S501 comprises a subword tokenisation algo-
rithm that splits arbitrary input into subword units. The
subword units into which the arbitrary input is split into is
what is learned in S501. A number of subword tokenization
methods are available for learning a vocabulary of units
including subwords, including: supervised subword tokeni-
zation using a pretrained segmenter/tokenizer such as the
Chipmunk model (for example as described in Cotterell,
Ryan, et al. “Labeled morphological segmentation with
semi-Markov models.” Proceedings of the Nineteenth Con-
ference on Computational Natural Language Learning.
2015), tokenization based on Byte-Pair Encodings (for
example, as described in Philip Gage. 1994. A new algo-
rithm for data compression. C Users J. 12, 2 (February
1994), 23-38; Heinzerling, Benjamin, and Michael Strube.
“Bpemb: Tokenization-free pre-trained subword embed-
dings in 275 languages.” arXiv preprint arXiv:1710.02187
(2017)), character n-grams (for example, as described in
Wieting, John, et al. “Charagram: Embedding words and
sentences via character n-grams.” arXiv preprint arXiv:
1607.02789 (2016); Bojanowski, Piotr, et al. “Enriching
word vectors with subword information.” Transactions of
the Association for Computational Linguistics 5 (2017):
135-146), tokenization based on the Morfessor tool (for
example, as described in Smit, Peter, et al. “Morfessor 2.0:
Toolkit for statistical morphological segmentation.” Pro-
ceedings of the Demonstrations at the 14th Conference of
the European Chapter of the Association for Computational
Linguistics. 2014), and WordPiece (for example, as
described in Schuster, Mike, and Kaisuke Nakajima. “Japa-
nese and korean voice search.” 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012) or a neural variant of this model
such as is used in several natural language processing
representation architectures such as BERT (for example, as
described in Devlin, Jacob, et al. “Bert: Pre-training of deep

May 13, 2021

bidirectional transformers for language understanding.”
arXiv preprint arXiv:1810.04805 (2018)).

[0156] A sub-word vocabulary can be learned from the
training data set using the following steps, based on a
byte-pair encoding method for example:

[0157] Initial word-level tokenization, as has been
described above in relation to FIG. 5(a), is performed
for all queries and responses in the subset of training
data. In this step, the text is divided into a set of
“words”, each comprising a string of characters.

[0158] The subword vocabulary size is set, for example
V=32, 000. This is a hyper-parameter which may be
varied to improve performance.

[0159] FEach word is represented as a sequence of char-
acters. The word frequency is appended to each word,
i.e. how many times the word appears in the subset of
the training data.

[0160] A subword is generated by merging pairs of
characters, and selecting the subword as being the pair
having the highest frequency occurrence in the subset
of training data. This subword then replaces the pair of
characters throughout the training data set, and is
treated as a new “character” in the subsequent steps.

[0161] The previous step is repeated (with the previ-
ously generated subwords being treated as “charac-
ters”) until the selected subword vocabulary size is
reached.

[0162] In an alternative embodiment, a subword vocabu-
lary may be learned from the data using the SentencePiece
model. SentencePiece is an open-source subword tokenizer
tool. A description of SentencePiece is given in Kudo, Taku,
and John Richardson. “Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for
neural text processing.” arXiv preprint arXiv:1808.06226
(2018), the contents of which are incorporated herein by
reference. The SentencePiece tool is available at https:/
github.com/google/sentencepiece. In a further embodiment,
a variant of the SentencePiece tool which is based on the
unigram language model (ULM) is used, as described in
Kudo “Subword regularization: Improving neural network
translation models with multiple subword candidates.”
arXiv preprint arXiv:1804.10959 (2018), the contents of
which are incorporated by reference herein.

[0163] In an example, learning a sub-word vocabulary
from the training data set using the SentencePiece tokenizer
tool comprises the following steps:

[0164] The text is divided into a set of “words”, each
comprising a string of characters.

[0165] The subword vocabulary size is set, for example
32, 000. This is a hyper-parameter which may be varied
to improve performance.

[0166] The probability of word occurrence is optimised
by giving a word sequence

[0167] The loss of each sub-word is computed.

[0168] The sub-words are sorted according to their
respective loss, and the top X % of the sub-words with
low loss are kept (e.g. X=80%).

[0169] The last three steps are repeated until a subword
vocabulary size equal to the defined amount (e.g.
32,000) is reached.

[0170] Inan embodiment, a SentencePiece based subword
tokenization algorithm is used to learn a vocabulary using a
data set extracted from Reddit. A subword vocabulary of
IVI=32k units is learned over a randomly sampled Reddit

US 2021/0141799 Al

subset of 10M input and response examples. As for the Byte
Pair Encoding based method described above, the size of the
vocabulary V is pre-defined. For English, a vocabulary size
in the range of 30k-50k may be used. However, V is a
tunable hyper-parameter of the model. The size of the Reddit
subset used to learn the subword vocabulary is also a model
hyper-parameter, but it has been empirically determined that
taking subsets larger than 10M did not yield much difference
in the subword vocabulary, while the cost of vocabulary
extraction is larger with larger subsets. Although the above
example relates to a vocabulary of subwords for the English
language, a vocabulary for a different language can be
learned in a corresponding manner.

