US 20180122037A1

a2y Patent Application Publication o) Pub. No.: US 2018/0122037 A1

a9y United States

Bobrovsky et al.

43) Pub. Date: May 3, 2018

(54) OFFLOADING FUSED KERNEL EXECUTION
TO A GRAPHICS PROCESSOR

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Konstantin S. Bobrovsky, Lozhok
(RU); Sergey N. Ermolaev, Berdsk
(RU); Serguei N. Dmitriev,
Novosibirsk (RU); Knud J.
Kirkegaard, Santa Clara, CA (US)

(21) Appl. No.: 15/339,003

(52) US.CL
CPC . GO6T 1/20 (2013.01); GO6T 1/60 (2013.01)

(57) ABSTRACT

Execution of a first kernel may be offloaded from a central
processing unit to a graphics processing unit using a ring
task buffer with a fixed number of task slots incurring full
overhead of runtime driver interaction. Execution of a
second kernel is offloaded using said ring task buffer, so at

(22) Filed: Oct. 31, 2016 least two kernels may be offloaded from a central processing
L . . unit to a graphics processing unit via said ring task buffer,
Publication Classification while incurring about the same offloading overhead as
(51) Int. CL would be incurred from offloading a single kernel, in some
GO6T 1720 (2006.01) embodiments. Multiple kernels are automatically grouped
GO6T 1/60 (2006.01) together by a compiler and linker.
HOST APP
THREADS
34
30

DATA FLOW
DIRECTION

LOAD

GPU THREADS

May 3,2018 Sheet 1 of 17 US 2018/0122037 Al

Patent Application Publication

SNOILYOOANI TANYIM ANVIN H3d
AYIHY3A0 JNIL ANC

A 0
/ \
4314Nd WAS INIYIHOD
a— 1 ADAN 139] A A
\ aNoa § | 3noa |
JVMAAVH 3701 savaunL m/ 1| |[¢ Na3 03x3] [T Nuay 03xd]
9 pg~ | TINYDI YOIN NNY
YIANA
| 6¢ |3ININON3 dn13s| 82
INILNNY] 1
AQYRY LINSTY | (2 TIN¥IN) QvO1440 (1 TINYI) QYO1440\—et
NOILYOIddY Y oo e O
"
|
1
|
"
| ASNE M/ H
1 1
1 |
“ 92 "
- 1 1
ANIL D e e e -

Patent Application Publication = May 3, 2018 Sheet 2 of 17 US 2018/0122037 A1

HOST APP
THREADS

34
TS YQK DATA FLOW

DIRECTION

32

LOAD

|

GPU THREADS

FIG. 2

Patent Application Publication = May 3, 2018 Sheet 3 of 17 US 2018/0122037 A1

40
HOST APPLICATION
MEGA KERNEL

OFFLOADING

4
Y
RECEIVE MINI KERNEL —J

\

a4
ASSOCIATE WITH A | J
MEGA KERNEL

4
START MEGA KERNEL —J

4
RESOLVE MINI KERNEL _J
IDENTIFICATION

FETCH PARAMETERS FOR
MINI KERNEL FROM
VARIABLE ARGUMENTS LIST

/

CREATE TASK OBJECT 52
AND WRITE PARAMETERS
DUEL KERNEL IDENTIFICATION
TO OBJECT

Y 54
BLOCKS WHILE TAIL ->
NEXT = =HEAD

Patent Application Publication

May 3, 2018 Sheet 4 of 17

11
PROCESSOR CORE(S) - 107][i1
GRAPHICS cAcHE || REGISTER wl |11
PROCESSOR(S) 104 FILE INSTRUCTION SET 1
o T s 109 :
:
\, PROCESSOR(S)
102
I PROCESSOR BUS |
11oJ
----------- MEMORY - 120

I I
I I

I I

| PROCESSOR <:>

: 112 I 116

EXTERNAL
GRAPHICS

MEMORY
CONTROLLER
HUB

)

U

DATA STORAGE
DEVICE K=
124
WIRELESS 1/0
TRANSCEVER K—”| CONTROLLER
126 HUB
130
FIRMWARE
INTERFACE K=
128
NETWORK
CONTROLLER
134

