
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0201807 A1

WHITE et al.

US 201402O1807A1

(43) Pub. Date: Jul. 17, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(63)

(60)

SYSTEMIS AND METHODS FORENFORCING
SECURITY IN MOBILE COMPUTING

Applicant: Optio Labs, Inc., Boston, MA (US)

Inventors: Christopher Jules WHITE, Nashville,

Assignee:

Appl. No.:

Filed:

TN (US); Brian DOUGHERTY,
Nashville, TN (US); David Alexander
HAMRICK, Nashville, TN (US);
Grayson Gates SHARPE. Louisville,
KY (US); Robert Austin HANLIN,
Nashville, TN (US): Krzysztof Kamil
ZIENKIEWICZ, Nashville, TN (US);
Christopher Michael THOMPSON,
Nashville, TN (US); Thomas Charles
CLANCY, III, Washington, DC (US)

Optio Labs, Inc., Boston, MA (US)

14/210,382

Mar 13, 2014

Related U.S. Application Data
Continuation-in-part of application No. 13/735,885,
filed on Jan. 7, 2013.
Provisional application No. 61/780,408, filed on Mar.
13, 2013, provisional application No. 61/781.252,
filed on Mar. 14, 2013, provisional application No.

61/781,509, filed on Mar. 14, 2013, provisional appli
cation No. 61/779,931, filed on Mar. 13, 2013, provi
sional application No. 61/790,728, filed on Mar. 15,
2013.

Publication Classification

(51) Int. Cl.
H04L 29/06 (2006.01)

(52) U.S. Cl.
CPC H04L 63/0236 (2013.01)
USPC ... 726/1; 726/29

(57) ABSTRACT

Methods and systems described herein relate to enhancing
security on a device by configuring one or more software
functions in a trusted Zone of a processor using object fire
walls, IPC mechanisms, and/or a policy engine. An inter
process communication mechanism and inter-process com
munication bus enable secure inter-process communication
between inter-process communication applications within
the trusted Zone and inter-process communication applica
tions external to the trusted Zone. Adapting, filtering, block
ing, redirecting, or otherwise modifying inter-process com
munications is enabled by the inter-process communications
mechanism. Modifications may be controlled by a policy
engine within the trusted Zone.

SYSTEM
102

TRUSTED COE

ZONE 146

APPLICATION110

VIRTUALMACHINE112

NATIVE LIBRARY114

OPERATING SYSTEM118

SYSTEM

CONTROLLER 134

OBJECT FREWALL

144

PC
CONTROLLER 133A PC

CONTROLLER 138B

CAMERA152

POLICY ENGINE118

POLICY 130

PRWILEGED CODE
SERVICE140

SYSTEM
EXECUTION 136

CALL IPCBUS 132

COMMUNICATION FACILITY150

HIGH PRIORITYDATA
158

LOWPRIORITYDATA POLICYSERVER 106

160 WHITEFBLACKLIST120

SIGNING/NAMING122

CHECKSUMALIBRARY ANALYSES124

APPLICATION/PROCESS/USER GROUP
DEVICE U154 PERMISSIONS 126

OTHER CHECKS128
POWERMANAGEMENT
FACILITY162

SYNCHRCNIZATION
FACILITY164

CLOUD/NETWORKING

MALWARESYSTEM108 BUSINESSSYSTEM148

US 2014/02O1807 A1 Jul. 17, 2014 Sheet 2 of 12 Patent Application Publication

9Õ? HEAHES MOITOd

ZÕŽ Sng V LVCI
ÕT? (S)NOILVOITddV

US 2014/02O1807 A1 Jul. 17, 2014 Sheet 3 of 12 Patent Application Publication

SHAON ?Z? SSBOOnS L'HOdEH?7Õ? JEHSNVAL OLVIVQ

US 2014/02O1807 A1

ONSEA

Jul. 17, 2014 Sheet 4 of 12 Patent Application Publication

US 2014/02O1807 A1

888T HETTO H_LNOO
Dd||

Jul. 17, 2014 Sheet 5 of 12 Patent Application Publication

3?? ENIÐNE MOITOd

US 2014/02O1807 A1 Jul. 17, 2014 Sheet 7 of 12 Patent Application Publication

3?? BNIÐNE MOITOd

Odl

9?? VNELSAS ?NILVYJEdO ÕT? NOILVOITddV

US 2014/02O1807 A1 Jul. 17, 2014 Sheet 8 of 12 Patent Application Publication

SSsssssssssssssssrar

US 2014/02O1807 A1 Jul. 17, 2014 Sheet 9 of 12 Patent Application Publication

SILNE WEITE

US 2014/02O1807 A1

HOIAECI ANE

|dW/SSHOOdd|IdV/SSHOOHd
800T IXELNOO

Jul. 17, 2014 Sheet 10 of 12 Patent Application Publication

?õ? ©NIXIHONALEN/GI?OTO

US 2014/02O1807 A1 Jul. 17, 2014 Sheet 11 of 12

ZOTT HEAHHSZÕ? WELSÅS

Patent Application Publication

US 2014/02O1807 A1 Jul. 17, 2014 Sheet 12 of 12 Patent Application Publication

F?? ?NDIHOVALEN/CIDOTO
OZZI

US 2014/020 1807 A1

SYSTEMS AND METHODS FORENFORCING
SECURITY IN MOBILE COMPUTING

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation-in-part of and
claims priority to and benefit of United States Non-Provi
sional application Ser. No. 13/735,885, entitled “Systems and
Methods for Enforcing Security in Mobile Computing, filed
Jan. 7, 2013. Some of the aspects of the methods and systems
described herein have been described in U.S. Provisional
Application Nos. 61/780,408 entitled “Systems And Methods
To Synchronize Data To A Mobile Device Based On A Device
Usage Context”, filed Mar. 13, 2013: 61/781.252 entitled
“Systems And Methods To Secure Short-Range Proximity
Signals', filed Mar. 14, 2013: 61/781,509 entitled “Systems
And Methods For Securing And Locating Computing
Devices', filed Mar. 14, 2013: 61/779,931 entitled “Systems
And Methods For Securing The Boot Process Of A Device
Using Credentials Stored On An Authentication Token, filed
Mar. 13, 2013; and 61/790,728 entitled “Systems And Meth
ods For Enforcing Security InMobile Computing, filed Mar.
15, 2013, each of which is hereby incorporated by reference
herein in its entirety.

BACKGROUND

0002 1. Field
0003. The present invention is related to mobile device
security.
0004 2. Description of the Related Art
0005 Software and data related security of current
devices, especially mobile devices, rely on a variety of fea
tures including virtual machines, inter-process communica
tion, package managers, mobile device management systems,
touch screen Software components, shared memory, rela
tional databases, device configuration signature checking,
specialized debugging interfaces (e.g. Android Debug
Bridge, and the like), trusted daemon processes, and the like.
In an example, Android mobile devices use checks on inter
process communication to determine if an application should
gain access to a particular system resource. Such as the user's
contact list. Virtual machine security checks, such as deter
mining whether or not a specific native library should be
loaded, are also employed.
0006. A key challenge with mobile devices is that it is
difficult to ensure the integrity of the very software that is
relied upon to provide security (e.g. virtual machine, device
I/O, inter-process communication, specialized debugging
interfaces, and other components). A need exists for systems
that provide security, Such as by enforcing data provenance,
protecting against malware and enforcing security policies
via inter-process communications mechanisms.

SUMMARY

0007. In embodiments, methods and systems of providing
secured inter-process communications include operating an
inter-process communications mechanism within a trusted
code Zone of the device. An inter-process communications
bus is extended from outside the trusted code Zone into the
trusted code Zone of the device, and inter-process communi
cations are performed on the bus between services on the
device and user-space applications not within the trusted code
Zone. The inter-process communications are adapted by the

Jul. 17, 2014

inter-process communications mechanism. In some embodi
ments, the services on the device are located within the trusted
code Zone.
0008. In embodiments, the inter-process communications
are filtered, blocked, or otherwise modified by the inter-pro
cess communications mechanism in accordance with a policy
determined by a policy engine. The policy engine may also be
located within the trusted code Zone. In some embodiments,
the service is a user input service. Such as a user input service
for a touchscreen. Inter-process communications may
include various types of data, including financial information.
In embodiments, requests for inter-process communication
with a user-space application not within the trusted code Zone
is redirected to a trusted equivalent version of the user-space
application located within the trusted code Zone. The inter
process communications mechanism may perform this redi
rection.
0009. In embodiments, method and systems of filtering
access to a resource having one or more inter-process control
paths between two or more objects that are controlled by one
or more object firewalls in the device may use a processor to
control access to the resource from an application based on a
policy. Controlling access to the resource from an application
based on a policy may comprise providing the policy and
filtering access through the inter-process control path to the
object providing access to the resource.
0010. In embodiments, methods and systems may further
comprise using a computer processor to generate a device
based context based on one or more of the current date and
time, the current location of the device, the identity of a
current user of the device, the identity of each application
currently executing on the device, and the identity of each
resource currently in use.
0011. In embodiments, controlling access to the device
resource from an object associated with an application based
upon apolicy may comprise providing a context-aware policy
engine to control access to the resource. In embodiments, the
context-aware policy may be enabled to communicate with a
policy server to communicate one or more policies.
0012. In embodiments, the policy governing the inter-pro
cess communications to the object may be a context-related
policy.
0013. In embodiments, the resource may be one of a net
work connection, a cellular connection, a keyboard, a touch
interface, an operating system, an application, a part of an
application programming interface, a Software driver, a data
base, a port, a wireless communication interface, and a
secured area in memory.
0014. In embodiments, the object firewall may record
resource access attempts.
0015. In embodiments, the object firewall may be stored in
a centralized object registry.
0016. In embodiments, the objects providing access to the
resource are stored in a centralized registry.
0017. In embodiments, the policies may be authored using
a graphical user interface, which may be stored in a first
format, translated into a second format for transmission to a
device, and may be parsed by a receiving device in order to
determine how to configure one or more object firewalls.
0018. In embodiments, a computer processor may be used
to control and configure the object firewalls in a single pro
cess associated with a device security system.
0019. In embodiments, methods and systems of enforcing
distributed policies in a mobile network may comprise at least

US 2014/020 1807 A1

one processor adapted to provide an inter-process communi
cations firewall on a device to enforce one or more rules
governing communication between at least two systems that
may communicate via the device, wherein the at least one
processor is adapted to generate, via a policy engine associ
ated with the inter-process communications firewall, an indi
cator of the context of at least one of the systems that com
municate via the device, and said at least one processor
adapted to determine whether a communication between the
at least two systems is permitted by the inter-process com
munications firewall based on a policy and the context of at
least one of the systems.
0020. In embodiments, the at least one processor may be
adapted to provide a plurality of inter-process communica
tions firewalls on a device. In embodiments, said firewalls
may be provided to enforce one or more rules governing
communication between at least two systems that may com
municate via the device.

0021. In embodiments, the at least one processor may be
adapted to generate the policy engine wherein the policy
engine is enabled to communicate with a policy server to
communicate one or more policies.
0022. In embodiments, the policy may be comprised of
one or more of a black list, a white list a signing policy, a
naming policy, a checksum analysis policy, a library analysis
policy, and a permission for one or more of an application, a
process, a user, and a group of users.
0023. In embodiments, the inter-process communications
firewall may be an object-oriented firewall. In embodiments,
the object-oriented firewall may be associated with an appli
cation executing on the device.
0024. In embodiments, the at least one processor adapted
to determine whether a communication between the at least
two systems is permitted by the inter-process communica
tions firewall may be adapted to determine, based on the
content of the communication, whether a communication
between the at least two systems is permitted by the inter
process communications firewall.
0025. In embodiments, methods and systems of securing a
mobile device from malware may comprise using a computer
processor to pass a remote procedure call from a first appli
cation to an inter-process control data bus, requesting, from a
policy engine by the inter-process control data bus, a policy
validation for the remote procedure call, determining by the
policy engine whether to approve the remote procedure call
based on the context of the remote procedure call and a stored
policy, communicating the determination from the policy
engine back to the inter-process control data bus, and at least
one of permitting and blocking the remote procedure call by
the inter-process control data bus in response to the determi
nation.

0026. In embodiments, passing the remote procedure call
may comprise passing a remote procedure call for a second
object associated with a second application from first object
associated with a first application to an inter-process control
data bus.

0027. In embodiments, the policy engine may be enabled
to communicate with a policy server to communicate one or
more policies.
0028. In embodiments, the methods and systems of secur
ing a mobile device from malware may comprise providing
an inter-process controller for installing new object firewalls
as new objects are created.

Jul. 17, 2014

0029. In embodiments, the methods and systems of secur
ing a mobile device from malware may comprise at least one
of permitting and blocking the remote procedure call by the
inter-process control data bus in response to the determina
tion, wherein the at least one of permitting and blocking the
remote procedure call by the inter process control data bus in
response to the determination may further comprise at least
one of permitting the remote procedure call without modifi
cation, permitting the remote procedure call with modified
contents of the remote procedure call, permitting the remote
procedure with a modified return value of the data sent from
a resource in response to the remote procedure call, blocking
the remote procedure call, logging the remote procedure call,
ignoring the remote procedure call, modifying one or more
firewall rules, adding one or more firewall policies, and
removing one or more firewall policies.
0030. In embodiments, the methods and systems of secur
ing a mobile device from malware may comprise a context
aware policy engine. In embodiments, the context-aware
policy engine may be further enabled to generate a system
specific context, said system-specific context comprising one
or more of the current date, the current time, the location of
the mobile device, the identity of the device user, and appli
cations currently executing on the mobile device.
0031. These and other systems, methods, objects, fea
tures, and advantages of the present invention will be appar
ent to those skilled in the art from the following detailed
description of the preferred embodiment and the drawings.
All documents mentioned herein are hereby incorporated in
their entirety by reference.

