
United States Patent 

US007100018B2 

(12) (10) Patent No.: US 7,100,018 B2 
Zhang et al. (45) Date of Patent: Aug. 29, 2006 

(54) SYSTEM AND METHOD FOR ENCODING 5,946,716 A * 8/1999 Karp et al. ................. 711 207 
PAGE SIZE INFORMATION 6,047,354 A * 4/2000 Yoshioka et al. ... 711.118 

6,446,187 B1 * 9/2002 Riedlinger et al. ......... T11 206 
(75) Inventors: David Zhang, San Jose, CA (US); 6,549.997 B1 * 4/2003 Kalyanasundharam ...... 711 207 

Mahdi Seddighnezhad, San Carlos, CA 6,625,715 B1* 9/2003 Mathews .................... 711 207 

(US) 
* cited by examiner 

(73) Assignee: Syrphis. Inc., Mountain View, Primary Examiner Reginald G. Bragdon 
Assistant Examiner—Daniel Ko 

(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Schwegman, Lundberg, 
patent is extended or adjusted under 35 Woessner & Kluth, PA. 
U.S.C. 154(b) by 336 days. (57) ABSTRACT 

(21) Appl. No.: 10/632,681 
A system and method for encoding page size information 

(22) Filed: Jul. 31, 2003 has been described herein. In one embodiment, the method 
includes determining whether a virtual address is stored in a 

(65) Prior Publication Data translation lookaside buffer (TLB), the TLB including a 
US 2005/OO27962 A1 Feb. 3, 2005 plurality of entries, wherein the entries include a minimum 

• - s virtual page number bit string and a variable bit string. In 
(51) Int. Cl. one embodiment the method also includes determining 

G06F 12/04 (2006.01) whether the first bit string matches the minimum virtual 
page number bit string of one of the entries. In one embodi 

(52) U.S. Cl. ....................... 711/207; 711/203; 729. ment, if the first bit string matches the minimum virtual page 
58) Field of Classification S h N number bit string of one of the entries, the method includes 
(58) a O E. t g Mesearch histo O decoding a page size stored in the variable portion of the 

pp p ry. matching entry and a 1-bit field associated with the matching 
(56) References Cited entry, wherein the decoding determines a set of bits of the 

U.S. PATENT DOCUMENTS 

5,465.337 A * 11/1995 Kong ......................... 711 207 

MINIMUM 
WRUAL 
PAGENO. 

WARABLE 

variable bit string. 

20 Claims, 8 Drawing Sheets 

MINIMUM 
oFFSET 

is sit--> 
offset 

WRTUAL 
ADRSSTAG 

FIEL 

Y. 70 70en-GO 702 
04 

WARIABLE 
BIT STRING 

se--e. 

70en-GO EGEE | 706-GO- GC 

PAG FRAME 
NUMBER 

. FIELD 

GE-- 
: 

PAGE MASK 708 
REGISTER 

roen-GO E-GE-E 
KSE 

HT HITOGC PAGE. FRAME 
MISS UN 710 NUMBER OFFSET 

PHYSICAL 
76 ADDRESSAG CACHE INDEX 

r 714 

712 

PHYSICA MEMORY CACHE 

  

  

  

  



U.S. Patent Aug. 29, 2006 Sheet 1 of 8 US 7,100,018 B2 

102 

100 TRANSLATION 
LOOKASIDE 
BUFFER(S) 

PROCESSOR(S) 

134 GRAPHICS 
CONTROLLER 

132 

137 DISPLAY 
DEVICE 

MEMORY 

142 IDEIATA DRIVE(S) 

144 USB PORT(S) 

INPUTIOUTPUT 
CONTROLLER HUB 140 

151 KEYBOARD 

152 MOUSE 

154 SERIAL PORT(S) 

155 CD-ROM DRIVE 

NETWORK 156 NTERFACE 

  

  

  

  

  

  



U.S. Patent Aug. 29, 2006 Sheet 2 of 8 US 7,100,018 B2 

VIRTUAL ADDRESS 

M A1 2OO 

VIRTUAL PAGE 
NUMBER OFFSET 

1ST LEVELTLB 

2ND LEVELTLB 

PAGE TABLE 

PHYSCAL - - - - - - - 

MEMORY 210 
214 

PAGE FRAME 

N N 
216 

FIG. 2 

    

  

  



U.S. Patent Aug. 29, 2006 Sheet 3 of 8 US 7,100,018 B2 

206 

FULLY ASSOCATIVE TRANSLATON 
LOOKASIDE BUFFER 

BLOCKO 

BLOCK 1 

BLOCKN 

  



U.S. Patent Aug. 29, 2006 Sheet 4 of 8 US 7,100,018 B2 

VIRTUAL ADDRESS 

BT 
64-- 52 BITS -o- 12; 11 O - POSITIONS 

VIRTUAL PAGENUMBER OFFSET 

2O2 214 

VIRTUAL ADDRESS 

MNIMUM MINIMU 
VIRTUAL VARIABLE OFFSET 

- PAGENO. Prsistic---> 
64--51 BITS->13:12-13 BITS->0. 