100

FIG. 4

INSTRUCTIONS - 121

DATA - 122

US 2018/0122037 Al

LEGACY 1/0
CONTROLLER
140

USB CONTROLLER(S)

— 142

! KEYBOARD /MOUSE
: 14 :

AUDIO CONTROLLER
146

May 3,2018 Sheet S of 17 US 2018/0122037 Al

Patent Application Publication

G Ol

80¢
_ HOSSIO0Ud SOIHAYHD
T2
HITIOHINOD
AVdSIa
a3 2T — DNIY LOINNOOHILINI
9z Eﬁm_wﬁq,_oo 902 - (S)LINN THOVD QIUYHS
(SILIND R0 | 7702
1
STIUINGY 0z OLUNN! 1, L, | [(SLINN
00 L 3HOVD 5 AHOVO
INIDY NILSAS W_wmmum_w_@wum VZ0Z 3409

€1¢
0/1

81¢
(Wvy@e
“93) AHOW3W
d31ddiging

(oom d0SS3004d

=
=
5 9 Ol —
= 0c€
= 30IA3Q
s AY1dSId
72 AN
=] L,
. PTE — JOVAIILNI AYOWIW
M .
N | |
8 | 1
| |
= -] 1 1
= | |
- | |
e | |
5 " |
= e || B — K = || = _
NIDNT | 1| _ 9I€ GIe cIe || _vO€E 20€
g 03000 | 1] INIT3dId NILSAS-8NS ANN3dId| 1] INIONG 43ITIOHLINOD
g 03aIA | 1| VIGIW VIGIN/ Qg ac || ud AY1dSId
= I I
- | |
£ | N 01¢
= e 4 3d9
£
E
2 “— o0¢
2 40SS300Ud SIIHdVYD
E
=
[~%

US 2018/0122037 Al
™~
&)
L

1
! I
! I
| |
& <——— Yb¥ - 140d VLVQ | AJONIN
o AMOW3IW, ! WOy
~ oL ! !
3 | 9Ty |
7 “ - ANM3dId VIGIW ! \
o | 9V 4l | | e
2 [| 4317147 37¥0S 39w aﬁ@%@ | —{uanvauLs
s | TEr LINN NOILND3X3 1| [INVAWOI
S AYOWIW'! NOILYWILS3 NOILOW “
NOYd ! Zey m
' | |30vI43INIAA/ 3SIONIA KAt} i
1 [—
" 0t ANM3dId Qg m
i ANIONT ONITdYS |
! I
_ I

ANIONT ONISSIO0Hd SIIHVHD

Patent Application Publication
S
#

May 3,2018 Sheet 8 of 17 US 2018/0122037 Al

Patent Application Publication

| NT9S
“mmu4m2<w
_

=
=
I'IJLO

NO/G !

—_—————— —

| NVGG
"mmu4¢z<m
_

009G |\

d40SS300dd
SOIHdVYD

8 Ol

Y085 — J40J SJIHAYHO

Y194 v¢94
SHAT1dAVS || sN3

¥09G J403-4NS

v0.S
S30¥NOS3IY d3YYHS

Y164 LAY
SHATdAVS|| sN3

Y0GG J403-4NS

9€q
ANI3dId
A413IN03O

YEG
N3 INOYA
03dIA

€EG 0€S
X4 J0A

€09
dINVIYLS
ANYINWOI

LEG — ANIONT VIAIN

L13ANNOOYHAINI
ONIY

)

¥0S

¢4

US 2018/0122037 Al

May 3,2018 Sheet 9 of 17

I —__L[__, _ _ :
“ |
19 “ | S
140d VI¥O | | §gog ! ,,. | G809 | @809 309
A ER N3 N3 IHOVD
— | i NOILONYLSNI
219 ! !
JHOVD VLva _,-J--.“
-~ L-- 1
1 |
_ I !
N TN809! .. | D809 | V809 09 | 209
R n3 ni
i i HOLYdSIa | Y3avHS
| i avIuHL | T3XId

