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bitline bar (BL/BLB) propagation delays. At least one refer 
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RBL can be used to trigger at least one sense amplifier. The 
RBL can also be used to de-select wordline or reference 
wordline after the sense amplifier operation is complete to 
save power. 
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CIRCUITS AND METHODS OFA 
SELF-TIMED HIGH SPEED SRAM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority of U.S. provisional Patent 
Application No. 61/708,040, filed on Sep. 30, 2012 and 
entitled “Circuits and Methods of A Self-Timed High Speed 
SRAM, which is hereby incorporated herein by reference. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to effective circuit, system 

designs, and methods of a self-timed SRAM for high speed 
and low power applications. 

2. Description of the Related Art 
Today’s SRAM is commonly used as caches in ultra-high 

clock-rate CPU. A clock rate of 1 GHZ, CPU can be achieved 
easily in today's nanometer devices, such as 65 nm CMOS 
and beyond. For an SRAM to match such high clock rate, the 
access time needs to be less than 1 ns. In such short period of 
time, it would be very hard to generate control signals to keep 
propagation delay short while keeping inactive block idle to 
meet both high speed and low power. It is the objective of this 
invention to achieve high speed, low power, and Small area to 
meet the very demanding SRAM requirements in today's 
applications. 
A conventional SRAM memory cell is shown in FIG. 1. 

The cell 10 consists of a cross-coupled latch constructed from 
inverters 11 and 12, two pass transistors 13 and 14. The input 
of the inverter 11 NB is coupled to the output of the inverter 
12, and the input of the invert 12 N is coupled to the output of 
the inverter 11. The sources of MOS 13 and 14 are coupled to 
the two nodes N and NB, respectively. The MOS 13 and 14 
have their sources coupled to nodes N and NB, their gates 
coupled to a wordline (WL), their drains coupled to bitline 
(BL) and bitline bar (BLB), respectively. The SRAM cell can 
be organized as a two-dimensional array with all BLS and 
BLBs of the cells in the same columns coupled together in 
vertical direction and all wordlines of the cells in the same 
row coupled together in horizontal direction. The SRAM cell 
can be readby pre-charging the BL and BLB to a high Voltage 
(i.e. VDD) and then let floating. The BL or BLB voltage can 
be pulled low by the inverter 11 or 12 in the cell, depending if 
the data stored is 0 or 1, when the WL is turned on. Similarly, 
the SRAM cell can be written with data 0 or 1, by pulling BL 
or BLB low, respectively, when the WL is turned on. 
A conventional sense amplifier (SA) of an SRAM is shown 

in FIG. 2. The latch-type SA 20 has a structure very similar to 
the SRAM cell shown in FIG. 1. The SA is based on the 
positive feedback of a latch to amplifier the input signals so 
that the gain can be high and the power consumption can be 
low. The SA can be activated when the input signals reach 
sufficient differential voltages; otherwise incorrect data may 
be sensed instead. The SA 20 has PMOS 21-1 and NMOS 
21-2 constructed as an inverter with their gates coupled to 
QB, their sources coupled to VDD and ground through a 
NMOS 25, respectively. The drain of PMOS 21-1 is coupled 
to the drain of NMOS 21-2 and to a node Q. The SA 20 also 
has PMOS 22-1 and NMOS 22-2 constructed as an inverter 
with their gates coupled to Q, their sources coupled to VDD 
and ground through the NMOS 25, respectively. The drain of 
PMOS 22-1 is coupled to the drain of NMOS 22-2 and to a 
node QB. The sources of NMOS 21-2 and 22-2 are coupled to 
the drain of the same NMOS 25, whose gate is coupled to an 
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SA enable (SE) and whose source is coupled to ground. The 
nodes Q and QB are coupled to the sources of PMOS 23 and 
24, respectively. The drains of PMOS 23 and 24 are coupled 
to DI and DIB, respectively. The gates of PMOS 23 and 24 are 
coupled to an SA input enable (SIB). Two PMOS 26-1 and 
26-2 are pullup devices for nodes QB and Q, respectively, 
with the gates coupled to SE. 
The SA shown in FIG. 2 works as follows. Before sensing, 

SE is low and the nodes Q and QB are pulled high to VDD by 
a pair of PMOS pull-ups 26-2 and 26-1, respectively. When 
the signals at DI and DIB reach sufficient voltage difference 
(i.e. 100 mV split), SIB can be pulled low to allow signals 
coming into the nodes Q and QB, respectively. After the 
differential voltages are passed from DI/DIB to Q/QB, SE can 
be turned on to pull the drain of MOS 25 low while disabling 
PMOS 26-1 and 26-2. At the mean time, the SIB can be set to 
low to turned off the PMOS 23 and 24 to isolate the input 
signals from the internal nodes Q and QB in the SA. Subse 
quently, the cross-coupled latch consisting of PMOS 21-1 and 
22-1 can be activated to make Qand QB split wider and reach 
rail-to-rail levels eventually. The cross-coupled latch consists 
of NMOS 21-2 and 22-2 can also be activated when the 
NMOS25 is more heavily turned on. The timing of turning on 
SE is very crucial only after substantial signal splits are devel 
oped at nodes Q and QB, otherwise wrong data can be sensed 
and latched instead. 