[0171] Once the vocabulary 509 of the first model 205 has
been learned in S501, the first model 205 can be used to
segment an input text into a list of subwords. The segmen-
tation of an input text into a list of subwords is performed
using the tokenisation algorithm in the same manner as has
been explained in relation to FIG. 5(a) and in relation to the
“Inference” stage of FIG. 5(4) above. The difference in the
“Training” stage is that the embeddings assigned to each unit
are optimised in the subsequent steps. The tokenisation
algorithm 501 can be applied on any input text, including
input queries and responses. The process of learning the
vocabulary V is detached from the actual segmentation of
the input text into units during training and inference. For
learning the vocabulary, the variant of the SentencePiece
algorithm which is based on the unigram language model
may be pre-trained once on the 10M Reddit subset, with IVI
set to 32000.

[0172] A segmentation algorithm such as the Sentence-
Piece algorithm is used to get the vocabulary V. This
algorithm is not used in the following stages for segmenta-
tion of input text into units. Rather, a ‘hybrid” approach is
used, where the segmentation algorithm is used to learn the
vocabulary, and a greedy tokensiation algorithm, which is
quicker and does not require storing parameters of another
model on the device is used to segment the input text, by
matching parts of the input text to the stored units. A
segmentation model is used as a pre-training step of obtain-
ing the vocabulary V. By not relying on a specific model for
segmenting the input text, that is, by relying on much
simpler greedy matching, a different vocabulary may be
used without having to re-train the tokenisation algorithm.
The simple matching tokenisation algorithm works with any
vocabulary V and does not require a standalone segmenta-
tion method if the vocabulary V is known.

[0173] In the “Before training” stage, a stored vocabulary
509 of V units is generated. In the “Training” stage, the first
model 205 is trained together with the second model 207.
This means that the values of the embeddings used by the
first model 205 and the parameters of the second model 207
are optimised. An input text is provided in S502. In this
example, the input text is “new conver$ation”. The input text
is tokenised in S503 using the greedy matching approach as
described in relation to FIG. 5(a) and the “Inference” stage
of FIG. 5(b) above. In step S504, units that are present in the
vocabulary 509 are assigned their respective embeddings, so
in this example, units such as “this”, “conv”, “er”, “ation”
are assigned their respective embeddings. 00V characters
such as “$” is assigned to one of K additional embeddings
in step S505. K is a hyperparameter, and may be selected. In
an embodiment, K=1000.

May 13, 2021

[0174] Each unit in the vocabulary V is stored with a
corresponding embedding, which is a vector of length D. K
additional embeddings are also stored. The embeddings are
randomly initialised.

[0175] In step S506, a sequence of N embeddings, in the
form of NxD matrix 507 (described above in relation to FIG.
5(a)) is outputted and fed into the second model 207. During
training of the response selection model, as described in
relation to FIGS. 7 and 8, the embeddings are updated and
learned as parameters of the model. The embeddings are
thus considered trainable parameters of the first model 205.
The embeddings are learned starting from random initiali-
sations. When training the response selection dual encoder
701, each unit from the vocabulary V gets assigned a
dedicated embedding, and an additional K embeddings are
included. These are then optimised during the model train-
ing.

[0176] In an embodiment, the second model is configured
to receive a sequence of N=60 units. In selecting data from
the training set, sentences with >128 characters are
excluded. Therefore, in most cases, the sequence has a
length of less than 60 units. When the output 507 is shorter
than N=60, the sequence is padded accordingly so that all
the sequences are of the same length. Padding comprises, for
example, zero padding. In addition, padding masking is
applied to mitigate any influence of the zero padded values
on subsequent computations. In case the length is greater
than 60 units, then the sequence is truncated. Truncation is
carried out such that no subwords are split. The training data
is thus limited to sentences with a maximum of 128 char-
acters. This increases training speed, as modelling longer
sequences does not contribute much to the overall model
quality, while it slows down training.

[0177] The first model 205 and second model 207 are
jointly trained as part of a dual encoder model. A dual
encoder model 701 which is used in a method of training in
accordance with an embodiment is shown in FIG. 7. The
dual encoder model comprises the first model 205, which
comprises the tokenisation algorithm 501 and the stored
vocabulary 509 comprising the units (strings of characters)
and the corresponding initial embeddings, as well as the K
additional embeddings, as has been described in relation to
FIG. 5(a). The embeddings are optimised during the training
process. The dual encoder 701 further comprises the second
model 207, as described in relation to FIG. 6(a). The
parameters of the second model 207, including the weights
of the neural networks and self-attention layers, are also
optimised during training.

[0178] FIG. 8 shows a schematic illustration of the dual
encoder system comprising the second model 207. The dual
encoder further 701 comprises a third model 703. The third
model 703 comprises the tokenisation algorithm 501, and
uses the same stored vocabulary 509 and embeddings as the
first model 205. The vocabulary 509 and the embeddings
may be stored in the storage 107 and accessed by both the
first model 205 and the third model 703. The third model 703
and the first model 205 thus share the embeddings, i.e.
trainable parameters. The dual encoder further 701 com-
prises a fourth model 705. The fourth model 705 is similar
to the second model 207. The parameters of the fourth model
705, including the weights of the neural networks and
self-attention layers, are also optimised during training.
Some of these parameters may be shared with the second
model 207.

US 2021/0141799 Al

[0179] An input query and an input response are seg-
mented into units from the vocabulary during training in the
same manner as the inputs are converted into units as
described in relation to FIG. 5(a) above. The same deep
transformer network is used on both sides of the dual
encoder model i.e., to encode both inputs and responses
starting from their subword-level tokenization.

[0180] FIG. 10 is a flow diagram showing the training of
a system. In the training method shown, the first model 205
uses a stored vocabulary 509 with V units. The V units of the
stored vocabulary 509 are predetermined as they have been
learned in step S501 of FIG. 5(b) prior to training the
system. The first model 205 is used to segment an input into
units, where some of the units may be out of vocabulary
characters which do not correspond to a unit in the vocabu-
lary. The units are assigned the corresponding embedding
507. Units which are not in the vocabulary are assigned one
of the K embeddings. During training, the embeddings 507
are optimised together with other parameters of the dual
encoder network. During inference, only the input half of the
dual-encoder is used to encode inputs, as responses are
pre-computed.

