(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) # (19) World Intellectual Property Organization International Bureau (10) International Publication Number WO 2020/081593 A1 (51) International Patent Classification: B60Q 1/00 (2006.01) F21S 10/00 (2006.01) B60Q 3/20 (2017.01) F21V 21/04 (2006.01) B60Q 3/62 (2017.01) G02B 6/00 (2006.01) B60R 13/02 (2006.01) (21) International Application Number: PCT/US2019/056373 (22) International Filing Date: 15 October 2019 (15.10.2019) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/748,183 19 October 2018 (19.10.2018) US 62/808,290 20 February 2019 (20.02.2019) US - (71) Applicant: SHANGHAI YANFENG JINQIAO AUTO-MOTIVE TRIM SYSTEMS CO. LTD. [US/US]; c/o Law Department, 41935 West 12 Mile Road, Novi, Michigan 48377 (US). - (72) Inventors: DEGROTE, Anthony; c/o Law Department, 41935 West 12 Mile Road, Novi, Michigan 48377 (US). HANSEN, Scott; c/o Law Department, 41935 West 12 Mile Road, Novi, Michigan 48377 (US). KRING, Christopher; c/o Law Department, 41935 West 12 Mile Road, Novi, Michigan 48377 (US). - (74) Agent: AMIN, Himanshu S. et al.; Amin, Turocy & Watson, LLP, 200 Park Avenue, Suite 300, Beachwood, Ohio 44122 (US). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). ## Published: - with international search report (Art. 21(3)) - before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) (54) Title: VEHICLE INTERIOR COMPONENT (57) Abstract: A vehicle interior component is disclosed. The component may comprise a composite structure comprising a substrate and light guide and surface/cover with holes/pattern of apertures configured for illumination (by a light source/module) to provide an interface/display (with decorative and/or instrumentation region). The light guide may comprise a resin material formed as the set of projections in the pattern of apertures. The cover may comprise a decorative layer with backing configured to provide a visual/surface effect (e.g. natural material, wood veneer, etc.); the display may present a visual/decorative effect when illuminated at the pattern of apertures/light guide. The interface/display at the surface (by illuminated light guide/pattern of holes) may present indicia for a vehicle system and/or decorative effect. The component may comprise a trim/trim panel, instrument panel/dashboard, door panel/armrest, console, overhead trim/headliner, pillar/structure, seat, etc. # **PATENT APPLICATION** #### VEHICLE INTERIOR COMPONENT ## CROSS-REFERENCE TO RELATED APPLICATIONS [0001] The present application claims priority to and incorporates by reference in full the following patent applications: (a) U.S. Provisional Patent Application No. 62/748,183 titled "VEHICLE INTERIOR COMPONENT" filed October 19, 2018; (b) U.S. Provisional Patent Application No. 62/808,290, titled "VEHICLE INTERIOR COMPONENT" filed February 20, 2019. ## **FIELD** [0002] The present invention relates to a vehicle interior component. ## **BACKGROUND** [0003] It is known to provide a vehicle interior component configured for illuminated and non-illuminated states. [0004] It would be advantageous to provide an improved vehicle interior component with an improved configuration to provide illumination at the surface or cover. ## **SUMMARY** [0005] The present invention relates to a component for a vehicle interior with a surface intended to be visible to an occupant when the component is installed in the vehicle interior configured to provide illumination from a light source comprising: a base; a decorative layer coupled to the base comprising at least one hole; and a light guide coupled to the decorative layer. The light guide may comprise a first portion configured to fill the at least one hole in the decorative layer. The decorative layer may comprise a thickness generally between 0.005 inches and 0.05 inches. The decorative layer may comprise a rear surface; the light guide may comprise a second portion configured to align with the rear surface of the decorative layer and guide light from a light source to the first portion of the light guide. The decorative layer may comprise a natural material. The decorative layer may comprise a wood veneer. The component may further comprise a backing coupled to a rear surface of the decorative layer. The backing may comprise at least one backer attached to the rear surface of the decorative layer. The at least one backer may comprise a sheet material; the at last one hole may comprise a set of holes through the decorative layer and the sheet material of the at least one backer; the set of holes may be configured (a) to provide an outlet for light configured to provide illumination and/or (b) to direct light to provide illumination at the surface. The at least one hole may be configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide illumination at the surface. The at least one hole may comprise a pattern of holes configured to provide indicia identifying at least one vehicle control. The decorative layer may comprise a backer configured to prevent illumination to pass from a light source to an outer surface of the decorative layer. The light guide may be formed within the at least one hole of the decorative layer. The light guide may comprise a light-transmissive resin material formed in the at least one hole of the decorative layer. The decorative layer may be configured to provide a visual effect; the light guide may be configured to provide a visual effect; the visual effect of the decorative layer and the visual effect of the light guide may be configured to provide a composite visual effect. The surface may be configured for a first state providing the visual effect of the decorative layer and a second state providing the composite visual effect of the visual effect of the light guide and the visual effect of the decorative layer. The at least one hole may comprise a pattern of holes; the base may comprise at least one of (a) module; (b) a switch; (c) a sensor; (d) a capacitive switch; (e) a capacitive switch sensor aligned with the pattern of holes; the pattern of holes may be configured to illuminate the decorative layer to indicate a position of the switch; the capacitive switch; the capacitive switch sensor. The component may comprise at least one of a trim panel; an armrest; a headliner; a dashboard; a console; a center console; a door panel; a steering wheel; a seat; a pillar; a roof pillar; pillar trim. [0006] The present invention relates to a method of manufacturing a vehicle trim component comprising the steps of: (a) providing a decorative layer; (b) providing the decorative layer in a tool; (c) at least one of forming; cutting the decorative layer into a shape; (d) forming at least one hole in the decorative layer; (e) providing the decorative layer in a mold; (f) injecting a resin in the mold to form a light guide in the at least one hole of the decorative layer; (g) providing a base; (h) joining the decorative layer with the light guide to the base. The light guide may be configured to allow illumination to pass through the at least one hole of the decorative layer. Forming the at least one hole may comprise perforating the decorative layer with a laser. The method may further comprise the step of applying a backer to an inner surface of the decorative layer. The backer may comprise a barrier configured to prevent transmission of light. The step of forming at least one hole in the decorative layer may comprise forming at least one hole in the backer to allow transmission of light through the at least one hole in the backer. The backer may comprise at least one layer of backing material. The backing material may comprise a sheet material attached to the inner surface of the decorative layer. [0007] The present invention relates to a component for a vehicle interior comprising a surface configured to be illuminated by a light source to present an interface for an occupant of the vehicle interior comprising: a base; a cover layer coupled to the base comprising a pattern of apertures; and a light guide coupled to the cover layer. The light guide may comprise a set of projections configured to fit in the pattern of apertures of the cover layer; the light guide may be configured to transmit illumination from the light source to present the interface through the pattern of apertures of the cover layer. The cover layer may comprise a decorative layer for the surface; the decorative layer may comprise at least one of (a) a natural material; (b) a wood veneer; (c) a grained material; (d) a sheet material providing a surface effect. The pattern of apertures may comprise at least one hole configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide
illumination. The pattern of apertures may be configured to provide a display. The display may comprise at least one of a decorative region and an instrumentation region. The instrumentation region may comprise indicia identifying at least one vehicle control. The component may further comprise a module configured to provide the light source and at least one sensor for the interface. The component may further comprise a backer configured to reinforce the cover layer. The backer may comprise at least one backing layer. The backer may comprise the pattern of apertures so that illumination from the light source passes through the backer to the surface to provide the interface. The backer may be configured to prevent illumination from the light source to an outer surface of the decorative layer other than at the pattern of apertures. The light guide may comprise a light-transmissive resin material. The light guide may comprise a resin material formed as the set of projections in the pattern of apertures. The cover layer may comprise a decorative layer configured to provide a visual effect; the light guide may be configured to provide a visual effect; the visual effect of the decorative layer and the visual effect of the light guide may be configured to provide a composite visual effect. The interface may comprise a first state providing the visual effect of the decorative layer and a second state providing the composite visual effect of the visual effect of the light guide and the visual effect of the decorative layer. The first state may comprise an unilluminated state and the second state may comprise an illuminated state. [0008] The