BRIEF DESCRIPTION OF THE FIGURES

0032. In the drawings, which are not necessarily drawn to
scale, like numerals may describe substantially similar com
ponents throughout the several views. Like numerals having
different letter suffixes may represent different instances of
Substantially similar components. The drawings illustrate
generally, by way of example, but not by way of limitation, a
detailed description of certain embodiments discussed in the
present document.
0033 FIG. 1 depicts methods and systems for securing a
device.
0034 FIG. 2 depicts a system with a policy engine.
0035 FIG. 3 depicts a method for determining whether a
data transfer between applications may be allowed.
0036 FIG. 4 depicts a method for determining whether a
system call should occur.
0037 FIG. 5 depicts a system with a plurality of object
firewalls.
0038 FIG. 6 depicts a mobile computing system including
a virtual machine and policy engine.
0039 FIG. 7 depicts policy engine communicating with
the virtual machine to control native library usage.
0040 FIG. 8 depicts use of a trusted Zone for various
mobile device software features.
0041 FIG. 9 depicts virtually extending a mobile device
IPC bus into the trusted Zone.
0042 FIG. 10 depicts methods and systems for mobile
security via aspect-oriented programming.
0043 FIG. 11 depicts a system for dynamic synchroniza
tion associated with a device.
0044 FIG. 12 depicts a system for providing customer
location and identification.

US 2014/020 1807 A1

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0045. Detailed embodiments of the present invention are
disclosed herein; however, it is to be understood that the
disclosed embodiments are merely exemplary of the inven
tion, which may be embodied in various forms. Therefore,
specific structural and functional details disclosed herein are
not to be interpreted as limiting, but merely as a representative
basis for teaching one skilled in the art to variously employ
the present invention in virtually any appropriately detailed
structure. Further, the terms and phrases used herein are not
intended to be limiting, but rather to provide an understand
able description of the invention.
0046 Mobile devices, such as Smartphones, tablets and
other web-connected devices are proliferating, both for use as
business tools and for personal use. Such mobile devices may
provide a platform for collecting, storing, processing and
communicating data. In many cases, such data may be per
Sonal and/or confidential. Such as personal contacts, financial
information, and business materials.
0047 Consequent to the proliferation of mobile devices,
mobile security is an increasing area of concern in the field of
mobile computing. Mobile security may be implemented in a
variety of ways. As disclosed herein, several ways of provid
ing mobile security may include protecting the data stored
and communicated by the mobile devices and controlling the
ability of the software on the devices to access other
SOUCS.

0.048. In embodiments, methods of securing a device may
include filtering access to a device or system resource by
controlling access based upon a policy, wherein the policy
may be applied by a firewall to filter and/or control the inter
process control paths by which messages may be delivered
between the objects that control the system resources, based
on a policy governing the inter-process communication
between the objects. In some embodiments, the device may
be a cellular phone, such as an iPhone, a Motorola Droid Razr
Maxx, a HTC One X, a Samsung Focus 2, a Samsung Gusto
2, or some other cellular phone. In other embodiments, the
device may be a tablet, such as an iPad, an Asus Eee Pad
Transformer Prime, a Sony Tablet S, a Samsung Galaxy Tab
10.1, or some other tablet. The device resource may be a
network connection, a cellular connection, a keyboard, a
touch interface, an operating system, an application, or some
other resource. A system resource may be a software driver, a
database, a method of an application programming interface,
a port, a wireless communication interface, a secured area in
memory or some other resource. The inter-process commu
nication may be provided by any inter-process communica
tion mechanism, Such as the Android Binder, Unix Domain
Sockets, or shared memory. Prior art, such as Androids per
mission system for applications, does not provide object fire
walls and requires that the receiving object providing access
to the system resource enforces its own policies on received
inter-process communications.
0049. The policy may state that a request to access a
resource should be filtered and/or modified based on one or
more criteria. In some embodiments, the policy may state that
a request should be filtered based on the source of the request
to access the resource. For example, the policy may state that
requests to access the resource should be filtered based on the
name or type of application making the request. In embodi
ments, the policy may state that a request should be filtered
based on the resource. For example, the policy may state that

Jul. 17, 2014

any requests to use the cellular connection should be filtered.
In other embodiments, the policy may state that a request
should be filtered based on the requested outcome of or data
included in the access. For example, the policy may state that
a request to access the network connection to send data to
www.google.com should be filtered.
0050. The inter-process control (IPC) path between the
objects may be controlled by one or more object-oriented
firewalls. In some embodiments, there may be one object
firewall per object associated with an application. The object
firewalls may implement the policy, for example, by control
ling the inter-process communication from one object to a
receiving object that provides access to a system resource. In
embodiments, controlling access to the resource from an
application may be based on a policy, and may comprise
filtering access to one or more objects providing access to the
resource, wherein said access is through the inter-process
control path. Further, in embodiments, said filtering may be
based on a policy governing inter-process communications to
said one or more objects providing access to the resource. The
object firewalls may obtain the policy from the policy engine.
The policy may be translated, for example, by a policy engine,
into one or more specific settings on a particular object fire
wall. As new objects are created, the IPC controller may
install new object firewalls as needed. The object firewall may
respond to a request of a resource in one or more ways,
including without limitation, that the object firewall may
block the request of the resource, the object firewall may
allow the request of the resource, the object firewall may
modify the contents of the request, the object firewall may
modify the return value of the data sent from the resource, the
object firewall may change the resource requested, the object
firewall may log the request, the object firewall may ignore
the request, the object firewall may change one or more fire
wall rules, and/or the object firewall may add or remove
object firewall rules. In embodiments, the object firewall may
record resource access attempts. The object firewalls may be
stored in a centralized registry. Similarly, the objects provid
ing access to the device and system resources may also be
stored in a centralized registry.
0051. For security purposes, a single process may be asso
ciated with the device security system. In some embodiments,
this process may be enabled to control and configure the
object firewalls.
0052. In embodiments, a secure computing device may
include a device-based context-aware policy engine to
enforce polices relating to the provenance of data between an
application executing on the computing device and another
application computing on the computing device. In some
embodiments, the computing device may be a portable com
puting device. Such as a laptop, a cellular phone or a tablet. In
Some embodiments, one of the applications may be a game,
such as Angry Birds, Smash Cops, Words with Friends or
Some other game. In some embodiments, one of the applica
tions may be a utility, such as the phone application, Skype, a
web browser, a music player or some other utility. In some
embodiments, one of the applications may be a tool. Such as
Twitter, ESPN ScoreCenter, Google Translate or some other
tool. In an embodiment, the second application may be the
operating system.
0053. In embodiments, an authoring tool may be provided
for authoring one or more policies by a user. The authoring
tool may have a browser-based interface. The authoring tool
may have a GUI. The authoring tool may be installed on the

US 2014/020 1807 A1

device and may be used to control and/or create object fire
walls on the device. In embodiments, the authoring tool may
be installed on a remote system. Policies authored may be
stored in one format (e.g. a set of objects and methods stored
in a database), translated to a second format for transmission
to a device (e.g. XML), and parsed by a receiving device to
determine how to configure one or more object firewalls.
0054 The policy engine may generate system-specific
context, which may include one or more of the current date
and time, the computing device location, the identity of the
device user, which applications are executing on the comput
ing device, which applications are consuming which device
resources, and other data related to the context in which the
system resides. In some embodiments, the policy engine may
be connected to a policy server, which may push one or more
policies to the policy engine.
0055. In embodiments, the policy engine may control
access to a resource. For example, enforcing policies related
to the data provenance between the applications may include
evaluating, by the policy engine, a call from the first applica
tion to the second application. The policy engine may evalu
ate the call based on one or more policies, and one or more of
the system context, application context and the context of the
call. The policies may include, for example, system policies,
application policies, and other policies. The policy engine
may use the one or more policies to evaluate the call, includ
ing, without limitation, whether the source of the data is a
trusted source, a permitted Source, or the like, and/or whether
the nature of the data is of a type permitted to be relayed to or
used by the second application. In some embodiments, the
policy engine may also determine, based on the evaluation of
the call, whether any data to be transferred by way of the call
is authorized.
0056. For example, a call from one application to a web
browser to transfer a secured contact list may be evaluated by
the policy engine on mobile phone. The policy engine may
include a policy prohibiting the transmission of any data from
the contact list. Upon evaluating the call, the policy engine
would reject the call and may report a failure to the first
application.
0057. In embodiments, methods of securing a computing
device by may include providing a device-based context
aware policy engine to enforce a policy relating to data prov
enance between a first application executing on the comput
ing device and a second application executing on the
computing device; reviewing, by the device-based context
aware policy engine, a data transfer from the first application
to the second application; and determining, by the device
based context-aware policy engine based on a policy, whether
the data transfer is permitted. In some embodiments, the
computing device may be a portable computing device. Such
as a laptop, a cellular phone or a tablet. In some embodiments,
one of the applications may be a game. Such as Angry Birds,
Smash Cops, Words with Friends or some other game. In
Some embodiments, one of the applications may be a utility,
Such as the phone application, Skype, a web browser, a music
player or some other utility. In some embodiments, one of the
applications may be a tool, such as Twitter, ESPN Score
Center, Google Translate or some other tool. In an embodi
ment, the second application may be the operating system.
0058. A device-based context-aware policy engine may be
enabled to identify the device's context and state, and may
generate a system-specific context. The system-specific con
text may include one or more of the current date and time, the

Jul. 17, 2014

computing device location, the identity of the device user, the
applications currently executing on the device and other con
text-related data. In some embodiments, the policy engine
may be connected to a policy server, which may push one or
more policies to the policy engine.
0059 Enforcing data provenance policies between the
applications may include evaluating, by the policy engine, a
call from the first application to the second application. The
policy engine may evaluate the call based on one or more
policies, and one or more of the system context, application
context and the context of the call. The policies may include,
for example, System policies, application policies, and other
policies. The policy engine may use the one or more policies
to evaluate the call. In some embodiments, the policy engine,
may also determine, based on the evaluation of the call,
whether any data to be transferred by way of the call is
authorized.
0060 Reviewing a data transfer, by the device-based con
text-aware policy engine, may include generating a context
specific to the received remote procedure call. In some
embodiments, the context may include the identity of the first
application.
0061. Determining whether the data transfer is permitted
may include evaluating the data transfer request Subject to
one or more available policies. The determination may be
based on a comparison of the context against a policy. Such
policies may include, for example, a system policy, an appli
cation policy, a system context-related policy, an application
context-related policy, a policy regarding the content of the
requested data transfer, or some other policy.
0062. In embodiments, methods of enforcing distributed
policies in mobile networks may include providing an inter
process communications firewall on a device to enforce rules
governing communication between two systems and/or Sub
systems; generating, by a policy engine associated with the
inter-process communications firewall, a system context; and
determining, by the inter-process communications firewall,
whether the communication is permitted. In some embodi
ments, the determination of whether the communication is
permitted by the inter-process communications firewall may
be based on one or more of a policy, a system context, and/or
the content of the communication.
0063. In some embodiments, the distributed policies may
include one or more policies such as a black/white list, a
signing and/or naming policy, a checksum/library analysis
policy, a permission for one or more of an application, a
process, a user, a group of users, and other policies. In some
embodiments, the policy may be stored on a policy server
connected to the mobile network. The policy may also be
stored in a policy engine on the device. A black list may
identify one or more prohibited actions. For example, an
application black list may comprise a list of application IDs
for applications prohibited from executing on the device. A
white list may identify one or more allowed actions. For
example, an application white list may comprise a list of
application ids for applications that are permitted to execute
on the device.
0064. The inter-process communications firewall may be
an object-oriented firewall related to one or more objects in an
application. In some embodiments, the inter-process commu
nications firewall may communicate with an IPC controller to
control communications between the object related to the
inter-process communications firewall and a second object.
The second object may be related to a second application.

US 2014/020 1807 A1

0065. In some embodiments, generating a system context
by the policy engine may include the current date and time,
the device location, identity of the device user or some other
COInteXt.

0.066. In embodiments, a secure computing system may
include an operating system adapted to secure the systems
processes by filtering the processes using inter-process com
munications (IPC). The computing system may be a mobile
device, such as a cellular phone, an MP3 player, a tablet and
a laptop. In some embodiments, the device may be a cellular
phone, such as an iPhone, a Motorola Droid Razr Maxx, a
HTC OneX, a Samsung Focus 2, a Samsung Gusto 2, or some
other cellular phone. In other embodiments, the device may
be a tablet, such as an iPad, an Asus Eee Pad Transformer
Prime, a Sony Tablet S, a Samsung Galaxy Tab 10.1, or some
other tablet. Examples of operating systems include, but are
not limited to, Android, BlackBerry OS, iOS, Symbian OS,
Windows Phone and Chrome OS.