FIG. 3(a) shows a block diagram 30 of a portion of a 
self-timed circuit in a prior art. A memory cell array 31 has a 
reference column 32 that consists of 3 reference cells 33-1, 
33-2, and 33-3, and some dummy cells 35 to fill up a column. 
The reference cells can be modified slightly from the normal 
cells to make reference BL pulled low earlier and then used as 
a control signal to trigger at least one SA. 

FIG.3(b) shows a schematic of a reference cell 40, corre 
sponding to the reference cells 33-1 through 33-3 in FIG. 
3(a), in a prior art. The reference cell 40 has a pair of cross 
coupled inverters 41 and 42 constructed as a latch, and two 
pass transistors 43 and 44, similar to a normal SRAM cell. 
However, the gates of the pass transistor 43 and 44 are 
coupled to BLin (equivalent to BL in the normal cell), and the 
drain of the NMOS 43 is coupled to high (i.e. VDD). When 
BLin is set high, RBL can be pulled low. If the three reference 
cell33-1,33-2, and 33-3 in FIG.3(a) have their BLin coupled 
together and have one shared RBL, RBL can be pulled down 
faster than any normal cells pulling down BL/BLB. As a 
result, RBL can be used to triggeran SA. BLin signal can be 
generated from a control signal. Such as a clock CLK, through 
a multi-tap delay chain 45. Turning on BLin with respect to 
CLK can be adjusted by setting a plurality of delay control 
signals or a plurality of registers. 
To achieve a reliable SRAM function with low power con 

sumption, it is desirable to turn on the selected WL while 
turning offBL pullups only during the memory cells are ready 
for access. FIG. 4(a) shows a portion of a schematic 50 of a 
self-timed circuit in a prior art. The schematic 50 has a plu 
rality of address buffers 57, pre-decoders 58, and decoders 59. 
The address buffer 57 consists of inverters 51-1, 51-2 and 
51-3 to generate true and complement addresses, respec 
tively. The pre-decoder 58 has a multi-input NAND 52-1 and 
followed by a buffer 52-2. The decoder 59 has a multi-input 
NAND 53-1 and followed by a wordline driver 53-2 to drive 
a WL. The addresses generated from the address buffers 57 
are then input to a plurality of pre-decoders 58 to generate 
more pre-decoded signals, which are then input to a plurality 
of decoders 59 to fully decode the available address space. A 
WL can be turned on by using a wordline enable (WLEN) in 
one of the input in one of the pre-decoders. WLEN can be 
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generated from a control signal. Such as a clock CLK, through 
a multi-tap delay line 54. The delay line 54 can be controlled 
by a plurality of delay control signals or a plurality of regis 
terS. 

The relative timing between CLK and WLEN is shown in 
FIG. 4(b). There is a parameter Twild to specify the turning on 
of WLEN after CLK transitions to deliver a new address. If a 
WL is turned on too early, excess power may be wasted. If a 
WL is turned on too late, the speed may be penalized. Another 
parameter Twlp is related to the WL pulse width. IfTwlp is too 
narrow, sufficient BL/BLB split may not be developed before 
the WL is turned off again. If Twlp is too wide, excess power 
may be wasted. These two parameters can be used to illustrate 
the concept of tradeoff between speed and power. 

The self-timed circuit as shown in FIGS. 3(a), 3(b), 4(a), 
and 4(b) are not self-timed precisely. The turning on of RBL 
is not tracking with WL turn-on time. The turning off of a WL 
is not tracking with SA enabling or disabling either. As a 
result, RBL may turn on an SA when the input signals are not 
split wide enough, or even before the selected WL is turned on 
at the worse. The selected WL may be turned off prematurely 
before Sufficient signal splits reaching the inputs of an SA and 
sensed. Consequently, wide timing margins are needed to 
build a robust SRAM; otherwise yield and reliable operations 
may suffer. Therefore, it is still very desirable to invent some 
precise self-timed circuits to reduce timing margins to meet 
today’s very demanding SRAM requirements. 

SUMMARY 

Embodiments of highly effective and robust circuits and 
methods for achieving high precision self-timed designs are 
disclosed. Embodiment are able to achieve very high speed 
and yet with Sufficient margins to meet both the performance 
and functionality requirements. 

In one embodiment, the turning on of a sense amplifier 
(SA) can be tracked with turning on of a selected wordline 
(WL) and/or bitline/bitline bar (BL/BLB). In another 
embodiment, the turning off of a selected WL can be tracked 
with SA enabling or disabling. These two timings can be very 
critical for high performance memory designs. If the first 
timing is not well met, an SA may be activated before suffi 
cient signal splits are developed at the input of the SA and 
sensed wrong data. If the second timing is not well met, the 
selected WL may be turned off prematurely even before an 
SA is activated. In either case, the SA may sense cell data 
incorrectly. To ensure proper operations, tracking can be 
dependent on the strength of cell devices, wordline delay, 
bitline delay, and the configurations of the memory array, 
Such as number of rows and columns, so that high speed and 
yet reliable operation can be achieved for wide ranges of 
Voltage Supplies, process corners, and temperatures. 

