
US 20210144094A1
MO IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0144094 A1

Limaye et al . (43) Pub . Date : May 13 , 2021

(54) EXTENSION OF OPENVSWITCH
MEGAFLOW OFFLOADS TO HARDWARE
TO ADDRESS HARDWARE PIPELINE
LIMITATIONS

(52) U.S. CI .
CPC H04L 47/125 (2013.01) ; H04L 47/2441

(2013.01) ; H04L 47/22 (2013.01) ; H04L 47/11
(2013.01)

(57) ABSTRACT
(71) Applicants : Namrata Limaye , Fremont , CA (US) ;

P. Venkata Suresh Kumar , Bangalore
(IN) ; Sridhar Samudrala , Portland , OR
(US) ; Kiran Patil , Portland , OR (US)

(72) Inventors : Namrata Limaye , Fremont , CA (US) ;
P. Venkata Suresh Kumar , Bangalore
(IN) ; Sridhar Samudrala , Portland , OR
(US) ; Kiran Patil , Portland , OR (US)

(21) Appl . No .: 17 / 093,394

Methods and apparatus for extending OpenvSwitch (OVS)
megaflow offloads to hardware to address hardware pipeline
limitations . Under a method implemented on a compute
platform including a Network Interface Controller (NIC)
having one or more ports and running software including
OVS software and a Linux operating system having a kernel
including a TC - flower module and a NIC driver a new
megaflow is created with a mask in the OVS software
employing a subset of microflow fields for a packet . The
microflow fields and the megaflow mask is sent to the NIC
driver . A new megaflow is implemented in the NIC driver
employing a subset of the microflow fields and the NIC
driver creates a new hardware flow on the NIC employing a
packet match scheme using all the microflow fields . The
NIC also programs a NIC hardware pipeline with the new
hardware flow using a match scheme that may depend on the
available hardware resources , such as the size of a TCAM .

(22) Filed : Nov. 9 , 2020

Publication Classification

(51) Int . Ci .
H04L 12/803
H04L 12/801
H04L 12/815
H04L 12/851

(2006.01)
(2006.01)
(2006.01)
(2006.01)

Send all fields in microflow
with the megaflow - mask
information in ' enable
megaflow - with - mask like
option to the
TC - lower module

User Space
110

132

Send all fields in
microflow with
megaflow mask
information to NIC
Driver

(netlink APO Te Flower Ve OVS - vswitchd
flows , stats

7122 flows , stats , misses
Kernel
108

Flow
Table TC Datapath

120 OVS Datapath $ 130
Isses

Flow
Elaw
Flow
Table TC - Flower

116
128 114 flows stats misses

Create new megaflow (based on HW
design - could be different from OVS)
and program the SmartNIC hardware
pipeline + Bookkeeping for new flows

Flow Modified flow
statistics /
counters

Flow
Delete

Receive
Packets NIC Driver Add

9134 4118 136 106
SW

138

HW SmartNIC TCAM
102 104 127 SmartNIC

Datapath
(HW Pipeline)

HW Flow
Table

126
packet packet

IP

2112 - 124 124

100a

Patent Application Publication May 13 , 2021 Sheet 1 of 7 US 2021/0144094 A1

User Space
110

OVS - vswitchd
flows , stats

7122 122 flows , stats , misses
Kernel

108
Flow
Table TC Datapath

OVS Datapath 120 128 Elaun
lau
Flow
Table

$ misses
TC - Flower Gud 116

128 114 flows , stats , misses

NIC Driver 106
SW 2718 118

TCAM HW
102

SmartNIC
104

HW Flow
Table 127 Zi26 SmartNIC

Datapath packet packet
VIP
L24 6142 2124 124

100 Fig . 1

Patent Application Publication May 13 , 2021 Sheet 2 of 7 US 2021/0144094 A1

Send all fields in microflow
with the megaflow - mask
information in ' enable
megaflow - with - mask ' like
option to the
TC - flower module

User Space
110

132

Send all fields in
microflow with
megaflow mask
information to NIC
Driver

(netlink APD TC - Flower VF OVS - vswitchd
flows , stats

7122 122 flows , stats , misses
Kernel
108

Flow
Table TC Datapath

OVS Datapath 130 Flow
Elan
Flow
Table

$ 120 misses
TC - Flower Zi16 116

128 114 flows , stats , misses

Create new megaflow (based on HW
design - could be different from OVS)
and program the SmartNIC hardware
pipeline + Bookkeeping for new flows

Modified flow
statistics /
counters

Flow
Add

Flow
Delete

Receive
Packets NIC Driver

2718 134 106
SW

118 136 138

HW
102

SmartNIC TCAM HW Flow
104 Table 127 SmartNIC

126 Datapath packet (HW Pipeline) packet
VIP

124 -112 124 74427124

100a Fig . la

Patent Application Publication May 13 , 2021 Sheet 3 of 7 US 2021/0144094 A1

OVS - vswitchd

Z122
106

User Space 122
????
??? Kernel

108 TC - Flower Flow
Table

Kernel
Datapath

128 120 202

NIC Driver

7118
Software

106
118

HW Flow
Table

Hardware
102

SmartNIC 126

Zoo 104

200

Fig . 2

Patent Application Publication May 13 , 2021 Sheet 4 of 7 US 2021/0144094 A1

300 Receive Packet

302

Hardware
Match ?

MATCH Fig . 3
Perform Packet

Processing using NIC
Datapath

304
306

MISS

TC - Flower
Match ? -MATCH

Perform Packet
Processing using TC

Datapath
308 2310

MISS

MATCH
OVS

Datapath
Match ?

312

Perform Packet
Processing using OVS

Datapath
314

MISS

Create new megaflow with a mask in OVS employing
a subset of microflow fields for the packet ;

send microflow fields and mask info to TC - flower

316

TC flower calculates the subset of fields that are
required to be matched from the microflow fields /
mask info and stores new megaflow match rule

318

Send microflow fields and mask information from
TC - flower to NIC driver

320

Create new megaflow in the NIC driver employing a
subset of the microflow fields with mask

7322
NIC Driver programs NIC hardware pipeline for new

hardware flow 324

Patent Application Publication May 13 , 2021 Sheet 5 of 7 US 2021/0144094 A1

400 Flow Add

402

mYES www Return
Flow

rule present in
SW ?

404 406

NO
V

Add flow rule to Megaflow in Software ;
Include fields required to be matched

(don't care fields can be ignored)
-408

Fig . 4

500 Flow Delete

502 502

NO Return
Flow

rule present in
SW ?