[0181] During training, in step SO01 input data and
response pairs are received. In an embodiment, these are
from a social media platform such as Reddit. However, any
source of paired input data and responses could be used.
Multiple sources could also be used. For example, a social
media platform could be used in combination with a source
of comments (which act as the input data) and responses
supplied from an authorised source. For example, in the case
of a looking for a restaurant, the comments and response
could be supplied from reviews of the restaurant from social
media and questions with answers supplied from the owner
of the restaurant.

[0182] For example, all of Reddit is available as a public
BigQuery dataset. In an embodiment, the 2016 and 2017
data was used. It was filtered to extract short comments, and
extract pairs of comments and their responses. This gives
around 200 million pairs. Ranking responses on Reddit was
introduced by Al-Rfou et al. 2016, Conversational Contex-
tual Cues: The Case of Personalization and History for
Response Ranking, https://arxiv.org/pdf/1606.00372.pdf.
[0183] The comment is then processed in step S02 by the
first model 205 to produce the sequence of embeddings for
the comment and the response is processed in step S02 by
the third model 703 to produce the sequence of embeddings
for the response. The first model 205 and third model 703
convert input text into a list of units from the vocabulary V,
and then replaces the units with the corresponding embed-
dings. Each item from V is assigned a randomly initialised
D-dimensional embedding, which is then optimised during
training.

[0184] In step S03, a dual encoder model 701 is trained.
The dual encode model 701 comprises a context mapping
network (comprising the first model 205 and the second
model 207) and a conversational reply mapping network
(comprising the third model 703 and the fourth model 705).
An embedded representation for the response is the input to
the fourth model 705 and an embedded representation for
the comment is the input for the second model 207. The
output of the second model is a context vector hy, the output
of the fourth model is a response vector h;.

[0185] The two networks are jointly trained by consider-
ing the similarity between h,, and h, in step S03 as

May 13, 2021

described below. S(Y, X) is the score of a candidate reply Y
given an input data X. This score is computed as a scaled
cosine similarity of the context vector that represents the
context, and the response vector that represents the candi-
date:

hy -hx . (9]

S¥,X)=C—— =Chy -k
0 X0 = g = B

[0186] where C is a learned constant, and h is h normal-
ized to a unit vector.

[0187] Using a scaled cosine-similarity ensures that the
scores are calibrated across training runs, which makes
thresholding the scores easier.

[0188] During training, C is constrained to lie between 0
and vdimh using an appropriate activation function. It is
initialized to be between 0.5 and 1, and invariably converges
to vdimh by the end of training. Empirically, this helps with
learning.

[0189] The reason to combine the cosine similarity with
the learned scaling constant C is twofold:

[0190] 1) without the scaling factor C, all similarity scores
are crammed into the [-1; 1] interval which intuitively
reduces the expressiveness of the model;

[0191] 2) using the unconstrained dot product instead of
cosine mitigates this problem, but introduces another prob-
lem: the dot products grow large in magnitude, pushing the
softmax function into regions where it has extremely small
gradients. Therefore, in order to control map the scores into
a larger interval, but still to control the magnitude, the
scaling factor C is introduced.

[0192] Empirically, the inventors have verified that the
model that uses cosine with the scaling factor C outperforms
variants which: 1) use dot-product only, or 2) use the cosine
similarity without the scaling constant C.

[0193] In an embodiment, the loss function is used:
ZMSTX)Z Y log TN exp(S(T,X,) @
[0194] Where (Y, X,) are pairs of responses and input data

that go together in training, and N is the batch size. The loss
function is used to train the parameters of the dual encoder
model, meaning that the gradient of this loss with respect to
each parameter of the dual encoder, including C, is deter-
mined using back-propagation, and then each parameter is
updated using an optimiser function.
[0195] The matrix S,=C[hy,,, hyo. .. . Dyl [Ay . Ay -
. hy] is inexpensive to compute, so this leads to an
efficient loss function that maximises the score of pairs that
go together in training, while minimising the score of
random pairings.
[0196] The model hyper-parameters are specified in the
code. Training is conducted for 24 hours, using several
workers, for example 13 GPU workers (i.e. GPU nodes on
one Tesla K80). This typically results in the model seeing
around 5.5 million batches of 50 examples each.
[0197] 1If trained for the same amount of time, a smaller
model can do quicker updates and traverse through the
training data more times i.e., it can do more updates and
reach convergence quicker. If the same number of updates is
done, the more compact model will be trained much
quicker—this means that it can reduce training resources.
Having smaller models (in terms of their number of param-
eters and storage) also means that they are more memory

US 2021/0141799 Al

efficient and can be stored on small devices (e.g., mobile
phones, tablets) with limited memory storages.

[0198] At inference time, finding relevant candidates
given a context reduces to computing h, for the context or
user input X, and finding nearby h, vectors. The h, vectors
can all be pre-computed and saved in a database (as
described in relation to FIG. 2), and a nearest neighbour
search can be optimized, giving an efficient search that can
scale to billions of candidates for example. The fact that by
vectors can all be pre-computed enables the use of external
optimisation libraries (for example: https://github.com/face-
bookresearch/faiss) for nearest neighbours search that
enable efficient search of a large pool of candidate responses.
The optimisation of nearest neighbour search is a well-
known problem in computer science and the above embodi-
ment enables a direct implementation of readily available
solutions.