Circuits and methods for precisely self-timed SRAM 
memory are disclosed to track the wordline and/or bitline/ 
bitline bar (BL/BLB) propagation delays. At least one refer 
ence cell can be placed near the far end of a driver to drive a 
selected wordline or a reference wordline. When a wordline 
and/or a reference wordline is turned on, the reference cell can 
be selected not earlier than any selected SRAM cells and can 
activate a reference bitline (RBL) not later than any selected 
SRAM cells activating the BL or BLB. The activation of the 
RBL can be used to trigger at least one sense amplifier. The 
RBL can also be used to de-select wordline or reference 
wordline after the sense amplifier operation is complete to 
save power. The reference cell can have substantially the 
same device size, area, shape, and structure as a normal 
SRAM cell, but has a bitline in (BLin) coupled to the input of 
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an inverter and the reference bitline (RBL) coupled to the 
output of the inverter. The BLin and RBL are similar to BL 
and BLB of an SRAM cell, respectively. The driving capa 
bility of the reference cell can be enhanced by enlarging the 
size of the inverter in a single reference cell or by combining 
the inverter outputs in a plurality of reference cells with 
proper setting in BLIns. The setting can be stored in registers 
for loading. 
The invention can be implemented in numerous ways, 

including as a method, system, device, or apparatus (includ 
ing computer readable medium). Several embodiments of the 
invention are discussed below. 
As an embodiment in an integrated circuit, one embodi 

ment can, for example, include at least one reference cell 
associated with a normal wordline or a reference wordline. 
The reference cells can be very similar to the normal cells but 
has higher pulldown capability that can be adjusted optionally 
by a plurality of control signals or registers. The selected 
reference cells can be turned on shortly after the last normal 
cell in a selective wordline is turned on. The selected refer 
ence cells can pulldown a reference bitline (RBL) faster than 
any selected normal cells pulling down the normal BL or 
BLB. Then, the RBL can be used to trigger at least one sense 
amplifier (SA) after proper buffering. The SA triggering sig 
nal can also be used to de-asserta wordline enable (WLEN) to 
turn off the selected wordline and/or reference wordline to 
complete a memory access. 
As an electronics system, one embodiment can, for 

example, include at least a processor, and a self-timed SRAM 
memory operatively connected to the processor. The SRAM 
memory has at least one self-timed circuit, which in one 
embodiment can, for example, include at least one reference 
cell associated with a normal wordline or a reference word 
line. The reference cells can be very similar to the normal 
cells but has higher pulldown capability that can be adjusted 
optionally by a plurality of control signals or registers. The 
selected reference cells can be turned on shortly after the last 
selected normal cell is turned on. The selected reference cells 
can pulldown a reference bitline (RBL) faster than any 
selected normal cells pulling down the normal BL or BLB. 
Then, the RBL can be used to trigger at least one sense 
amplifier (SA) after proper buffering. The SA triggering sig 
nal can also be used to de-asserta wordline enable (WLEN) to 
turn off a wordline and/or reference wordline to complete a 
memory access. 
As a method for providing effective self-timed embodi 

ments for an SRAM memory, one embodiment can, for 
example, include at least one reference cell associated with a 
normal wordline or a reference wordline. The reference cells 
can be very similar to the normal cells but has higher pull 
down capability that can be adjusted optionally by a plurality 
of control signals or registers. The selected reference cells can 
be turned on shortly after the last selected normal cell is 
turned on. The selected reference cells can pulldown a refer 
ence bitline (RBL) faster than any selected normal cells pull 
ing down the normal BL or BLB. Then, the RBL can be used 
to trigger at least one sense amplifier (SA) after proper buff 
ering. The SA triggering signal can also be used to de-assert 
a wordline enable (WLEN) to turn off a wordline and/or 
reference wordline to complete a memory access. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention will be readily understood by the 
following detailed descriptions in conjunction with the 
accompanying drawings, wherein like reference numerals 
designate like structural elements, and in which: 
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FIG. 1 shows an SRAM cell commonly used in an SRAM 
memory. 

FIG. 2 shows a sense amplifier commonly used in an 
SRAM memory. 

FIG.3(a) shows a portion of a conventional block diagram 
of a self-timed circuit. 

FIG. 3(b) shows a schematic of a conventional reference 
cell. 

FIG. 4(a) shows a schematic of a wordline enable (WLEN) 
control circuit. 

FIG. 4(b) shows a timing diagram of the WLEN with 
respect to a control signal CLK. 

FIG. 5(a) shows a portion of a block diagram of a self 
timed circuit according to one embodiment. 

FIG. 5(b) shows a portion of a block diagram of a self 
timed circuit according to another embodiment. 

FIG. 6(a) shows a portion of a block diagram of a memory 
array using self-timed circuit according to one embodiment. 

FIG. 6(b) shows a portion of a schematic of a reference cell 
corresponding to the reference cells in FIG. 5(a), 5(b), or 6(a) 
according to one embodiment. 

FIG. 6(c) shows a portion of a schematic of another refer 
ence cell corresponding to the reference cells in FIG. 5(a), 
5(b), or 6(a) according to another embodiment. 