present invention relates to a vehicle interior component comprising a composite structure comprising a surface/cover and a substrate and configured to be illuminated in a decorative region by a light source and in an instrumentation region by a module. [0009] The present invention relates to a component for a vehicle interior with a surface intended to be visible to an occupant when the component is installed in the vehicle interior configured to provide illumination from a light source comprising a base, a decorative layer coupled to the base comprising at least one hole and a light guide coupled to the decorative layer. The light guide may comprise a first portion configured to fill the at least one hole in the decorative layer. The decorative layer may comprise a thickness generally between 0.005 inches and 0.05 inches. The decorative layer may comprise a rear surface; the light guide may comprise a second portion configured to align with the rear surface of the decorative layer and guide light from a light source to the first portion of the light guide. The decorative layer may comprise a natural material. The decorative layer may comprise a wood veneer. The at least one hole may be configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide illumination. The at least one hole may comprise a pattern of holes configured to provide indicia identifying or associated with at least one vehicle system (e.g. instrumentation, control, etc.). The base may comprise at least one of (a) a switch (b) a sensor (c) a capacitive switch (d) a capacitive switch sensor aligned with the pattern of holes; the pattern of holes may be configured to illuminate the decorative layer to indicate a position of the switch, the capacitive switch, the capacitive switch sensor. The decorative layer may comprise a backing/backer configured to prevent illumination to pass from a light source to an outer surface of the decorative layer. The light guide may be formed within the at least one hole of the decorative layer. The decorative layer may be configured to provide a visual effect; the light guide may be configured to provide a visual effect; the visual effect of the decorative layer and the visual effect of the cover may be configured to provide a composite visual effect. The component may be configured for a first state providing the visual effect of the decorative layer and a second state providing the composite visual effect of the visual effect of the light guide and the visual effect of the decorative layer. The component may comprise at least one of a trim panel; an armrest; a headliner; a dashboard; a console; a center console; a door panel; a steering wheel; a seat; a pillar, a roof pillar, pillar trim. [0010] The present invention also relates to a method of manufacturing a vehicle trim component comprising the steps of providing a decorative layer; disposing the decorative layer in a tool; at least one of forming; cutting the decorative layer into a shape; forming at least one hole in the decorative layer; disposing the decorative layer in a mold; injecting a resin in the mold to form a light guide in the at least one hole of the decorative layer; providing a base; joining the decorative layer with the light guide to the base. The light guide may be configured to allow illumination to pass through the at least one hole of the decorative layer. Forming the at least one hole may comprise perforating the decorative layer with a laser. The method may comprise the step of applying a backing/backer to an inner surface of the decorative layer. The backing/backer may comprise a barrier configured to prevent transmission of light. Forming at least one hole in the decorative layer may comprise forming at least one hole in the backing/backer to allow transmission of light through the at least one hole in the backing/backer. PCT/US2019/056373 [0011] The present invention relates to a component for a vehicle interior configured to be illuminated by a light source to present an interface for an occupant of the vehicle interior. The component may comprise a base, a cover layer coupled to the base comprising a pattern of apertures and a light guide coupled to the cover layer. The light guide may comprise a set of projections configured to fit in the pattern of apertures of the cover layer. The light guide may be configured to transmit illumination from the light source to present the interface through the pattern of apertures of the cover layer. # **FIGURES** [0012] FIGURE 1A is a schematic perspective view of a vehicle according to an exemplary embodiment. [0013] FIGURE 1B is a schematic perspective cut-away view of a vehicle showing an interior according to an exemplary embodiment. [0014] FIGURE 2A is a schematic rear cut-away view of a vehicle showing an interior according to an exemplary embodiment. [0015] FIGURE 2B is a schematic diagram of a vehicle interior component comprising a display according to an exemplary embodiment. [0016] FIGURE 2C is a schematic cut-away plan view of a vehicle interior component comprising a display according to an exemplary embodiment. [0017] FIGURES 3A and 3B are schematic perspective views of a vehicle interior component according to an exemplary embodiment. [0018] FIGURES 3C and 3D are schematic perspective views of a vehicle interior component according to an exemplary embodiment. as an instrument panel according to an exemplary embodiment. [0020] FIGURE 4B is a schematic partial perspective view of a vehicle interior component shown as an instrument panel according to an exemplary embodiment. [0021] FIGURE 4C is a schematic diagram of a vehicle interior component comprising a display according to an exemplary embodiment. [0022] FIGURE 5A is a schematic perspective view of a vehicle interior component shown as a door panel according to an exemplary embodiment. [0023] FIGURE 5B is a schematic perspective cut-away view of a vehicle interior component according to an exemplary embodiment. [0024] FIGURE 5C is a schematic exploded view of a vehicle interior component according to an exemplary embodiment. [0025] FIGURE 5D is a schematic exploded view of a decorative panel of a vehicle interior component according to an exemplary embodiment. [0026] FIGURE 6 is a schematic plan view of a vehicle interior component according to an exemplary embodiment. [0027] FIGURE 6A is a schematic plan view of a vehicle interior component according to an exemplary embodiment. [0028] FIGURE 6B is a schematic cut-away plan view of a vehicle interior component according to an exemplary embodiment. [0029] FIGURE 6C is a schematic cut-away plan view of a vehicle interior component according to an exemplary embodiment. [0030] FIGURE 6D is a schematic plan view of a vehicle interior component according to an exemplary embodiment. [0031] FIGURE 7 is a schematic exploded view of a vehicle interior component according to an exemplary embodiment. [0032] FIGURE 8A is a schematic cut-away section view of a conventional vehicle interior component according to an exemplary embodiment. [0033] FIGURE 8B is a schematic cut-away plan view of a conventional vehicle interior component according to an exemplary embodiment. [0034] FIGURE 9A is a schematic cut-away section view of a vehicle interior component according to an exemplary embodiment. [0035] FIGURE 9B is a schematic cut-away plan view of a vehicle interior component according to an exemplary embodiment. [0037] FIGURE 9F is a schematic cut-away section view of a decorative panel of a vehicle interior component according to an exemplary embodiment. [0038] FIGURE 9G is a schematic cut-away exploded section view of a decorative panel of a vehicle interior component according to an exemplary embodiment. [0039] FIGURE 10 is a schematic cut-away section view of a vehicle interior component according to an exemplary embodiment. [0040] FIGURE 10A is a schematic perspective cut-away view of a vehicle interior component according to an exemplary embodiment. [0041] FIGURE 10B is a schematic perspective cut-away view of a vehicle interior component according to an exemplary embodiment. [0042] FIGURE 10C is a schematic perspective cut-away view of a vehicle interior component according to an exemplary
embodiment. [0043] FIGURE 10D is a schematic perspective cut-away view of a vehicle interior component according to an exemplary embodiment. [0044] FIGURE 10E is a schematic perspective cut-away view of a vehicle interior component configured to present a display/image according to an exemplary embodiment. [0045] FIGURE 10F is a schematic perspective cut-away view of a vehicle interior component configured to present a display/image according to an exemplary embodiment. [0046] FIGURE 11A is a schematic cut-away plan view of a vehicle interior component according to an exemplary embodiment. [0047] FIGURE 11B is a schematic cut-away plan view of a vehicle interior component according to an exemplary embodiment. [0048] FIGURE 11C is a schematic cut-away plan view of a vehicle interior component according to an exemplary embodiment. [0049] FIGURE 12A is a schematic cut-away perspective view of a vehicle interior component according to an exemplary embodiment. [0050] FIGURE 12B is a schematic cut-away perspective view of a vehicle interior component according to an exemplary embodiment. [0051] FIGURE 12C is a schematic cut-away perspective view of a vehicle interior component according to an exemplary embodiment. [0052] FIGURE 13A is a schematic cut-away plan view of a vehicle interior component according to an exemplary embodiment. [0053] FIGURE 13B is a schematic cut-away exploded perspective view of a vehicle interior component according to an exemplary embodiment. PCT/US2019/056373 [0054] FIGURES 14A and 14B are schematic cut-away section views of a decorative panel of a vehicle interior component according to an exemplary embodiment. [0055] FIGURES 15A and 15B are schematic cut-away section views of a decorative panel of a vehicle interior component according to an exemplary embodiment. [0056] FIGURE 16 is a schematic cut-away section view of a process to produce a cover for a vehicle interior component according to an exemplary embodiment. [0057] FIGURE 17 is a schematic cut-away section view of a process to produce a cover for a vehicle interior component according to