504 506

YES

Delete Megaflow rule in Software

(60 508

Pass Megaflow rule to NIC Driver for
further handling of the delete of all the
associated micro flow rules in HW

2510
Fig . 5

Patent Application Publication May 13 , 2021 Sheet 6 of 7 US 2021/0144094 A1

600 Receive Packets

602

-NO
Packet

matches rule in
SW ?

604

Pass the packet to
OVS datapath for
further processing

606
YES

Execute action associated with flow rule

7608 608

Pass the flow rule including the
key / mask of all the fields to the NIC

driver for offload as a microflow .
610

Fig . 6

Patent Application Publication May 13 , 2021 Sheet 7 of 7 US 2021/0144094 A1

700

$
1
1
1
+
1
1

Memory subsystem 720
1

1 Processor
710

1
1

Memory 730

OS 732
Memory
controller

722
Apps 734 1

1 Graphics
740 Interface

712
Processes

736 }
1
1

Accelerators
742

I
1

3

Network
Interface

750

Interface
714

Peripheral
Interface

770

1
1
1 {

}
1

3 1 Controller
782 10 Interface

760
3

}

1
1
1
1
1
1

3

$
1

1 Storage 784 1
1
1
1
1
1
1

{

1 Code / data
786 }

1

3
3
3
}

Storage subsystem 780 1
1

Fig . 7

US 2021/0144094 A1 May 13 , 2021
1

EXTENSION OF OPENVSWITCH
MEGAFLOW OFFLOADS TO HARDWARE
TO ADDRESS HARDWARE PIPELINE

LIMITATIONS

BACKGROUND INFORMATION

[0001] OpenvSwitch (OVS) is a production quality mul
tilayer virtual switch implemented with open source soft
ware . OVS provides complete switching functionality in the
software , as well as hardware offload solutions to NICs
(Network Interface Cards / Controllers) . OVS is used by
various cloud software providers as an offloading bare metal
and virtual solution under which switching logic is move to
NICs for better usage of cores and better system perfor
mance .

appreciated as the same becomes better understood by
reference to the following detailed description , when taken
in conjunction with the accompanying drawings , wherein
like reference numerals refer to like parts throughout the
various views unless otherwise specified :
[0007] FIG . 1 is a schematic diagram of an architecture
illustrating an overview of an implementation platform ,
according to one embodiment ;
[0008] FIG . 1a is a schematic diagram illustrating an
augmented architecture of FIG . 1 including extensions and
new functions implemented by various software and hard
ware components ;
[0009] FIG . 2 is a diagram of a control plane view
illustrating a packet processing path employing a TC - flower
module ;
[0010] FIG . 3 is flowchart illustrating operations and logic
for processing a packet including creating a new megaflow ,
according to one embodiment
[0011] FIG . 4 is a flowchart illustrating operations and
logic for implementing a Flow Add function , according to
one embodiment ;
[0012] FIG . 5 is a flowchart illustrating operations and
logic for implementing a Flow Delete function , according to
one embodiment ;
[0013] FIG . 6 is a flowchart illustrating operations and
logic for implementing a modified datapath flow for Receive
Packets function , according to one embodiment ; and
[0014] FIG . 7 is a diagram of a platform or server system
that may be implemented with aspects of the embodiments
described and illustrated herein .

DETAILED DESCRIPTION

[0002] The current implementation of OVS supports two
kinds of offloads using the Linux kernel TC - flower mecha
nism . “ TC - flower ” is a packet classifier implemented as a
module in the Linux kernel and as part of the kernel TC
subsystem (which includes the TC datapath) . (It is called
TC- “ flower ” because TC - flow was already taken .) One kind
of offload is the “ microflow " offload , which offloads all the
fields used to classify a packet or flow supported in the OVS
tables . Hence for every missed or new packet (e.g. , first
packet in a new flow) a different flow is installed . The
second offload is a “ megaflow " offload that offloads only a
wild - card or a subset of the fields that match for a missed
packet , hence supporting a larger number of packets / flows to
match the same megaflow . The OVS sends these offloaded
flows to the kernel TC - flower module , which creates a new
megaflow and passes it on to the NIC driver for offload to the
hardware .
[0003] A microflow contains all the fields of the packet
that can be offloaded , even when the value is 0. When a
missed packet comes in it is matched on all the fields . An
example of a 7 - tuple microflow is : Src Mac (Source MAC
address) , Dst Mac (Destination MAC address) , Eth (Ether
net) type , Src IP (Source Internet Protocol address) , Dst IP
(Destination IP address) , Src Port , Dst port .
[0004] A megaflow comprises a subset of these fields that
are matched in the hardware . For the 7 - tuple microflow , a
megaflow would be a combination of one or more fields :
e.g. , Src IP / Mask , Dst IP / Mask .
[0005] There are some problems with this implementation .
The microflow offload creates too many flows one for each
packet of similar kind even though only a simple mask could
accommodate many packets . For example , an IP address
mask is not offloaded and all packets with an IP address in
the same subnet and type will have a different flow off
loaded , hence using up memory in the hardware . The
microflow offload may create millions of flows , hence
requiring housekeeping counters and statistics to be main
tained for all these flows separately , leading to reduced
performance and increased overhead . For microflow offload
using TC - flower , every missed packet must come up to the
user space instead of the kernel , resulting in a significant
drop in the performance . In addition , megaflows allow
offloading of masks on all fields but require TCAM - based
wildcard matching in hardware , which is expensive .

[0015] Embodiments of methods and apparatus for
extending OpenvSwitch megaflow offloads to hardware to
address hardware pipeline limitations are described herein .
In the following description , numerous specific details are
set forth to provide a thorough understanding of embodi
ments of the invention . One skilled in the relevant art will
recognize , however , that the invention can be practiced
without one or more of the specific details , or with other
methods , components , materials , etc. In other instances ,
well - known structures , materials , or operations are not
shown or described in detail to avoid obscuring aspects of
the invention .
[0016] Reference throughout this specification to “ one
embodiment ” or “ an embodiment ” means that a particular
feature , structure , or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention . Thus , the appearances of the
phrases “ in one embodiment ” or “ in an embodiment ” in
various places throughout this specification are not neces
sarily all referring to the same embodiment . Furthermore ,
the particular features , structures , or characteristics may be
combined in any suitable manner in one or more embodi
ments .
[0017] For clarity , individual components in the Figures
herein may also be referred to by their labels in the Figures ,
rather than by a particular reference number . Additionally ,
reference numbers referring to a particular type of compo
nent (as opposed to a particular component) may be shown
with a reference number followed by “ (typ) ” meaning
" typical . ” It will be understood that the configuration of
these components will be typical of similar components that
may exist but are not shown in the drawing Figures for