[0199] The text features, the user input data and candidate
responses, are represented using subwords, as described in
relation to FIGS. 5(a) and 5(b). The tensorflow graph takes
these text features as raw strings, and encodes all text
preprocessing, tokenization, subword embedding and
vocabulary look-up in the tensorflow graph itself. This
allows for a simple API for using the model, where the user
only needs to provide raw text.

[0200] In an embodiment, the restaurant browsing and
booking system supports the discrete actions of restarting
the conversation, and transferring to the slot-based booking
flow. This is achieved using two binary intent classifiers, that
are run at each step in the dialogue, as has been described
above. In an embodiment, these intent classifiers make use
of the already-computed h, vector that represents the users
latest text. A single-layer neural network is learned on top of
the 512-dimensional encoding, with a RelLu activation and
100 hidden nodes. In an embodiment, there are two dedi-
cated binary classifiers which are fed by the 512-dimen-
sional encodings, that is, they are learned on top of the
output originating from layer 607.

[0201] For completeness, it is noted that the responses that
are used in the training of the system might not be the same
as the responses that can be retrieved during run time. Once
the model has been trained, new responses that are more
relevant to the area of use of the system (for example,
restaurant review websites, etc) can be used either in addi-
tion to or instead of the responses used during training.
[0202] In an embodiment, the parameters of the dual
encoder model, except for those of the final linear feed-
forward layer, are shared between the input and response
side. This allows for a further compression of the model
during training when compared to a model variant which
allocates separate parameters for the input text and for the
responses. For example, the weights of the self-attention
blocks 605 between the input and response encoding sub-
networks are tied together so that fewer parameters have to
be learnt. Where parameters are shared, only a single set of
parameters is stored and updated, and these are used for the
operations on the input and response side. Aftention is
shared between input and response in the dual-encoder
network.

[0203] In particular, the subword embeddings of the first
model 205 and the third model 703 are shared. These
parameters may be shared because they are used to learn
encodings of text in isolation by relying on the properties of
the text that gets encoded. By sharing the parameters, the

May 13, 2021

model size during training is reduced, so that fitting larger
batches may be fed into GPU memory, thus speeding up the
training process.

[0204] At least the parameters of the final linear feed-
forward layer are not shared. This is to enable explicit
differentiation between inputs and responses at later stages
of the network to better model their interaction. Empirically,
it has been verified that this approach results in an improved
model compared to a model where the parameters of the
final linear feed-forward layer is also shared.

[0205] After training, the embeddings corresponding to
each of the V subwords of the vocabulary are stored in a
database with the corresponding subwords, together with the
additional K embeddings, and the embeddings are simply
retrieved during use.

[0206] A further training stage, involving fine-tuning may
be performed. This is performed in the same manner as
described above, where more input-response pairs specific
to a particular domain are used as training data, to further
optimise the parameters. Thus a two-step training approach
may be followed, comprising 1) pre-training of a general
response selection model on large conversational corpora;
and 2) fine-tuning the large model on a particular task with
less in-task data (e.g., Amazon product review search,
e-banking, tourist information). During training, the dual
encoder model jointly learns semantic representations of
input sentences and responses.

[0207] A visualization of how the model learns to read a
particular sentence with attention weights stressed is shown
in FIG. 9. Each dot is a feed-forward computation depending
on the attention-weighted inputs beneath it. The top two dots
represent the final reduction layers, which compute atten-
tion-weighted sums over the sequence dimension. The input
is roughly split into three meaningful chunks “hey :-)!”’. “can
you please tell me more about”, and “PolyAI’s conversa-
tional Al platform?”. The three chunks are processed almost
independently near the bottom, combining further up.
[0208] As has been described above, in use, each element
of the subword embeddings 507 is stored using a computer
number format that occupies 8 bits in computer memory.
The 8 bits are used to define 256 equally spaced buckets
between a min value and a max value. The min and max
values may be pre-specified as hyper-parameters. In an
embodiment, the min and max values are updated through-
out the training of the second model 207 with the goal that
all the subwords embedding elements encountered are
included within the min and max range. Hereinafter, repre-
sentation using the above format will be referred to as 8-bit
representation.

[0209] During the forward pass, although the embeddings
are stored using the 8-bit representation to reduce the
amount of memory occupied, they are converted to a floating
point format, float 32, before being taken as input to the
second model 207. The conversion from the 8-bit represen-
tation above to float 32 format may be performed by scaling
and re-centering as has been described above. In an
example, the 8-bit representation uses the int8 signed integer
format however, any format that occupies 8 bit in memory
could be used.

[0210] During training of the first model 205 and second
model 207, jointly with the third 703 and fourth model 705,
the min and max values are updated at every M batches. For
example, M=500 or 1000. Updating comprises looking up
the minimum and maximum values of the float 32 copies

US 2021/0141799 Al

(described further below) of the embedding element values,
and setting the new min and max values accordingly. For
example, the min and max values may be set so that the
width of the range (i.e. max-min) is within either 0.01 or
10% of the width of the range of the embedding element
copies stored in the float 32 format. After training is com-
plete, the float 32 copies of the embedding elements are
discarded and the 8-bit representation of the learned embed-
dings, along with the updated value of (min, max) in float 32
format are stored.

[0211] The unit embeddings make up a large part of the
stored model parameters, thus storing these with a reduced
precision results in a significant reduction of model size. In
an embodiment, by storing these embeddings using 8 bit
precision instead of in IEEE 754 single precision format
(also referred to as FP32 or float32), the model size may be
reduced almost 4 times.