0067. The way in which the filtering of the processes using
IPC may be implemented may depend on the particular oper
ating system. In some embodiments, the operating system
may use a universal resource identifier (URI) instead of the
inter-process communications, for example, in iOS.
0068. In embodiments, a secure computing system may
include an operating system adapted to secure the computing
system's processes by commanding and controlling pro
cesses using inter-process communications (IPC). The com
puting system may be a mobile device, such as a cellular
phone, an MP3 player, a tablet and a laptop. Examples of
operating systems include, but are not limited to, Android,
BlackBerry OS, iOS, Symbian OS, Windows Phone and
Chrome OS. The way in which the filtering of the processes
using IPC may be implemented may depend on the particular
operating system. In some embodiments, the operating sys
tem may use URI instead of the inter-process communica
tions, for example, in iOS.
0069. Using the IPC, the command and control processes
may be used to securely control functions of the computing
system. For example, the IPC may be used to command and
control web browsing, phone calls, text messaging and other
computing system functions. In other embodiments, using the
IPC, the command and control process may be used to filter
inter-process communications. For example, the inter-pro
cess communications may be filtered according to a rule or
policy to prevent a particular class of applications from send
ing private data. In another example, the inter-process com
munications may be filtered according to a rule or policy to
prevent a particular class of applications from connecting to
any computers outside of a defined network.
0070. In embodiments, methods for protecting against
malware in a mobile communications device may include
passing a remote procedure call from a first application to a
data bus; requesting a policy validation for the remote proce
dure call from the data bus to a policy engine; determining
whether to approve the remote procedure call by the policy
engine, based on the context of the remote procedure call and
a stored policy; communicating the determination from the
policy engine back to the data bus; and either permitting or
blocking the remote procedure call by the data bus, based on
the determination. The data bus may be an inter-process com
munications bus. Embodiments may have included passing
signatures at a file level. Embodiments of the present disclo

Jul. 17, 2014

Sure may be that passing the procedure call may include
passing the process signature between the processes rather
than at the file level.
0071. In embodiments, methods for using a policy engine
to enforce distributed policies on the loading, linking, and
execution of native code may include providing an applica
tion running inside of a virtual machine on a mobile device;
providing a policy engine running on the mobile device; and
adapting the rules for loading, linking, and executing code in
native libraries in the virtual machine, in response to an input
from the policy engine and based on a policy factor.
0072. In some embodiments, the application may run
inside a virtual machine. Examples of virtual machines
include, but are not limited to, Java Virtual Machines, Perl
virtual machines, an Oracle Virtual Machine, a Parallels vir
tual machine, a Sun XVM, and a VMware virtual machine.
0073. In some embodiments, methods for allowing secu
rity policies to be applied to existing APIs may be through
aspect-oriented programming and may be applied to existing
APIs without modifying the internal logic of APIs. An exist
ing API may be wrapped with one or more layers of security
using aspect-oriented programming methods and techniques.
0074. In embodiments, methods for securing a mobile
device may include using an inter-process communication to
distribute a policy or other data needed to apply aspect-ori
ented security to a plurality of processes on a mobile device.
Security-related data may be distributed via an inter-process
communications mechanism, for example an IPC controller,
Android Binder, or Unix Domain Sockets, to one or more
target processes. Once Such security-related data is distrib
uted, aspect-oriented security techniques may be applied to
intercept and manage security related to invocations of meth
ods, functions, and services in the target processes.
0075. In some embodiments, methods for securing a
device may include using contextual information to alter how
policies are applied to the device and consequently how
aspect-oriented Security techniques are applied across one or
more processes. Such contextual information may include
geographic, accelerometer, camera, microphone, wireless
network, application usage, user interaction, running pro
cesses, disk state, nearby wireless signals/networks, pairing
state with external devices, websites being visited, device
network traffic, battery level, types of data resident on a
device, or other device hardware or software detectable con
text information. Device context may be either real-world,
Such as geographic location, virtual. Such as data resident on
the device, applications currently executing, or input/output
of data to/from a network or a disk, or arbitrary combinations
of the two. For example, a security policy may be triggered by
connection to a specific wireless network, the launch of one or
more applications, or the downloading of specific datasets.
0076. In some embodiments, methods for securing a
device may include tracking which processes are functioning
on the device are covered by some form of aspect-oriented
security and/or determining processes that are candidates for
aspect-oriented Security programming. This tracking may be
centralized, distributed, or a hybrid combination of the two.
0077. In embodiments, methods securing a device may
include storing aspect-related data that may be stored on the
device. In some embodiments, the data may be redistributed
to processes when the device is turned back on. A non-volatile
storage system may capture the needed policy and/or aspect
oriented programming information. When the device is pow
ered on, either a distributed or centralized mechanism may be

US 2014/020 1807 A1

used for input/output of policy and/or aspect-oriented pro
gramming data into processes to enforce security policies.
0078. In embodiments, methods for securing a device may
include combining non aspect-oriented programming logic
may be coupled with aspect-oriented programming to bring a
device to a desired State. In some embodiments, securing the
device may include securing specific device functions. For
example, non aspect-oriented programming logic may turn
off wireless network access before an aspect-oriented pro
gramming technique is used to restrict which applications
may turn wireless network access on or off. In another
example, non aspect-oriented programming logic can auto
matically shut down a malware application before an aspect
oriented programming technique is used to prevent relaunch
of the malware.
0079. In embodiments, methods for securing a device may
include adapting an IPC mechanism so that a request over an
IPC bus from an application in a normal Zone for another
application or service may be automatically redirected to a
trusted version of the requested application or service.
0080. In embodiments, methods for authenticating an
unspoofable context on a device by providing a context detec
tion engine on a server that Verifies the context on the device
and, in response to the verification, provides access to secure
data. In embodiments, the server may be a gateway server to
a network.

0081. In embodiments, methods for composing a policy
may include combining a plurality of policies from one or
more sources to provide a single, coherent policy for a policy
engine by reconciling any inconsistent rules. A policy may be
a security policy. The plurality of policies may be comprised
of for example, a phone policy, an IT administrator policy, a
cellphone carrier policy, an enterprise policy, a department
policy or some other policy. The Sources of policies may
include, for example, a cellphone carrier, a government, a
device provider, a device Support provider, a device user, the
enterprise who supplied the device to the user or some other
policy provider. Reconciling inconsistent rules may include
comparing two or more rules and selecting the most restric
tive rule. Reconciling inconsistent rules may, in some
embodiments, include comparing two or more rules and
selecting the least restrictive rule. Reconciling inconsistent
rules may, in Some embodiments, include comparing two or
more rules and selecting one of the rules based on Some other
set of rules, for example, based on to what resource(s) the
inconsistent rules apply.
0082 Embodiments of methods and systems for securing
a device are depicted in FIG. 1. The methods and systems
depicted in FIG.1 may include a mobile device system 102.
The system 102 may be a cellular phone, such as an iPhone,
a Motorola Droid Razr Maxx, a HTC One X, a Samsung
Focus 2, a Samsung Gusto 2, or Some other cellular phone. In
other embodiments, the system 102 may be a tablet, such as
an iPad, an Asus Eee Pad Transformer Prime, a Sony Tablet S,
a Samsung Galaxy Tab 10.1, or some other tablet. The system
102 may include software executing on the system 102, such
as one or more applications 110, one or more virtual machines
112, one or more native libraries 114, an operating system
116, a policy engine 118, one or more object firewalls 144,
and one or more IPC controllers 138. In embodiments where
a first element is described as communicating with a second
element, Such communication may be direct or may include
intervening elements as described herein. By way of example
only, the policy engine 118 may communicate directly with

Jul. 17, 2014

the IPC bus 132, or indirectly with the IPC bus 132, including
via the privileged code service 140 and/or the IPC controller
138B, for example.
I0083. One or more applications 110 may execute locally
on the system 102. In some embodiments, the application 110
may be a game, such as Angry Birds, Smash Cops, Words
with Friends or some other game. In some embodiments, the
application may be a utility, such as the phone application,
Skype, a web browser, a music player or some other utility. In
Some embodiments, the application may be a tool. Such as
Twitter, ESPN ScoreCenter, Google Translate or some other
tool. The application 110 may be downloaded to the system
from a legitimate marketplace, for example iTunes. However,
in Some cases, the application 110 may be obtained from a
malware system 108. In some other cases, the application 110
may be made available from a malware system 108 via a
legitimate market place. In embodiments, the application
may attempt to execute one or more of privileged code (e.g.
code that only may be accessed once permission is granted by
a privileged code service 140), code in a trusted code Zone
146, or code protected by an object firewall 144.
I0084. In embodiments, one or more applications 110 may
execute in one or more virtual machines 112. Examples of
virtual machines include, but are not limited to, Java Virtual
Machines, Perl virtual machines, an Oracle Virtual Machine,
a Parallels virtual machine, a Sun XVM, and a VMware virtual
machine. To load, link, and execute code in native libraries
114, an application 110 may send a library request to the
respective virtual machine 112. The virtual machine 112 may
communicate with the policy engine 118 to determine if the
requestis allowed. In some embodiments, the virtual machine
112 may also use a local policy to determine if the request is
allowed. If the request is allowed, the virtual machine 112
may facilitate application 110 access to the native library 114,
which facilitates interacting with an operating system 116.
The virtual machines 112 may signal library access allow
ance, such as to a native library 114, to the applications 110.
I0085. The native library 114 may facilitate an interaction
between an application 110 and an operating system 116. The
operating system 116 of the system 102 is the software that
manages the system 102. Examples of operating systems
include, but are not limited to, Android, BlackBerry OS, iOS,
Symbian OS, Windows Phone and Chrome OS.
I0086. The policy engine 118 may enforce policies, for
example, on the loading, linking, and execution of code by an
application 110, and on remote procedure calls. The policy
engine 118 may also generate system-specific context, which
may include the current date and time, the device location,
and identity of the device user. In some embodiments, the
policy engine 118 may enforce a distributed policy on the
loading, linking, and execution of native code by an applica
tion 110 running inside of a virtual machine 112. In embodi
ments, the policy engine 118 may be resident in a second
process, and dynamically send and adapt one or more rules
for loading, linking, and executing code in one or more native
libraries 114. Having the policy engine in a second process
that is resident on the same system 102 as a first process, may
provide higher speed communication to transfer policies to
the virtual machine 112 processes, allowing the policies 130
to be dynamically changed based on a number of policy
factors. The second process, in which the policy engine 118
may be resident, may isolate the policy engine 118 from
attack, allow it to access external services that might not be

US 2014/020 1807 A1

accessible from the first process, and may allow the policy
engine 118 to be resident in memory both before and after the
execution of the first process.
0087. In the context of a remote procedure call, the policy
engine 118 may approve or disapprove the transaction and
may communicate this result back to a data bus. If this remote
procedure call involves a system service, the data bus may
pass the request to the operating system 116. The operating
system 116 may execute the remote procedure call and return
the result to the source application 110 via the data bus. If
instead this remote procedure call involves an interaction
with another application 110, the data bus may pass the call to
the destination application 110. The result of that remote
procedure call may then be returned via the data bus to the
source application 110.
0088. The system 102 may be connected, via a communi
cation facility 150, to a policy server 106 through the cloud or
other networking 104. The communication facility 150 may
be a network interface controller, a wireless network interface
controller, a Wi-Fi adapter and the like. The policy server 106
may manage a policy repository. The policy server 106 may
serve policies upon request from the policy engine 118. The
policy server 106 may serve such policies by performing a
policy repository access to determine policy aspects Such as
black/white lists 120, signing and/or naming 122, checksum/
library analyses 124, permissions for applications, processes,
users, groups, and other policy checks 128. The policy server
106 may receive policy repository responses and provide a
policy request response to the policy engine 118. Alterna
tively, the policy engine 118 may serve virtual machines 112
inquiries regarding application 110 access of native libraries
114 based on policy information known to or accessible by
the policy engine 118.
0089. In various embodiments, various elements of sys
tem 102 may communicate directly or indirectly with com
munication facility 150. By way of example only and not to
limit the sentence above, application 110 and/or operating
system 116 may communicate directly with communication
facility 150.
0090 The application 110 may include one or more
objects that are capable of inter-process communication. In
the prior art, these objects were connected directly to the IPC
bus 132. Here, the objects may be mediated using object
firewalls 144 and/or IPC controllers 138A and/or B. Here,
each object may have an independent object firewall 144 that
may connect to an IPC controller 138 A and/or B. An IPC
controller 138A and/or B may connect to the IPC bus 132.
The policy engine 118 may communicate with the object
firewall 144 and the IPC controllers 138A and 138B to imple
ment one or more policies 130. In some embodiments, the
policy engine 118 may translate a high-level firewall rule into
a specific setting on one or more object firewalls 144. As new
inter-process communication capable objects are created, the
IPC controller 138 A and/or B in each process may install
additional object firewalls 144 as needed.
0091. In embodiments, the IPC controller 138A may man
age the installation and removal of object firewalls 144 as new
inter-process communication capable objects are created and
destroyed. This controller may eliminate the overhead of
performing additional inter-process communications with an
IPC controller 138B in another process on each object cre
ation and may improve performance (e.g. by dynamically
managing the instances of the object firewalls and IPC con
trollers associated with each object; by enabling inter-process

Jul. 17, 2014

communications among the objects associated with a single
application, as opposed to communicating with a single glo
bal controller and/or firewall for all applications and objects:
etc.). The IPC controller 138A and/or B may sendan IPC call
from one inter-process communication capable object to a
second inter-process communication capable object’s object
firewall 144. The second inter-process communication
capable object’s object firewall 144 may determine, based on
a policy 130 implemented as object firewall rules, whether to
authorize the call.

0092. The IPC bus 132 may be a data bus. In some embodi
ments, the IPC bus 132 may enable inter-process communi
cations. In embodiments, the IPC bus 132 may perform inter
process communications via a shared data bus instantiated as
a remote procedure call service, protocol handler system call
table, or any other function or object broker. For example, the
IPC bus 132 may enable inter-process communications as a
remote procedure call from an IPC controller 138A associ
ated with an object in one application 110 to another object
firewall 144 associated with an object in a second application.
0093. In embodiments, a trusted code Zone 146 may exist
on the system 102 as a Zone of a processor and one or more of
the system’s 102 specialized debugging interfaces and/or
remote auditing tools (e.g. AndroidTMADB) may be placed in
the trusted code Zone 146. A trusted Zone of a processor may
ensure through a cryptographic chain of trust that code
executing within it has not been tampered with. Once an
element is placed within the trusted processor Zone for execu
tion, the output from operations performed on it may be
considered tamper-free, correct, and trusted. An example of
commercial Software providing trusted Zone functionality is
TrustZoneTM by ARM Limited.
0094. By placing the entire specialized debugging inter
face and/or tools into the trusted code Zone 146, a remote
computer can be used to audit the integrity of the system 102
or to securely control the system’s 102 execution or configu
ration with confidence that commands provided remotely are
being handled by the correct and trusted debugging Software
on the system 102. Alternatively, parts of these specialized
debugging elements may be placed into the trusted code Zone
146 (e.g. file system components and USB I/O components).
0095. In embodiments, the system’s 102 inter-process
communication mechanism may be placed into the trusted
code Zone 146. Such an inter-process communication mecha
nism is intended to govern communication between user
space applications (e.g. not in the operating system) and
services (e.g. including system services running in user
space) on the system 102. The inter-process communication
mechanism may be, for example, an object firewall 144, an
IPC controller 138A and/or B, or some other inter-process
communication mechanism. Once the inter-process commu
nication mechanism is placed into the trusted processor Zone,
the control of the communication between the user-space
applications and services on the device may be considered
protected because the Software executing in the trusted Zone
will be tamper-free. Moreover, an inter-process communica
tion mechanism that is secured by a trust Zone may be used as
a Supplemental security control point on the device by inter
cepting, inspecting, blocking, filtering, or otherwise adapting
communications between user-space applications and Ser
vices. Because the inter-process communication mechanism
is within the trusted processor Zone, it may be considered a
secure point of control over inter-application/service commu
nication.