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The foregoing aspects and many of the attendant
advantages of this invention will become more readily

US 2021/0144094 A1 May 13 , 2021
2

simplicity and clarity or otherwise similar components that
are not labeled with separate reference numbers . Conversely ,
" (typ) ” is not to be construed as meaning the component ,
element , etc. is typically used for its disclosed function ,
implement , purpose , etc.
[0018] In accordance with aspects of the embodiments
disclosed herein , solutions are provided for extending
OpenvSwitch megaflow offloads to hardware to address
hardware pipeline limitations . In one aspect , an embodiment
of the solution moves the control of the offloaded fields in
the flow from OVS to the NIC driver by providing flexibility
in the megaflow offloads . With little changes in this mode ,
OVS can send all the fields to the kernel TC - flower module
along with an applicable mask for all or selected fields .
Under one embodiment , OVS also calculates the fields from
the mask and sends the subset of the fields to TC - flower
module . The TC - flower module in Linux is adapted to
support this new mode , including functionality to calculate
and store the subset of the fields in the TC - flower module to
implement a new megaflow . The TC - flower module also
sends all the fields with mask (s) down to the NIC driver .
Once the NIC driver receives all the fields , it can decide how
to break the flow down to make it more suitable to the NIC
hardware .
[0019] The solutions provide several advantages over
existing TC - flower implementations . For example , instead
of getting restricted by the two megaflow and microflow
offload modes that OVS currently supports , neither of which
is providing an optimal offload solution , NIC vendors can
use this model to move the decision making of the fields to
their NIC drivers . In this case , since the OVS and TC layers
will save only megaflows , memory utilization and perfor
mance will be improved . For instance , the stats and counters
(revalidator thread in OVS) will run only for megaflows (in
10 Ks) instead of the millions of microflows . Also , with
some changes in the TC layer , a missed packet can match a
megaflow in TC - flower and can be offloaded from the kernel
instead of going up to the user space .
[0020] FIG . 1 shows an architecture 100 illustrating an
overview of implementation platform , according to
embodiment . Architecture 100 includes a hardware layer
102 including a smart NIC (aka SmartNIC) 104 and a
software layer 106 including an operating system (OS)
kernel 108 , and a user space 110. Under architecture 100 , the
OS is Linux and kernel 108 is a Linux kernel . The datapath
components including a SmartNIC datapath 112 in Smart
NIC 104 , and a TC datapath 114 and an OVS datapath 116
in kernel 108. Kernel 104 further includes a NIC driver 118
and TC - flower classification module 120 (alternatively
referred to herein as “ TC - flower ” for brevity) in TC datapath
114. An OVS - vswitchd 122 is deployed in user space 106 .
OVS - switched is a daemon that manages and controls any
number of OVS switches on a local machine .
[0021] In accordance with receive - side processing , pack
ets such as an IP packet 124 are received from one or more
networks at one or more network ports on SmartNIC 102
(not shown) , and forwarded to SmartNIC datapath 108 ,
which is abstraction representing various logic for imple
menting associated packet - processing functionality in
SmartNIC 102. Fields in the packet header of IP packet 124
are inspected to perform packet classification for IP packet
124. If IP packet 120 belongs to an existing flow in a
hardware flow table 126 for which hardware offloading has
been previously set up , IP packet 124 will be processed in

accordance with its previous classification using hardware
based logic in SmartNIC 104 .
[0022] The packet lookup or match may also employ a
TCAM (ternary content - addressable memory) 127 or a
TCAM / WCM (wildcard match) table or component in par
allel with hardware flow table 126 that employs a single field
such as an IP address or reduced number of fields using the
field values or a wildcard mask . Hardware flow table 102
may generally be implemented using a hash - based scheme ,
such as a hash of a concatenation of the header fields used
for the classification , e.g. , an n - tuple hash or a hash com
prising a concatenation of a portion of the n - tuple fields .
Other types of hashes may be used to avoid collisions and / or
enhance efficiency , such as a Cuckoo hash scheme . Gener
ally , the flow tables in hardware may be smaller than the
flow tables in software .
[0023] If the packet classification for IP packet 124 per
formed by SmartNIC 104 results in a miss (e.g. , IP packet
124 is a first packet in a new flow or a packet in a flow for
which hardware offloading has not been set up) , processing
for the packet is pushed up to TC datapath 114 via NIC
driver 118. If IP packet 124 belongs to an existing flow in TC
datapath 114 it will be handled there . For a TC - flow imple
mentation , as described below , TC - flower module 120 may
employ multiple linked flow tables 128 .
[0024] In cases where the flow lookup / match for packet
124 at TC datapath 114 results in a miss , processing of the
packet will be pushed to OVS datapath 116. Under current
OVS implementations , OVS datapath 116 employs a single
large , flat flow table 130. If there is a hit in flow table 128
for OVS datapath 112 , packet processing will be performed
there . If there is a miss , processing will be pushed to
OVS - vswitchd 118. This daemon will then determine how to
handle the packet (and associated flow) . Generally , it will try
to program a flow into TC datapath 114 , which would be
pushed down to SmartNIC datapath 112 via NIC driver 118
if successful . If this fails for some reasons , then the flow will
be programmed using OVS datapath 116 .
[0025] FIG . 2 shows a control plane view 200 illustrating
a packet processing path employing TC - flower 120. The
components include SmartNIC 104 in hardware layer 102 ,
NIC driver 118 , TC - flower 120 , and a kernel datapath 204 in
kernel 108 , and OVS - vswitchd 122 in user space 110. Under
this view , OVS - vswitchd 122 will first try to push the flow
to TC flower 120. It will then try to push the flow down to
NIC driver 118 , which in turn will try to push it down to
SmartNIC 104. If any of these three stages fail , OVS
vswitchd 122 will push the packet to kernel datapath 204 .
[0026] As discussed above , under one aspect of the solu
tion the functionality of TC - flower is extended . Under one
embodiment , changes made in OpenvSwitch's
TC - flower interface to send all fields in the megaflows and
their masks in an ‘ enable - megaflows ' like option to the
TC - flower module . In addition , the OVS - vswitchd daemon
and the TC datapath flow are modified to add an interface to
send all fields in the megaflows along with their masks .
Under another aspect , the TC - flower classifier module is
extended to add the flow as a megaflow in the TC datapath ,
but pass all the fields along with the masks to the NIC driver .
This means changes in TC - flower module in the Linux
kernel to receive the mask and all the fields in the megaflow
offloads . This includes changes to apply the mask within
TC - flower to save the megaflow (subset of fields) in the TC
layer . This will also employ changes to pass all the fields and