Patent Application Publication

US 2018/0122037 Al

May 3, 2018 Sheet 10 of 17

Patent Application Publication

0GZ — Ylej 10100p —>
87/ — Ul [8]|eied —
gf/ - Snoaue||easIpy —
Y/ —10nuoy Moj{ —

77/ — 21807/ anOp —>

qXOAT0T0 =2poado
1 1

Ll
()
o
=
7]
17!
Ll
o
o
o
<t
~
%)
7]
Ll
Q
Q
<C

NOILONYLSNI JH0I SIIHAYHO

qQXXXX00T0 =apoado O._“ _U_n_
1 1
gQXOTT00 =poado
1 |
nxxxx_oﬂomoumvooao
qo0oX000 =9p0ado
.jﬂ O|1T(Z|ElV]|G]|9]L
ovL
340034 3403d0
¢¢l | 0¢L | 81L 114VA el TAVA
TOMS [00¥S | 1534 [TOHLNOD| X3ANI{3d03d0
0gL
NOILONYLSNI
1OVdINOD 11919
92/ vel | 2¢/ | 02/ | 81L | 91/ 1/ 1L
¢JYS | TOHS | 004S | 1S3d (3ZIS-03X3| TOYLNOD | 3d03d0
01L
NOILONHLSNI 119-8¢1
00/
S1VIAYOA4

s
> Yo !
2 : 0/8 : 628 ! 208
] IT Ol N mr%mw\n_:o)
S HIANIY _ - !
= \ ! £e8 _
Q 4 1 [LNO WVIMIS[!
2 618 N i
W_wam /18 G/8 €/8 e E[NER) m
e Ld3 sio | l3riows | lnima | < m@%m AdL |
S 8/8 73xId €1 | |¥3LSwy _] i
= 3HOW | = 1 I (/18 !
Z HIANIY , “ EQIJZ_%O i
2 _ —L ! QOYILNI
7 “ €18 IR
& IRVl lworvTiassal| |
= QVRIHL | 5 _
(g\] 7 I 1
o 5ca 258 T8 !
2 — | i, sinn ||| <eg _H3QVHS TIH J ™
= 868 NOILNIIX3 “ !
V1va FHOVO !
FINLXGL | 368 \Y3AvHS XAl
s ugtamysll] SLINN INIT3dId _ ¥]
= NOILNIX3 VIQIW (]) _
2 — €8 <l Ggo8 -]
3 _----.|.m.-----.ﬁ.ﬂ 1 \—05g \ /7 F¥3HOL34 X31H3A !
I [I et Uy v -
< | [uaTI08INOD| | INIDNT _ (e u m 7% L N
£ 1 L_AY1dSIA Qc 1| i mz_o_,_u viaan) \QNa-inoks ozaw)” ! =5 HOSSI00M
L2 0V8 iy oo _ \ L Y S - YINYIYLS SOIHdYYD
) ANIDNI - ANYIWNOD
) AV1dSIa
g
=
="

Patent Application Publication = May 3, 2018 Sheet 12 of 17 US 2018/0122037 A1l

GRAPHICS PROCESSOR COMMAND FORMAT
900

CLIENT | OPCODE [SUB-OPCODE| DATA | COMMAND SIZE |
902 | 904 905 206 208 :

FIG. 12A

GRAPHICS PROCESSORlc())OMMAND SEQUENCE
9

i PIPELINE FLUSH ~]
: 912 :

_________________ 1

i PIPELINE SELECT .
: 913 :

PIPELINE_CONTROL
EJS
/
RETURN BUFFER STATE
216
922~4p 920 a MEDiA " 224
\ Y
3D PIPELINE STATE MEDIA PIPELINE STATE
930 940
Y
3D PRIMITIVE MEDIA OBJECT
932 942
Y
EXECUTE EXECUTE
934 944