US 2014/020 1807 A1

0096. A system controller 134 may execute a system call
136 in response to a request from an application 110. In
embodiments, the system controller 134 may be adapted to
send a request to the IPC controller 138 A and/or B, in
response to a request from the application 110. By establish
ing a security policy verification path between the system
controller 134 and the IPC subsystem via the IPC controller
138A and/or B, the system controller 134 may directly verify
security permissions via a path that is distinct from the caller
application (e.g. based on a query to a policy engine 118).
Therefore the query and its result cannot be influenced or
manipulated by the caller application or any other application
type code. The security of the IPC process itself may further
ensure independence of the security permissions query. In
embodiments, the subsystem may include the object firewall,
IPC controller, and IPC bus. In embodiments the IPC Sub
system may include the object firewall, IPC controller, IPC
bus, and policy engine.
0097. In embodiments, an application 110 seeking to
execute a privileged code service 140 may attempt to make
such a privileged code service 140 execution attempt by inter
facing with the system controller 134. Rather than simply
allowing execution of the code, the system controller 134 may
send a request to an IPC controller 138A which may request
over an IPC bus 132 to a system service IPC controller 138B
for a system service that governs access control for privileged
code service execution 140. This service may make an access
decision request of the privileged code policy engine 118 to
facilitate determining whether the originating application is
authorized to execute the requested privileged code. This
determination may be made based on a variety of factors, to
include without limitation the identity of the calling applica
tion, the identity of the device user, the time of day, the
physical location of the device, the current device configura
tion, and the like. An indication of the result of the system call
policy determination may then be returned via the IPC con
trollers 138A and 138B as connected by the IPC bus 132 to the
system controller 134, which then may enforce the determi
nation and may either allow or disallow the execution of
privileged code service 140. Regardless of the policy deter
mination, information about the execution attempt, condi
tions used in making the determination, and resulting action
may be logged for use by the user and device administrator.
0098. A malware system 108 may attempt to compromise
the security on the system 102. The malware system 108 may
connect to the system 102 through the cloud or other network
ing 104. The malware system 108 may communicate mali
cious software to the system 102. The malicious software may
be a computer virus, a worm, a Trojan horse, spyware,
adware, a rootkit, or some other malicious program or Script.
The malicious Software may be communicated to the system
102 via an email, a webpage, an application 110, a text mes
sage, a SIM card, or in some other fashion.
0099 Networking 104 may communicate via cloud-based
networking. In an embodiment, networking 104 may com
municate via cloud-based networking via a network, Such as,
but not limited to the Internet, an intranet, a personal area
network, a VPN, a local area network, a wide area network, a
metropolitan area network, or Some other network.
0100 Referring still to FIG. 1, in embodiments, methods
for enforcing security and access control policies on privi
leged code execution on a jail-broken mobile device may
include calling, by an application 110, to execute privileged
code; determining, by the privileged code policy engine 118,

Jul. 17, 2014

whether the application 110 may execute the privileged code:
and enforcing the determination by the privileged code policy
engine 118. The mobile device may be, for example, a cellular
phone, an MP3 player, a tablet and a laptop. Examples of
operating systems 116 include, but are not limited to,
Android, BlackBerry OS, iOS, Symbian OS, Windows Phone
and Chrome OS. The way in which the filtering of the pro
cesses using IPC may be implemented may depend on the
particular operating system 116. In some embodiments, the
operating system 116 may use URI instead of the inter-pro
cess communications, for example, in iOS.
0101 Ajail-broken mobile device as described in various
embodiments may be a device where the operating system
116 on the device is broken out of or bypassed so that the user
of the device may be able to access files outside of chroot-like
restrictions. For example, a user may jailbreak an iPhone to
install Cydia, a third party application marketplace alterna
tive to Apple's App Store, which the user would not otherwise
be able to do on an iPhone that is not jail-broken.
0102 The privileged code may be code that only may be
accessed once permission is granted by a privileged code
service 140. For example, the privileged code may be kernel
code. A privilege may be, for example to access and run code
in Supervisor or administrator mode.
0103) In some embodiments, the application 110 may be a
game, such as Angry Birds, Smash Cops, Words with Friends
or some other game. In some embodiments, the application
110 may be a utility, Such as the phone application, Skype, a
web browser, a music player or some other utility. In some
embodiments, the application 110 may be a tool. Such as
Twitter, ESPN ScoreCenter, Google Translate or some other
tool.
0104. In some embodiments, the policy engine 118 deter
mines whether a call, by an application 110, to execute privi
leged code may be executed. The determination may be based
on one or more of the type of application 110 making the call,
the name of the application 110 making the call, the location
of the application 110 making the call, the system context, the
device location, the current date, the current time, the identity
of the device user, the type of the privileged code, the content
of the call or some other criteria.
0105 Enforcing the determination of the policy engine
118 may include comparing the determination against a
policy 130. The policy engine 118 may enforce the determi
nation based on one or more policies 130. The policies 130
may include, for example, system policies, application poli
cies, and other policies. The policy engine 118 may use the
one or more policies 130 to evaluate the call. In some embodi
ments, the policy engine 118, may also determine, based on
the evaluation of the call, whether any data to be transferred
by way of the call is authorized.
0106. In embodiments, methods for enforcing security
and access control policies on privileged code execution on
mobile devices may include calling, by an application 110 to
a system controller 134, to execute privileged code; request
ing, by the system controller 134 to an inter-process commu
nications controller 138A, for a permission to access the
privileged code; requesting, by the system controller 134 to a
privileged code policy engine 118, a determination whether
the application 110 is permitted to access the privileged code:
determining, by the privileged code policy engine 118,
whether the application 110 may execute the privileged code:
and enforcing, by the system controller 134, the determina
tion by the privileged code policy engine 118. The mobile

US 2014/020 1807 A1

device may be, for example, a cellular phone, an MP3 player,
a tablet and a laptop. Examples of operating systems 116
include, but are not limited to, Android, BlackBerry OS, iOS,
Symbian OS, Windows Phone and Chrome OS. The way in
which the filtering of the processes using IPC may be imple
mented may depend on the particular operating system 116.
In some embodiments, the operating system 116 may use URI
instead of the inter-process communications, for example, in
iOS.
0107 Ajail-broken mobile device as described in various
embodiments may be a device where the operating system
116 on the device is broken out of or bypassed so that the user
of the device may be able to access files outside of chroot-like
restrictions. For example, a user may jailbreak an iPhone to
install Cydia, a third party application marketplace alterna
tive to Apple's App Store.
0108. The privileged code may be code that only may be
accessed once permission is granted by a privileged code
service 140. For example, the privileged code may be kernel
code. A privilege may be, for example to access and run code
in Supervisor or administrator mode.
0109. In some embodiments, the application 110 may be a
game, such as Angry Birds, Smash Cops, Words with Friends
or some other game. In some embodiments, the application
110 may be a utility, Such as the phone application, Skype, a
web browser, a music player or some other utility. In some
embodiments, the application 110 may be a tool. Such as
Twitter, ESPN ScoreCenter, Google Translate or some other
tool.
0110. The system controller 134, in response to call to
execute privileged code from the application 110, may
request permission to access privileged code. In the prior art,
the system controller 134 would execute the privileged code
in response to the call from the application 110. However,
here, the system controller 134 may request permission to
access such privileged code from an inter-process communi
cations controller 138A. The inter-process communications
controller 138A, in response to the request from the system
controller 134, may pass the request to a policy engine 118. In
Some embodiments, the inter-process communications con
troller 138A, in response to the request from the system
controller 134, may pass the request to apolicy engine 118 via
an object firewall 144.
0111. In some embodiments, the policy engine 118 deter
mines whether a call, by an application 110, to execute privi
leged code may be executed. In some embodiments, the
policy engine 118 may be a privileged code policy engine.
The determination may be based on one or more of the type of
application 110 making the call, the name of the application
110 making the call, the location of the application 110 mak
ing the call, the system context, the device location, the cur
rent date, the current time, the identity of the device user, the
type of the privileged code, the content of the call or some
other criteria.
0112 Enforcing the determination of the policy engine
118 may include comparing the determination against a
policy 130. The policy engine 118 may enforce the determi
nation based on one or more policies 130. The policies 130
may include, for example, system policies, application poli
cies, and other policies. The policy engine 118 may use the
one or more policies 130 to evaluate the call. In some embodi
ments, the policy engine 118, may also determine, based on
the evaluation of the call, whether any data to be transferred
by way of the call is authorized.

Jul. 17, 2014

0113. One of the advantages of the present invention may
include, without limitation, the fact that the calling applica
tion 110 need not be aware of the security policy infrastruc
ture that is responsible for making these decisions about
access control. In particular, the execution environment in
which the application 110 is operating can be instrumented to
Support these features in a way that is transparent to the
application developer. This may allow for seamless backward
compatibility with existing apps that operate using jailbreak
tools and no need for development of future application pro
grammer interfaces for new applications 110 that leverage
this infrastructure.

0114. One mechanism of using a trusted processor Zone to
improve mobile device security may be to place a device's
specialized debugging interfaces and/or remote auditing
tools, such as Android TMADB, into the trusted Zone. These
debugging interfaces and tools may provide mechanisms via
USB, wireless, or other wired communication to audit, con
figure, or control one or more of the processes, file systems,
applications, and other components of a mobile device. By
placing the entire specialized debugging interface and/or
tools into the trustzone, a remote computer may be used to
audit the integrity of a device or securely control its execution
or configuration with confidence that commands provided
remotely are being handled by the correct and trusted debug
ging software on the device. Alternatively, parts of these
specialized debugging elements may be placed into the trust
Zone (e.g. file system components and USB I/O components).
0.115. Another mechanism for using a trusted processor
Zone to improve mobile device security may be to place the
devices inter-process communication mechanism into the
trusted Zone. Such an inter-process communication mecha
nism is intended to govern communication between user
space applications (e.g. not in the operating system) and
services (e.g. including system services running in user
space) on a mobile device. Once the inter-process communi
cation mechanism is placed into the trusted processor Zone,
the control of the communication between the user-space
applications and services on the device may be considered
protected because the Software executing in the trusted Zone
will be tamper-free (e.g. because the Software executing in the
trusted Zone may execute independently of the software in all
other Zones). Moreover, an inter-process communication
mechanism that is secured by a trust Zone may be used as a
Supplemental security control point on the device by inter
cepting, inspecting, blocking, filtering, or otherwise adapting
communications between user-space applications and Ser
vices. Because the inter-process communication mechanism
is within the trusted processor Zone, it may be considered a
secure point of control over inter-application/service commu
nication.

0116 Secure processes with enhanced permissions, such
as daemon user-space processes, may be used to spawn and
control the execution of other processes on a device. For
example, on AndroidTM, the Zygote is responsible for launch
ing and adapting the permissions of the processes for appli
cations. In embodiments, these secure daemons may be
moved inside of a trusted processor Zone to ensure that they
cannot be tampered with to launch, configure, or control other
processes maliciously. Further, when a secure daemon is
moved within a trusted processor Zone along with a secure
inter-process communication mechanism, other user-space
processes may securely interact with this daemon process.

US 2014/020 1807 A1

0117 User-space application permissions, code, and con
figuration are typically managed by a package manager on a
mobile device. The package manager installs, configures,
uninstalls, and responds to queries regarding application arti
facts, configuration, and permissions. If the package manager
on a mobile device is compromised, an attacker can use the
package manager to falsely report application permissions,
configuration settings, code locations, or other critical param
eters. In embodiments, this may allow the package manager
to be moved inside of the trusted processor Zone in order to
ensure that package manager and all of its functions (e.g.
package installation, configuration, uninstallation, applica
tion info querying, and the like) are not tampered with. By
moving a package manager (e.g. Android Package Manager
service, and the like) into the trusted processor Zone, these
critical application packaging services may be protected.
0118 Virtual machines, such as the Dalvik Virtual
MachineTM, are used to execute code on mobile devices.
Since virtual machines control execution of key application
code, if they are tampered with, severe security holes can be
opened that allow applications to run arbitrary code. By mov
ing the entire virtual machine into the trusted processor Zone,
the device may ensure that virtual machine execution is not
compromised. Likewise, even if core parts of the Dalvik
Virtual MachineTM, such as instruction dispatching, virtual
dispatch tables, socket and I/O code, file system interaction
code, class bytecode caches, symbol tables, or class loading
mechanisms are moved to a trusted Zone, one may ensure that
these critical components are not compromised.
0119 Many configuration functions on a mobile device
operate via reading XML, querying a relational database (e.g.
SQLite), or loading other configuration files and then chang
ing system execution parameters. For example, XML or Java
bytecode files (e.g. Android Manifest.dex/class/java/xml)
may be used to store mappings of application user IDs to
Linux user IDs and permission groups. By moving the I/O.
reading, and interpretation of these configuration data
Sources into the trusted processor Zone, the mobile device
may ensure that these information sources are properly
checked cryptographically for provenance and integrity, read
and interpreted properly, and not altered to incorrectly per
form their function. Relational database components, con
figuration loading routines (e.g. Android LayoutInflater,
Manifest reader, and the like) may be moved into the trust
Zone as needed to protect these core functions.
0120 Enterprises use mobile device management systems
to control policies governing the usage/security of mobile
devices. If a mobile device management system is compro
mised, an attacker may use these mobile device management
systems to steal sensitive data or perform other nefarious
actions. By moving one or more parts of the mobile device
management system inside of the trusted processor Zone one
may ensure that they are not compromised. Once inside of the
trusted processor Zone, these mobile device management
functions may be considered secure and not exploitable by
attackers.

0121 User input on a device may leverage a touch screen
software component to receive touch events from the hard
ware; translate these events to movement, key presses, or
other user input, dispatch the events through shared memory
or inter-process communication to a target process; and
deliver the events to application software components. If
these touch screen Software components are tampered with,
they can be used as an attack vector to siphon offpin numbers,

Jul. 17, 2014

banking information, and other secure credentials. The
trusted Zone methods and systems described herein may
counteract this threat on mobile devices by moving one or
more parts of the Software touch screen event dispatching,
shared memory reading/writing, inter-process communica
tion dispatch, and intra-application dispatch code into the
trusted processor Zone. Moreover, the parts moved into the
trusted processor Zone may include a software input method,
Such as code for controlling a virtual on-screen keyboard
and/or its configuration data, into the trusted processor Zone.
0122. A geo-localization, proximity detection, position
estimation, or proximity authentication component can be
used to determine or validate a device's location. However,
these mechanisms can be attacked and/or the result spoofed to
make applications on a device detect a different location that
the actual location of the device. This may be used to circum
vent location-based policies or attack systems that rely on
precise localization (e.g. car navigation). To thwart this pos
sible exploit vector, one or more of these systems may be
moved into a trusted processor Zone to prevent tampering.
I0123. While examples of use of a trust Zone for enhancing
mobile device software and data security have been described
herein, there may be other beneficial uses of a trust Zone in
addition to these examples that are contemplated and there
fore included herein. In addition, while TrustZone by ARM
Limited uses as an example trust Zone facility, any facility that
provides a trust Zone with robust protection of software and/
or data through cryptographic or other tamper-proof means
may be used with the methods, systems, and applications
described herein.