ne

are

US 2021/0144094 A1 May 13 , 2021
3

the mask to the NIC driver . For example , in one embodiment
the changes are implemented via an ‘ ndo_setup_tc callback .
[0027] In accordance with another extension , on receiving
a missed packet , TC - flower matches the packet and forwards
it using software based on a megaflow rule . In addition to
this , the TC datapath will be extended to add a microflow
rule to hardware via the NIC driver interface .
[0028] Changes are also made to the NIC driver . Under
one aspect , the NIC driver is modified to maintain the
megaflow to hardware flow mapping and process deletes and
counters based on this mapping . Further modifications to the
NIC driver are added to support the following .
[0029] Under one embodiment of Flow Add , all the fields
will be offloaded to the NIC driver with the mask . The NIC
driver creates a megaflow to hardware flow mapping and
saves it internally within the driver memory space and
offloads the flow to the hardware .
[0030] Under one embodiment of Flow Delete , when the
flow delete is received from OVS for a megaflow , the NIC
driver will walk the above megaflow to hardware flow
mapping table and delete all the hardware flows associated
with that megaflow . On flow deletes received from hard
ware , the NIC driver will delete the hardware flow and
dereference its mapping to the megaflow .
[0031] Usage of Flow Statistics / Counters are also modi
fied . Under one embodiment , on the request for the counters
for megaflow from OVS , the NIC driver will collect statis
tics for the microflows and add those for the megaflow
counters and send those as a reply to OVS .
[0032] FIG . 1a shows an augmented architecture 100a in
which the foregoing extensions and changes are imple
mented . A TC - flower interface (I / F) 132 is coupled to
OVS - vswitchd 122 (or otherwise implemented in OVS
vswitchd 122) and is configured to send all fields in the
microflow with the megaflow mask information in ‘ enable
megaflow - with - mask ' like option to TC - flower module 120 .
In one embodiment , TC - flower interface 132 employs a
netlink API (Application Program Interface) . TC datapath
114 has been modified to add a microflow rule to hardware
via its NIC driver interface (not separately shown) . TC
flower 120 is also configured to send all fields in the
microflow with megaflow mask information to NIC driver
118. The functionality of NIC driver 118 has been extended
by a Flow Add function 134 , a Flow Delete function 136 ,
and a Receive Packets function 138. The flow statistic /
counter function in NIC driver 118 has also been modified
in the manner described above .
[0033] FIG . 3 shows a flowchart 300 illustrating opera
tions and logic for processing a packet including creating a
new megaflow , according to one embodiment . The process
begins in a start block 302 in which a packet is received . In
a decision block 304 a determination is made to whether
there is a hardware match for the packet (e.g. , there is an
entry in hardware flow table 126 for a flow to which the
packet belongs) . If there is a match , the logic proceeds to a
block 306 in which packet processing is performed using the
NIC datapath .
[0034] When there is a miss for decision block 304 , the
logic proceeds to a decision block 308 in which a TC - flower
match is evaluated . This will generally involve a lookup for
a matching megaflow entry in one of flow tables 128. If there
is a match the logic proceeds to a block 310 in which packet
processing is performed using TC datapath 114 .

[0035] When there is a miss for decision block 308 , the
logic proceeds to a decision block 312 in which an OVS
datapath match is evaluated . This will generally involve a
lookup for a matching megaflow entry in flow table 130. If
there is a match the logic proceeds to a block 314 in which
packet processing is performed using OVS datapath 116 .
[0036] For packets corresponding to new flows or to flows
that have been purged , the result for each of decision blocks
304 , 308 , and 312 is a miss and the logic will proceed to a
block 316 in which a new megaflow with a mask is created
in OVS (e.g. , using OVS - vswitchd 122) employing a subset
of the microflow fields for the packets . The microflow fields
are the fields that would be used for an n - tuple microflow ,
e.g. , the seven fields for the 7 - tuple microflow example
discussed in the BACKGROUND section . OVS - vswitchd
122 will then send the microflow fields and the mask
information to TC - flower 120 .
[0037] In a block 318 , TC flow calculates the subset of
fields that are required to be matched from the microflow
fields and the mask information and stores a corresponding
match rule for the new megaflow . TC - flower 120 will then
send the microflow fields and mask information to the NIC
driver , as shown in a block 320 .
[0038] The next two operations in blocks 322 and 324 are
performed by the NIC driver . In block 322 , a new megaflow
is created in the NIC driver employing a subset of the
microflow fields with a mask . The NIC driver then programs
the NIC hardware pipeline implemented for SmartNIC data
path 112 for the new hardware flow , as depicted in a block
324. Under one aspect , the new megaflow will be created in
consideration of the hardware resources on SmartNIC 104 ,
such as the sizes of TCAM 127 (or a TCAM / WCM com
ponent) and hardware flow table 126. For example , the
match scheme may be implemented by splitting the micro
flow fields , wherein one or more fields are used to create a
mask that is stored as a new entry in TCAM 127 , and all or
a portion of the remaining fields are used to create a new
entry in hardware flow table 126. Generally , the larger the
available TCAM , the more a wild card match or other type
of mask may be used .
[0039] FIG . 4 shows a flowchart 400 illustrating opera
tions and logic for implementing Flow Add function 134 ,
according to one embodiment . The process begins in a Flow
Add start block 402. In a decision block 404 a determination
is made to whether the flow rule is already present in
software . If it is , the answer to decision block 404 is NO and
the process returns , as depicted by a return block 406. If the
flow is not present in software , the logic proceeds to a block
408 in which the flow rule is added to a megaflow in
software . This includes the fields required to be matched ,
while other fields (don't care fields) may be ignored .
[0040] FIG . 5 shows a flowchart 500 illustrating opera
tions and logic for implementing Flow Delete function 136 ,
according to one embodiment . The process begins in a Flow
Delete start block 502. In a decision block 504 a determi
nation is made to whether the flow rule is already present in
software . If it is not present , the answer to decision block
504 is NO and the process returns , as depicted by a return
block 506. If the flow is present in software , the logic
proceeds to a block 508 in which the applicable megaflow
rule is deleted in software . As shown in a block 510 , the
megaflow rule will be passed to the NIC driver for further
handling of deletion of all the microflows associated with
the megaflow rule in hardware (e.g. , on the SmartNIC) .