VIRTUAL PAGENUMBER OFFSET 

---> 
202 e 214 

402 

FIG. 4B 

  

  



U.S. Patent Aug. 29, 2006 Sheet S of 8 US 7,100,018 B2 

VIRTUAL ADDRESS 

402 

H- 52 BITS -> -- 12 BITS-> 502 
ió4 0: 

WRTUALPAGENUMBER OFFSET 214 4KB 

64 49 1211 MINIMUM PAGE SIZE 
: MNIMUM 
i- VIRTUAL-----> OFFSET PAGE SIZE(O) = 1 

PAGENO. 

g 
--51 BITS->;--13 BITS-> O2 
64 1312 o 1-N 

OFFSET 214 8KB 
PAGE SIZE 

202 

MINIMUM 202 O4 - VRTY 20239;S. VARAB, 
PAGENO. BIT STRING 

MINIMUM 

--OFFSET-> PAGE SIZE(O) = 1 

PAGE SIZE1) = 0 

1-50 BITS-D 1--14 BITS-> 

64 14:13:12 O 1-N 
VIRTUAL PAGENUMBER 1. OFFSET 214 16 KB 

FIG. 5B 

402 

MINIMUM MINIMUM PAGESIZE 
0.49 VARIABLE OFFSET VIRTUAL ESTN PAGE SIZE(O) = 1 

PAGENO. 

PAGE SIZE|2) = 0 PAGE SIZE(1) = 1 

FIG. 5C 

  



U.S. Patent Aug. 29, 2006 Sheet 6 of 8 US 7,100,018 B2 

BEGIN. 

ASSGNXAN INITIAL VALUE 
OF ZERO. 602 

ASSIGN N AN INITIAL VALUE, 
WHERE N REPRESENTS 
THE LOW ORDER BT 

POSITION OF THE VIRTUALN 604 
PAGENUMBER FOR THE 
SMALLEST PAGE SIZE. 

INSPECT PAGE SIZEX). 606 

THE VIRTUAL PAGE 

YES NUMBEROCCUPES BITS ro 
POSITIONS N THROUGH THE 
END OF THE VIRTUAL PAGE 

608 NUMBER FIELD. 

IS PAGE SIZEX) = 0? 

THE CURRENT PAGE SIZE IS 
INCREMENTN AND X. 2N. 

612 614 

END. 

FIG. 6 

  

  

  



U.S. Patent Aug. 29, 2006 Sheet 7 of 8 US 7,100,018 B2 

MINIMUM NY 
!-- YBUA: - VARIABLE - 

PAGE NO. Piriff's?ia--> 

5. 
VARIABLE No 

VIRTUAL BIT STRING 'uv PAGE FRAME 
ADDRESS TAG St. NUMBER 

FIELD FIELD ---> 
/ sy RHEE - HOCHE 

- || || 1 || 
70en-GDI E-GE-- 

HIT LOGC 
UNIT 

PAGE MASK 
REGISTER 

PAGE FRAME 
NUMBER OFFSET 

PHYSICAL 
ADDRESSAG CACHE INDEX 

714. 

PHYSICAL MEMORY CACHE 

FIG. 7 

      

  

      

  

  

  



U.S. Patent Aug. 29, 2006 Sheet 8 of 8 US 7,100,018 B2 

805 INSPECT PAGE SIZEO). BEGIN. 

DECODE THE WARIABLE BT STRING 
806 OF THE TLB ENTRIES BASED ON 

PAGE SIZE(OTO DETERMINE THE 
ENTRIES PAGE SIZES AND BITS TO 

BE COMPARED. 

COMPARE THE MINIMUM VIRTUAL 
PAGENUMBER WITH A 

CORRESPONDINGPORTION OF THEN 802 
TLB ENTRIES. 

COMPARE THE BITS FROM THE 
VARIABLE BIT STRING OF THE DOES 

VIRTUAL ADDRESS WITH THE 
CORRESPONDING BITS OF THE TLB MINIMUM VIRTUAL PAGE 

ENTRY. NUMBER 
MATCHA CORRESPONDING 

PORTION OF ANY 
TLB ENTRY? 

804 

NO 

GENERATE AMESS 816 
NDICATION. 

DOES 
HE WARIABLE BISTRIN 

MATCH THE TLB 
ENTRY? 

IS THE DECODED 
THE PAGE SIZE < THE 
CURRENT PAGE SIZE 

GENERATEAHT O END. D 
INDICATION. 814 

FIG. 8 

  

    

    

    

  

  

  

    

    

    

  

  

  



US 7,100,018 B2 
1. 

SYSTEMAND METHOD FORENCODING 
PAGE SIZE INFORMATION 

A portion of the disclosure of this patent document 
contains material to which the claim of copyright protection 
is made. The copyright owner has no objection to the 
facsimile reproduction by any person of the patent document 
or the patent disclosure, as it appears in the U.S. Patent and 
Trademark Office file or records, but reserves all other rights 
whatsoever. 