FIG. 12B

US 2018/0122037 Al

May 3, 2018 Sheet 13 of 17

Patent Application Publication

Y ¥
€01 080T ¢e01
(S)3409 3S0dUnd HOSSIN0Ud ¥0SS3004d
TVYINID SOIHdVYD
j f }
A
6201
8701 ¥IAIMA SOIHAYHD
SNOILONNA JAOW S JAOW TINYIN >
TANYIN SO 1
1 1201
= = HITIdWOD HIAVHS m
(19N3IdO/ AELOYIA "D'3) f—={yTT1dN00 = 9201 0501
IdY SDIHdVYD ¥IQVHS ¥IAIMA SOIHAYYD AJOW3N
—— JA0N ¥3ISN
0201
(SO) WALSAS HNILYYIO
A
9101
$103rd0 .
SOIHdYYD 2101

v101

SNOILINYISNI 378vV1N33X3

SNOILONYISNI H3IAYHS

0101

NOILYJINddY SOIHdVHO d€

000T W4LSAS ONISS3004d Vivd

A

€1 Ol

US 2018/0122037 Al

May 3, 2018 Sheet 14 of 17

Patent Application Publication

09T ~ —
0ETT
- UL e ALITIOV4 NOISIA
05T —
- riFATh GIIT
OV ~ (V1vd NDISIa NOIS3d 1Y 0TIl
WIISAHd — @m%%_%
| oo || g
NOILYININIS
GOl
ALMIOVA
NOILYDIHEYA

00TI
— INJNdOTIAIA JHOD dI

US 2018/0122037 Al

May 3, 2018 Sheet 15 of 17

Patent Application Publication

00¢I

7)
P ___—" K v K
06T | ! Gger 1| 092l || S9er Jm__mh_um
INGH | 1IN | HSVIY | [MIOWIN]+ iedad
Gvel || over || S€¢t || ogel || Geat
aviasia| |ozl/ sei| | 1S || tvn || asn
/1dS
TS TS
| ! | !
! 0¢el “ ! g1zl “
| Y0SSI0Yd ! | Y0SSIO0Yd !
034N L JOVNI
| _ “ |
e e e - e e e -
OTel G0eI
40SSF00Ud ($)40S$300Ud
SOIHd YYD NOILYOIddY
\S 2

Patent Application Publication = May 3, 2018 Sheet 16 of 17 US 2018/0122037 A1l

GRAPHICS PROCESSOR

iju)
7 N
VERTEX PROCESSOR
1305
FRAGMENT | [FRAGMENT FRAGMENT
PROCESSOR | | PROCESSOR PROCESSOR
1315A 1315C 1315N-1
FRAGMENT | [FRAGMENT FRAGMENT
PROCESSOR | | PROCESSOR PROCESSOR
13158 1315D 1316N
MMU : MMU :
1320A i 13208 i
]
CACHE o CACHE E
1395A ; 13958 :
INTERCONNECT || INTERCONNECT |
1330A ; 13308 :
\\ ___________________)j

Patent Application Publication

May 3, 2018 Sheet 17 of 17

US 2018/0122037 Al

GRAPHICS PROCESSOR

iju)
N
INTER-CORETASK-MANAGER
(E.G., THREAD DISPATCHER)
1405
' SHADER! I SHADER! | SHADER! ' SHADER!
1 CORE 11 CORE 11 CORE 1+ --- i CORE
| 1415A 11 1415C 1 JAISE 14150
I SHADER ! | SHADER'! | SHADER! SHADER]
| "CORE || CORE |1 CORE | | SHADER
14158 1 14150 ., 14I5F | 1415N !
TILING UNIT
14158
MMU : MMU :
1320A | 1320B i
|
CACHE o CACHE E
1325A i 13258 |
INTERCONNECT || INTERCONNECT |
1330A i 1330B |
e /)

US 2018/0122037 Al

OFFLOADING FUSED KERNEL EXECUTION
TO A GRAPHICS PROCESSOR

BACKGROUND

[0001] A compute kernel is an application function whose
execution is offloaded to a general-purpose graphics com-
puting unit (GPGPU) device available in the system. Inte-
grated graphics is an example of a GPGPU device and may
be a graphics processing unit integrated with a central
processing unit. Standard schemes of offloading kernel
execution to integrated graphics assume interaction between
the heterogeneous application and the underlying software
stack. The software stack has various runtimes and User-
Mode and Kernel-Mode drivers, used for offloading, that are
at the bottom of the stack.