US 2021/0144094 A1 May 13 , 2021
4

[0041] FIG . 6 shows a flowchart 600 illustrating opera
tions and logic for implementing a modified datapath flow
for Receive Packets function 138 , according to one embodi
ment . The process begins in a receive packets start block
602. In a decision block 604 a determination is made to
whether the packet (header fields) match a rule in software .
If not (answer NO) , the packet is passed to the OVS datapath
for further processing in a block 606. If the packet matches
a rule in software , the answer to decision block 604 is YES
and the logic proceeds to a block 608 in which an action
associated with the flow rule is executed . The logic then
proceeds to a block 610 in the flow rule including the
key / mask of all the applicable fields is passed to the NIC
driver for offload as a microflow .
[0042] Example Compute Platform
[0043] FIG . 7 depicts a compute platform 700 in which
aspects of the embodiments disclosed above may be imple
mented . Compute platform 700 includes one or more pro
cessors 710 , which provides processing , operation manage
ment , and execution of instructions for compute platform
700. Processor 710 can include any type of microprocessor ,
central processing unit (CPU) , graphics processing unit
(GPU) , processing core , multi - core processor or other pro
cessing hardware to provide processing for compute plat
form 700 , or a combination of processors . Processor 710
controls the overall operation of compute platform 700 , and
can be or include , one or more programmable general
purpose or special - purpose microprocessors , digital signal
processors (DSPs) , programmable controllers , application
specific integrated circuits (ASICs) , programmable logic
devices (PLDs) , or the like , or a combination of such
devices .
[0044] In one example , compute platform 700 includes
interface 712 coupled to processor 710 , which can represent
a higher speed interface or a high throughput interface for
system components that needs higher bandwidth connec
tions , such as memory subsystem 720 or optional graphics
interface components 740 , or optional accelerators 742 .
Interface 712 represents an interface circuit , which can be a
standalone component or integrated onto a processor die .
Where present , graphics interface 740 interfaces to graphics
components for providing a visual display to a user of
compute platform 700. In one example , graphics interface
740 can drive a high definition (HD) display that provides an
output to a user . High definition can refer to a display having
a pixel density of approximately 100 PPI (pixels per inch) or
greater and can include formats such as full HD (e.g. ,
1080p) , retina displays , 4K (ultra - high definition or UHD) ,
or others . In one example , the display can include a touch
screen display . In one example , graphics interface 740
generates a display based on data stored in memory 730 or
based on operations executed by processor 710 or both . In
one example , graphics interface 740 generates a display
based on data stored in memory 730 or based on operations
executed by processor 710 or both .
[0045] In some embodiments , accelerators 742 can be a
fixed function offload engine that can be accessed or used by
a processor 710. For example , an accelerator among accel
erators 742 can provide data compression capability , cryp
tography services such as public key encryption (PKE) ,
cipher , hash / authentication capabilities , decryption , or other
capabilities or services . In some embodiments , in addition or
alternatively , an accelerator among accelerators 742 pro
vides field select controller capabilities as described herein .

In some cases , accelerators 742 can be integrated into a CPU
socket (e.g. , a connector to a motherboard or circuit board
that includes a CPU and provides an electrical interface with
the CPU) . For example , accelerators 742 can include a
single or multi - core processor , graphics processing unit ,
logical execution unit single or multi - level cache , functional
units usable to independently execute programs or threads ,
application specific integrated circuits (ASICs) , neural net
work processors (NNPs) , programmable control logic , and
programmable processing elements such as field program
mable gate arrays (FPGAs) . Accelerators 742 can provide
multiple neural networks , CPUs , processor cores , general
purpose graphics processing units , or graphics processing
units can be made available for use by AI or ML models . For
example , the AI model can use or include any or a combi
nation of : a reinforcement learning scheme , Q - learning
scheme , deep - Q learning , or Asynchronous Advantage
Actor - Critic (A3C) , combinatorial neural network , recurrent
combinatorial neural network , or other Al or ML model .
Multiple neural networks , processor cores , or graphics pro
cessing units can be made available for use by AI or ML
models .
[0046] Memory subsystem 720 represents the main
memory of compute platform 700 and provides storage for
code to be executed by processor 710 , or data values to be
used in executing a routine . Memory subsystem 720 can
include one or more memory devices 730 such as read - only
memory (ROM) , flash memory , one or more varieties of
random access memory (RAM) such as DRAM , or other
memory devices , or a combination of such devices . Memory
730 stores and hosts , among other things , operating system
(OS) 732 to provide a software platform for execution of
instructions in compute platform 700. Additionally , appli
cations 734 can execute on the software platform of OS 732
from memory 730. Applications 734 represent programs that
have their own operational logic to perform execution of one
or more functions . Processes 736 represent agents or rou
tines that provide auxiliary functions to OS 732 or one or
more applications 734 or a combination . OS 732 , applica
tions 734 , and processes 736 provide software logic to
provide functions for compute platform 700. In one
example , memory subsystem 720 includes memory control
ler 722 , which is a memory controller to generate and issue
commands to memory 730. It will be understood that
memory controller 722 could be a physical part of processor
710 or a physical part of interface 712. For example ,
memory controller 722 can be an integrated memory con
troller , integrated onto a circuit with processor 710 .
[0047] While not specifically illustrated , it will be under
stood that compute platform 700 can include one or more
buses or bus systems between devices , such as a memory
bus , a graphics bus , interface buses , or others . Buses or other
signal lines can communicatively or electrically couple
components together , or both communicatively and electri
cally couple the components . Buses can include physical
communication lines , point - to - point connections , bridges ,
adapters , controllers , or other circuitry or a combination .
Buses can include , for example , one or more of a system bus ,
a Peripheral Component Interconnect (PCI) bus , a Hyper
Transport or industry standard architecture (ISA) bus , a
small computer system interface (SCSI) bus , a universal
serial bus (USB) , or an Institute of Electrical and Electronics
Engineers (IEEE) standard 1394 bus (Firewire) .