FIELD 

This invention relates generally to the field of virtual 
addressing and particularly to resolving virtual addresses 
using page size information. 

BACKGROUND 

Typically, computers systems provide an address space 
that is much larger than the physical memory contained 
within the computer system. This larger address space is 
often referred to as virtual memory or virtual address space. 
The virtual address space is often divided into blocks called 
pages. For pages to be quickly accessible by application and 
system Software, the pages must be loaded into the comput 
er's physical memory. When pages are loaded into physical 
memory, they are mapped from the virtual address space into 
the physical address space (e.g. the address space available 
in random access memory and cache). Such address map 
ping is referred to as virtual address resolution. Often, the 
mapping information for a set of virtual memory addresses 
is stored in a fast memory called a translation lookaside 
buffer (TLB). Thus, TLBs facilitate quick mapping of virtual 
addresses to physical addresses. 
Many computer systems allow different software pro 

grams to use different page sizes. For example, one software 
application may use a 16 Kb page size, while another 
Software application uses a 4 Kb page size. Providing 
Support for variable page sizes allows software to use 
physical memory more efficiently. For example, when soft 
ware applications use page sizes that are too big, address 
space is wasted. Moreover, when Software applications use 
page sizes that are too small, the TLB is very large; thus 
requiring a large area to accommodate the TLB. Therefore, 
for computer systems that Support variable page sizes, there 
is a need for TLBs that efficiently store address mapping 
information for multiple page sizes. 

BRIEF DESCRIPTION OF THE FIGURES 

The present invention is illustrated by way of example 
and not limitation in the Figures of the accompanying 
drawings, in which like references indicate similar elements 
and in which: 

FIG. 1 illustrates an exemplary computer system used in 
conjunction with certain embodiments of the invention; 

FIG. 2 is a block diagram illustrating a system for 
resolving virtual addresses, according to embodiments of the 
invention; 

FIG. 3 is a block diagram illustrating a fully associative 
translation lookaside buffer, used in conjunction with 
embodiments of embodiments of the invention; 

FIG. 4A is a block diagram illustrating the fields of a 
virtual address, used in conjunction with embodiments of 
the invention; 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
FIG. 4B is a block diagram illustrating a virtual address 

including a variable offset field size, according to embodi 
ments of the invention; 

FIG. 5A is a block diagram illustrating virtual memory 
address fields and a 1-bit bit vector for encoding a page size 
within a virtual address, according to embodiments of the 
invention; 

FIG. 5B is a block diagram illustrating virtual memory 
address fields and a 2-bit bit vector for encoding a page size 
within a virtual address, according to embodiments of the 
invention; 

FIG. 5C is a block diagram illustrating a variable offset 
field boundary and 3-bit bit vector used for storing a page 
size, according to embodiments of the invention; 

FIG. 6 is a flow diagram illustrating operations for encod 
ing a page size within a virtual address, according to 
embodiments of the invention; 

FIG. 7 as a block diagram illustrating logic for matching 
fixed and variable portions of a virtual address, according to 
embodiments of the invention; and 

FIG. 8 is a flow diagram illustrating operations for match 
ing fixed and variable portions of a virtual address, accord 
ing to embodiments of the invention. 

DESCRIPTION OF THE EMBODIMENTS 

In the following description, numerous specific details are 
set forth. However, it is understood that embodiments of the 
invention may be practiced without these specific details. In 
other instances, well-known circuits, structures and tech 
niques have not been shown in detail in order not to obscure 
the understanding of this description. Note that in this 
description, references to “one embodiment,” “an embodi 
ment,” or “an alternative embodiment’ mean that the feature 
being referred to is included in at least one embodiment of 
the present invention. Further, separate references to “one 
embodiment in this description do not necessarily refer to 
the same embodiment; however, neither are such embodi 
ments mutually exclusive, unless so stated and except as will 
be readily apparent to those skilled in the art. Thus, the 
present invention can include any variety of combinations 
and/or integrations of the embodiments described herein. 

Herein, block diagrams illustrate exemplary embodiments 
of the invention. Also herein, flow diagrams illustrate opera 
tions of the exemplary embodiments of the invention. The 
operations of the flow diagrams will be described with 
reference to the exemplary embodiments shown in the block 
diagrams. However, it should be understood that the opera 
tions of the flow diagrams could be performed by embodi 
ments of the invention other than those discussed with 
reference to the block diagrams, and embodiments discussed 
with references to the block diagrams could perform opera 
tions different than those discussed with reference to the 
flow diagrams. 

This description of the embodiments is divided into three 
sections. In the first section, an exemplary hardware and 
operating environment is described. In the second section, a 
system level overview is presented. In the third section, an 
exemplary implementation is described. 