[0212] Various other parameters of the second model may
also be stored using a computer number format that occupies
8 bits or 16 bits in computer memory. Optionally, an IEEE
754 16-bit (also referred to as FP16 or float16) half-preci-
sion format or an 8-bit representation of other network
parameters may also be used. This allows the reduction of
the model size slightly more, but the impact is less than for
the embeddings.

[0213] The reduced precision is accounted for by various
modifications used during training, which allows use of
quantized parameters during inference, i.e. a lower-resolu-
tion copy of the parameters. Thus, a fully compressed model
can be used during inference. Applying quantization to the
dual-encoder during training allows reduction of the size of
the model whilst maintaining accuracy. Rather than 32-bits
per parameter, embedding parameters are represented using
only 8-bits, and optionally other network parameters may be
represented with 8 bits or 16 bits. The training is performed
in a “quantization-aware” manner, by applying the following
modifications to the training process.

[0214] Firstly, the training graph stores the parameters
using float32 precision, computing gradient updates in that
space. Thus the parameters of the dual encoder model,
including the weights and embeddings, are stored in float 32,
or single precision format.

[0215] During training, as has been described above, a
query and a response are taken as the inputs to the dual
encoder, and a forward pass performed. The forward pass is
performed using reduced precision copies of the weights, as
has been described previously. As described previously, a
step of converting the embedding elements from 8-bit rep-
resentation to float 32 format is performed before the
sequence of embeddings is inputted to the second model 207
or the fourth model 705.

[0216] The activations (inputs to each layer in the second
and fourth models) are stored using 16 bit (float16) repre-
sentations, for use during back-propagation. The gradient of
the loss with respect to each of the trainable parameters is
then determined through back-propagation, using the stored
activations, which were cached during the forward pass. The
gradient of the loss with respect to each of the trainable
parameters is stored using float16 format. The training may
be performed in batches, resulting in an array of gradient
values, each corresponding to a parameter, for each training
example in the batch. These are converted to a single
gradient value for each parameter (for example by taking the
average of the gradient values for all training examples for

May 13, 2021

the particular parameter). The gradient for parameter VI(x)
is then used to calculate the updated parameter from the
previous value using the optimizer function:

x=x-nVJ(x)

where 1 is the learning rate and x denotes a network
parameter or embedding. The optimizer function takes the
original parameter X, stored using 32 bit representations, and
the gradient for the parameter VI(X), stored using float16
format. In the optimizer function, the gradient is multiplied
by the learning rate m. The learning rate is a hyperparameter
that has a small positive value. The result of this multipli-
cation is stored using FP 32 and used to calculate the updated
parameters, which are also stored using FP 32.

[0217] The updated parameters are then converted to the
lower precision formats for use in the next training iteration.
A function f(x) is used to convert the stored float32 param-
eter X into a step-quantized floatl6 representation, and a
function f,(x) is used to convert the stored float32 parameter
x to the 8 bit representation in the case of the embedding
elements. In an example, min=-0.1, and max=0.1. The
inference graph saves the lower-resolution copy of x, that is,
it uses f(x) instead of x. Standard methods of converting
from FP32 to FP16 may be used, for example the astype
function of the Python numpy library can be used (https://
docs.scipy.org/doc/numpy/reference/generated/numpy.ndar-
ray.astype.html). For conversion from FP32 to 8-bit repre-
sentation, the FP32 number is mapped to one of the 2 values
from min to max, and then this value is mapped to an integer
number from O to 255 in the manner described previously.
[0218] Quantization of the embeddings and optionally
other parameters is thus simulated during training, and the
computations in the second or fourth model may be com-
puted using FP16. Some operations such as softmax or
reduce sum are carried out in float32, where they are
numerically more stable, and then converted to float16. The
inference graph uses the quantized parameters (that is,
floatl6 for the parameters of the second and fourth model,
and 8 bit representation for the embeddings of the first and
third models). In the backward pass, f,'(x)=1:0 is forced and
the weights are shadowed with FP 32 versions so that the
updates are fine-grained. Forcing f,'(x)=1.0 means that the
gradients computed in float16 are cast back to float32 and
applied to the float32 parameter directly. £;'(x) is technically
zero everywhere with discontinuities where f,(x) jumps.
[0219] By storing the result of the multiplication of the
gradient by the learning rate using FP 32, a case where this
result is too small to be represented in FP 16 or 8-bit
representation is avoided. Furthermore, by computing the
subsequent addition using FP 32, the case where the second
term in the optimizer function is much smaller than the first
term, and thus becomes zero when the addition operation is
performed using FP 16 or 8 bit for the second term is
avoided. Thus, while in principle all parameters could be
represented by FP16, some operations, such as multiplying
the gradient by the learning rate, are carried out in FP32
space to improve numerical stability and performance of the
model.

[0220] During use, only the reduced precision copies of
the parameters are stored, and the FP 32 versions are
discarded. Thus the model size during use is reduced. During
training, although the weights are also stored in FP 32, the
activations are stored in reduced precision, thus reducing the
overall memory required to perform the training. By repre-

US 2021/0141799 Al

senting the trainable parameters of the second and fourth
models in FP16, the fact that CPUs (such as the Tesla K80)
support operations in FP16 can be exploited. Use of FP16
has the effect of almost doubling the number of batches that
can be fit into the GPU memory (compared to using FP32).

[0221] During training a float32 precision copy of each
variable is used to accumulate gradients, but before it is used
in the forward pass it is cast to float16, or 8 bit representation
in the case of the embedding elements. Gradients then have
float16 precision, but are multiplied by the learning rate in
float32 space and used to update the training copy. For
inference the model parameters (e.g. the embeddings) are
stored using the relevant 8 bit/float 16 representation and
may then be converted to float 32 when doing the various
operations for each input.