US 2021/0144094 A1 May 13 , 2021
5

[0048] In one example , compute platform 700 includes
interface 714 , which can be coupled to interface 712. In one
example , interface 714 represents an interface circuit , which
can include standalone components and integrated circuitry .
In one example , multiple user interface components or
peripheral components , or both , couple to interface 714 .
Network interface 750 provides compute platform 700 the
ability to communicate with remote devices (e.g. , servers or
other computing devices) over one or more networks . Net
work interface 750 can include an Ethernet adapter , wireless
interconnection components , cellular network interconnec
tion components , USB (universal serial bus) , or other wired
or wireless standards - based or proprietary interfaces . Net
work interface 750 can transmit data to a device that is in the
same data center or rack or a remote device , which can
include sending data stored in memory . Network interface
750 can receive data from a remote device , which can
include storing received data into memory . Various embodi
ments can be used in connection with network interface 750 ,
processor 710 , and memory subsystem 720. In one embodi
ment , Network Interface is a SmartNIC configured and
operations in a similar manner to SmartNIC 104 .
[0049] In one example , compute platform 700 includes
one or more IO interface (s) 760. IO interface 760 can
include one or more interface components through which a
user interacts with compute platform 700 (e.g. , audio , alpha
numeric , tactile / touch , or other interfacing) . Peripheral inter
face 770 can include any hardware interface not specifically
mentioned above . Peripherals refer generally to devices that
connect dependently to compute platform 700. A dependent
connection is one where compute platform 700 provides the
software platform or hardware platform or both on which
operation executes , and with which a user interacts .
[0050] In one example , compute platform 700 includes
storage subsystem 780 to store data in a nonvolatile manner .
In one example , in certain system implementations , at least
certain components of storage 780 can overlap with com
ponents of memory subsystem 720. Storage subsystem 780
includes storage device (s) 784 , which can be or include any
conventional medium for storing large amounts of data in a
nonvolatile manner , such as one or more magnetic , solid
state , or optical based disks , or a combination . Storage 784
holds code or instructions and data 786 in a persistent state
(i.e. , the value is retained despite interruption of power to
compute platform 700) . Storage 784 can be generically
considered to be a “ memory , " although memory 730 is
typically the executing or operating memory to provide
instructions to processor 710. Whereas storage 784 is non
volatile , memory 730 can include volatile memory (i.e. , the
value or state of the data is indeterminate if power is
interrupted to compute platform 700) . In one example ,
storage subsystem 780 includes controller 782 to interface
with storage 784. In one example controller 782 is a physical
part of interface 714 or processor 710 or can include circuits
or logic in both processor 710 and interface 714 .
[0051] A volatile memory is memory whose state (and
therefore the data stored in it) is indeterminate if power is
interrupted to the device . Dynamic volatile memory requires
refreshing the data stored in the device to maintain state .
One example of dynamic volatile memory includes DRAM ,
or some variant such as Synchronous DRAM (SDRAM) . A
memory subsystem as described herein may be compatible
with a number of memory technologies , such as DDR3
(Double Data Rate version 3 , original release by JEDEC

(Joint Electronic Device Engineering Council) on Jun . 27 ,
2007) . DDR4 (DDR version 4 , initial specification pub
lished in September 2012 by JEDEC) , DDR4E (DDR ver
sion 4) , LPDDR3 (Low Power DDR version3 , JESD209-3B ,
August 2013 by JEDEC) , LPDDR4) LPDDR version 4 ,
JESD209-4 , originally published by JEDEC in August
2014) , WIO2 (Wide Input / output version 2 , JESD229-2
originally published by JEDEC in August 2014) , HBM
(High Bandwidth Memory , JESD325 , originally published
by JEDEC in October 2013 , LPDDR5 (currently in discus
sion by JEDEC) , HBM2 (HBM version 2) , currently in
discussion by JEDEC , or others or combinations of memory
technologies , and technologies based on derivatives or
extensions of such specifications . The JEDEC standards are
available at www.jedec.org .
[0052] A non - volatile memory (NVM) device is a memory
whose state is determinate even if power is interrupted to the
device . In one embodiment , the NVM device can comprise
a block addressable memory device , such as NAND tech
nologies , or more specifically , multi - threshold level NAND
flash memory (for example , Single - Level Cell (“ SLC ”) ,
Multi - Level Cell (“ MLC ”) , Quad - Level Cell (“ QLC ”) , Tri
Level Cell (“ TLC ”) , or some other NAND) . ANVM device
can also comprise a byte - addressable write - in - place three
dimensional cross point memory device , or other byte
addressable write - in - place NVM device (also referred to as
persistent memory) , such as single or multi - level Phase
Change Memory (PCM) or phase change memory with a
switch (PCMS) , NVM devices that use chalcogenide phase
change material (for example , chalcogenide glass) , resistive
memory including metal oxide base , oxygen vacancy base
and Conductive Bridge Random Access Memory (CB
RAM) , nanowire memory , ferroelectric random access
memory (FeRAM , FRAM) , magneto resistive random
access memory (MRAM) that incorporates memristor tech
nology , spin transfer torque (STT) -MRAM , a spintronic
magnetic junction memory based device , a magnetic tun
neling junction (MTJ) based device , a DW (Domain Wall)
and SOT (Spin Orbit Transfer) based device , a thyristor
based memory device , or a combination of any of the above ,
or other memory .
[0053] A power source (not depicted) provides power to
the components of compute platform 700. More specifically ,
power source typically interfaces to one or multiple power
supplies in compute platform 700 to provide power to the
components of compute platform 700. In one example , the
power supply includes an AC to DC (alternating current to
direct current) adapter to plug into a wall outlet . Such AC
power can be renewable energy (e.g. , solar power) power
source . In one example , power source includes a DC power
source , such as an external AC to DC converter . In one
example , power source or power supply includes wireless
charging hardware to charge via proximity to a charging
field . In one example , power source can include an internal
battery , alternating current supply , motion - based power sup
ply , solar power supply , or fuel cell source .
[0054] In an example , compute platform 700 can be
implemented using interconnected compute sleds of proces
sors , memories , storages , network interfaces , and other
components . High speed interconnects can be used such as :
Ethernet (IEEE 802.3) , remote direct memory access
(RDMA) , InfiniBand , Internet Wide Area RDMA Protocol
(iWARP) , quick UDP Internet Connections (QUIC) , RDMA
over Converged Ethernet (ROCE) , Peripheral Component