FIG. 6(d) shows a portion of a schematic of yet another 
reference cell corresponding to the reference cells in FIG. 
5(a), 5(b), or 6(a) according to yet another embodiment. 

FIG. 7 shows a portion of a schematic of address buffer, 
pre-decoder, and decoder with WLEN according to one 
embodiment. 

FIG. 8 shows a portion of a schematic of a sense amplifier 
shared between upper and lower columns. 
FIG.9 depicts a method in a flow chart to read an SRAM 

cell in self-timed according to one embodiment. 
FIG. 10 shows a processor system using at least one self 

timed SRAM memory according to one embodiment. 

DETAILED DESCRIPTION OF EMBODIMENTS 
OF THE INVENTION 

Embodiments disclosed herein can track wordline and/or 
bitline delays to activate at least one sense amplifier (SA) and 
to turn off a wordline after at least one sense amplifier (SA) is 
activated. A latch-type of SA is essential in today's nanometer 
SRAM for low power and low voltage operations. However, 
the latch-type of SA requires sufficient signal splits devel 
oped in the input of an SA before being activated; otherwise 
irrevocable incorrect data can be sensed and latched. Without 
Sufficient timing margins, the input signals may not be split 
wide enough for sensing. On the other hand, if the timing 
margins are too wide, the speed of an SRAM can suffer. 
Advantageously, embodiments disclosed herein are capably 
of tracking critical timings to achieve reliable operations and 
yet high speed by using at least one reference cell, similar to 
the normal cell, to track wordline and/or bitline delay and to 
turn on at least one sense amplifier accordingly. After the SA 
is activated, the selected wordline can be turned off by using 
the same tracking signal after proper buffering. Thus robust 
design with high speed operations can be achieved. 

Circuits and methods for precisely self-timed SRAM 
memory are disclosed to track the wordline and/or bitline/ 
bitline bar (BL/BLB) propagation delays. At least one refer 
ence cell can be placed near the far end of a driver to drive a 
selected wordline or a reference wordline. When a wordline 
and/or a reference wordline is turned on, the reference cell can 
be selected not earlier than any selected SRAM cells and can 
activate a reference bitline (RBL) not later than any selected 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
SRAM cells activating the BL or BLB. The activation of the 
RBL can be used to trigger at least one sense amplifier. The 
RBL can also be used to de-select wordline or reference 
wordline after the sense amplifier operation is complete to 
save power. The reference cell can have substantially the 
same device size, area, shape, and structure as a normal 
SRAM cell, but has a bitline in (BLin) coupled to the input of 
an inverter and the reference bitline (RBL) coupled to the 
output of the inverter. The BLin and RBL are similar to BL 
and BLB of an SRAM cell, respectively. The driving capa 
bility of the reference cell can be enhanced by enlarging the 
size of the inverter in a single reference cell or by combining 
the inverter outputs in a plurality of reference cells with 
proper setting in BLIns. The setting can be stored in registers 
for loading. 

Exemplary embodiments of the invention are discussed 
below with reference to the figures. However, those skilled in 
the art will readily appreciate that the detailed description 
given herein with respect to these figures is for explanatory 
purposes as the invention extends beyond these limited 
embodiments. 

FIG. 5(a) shows a block diagram of a portion of a self 
timed SRAM memory 100 according to one embodiment of 
the present invention. The SRAM memory 100 has an SRAM 
memory array 101, at least one reference column 102 that 
includes at least one reference cell 103, at least one sense 
amplifier 106, a plurality of pre-decoders 105, and decoders 
104. In this embodiment, there is at least one reference cell 
hung on the far end of a wordline driver to drive a wordline. 
The SRAM 100 has incoming addresses pre-decoded in the 
pre-decoder 105. Then the pre-decoded addresses are further 
input to the decoders 104 to select one from a plurality of 
wordlines to access at least one memory cells in a row. The 
wordline can be enabled by gating a wordline enable signal 
(WLEN) to an input of a pre-decoder or decoder. At the far 
end of a wordline driver in the decoders 104, there is at least 
one reference cell 103 in at least one reference column 102 
that can be turned on by the same selected normal wordline. 
The reference cell 103 has a similar circuit, device size, area, 
and structure as the normal cells except that the reference cell 
103 has a higher pulldown capability than any normal cells, 
presumably the BL and RBL are pre-charged to high before 
accesses. After the selected wordline is turned on, the selected 
reference cell can pull down a reference bitline (RBL) faster 
than any selected normal cells pulling down BLS or BLBs, 
depending on the data being 0s or 1s. The RBL can be used to 
trigger at least one sense amplifier (SA) 106 after proper 
buffering. With this configuration, the activation of the SA 
can be ensured after all cells in the same selected row are 
turned on and Sufficient signal splits are developed between 
BLs and BLBs. Once the SA is activated, the selected WL can 
be turned off by using the same RBL signal to de-assert 
WLEN in the pre-decoder 105 or decoder 104 after proper 
buffering. Subsequently, the wordline driver in the decoder 
104 can be disabled to turn off the selected wordline. In 
another embodiment, the pulldown strength of the reference 
cells hung on each wordline can be adjusted by setting a 
plurality of control signals or registers. 