Hardware and Operating Environment 

This section provides an overview of the exemplary 
hardware and the operating environment in which embodi 
ments of the invention can be practiced. 

FIG. 1 illustrates an exemplary computer system used in 
conjunction with certain embodiments of the invention. As 



US 7,100,018 B2 
3 

illustrated in FIG. 1, computer system 100 comprises pro 
cessor(s) 102, which includes a translation lookaside buff 
er(s) (TLB). Computer system 100 also includes a memory 
132, processor bus 110, and input/output controller hub 
(ICH) 140. The processor(s) 102, memory 132, and ICH 140 
are coupled to the processor bus 110. The processor(s) 102 
may comprise any Suitable processor architecture. The com 
puter system 100 may comprise one, two, three, or more 
processors, any of which may execute a set of instructions 
in accordance with embodiments of the present invention. 
The memory 132 stores data and/or instructions, and may 

comprise any suitable memory, such as a dynamic random 
access memory (DRAM), for example. The computer sys 
tem 100 also includes IDE drive(s) 142 and/or other suitable 
storage devices. A graphics controller 134 controls the 
display of information on a display device 137, according to 
embodiments of the invention. 
The input/output controller hub (ICH) 140 provides an 

interface to I/O devices or peripheral components for the 
computer system 100. The ICH 140 may comprise any 
suitable interface controller to provide for any suitable 
communication link to the processor(s) 102, memory 132 
and/or to any suitable device or component in communica 
tion with the ICH 140. For one embodiment of the invention, 
the ICH 140 provides suitable arbitration and buffering for 
each interface. 

For one embodiment of the invention, the ICH 140 
provides an interface to one or more Suitable integrated drive 
electronics (IDE) drives 142, such as a hard disk drive 
(HDD) or compact disc read only memory (CDROM) drive, 
or to suitable universal serial bus (USB) devices through one 
or more USB ports 144. For one embodiment, the ICH 140 
also provides an interface to a keyboard 151, a mouse 152, 
a CD-ROM drive 155, and one or more suitable devices 
through one or more serial ports 154. For one embodiment 
of the invention, the ICH 140 also provides a network 
interface 156 though which the computer system 100 can 
communicate with other computers and/or devices. 

In one embodiment, the computer system 100 includes a 
machine-readable medium that stores a set of instructions 
(e.g., Software) embodying any one, or all, of the method 
ologies described herein. Furthermore, software can reside, 
completely or at least partially, within memory 132 and/or 
within the processor(s) 102. 

System Level Overview 

This section provides a system level overview of exem 
plary embodiments of the invention. FIGS. 2–3 describe an 
architecture and data flow between processor units of a 
virtual memory system. In particular, FIG. 2 describes 
resolving virtual memory addresses, while FIG. 3 describes 
a translation lookaside buffer. 

FIG. 2 is a block diagram illustrating a system for 
resolving virtual addresses, according to embodiments of the 
invention. As shown in FIG. 2, the virtual address resolution 
system 200 includes a first level TLB 206, a second level 
TLB 208, a page table 210, and a physical memory 216. As 
shown in FIG. 2, a virtual address includes a virtual page 
number 202 and an offset 204. The virtual page number 202 
is transmitted to the first level TLB 206, which attempts to 
match the virtual page number 202 with a virtual page 
number (not shown) stored in the first level TLB 206. If the 
first level TLB 206 finds an entry containing a virtual page 
number matching the virtual page number 202, the first level 
TLB 206 provides a page frame number 212 corresponding 
to the virtual page number 202. The virtual page number 202 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
is also transmitted to a second level TLB 208, which 
attempts to match the virtual page number 202 with a virtual 
page number (not shown) stored in the second level TLB 
208. If the second level TLB 208 finds an entry containing 
a virtual page number matching the virtual page number 
202, the second level TLB 208 provides the page frame 212 
number corresponding to the virtual page 202. 

Although not shown in FIG. 2, the first level TLB 206 
includes faster matching logic than the second level TLB 
208, which includes faster logic than the page table 210. 
Some of the matching operations can be performed simul 
taneously to minimize delays associated with resolving 
virtual addresses. That is, operations for fetching the physi 
cal address information from the first level TLB 206 and 
second level TLB 208 can be performed in simultaneously 
with to minimize latency associated virtual address resolu 
tion. In one embodiment, the first level TLB 206 is a fully 
associative TLB and the second level TLB 208 is a set 
associative TLB. In one embodiment, both the first and 
second level TLBs are set associative TLBs. In one embodi 
ment, if a match is not found in either of the TLBs, the 
virtual address resolution system 200 fetches the corre 
sponding page frame number 212 from the page table 210 
and loads it into one or both of the TLBs (see discussion of 
TLB exceptions in the next section). 
Once the page frame number 212 is fetched from either of 

the TLBs or from the page table 210, it is combined with the 
offset 214 to the form a physical address. As shown in FIG. 
2, the page frame number 212 is used to address a page in 
the physical memory 216. The offset 214 is used to access 
and address relative to the beginning of the page. 