an exemplary embodiment. [0058] FIGURES 18A to 18C are schematic cut-away section view of a process to produce a vehicle interior component according to an exemplary embodiment. [0059] FIGURES 19A to 19C are schematic cut-away section view of a process to produce a vehicle interior component according to an exemplary embodiment. [0060] FIGURE 20A is a schematic cut-away perspective view of a light guide for a vehicle interior component according to an exemplary embodiment. [0061] FIGURE 20B is a schematic cut-away perspective view of a light guide for a vehicle interior component according to an exemplary embodiment. [0062] FIGURE 20C is a schematic cut-away perspective view of a light guide for a vehicle interior component according to an exemplary embodiment. [0063] FIGURE 20D is a schematic cut-away perspective view of a light guide for a vehicle interior component according to an exemplary embodiment. [0064] FIGURE 21A is a schematic cut-away section view of a cover for a vehicle interior component according to an exemplary embodiment. [0065] FIGURE 21B is a schematic cut-away section view of a cover for a vehicle interior component according to an exemplary embodiment. [0066] FIGURE 21C is a schematic cut-away perspective view of a cover for a vehicle interior component according to an exemplary embodiment. [0067] FIGURES 22A to 22C are schematic flow diagrams of methods to produce a vehicle interior component according to an exemplary embodiment. [0068] FIGURE 23 is a schematic flow diagram of a method to produce a vehicle interior component according to an exemplary embodiment. ## DESCRIPTION [0069] Referring to FIGURES 1A and 1B a vehicle V providing an interior I is shown according to an exemplary embodiment. The interior I of the vehicle V may comprise interior components/systems including panels (e.g. instrument panel, door panels, etc.) and consoles (e.g. floor console, overhead console, etc.) and other trim components. See also FIGURES 1B, 2A, 4A and 5A. [0070] According to an exemplary embodiment as shown schematically in FIGURES 1B and 2A, the interior of the vehicle may comprise components C configured to provide a user interface/system such as through a display D configured to display an image IM. As shown schematically in FIGURES 2A and 3A-3C, the user interface system/component C may comprise a surface/panel providing a surface effect SE (e.g. texture, color, contour, visual effect, image display, etc.); as shown schematically in FIGURES 3A and 3B, the component C may comprise a surface effect SE such as wood trim/grain (e.g. wood veneer, finish, etc.); as shown schematically in FIGURES 3C and 3D, the component C may comprise a surface effect SE such as formed/molded contour (e.g. with visual/texture effect such as plastic, metallic, natural materials, etc.). [0071] As indicated schematically according to an exemplary embodiment in FIGURES 3A-3D, the component C may be configured to be illuminated (e.g. from a light source). See also FIGURE 7 (e.g. light source L with lighting/control module M). As indicated schematically in FIGURES 3A and 3C, until illumination is provided the component C may be configured to present the general appearance of the cover/surface (e.g. wood veneer/surface as in FIGURE 3A or contour/surface as in FIGURE 3B). As indicated schematically in FIGURES 3B and 3D, when illumination is provided (e.g. from light source L through the substrate/surface to the cover/surface) the component C may be configured to present through the surface effect an intended visible effect shown as an image IM (e.g. illuminated image visible through/at/on the surface). As indicated schematically, the image IM is presented as an illuminated form at the surface (e.g. user interface) of the component C. See FIGURES 3B and 3D (showing image IM in the form of an icon set of a type as may indicate a locked or unlocked status of a vehicle door or other system). As shown schematically in FIGURES 3B, 3D, 14A-14B and 15A-15B, the image SH/IM presenting the icon set to indicated an locked/unlocked state may comprise a set of apertures/perforations shown as holes H through the cover/surface (e.g. holes through the cover and any intermediate layer such as a backing/layer of a material that is not light-transmissive) to transmit light from the light source (e.g. to present a back-lit image from a form presented at the light source and/or by arrangement/pattern of the holes). See also FIGURES 11A-11C, 12A-12C and 13A-13B. [0072] As shown schematically in FIGURES 4A-4B and 5A-5D, the component P may be configured for implementation in a decorative trim part/component C/P to present a display D for an instrument panel IP or as a trim component P/200 for a door panel P/1000; according to an exemplary embodiment the trim part/component may be configured as any of a variety of other interior trim components for a vehicle (including a decorative trim component/product). As shown schematically in FIGURES 4B and 5B, the trim component may provide a surface on which may be presented an ornamental design/visible effect shown as image IM (when illuminated by a light source/back-lit display). See also FIGURES 6B-6D. As indicated in FIGURES 4A and 5A, unless/until illuminated by the light source (e.g. until back-lit from the light source) the trim component may present the surface effect (without an image). See also FIGURES 3A, 3C, 4A, 5A and 6A. [0073] Referring to FIGURES 2B-2C, 4C, 6, 6A-6D and 7, the component/product P may comprise a user interface comprising a decorative region DR where an ornamental design/visible effect such as a decorative image may be presented (e.g. a decorative image made visible on the surface as in FIGURE 6B) and an instrumentation region IR where a visible effect such as content in the form of information/signals may be presented (e.g. content made visible on the surface as in FIGURE 6C); as indicated schematically, when the component/user interface is illuminated the image may be presented/projected through the surface effect SE of the cover of the component shown as a wood trim/grain effect W (which effect is visible when the image is not presented). Compare FIGURES 6A (off/unilluminated) and 6D (illuminated). [0074] As indicated schematically in FIGURES 6A-6D, trim component product P is provided with a surface effect shown as wood trim/grain W that may be configured to provide an intended ornamental design/visible effect in a decorative region DR when provided with back-lit illumination (e.g. from module L in FIGURE 7) and an information/instrumentation display in an instrumentation region IR when provided with back-lit illumination (e.g. from module M in FIGURE 7). As shown schematically according to an exemplary embodiment in FIGURE 6A, the product P presents the surface effect of the wood trim/grain W (e.g. cover layer) until illumination is provided (e.g. until back lit from the light source L). As shown schematically in FIGURES 6B and 6D, when the decorative region DR is illuminated (e.g. back lit from light source L) the ornamental/visual effect shown as a decorative image of a specified industrial design (e.g. an illuminated arrangement of circle-shaped forms) is presented on the wood trim/grain surface W of the product P; as shown schematically in FIGURES 6C and 6D, when the instrumentation region IR is illuminated (e.g. back lit from light source M) the information/data display is presented on the wood trim/grain surface W of the product P. See also FIGURE 4B. [0075] As shown schematically according to an exemplary embodiment in FIGURE 7, the component/product P may comprise a composite structure comprising a cover/top layer P (e.g. providing the surface/surface effect) and a backing layer (shown as backing layers BL) and a substrate S (which may comprise or be attached to a carrier/structure); as shown
schematically in FIGURE 7, a light source L (e.g. an LED array/substrate aligned with the decorative region DR) and an instrumentation module M (e.g. a module comprising a light source aligned with the instrumentation region IR may be provided to illuminate and/or actuate the user interface. [0076] Referring to FIGURES 9A and 9B, the component/product P/200 may comprise a composite structure with a light array/module L/600 (comprising a light source such as an LED/array) and a substrate/light guide 230 (comprising a light-transmitting and/or generally transparent material 230b) supporting the surface/cover T/210 with backing shown as layers 220a/220b (e.g. backing layer BL of a material such as paper, film, foil, fiber, sheet material, etc.); as indicated schematically, holes are provided in the surface/cover with backing for transmission of light from the light source L/600 through the substrate/fill 230a/230b. See also FIGURE 9B (showing surface with substrate S/fill 230a of a light-transmissive material for transmission of light from light source as a light guide). [0077] As shown schematically according to an exemplary embodiment in FIGURES 9C-9F, the component may be formed by injection molding (e.g. in a tool comprising mold sections MT and MB) of the material for substrate S/fill 230 (e.g. transparent and/or light-transmitting material) onto the cover/backing into which holes have been provided; the substrate material 230 forms projections 230a (e.g. shown as posts of the light-transmissive transparent/translucent substrate material) into the holes; the projections/fill posts are configured to function as light guides. See also FIGURES 9F and 9G. [0078] As shown schematically in FIGURES 3A-3D, 10 and 10A-10F, according to an exemplary embodiment, the component product P may comprise a cover shown as wood veneer/surface W (wood trim/grain) with a backing shown as layer arrangement BL over a substrate S; the surface of the product P (e.g. component C with display D) may be configured to be illuminated (e.g. from light source L on underside below substrate) through the wood trim cover W and backing arrangement BL through an pattern/arrangement of a series of apertures/holes H; the apertures/holes are filled with posts/fill material F (e.g. light-transmissive transparent/translucent resin R molded with substrate S under the cover/backing). See also FIGURES 9A-9G, 13A-13B, 18B-18C, 19B-19C, 20A_20D and 21B-21C. As shown schematically in FIGURES 3B, 