FIG. 5(b) shows a block diagram of a portion of a self 
timed SRAM memory 100' according to another embodiment 
of the present invention. The SRAM memory 100' has an 
SRAM memory array101", at least one reference column 102 
that includes at least one reference cell 103', at least one sense 
amplifier 106", pre-decoders 105", and decoders 104". In this 
embodiment, there is at least one reference cell hung on the 
far end of a reference wordline driver to drive and turn on at 
least one reference wordline (RWL) whenever a normal 
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wordline is turned on. The SRAM 100" has incoming 
addresses pre-decoded in the pre-decoder 105'. Then the pre 
decoded addresses are further input to decoders 104 to select 
a wordline from a plurality of wordlines to access at least one 
cell in a row. The wordline can be enabled by gating a word 
line enable signal (WLEN) to an input of a pre-decoder or 
decoder. At the same time, at least one reference wordline 
(RWL) can be turned on along with turning on a selected 
wordline. The reference cell 103' has a similar circuit, size, 
area, and structure as any normal cells except that the refer 
ence cell 103' has a higher pulldown capability than any 
normal cells, presumably the BL and RBL are pre-charged to 
high before accesses. After the reference wordline is turned 
on, the selected reference cell can pulldown a reference bit 
line (RBL) faster than any selected normal cells pulling down 
BLS or BLBs after the selected normal wordline is turned on. 
The RBL can be used to trigger at least one sense amplifier 
(SA) 106" after proper buffering. With this configuration, the 
SA can be activated surely after all cells in the selected normal 
row are turned on and Sufficient signal splits are developed 
between BLS and BLBs. Once the SA is activated, the WL and 
RWL can be turned off by using the same RBL signal to 
de-assert WLEN in the pre-decoders 105" or decoders 104 
after proper buffering. Subsequently, the selected wordline 
and reference wordline drivers in the decoder 104' can be 
de-asserted to turn off the selected wordline and reference 
wordline, respectively. In another embodiment, the pulldown 
strength of the reference cells hung on each reference word 
line can be adjusted by setting a plurality of control signals or 
registers. 

FIG. 6(a) shows a block diagram 60 of a portion of an 
SRAM memory, corresponding to the SRAM in the FIG. 
5(a), according to one embodiment. The SRAM memory 60 
has at least one memory cell array 61, a plurality of reference 
columns 61-1, 61-2, and 61-3 that have at least one reference 
cell 63-1, 63-2, and 63-3, respectively. The reference cell has 
a similar area, device size, circuit, and structure as the normal 
cells. The pulldown devices in three reference cells on the 
same wordline can be combined to provide three times of 
pulldown capability than a normal cell. 

FIG. 6(b) shows a schematic of a reference cell triple 80, 
corresponding to the reference cell 103 in FIG.5(a), reference 
cell 103' in FIG. 5(b), or reference cells 63-1 through 63-3 in 
FIG. 6(a), according to one embodiment. The reference cell 
triple 80 has three reference cells 70-1, 70-2, and 70-3. Each 
reference latch has two cross-coupled inverters 71 and 72 to 
constitute a latch. The latch has a node N coupled to a source 
of an NMOS 73 and whose drain is coupled to a BLin. The 
latch has another node NB coupled to a source of another 
NMOS 74 and whose drain is coupled to a RBL. The gates of 
the NMOS 73 and 74 are coupled to a reference wordline 
(RWL) or wordline (WL). The reference cells 70-1, 70-2, and 
70-3 can be modified from normal cells by coupling NB1 
and NB2 of the reference cells 70-1 and 70-2 to NB3 of the 
reference cell 70-3 to triple the pulldown capability, if BLin 
1. BLin2, and BLin3) are set to high. BLin1). BLin2), or 
BLin3 can be optionally set to high or low to adjust the 
pulldown strength so that the turn-on time of RBL can be 
adjusted accordingly. BLin1). BLin2), or BLin3) can also 
be controlled by setting three register bits. In another embodi 
ment, the invert 71 can be omitted from schematic/layout 
database or disabled by removing contact(s) or Via(s). 

FIG. 6(c) shows a schematic of a reference cell triple 80', 
corresponding to the reference cell 103 in FIG.5(a), reference 
cell 103' in FIG. 5(b), or reference cells 63-1 through 63-3 in 
FIG. 6(a), according to one embodiment. The reference cell 
triple 80' has three reference cells 70'-1,70'-2, and 70'-3. Each 
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8 
reference latch has two cross-coupled inverters 71' and 72 to 
constitute a latch. The latch has a node N coupled to a source 
of an NMOS 73' and whose drain is coupled to a BLin. The 
latch also has a node NB coupled to a source of an NMOS 74 
and whose drain is coupled to a RBL. The source and drain of 
the NMOS 73' are shorted to allow the BLin pulling RBL low 
easier. The gates of the NMOS 73' and 74" are coupled to a 
reference wordline (RWL) or wordline (WL). The reference 
cells 70'-1, 70'-2, and 70'-3 can be modified from normal cells 
by coupling the NBL1 and NBL2 of the reference cells 70'-1 
and 70'-2 to NB3 of the reference cell 70'-3 to triple the 
pulldown capability, if BLin1). BLin2, and BLin3) are set 
to high. BLin1, BLin2), or BLin3 can be optionally set to 
high or low to adjust the pulldown strength so that the turn-on 
time of RBL can be adjusted accordingly. BLin1, BLin2, 
or BLin3) can also be controlled by setting three register bits. 
In another embodiment, the invert 71" can be omitted from 
schematic/layout database or disabled by removing contact 
(s) or Via(s). 