[0002] Kernel offload traditionally incurs significant over-
head from the various software layers and protection ring
transitions of the stack. Therefore, offloading of kernels of
comparable or less execution time on a central processing
unit (CPU) cannot amortize the offload overhead.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Some embodiments are described with respect to
the following figures:

[0004] FIG.1 is a sequence diagram for one embodiment;
[0005] FIG. 2 is a ring buffer schematic for one embodi-
ment;

[0006] FIG. 3 is a flow chart for one embodiment;
[0007] FIG. 4 is a block diagram of a processing system

according to one embodiment;

[0008] FIG. 5 is a block diagram of a processor according
to one embodiment;

[0009] FIG. 6 is a block diagram of a graphics processor
according to one embodiment;

[0010] FIG. 7 is a block diagram of a graphics processing
engine according to one embodiment;

[0011] FIG. 8 is a block diagram of another embodiment
of a graphics processor;

[0012] FIG. 9 is a depiction of thread execution logic
according to one embodiment;

[0013] FIG. 10 is a block diagram of a graphics processor
instruction format according to some embodiments;

[0014] FIG. 11 is a block diagram of another embodiment
of a graphics processor;

[0015] FIG. 12A is a block diagram of a graphics proces-
sor command format according to some embodiments;
[0016] FIG. 12B is a block diagram illustrating a graphics
processor command sequence according to some embodi-
ments;

[0017] FIG. 13 is a depiction of an exemplary graphics
software architecture according to some embodiments;
[0018] FIG. 14 is a block diagram illustrating an IP core
development system according to some embodiments;
[0019] FIG. 15 is a block diagram showing an exemplary
system on chip integrated circuit according to some embodi-
ments;

[0020] FIG. 16 is a block diagram of a graphics processor
in a system on a chip according to one embodiment; and
[0021] FIG. 17 is a block diagram of another graphics
processor according to one embodiment.

May 3, 2018

DETAILED DESCRIPTION

[0022] This kernel offloading overhead may be avoided
without losing generality of offload features. Also small
kernel offloading can still be interleaved with CPU code
using the offload results. Multiple kernels are automatically
grouped together by a compiler and linker.

[0023] Hardware threads run continuously and use coher-
ent Shared Virtual Memory (SVM) buffers for direct com-
munication between the host application and the graphics
processing unit (GPU) hardware threads. “Coherent” means
that different agents (CPU, GPU) accessing the buffer imme-
diately see updates to the buffer (writes) made by other
agents. Application GPU kernels (“mini kernels”) are
merged into a single combined or “mega kernel” which runs
continuously by every GPU hardware thread.

[0024] The host launches the mega kernel once via the
high-overhead driver mechanism. Then the host submits
offload tasks directly to the coherent SVM buffer, bypassing
the driver. The mega kernel is basically a wrapper around a
switch control statement on different mini kernels. A switch
statement is as follows:

switch (kemnel_id) {
case 0
call kernel_0();
break;
case 17
call kernel_1();
break;

[0025] There is a dedicated GPU “master” thread effi-
ciently distinguished via its hardware identifier (e.g. 0)
which does all the communication with the host and dis-
patches tasks to other “worker” threads.

[0026] As shown in FIG. 1, driver interaction overhead 10
is present only when enqueuing the mega kernel on the first
mini kernel offload 12 from an application 14 to runtime 16.
Subsequent offloads of mini kernels 24, which are part of the
running mega kernel 26, bypass the driver 18 and simply
write to the coherent SVM communication buffer 22.

[0027] The mega kernel is setup at 28 during runtime. The
setup includes setting up threads, arguments, and internal
control structures. It also includes launching the mega kernel
on the GPGPU device.

[0028] The hardware blocks marked “DONE” indicate
each mini kernel finished execution. “Done” means signal-
ing kernel execution completion via writing to the coherent
SVM buffer by the CPU leader thread. “Get next” means
fetching next kernel for execution by the leader thread from
the ring buffer allocated in the coherent SVM buffer. In an
optimized case there are no control transfers out of the
hardware between the two “DONE” blocks, and the time
taken to switch between mini kernels is smaller. In FIG. 1,
the x-axis is time. The hardware is “busy” whenever it
executes a mini kernel (to avoid clutter “busy” is shown only
for the first kernel), as indicated in FIG. 1.