3D, 4A, 5A, 6A-6D, pattern/arrangement for the apertures/holes H and corresponding posts/fill material F may comprise a shape/image SH/IM such as a geometric form, a symbol, etc. to present the ornamental/visual effect or information/display (e.g. illuminated form when illuminated from the light source L/M) on the wood trim/grain surface W of the product P. See also FIGURES 2B-2C, 4C, 9A-9G and 10A-10F. [0079] As indicated schematically in FIGURES 6A, 6D, 7 and 10A-10D, until illumination is provided (e.g. from light source L/M through the substrate/fill material F for holes H) the back-lit decorative trim component product P may be configured to present the general appearance of the wood veneer/surface W in decorative region DR and instrumentation region IR; when illumination is provided (e.g. from light source L through the substrate/fill material F for holes H) the back-lit decorative trim component product P/Pa may be configured to present an intended ornamental design/visible effect in decorative region DR and/or information display at instrumentation region IR through the wood veneer/surface W. [0080] As shown schematically in FIGURES 11A-11C, 12A-12C and 13A, the cover/layer T may comprise holes H that are presented in a pattern intended to be uniform but in variety of sizes forms/shapes (e.g. circular, elongated, hexagonal, irregular, etc.). See also FIGURES 16 and 17 (showing laser tool/system LT providing beam LB and cutting tool CT to form holes in cover/backing T). As shown schematically in FIGURE 13B, the fill/posts F formed of the substrate material (e.g. formed material configured to be light-transmissive, translucent, transparent, etc.) will take the form of the hole/aperture in the cover/backing; uniformly shaped holes will be formed with uniformly shaped/formed fill/posts (see FIGURES 18A-18C and 20A-20B); irregularly shaped holes will be filled with irregularly shaped/formed posts (see FIGURES 19A-19C, 20C-20D and 21A-21C). See also FIGURES 9A-9G. [0081] As shown schematically according to an exemplary embodiment, the wood veneer cover/layer (front) and backing layer (e.g. paper/sheet behind wood veneer cover/layer) (rear) may comprise holes/apertures (e.g. perforations formed by laser tool). As shown schematically, the surfaces/consistency of the wood veneer cover/layer and the backing layer comprise an irregular form (e.g. with notable variations in surface, evenness, etc.); the holes/apertures formed through the cover/backing comprise an irregular form (e.g. with variations in size, evenness, etc.). See FIGURES 13A-13B, 19A-19C, 20C-20D and 21A-21C. As shown schematically in FIGURES 14A-14B and 15A-15B, the hole arrangement with holes H of intended/effective diameter DM for the image SH/IM on the surface of the composite structure/component may be configured in a grid pattern alignment with spacing X1/Y1 (on hole borders) or in an offset/nested pattern with spacing X2/Y2 (on hole centers). Compare FIGURES 11A/11C and 11B/13A (showing irregular form/pattern for hole arrangement). As indicated schematically in FIGURES 13A-13B, the hole patterns in a material such as a fiber sheet/veneer may comprise irregularities. See also FIGURES 19A-19C, 20C-20D and 21A-21C. [0082] As shown schematically in according to an exemplary embodiment in FIGURE 15, a configuration for forming holes/apertures (e.g. perforations) by laser tool/system LT providing laser beam LB is shown; settings/configuration for the laser tool may comprise the frequency/density of the laser-formed/applied holes and the width of the line between the laser-formed/applied holes; as indicated schematically, the laser-formed/applied holes in the cover/backing of the component may comprise variations in form/shape (e.g. generally circular, hexagonal, irregular due to material variations, etc.) according to an exemplary embodiment (e.g. for forming holes/apertures (e.g. dot frequency and line width for image for instrumentation region). See also FIGURE 16 (showing operation of laser tool LT with beam LB forming hole/aperture in layer T). Compare FIGURE 17 (showing cutting tool CT forming holes in layer T). # Exemplary Embodiments – A [0083] As indicated schematically in FIGURES 1B, 2A-2C, 4A and 5A, the component C may comprise a panel P configured to present a display D (e.g. panel C/P and/or display C/D configured to be operated, illuminated, back-lit, etc.) in the vehicle interior (e.g. such as for a console shown as floor counsel FC, panel shown as instrument panel IP and/or door panel P/1000, etc.); the display D is configured in operation (e.g. as selectively illuminated) to present an image IM for a vehicle occupant (e.g. on or for a user interface, display panel, control/operator, instrumentation and/or for decorative effect, etc.); the display D may be configured to present an image IM at a decorative region DR and/or an instrumentation region IR. See also FIGURES 3A-3D and 4A-4C, 6 and 6A-6D. According to an exemplary embodiment as indicated schematically in FIGURE 5B, the image IM presented at the display D may be configured for a user interface/control (shown as a door lock and/or window lock); as indicated schematically in FIGURES 6A-6D, the image IM may comprise a decorative effect presented (e.g. by illumination) in a decorative region DR of the display D and/or instrumentation/messaging presented (e.g. by illumination, back-lighting, etc.) in an instrumentation region IR of the display D. According to an exemplary embodiment as indicated schematically in FIGURES 2A-2B, the component (e.g. shown as display C/D and panel C/P with display D) may comprise a display configured to provide a region for illumination configured to present instrumentation and/or decorative effect (e.g. by selective illumination from a module such as comprising an array of light emitting diodes/LED). See e.g. FIGURES 9A and 10A. [0084] As indicated schematically according to an exemplary embodiment in FIGURES 16, 17 and 23, the formation of holes/apertures (e.g. perforations by laser tool or other apparatus/mechanical method) for the component (e.g. back-lit decorative trim component) for a vehicle interior may comprise a variety of patterns/arrangements (e.g. configured to present image SH/IM for the display on the surface of the component when illuminated by light source L and/or module M). See e.g. FIGURES 3A-3D, 6A-6D, 10A-10F, 11A-11C, 12A-12C, 13A-13B, 14A-14B and 15A-15B. As indicated schematically according to an exemplary embodiment, the wood veneer cover/layer (front) and backing layer (behind wood veneer cover/layer) (rear) with holes/apertures (e.g. perforations formed by laser tool) provide the visual effect/surface effect for the component (e.g. back-lit trim component configured to be illuminated with light source L/M/LED) for a vehicle interior. See e.g. FIGURES 3A-3D, 6A-6D, 7, 9A and 10E-10F. [0085] As indicated schematically according to an exemplary embodiment, the component providing the display/panel (e.g. configured to present image IM when actuated/illuminated) may comprise cover layer of a material configured to provide a visual effect at the surface (e.g. shown as a wood grain surface effect W/SE). See e.g. FIGURES 3A-3D, 6A-6D, and 10A-10F. According to an exemplary embodiment as indicated schematically, a backing arrangement (e.g. layer or layers with adhesive/coating attachable by bonding, hot press, heat activation, lamination, etc.) may be provided for the cover layer
(e.g. attached behind the cover of veneer, wood veneer, wood grain, grain material, surface effect layer, etc.) to provide reinforcement (including at holes/apertures), to enhance strength, to protect from damage, to facilitate handling, to provide environmental resilience (e.g. to water, flame, etc.), for shielding and/or flexibility, etc. See e.g. FIGURES 5D, 7, 9A-9G, 10, 10A-10F, 18A-18C, 19A-19C, 21A-21C, 22A-22C and 23. According to an exemplary embodiment the backing layer may comprise a backing material such as commercially available under the name DRIBOND (e.g. #160 TSB thermo-set backer) from Lenderink Technologies of Belmont, Michigan (USA). According to an exemplary embodiment the backing layer may comprise a veneer backing material providing a carrier/coating such as commercially available (e.g. under the name PWG Veneer Backing VC300+) from PWG VeneerBackings GmbH of Walkertshofen, Germany. [0086] As indicated schematically according to an exemplary embodiment, a component for a vehicle interior with a surface intended to be visible to an occupant when the component is installed in the vehicle interior configured to provide illumination from a light source may comprise: a base; a decorative layer coupled to the base comprising at least one hole; and a light guide coupled to the decorative layer. The light guide may comprise a first portion configured to fill the at least one hole in the decorative layer. The decorative layer may comprise a thickness generally between 0.005 inches and 0.05 inches. The decorative layer may comprise a rear surface; the light guide may comprise a second portion configured to align with the rear surface of the decorative layer and guide light from a light source to the first portion of the light guide. The decorative layer may comprise a natural material. The decorative layer may comprise a wood veneer. The component may further comprise a backing coupled to a rear surface of the decorative layer. The backing may comprise at least one backer attached to the rear surface of the decorative layer. The at least one backer may comprise a sheet material; the at last one hole may comprise a set of holes through the decorative layer and the sheet material of the at least one backer; the set of holes may be configured (a) to provide an outlet for light configured to provide illumination and/or (b) to direct light to provide illumination at the surface. The at least one hole may be configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide illumination at the surface. The at least one hole may comprise a pattern of holes configured to provide indicia identifying at least one vehicle control. The decorative layer may comprise a backer configured to prevent illumination to pass from a light source to an outer surface of the decorative layer. The light guide may be formed within the at least one