FIG. 3 is a block diagram illustrating a fully associative 
translation lookaside buffer, according to embodiments of 
the invention. As shown in FIG. 3, the fully associative 
translation lookaside buffer 206 includes blocks 0 through 
N. Each block includes a TLB entry, which stores virtual 
address information including a page frame number 212, as 
described above. In one embodiment, the TLB entries also 
include read permissions fields, a write permissions fields, 
and valid fields. In one embodiment, the TLB entry includes 
a use field and a dirty field. According to alternative embodi 
ments, the TLB entry includes other suitable fields for 
mapping virtual addresses into the physical address space. 

Exemplary Implementation 

FIG. 4A is a block diagram illustrating the fields of a 
virtual address, used in conjunction with embodiments of 
the invention. As shown in FIG. 4A, a virtual address 
includes two data fields: 1) an offset 214 and 2) a virtual 
page number 202. As shown in FIG. 4A, the virtual address 
is represented in 64 bits. The offset 214 is represented in 12 
bits, which occupy bit positions 0 through 11 of the 64-bit 
virtual address. Thus, the 12-bit offset 214 can address 2'-4 
Kb different locations within a page. The virtual page 
number 202 is represented in 52 bits. The virtual page 
number 202 occupies bit positions 12 through 64 of the 
64-bit virtual address. As described above with reference to 
FIG. 2, the virtual page number 202 is used to find a page 
in physical memory, while the offset 214 is used to address 
a location within the page. 

FIG. 4B is a block diagram illustrating a virtual address 
including a variable offset field size, according to embodi 
ments of the invention. The size of the offset field is related 
to the page size. In one embodiment, the size of the offset 
field (i.e. the number of bits in the offset 214) is determined 
as follows: 



US 7,100,018 B2 
5 

Offset Field Size=log (Page Size). For example, when the 
page size is 4. Kb, the offset field size is log (4 Kb)=12 bits. 
As another example, when the page size is 8 Kb, the offset 
field size is log (8 Kb)=13 bits. 
The processor(s) 102 Supports variable page sizes. That is, 

the processor(s) 102 allows different processes to use dif 
ferent page sizes. For example, one process can use a 4 Kb 
page size, while another process uses a 16 Kb page size. 
When Supporting variable page sizes, the offset boundary 
402 varies based on the page size of the process resolving 
the virtual address. As shown in FIG. 4B, the offset bound 
ary 402 lies between bits 12 and 13 of the virtual address, 
creating a 13-bit offset 214 and 51-bit virtual page number 
204. However, the offset boundary 402 can move left 
(increasing the offset field size) or right (decreasing the 
offset field size), depending on the current page size. For 
example, when the page size is 16 Kb, the virtual page 
number field size is 50 bits and the offset field size is 14 bits. 
As such, the boundary 402 lies between bits 13 and 14. As 
another example, when the page size is 16 Kb, the virtual 
page number field size is 49 bits and the offset field size is 
15 bits. As such, the boundary 402 lies between bits 14 and 
15. 

As shown in FIG. 4B, because the offset size can vary, the 
virtual address can be divided into a minimum offset, 
variable bit string, and minimum virtual page number. The 
offset 214 is guaranteed to be at least as large as the 
minimum offset (i.e., the offset is guaranteed to be as large 
as the Smallest Supported page size). Similarly, the virtual 
page number 202 is guaranteed to be at least as large as the 
minimum virtual page number. The variable bit string rep 
resents the virtual address portion that could be part of the 
offset 214 or part of the virtual page number 202, depending 
on the page size. In one embodiment, the boundary 402 can 
move to Support any number of page sizes that can be 
represented in a 64-bit virtual address. In an alternative 
embodiment, the boundary can move to Support any number 
of page sizes that can be represented in a larger or Smaller 
virtual address. 

While FIGS 4A and 4B describe the fields of a virtual 
address, FIGS. 5A-5C describe a technique for encoding a 
page size within a virtual address using an additional 1-bit 
memory location. FIG. 6 is a flow diagram describing 
operations for performing the encoding technique described 
in FIGS 5A SC. 

FIG. 5A is a block diagram illustrating virtual memory 
address fields and a 1-bit bit vector for encoding a page size 
within a virtual address, according to embodiments of the 
invention. As shown in FIG. 5A, the memory location 502 
stores the first element of a bit vector, which indicates the 
page size of a virtual address. In one embodiment, the 
memory location 502 is a one-bit memory location. Accord 
ing to alternative embodiments, the memory location 502 is 
larger than one bit. As shown in FIG. 5A, the minimum 
offset occupies bits 0-11, the variable bit string occupies bits 
12–49, and the minimum page size occupies bits 50–64. The 
bit vector, referred to as Page Size, includes a variable 
number of bits depending on the number of Supported page 
sizes. More specifically, Page Size includes anywhere from 
0 to Max-1 bits, where 2'' is the number of supported page 
sizes. As shown in FIG. 5A, when Page Size IO-0, the 
offset 214 spans 12 bits (e.g., bit positions 0 through 11) and 
the virtual page number 202 spans 52 bits, Supporting a 4 Kb 
maximum page size. However, if Page Size O=1, the 
boundary 402 moves to Support a larger page size, as 
described below with reference to FIG. 5B. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
FIG. 5B is a block diagram illustrating virtual memory 