FIG. 6(d) shows a schematic of a reference cell triple 80". 
corresponding to the reference cell 103 in FIG.5(a), reference 
cell 103' in FIG. 5(b), or reference cells 63-1 through 63-3 in 
FIG. 6(a), according to yet another embodiment. The refer 
ence cell triple 80" has three reference cells 70"-1, 70"-2, and 
70'-3. Each reference cell has two inverters 71" and 72" 
modified from a cross-coupled latch in an SRAM cell. The 
inverter 72" has an input node coupled to a BLinandan output 
node NB coupled to a source of an NMOS 74" and whose 
drain is coupled to a RBL. An NMOS 73" can be coupled 
between the input of the inverter 72" and the BLin, used as a 
dummy transistor with the Source or drain floating, or simply 
omitted from the schematic or layout. The gates of the NMOS 
73" and 74" are coupled to a reference wordline (RWL) or 
wordline (WL). The reference cells 70"-1, 70"-2, and 70"-3 
also have another inverter 71" modified from normal cell that 
has an input coupled to BLin and an output coupled to NB to 
double the pulldown capability. The reference cells 70"-1, 
70"-2, and 70"-3 can be modified from normal cells by cou 
pling the NB1 and NBL2 of the reference cells 70"-1 and 
70"-2 to NB3 of the reference cell 70"-3 to triple the pull 
down capability, if BLin1, BLin2, and BLin3) are set to 
high. BLin1). BLin2), or BLin3 can be optionally set to 
high or low to adjust the pulldown strength so that the turn-on 
time of RBL can be adjusted accordingly. BLin1, BLin2, 
or BLin3) can also be controlled by setting a plurality of 
register bits. 

FIGS. 6(a), 6(b), 6(c), and 6(d) only show a few of many 
possible embodiments of reference cells. For example, the 
NMOS 73' in FIG. 6(c) or NMOS 73" in FIG. 6(d) can be 
removed from the schematic/layout database or disabled by 
omitting a single or plurality of contact or via. Similarly, the 
inverter 71" in FIG. 6(c) can be removed from the schematic/ 
layout database or disabled by omitting a single or plurality of 
contact or via. The number of reference cells in a wordline or 
reference wordline may vary. The number of normal/refer 
ence rows or columns may vary too. It is desirable to place the 
reference cell near the far end of a wordline or reference 
wordline driver so that the selected reference cell can be 
turned on later than any selected normal cells. In general, it is 
more desirable to keep the transistors in the reference cells 
intact as the normal cells, but omitting some contact(s)/via(s) 
or using metal 1 or metal 2 for re-wiring. The more the 
reference cell resembles to the normal cell, the better the 
tracking capability. The above discussions are for illustrative 
purposes. There are many variations and equivalent embodi 
ments of building reference cells, and that are all within the 
scope of this invention for those skilled in the art. 
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FIG. 7 shows a block diagram 50' of a portion of address 
buffers, pre-decoders, and decoders according to one embodi 
ment. The schematic 50' has a plurality of address buffers 57", 
pre-decoders 58', and decoders 59'. The address buffer 57 
consists of inverters 51-1,51'-2 and 51'-3 to generate true and 
complement addresses, respectively. The pre-decoder 58' has 
a multi-input NAND 52'-1 and followed by a buffer 52-2. The 
decoder 59' has a multi-input NAND 53'-1 and followed by a 
wordline driver 53'-2 to drive a wordline. There are plural of 
address buffers coupled to plural of pre-decoders, and then 
the pre-decoders are further coupled to plural of decoders to 
fully decode the entire address space to generate a plurality of 
wordlines. A wordline enable (WLEN) can be provided to one 
of the inputs in the decoder 59', or to a pre-decoder 58', to 
shorten the wordline on/off time delay. WLEN can be gener 
ated from the RBL through a multi-tap delay line 54'. The 
delay line 54' can be controlled by a plurality of control 
signals or a plurality of registers. This scheme can improve 
the wordline turn off time much more precisely than in the 
prior art as shown in FIG. 4. 