hole of the decorative layer. The light guide may comprise a light-transmissive resin material formed in the at least one hole of the decorative layer. The decorative layer may be configured to provide a visual effect; the light guide may be configured to provide a visual effect; the visual effect of the decorative layer and the visual effect of the light guide may be configured to provide a composite visual effect. The surface may be configured for a first state providing the visual effect of the decorative layer and a second state providing the composite visual effect of the visual effect of the light guide and the visual effect of the decorative layer. The at least one hole may comprise a pattern of holes; the base may comprise at least one of (a) module; (b) a switch; (c) a sensor; (d) a capacitive switch; (e) a capacitive switch sensor aligned with the pattern of holes; the pattern of holes may be configured to illuminate the decorative layer to indicate a position of the switch; the capacitive switch; the capacitive switch sensor. The component may comprise at least one of a trim panel; an armrest; a headliner; a dashboard; a console; a center console; a door panel; a steering wheel; a seat; a pillar; a roof pillar; pillar trim. [0087] As indicated schematically according to an exemplary embodiment, a method of manufacturing a vehicle trim component may comprise the steps of: (a) providing a decorative layer; (b) providing the decorative layer in a tool; (c) at least one of forming; cutting the decorative layer into a shape; (d) forming at least one hole in the decorative layer; (e) providing the decorative layer in a mold; (f) injecting a resin in the mold to form a light guide in the at least one hole of the decorative layer; (g) providing a base; (h) joining the decorative layer with the light guide to the base. The light guide may be configured to allow illumination to pass through the at least one hole of the decorative layer. Forming the at least one hole may comprise perforating the decorative layer with a laser. The method may further comprise the step of applying a backer to an inner surface of the decorative layer. The backer may comprise a barrier configured to prevent transmission of light. The step of forming at least one hole in the decorative layer may comprise forming at least one hole in the backer to allow transmission of light through the at least one hole in the backer. The backer may comprise at least one layer of backing material. The backing material may comprise a sheet material attached to the inner surface of the decorative layer. [0088] As indicated schematically according to an exemplary embodiment, a component for a vehicle interior comprising a surface configured to be illuminated by a light source to present an interface for an occupant of the vehicle interior may comprise: a base; a cover layer coupled to the base comprising a pattern of apertures; and a light guide coupled to the cover layer. The light guide may comprise a set of projections configured to fit in the pattern of apertures of the cover layer; the light guide may be configured to transmit illumination from the light source to present the interface through the pattern of apertures of the cover layer. The cover layer may comprise a decorative layer for the surface; the decorative layer may comprise at least one of (a) a natural material; (b) a wood veneer; (c) a grained material; (d) a sheet material providing a surface effect. The pattern of apertures may comprise at least one hole configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide illumination. The pattern of apertures may be configured to provide a display. The display may comprise at least one of a decorative region and an instrumentation region. The instrumentation region may comprise indicia identifying at least one vehicle control. The component may further comprise a module configured to provide the light source and at least one sensor for the interface. The component may further comprise a backer configured to reinforce the cover layer. The backer may comprise at least one backing layer. The backer may comprise the pattern of apertures so that illumination from the light source passes through the backer to the surface to provide the interface. The backer may be configured to prevent illumination from the light source to an outer surface of the decorative layer other than at the pattern of apertures. The light guide may comprise a light-transmissive resin material. The light guide may comprise a resin material formed as the set of projections in the pattern of apertures. The cover layer may comprise a decorative layer configured to provide a visual effect; the light guide may be configured to provide a visual effect; the visual effect of the decorative layer and the visual effect of the light guide may be configured to provide a composite visual effect. The interface may comprise a first state providing the visual effect of the decorative layer and a second state providing the composite visual effect of the visual effect of the light guide and the visual effect of the decorative layer. The first state may comprise an unilluminated state and the second state may comprise an illuminated state. **[0089]** As indicated schematically, the component/display may be provided in a variety of shapes and forms and/or with a variety of configurations/materials and/or with a variety of patterns for holes/apertures and/or with a variety of surface effects/cover arrangements and/or operated by a variety of types of modules/control systems for illumination/back-lighting to serve a variety of functions within the vehicle interior (e.g. decorative/ornamental, functional/visual, integrated, instrumentation/control, etc.). See e.g. FIGURES 1B, 2A-2C, 3A-3D, 4A-4C, 5A-5B, 6, 6A-6D, 9A, 10A-10F, 11A-11C, 12A-12C, 13A-13B, 14A-14B and 15A-15B. # Exemplary Embodiments - B [0090] According to an exemplary embodiment as shown schematically in FIGURES 1A, 1B and 2A, a vehicle V may include a vehicle interior I. The vehicle interior may provide components C such as panels, consoles, compartments, etc. Components C may provide a display D (e.g. display panel, illumination, data display, display screen, etc.) to present information, alerts, entertainment, data, etc. to a vehicle occupant (e.g. data/information as may be available from various sources such as image IM as shown in FIGURES 2A, 3A and 3B). The vehicle interior may be provided with a variety of display configurations in a variety of positions and locations to serve a variety of purposes. See e.g. FIGURES 1B and 2A. [0091] According to an exemplary embodiment, the component may comprise a trim component, panel, console, etc. provided within the vehicle interior (e.g. instrument panel, door, seat area, cockpit, center area, overhead, etc.). See e.g. FIGURES 1B and 2A. [0092] As indicated schematically according to an exemplary embodiment, the display D of the
component may present an image IM and/or information (e.g. data/information, instrumentation, indicators, controls, entertainment, communications, etc.). See e.g. FIGURES 2A and 3B. According to an exemplary embodiment, the image may comprise a set of holes H. According to an exemplary embodiment, the component C and/or display D (if provided on the component) may provide a contoured form/shape designed/intended to integrate with the interior design/aesthetic of the vehicle V. According to an exemplary embodiment, the component C may be provided with a visual effect and formed (e.g. shaped/contoured). [0093] According to an exemplary embodiment as shown schematically in FIGURES 5A to 5D, 9A, 9F, 9G, 14A and 14B, a component for a vehicle interior 1000 shown as a door panel may comprise a surface intended to be visible to an occupant when component 1000 is installed in the vehicle interior. As shown schematically in FIGURE 5B, component 1000 may be configured to provide illumination shown as an image IM from a light source. Component 1000 may comprise a base 100, a decorative layer 210 coupled to base 100 comprising at least one hole H and a light guide 230 coupled to decorative layer 210. Light guide 230 may comprise a first portion 230a configured to fill the at least one hole H in decorative layer 210. Decorative layer 210 may comprise a thickness generally between 0.005 inches and 0.05 inches (and may be provided with backing layer BL of a thickness of 0.01 inch or in a range of between 0.005 and 0.05, e.g. of one or multiple layers). Decorative layer 210 may comprise a rear surface; light guide 230 may comprise a second portion 230b configured to align with the rear surface of decorative layer 210 and guide light from a light source to first portion 230a of light guide 230. Decorative layer 210 may comprise a natural material. Decorative layer 210 may comprise a wood veneer. The at least one hole H may be configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide illumination. The at least one hole H may comprise a pattern of holes configured to provide indicia identifying or associated with at least one vehicle system (e.g. instrumentation, control, etc.). Base 100 may comprise at least one of (a) a switch (b) a sensor (c) a capacitive switch (d) a capacitive switch sensor aligned with the pattern of holes; the pattern of holes may be configured to illuminate decorative layer 210 to indicate a position of the switch, the capacitive switch, the capacitive switch sensor. Decorative layer 210 may comprise a substrate shown as a backing (or backer) 220 configured to prevent illumination to pass from a light source to an outer surface of decorative layer 210. Light guide 230 may be formed within the at least one hole H of decorative layer 210. Decorative layer 210 may be configured to provide a visual effect; light guide 230 may be configured to provide a visual effect; the visual effect of decorative layer 210 and the visual effect of light guide 230 may be configured to provide a composite visual effect. Component 1000 may be configured for a first state providing the visual effect of decorative layer 210 and a second state providing the composite visual effect of the visual effect of light guide 230 and the visual effect of decorative layer 210. Component 1000 may comprise at least one of a trim panel; an armrest; a headliner; a