address fields and a 2-bit bit vector for encoding a page size 
within a virtual address, according to embodiments of the 
invention. As shown in FIG. 5B, the minimum offset occu 
pies bits 0-11, the variable bit string occupies bits 12–49, 
and the minimum page size occupies bits 50–64. Continuing 
from the discussion above, when Page Size O=1, bit 12 and 
possibly more bits of the variable bit string will be used as 
part of the offset 214. Bit 12 is inspected to determine 
whether more bits are needed for the offset 214. As shown 
in FIG. 5B, bit 12 of the virtual address is zero, which means 
no more bits are needed. Because bit 12 is zero, the offset 
218 occupies 13 bits of the virtual address, including bits 0 
through 12. The 13-bit offset supports an 8Kb page size. As 
noted above, the first bit of Page Size is stored in the 
location 502 and the next bit (i.e., Page Size 1) is stored in 
bit 12 of the variable bit string of the virtual address. Any 
additional bits of Page Size are also stored in the virtual 
address, as described below with reference to FIG. 5C. 

FIG. 5C is a block diagram illustrating a variable offset 
field boundary and 3-bit bit vector used for storing a page 
size, according to embodiments of the invention. Building 
on the discussion above, when Page Size 0–1 and Pag 
e Size1=1, bit 13 and possibly more bits of the variable bit 
string will be used as part of the offset 214. Bit 13 is 
inspected to determine whether more bits are needed for the 
offset 214. As shown in FIG.SB, bit 13 of the virtual address 
is zero, which means no more bits are needed. Because bit 
13 is Zero, the offset 218 occupies 14 bits of the virtual 
address, including bits 0 through 13. The 14-bit offset 
Supports a maximum page size of 16 Kb. As noted above, the 
first bit of Page Size is stored in the location 502 and the 
next bits (i.e., Page Size 1 and Page Size2) are stored in 
bits 12 and 13 of the variable bit string of the virtual address. 
As the page size grows, the additional bits used for repre 
senting the page size are also stored in the variable bit string 
of the virtual address (e.g., Page Size 3. 
Page Size4. . . . Page Size Max-1 are stored in the 
variable bit string of the virtual address). 

FIG. 6 is a flow diagram illustrating operations for encod 
ing a page size within a virtual address, according to 
embodiments of the invention. The flow diagram 600 com 
mences a block 602, where a variable X is assigned an 
initial value of Zero. The process continues at block 604. At 
block 604, a variable N is assigned an initial value, where 
N represents a low-order bit position of a virtual page 
number for the Smallest Supported page size. The process 
continues at block 606. At block 606, a bit vector Page Size 
is inspected. The process continues at block 608. 
At block 608, it is determined whether Page Size x=0. If 

Page Size x=0, the process continues at block 610. Oth 
erwise, the process continues at block 612. At block 610, the 
size of the virtual page number is known because the virtual 
page number occupies bit positions N to the end of the 
virtual page number field. For example, the virtual page 
number can occupy bit positions N to 64, for a 64-bit virtual 
address. Alternative embodiments Support larger or Smaller 
virtual addresses. The process continues at block 614. At 
block 614, it is current page size is equal to 2'. For example, 
the current page size can be 4. Kb. 8 Kb. 16 Kb, etc. From 
block 614, the process ends. At block 612, the variables N 
and X are incremented. From block 612, the process con 
tinues at block 606. 

While FIGS. 5–6 describe a technique for encoding a page 
size in a virtual address, FIGS. 7 and 8 describe logic and 
operations for resolving virtual addresses that include 
encoded page sizes. 



US 7,100,018 B2 
7 

FIG. 7 as a block diagram illustrating logic for matching 
a virtual address with entries in a TLB, according to embodi 
ments of the invention. As shown in FIG. 7, includes a 
virtual address, which includes a virtual page number 202 
and offset 214. As described above, the virtual address 
includes a fixed portion and a variable portion. The fixed 
portion, which is part of the virtual page number 202, is 
transmitted to a TLB 702 for comparison with correspond 
ing portions of the TLB entries. The TLB entries include 
fields for a page frame number, Page Size IO), and virtual 
address tag. As noted above, in one embodiment, the Pag 
e Size O field is a one-bit field. The TLB includes a 
comparator 706 and decoder-comparator 708 (illustrated as 
D-C 708) for each entry. Each decoder-comparator 708 is 
connected to the Page Size O field for the same TLB entry. 
The comparators 706 and decoder-comparators 708 are 
connected with a hit logic unit 716. A page mask register 704 
is also connected to the hit logic unit 716. The page frame 
number fields of the TLB 702 are connected to a predeter 
mined location 710. In one embodiment, the predetermined 
location 710 is a load/store unit. Addresses are transmitted 
from the predetermined location to a cache 714 and/or a 
physical memory 712. 