[0029] The unlabeled arrows in FIG. 1 indicate passing of
control, except unlabeled arrows to/from the coherent SVM
buffer. Those arrows, as well as the arrows C and D, from
hardware to the coherent SVM buffer and from the coherent
SVM buffer to runtime, indicate passing of data.

US 2018/0122037 Al

[0030] A key element of the communication is a ring task
buffer 22, shown in FIG. 2, with a fixed number of tasks slots
30 (to eliminate memory management). The system main-
tains two pointers—head 32 and tail 34—to tasks in the ring.
When head==tail there is no task to execute. The host inserts
a new task at the tail, moving the tail to the next ring
element. If the next element is head (tail—=next=head), this
means that no free task slots are available, and the host
blocks until GPU completes the current task and moves the
head to the next element. GPU leader thread waits until
head!=tail and dispatches the task pointed to head. After task
completion, it moves the head to the next element. Shaded
ring buffer slots in FIG. 2 depict tasks for kernel(s) execu-
tion which are not yet complete. Moving the head to the next
element “clears” the shading.

[0031] Pseudo-code for a mega kernel is as follows:

while (true) {
If (<current thread is the leader>) {

spin while (head==tail);

if (head is special “EXIT" task) {
write CMD__EXIT command for soldier threads
break; //exists the outermost loop

¥

copy parameters from head task to <parameter area>;

copy kernel_id from head tasks to <kernel id area>

reset number of busy threads to N

store-release memory barrier

write CMD__RUN command for soldier threads

command = CMD__RUN

else {
command = read command from the leader

if (command==CMD_RUN) {
kernel id = read <kernel_ id area>
switch (kernel__id) {
case 1: call kernell; break;
case 2: call kernel2; break;

if (current thread is the leader>) {
spin while busy thread count is greater than 1
write CMD_ WAIT command for soldier threads
store-release memory barrier
head=head—>next
// untame waiting soldier threads;
write O to busy thread count

else {

automatically decrement busy thread count
spin while busy thread count is greater than 0

else if (command == CMD__EXIT) {

}
vield ();

[0032] The mini kernels are now called from within the
mega kernel, unlike the usual case where they were called
from the host. This requires (a) construction of the mega
kernel and (b) special compilation of mini kernels so that
they read their parameters from a memory buffer instead of
using a traditional mechanism for passing parameters from
host to a GPU kernel. This may be done in runtime setup 28
in FIG. 1.

[0033] The set of mini kernels participating in the mega
kernel is decided at link time (after compile time but before
runtime) based on which kernels are marked as mini. A
linker replaces call targets within the wrapper function’s

May 3, 2018

switch statement with real mini kernels and embeds a map
from a mega kernel to its constituent mini kernels. This
information is used by the runtime when offloading a kernel
by name. There can be more than one mega kernel.

[0034] On the host side, the offload interface does not
change. It remains the same as for the “direct kernel” offload
model, where application program interface (API) call
_GFX_enqueue (mini_kernel_host_pointer, kernel_param-
eters) is used to offload a mini kernel as indicated at enqueue
29 in FIG. 1. Upon this call, the host application:

[0035] finds a mega kernel this mini kernel belongs to;
[0036] starts the mega kernel if it is not yet running;
[0037] resolves kernel identification for the mini kernel

(for example, simply the ordinal number of the mini
kernel within the mega kernel);