dashboard; a console; a center console; a door panel; a steering wheel; a seat; a pillar, a roof pillar, pillar trim. As shown schematically in FIGURES 9A, 9F and 9G, component 1000 may comprise a base layer or circuit board L/600 comprising a light source shown as a light emitting diode LED. As shown schematically in FIGURES 9A, 9F and 9G, backing (e.g. barrier, backing layer, backing layers, backer, etc.) 220 may comprise a first backer 220a and a second backer 220b. [0094] As indicated schematically according to an exemplary embodiment in FIGURES 5A-5D, 9A, 9F, 9G, 4A and 4B, the component 1000 may generally be configured to provide a cover shown as layer 210 (e.g. decorative layer) configured with holes H (e.g. provided in a pattern, size and shape) with a substrate/backing 220 and with a translucent/transparent element (formed from resin R) shown as a light guide 230 with projections configured to fit into the holes H to present an image IM (e.g. by guided illumination from a light source) at the surface of the component 1000. [0095] According to an exemplary embodiment as shown schematically in FIGURES 22A to 22C, a method of manufacturing a vehicle trim component 1000 may comprise the steps of providing a decorative layer; disposing the decorative layer in a tool; at least one of forming; cutting the decorative layer into a shape; forming at least one hole in the decorative layer; disposing the decorative layer in a mold; injecting a resin in the mold to form a light guide in the at least one hole of the decorative layer; providing a base; joining the decorative layer with the light guide to the base. The light guide may be configured to allow illumination to pass through the at least one hole of the decorative layer. Forming the at least one hole may comprise perforating the decorative layer with a laser. The method may comprise the step of applying a substrate shown as a backing (or backer) to an inner surface of the decorative layer. The backing/backer may comprise a barrier configured to prevent transmission of light. Forming at least one hole in the decorative layer may comprise forming at least one hole in the backing/backer to allow transmission of light through the at least one hole in the backing/backer. [0096] According to an exemplary embodiment as shown schematically in FIGURE 5B, component 1000 may be configured for an illuminated state to provide illumination shown as an image IM from a light source with the light source on. Image IM may be formed by a pattern of illuminated/backlit holes H configured to provide indicia identifying or associated with at least one vehicle system (e.g. instrumentation, control, etc.). Holes H may be filled with light guide 230 to improve visibility of image IM, in particular visibility of image IM when viewed at smaller angles relative to the visible surface of component 1000. Light guide 230 may protrude into holes H to provide visibility of image IM from a wider viewing angle than would be provided without light guide 230. Light guide 230 may be configured to improve the brightness of image IM as compared to the brightness of image IM in the absence of light guide 230. Light guide 230 may be formed from a clear polycarbonate to optimize image IM color and impact strength of component 1000. Light guide 230 may be formed from a clear acrylic. Light guide 230 may comprise at least one integrally molded fastener for coupling light guide 230 to base 100. [0097] According to an exemplary embodiment as shown schematically in FIGURE 5A, component 1000 may be configured for a non-illuminated state with the light source off. As shown schematically in FIGURE 5A, when the light source is off, image IM may not be visible. The pattern of holes H may be configured to provide a dead front or minimally visible image IM when not backlit; holes H may be provided in an arrangement (e.g., pattern, form, shape, size, diameter, effective diameter, dimension/dimensions, profile, etc.) configured to provide an intended visual effect (e.g. optical effect, form/shape, intensity, contrast, etc.). A diameter DM of holes H may be minimized to reduce visibility of the pattern of holes H and image IM when not backlit. Diameter DM of holes H may be specified based on a material of decorative layer 210 (for example a particular species of wood), a thickness of decorative layer 210 (for example, thinner decorative layers enable easier forming of smaller diameter holes H), the equipment used to form holes H in decorative layer (for example the capability of a laser to form smaller diameter holes H in decorative layer 210) and control systems/software used to control the forming of holes H. Decorative layer 210 may comprise a thickness generally between 0.005 inches and 0.05 inches to enable forming of decorative layer 210 into a contoured shape and/or enable forming of holes H in decorative layer 210 of diameter less than 0.5 mm. Holes H of the pattern of holes may be arranged (e.g. spaced closely together, separated, staggered, oriented, etc.) to provide improved quality of image IM (e.g. resolution, contrast, intensity, etc.). As shown schematically in FIGURE 14B, a distance Y1/X1 between holes may be selected to provide minimum structural properties (such as strong or rigidity) and prevent component 1000 from being too brittle. For example, a 0.35 mm hole H diameter DM may be specified to provide a dead front appearance when not backlit; a corresponding hole spacing may be kept at a minimum of 0.45mm center to center, or a distance Y1/X1 may specified as 0.1mm. Holes H of the pattern of holes may be nested or aligned in rows and/or columns as shown schematically in FIGURE 14A. Backing (e.g. barrier, backer, etc.) 220 may be applied or adhered to decorative layer 210 to provide rigidity to decorative layer. Backing (e.g. barrier, backer, etc.) 220 may comprise an opaque light barrier to mask/prevent visibility of portions of component 1000 when backlit. First backing/backer 220a may be configured to reinforce decorative layer during handling and/or forming. Second backing/backer 220b may be configured to comprise an opaque light barrier to mask/prevent visibility of portions of component 1000 when backlit. [0098] According to an exemplary embodiment as shown schematically in FIGURES 5C and 5D, component 1000 may comprise a door panel comprising a base 100 and a decorative insert 200. Decorative insert 200 may comprise a decorative layer 210, a backing (e.g. barrier, backer, etc.) 220 and a
light guide 230. Component 1000 may comprise an armrest 300, an insert 400 and a map pocket insert 500. [0099] According to an exemplary embodiment as shown schematically in FIGURE 8A, a conventional vehicle interior component 2200 may comprise a decorative layer 2210 comprising at least one hole H and a base layer or circuit board/module L/600 comprising a light source (e.g. comprising a light emitting diode LED arrangement). Conventional vehicle interior component P/2200 may comprise an air gap AG between decorative layer T/2210 and a base layer 600 and in the at least one hole of decorative layer 2210. [0100] According to an exemplary embodiment as shown schematically in FIGURE 22A, a method of manufacturing a vehicle trim component 1000 may comprise the steps of providing a decorative outer layer, applying a backing (e.g. barrier, backer, etc.) to a back side of the outer layer, disposing the outer layer and the backing/backer in a hot tool, forming and cutting the outer layer and the backing/backer into a shape, cooling the outer layer and the backing/backer in a fixture, perforating the outer layer and the backing/backer to form holes in the backing/backer and the outer layer, disposing the perforated outer layer and the backing/backer in an injection mold, injecting transparent polymer in the injection mold to form a light guide layer on the backing/backer and in the holes of the backing/backer and the outer layer, providing a substrate with a light source and joining the light guide layer, the backing/backer and the outer layer to the substrate with the light source. [0101] According to an exemplary embodiment as shown schematically in FIGURE 22B, a method of manufacturing a vehicle trim component 1000 may comprise the steps of providing wood veneer, applying light barrier to a back side of wood veneer, disposing wood veneer with light barrier in a hot tool, forming wood veneer with light barrier into a shape, cooling wood veneer with light barrier in a fixture, laser cutting wood veneer with light barrier to form holes in wood veneer and light barrier, disposing wood veneer with light barrier in injection mold, injecting transparent polymer in injection mold to form light guide layer on light barrier and in holes, providing substrate with light source and joining light guide layer, light barrier and wood veneer to substrate with light source. **[0102]** According to an exemplary embodiment as shown schematically in FIGURE 22C, a method of manufacturing a vehicle trim component 1000 may comprise the steps of providing decorative outer layer, disposing outer layer in a hot tool, forming and cutting outer layer into a shape, cooling outer layer in a fixture, perforating outer layer to form holes in outer layer, disposing perforated outer layer in injection mold, injecting transparent polymer in injection mold to form light guide layer on a back surface of outer layer and in holes of outer layer, providing substrate with light source and joining light guide layer and outer layer to substrate with light source. [0103] Referring to FIGURE 23, a method/process for producing the component configured with the display is shown schematically according to an exemplary embodiment to comprise the steps of applying a backer (e.g. backing arrangement of layer and/or layers) to an outer layer (e.g. cover or cover layer) and forming (e.g. in hot tool/mold) into the shape and then perforating the cover/backer with holes (e.g. pattern for illumination to present image) and then injecting a light-transmissive resin/polymer (e.g. transparent, translucent, etc.) to fill the holes and to provide a light guide arrangement and providing a substrate/structure for the component (e.g. base, substructure, etc.) and assembly to the module (e.g. providing control/computing, light source, etc.). See