0.124 Referring now to FIG. 9, virtually extending a
mobile device IPC bus 132 may comprise extending such IPC
bus 132 into a processor trusted code Zone 146, which may
also be referred to as a “trusted Zone'). By this virtual exten
sion, applications 110A-B (which are substantially similar to
applications 110) and services that are accessible through the
IPC bus 132 may be executed in the trusted Zone146, thereby
being trusted applications 908A-B. As a result, applications
110A-B in the normal processor Zone 902 may communicate
with trusted applications 908A-B via robust IPC mechanisms
in a seamless way. For example, one application 110A may
pass data, by way of an IPC bus 132 in the normal processor
Zone.902 to a trusted IPC bus 910, via a hardware bus 904, to
second, trusted instance of the application 908A executing in
the trusted Zone 146. In addition, IPC mechanisms may be
adapted so that requests for apps or services by a normal Zone
application 110A over the IPC bus 132 may be automatically
redirected to trusted versions of the requested app (e.g. 908A)
or service.

0.125 Referring now to FIG. 6, in embodiments, a plural
ity of applications 110 may interactively execute inside of a
plurality of virtual machines 112. To load, link, and execute
code in native libraries 114, the applications 110 may send
library requests 602 to their respective virtual machines 112.
The virtual machines 112 may communicate (604, 608) with
a policy engine 118 to determine if the request 602 should be
allowed. The virtual machine 112 may also use a local policy
to determine if the request 602 is allowed. If the request 602
is allowed, the virtual machine 112 may facilitate application
110 access (610, 612) to the native libraries 114 that facilitate
interacting (614, 618) with an operating system 116. The
virtual machines 112 may signal library access allowance 620
to the applications 110.

US 2014/020 1807 A1

0126 The policy engine 118 may optionally exchange
policy requests (622,624) with a policy server 106 that may
manage a policy repository 628. The policy server 106 may
serve policy requests 622 from the policy engine 118 by
performingapolicy repository access 630 to determine policy
aspects such as black/white lists 120, signing and/or naming
122, checksum/library analyses 124, permissions for appli
cations, processes, users, groups 126, and other policy checks
128. The policy server 106 may receive policy repository
responses 632 and itself provide a policy request response
624 to the policy engine 118. Alternatively, the policy engine
118 may serve virtual machines 112 inquiries regarding
application 110 access of native libraries 114 based on policy
information known to or accessible by the policy engine 118.
0127. Referring now to FIG. 7, in an embodiment, the
virtual machines 112 may communicate with a policy engine
118 using local cross-process communication mechanisms
702, such as IPC, Unix domain sockets, or shared memory.
The cross-process communication mechanisms 702 may be
used to either send information about native library requests
602 received by the virtual machine 112 from the applications
110 to the policy engine 118 for approval, or to receive policy
or rule data in order to make local approval decisions. In
embodiments, the cross-process communication mecha
nisms 702 may be used to send native library request 602 from
the applications 110 to the policy engine 118.
0128 Referring now to FIG. 2, a plurality of applications
110 may interact with each other and system services via a
common data bus 202. To communicate between subsystems,
the Source application may execute a remote procedure call
204 and this request may then be passed to the data bus 202.
The data bus may then request a policy validation for the
remote procedure call by passing that call 218 to the policy
engine 118. Using the context of the remote procedure call
and its stored policy, the policy engine 118 may either
approve or disapprove the transaction and communicates this
result 214 back to the data bus 202. If this remote procedure
call involves a system service, the data bus may pass the
request 208 to the operating system 116. The operating sys
tem 116 may execute the remote procedure call and return the
result 210 via the data bus 202 to the source application 110.
If instead this remote procedure call involves interaction with
another application, the data bus may pass the call 212 to the
destination application 110. The result of that remote proce
dure call may be returned via the data bus 202 to the source
application 110.
0129. In more detail, still referring to FIG. 2, the data bus
202 may be responsible for generating context specific to the
received remote procedure call, to include the identity of the
source application 110. The policy engine 118 may be
responsible for generating system-specific context to include
the current date and time, the device location, and identity of
the device user. The policy engine 118 then may evaluate the
remote procedure call Subject to the available system policies,
application policies, system context, application context, and
content of the remote procedure call itself. Based on the
outcome of the policy evaluation, the policy engine 118 then
may return a response via data bus 202 to the source applica
tion 110.

0130. In more detail, still referring to the invention in FIG.
2, the system may be supported via an optional policy server
106. This server may be remotely located and accessed via the
device's network connection. Policy administrators may
input system and application policies into the policy server

Jul. 17, 2014

106. The policy server then may push 220 these polices to the
policy engines 118 of devices they administer. The policy
engine 118 may also report 222 policy statistics and viola
tions to the policy server 106 for the purpose of auditing and
accounting.
I0131. In embodiments, applications 110 may be modu
larly installed on a Smart phone and able to perform inter
process communication via the shared data bus 202 which
may be instantiated as a remote procedure call service, pro
tocol handler, system call table, or any other function or
object broker. The policy engine 118 may be instantiated as
extensions to this broker service whereby inter-process com
munications requests may be evaluated against the available
policies. These requests may either be approved or denied
based on the outcome of the policy evaluation.
I0132 Turning now to FIG. 3, the system operation may
begin 302. A user, application, or service may determine a
data transfer between applications should occur and the data
source may obtain and prepare that data 304. The data transfer
service may either obtain or generate the relevant context
associated with the data transfer 308, such as the sensitivity of
the data or origin of the data. The data and its context may be
then evaluated subject to a plurality of policies 310 to deter
mine whether or not the transfer is authorized 312. If not
authorized, the data transfer service may report failure 314 to
the user, application, or service that initiated the transfer. If
authorized, the data context may be updated 318 to include
any relevant context changes that are a consequence of the
transfer. The data may then be transferred to the destination
320 and success may be reported 322 to the user, application,
or service that initiated the transfer.

I0133) Data transfer authorization may be obtained by
ensuring proper data context is obtained 308 and maintained
after the transfer 320. Policies used to evaluate whether the
transfer is authorized 312 may use the data, the data's context,
and the overall system's context to make authorization deci
sions. Embodiments of this process may ensure that sensitive
data is not transferred to an application that is not authorized
to receive that data, and/or that data is only transferred
between applications and/or individuals that are authorized to
send and receive information between each other.

I0134. A specific instantiation of this process may be
shown in FIG. 2. An application 110 may request information
from another application or service. This data may be
received by the data bus 202, which may transfer it 218 to the
policy engine 118 where it may undergo policy evaluation. A
determination may be made by the policy engine 118 and may
be returned 214 to the data bus 202. If the transfer is not
authorized, the data bus may report 212 failure to the request
ing application 110. If the transfer is authorized, the data bus
may update the data context and transfer 212 the data and
context to the destination application. Success may be
reported.
0.135 The advantages of embodiments include, without
limitation, the ability to enforce rigorous, detailed security
policies on all remote procedure calls, inter-process commu
nication, and system calls that occur on mobile devices. By
implementing a system-wide policy engine, device adminis
trators may deploy policies that allow applications can more
easily protect themselves against other potentially malicious
applications. When applied to data provenance, the move
ment of all data within a mobile device can be authorized
based on parameters such as the Source, destination, and
sensitivity of the data. This provides significant advantages

US 2014/020 1807 A1

over prior art that relied on applications to individually
approve/disapprove individual transactions without a com
mon policy set.
0.136 Referring now to FIG. 5, applications 110 A and/or
B may contain a collection of objects 502 A-D that are
capable of inter-process communication. These objects may
connect directly to the IPC bus 132, however in embodiments,
they may be mediated using firewalls 504 A, B, C, and/or D
and/or controllers 138 A and/or B. Specifically each object
(e.g. 502A) may have an independent IPC firewall 504A
which may connect to an IPC controller 138A that connects it
to the IPC bus 132. A policy engine 118 may communicate
with the controllers and firewalls to implement device poli
cies. In embodiments, there may be additional objects and/or
firewalls in addition to the depicted elements.
0.137 The policy engine 118 may translate high-level fire
wall rules into specific settings of a plurality of IPC object
firewalls 504 A-D. In embodiments, as new IPC-capable
objects 502 A, B, C, and/or D are created, the local IPC
controller 138A and/or B in each process may install one or
more IPC object firewalls 504 A-D into the IPC-capable
objects 502 A-D as needed.
0138 An application 110 A may initiate an inter-process
communication call from an object (e.g. 502 A) to a second
object (e.g. 502 D) in a second application 110 B. Optionally,
an IPC object firewall 504A on the first application may
determine if the outbound IPC call is allowed based on the
current IPC firewall rules. The inter-process communication
call may be sent to the second application 110 B IPC control
ler 138 B via the IPC bus 132. The IPC controller 138 B may
send the IPC call onto the second object’s IPC firewall 504 D.
The second objects IPC firewall 504 D may make an access
determination based on the IPC firewall rules, the target
object 502 D of the call, the data provided with the call, the
current state of the target object 502 D, and the current state of
the target application 110 B.
0.139. The processing of the IPC call by the IPC firewall
504 D of the target object 502 D of the target application 110
B may involve any of the following. The target object IPC
firewall 504 D may block the IPC call to the target object 502
D. The target object IPC firewall 504 D may modify the
contents of the data sent with the call to the target object 502
D. The target object IPC firewall 504 D may modify the return
value of the data sent from the target object 502 D to the
initiating object 502A in response to the inter-process com
munication call. The target object IPC firewall 504 D may
change the target object 502 D of an IPC call. The target
object IPC firewall 504 D may log the call. The target object
IPC firewall 504 D may change one or more IPC firewall rules
or add/remove IPC firewall rules.

0140. When the IPC call returns to the initiating object 502
A, the initiating objects IPC firewall 504. A may determine,
based on one or more of the IPC firewall rules, the target
object of the call, the data provided with the call, the data
provided in the return value of the call, the current state of the
initiating object 502A, and the current state of the initiating
application 110A, how to process the IPC call. The process
ing may include any one or more of the following: the initi
ating object 502A may throw an exception rather than pro
ceeding; the initiating object firewall 504 A may modify the
return value of the IPC call; the initiating object firewall 504
A may send additional IPC calls to the initiating object 502A

Jul. 17, 2014

or other objects (e.g. 502B); the initiating object firewall 504
A may modify one or more IPC firewall rules or adding/
removing IPC Firewall rules.
0.141. The advantage of present embodiments may
include, without limitation, the ability to enforce rigorous,
detailed security policies on all IPCs that occur on mobile
devices. By implementing a system-wide policy engine,
device administrators may deploy policies that allow appli
cations to more easily protect themselves against other poten
tially malicious applications. When implemented as an IPC
firewall, the invention may achieve policy enforcement in an
efficient, Scalable way that may enforce a broad range of
system policies.
0142. In embodiments, referring now to FIG. 4, an
embodiment of system operation for addressing malware
threats begins 402. An application may determine a system
call should occur and the application makes the system call
404. The call handler may either obtain or generate the rel
evant context associated with the application 408, such as the
Source of the application, publisher, or intended purpose. The
system call and its context may then be evaluated Subject to a
plurality of policies 410 to determine whether or not the
system call is part of known malware signature 412. If part of
a known malware signature, or not authorized, the call han
dler may report failure to the application, the presence of
malware to the device administrator 414, and may disable the
application 418. If authorized, or not part of known malware
signature, the application context may be updated 420 to
include any relevant context changes that are a consequence
of the system call. The system call may then be executed 422
and Success may be reported 424 to the application.
0143. The system call authorization may be obtained by
ensuring proper application context is obtained 408 and
updated 420 after the transfer. Policies used to evaluate
whether the system call is authorized 410 may use the call, the
applications context, and the overall system's context to
make authorization decisions. Various embodiments may
allow device administrators to push policies to devices that
can identify and disable malware based on known system call
patterns and application context.
0144. A specific instantiation of this process may be
shown in FIG. 2. An application 110 may request execution of
a system call. This call may be received by the data bus 202,
which may transfer it 218 to the policy engine 118 where it
can undergo policy evaluation. A determination may be made
by the policy engine 118 and returned 214 to the data bus 202.
If the system call is not authorized, the data bus 202 may
report 212 failure to the requesting application 110. If the
system call is authorized, the data bus 202 may update the
application context, execute 212 the system call, and update
the application context. Success may be reported.
0145 The advantages of the present embodiments may
include, without limitation, is the ability to enforce rigorous,
detailed security policies on all remote procedure calls, inter
process communication, and system calls that occur on
mobile devices. By implementing a system-wide policy
engine, device administrators can deploy policies that allow
applications can more easily protect themselves against other
potentially malicious applications. When applied to malware
detection and prevention, known system call patterns can be
recognized, intercepted, and stopped prior to execution.
Offending applications can then be disabled and device
administrators notified of the malicious activity. This pro
vides significant advantages over prior art that relied on appli