US 2021/0144094 A1 May 13 , 2021
6

Interconnect express (PCIe) , Intel® QuickPath Interconnect
(QPI) , Intel® Ultra Path Interconnect (UPI) , Intel® On - Chip
System Fabric (IOSF) , Omnipath , Compute Express Link
(CXL) , Hyper Transport , high - speed fabric , NVLink ,
Advanced Microcontroller Bus Architecture (AMBA) inter
connect , OpenCAPI , Gen - Z , Cache Coherent Interconnect
for Accelerators (CCIX) , 3GPP Long Term Evolution (LTE)
(4G) , 3GPP 5G , and variations thereof . Data can be copied
or stored to virtualized storage nodes using a protocol such
as NVMe over Fabrics (NVMe - oF) or NVMe .
[0055] Although some embodiments have been described
in reference to particular implementations , other implemen
tations are possible according to some embodiments . Addi
tionally , the arrangement and / or order of elements or other
features illustrated in the drawings and / or described herein
need not be arranged in the particular way illustrated and
described . Many other arrangements are possible according
to some embodiments .
[0056] In each system shown in a figure , the elements in
some cases may each have a same reference number or a
different reference number to suggest that the elements
represented could be different and / or similar . However , an
element may be flexible enough to have different implemen
tations and work with some or all of the systems shown or
described herein . The various elements shown in the figures
may be the same or different . Which one is referred to as a
first element and which is called a second element is
arbitrary .
[0057] In the description and claims , the terms " coupled ”
and “ connected , ” along with their derivatives , may be used .
It should be understood that these terms are not intended as
synonyms for each other . Rather , in particular embodiments ,
“ connected ” may be used to indicate that two or more
elements are in direct physical or electrical contact with each
other . “ Coupled ” may mean that two or more elements are
in direct physical or electrical contact . However , “ coupled ”
may also mean that two or more elements are not in direct
contact with each other , but yet still co - operate or interact
with each other . Additionally , “ communicatively coupled ”
means that two or more elements that may or may not be in
direct contact with each other , are enabled to communicate
with each other . For example , if component A is connected
to component B , which in turn is connected to component C ,
component A may be communicatively coupled to compo
nent C using component B as an intermediary component .
[0058] An embodiment is an implementation or example
of the inventions . Reference in the specification to “ an
embodiment , " " one embodiment , " " some embodiments , " or
" other embodiments ” means that a particular feature , struc
ture , or characteristic described in connection with the
embodiments is included in at least some embodiments , but
not necess essarily all embodiments , of the inventions . The
various appearances “ an embodiment , ” “ one embodiment , ”
or " some embodiments ” are not necessarily all referring to
the same embodiments .
[0059] Not all components , features , structures , character
istics , etc. described and illustrated herein need be included
in a particular embodiment or embodiments . If the specifi
cation states a component , feature , structure , or character
istic “ may ” , " might ” , “ can ” or “ could ” be included , for
example , that particular component , feature , structure , or
characteristic is not required to be included . If the specifi
cation or claim refers to " a " or " an " element , that does not
mean there is only one of the element . If the specification or

claims refer to " an additional ” element , that does not pre
clude there being more than one of the additional element .
[0060] As discussed above , various aspects of the embodi
ments herein may be facilitated by corresponding software
and / or firmware components and applications , such as soft
ware and / or firmware executed by an embedded processor or
the like . Thus , embodiments of this invention may be used
as or to support a software program , software modules ,
firmware , and / or distributed software executed upon some
form of processor , processing core or embedded logic a
virtual machine running on a processor or core or otherwise
implemented or realized upon or within a non - transitory
computer - readable or machine - readable storage medium . A
non - transitory computer - readable or machine - readable stor
age medium includes any mechanism for storing or trans
mitting information in a form readable by a machine (e.g. ,
a computer) . For example , a non - transitory computer - read
able or machine - readable storage medium includes any
mechanism that provides (i.e. , stores and / or transmits) infor
mation in a form accessible by a computer or computing
machine (e.g. , computing device , electronic system , etc.) ,
such as recordable / non - recordable media (e.g. , read only
memory (ROM) , random access memory (RAM) , magnetic
disk storage media , optical storage media , flash memory
devices , etc.) . The content may be directly executable (" ob
ject ” or “ executable ” form) , source code , or difference code
(" delta " or " patch " code) . A non - transitory computer - read
able or machine - readable storage medium may also include
a storage or database from which content can be down
loaded . The non - transitory computer - readable or machine
readable storage medium may also include a device or
product having content stored thereon at a time of sale or
delivery . Thus , delivering a device with stored content , or
offering content for download over a communication
medium may be understood as providing an article of
manufacture comprising a non - transitory computer - readable
or machine - readable storage medium with such content
described herein .

[0061] The operations and functions performed by various
components described herein may be implemented by soft
ware running on a processing element , via embedded hard
ware or the like , or any combination of hardware and
software . Such components may be implemented as soft
ware modules , hardware modules , special - purpose hardware
(e.g. , application specific hardware , ASICs , DSPs , etc.) ,
embedded controllers , hardwired circuitry , hardware logic ,
etc. Software content (e.g. , data , instructions , configuration
information , etc.) may be provided via an article of manu
facture including non - transitory computer - readable or
machine - readable storage medium , which provides content
that represents instructions that can be executed . The content
may result in a computer performing various functions /
operations described herein .
[0062] As used herein , a list of items joined by the term “ at
least one of ” can mean any combination of the listed terms .
For example , the phrase " at least one of A , B or C ” can mean
A ; B ; C ; A and B ; A and C ; B and C ; or A , B and C.
[0063] The above description of illustrated embodiments
of the invention , including what is described in the Abstract ,
is not intended to be exhaustive or to limit the invention to
the precise forms disclosed . While specific embodiments of ,
and examples for , the invention are described herein for
illustrative purposes , various equivalent modifications are

US 2021/0144094 A1 May 13 , 2021
7

possible within the scope of the invention , as those skilled
in the relevant art will recognize .
[0064] These modifications can be made to the invention
in light of the above detailed description . The terms used in
the following claims should not be construed to limit the
invention to the specific embodiments disclosed in the
specification and the drawings . Rather , the scope of the
invention is to be determined entirely by the following
claims , which are to be construed in accordance with estab
lished doctrines of claim interpretation .
What is claimed is :
1. A method implemented on a compute platform includ

ing a Network Interface Controller (NIC) having one or
more ports and running software including OpenvSwitch
(OVS) software , comprising :

creating a new megaflow with a mask in the OVS soft
ware employing a subset of microflow fields for a
packet ; and

creating a new hardware flow on the NIC employing a
packet match scheme using at least a portion of the
microflow fields .

2. The method of claim 1 , wherein the software includes
a Linux operating system having a kernel including a Traffic
Classification (TC) -flower module and a NIC driver , further
comprising :

sending the microflow fields and the megaflow mask
information to the TC - flower module ;

calculating , at the TC - flower module , a subset of fields
required to be matched for the megaflow from the
microflow fields and megaflow mask information and
storing a corresponding match rule ; and

sending the microflow fields and the megaflow mask
information from the TC - flower module to the NIC
driver .

3. The method of claim 1 , wherein the NIC includes a
hardware pipeline configured to perform packet processing
of packets belonging to flows offloaded to hardware , further
comprising programming the new hardware flow in the
hardware pipeline .

4. The method of claim 3 , wherein the hardware pipeline
includes a hardware flow table and programming the new
hardware flow includes creating a new hardware flow table
entry in the hardware flow table using at least a portion of
the microflow fields .

5. The method of claim 4 , wherein the hardware pipeline
includes a TCAM (ternary content - addressable memory) or
TCAM / WCM (Wildcard Match) component , and wherein
programming the new hardware flow includes creating a
new entry in the TCAM or TCAM / WCM employing a mask
associated with at least one field not included among the
portion of the microflow fields used for the new hardware
flow table entry .