[0222] Secondly, the loss value computed in the forward
pass may be scaled, prior to the back-propagation being
performed. The gradient of the loss with respect of each of
the parameters VI(x) is used to calculate the updated param-
eter using the optimiser function. The gradient values tend to
be small values, and may be too small to be represented
using FP 16 or 8 bits. Scaling the loss value results in the
gradient values calculated during back propagation being
scaled by the same amount. Thus by scaling the loss values,
the gradient values can be scaled such that they are repre-
sentable in FP 16 or 8 bits. In an embodiment, the loss is
scaled using a constant scaling factor. For example, the loss
is scaled by a factor S and updates are then scaled by 1/S.
In an example, S=128.0. The scaling factor allows the
gradient computations to stay well represented by FP16 i.e.,
they will not get rounded to zero.

[0223] Thirdly, various operations in the forward pass and
in the back propagation may be performed using different
precision. In particular, operations involving sums of vectors
or matrices may be carried out using FP 32. This includes,
for example, the addition of the positional encoding vectors
and the layer-normalisation step operations in the forward
pass. Such operations may take reduced precision inputs and
store reduced precision outputs, but the arithmetic is per-
formed using FP 32. Point-wise operations, such as those
performed in the self-attention layers, may be performed
using FP 32, or FP 16. Vector dot product operations may be
performed by storing each element product into FP 32
representation, before performing the addition step. A step of
converting to a reduced precision for final storage is then
performed.

[0224] In an embodiment, operations in the network are
done with float16 precision, except a few such as softmax or
reduce sum that are unstable in float16. These are done in
float32 and then cast back to floatl 6. Some operations in the
graph are empirically determined to be performed using
FP32 precision to be numerically stable including the layer
normalization, L2-normalization, and softmax in attention
layers.

[0225] The float16 computations in the training graph are
accelerated by the CPUs tensor cores. The reduced data size
allows fitting larger batches into GPU memory, thus speed-
ing up the training process. As a result, the efficiency of
training improves in terms of examples per second. The final
model is not only smaller, but also reaches a higher accuracy
after e.g. an 18 hour limit.

May 13, 2021

[0226] In summary, the mixed precision training may
comprise one or more of the following steps:

[0227] 1. Maintain a master copy of trainable param-
eters (weights of second and fourth model, and embed-
dings of first and third models) in FP32

[0228] 2. For each training iteration:

[0229] a. Make an FP16 copy of the weights, and an
8 bit representation copy of the embeddings

[0230] b. Forward propagation
[0231] c. Multiply the loss with the scaling factor S
[0232] d. Backward propagation (FP16 weights, acti-

vations, and their gradients)
[0233] e. Multiply the weight gradient with 1/S
[0234] f. Complete the weight update and update the

master copy of trainable parameters (in FP32 space),

and then generate the reduced precision versions

from the master copies.
[0235] Once training is completed, the learned parameters
of'the second model are saved in the inference graph in FP16
format and the embeddings of the first model are saved in the
first model 205 using the 8-bit representation described
above.
[0236] It is desirable to reduce the size of the response
selection model 109, comprising the first model 205 and the
second model 207, so that less memory is required to store
the model. In particular, the responses and response vectors,
unit embeddings, and weights and other parameters of the
models must be stored in working memory when the model
is executed. It may be desirable to use the response selection
model 109 on a device with limited storage space such as a
cell phone or tablet. Similarly, during training time, it is
desirable to reduce the size of the dual encoder model, so
that training may be performed more quickly. For example,
through quantization, the batch size can be increased.
[0237] The first and second model are compressed using
subword-level parameterisation and quantisation. Quantiza-
tion of the stored embeddings, as well as optionally that of
other neural network parameters, reduces model storage
requirements. This also enables quicker and more efficient
model training. The combination of these two compression
techniques reduces the size of the model. Parameter sharing
during training also contributes to the compression of the
model in the training stage.
[0238] Response selection models may be evaluated using
Recall@k. Given a set of N responses to the given input,
where only one response is relevant, it indicates whether the
relevant response occurs in the top k ranked candidate
responses. RN@k is used as a measure, and where N is set
to 100 and k is set to 1 this is referred to as R100@1. This
effectively means that for each query, it is indicated if the
correct response is the top ranked response between 100
candidates (1 correct+99 randomly sampled confounders).
The final score is the average across all inputs. The test data
is based on the Reddit test data. A 1-out-of-100 score,
represented by R,,,@]1 is used. A reference model which
does not use 8 bit representation for the embeddings and
FP16 for various model parameters has a size of 444 MB and
an R, @1 score of 61.3%. The reference encoder model
has 111M parameters, 94% of which are the embeddings
which encapsulate much of the model’s ability to represent
text sequences (Embedding parameters: 104M, Network
parameters: 7M). Quantizing the model as described above
results in a score of R ,,@1=61.6%, with the model size is
reduced from 444 MB to 118 MB. In summary, with 8 bit

US 2021/0141799 Al

quantisation, approximately the same R,,,@1 is obtained
with a smaller model size. This may increase the speed of
downloading the models from cloud storage for example. It
further reduces the required space, both on disk and in
memory. Moreover, such models may be adapted to multiple
domains and languages, and scaling efforts are improved by
smaller model sizes.

[0239] Using a model based on subword embeddings
further reduces the model size, such that the embedding
parameters are 16M, the network parameters are 13M
(where a transformer architecture is used), giving an original
model size of 116 MB, and a quantized model size of 59
MB.