US 2014/020 1807 A1

cations to individually approve/disapprove individual system
calls without a common policy set. Additionally, it allows
device administrators to implement device policies that pro
tect against emerging threats without needing to wait for a
Vendor-supplied patch to become available.
0146 A further aspect discussed herein is the use of inter
process communication to distribute policy or other data
needed to apply aspect-oriented security to a plurality of
processes on a mobile device.
0147 A challenge with existing mobile security solutions

is that they require modifications to the application program
ming interfaces, system libraries, or operating system in order
to enforce security policies. For example, in order to restrict
access to wireless networks or cutting/pasting of data, the
APIs related to these features must be modified to allow
security policies to change their behavior. For rapidly devel
oping mobile systems, modifying the APIs of the platform to
Support security features and maintain them requires Substan
tial effort.
0148 Embodiments may address mobile device security
issues by allowing security policies to be applied to existing
APIs through aspect-oriented programming and applied to
existing APIs without modifying the internal logic of APIs.
Instead, an existing API may be wrapped with one or more
layers of security using the aspect-oriented programming
methods and techniques described herein. Although aspect
oriented programming has been used to apply security poli
cies to a single process in non-mobile operating environ
ments, mobile devices, however, use a multi-process
architecture and inter-process communication to operate.
Therefore, single-process application of security policies
may not satisfy mobile device operating security require
ments. Inter-process communications may be used to distrib
ute one or more policies or other data needed to apply aspect
oriented security to a plurality of processes on a mobile
device. Once the security-related data is distributed via an
inter-process communication mechanism, Such as the
Android Binder or Unix Domain Sockets, to the target pro
cesses, aspect-oriented security techniques may be applied to
intercept and manage security related to invocations of meth
ods, functions, and services in these target processes.
0149 Aspect-oriented programming may manifest in
numerous forms on mobile platforms. An aspect-oriented
programming approach may be a modification to an object
class to invoke a specific segment of code before, after, in
place of, or any combination of these in relation to an object
oriented method execution. An aspect-oriented programming
approach may include: a Java Dynamic Proxy; an interceptor
applied to a method, service, system, or other function call; a
modification of the loading of classes into a virtual machine to
change their default behavior; a binary code patch, Such as
Java JAR or Android DEX files; modification to a method
dispatch table to alter code execution for specific functions or
methods; and other Suitable approaches.
0150. In various embodiments, the ability to use contex
tual information to alter how policies are applied to the device
and consequently how aspect-oriented security techniques
are applied across one or more processes may be provided.
Such contextual information may include geographic, accel
erometer, camera, microphone, wireless network, application
usage, user interaction, running processes, disk state, nearby
wireless signals/networks, pairing state with external
devices, websites being visited, device network traffic, bat
tery level, types of data resident on a device, or other device

Jul. 17, 2014

hardware or software detectable context information. Device
context may be either real-world. Such as geographic loca
tion, virtual. Such as data resident on the device, applications
currently executing, or input/output of data to/from network
or disk, or arbitrary combinations of the two. For example, a
security policy may be triggered by connection to a specific
wireless network, the launch of one or more applications, or
the downloading of specific datasets.
0151 Aspect-oriented security for mobile devices may
include tracking which processes that are functioning on the
device are covered by some form of aspect-oriented security
and/or determining processes that are candidates for aspect
oriented security programming being applied, such as to
enforce a security policy. This tracking may be centralized,
distributed, or a hybrid combination of the two.
0152. A mechanism for such tracking may determine how
to distribute policy and/or aspect-oriented programming data
to processes in order to apply security policies to a set of
desired functions or device capabilities. Such a mechanism
may either reside in the operating system or outside of the
operating system in user space.
0153. Since devices may be shut down and restarted,
policy and/or aspect-related data may be stored on the device
so that it can be redistributed to processes when a device is
turned back on. A non-volatile storage system may capture
the needed policy and/or aspect-oriented programming infor
mation. When a device is powered on, either a distributed or
centralized mechanism may be used for input/output of
policy and/or aspect-oriented programming data into pro
cesses to enforce security policies.
0154 Security policies may encompass restrictions on the
execution of application, operating system, middleware, or
other code. A security policy may include restrictions on how
the user may interact with the system, what operations they
may perform, what data they can access, how they can use
data, and the like. A security policy may also govern input/
output or other operations related to physical hardware.
0.155. Additionally, non aspect-oriented programming
logic may be coupled with aspect-oriented programming to
bring a device to a desired State before securing specific
device functions or capabilities. For example, non aspect
oriented programming logic may turn off wireless network
access before an aspect-oriented programming technique is
used to restrict which apps can turn wireless network access
on/off. In another example, non aspect-oriented program
ming logic may automatically shut down a malware applica
tion before an aspect-oriented programming technique is
used to prevent re-launch of the malware.
0156 Referring now to FIG. 10, existing APIs 1002 may
be secured through aspect oriented programming by impact
ing execution environment factors around an API. In this
example, the policy engine 118 may receive contextual infor
mation 1008 about a device, environment, user, processes,
network and the like as described herein. The policy engine
118 may also receive policy data and related data for applying
one or more security policies via aspect-oriented program
ming via IPC 1010 from a policy administration facility 1012.
The policy administration facility 1012 may further track
which processes and/or APIs 1002 are covered by aspect
oriented security and which are candidates for coverage 1014.
The policy facility may store and access policy and/or aspect
related data in a data store 1018 (e.g. a data store on the
device) to facilitate shutdown and restart of the device.

US 2014/020 1807 A1

0157. In an Aspect J (Java) example of enforcing mobile
device security policy via aspect oriented programming,
Secure Setting fields in a mobile operating system may be
accessed by a plurality of system functions that may enable
setting a field that would result in allowing non-market appli
cations to be installed. A non-market application is an appli
cation obtained by a means other than the official market for
the operating system on the device (e.g. an Android applica
tion obtained from a third party, but not through the official
Android Market). To the extent that non-market applications
are often unsigned and therefore more likely to present Secu
rity risks (e.g. may be a form of malware), a security policy
may be established that limits the conditions under which a
non-market application can be permitted to be installed. Such
system functions might appear throughout the system appli
cation but may all include names that begin with the word
“update' (e.g. updateSecureSettings.Info) and may take Set
tingsField Object and Value arguments. Therefore the various
occurrences of “updateSecureSettings.Info' may be a cross
cutting concern that is Suitable for employing a security
policy via aspect oriented programming. The security policy
may specifically target the SettingsField InstallNonMarket
Apps to prevent changes that would allow installation of
non-market apps. A join point may be defined for the Secure
setting update method and for the Settingsfield object that
incorporates name elements such as "update, “info' and
“Settingsfield”. Based on these join points, Aspect J pointcuts
may be prepared for enforcing the security policy that would
ensure that any use of a method that begins with “update' and
ends with “Info' or any use of the “Settingsfield object may
be controlled to comply with the security policy. The point
cuts may be included in an aspect method type along with
code to address the security policy. In this example, the
accompanying code may detect the “InstallNonMarketApps'
access and perform a function after Such access to restore the
setting to the proper value that does not allow installation of
non-market apps. This can be done in Aspect using an “after
type advice to invoke the security policy enforcing code.
0158. In embodiments, methods and systems for enforc
ing security in mobile computing may comprise synchroniz
ing data to a mobile device based on device usage context.
0159 Modern mobile devices often store data that is syn
chronized with a remote system, such as a server. Because of
its finite resources compared to the remote system, usually
only a partial image of the data stored on the remote system is
replicated on the mobile device. This is often accomplished
by passing incremental updates between the two systems. For
example, a user's email inbox, sent folder and other saved
folders may all be stored on a remote email server, and only
the most recent 25 emails in the inbox may be stored on the
user's mobile device. The emails residing on the mobile
device may be updated as the user drafts additional emails
from the device or as new emails received at the mail server
are pushed to the mobile device. Changes made at the mobile
device may be recorded at the mail server as the user, for
example, sends emails via the mail server.
0160 Embodiments described below may address secu

rity, bandwidth and energy efficiency concerns associated
with the current art for synchronizing data on mobile device
by intelligently organizing and prioritizing the synchroniza
tion of higher priority data. In a system where data is syn
chronized between two computing systems, such as a server
and a mobile device, it may be more secure and more efficient
(both with respect to bandwidth and energy usage) to only

Jul. 17, 2014

synchronize said data when it will be of use to one of the
computing systems. For example, when synchronizing data
to a mobile device from a central server, the mobile device
only needs the data when the user is actively using the data or
when the data will be immediately usable, not when the
mobile device is sitting idle.
0.161 These security and efficiency concerns may be
addressed by defining multiple classes of data with different
synchronization priorities, by defining and monitoring the
device's context (e.g. whether the device is idle, whether the
user is attempting to unlock the device, whether the user is
starting the email client, etc.) and synchronizing one or more
classes of databased on the existing classes and the system
COInteXt.

0162 The methods and systems of the present disclosure
may benefit existing applications or enable new ones, includ
ing but not limited to, communications applications, such as
enhanced features of chat, sharing, Social networking, contact
management, messaging, email, web browsing and the like;
games and entertainment content applications (video games,
music, video content, online content, etc.); command and
control applications and features (operating system control,
phone control, restricted/secured data access control, etc.);
enterprise IT management applications, such as device imag
ing and device wiping; automotive applications, such as navi
gation, driver Support and safety systems; and advanced secu
rity tools, such as anti-virus, firmware integrity, operating
system integrity, boot loader integrity, firewalls, intrusion
detection systems, and intrusion prevention systems, and the
like.
0163 Referring to FIG. 11, a system 102, such as a mobile
device, may include a synchronization facility 164 that may
communicate, through a communication facility 150, to a
server 1102 via a network 104, to synchronize data 158, 160,
130 on the system 102 with data 158, 160, 130 on the server
1102. In some embodiments, the data may be separated into a
plurality of classes, such as high priority data 158 and low
priority data 160. The synchronization facility 164 may ini
tiate data synchronization of one or more classes of databased
upon an input, Such as a change of State from one or more
resources on the system 102. For example, the synchroniza
tion facility 164 may initiate data synchronization of the high
priority data 158 based upon an input from the power man
agement facility 162 indicating that the system 102 is being
powered on. In another example, the synchronization facility
164 may initiate data synchronization of the low priority data
160 based upon an input from the device user interface (UI)
154 indicating that the user of the system 102 has started an
application 110 that utilizes the low priority data 160. In still
another example, the Synchronization facility 164 may ini
tiate data synchronization of policy data (e.g. one or more
policies 130 for use by a policy engine 124).
0164. In embodiments, adaptive synchronization may
include adapting a synchronization facility 164 on a system
102 to determine when to synchronize a plurality of classes of
data 158, 160 and 130B with data on a server 104.
0.165. In a system where data is synchronized between two
computing systems, such as a server 1102 and a system 102.
it may be advantageous to only synchronize said data when it
will be of use to one of the computing systems. For example,
when synchronizing data to a mobile device from a central
server, the device may only need the data when the device
user is actively using the data or when the data will be imme
diately usable, not when the mobile device is sitting idle.

US 2014/020 1807 A1

0166 In one embodiment, a user interaction with the sys
tem 102 may initiate a synchronization event. The user inter
action with the system 102 may be, for example, an input to
the device UI 154. The input to the device UI 154 may one or
more of locking the system 102, unlocking the system 102.
starting an application 110, stopping an application 110.
using an application 110, booting the system 102, shutting
down the system 102, sending information to a remote com
puter, requesting information from a remote computer, or
Some other input, and the like.
0167. In other embodiments, the synchronization event
may be initiated by the system 102 or software executing on
the system 102. For example, the power management facility
162 may initiate a synchronization event when the battery of
the system 102 reaches a certain charge.
0.168. In one example, the user may provide an input to the
device UI 154 to lock the screen, and, based on that input, the
synchronization facility 164 may determine the systems
state (i.e. the user is not intending to use the system 102 for a
period of time) and, based on the State, begin synchronizing
data on the system 102.
0169. It may be advantageous to adjust the data synchro
nization process based on current usage State because it may
allow the system 102 to realize the full power consumption
benefits in low-power states, such as when the system 102
display is turned off, and perform more power-intensive
tasks, such as network operations, when the system 102 is in
already in use.
(0170. In some instances, it may be necessary to define
multiple classes of data to be synchronized between the com
puting systems. One class may be low priority data 160. In
some embodiments, the low priority data 160 may be syn
chronized only when the device is active. Types of data that
may be in the class of low priority data may include, for
example, personal emails, tweets, contact information, music
files, and image files.
0171 Another class of data may be high priority data 158.
In some embodiments, the high priority data 158 may be
synchronized regardless of the current usage state of the
device. In some embodiments, there may be additional
classes of data, such as medium priority data, medium-low
priority data, highest priority data, and other classes of data.
Types of data that may be in the class of high priority data may
include, for example, confidential business emails, text mes
sages, Voicemail notifications, instructions to wipe data on
the device, and classified data.
0172. In embodiments, the data being synchronized may
be policy data, such as a policy 130, for a policy engine 118,
which may use the policy data to control aspects or features of
the system 102.
0173 The policy engine 118 may generate a device-spe

cific context, which may include one or more of the current
date and time, the device location, the identity of the device
user, and other context-related data. In some embodiments,
the policy engine 118 may be connected to a server 1102, such
as a policy server 106, which may push one or more policies
130 as policy data to the policy engine 118.
0.174. The policy engine 118 may be used to enforce one or
more security policies on the system 102. In some embodi
ments, the policy data may include a policy 130 for the policy
engine 118 to cause the system 102 to disable functionality.
For example, the policy 130 may include a rule for disabling
the camera 152 when the policy engine 124 determines that
the system 102 is located in a building that prohibits the use of

Jul. 17, 2014

cameras 152, like a research lab. In other embodiments, the
policy data may include a policy 130 for the policy engine 118
to cause the system 102 to perform operations like erasing the
stored content on the system 102. For example, the policy 130
may include a rule for wiping all memory on the system 102
when the system user is not an authorized user or in response
to an instruction from an authorized user who lost the system
102. In embodiments, a policy 130 that disables the camera
152, for instance, may need only be synchronized when the
system 102 is in a high-power state, as the camera 152 cannot
be used in a low-power state regardless. However, in the case
of a stolen or compromised system 102, it would be necessary
to erase any sensitive data stored on the system 102 immedi
ately rather than when the system 102 is going to be interacted
with.