FIG. 8 is a flow diagram illustrating operations for match 
ing fixed and variable portions of a virtual address, accord 
ing to embodiments of the invention. The flow diagram 800 
will be described with reference to the exemplary logic 
shown in FIG. 7. The flow diagram 800 commences at block 
802. At block 802, the minimum virtual page number of the 
virtual memory address is compared with a corresponding 
portion of the TLB entries. For example, the TLB 702 
receives the virtual address and the comparators 706 com 
pare the minimum virtual page number (e.g., bits 50–64) 
with corresponding portions stored in the TLB entries. The 
process continues at block 804. 

At block 804, it is determined whether the minimum 
virtual page number of the virtual address matches a corre 
sponding portion of any of the TLB entries. If the minimum 
virtual page number matches a corresponding portion of a 
TLB entry, the process continues at block 805. Otherwise, 
the process continues at block 814. 

At block 805, Page Size O fields are inspected. For 
example, a decoder-comparitor 708 inspects the Page Size 
O fields associated with matching TLB entries. The process 
continues at block 806. 
As shown in block 806, the variable bit strings of the 

matching TLB entries are decoded to determine the page 
size and the bits to be compared. For example, the decoder 
comparators 708 decode the variable portions of the TLB 
entries to determine page sizes and bits to compare. In one 
embodiment, the decoder-comparators 708 decode the TLB 
entries according to the technique described in FIGS. 5-6. 
After decoding the TLB entries, the decoder-comparators 
708 compare the variable bit string of the TLB entries with 
corresponding portions of the virtual address. For example, 
if the Smallest Supported page size is 4. Kb (i.e., the minimum 
offset occupies bits 0-11) and the minimum virtual page 
number occupies bits 50–64, the variable bit string will 
occupy bits 11-50. If a decoder-comparator 708 decodes a 
TLB entry and determines that its page size is 16 Kb (see 
discussion of FIG. 5A-5C above), the TLB entry’s offset 
214 occupies bit positions 0 through 13, so the decoder 
comparator 708 will compare bits 14-49 with corresponding 
bits of the TLB entry (see process block 808). The process 
continues at block 808. 
At block 808, the bits from the variable bit string of the 

TLB entries are compared to corresponding bits of the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
virtual address. For example, the comparator-decoders 708 
compare bits of the TLB entries (determined above at block 
806) with the relevant bits of the variable bit string (e.g., bits 
14-49, as described above). The process continues at block 
810. 
As shown in block 810, it is determined whether bits of 

the variable bit string match corresponding bits of a TLB. If 
there is a match, the process continues at block 812. Oth 
erwise, the process continues at block 814. 
At block 812, it is determined whether the decoded page 

size of the matching TLB entry is less than or equal to the 
current page size. For example, the hit logic 716 receives 
input from the page mask register 704 and the decoder 
comparator 708 indicating the current page size and the 
decoded page size, respectively. The hit logic compares the 
current page size with the decoded page size. If the decoded 
page size is less than or equal to the current page size, the 
process continues at block 816. Otherwise, the process 
continues at block 814. 
As shown in block 816, a hit indication is generated. For 

example, the hit logic unit 716 generates a hit indication. 
From block 816, the process ends. 
At block 814, a miss indication is generated. For example, 

the hit logic unit 716 generates a miss indication. From 
block 814, the process ends. 

Thus, a system and method for encoding page size infor 
mation has been described. Although the present invention 
has been described with reference to specific exemplary 
embodiments, it will be evident that various modifications 
and changes may be made to these embodiments without 
departing from the broader spirit and scope of the invention. 
Accordingly, the specification and drawings are to be 
regarded in an illustrative rather than a restrictive sense. 
We claim: 
1. A method comprising: 
determining whether a virtual address is stored in a 

translation lookaside buffer (TLB), the TLB including 
a plurality of entries, wherein the entries include a 
minimum virtual page size bit string and a variable bit 
string, the determining including, 
comparing a first bit string of the virtual address to the 
minimum virtual page size bit string of each of the 
entries; 

determining whether the first bit string matches the 
minimum virtual page size bit string of one of the 
entries; 

if the first bit string matches the minimum virtual page 
number bit string of one of the entries, decoding a 
page size stored in the variable bit string of the 
matching entry and a data field associated with the 
matching entry, wherein the decoding determines a 
set of bits in the variable bit string; and 

comparing the set of bits of the variable bit string of the 
matching entry to a second bit string of the virtual 
address. 