[0240] The required storage (in bits) for the response
selection model 109 in use has an additive term that scales
linearly with:

[0241] The size of the representation of floats in the
model (e.g. the weights of the various parts of the
second model) P;

[0242] The hidden size of the token embeddings (D),
e.g. 512 or 768 dimensions;

[0243] The vocabulary size (V), e.g., 800K words in
English, generally the order of magnitude is 10°%;

[0244] The number of separate embedding tensors (E),
i.e., E=14R, where the total number depends on R, the
number of stored responses.

[0245] It is desirable to reduce the size whilst maintaining
a similar level of performance, so that the model may be fit
onto devices with limited storage for example without
sacrificing performance, or even improving performance.
This is achieved through using subword-level parameteri-
sation as has been described above, and mixed-precision
quantisation. Further reduction at training time can be
achieved by parameter sharing between the models used to
process the inputs and the responses.

[0246] Through the combination of the techniques, it is
possible to reach a compression order which allows the
model to be ported to limited-storage devices. FIG. 6(b)
shows a high-level schema dissecting and illustrating the
total storage requirements of the model at training time. The
diagram also points to the different components where the
model can be compressed.

[0247] As can be seen, reducing the vocabulary size
reduces the storage requirements for the model. For
example, replacing unigram and bigram vocabularies (order
of magnitude 10° or 107 words) with subword-level vocabu-
laries (order of magnitude 10* units) reduces the storage
requirements for the model. This also reduces storage
requirements for the model during use, since the same
vocabulary is stored.

[0248] Reducing the precision used to store the embed-
dings in the vocabulary, and optionally various parameters
of the second model, also reduces storage requirements for
the model at training time and during use.

[0249] Optionally, the embedding dimensionality D can
also be selected to reduce the storage requirements. For
example, reducing D from the 512 or 768 to lower-dimen-
sional representations e.g., D=256 also reduces the storage
requirements of the model, both at training time and during
use. However, use of D<512 has been found to have an
impact on the final response selection performance.

[0250] Various parameters of the dual encoder can be
shared between the input side and the response side. For
example, the number of separate embedding vectors used

May 13, 2021

impacts the size of the model. Using the same embeddings
for the inputs and the responses reduces the size of the model
at training time.

[0251] A summary of how each of these techniques
impacts the model compression is provided in Table 1. The
compression mechanisms are orthogonal to each other and
jointly contribute to the final compression order in a multi-
plicative manner (i.e., the final compression order can be
seen as roughly x4x25xR).

TABLE 1

a summary of compression orders achieved
by combining the compression
mechanisms on the dual-encoder model as described above.

P 32bit 8bit x4
D 512 or 768 512 or 768 (same) None (as it affects
performance)’
\' 1M (words0 40K (subwords) x25
E 1 + R (no sharing) 1 (parameter sharing) xR
[0252] The compressed models may use less than 100 MB

in storage. On the other hand, many encoders use greater
than 1 GB.

[0253] In an example, the model comprises 16 M embed-
ding parameters and 13M network parameters, and is 116
MB in size, reduced to 59 MB after quantization. A Reddit
test performance of R100@1=64.9% is obtained. By reduc-
ing the model size, it can be possible to add additional
parameters to the model for improved performance. For
instance, by increasing the dimensionality of the inner layers
in each FFN from 512 to 4*512=2,048, the model contains
19 M network parameters and its size before quantization is
174 MB. After weight quantization, the model gets reduced
to 88 MB. This model further improves the R100@1 score
from 64.9% to 66.9%. Replacing RelLU activation in FFNs
with GeLLU (Gaussian Error Linear Unit) produces a model
of the same size (88 MB) and reaches the R100@1 score of
67.1%.

[0254] The retrieval-based dialogue system conducts con-
versations by selecting the most appropriate system
response. The system encodes the input and a large set of
responses in a joint semantic space. The system treats each
input utterance as a query and retrieves the most relevant
response from a large response collection by computing
semantic similarity between the query representation and the
encoding of each response in the collection. This task is
referred to as response selection Response selection does not
rely on explicit task-tailored semantics in the form of
domain ontologies, which are hand-crafted for each task by
domain experts. Response selection also differs from chat-
bot-style systems which generate new responses by gener-
alising over training data, which may have the tendency
towards generating universal but irrelevant responses such
as “I don’t know” or “Thanks”. Response selection mitigates
the need to engineer structured domain ontologies, and to
solve the difficult task of general language generation.
Furthermore, it may also be easier to constrain or combine
the output of response selection models. This design may
also bypass the construction of dedicated decision-making
policy modules.

[0255] Models trained to select responses can be used to
drive dialogue systems, question-answering systems, and
response suggestion systems. The task of response selection

US 2021/0141799 Al

provides a powerful signal for learning semantic represen-
tations useful for many downstream tasks in natural lan-
guage understanding.

[0256] While certain embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inven-
tions. Indeed the novel methods and apparatus described
herein may be embodied in a variety of other forms; fur-
thermore, various omissions, substitutions and changes in
the form of methods and apparatus described herein may be
made.

1. A method of obtaining a response to a query inputted
by a user, the method comprising:

receiving a user inputted query;

representing the user inputted query as a sequence of

embedding vectors using a first model;

encoding the sequence of embedding vectors to produce

a context vector using a second model;
retrieving responses with associated response vectors;
scoring response vectors against the context vector,
wherein the scoring is a measure of the similarity
between the context vector and a response vector; and

outputting the responses with the closest response vectors,

wherein the first model is configured to segment a user
inputted query into a sequence of units from a vocabu-
lary of units and represent each unit in the sequence as
an embedding vector, wherein at least one of the units
in the vocabulary is an incomplete word, and wherein
the first model comprises parameters that are stored
using eight bits per parameter; and

wherein the second model has been trained using corre-

sponding queries and responses such that an encoding
is used that maximises the similarity between the
response vector and context vector for a corresponding
query and response.