0.175. In another embodiment, the data synchronization
strategy could depend on the context of the receiving com
puting system. For example, the synchronization facility 164
may initiate data synchronization when events occur on the
system 102 such as, when an application 110 is started or
stopped. In the policy synchronization example, a synchro
nization of policies 130 between the computing systems may
be triggered when an untrusted application 110 is launched on
the system 102. In embodiments, data may be synchronized
between a system 102 and a server 1102 based on the power
usage state of the system and/or based on other consider
ations. In embodiments, synchronization may be based on
various considerations described herein separately or
together.
0176 The synchronization could be made more or less
complicated by adjusting the synchronization conditions. For
example, the synchronization facility 164 may only use the
network 104 while the system 102 is active and the network
connection of the network 104 is idle. In another example, the
synchronization facility 164 may only use the network 104
while the system 102 is active and in a particular geo-location.
In still another example, the synchronization facility 164 may
only use the network 104 while the system 102 is active and
the user has permitted synchronization.
0177. In embodiments, methods and systems for enforc
ing security in mobile computing may include securing short
range communications between a mobile device and another
device to securely provide location and business identifica
tion information. Securing such communications may pro
vide customer location information in addition to the cus
tomer identification information. Some embodiments may
also use certain events sent over an inter-process communi
cation (IPC) mechanism to securely trigger execution of an
application on the device.
0.178 Referring to FIG. 12, a system 102 may include a
location-aware facility 1210 that may be adapted to send and
receive transmissions through a communication facility 150
via a network 104. Such transmissions may include short
range proximity information from one or more short-range
proximity radios 1218A-C. Such transmissions may also
include information to and from a business server 1216. The
location-aware facility 1210 may provide information with
one or more applications via an IPC facility 1212. In embodi
ments, the IPC facility 1212 may be an IPC bus 132. In some
embodiments, an application process 1214A may, in response
to information provided by the location-aware facility 1210,
transmit an event indicating a business location change via
the IPC facility 1212 to a second application process 1214B.

US 2014/020 1807 A1

The second application process 1214B may be dynamically
launched to execute logic from the application.
0179 The business server 1216 may be part of a business
system 1204, which may transmit data to the system 102 for
determining the location of the system 102 and/or for provid
ing information to the system 102 based on the location of the
device 102.
0180 Providing a secure short-range proximity signal
may include providing a system 102, wherein the device 102
includes a location-aware facility 1210 and a communication
facility 150; and providing a business system 1204 to provide
information to the system 102 based on the location of the
system 102, wherein the business system 1204 may include
one or more short-range proximity radios 1218A-C for iden
tifying the location of the system 102, and a business server
1216 for providing the information. In embodiments, a short
range proximity radio 1218A may be enabled to emita unique
signal, which may be used by the location-aware facility 1210
to identify the location of the device.
0181. The system 102 may be a mobile phone, a tablet,
personal digital assistant, a watch, a laptop, or some other
device. The system 102 may have one or more applications
executing. In some embodiments, the applications may
execute in one or more processes 1214A-B. The processes
1214A-B may be connected to an inter-process communica
tions facility 1212 to facilitate communication between one
or more processes 1214A-B, and between one or more pro
cesses 1214A-B and the location-aware facility 1210. In
some embodiments, the inter-process communications facil
ity 1212 may be an inter-process communications firewall
144 to enforce rules governing communication between two
Subsystems.
0182 An aspect of the disclosure is that the use of Wi-Fi,
cellular, Bluetooth, or Bluetooth Low Energy (Bluetooth LE)
network events, which may indicate entrance or exit from a
business location, may enable sending Such events over the
inter-process communication facility 1212 to automatically
trigger the execution of logic contained within an application
running in a process 1214 A and/or B. Such networking
events indicating a business location change may be gener
ated in a first process 1214A, transmitted over an inter-pro
cess communication facility 1212, and then delivered to a
second process 1214B that is dynamically launched to
execute logic from the business aiding application. This
aspect of the disclosure allows the business aiding applica
tion's code to be dynamically loaded into memory and
executed upon a networking event, Such as a system 102 with
a specific Wi-Fi SSID coming into range, which may indicate
a business location has been entered or exited. Once this
application code is loaded into memory, the application may
interact with the user of the system 102 by doing one or more
of the following: 1.) using business logic to devise and present
personalized discounts based on the user's location in the
business and their buying history, 2.) providing a mechanism
for requesting help from a customer representative of the
store, 3.) offering one or more personalized advertisements,
and 4.) offering help and/or directions to a specific product.
0183 The location-aware facility 1210 may be adapted to
send and receive transmissions through a communication
facility 150 via a network 104. The location aware facility
1210 may use GPS location. The location aware facility 1210
may access a database of stored location data, Such as data on
locations of devices or IP addresses connected to a network.
The location-aware facility 1210 may use a hybrid position

Jul. 17, 2014

ing system, Such as using triangulation, trilateration or mul
tilateration using signals such as from a plurality of short
range proximity radios 1218A-C, wireless internet signals,
Bluetooth sensors; and/or some other positioning system to
identify the system 102 location.
0.184 The transmissions between the communication
facility 150 and the network 104 may utilize one or more
short-range proximity signals, such as, but not limited to,
cellular, Bluetooth, Bluetooth LE, near-field communication,
RFID, Wi-Fi, and ultrasonic sound. The transmissions may
include short-range proximity information from one or more
short-range proximity radios 1218A-C. Such transmissions
may also include information associated with the location of
the system 102 to and/or from the business server 1216. For
example, the information may include customer loyalty infor
mation, store information, store navigation information, pur
chasing information, a coupon, barcode scanning informa
tion, product information, shopping information, browsing
information (such as for products), shopping cart informa
tion, and/or other business-aiding information.
0185. The business server 1216 may be part of a business
system 1204. In some embodiments, the business server 1216
may include a location calculator 1220, a business operations
system 1222, an advertising operations system 1224 and one
or more other operations systems 1226. The location calcu
lator 1220 may, in response to data associated with a customer
system 102, and received via one or more short-range proX
imity radios 1218A-C, identify the location of the customer
system 102. The advertising operations system 1224 may
identify advertisements to be delivered to a customer system
102 based on a location identified by the location calculator
1220. The business operations system 1222 may process a
business transaction in response to a location of a customer
system 102 identified by the location calculator 1220. For
example, the location calculator 1220 may identify that a
customer device is standing in front of an end cap for some
cookies that are on sale. In the same example, in response to
the identification by the location calculator 1220, the adver
tising operations system 1224 may deliver a coupon for the
cookies to the customer system 102. Continuing with the
same example, in response to the same identification by the
location calculator 1220, the business operations system 1222
may project that, based on the rate of cookie sales to people
who have stood in the same location, the store should submit
an order for more of the cookies. In another example, in
response to an identification by the location calculator 1220,
the business operations system 1222 may generate date/time
specific suggestions/reminders based on the customer demo
graphic. The other operations systems 1226 may be any other
systems, such as, but not limited invoice printing, security,
CRM, or other systems.
0186. An aspect of the current disclosure is that the short
range proximity signal may transmit time-dependent crypto
graphic, identity, and/or session data that the system 102 may
collect and use to indicate its location via one or more mes
sages to the business server 1216. The system 102 may either
directly transmit the data received over the short-range proX
imity signal to the business server 1216 to indicate location,
or use the data to create derivative data that the system 102
may send to the business server 1216. Such derivative data
may be a cryptographic hash, a signature, or other data.
0187 Methods and systems for securing a device may
include filtering access to the device resource using a device
based context-aware policy engine to enforce policies relat

US 2014/020 1807 A1

ing to the provenance of data. Such methods and systems may
be associated with methods and systems for addressing mal
ware threats. The foregoing may further be associated with
methods and systems for enforcing distributed policies in
mobile networks by providing an inter-process communica
tions firewall on a device to enforce rules governing commu
nication between two systems. For example, a device may be
provided in which provenance of data and/or applications
must be proven prior to installation/execution/storage on the
device. If the provenance of Some data and/or application
cannot be proven, then the IPC firewall may prevent the
installation/execution/storage of the data and/or application.
Additionally, the IPC firewall may record the path the data
and/or application uses to spread through the system. Such
path information may be used by the device or another system
to provide this provenance or to determine that the data may
be corrupted or the result of a system compromise, such as a
malware infection.

0188 Methods and systems for enforcing distributed poli
cies in mobile networks by providing an inter-process com
munications firewall on a device to enforce rules governing
communication between two systems may be associated with
other methods and systems. For example, Such methods and
systems may be associated with methods and systems for
securing a device via aspect-oriented programming. For
example, IPC firewalls may be used to determine the aspect of
the current system, Such by tracking the methods called and
the payloads passed through the IPC firewalls. Additionally,
modifications to or configurations of new IPC firewall rules
may occur to change the behavior of the system based on the
detected new system aspect.
0189 Additionally, more complex combinations of meth
ods and systems may be useful. For example and as described
above, methods and systems for securing a device may
include filtering access to the device resource using a device
based context-aware policy engine to enforce policies relat
ing to the provenance of data, and may be associated with
methods and systems for addressing malware threats and
further associated with methods and systems for enforcing
distributed policies in mobile networks by providing an inter
process communications firewall on a device to enforce rules
governing communication between two systems. The forego
ing may further be associated with methods and systems for
enforcing distributed policies on the loading, linking, and
execution of native code and with methods and systems for
securing the device via aspect-oriented programming. By
way of an example, a solution that monitors the content and/or
use of IPC mechanisms may determine if the device has been
compromised (e.g. infected with malware) based on the cur
rent aspect. Such a solution may monitor the device by check
ing data provenance to determine the origin and path of data
transmission, which may be indicative of malware infection.
This exemplary solution may also use the detection of mal
ware indicative behavior to change the current aspect, wipe
data from the device, or take other preventative measures for
data exfiltration or additional malware infection. Such new
aspect may include automated steps to remediate the detected
threat, Such as the enforcement of a security policy to remove
applications that have been determined to potentially contain
malware. Additionally, the new aspect may include steps to
prevent additional infection, such as preventing the execution
of native code or the instantiation of other IPC firewall rules.

0190. A similar combination may associate methods and
systems for securing a device may include filtering access to

Jul. 17, 2014

the device resource using a device-based context-aware
policy engine to enforce polices relating to the provenance of
data with methods and systems for enforcing distributed poli
cies in mobile networks by providing an inter-process com
munications firewall on a device to enforce rules governing
communication between two systems. Such combination
may be further associated with methods and systems for
enforcing distributed policies on the loading, linking, and
execution of native code, methods and systems for using a
trusted processor Zone to improve mobile device security, and
methods and systems for securing a device via aspect-ori
ented programming. For example, all trusted Software and
applications on a device may be signed with credentials
stored in the Trusted Platform Module (TPM) of the device. In
the event that the software cannot be verified with credentials
originating from the TPM, then the aspect may be altered such
that preventative measures can take effect. Such preventative
measures may include preventing native code linking, load
ing and/or executing. In this example, the IPC firewall may
record traffic, which may be signed using credentials and
Stored within the TPM. Access to the TPM can be arbitrated
via the IPC firewall, as can any data passed to be stored in or
retrieved from the TPM. This arbitration may take into
account the current aspect of the system when determining
the level of access to be granted.
0191 Methods and systems for securing a device may
include filtering access to the device resource using a device
based context-aware policy engine to enforce policies relat
ing to the provenance of data. Such methods and systems may
be associated with methods and systems for enforcing Secu
rity and access control policies on privileged code execution
on a jail-broken mobile device, with methods and systems for
securing a device via aspect-oriented programming, together
with methods and systems for securing short-range commu
nications between a plurality of devices. By way of example,
a solution may include setting the privilege level of the user
based on cryptographic identification tokens received from
transmissions of nearby proximity-based beacons. Such
tokens or other data may only be received when with in
physical proximity to the short-range proximity signal. Data,
stored locally or remotely on a backend server may only be
accessible through authentication using the cryptographic
identification token received via the short-range transmis
Sion. The cryptographic identification token can be used to
create a signature that definitively links data provenance to
the appropriate user. The aspect of the system may also be
changed based on the detected presence and Verification of
cryptographic identification tokens generated and transmit
ted by the short-range proximity signal creator, or be altered
based on data received from a remote backend server once
Successful authentication is complete.
0.192 Methods and systems for enforcing security and
access control policies on privileged code execution on a
jail-broken mobile device, methods and systems for securing
a device via aspect-oriented programming, and methods and
systems for securing short-range communications between a
plurality of devices may be associated with and combined
with other methods and systems. For example. Such methods
and systems may be associated with methods and systems for
enforcing security in mobile computing may comprise Syn
chronizing data to a mobile device based on device usage
context. For example, data synchronization may occur when
the device is within close proximity to a short range signal
emitter. In this example, the credentials transmitted to the

US 2014/020 1807 A1

mobile device may be used to authenticate with a remote
backend server. Once this authentication is complete, the
aspect of the mobile device may be changed so that secure and
privileged data may be synchronized between the mobile
device and the server. This process may also make use of
credentials stored in the TPM to decrypt the data received
from the remote backend server. The credentials needed to
complete this decryption may differ from those received from
the short range signal emitter to authenticate with the remote
backend and may only be accessible if the privileged access
has been granted for the current aspect.
0193 While only a few embodiments of the present inven
tion have been shown and described, it will be obvious to
those skilled in the art that many changes and modifications
may be made thereunto without departing from the spirit and
scope of the present invention as described in the following
claims. All patent applications and patents, both foreign and
domestic, and all other publications referenced herein are
incorporated herein in their entireties to the full extent per
mitted by law.
0194 The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer Software, program codes, and/or instructions on a
processor. The present invention may be implemented as a
method on the machine, as a system or apparatus as part of or
in relation to the machine, or as a computer program product
embodied in a computer readable medium executing on one
or more of the machines. In embodiments, the processor may
be part of a server, cloud server, client, network infrastructure,
mobile computing platform, stationary computing platform,
or other computing platform. A processor may be any kind of
computational or processing device capable of executing pro
gram instructions, codes, binary instructions and the like. The
processor may be or include a signal processor, digital pro
cessor, embedded processor, microprocessor or any variant
Such as a co-processor (math co-processor, graphic co-pro
cessor, communication co-processor and the like) and the like
that may directly or indirectly facilitate execution of program
code or program instructions stored thereon. In addition, the
processor may enable execution of multiple programs,
threads, and codes. The threads may be executed simulta
neously to enhance the performance of the processor and to
facilitate simultaneous operations of the application. By way
of implementation, methods, program codes, program
instructions and the like described herein may be imple
mented in one or more thread. The thread may spawn other
threads that may have assigned priorities associated with
them; the processor may execute these threads based on pri
ority or any other order based on instructions provided in the
program code. The processor, or any machine utilizing one,
may include memory that stores methods, codes, instructions
and programs as described herein and elsewhere. The proces
Sor may access a storage medium through an interface that
may store methods, codes, and instructions as described
herein and elsewhere. The storage medium associated with
the processor for storing methods, programs, codes, program
instructions or other type of instructions capable of being
executed by the computing or processing device may include
but may not be limited to one or more of a CD-ROM, DVD,
memory, hard disk, flash drive, RAM, ROM, cache and the
like.