6. The method of claim 1 , wherein the software includes
a Linux operating system having a kernel including a NIC
driver , wherein the NIC includes a hardware pipeline , and
wherein the NIC driver implements a new megaflow
employing a subset of the microflow fields .

7. The method of claim 1 , the software includes a Linux
operating system having a kernel including a Traffic Clas
sification (TC) -flower module and a NIC driver , further
comprising :

receiving a first packet at a first port on the NIC ;
detecting the first packet does not belong to a current

hardware flow ;

forwarding the packet from the NIC to the TC - flower
module ; and

at the TC flower module ,
matching the first packet to a megaflow and forwarding

the first packet to be processed using software based
on a megaflow rule associated with the megaflow ;
and

extending a TC datapath to add a microflow rule to the
NIC via an interface on the TC flower module to the
NIC driver .

8. The method of claim 7 , further comprising :
receiving a second packet at the first port of the NIC , the

second packet and the first packet belong to the same
flow ;

matching the second packet on the MC ; and
employing the new microflow rule to perform processing

of the packet on the NIC .
9. The method of claim 1 , wherein the software includes

a Linux operating system having a kernel including a NIC
driver , further comprising deleting a flow originating from
the OVS software by performing operations comprising :

sending a flow delete for a megaflow from the OVS
software to the NIC driver ; and

deleting , via the NIC driver , all hardware flows on the
NIC associated with the megaflow .

10. The method of claim 1 , wherein the software includes
a Linux operating system having a kernel including a NIC
driver , further comprising deleting a hardware flow origi
nating from the NIC by performing operations comprising :

sending a hardware flow delete from the NIC to the NIC
driver ; and

at the NIC driver ,
deleting the hardware flow and dereferencing any hard

ware flow mappings to an associated megaflow .
11. A compute platform comprising :
a processor coupled to memory and a Network Interface

Controller (NIC) and a storage device ,
a Network Interface Controller (NIC) including one or
more ports and configured to support hardware offload
of packet processing using a hardware pipeline and
including a hardware flow table and a TCAM (tertiary
content addressable memory) ; and

software , residing in at least one of the memory and
storage device , comprising a plurality of software com
ponents configured to be executed on the processor
including a Linux operating system having a kernel
including a Traffic Classification (TC) -flower module
and OpenvSwitch (OVS) software , wherein execution
of the software enables the compute platform to :

create a new megaflow with a mask in the OVS software
employing a subset of microflow fields for a packet ;

send the microflow fields and megaflow mask information
to the TC - flower module ;

send the microflow fields and megaflow mask information
from the TC - flower module to the NIC driver ,

implement a new megaflow in the NIC driver employing
a subset of the microflow fields ; and

employ the NIC driver to create a new hardware flow on
the NIC employing a packet match scheme using at
least a portion of the microflow fields .

12. The compute platform of claim 11 , wherein the
hardware pipeline includes a hardware flow table , and
wherein creating the new hardware flow on the NIC com
prises programming the new hardware flow in the hardware

US 2021/0144094 A1 May 13 , 2021
8

pipeline including creating a new hardware flow table entry
using at least a portion of the microflow fields .

13. The compute platform of claim 12 , wherein the
hardware pipeline includes a TCAM (ternary content - ad
dressable memory) or TCAM / WCM (Wildcard Match)
component , and wherein creating the new hardware flow on
the NIC further comprises creating a new entry in the TCAM
or TCAM / WCM component employing a mask associated
with at least one field not including any fields in the portion
of the microflow fields used for the new hardware flow table
entry .

14. The compute platform of claim 11 , wherein the
compute platform is further configured to :

receive a first packet at a first port on the NIC ;
detect the first packet does not belong to a current

hardware flow ;
forward the packet from the NIC to the TC - flower mod

ule ; and
via execution of software comprising the TC - flower mod

ule on the processor ,
match the first packet to a megaflow and forward the

first packet to be processed using software based on
a megaflow rule associated with the megaflow ; and

extend a TC datapath to add a microflow rule to the
NIC via the NIC driver .

15. The compute platform of claim 11 , wherein execution
of the software further enables the compute platform to
delete a flow originating from the OVS software by :

sending a flow delete for a megaflow from the OVS
software to the NIC driver ; and

deleting , via the NIC driver , all the hardware flows on the
NIC associated with the megaflow .

16. The compute platform of claim 11 , wherein execution
of the software further enables the compute platform to
delete a hardware flow originating from the NIC by :

receiving a hardware flow delete sent from the NIC to the
NIC driver ; and

at the NIC driver ,
deleting the hardware flow and dereferencing any hard
ware flow mappings to an associated megaflow .

17. A non - transitory machine readable medium having
software instructions stored thereon comprising a Network
Interface Controller (NIC) driver in a Linux operating
system kernel configured to be executed on a compute

platform including a NIC having one or more ports and
running software including OpenvSwitch (OVS) software
and the Linux operating system , wherein execution of the
software instructions enables the NIC driver to :

receive microflow fields and megaflow mask information
associated with a new megaflow created in the OVS
software with a mask and employing a subset of
microflow fields for a packet ;

implement a new megaflow in the NIC driver employing
a subset of the microflow fields ; and

create a new hardware flow on the NIC employing a
packet match scheme using at least a portion of the
microflow fields .

18. The non - transitory machine readable medium of claim
17 , wherein the NIC includes a hardware pipeline including
a hardware flow table , and wherein creating the new hard
ware flow on the NIC comprises programming the new
hardware flow in the hardware pipeline including creating a
new hardware flow table entry using at least a portion of the
microflow fields .

19. The non - transitory machine readable medium of claim
18 , wherein the hardware pipeline includes a TCAM (ter
nary content - addressable memory) or TCAM / WCM (Wild
card Match) component , and wherein creating the new
hardware flow on the NIC further comprises creating a new
entry in the TCAM or TCAM / WCM component employing
a mask associated with at least one field not including any
fields in the portion of the microflow fields used for the new
hardware flow table entry .

20. The non - transitory machine readable medium of claim
17 , wherein execution of the NIC driver software instruc
tions further enables the computer platform to :

delete a flow originating from the OVS software by ,
receiving a flow delete for a megaflow from the OVS

software ; and
deleting all hardware flows on the NIC associated with

the megaflow ; and
delete a flow originating from the NIC by ,

receiving a hardware flow delete sent from the NIC ;
and

deleting the hardware flow and dereferencing any hard
ware flow mappings to an associated megaflow .