FIG. 8 shows a block diagram of a portion of an SA sche 
matic 90 with an input multiplexer according to one embodi 
ment. The block diagram 90 has two columns, top column 98 
and bottom column99, and an SA97. The SA97 has a PMOS 
91-1 and an NMOS 91-2 constructed as an inverter with input 
QB and output Q, but the source of NMOS 91-2 is coupled to 
ground through an NMOS 95. The SA 97 also has a PMOS 
92-1 and an NMOS 92-2 constructed as an inverter with input 
Q and output Oft but the source of NMOS 92-2 is coupled to 
ground through the same NMOS 95. The gate of NMOS 95 is 
coupled to an SA enable (SE). Nodes Q and QB are coupled 
to BLU and BLUB through PMOS 93-1 and 94-1, respec 
tively. The gates of PMOS 93-1 and 94-1 are coupled to a 
sense amplifier upper input enable bar (SIUB). Nodes Q and 
QB are also coupled to BLL and BLLB through PMOS 93-2 
and 94-2, respectively. The gates of PMOS 93-2 and 94-2 are 
coupled to a sense amplifier lower input enable bar (SILB). 
The BLU and BLUB are the bitline and bitline bar of the 
upper column. Similarly, the BLL and BLLB are the bitline 
and bitline bar of the lower column. The upper and lower 
column 98 and 99 can share the same SA with two different 
input selects SIUB and SILB to select the upper BLS or the 
lower BLs, respectively. 

FIG. 9 shows a flow chart 700 depicting a method to self 
timed read accesses, according to one embodiment. The pro 
cedure starts at 710 to select addresses for memory access. 
Normally, the addresses are latched in flip-flops or latches and 
triggered by a clock transition for a new memory access. A 
wordline Enable (WLEN) can be generated from a clock CLK 
with a proper delay line in step 720. Subsequently a wordline 
(WL) can be selected when the addresses and WLEN go 
through the address buffers, pre-decoders, and decoders to a 
wordline driver in step 730. Then the bitline pull-ups can be 
turned offin step 740 to save power and to speed up BL/BLB 
pulldown. At least one reference cell can be turned on to 
activate RBL when a wordline and/or a reference wordline is 
turned on in step 750. The RBL can be used to trigger at least 
one SA after proper buffering in step 760. After SA is acti 
vated, the WLEN and BL pullup can be de-asserted by using 
RBL after proper buffering in step 770. Finally, the data from 
SA outputs can be sent to I/Os after some buffering. Then, the 
read access is completed and the procedure stops in step 799. 
Similar procedure can be applied to self-timed write. 
The method 700 is described in the context a self-timed 

SRAM, such as the SRAM memory 100 in FIG. 5(a) or 100' 
in FIG. 5(b). In addition, although described as a flow of 
steps, one of ordinary skilled in the art will recognize that at 
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10 
least some of the steps may be performed in a different order, 
including simultaneously, or skipped. 

FIG. 10 shows a processor system 600 according to one 
embodiment. The processor system 600 can include an 
SRAM cell or reference cell 644, such as in a cell array 642, 
in a self-timed SRAM memory 640, according to one 
embodiment. The processor system 600 can, for example, 
pertain to an electronic system. The electronic system can 
include a Central Process Unit (CPU) 610, which communi 
cate through a common bus 615 to various memory and 
peripheral devices such as I/O 620, hard disk drive 630, 
CDROM 650, self-timed SRAM memory 640, and other 
memory 660. Other memory 660 is a conventional memory 
such as conventional SRAM, DRAM, or flash, typically inter 
faces to CPU 610 through a memory controller. CPU 610 
generally is a microcontroller, microprocessor, a digital sig 
nal processor, or other programmable digital logic devices. 
Self-timed SRAM Memory 640 is preferably constructed as 
an SRAM cell or reference cell device 644. The memory 640 
typically interfaces to CPU 610 through a bus interface unit. 
If desired, the memory 640 may be combined with the pro 
cessor, for example CPU 610, in a single integrated circuit. 
The invention can be implemented in a part or all of an 

integrated circuit in a Printed Circuit Board (PCB), in a sys 
tem, or as a method. The above description and drawings are 
only to be considered illustrative of exemplary embodiments, 
which achieve the features and advantages of the present 
invention. Modifications and Substitutions of specific process 
conditions and structures can be made without departing from 
the spirit and scope of the present invention. 
The many features and advantages of the present invention 

are apparent from the written description and, thus, it is 
intended by the appended claims to cover all such features 
and advantages of the invention. Further, since numerous 
modifications and changes will readily occur to those skilled 
in the art, it is not desired to limit the invention to the exact 
construction and operation as illustrated and described. 
Hence, all Suitable modifications and equivalents may be 
resorted to as falling within the scope of the invention. 

What is claimed is: 
1. A SRAM memory, comprising: 
a plurality of SRAM cells having a bitlines (BL) and word 

line (WL) that can be selected for access; 
at least one reference cell having a reference bitline in 

(B.Lin) and a reference bitline (RBL) that can be selected 
from one of a plurality of wordlines or from at least one 
reference wordline, the reference cell being selectable 
not earlier than any selected SRAM cells and the RBL 
being activatable not later than any selected SRAM cells 
to activate the selected BL: 

at least one sense amplifier to sense signals coupled to the 
selected BL from the at least one selected SRAM cell 
and convert the signals into digital data; and 

wherein the sense amplifier can be activated by the RBL 
signal to track the wordline and BL propagating delay, 

wherein the reference cell has at least one logic gate with an 
input coupled to BLin and an output NB coupled to 
RBL, and 

wherein the RBL is activated by setting BLin at a voltage 
near a Supply Voltage or ground once the wordline or 
reference wordline is selected. 