also FIGURES 6, 6A-6D, 7, 8A-10A-10F, 16, 17, 18A-18C, 19A-19C and 22A-22C. * * * [0104] It is important to note that the present inventions (e.g. inventive concepts, etc.) have been described in the specification and/or illustrated in the FIGURES of the present patent document according to exemplary embodiments; the embodiments of the present inventions are presented by way of example only and are not intended as a limitation on the scope of the present inventions. The construction and/or arrangement of the elements of the inventive concepts embodied in the present inventions as described in the specification and/or illustrated in the FIGURES is illustrative only. Although exemplary embodiments of the present inventions have been described in detail in the present patent document, a person of ordinary skill in the art will readily appreciate that equivalents, modifications, variations, etc. of the subject matter of the exemplary embodiments and alternative embodiments are possible and contemplated as being within the scope of the present inventions; all such subject matter (e.g. modifications, variations, embodiments, combinations, equivalents, etc.) is intended to be included within the scope of the present inventions. It should also be noted that various/other modifications, variations, substitutions, equivalents, changes, omissions, etc. may be made in the configuration and/or arrangement of the exemplary embodiments (e.g. in concept, design, structure, apparatus, form, assembly, construction, means, function, system, process/method, steps, sequence of process/method steps, operation, operating conditions, performance, materials, composition, combination, etc.) without departing from the scope of the present inventions; all such subject matter (e.g. modifications, variations, embodiments, combinations, equivalents, etc.) is intended to be included within the scope of the present inventions. The scope of the present inventions is not intended to be limited to the subject matter (e.g. details, structure, functions, materials, acts, steps, sequence, system, result, etc.) described in the specification and/or illustrated in the FIGURES of the present patent document. It is contemplated that the claims of the present patent document will be construed properly to cover the complete scope of the subject matter of the present inventions (e.g. including any and all such modifications, variations, embodiments, combinations, equivalents, etc.); it is to be understood that the terminology used in the present patent document is for the purpose of providing a description of the subject matter of the exemplary embodiments rather than as a limitation on the scope of the present inventions. [0105] It is also important to note that according to exemplary embodiments the present inventions may comprise conventional technology (e.g. as implemented and/or integrated in exemplary embodiments, modifications, variations, combinations, equivalents, etc.) or may comprise any other applicable technology (present and/or future) with suitability and/or capability to perform the functions and processes/operations described in the specification and/or illustrated in the FIGURES. All such technology (e.g. as implemented in embodiments, modifications, variations, combinations, equivalents, etc.) is considered to be within the scope of the present inventions of the present patent document. ## PCT/US2019/056373 ## **CLAIMS** The invention claimed is: - 1. A component for a vehicle interior with a surface intended to be visible to an occupant when the component is installed in the vehicle interior configured to provide illumination from a light source comprising: - (a) a base; - (b) a decorative layer coupled to the base comprising at least one hole; and - (c) a light guide coupled to the decorative layer; wherein the light guide comprises a first portion configured to fill the at least one hole in the decorative layer. - 2. The component of Claim 1 wherein the decorative layer comprises a thickness generally between 0.005 inches and 0.05 inches. - 3. The component of Claim 1 wherein the decorative layer comprises a rear surface; wherein the light guide comprises a second portion configured to align with the rear surface of the decorative layer and guide light from a light source to the first portion of the light guide. - 4. The component of Claim 1 wherein the decorative layer comprises a natural material. - 5. The component of Claim 1 wherein the decorative layer comprises a wood veneer. - 6. The component of Claim 1 further comprising a backing coupled to a rear surface of the decorative layer. - 7. The component of Claim 6 wherein the backing comprises at least one backer attached to the rear surface of the decorative layer. - 8. The component of Claim 7 wherein the at least one backer comprises a sheet material; and wherein the at last one hole comprises a set of holes through the decorative layer and the sheet material of the at least one backer; wherein the set of holes is configured (a) to provide an outlet for light configured to provide illumination and/or (b) to direct light to provide illumination at the surface. - 9. The component of Claim 1 wherein the at least one hole is configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide illumination at the surface. - 10. The component of Claim 1 wherein the at least one hole comprises a pattern of holes configured to provide indicia identifying at least one vehicle control. 11. The component of Claim 1 wherein the decorative layer comprises a backer configured to prevent illumination to pass from a light source to an outer surface of the decorative layer. PCT/US2019/056373 - 12. The component of Claim 1 wherein the light guide is formed within the at least one hole of the decorative layer. - 13. The component of Claim 12 wherein the light guide comprises a light-transmissive resin material formed in the at least one hole of the decorative layer. - 14. The component of Claim 1 wherein the decorative layer is configured to provide a visual
effect; wherein the light guide is configured to provide a visual effect; and wherein the visual effect of the decorative layer and the visual effect of the light guide are configured to provide a composite visual effect. - 15. The component of Claim 14 wherein the surface is configured for a first state providing the visual effect of the decorative layer and a second state providing the composite visual effect of the visual effect of the light guide and the visual effect of the decorative layer. - 16. The component of Claim 1 wherein the at least one hole comprises a pattern of holes; wherein the base comprises at least one of (a) module; (b) a switch; (c) a sensor; (d) a capacitive switch; (e) a capacitive switch sensor aligned with the pattern of holes; wherein the pattern of holes is configured to illuminate the decorative layer to indicate a position of the switch; the capacitive switch, the capacitive switch sensor. - 17. The component of Claim 1 comprising at least one of a trim panel; an armrest; a headliner; a dashboard; a console; a center console; a door panel; a steering wheel; a seat; a pillar; a roof pillar; pillar trim. - 18. A method of manufacturing a vehicle trim component comprising the steps of: - (a) providing a decorative layer; - (b) providing the decorative layer in a tool; - (c) at least one of forming; cutting the decorative layer into a shape; - (d) forming at least one hole in the decorative layer; - (e) providing the decorative layer in a mold; - (f) injecting a resin in the mold to form a light guide in the at least one hole of the decorative layer; - (g) providing a base; - (h) joining the decorative layer with the light guide to the base. - 19. The method of Claim 18 wherein the light guide is configured to allow illumination to pass through the at least one hole of the decorative layer. - 20. The method of Claim 18 wherein forming the at least one hole comprises perforating the decorative layer with a laser. - 21. The method of Claim 18 further comprising the step of applying a backer to an inner surface of the decorative layer. - 22. The method of Claim 21 wherein the backer comprises a barrier configured to prevent transmission of light. - 23. The method of Claim 21 wherein the step of forming at least one hole in the decorative layer comprises forming at least one hole in the backer to allow transmission of light through the at least one hole in the backer. - 24. The method of Claim 23 wherein the backer comprises at least one layer of backing material. - 25. The method of Claim 24 wherein the backing material comprises a sheet material attached to the inner surface of the decorative layer. - 26. A component for a vehicle interior comprising a surface configured to be illuminated by a light source to present an interface for an occupant of the vehicle interior comprising: - (a) a base; - (b) a cover layer coupled to the base comprising a pattern of apertures; and - (c) a light guide coupled to the cover layer; wherein the light guide comprises a set of projections configured to fit in the pattern of apertures of the cover layer; wherein the light guide is configured to transmit illumination from the light source to present the interface through the pattern of apertures of the cover layer. - 27. The component of Claim 26 wherein the cover layer comprises a decorative layer for the surface; wherein the decorative layer comprises at least one of (a) a natural material; (b) a wood veneer; (c) a grained material; (d) a sheet material providing a surface effect. - 28. The component of Claim 26 wherein the pattern of apertures comprises at least one hole configured to at least one of (a) provide an outlet for light configured to provide illumination; (b) direct light to provide illumination. - 29. The component of Claim 26 wherein the pattern of apertures is configured to provide a display. - 30. The component of Claim 29 wherein the display comprises at least one of a decorative region and an instrumentation region. - 31. The component of Claim 30 wherein the instrumentation region comprises indicia identifying at least one vehicle control. - 32. The component of Claim 26 further comprising a module configured to provide the light source and at least one sensor for the interface. - 33. The