2. A method according to claim 1, wherein:

the user inputted query is received on a first device

comprising a local memory; and

the parameters of the first model and the second model are

stored on the local memory.

3. A method according to claim 1, wherein one or more of
the parameters of the second model are stored using a 16-bit
floating point representation.

4. A method according to claim 1, wherein the first model
and the second model are less than 1 GB in size.

5. A method according to claim 1, wherein there are 30
000 to 50 000 units in the vocabulary.

6. A method according to claim 1, wherein the parameters
of the first model that are stored using eight bits per
parameter are the elements of the embedding vectors.

7. A method according to claim 1, wherein the elements
of the embedding vectors representing each unit in the
sequence are converted to a higher precision representation
before being input to the second model.

8. A method according to claim 1, wherein the first model
is configured to segment the user inputted query by:

segmenting the user inputted query into words, and

matching units from the vocabulary to parts of each word,
starting with the longest units.

9. A method according to claim 1, wherein the second
model comprises a transformer network.

10. A method according to claim 1, wherein the second
model comprises a repeated module comprising a self-

May 13, 2021

attention layer, a layer-normalization step, a feedforward
neural network and a further layer-normalization step.
11. A method according to claim 1, wherein the second
model comprises a positional encoding layer.
12. A method according to claim 1, wherein the second
model comprises a multi-attention layer.
13. A method of training a response retrieval system to
provide a response to a query inputted by a user, the method
comprising:
providing a set of training data, wherein the training data
set comprises queries and corresponding responses;

representing each query as a first sequence of vectors
using a first model, wherein the first model is config-
ured to segment an inputted query into a sequence of
units from a vocabulary of units and represent each unit
in the sequence as an embedding vector, wherein at
least one of the units in the vocabulary is an incomplete
word, and wherein the first model comprises param-
eters that are stored using eight bits per parameter;

encoding each first sequence of embedding vectors to
produce a context vector using a second model;

representing each response as a second sequence of
vectors using a third model, wherein the third model is
configured to segment an inputted response into a
sequence of units from the vocabulary of units and
represent each unit in the sequence as an embedding
vector, wherein the third model uses at least some of the
parameters of the first model;
encoding each second sequence of embedding vectors to
produce a response vector using a fourth model; and

jointly training the first and second models, and the third
and fourth models using the condition that the similar-
ity between the context vector and the response vector
is higher for a corresponding response and query and
that the similarity between the context vector and the
response vector is lower for a random response and
query.

14. A method of training according to claim 13, wherein,
the at least some of the parameters of the second model are
stored using a 16-bit floating point representation.

15. A method of training according to claim 13, wherein
the parameters of the first model that are stored using eight
bits per parameter and that are shared with the third model
are the elements of the embedding vectors.

16. A method of training according to claim 13, wherein
the fourth model uses at least some of the parameters of the
second model.

17. A method of training according to claim 13, wherein
the parameters of the first model have a value between a
minimum value and a maximum value, and wherein the
minimum value and the maximum value are adjusted during
training.

18. A method of training according to claim 17, wherein
the parameters of the first model have a value equal to one
0f'256 values equally spaced from the minimum value to the
maximum value, and wherein each of the 256 values is
mapped to an integer from 0 to 255 which is represented by
8 bits.

19. A dialogue system for obtaining a response to a query
inputted by a user, the system comprising:

an input for receiving a user inputted query;

a processor, configured to:

represent the user inputted query as a sequence of
embedding vectors using a first model, wherein the

US 2021/0141799 Al

first model is configured to segment a user inputted
query into a sequence of units from a vocabulary of
units and represent each unit in the sequence as an
embedding vector, wherein at least one of the units
in the vocabulary is an incomplete word;
encode the sequence of embedding vectors to produce
a context vector using a second model, wherein the
second model has been trained using corresponding
queries and responses such that an encoding is used
that maximises the similarity between the response
vector and the context vector for a corresponding
query and response;
retrieve responses with associated response vectors;
score response vectors against the context vector
wherein the scoring is a measure of the similarity
between the context vector and a response vector;
and
select the responses with the closest response vectors,
an output, configured to output speech or text correspond-
ing to the selected responses; and
a local memory, configured to store a plurality of param-
eters of the first model using eight bits per parameter.
20. A carrier medium comprising computer readable code
configured to cause a computer to perform the following for
obtaining a response to a query inputted by a user:

May 13, 2021

receiving a user inputted query;

representing the user inputted query as a sequence of
embedding vectors using a first model;

encoding the sequence of embedding vectors to produce
a context vector using a second model;

retrieving responses with associated response vectors;

scoring response vectors against the context vector,
wherein the scoring is a measure of the similarity
between the context vector and a response vector; and
outputting the responses with the closest response
vectors,

wherein the first model is configured to segment a user
inputted query into a sequence of units from a vocabu-
lary of units and represent each unit in the sequence as
an embedding vector, wherein at least one of the units
in the vocabulary is an incomplete word, and wherein
the first model comprises parameters that are stored
using eight bits per parameter; and

wherein the second model has been trained using corre-
sponding queries and responses such that an encoding
is used that maximises the similarity between the
response vector and context vector for a corresponding
query and response.

#* #* #* #* #*