2. A SRAM memory as recited in claim 1, wherein the at 
least one reference cell is placed near the far end of a driver to 
drive a selected wordline or a reference wordline. 

3. ASRAM memory as recited in claim 1, wherein the logic 
gate comprises an inverter. 
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4. A SRAM memory as recited in claim 3, wherein the 
inverter in a reference cell have substantially the same device 
size, shape, and layout style of an inverter in an SRAM cell. 

5. A SRAM memory as recited in claim 3, wherein the 
output nodes NB of a plurality of reference cells in the same 
selected wordline or reference wordline are coupled together. 

6. A SRAM memory as recited in claim 3, wherein the 
BLin of the reference cells of the same selected wordline or 
reference wordline are coupled to a plurality of registers, 
whose contents can be loaded with data. 

7. A SRAM memory as recited in claim 1, wherein the 
turn-off of the selected wordline or reference wordline is 
controlled by the activation of the RBL. 

8. A SRAM memory as recited in claim 7, wherein the 
wordline or reference wordline is generated from at least one 
pre-decoder and decoder, which can be turned off by the 
activation of the RBL to at least one of the pre-decoder and/or 
decoder. 

9. An electronics system, comprising: 
a processor; and 
an SRAM memory operatively connected to the processor, 

the SRAM memory comprising: 
a plurality of SRAM cells having at least a bitline (BL) 
and a wordline that can be selected for access; 

at least one reference cell having a reference bitline in 
(B.Lin) and a reference bitline (RBL) that can be 
selected from one of a plurality of wordlines or from 
a reference wordline, where the reference cell can be 
selected not earlier than any selected SRAM cells and 
can activate RBL not later than any selected SRAM 
cell to activate the selected BL; and 

at least one sense amplifier to sense signals coupled from 
the selected BL from the at least one selected SRAM 
cell and convert the signals into digital data, 

wherein the sense amplifier can be triggered by the RBL 
signal to track the wordline and BL propagating delay, 

wherein the reference cell has at least one logic gate with an 
input coupled to BLin and an output NB coupled to 
RBL, and 

wherein the RBL is activated by setting BLin at a voltage 
near a supply Voltage or ground once the wordline or 
reference wordline is selected. 

10. ASRAM memory as recited in claim 9, wherein the at 
least one reference cell is placed near the far end of a driver to 
drive a selected wordline or a reference wordline. 

11. A SRAM memory as recited in claim 9, wherein the 
logic gate comprises an inverter. 

12. A SRAM memory as recited in claim 11, wherein the 
logic gate in a reference cell has substantially the same device 
size, shape, and layout style of a logic gate in an SRAM cell. 
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13. A SRAM memory as recited in claim 11, wherein the 

output nodes NB of a plurality of reference cells in the same 
selected wordline or reference wordline are coupled together. 

14. A SRAM memory as recited in claim 11, wherein the 
BLin of the reference cells of the same selected wordline or 
reference wordline are coupled to a plurality of registers, 
whose contents can be loaded with data. 

15. A SRAM memory as recited in claim 11, wherein the 
turn-off of the selected wordline or reference wordline is 
controlled by the activation of the RBL. 

16. A SRAM memory as recited in claim 11, wherein the 
selected wordline or reference wordline is generated from at 
least one pre-decoder and decoder, which can be turned offby 
the activation of the RBL to at least one of the pre-decoder 
and/or decoder. 

17. A method for providing a self-timed SRAM memory, 
comprising: 

(i) providing a plurality of SRAM cells having at least a 
bitline (BL) and a wordline that can be selected for 
access, (ii) at least one reference cell having a bitline in 
(B.Lin) and a reference bitline (RBL) that can be selected 
from a wordline or a reference wordline; (iii) at least one 
sense amplifier to sense signals from the selected BL 
from the at least one selected SRAM cell and convert the 
signals into digital data; and (iv) the reference cell can be 
selected not earlier than any selected SRAM cells and 
can activate RBL not later than any selected SRAM cells 
to activate the selected BL, 

wherein the sense amplifier is triggered by the activation of 
RBL to track the wordline and BL propagation delay, 

wherein the reference cell has at least one logic gate with an 
input coupled to BLin and an output NB coupled to 
RBL, and 

wherein the RBL is activated by setting BLin at a voltage 
near a supply Voltage or ground once the wordline or 
reference wordline is selected. 

18. A method for providing a self-timed SRAM memory as 
recited in claim 17, wherein the RBL is activated by setting 
BLin at the Voltage near the supply voltage once the wordline 
or reference wordline is selected. 

19. A method for providing a self-timed SRAM memory as 
recited in claim 18, wherein the at least one logic gate com 
prises an inverter and/or a reference pass transistor in a ref 
erence cell have substantially the same device size, shape, and 
layout style of at least one logic gate and/or a cell pass tran 
sistor in an SRAM cell. 

20. A method for providing a self-timed SRAM memory as 
recited in claim 17, wherein the turn-off of the selected word 
line or reference wordline is controlled by the activation of the 
RBL. 