2. The method of claim 1 further comprising: 
if the set of bits matches the second bit string, generating 

a hit indication; and 
if the set of bits does not match the second bit string, 

generating a miss indication. 
3. The method of claim 1, where the TLB is a fully 

associative TLB. 
4. The method of claim 1, wherein a page size is encoded 

in the second bit string. 
5. The method of claim 1, wherein the TLB is a second 

level TLB. 



US 7,100,018 B2 
9 10 

6. A method comprising: 12. The apparatus of claim 11 further comprising: 
determining a page size encoded in a virtual address tag, a page mask register to provide a current page size; 

wherein the virtual address tag is stored in a translation a hit logic unit coupled to the page mask register, the first 
lookaside buffer entry, and wherein the virtual address set of comparators, and the second set of decoder 
tag includes a set of bits, wherein each bit of the set S comparators, the hit logic to determine whether the 
indicates whether an additional bit is needed to repre- current page size is less than or equal to the page size. 
sent the page size, the determining including, 13. The apparatus of claim 11, wherein the hit logic 
inspecting a first bit stored in a 1-bit field of the TLB; generates a miss indication after determining that a current 

page size is less than the page size. 
determining whether the first bit indicates that at least 10 14. The apparatus of claim 11, wherein the TLB is a fully 

another bit is needed to represent the page size; associative TLB. 
if at least another bit is needed to represent the page 15. The apparatus of claim 11, wherein the TLB is a 

size, repeatedly inspecting Successive bits of the set second level TLB. 
until a bit of the set indicates that an additional bit is 16. An apparatus comprising: 
not needed to represent the page size, and determin- 15 a translation lookaside buffer (TLB) including a plurality 
ing the page size based on the number of bits of entries, wherein each of the entries includes, 
inspected. a virtual address tag field; 

7. The method of claim 6, wherein the TLB is a fully a variable bit string to store an encoded page size; 
associative TLB. a 1-bit field to store information used in decoding the 

2O encoded page size; and 8. The method of claim 6, wherein the page size ranges 
from 4. Kb to 4 Tb a page frame number field; 

the TLB also including, 
9. The method of claim 6, wherein the TLB is a second a set of decoder-comparators, wherein one of the set of 

level TLB. decoder-comparators is associated with each of the 
10. The method of claim 6, wherein the page size is 25 entries, and wherein the decoder-comparators 

represented by a 4-bit string. decode the encoded page size stored in the variable 
bit string, and wherein the decoder-comparators 

11. An apparatus comprising: compare a part of the variable bit string with a part 
a translation lookaside buffer (TLB) to receive a virtual of a virtual page number. 

address, wherein the TLB includes a plurality of 30 17. The apparatus of claim 16, wherein the TLB is fully 
entries, wherein each of the plurality of entries includes associative. 
a minimum virtual page size bit string, a variable bit 18. The apparatus of claim 16, wherein the TLB is a 
string, and a 1-data field, the translation lookaside second level TLB. 
buffer including, 19. The apparatus of claim 16 further comprising: 
a first set of comparators to compare a first bit string of 35 a page mask register to provide a current page size: 

the virtual address to the minimum virtual page size a hit logic unit coupled to the TLB and the page mask 
bit string of each of the plurality of entries: register, the hit logic unit to determine whether the 

current page size is less than or equal to the decoded a second set of decoder-comparators to decode a page 
size encoded in the variable bit string and the data 
field of each entry, and to compare a portion of the 
variable bit string to a second bit string of the virtual 
address, wherein the portion is based on the page 
size. k . . . . 

page size. 
40 20. The apparatus of claim 16, wherein the hit logic 

generates a miss indication after determining a current page 
size is less than the decoded page size. 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 7,100,018 B2 Page 1 of 1 
APPLICATION NO. : 10/632681 
DATED : August 29, 2006 
INVENTOR(S) : Zhang et al. 

It is certified that error appears in the above-identified patent and that said Letters Patent is 
hereby corrected as shown below: 

On the face page, in field (73), in “Assignee', in column 1, line 2, after “CA insert 
-- 94043 --. 

On the face page, in “Assistant Examiner, in column 2, line 1, delete “Daniel Ko' and 
insert -- Daniel B. Ko --, therefor. 

On Sheet 2 of 8, in FIG. 2 (Above Block 216), line 1, delete “PHYISCAL" and 
insert -- PHYSICAL --, therefor. 

In column 1, line 3, below “INFORMATION' insert -- LIMITED COPYRIGHT 
WAIVER --. 

In column 5, line 1, delete “(Page Size) and insert -- (Page Size) --, therefor. 

In column 7, line 43, delete “decoder-comparitor and insert -- decoder-comparator -, 
therefor. 

In column 7, line 61, delete “FIG. and insert -- FIGS. --, therefor. 

In column 8, line 62, in Claim 3, delete “where and insert -- wherein --, therefor. 

In column 9, line 33, in Claim 11, delete" 1-data and insert -- data --, therefor. 

Signed and Sealed this 

Second Day of January, 2007 

WDJ 
JON. W. DUDAS 

Director of the United States Patent and Trademark Office 