component of Claim 26 further comprising a backer configured to reinforce the cover layer. - 34. The component of Claim 33 wherein the backer comprises at least one backing layer. - 35. The component of Claim 33 wherein the backer comprises the pattern of apertures so that illumination from the light source passes through the backer to the surface to provide the interface. - 36. The component of Claim 33 wherein the backer is configured to prevent illumination from the light source to an outer surface of the decorative layer other than at the pattern of apertures. - 37. The component of Claim 26 wherein the light guide comprises a light-transmissive resin material. - 38. The component of Claim 37 wherein the light guide comprises a resin material formed as the set of projections in the pattern of apertures. - 39. The component of Claim 37 wherein the cover layer comprises a decorative layer configured to provide a visual effect; wherein the light guide is configured to provide a visual effect; and wherein the visual effect of the decorative layer and the visual effect of the light guide are configured to provide a composite visual effect. - 40. The component of Claim 39 wherein the interface comprises a first state providing the visual effect of the decorative layer and a second state providing the composite visual effect of the visual effect of the light guide and the visual effect of the decorative layer. - 41. The component of Claim 40 wherein the first state comprises an unilluminated state and the second state comprises an illuminated state. FIG. 11B FIG. 11C FIG. 13A FIG. 13B # 8 / 11 # 11 / 11 #### INTERNATIONAL SEARCH REPORT International application No. PCT/US 19/56373 A. CLASSIFICATION OF SUBJECT MATTER IPC - B60Q 1/00, B60Q 3/20, B60Q 3/62, B60R 13/02, F21S 10/00, F21V 21/04, G02B 6/00 (2020.01) CPC - B60Q 1/0011, B60Q 3/10, B60Q 3/14, B60Q 3/20, B60Q 3/225, B60Q 3/233, B60Q 3/30, B60Q 3/62, B60Q 3/68, B60Q 11/005, B60R 13/02, B60R 2011/0005, B60R 2011/0007, B60R 2011/0012, F21S 10/005, F21S 41/24, F21S 43/249, F21S 43/26, F21S 41/28, F21V 5/002, F21V 5/007, F21V 21/04, F21V 21/047, F21V 2200/13, G02B 5/0278, G02B 6/0001, G02B 6/0011 According to International Patent Classification (IPC) or to both national classification and IPC #### B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) See Search History document Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched See Search History document Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) See Search History document #### C. DOCUMENTS CONSIDERED TO BE RELEVANT | Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | |-----------|---|-----------------------| | Y | US 2015/0274066 A1 (GM GLOBAL TECHNOLOGY OPERATIONS LLC) 01 October 2015 (01.10.2015), Figs. 1, 2, 7; para [0005], [0020]-[0025], [0028]-[0031], [0033]-[0036], [0039]-[0041], [0045] | 1-17 | | Y | US 2011/0157906 A1 (OEUVRARD et al.) 30 June 2011 (30.06.2011), Fig. 1; para [0029], [0030], [0035], [0036], [0040] | 1-17 | | 4 | US 2015/0210226 A1 (FAURECIA INTERIEUR INDUSTRIÉ) 30 July 2015 (30.07.2015), para [0004]-[0076] | 1-17 | | A | US 2014/0355285 A1 (TSTECH CO.,LTD.) 04 December 2014 (04.12.2014), para [0010]-[0362] | 1-17 | | 4 | WO 2009/106190 A1 (PREH GMBH) 03 September 2009 (03.09.2009), Machine Translation: pg 1, para 3 to pg 9, para 3 | 1-17 | | | | | | | | | | | | | | | | • | | | | | | | Further documents are listed in the continuation of Box C. | | See patent family annex. | | |-----|---|-----|---|--| | * | Special categories of cited documents: | | later document published after the international filing date or priority | | | "A" | document defining the general state of the art which is not considered to be of particular relevance | | date and not in conflict with the application but cited to understand
the principle or theory underlying the invention | | | "D" | document cited by the applicant in the international application | | document of particular relevance; the claimed invention cannot be | | | "E" | earlier application or patent but published on or after the international filing date | | considered novel or cannot be considered to involve an inventive ste when the document is taken alone | | | "L" | document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other
special reason (as specified) | | combined with one or more other such documents, such combination | | | "O" | document referring to an oral disclosure, use, exhibition or other means | | being obvious to a person skilled in the art | | | "P" | document published prior to the international filing date but later than the priority date claimed | "&" | document member of the same patent family | | Date of the actual completion of the international search 06 February 2020 Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria,
Virginia 22313-1450 Facsimile No. 571-273-8300 Date of mailing of the international search report Authorized officer Lee Young Telephone No. PCT Helpdesk: 571-272-4300 Form PCT/ISA/210 (second sheet) (July 2019) # INTERNATIONAL SEARCH REPORT International application No. PCT/US 19/56373 | Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet) | | | | | | |--|--|--|--|--|--| | This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: | | | | | | | 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: | | | | | | | 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: | | | | | | | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). | | | | | | | Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet) | | | | | | | This International Searching Authority found multiple inventions in this international application, as follows: | | | | | | | This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid. | | | | | | | Group I: Claims 1-17, drawn to a component for a vehicle interior comprising at least one hole. | | | | | | | Group II: Claims 18-25, drawn to a method of manufacturing a vehicle trim component. | | | | | | | Group III: Claims 26-41, drawn to a component for a vehicle interior comprising a pattern of apertures. | | | | | | | Please See Supplemental Box | | | | | | | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. | | | | | | | 2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees. | | | | | | | 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: | | | | | | | 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-17 | | | | | | | Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees. | | | | | | #### INTERNATIONAL SEARCH REPORT Information on patent family members International application No. PCT/US 19/56373 Continued from Box No. III, Observations where unity of invention is lacking, The inventions listed as Groups I, II, and III do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: #### Special Technical Features Groups II and III do not require a component with a surface intended to be visible to an occupant when the component is installed in the vehicle interior configured to provide illumination from a light source comprising: a decorative layer coupled to the base comprising at least one hole; and a light guide coupled to the decorative layer; wherein the light guide comprises a first portion configured to fill the at least one hole in the decorative layer, as required by Group I. Groups I and III do not require a method of manufacturing a vehicle trim component comprising the steps of: (a) providing a decorative layer; (b) providing the decorative layer in a tool; (c) at least one of forming; cutting the decorative layer into a shape; (d) forming at least one hole in the decorative layer; (e) providing the decorative layer in a mold; (f) injecting a resin in the mold to form a light guide in the at least one hole of the decorative layer; (g) providing a base; (h) joining the decorative layer with the light guide to the base, as required by Group II. Groups I and II do not require a component for a vehicle interior comprising a surface configured to be illuminated by a light source to present an interface for an occupant of the vehicle interior comprising: cover layer coupled to the base comprising a pattern of apertures; and wherein the light guide comprises a set of projections configured to fit in the pattern of apertures of the cover layer; wherein the light guide is configured to transmit illumination from the light source to present the interface through the pattern of apertures of the cover layer, as required by Group III. #### **Shared Common Features** The only feature shared by Groups I, II, and III that would otherwise unify the groups is a component for a vehicle interior. However, this shared technical feature does not represent a contribution over prior art, because the shared technical feature is anticipated by US 2015/0274066 A1 (GM Global Technology Operations LLC). GM Global Technology Operations LLC discloses a component for a vehicle interior (para [0004], [0005]). The only feature shared by Groups I and II that would otherwise unify the groups is a decorative layer and at least one hole in a decorative layer. However, this shared technical feature does not represent a contribution over prior art, because the shared technical feature is anticipated by GM Global Technology Operations LLC. GM Global Technology Operations LLC discloses a decorative layer and at least one hole in a decorative layer (Fig. 2; para [0025], pattern layer, 250, with pattern portion, 254, forming a void between opaque portions, 252.). The only feature shared by Groups I and III that would otherwise unify the groups is a base, a light guide coupled to a layer, and illumination from a light source. However, this shared technical feature does not represent a contribution over prior art, because the shared technical feature is anticipated by GM Global Technology Operations LLC. GM Global Technology Operations LLC discloses a base, a light guide coupled to a layer (Figs. 1, 2, 9; para [0024], [0041], wire harness, 202, coupled to light pipe, 240 940, a light guide.), and illumination from a light source (para [0020], [0021]). As the technical features were known in the art at the time of the invention, this cannot be considered a special technical feature that would otherwise unify the groups. Groups I, II, and III therefore lack unity under PCT Rule 13 because they do not share a same or corresponding special technical feature.