0.195 A processor may include one or more cores that may
enhance speed and performance of a multiprocessor. In
embodiments, the process may be a dual core processor, quad

Jul. 17, 2014

core processors, other chip-level multiprocessor and the like
that combine two or more independent cores (called a die).
0196. The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer software on a server, client, firewall, gateway, hub,
router, or other Such computer and/or networking hardware.
The Software program may be associated with a server that
may include a file server, print server, domain server, internet
server, intranet server, cloud server, and other variants such as
secondary server, host server, distributed server and the like.
The server may include one or more of memories, processors,
computer readable media, storage media, ports (physical and
virtual), communication devices, and interfaces capable of
accessing other servers, clients, machines, and devices
through a wired or a wireless medium, and the like. The
methods, programs, or codes as described herein and else
where may be executed by the server. In addition, other
devices required for execution of methods as described in this
application may be considered as a part of the infrastructure
associated with the server.

0197) The server may provide an interface to other devices
including, without limitation, clients, other servers, printers,
database servers, print servers, file servers, communication
servers, distributed servers, social networks, and the like.
Additionally, this coupling and/or connection may facilitate
remote execution of program across the network. The net
working of some or all of these devices may facilitate parallel
processing of a program or method at one or more location
without deviating from the scope of the disclosure. In addi
tion, any of the devices attached to the server through an
interface may include at least one storage medium capable of
storing methods, programs, code and/or instructions. A cen
tral repository may provide program instructions to be
executed on different devices. In this implementation, the
remote repository may act as a storage medium for program
code, instructions, and programs.
0198 The software program may be associated with a
client that may include a file client, print client, domain client,
internet client, intranet client and other variants such as sec
ondary client, host client, distributed client and the like. The
client may include one or more of memories, processors,
computer readable media, storage media, ports (physical and
virtual), communication devices, and interfaces capable of
accessing other clients, servers, machines, and devices
through a wired or a wireless medium, and the like. The
methods, programs, or codes as described herein and else
where may be executed by the client. In addition, other
devices required for execution of methods as described in this
application may be considered as a part of the infrastructure
associated with the client.

0199 The client may provide an interface to other devices
including, without limitation, servers, other clients, printers,
database servers, print servers, file servers, communication
servers, distributed servers and the like. Additionally, this
coupling and/or connection may facilitate remote execution
of program across the network. The networking of some orall
of these devices may facilitate parallel processing of a pro
gram or method at one or more location without deviating
from the scope of the disclosure. In addition, any of the
devices attached to the client through an interface may
include at least one storage medium capable of storing meth
ods, programs, applications, code and/or instructions. A cen
tral repository may provide program instructions to be
executed on different devices. In this implementation, the

US 2014/020 1807 A1

remote repository may act as a storage medium for program
code, instructions, and programs.
0200. The methods and systems described herein may be
deployed in part or in whole through network infrastructures.
The network infrastructure may include elements such as
computing devices, servers, routers, hubs, firewalls, clients,
personal computers, communication devices, routing devices
and other active and passive devices, modules and/or compo
nents as known in the art. The computing and/or non-com
puting device(s) associated with the network infrastructure
may include, apart from other components, a storage medium
such as flash memory, buffer, stack, RAM, ROM and the like.
The processes, methods, program codes, instructions
described herein and elsewhere may be executed by one or
more of the network infrastructural elements. The methods
and systems described herein may be adapted for use with any
kind of private, community, or hybrid cloud computing net
work or cloud computing environment, including those
which involve features of software as a service (SaaS), plat
form as a service (PaaS), and/or infrastructure as a service
(IaaS).
0201 The methods, program codes, and instructions
described herein and elsewhere may be implemented on a
cellular network having multiple cells. The cellular network
may either be frequency division multiple access (FDMA)
network or code division multiple access (CDMA) network.
The cellular network may include mobile devices, cell sites,
base stations, repeaters, antennas, towers, and the like. The
cell network may be a GSM, GPRS, 3G, EVDO, mesh, or
other networks types.
0202 The methods, program codes, and instructions
described herein and elsewhere may be implemented on or
through mobile devices. The mobile devices may include
navigation devices, cellphones, mobile phones, mobile per
Sonal digital assistants, laptops, palmtops, netbooks, pagers,
electronic books readers, music players and the like. These
devices may include, apart from other components, a storage
medium such as a flash memory, buffer, RAM, ROM and one
or more computing devices. The computing devices associ
ated with mobile devices may be enabled to execute program
codes, methods, and instructions stored thereon. Alterna
tively, the mobile devices may be configured to execute
instructions in collaboration with other devices. The mobile
devices may communicate with base stations interfaced with
servers and configured to execute program codes. The mobile
devices may communicate on a peer-to-peer network, mesh
network, or other communications network. The program
code may be stored on the storage medium associated with the
server and executed by a computing device embedded within
the server. The base station may include a computing device
and a storage medium. The storage device may store program
codes and instructions executed by the computing devices
associated with the base station.

0203 The computer software, program codes, and/or
instructions may be stored and/or accessed on machine read
able media that may include: computer components, devices,
and recording media that retain digital data used for comput
ing for Some interval of time; semiconductor storage known
as random access memory (RAM); mass storage typically for
more permanent storage, such as optical discs, forms of mag
netic storage like hard disks, tapes, drums, cards and other
types; processor registers, cache memory, Volatile memory,
non-volatile memory; optical storage such as CD, DVD:
removable media such as flash memory (e.g. USB sticks or

Jul. 17, 2014

keys), floppy disks, magnetic tape, paper tape, punch cards,
standalone RAM disks, Zip drives, removable mass storage,
off-line, and the like; other computer memory Such as
dynamic memory, static memory, read/write storage, mutable
storage, read only, random access, sequential access, location
addressable, file addressable, content addressable, network
attached storage, storage area network, bar codes, magnetic
ink, and the like.
0204 The methods and systems described herein may
transform physical and/or or intangible items from one state
to another. The methods and systems described herein may
also transform data representing physical and/or intangible
items from one state to another.

0205 The elements described and depicted herein, includ
ing in flow charts and block diagrams throughout the figures,
imply logical boundaries between the elements. However,
according to software or hardware engineering practices, the
depicted elements and the functions thereof may be imple
mented on machines through computer executable media
having a processor capable of executing program instructions
stored thereon as a monolithic Software structure, as standa
lone software modules, or as modules that employ external
routines, code, services, and so forth, or any combination of
these, and all Such implementations may be within the scope
of the present disclosure. Examples of Such machines may
include, but may not be limited to, personal digital assistants,
laptops, personal computers, mobile phones, other handheld
computing devices, medical equipment, wired or wireless
communication devices, transducers, chips, calculators, sat
ellites, tablet PCs, electronic books, gadgets, electronic
devices, devices having artificial intelligence, computing
devices, networking equipment, servers, routers and the like.
Furthermore, the elements depicted in the flow chart and
block diagrams or any other logical component may be imple
mented on a machine capable of executing program instruc
tions. Thus, while the foregoing drawings and descriptions set
forth functional aspects of the disclosed systems, no particu
lar arrangement of Software for implementing these func
tional aspects should be inferred from these descriptions
unless explicitly stated or otherwise clear from the context.
Similarly, it will be appreciated that the various steps identi
fied and described above may be varied, and that the order of
steps may be adapted to particular applications of the tech
niques disclosed herein. All Such variations and modifications
are intended to fall within the scope of this disclosure. As
Such, the depiction and/or description of an order for various
steps should not be understood to require a particular order of
execution for those steps, unless required by a particular
application, or explicitly stated or otherwise clear from the
COInteXt.

0206. The methods and/or processes described above, and
steps associated therewith, may be realized inhardware, Soft
ware or any combination of hardware and software suitable
for a particular application. The hardware may include a
general-purpose computer and/or dedicated computing
device or specific computing device or particular aspect or
component of a specific computing device. The processes
may be realized in one or more microprocessors, microcon
trollers, embedded microcontrollers, programmable digital
signal processors or other programmable device, along with
internal and/or external memory. The processes may also, or
instead, be embodied in an application specific integrated
circuit, a programmable gate array, programmable array
logic, or any other device or combination of devices that may

US 2014/020 1807 A1

be configured to process electronic signals. It will further be
appreciated that one or more of the processes may be realized
as a computer executable code capable of being executed on
a machine-readable medium.
0207. The computer executable code may be created using
a structured programming language such as C, an object
oriented programming language such as C++, or any other
high-level or low-level programming language (including
assembly languages, hardware description languages, and
database programming languages and technologies) that may
be stored, compiled or interpreted to run on one of the above
devices, as well as heterogeneous combinations of proces
sors, processor architectures, or combinations of different
hardware and Software, or any other machine capable of
executing program instructions.
0208 Thus, in one aspect, methods described above and
combinations thereof may be embodied in computer execut
able code that, when executing on one or more computing
devices, performs the steps thereof. In another aspect, the
methods may be embodied in Systems that perform the steps
thereof, and may be distributed across devices in a number of
ways, or all of the functionality may be integrated into a
dedicated, standalone device or other hardware. In another
aspect, the means for performing the steps associated with the
processes described above may include any of the hardware
and/or software described above. All such permutations and
combinations are intended to fall within the scope of the
present disclosure.
0209 While the disclosure has been disclosed in connec
tion with the preferred embodiments shown and described in
detail, various modifications and improvements thereon will
become readily apparent to those skilled in the art. Accord
ingly, the spirit and scope of the present disclosure is not to be
limited by the foregoing examples, but is to be understood in
the broadest sense allowable by law.
0210. The use of the terms “a” and “an and “the and
similar referents in the context of describing the disclosure
(especially in the context of the following claims) is to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by context.
The terms “comprising.” “having,” “including,” and “con
taining are to be construed as open-ended terms (i.e., mean
ing “including, but not limited to.) unless otherwise noted.
Recitation of ranges of values herein are merely intended to
serve as a shorthand method of referring individually to each
separate value falling within the range, unless otherwise indi
cated herein, and each separate value is incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed in any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “Such as') provided herein, is
intended merely to better illuminate the disclosure and does
not pose a limitation on the scope of the disclosure unless
otherwise claimed. No language in the specification should be
construed as indicating any non-claimed element as essential
to the practice of the disclosure.
0211 While the foregoing written description enables one
of ordinary skill to make and use what is considered presently
to be the best mode thereof, those of ordinary skill will under
stand and appreciate the existence of variations, combina
tions, and equivalents of the specific embodiment, method,
and examples herein. The disclosure should therefore not be
limited by the above described embodiment, method, and

20
Jul. 17, 2014

examples, but by all embodiments and methods within the
Scope and spirit of the disclosure.
0212 All documents referenced herein are hereby incor
porated by reference.
What is claimed is:
1. A method of securing inter-process communications in a

device, comprising:
operating an inter-process communications mechanism

within a trusted code Zone of the device;
extending an inter-process communications bus from out

side the trusted code Zone into the trusted code Zone of
the device;

performing inter-process communications on the inter
process communications bus between services on the
device and user-space applications not within the trusted
code Zone of the device; and

adapting the inter-process communications between ser
vices on the device and user-space applications using the
inter-process communications mechanism within the
trust code Zone of the device.

2. The method of claim 1, wherein the inter-process com
munications adapted using the inter-process communications
mechanism are filtered according to a policy determined by a
policy engine.

3. The method of claim 1, wherein the inter-process com
munications are blocked using the inter-process communica
tions mechanism according to apolicy determined by a policy
engine.

4. The method of claim 2, wherein the policy engine is
within the trusted code Zone of the device.

5. The method of claim 1, wherein the service on the device
is a user input service.

6. The method of claim 1, wherein the inter-process com
munications include financial information.

7. The method of claim 1, further comprising redirecting
requests for inter-process communication with the user-space
application not within the trusted code Zone to a trusted ver
sion of the user-space application within the trusted code
ZO.

8. A device with secure inter-process communications,
comprising:

a trusted code Zone of the device;
an inter-process communications mechanism within the

trusted code Zone;
an inter-process communications bus extending from out

side the trusted code Zone into the trusted code Zone,
wherein the inter-process communications bus allows
inter-process communications between objects Support
ing inter-process communication located within the
trusted code Zone and objects Supporting inter-process
communication not located within the trusted code Zone;

services on the device located within the trusted code Zone
of the device; and

user-space applications on the device not located within the
trusted code Zone,

wherein inter-process communications between the Ser
vices on the device and the user-space applications on
the device are adapted by the inter-process communica
tions mechanism.

9. The device of claim 8, wherein the inter-process com
munications adapted using the inter-process communications
mechanism are filtered according to a policy determined by a
policy engine.

US 2014/020 1807 A1

10. The device of claim 8, wherein the inter-process com
munications adapted using the inter-process communications
mechanism are blocked according to a policy determined by
a policy engine.

11. The device of claim 10, wherein the policy engine is
within the trusted code Zone of the device.

12. The device of claim8, wherein the service on the device
is a user input service.

13. The device of claim 12, wherein the user input service
is a touch-screen input service for a touch-screen of the
device.

14. The device of claim 8, wherein the inter-process com
munications mechanism is configured to redirect requests for
inter-process communication with the user-space application
not within the trusted code Zone to a trusted version of the
user-space application within the trusted code Zone.

15. A non-transitory computer readable medium compris
ing:

instructions executable by one or more processors to cause
the one or more processors to:
operate an inter-process communications mechanism

within a trusted code Zone of the device;
extend an inter-process communications bus from out

side the trusted code Zone into the trusted code Zone of
the device;

Jul. 17, 2014

perform inter-process communications on the inter-pro
cess communications bus between services on the
device and user-space applications not within the
trusted code Zone of the device; and

adapt the inter-process communications between ser
vices on the device and user-space applications using
the inter-process communications mechanism within
the trust code Zone of the device.

16. The medium of claim 15, wherein a policy engine is
located within the trusted code Zone of the device.

17. The medium of claim 16, wherein the policy engine
controls the adaptation of the inter-process communications.

18. The medium of claim 15, wherein the service on the
device is a user input service.

19. The medium of claim 18, wherein the user input service
is a touch-screen user input service.

20. The medium of claim 15, wherein the instructions are
further executable to cause the one or more processors to
redirect requests for inter-process communication with the
user-space application not within the trusted code Zone to a
trusted version of the user-space application within the
trusted code Zone.