[0038] fetches parameters from the variable argument
list;
[0039] creates a lightweight task object and writes the

parameters and the kernel identification to it; and

[0040] blocks while tail—=next==head.
[0041] A “‘cooperative preemption” of the mega kernel
task ensures display responsiveness and lower power con-
sumption. The host starts an “interrupter” thread whose
purpose is to periodically enqueue a special ‘exit’ task to
make the mega kernel finishes execution and exits. With the
next mini kernel offload, the mega-kernel will restart. But in
between, the operating system driver has a chance to sched-
ule another GPU task, such as display update.
[0042] To minimize power consumption and keep the
GPU idle (not executing the mega-kernel wait-for-task spin
loop) when there are no GPU tasks, a mega kernel start/stop
application program interface (API) is exposed to the users
so that they can decide when to engage the continuous
offload scheme.
[0043] Offloading in this fashion makes it profitable (in
terms of performance) to offload much smaller kernels (1
ms. or less) than current schemes which suffer in perfor-
mance due to overhead with existing offload middleware.
[0044] Without this offloading technique, several existing
algorithms may require rewrite to create longer running
kernels that absorb the offload overhead, making beneficial
offload programming or algorithm changes to existing pro-
grams, such as JPEG compression and discrete cosine trans-
form (DCT).
[0045] The sequence 40, shown in FIG. 3, for host appli-
cation mega-kernel offloading may be implemented in soft-
ware, firmware and/or hardware. In software and firmware
embodiments it may be implemented by computer executed
instructions stored in one or more non-transitory computer
readable media such as magnetic, optical, or semiconductor
storage.
[0046] This offloading sequence 40 begins by receiving a
mini kernel as indicated in block 42. The mini kernel is
associated with a mega-kernel as indicated in block 44. The
mega-kernel is started in block 46. The mini kernel’s iden-
tification is resolved in block 48. Then in block 50 the
parameters for the mini kernel are fetched from a variable
arguments list.
[0047] Then a task object is created. The parameters and
the kernel identification are written to that object as indi-
cated in block 52. Then the host application blocks while the
tile—next==head as indicated in block 54.
[0048] FIG. 4 is a block diagram of a processing system
100, according to an embodiment. In various embodiments

US 2018/0122037 Al

the system 100 includes one or more processors 102 and one
or more graphics processors 108, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 102 or processor cores 107. In one embodiment, the
system 100 is a processing platform incorporated within a
system-on-a-chip (SoC) integrated circuit for use in mobile,
handheld, or embedded devices.

[0049] The processing system including a graphics pro-
cessing unit may be an integrated circuit. An integrated
circuit means a single integrated silicon die. The die contains
the graphics processing unit and parallel interconnected
geometry processing fixed-function units.

[0050] An embodiment of system 100 can include, or be
incorporated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 100 is a mobile
phone, smart phone, tablet computing device or mobile
Internet device. Data processing system 100 can also
include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 100 is
a television or set top box device having one or more
processors 102 and a graphical interface generated by one or
more graphics processors 108.

[0051] In some embodiments, the one or more processors
102 each include one or more processor cores 107 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 107 is configured to process a
specific instruction set 109. In some embodiments, instruc-
tion set 109 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 107 may each process a different
instruction set 109, which may include instructions to facili-
tate the emulation of other instruction sets. Processor core
107 may also include other processing devices, such a
Digital Signal Processor (DSP).

[0052] In some embodiments, the processor 102 includes
cache memory 104. Depending on the architecture, the
processor 102 can have a single internal cache or multiple
levels of internal cache. In some embodiments, the cache
memory is shared among various components of the pro-
cessor 102. In some embodiments, the processor 102 also
uses an external cache (e.g., a Level-3 (L3) cache or Last
Level Cache (LLC)) (not shown), which may be shared
among processor cores 107 using known cache coherency
techniques. A register file 106 is additionally included in
processor 102 which may include different types of registers
for storing different types of data (e.g., integer registers,
floating point registers, status registers, and an instruction
pointer register). Some registers may be general-purpose
registers, while other registers may be specific to the design
of the processor 102.

[0053] In some embodiments, processor 102 is coupled
with a processor bus 110 to transmit communication signals
such as address, data, or control signals between processor
102 and other components in system 100. In one embodi-
ment the system 100 uses an exemplary ‘hub’ system
architecture, including a memory controller hub 116 and an
Input Output (/O) controller hub 130. A memory controller

May 3, 2018

hub 116 facilitates communication between a memory
device and other components of system 100, while an 1/O
Controller Hub (ICH) 130 provides connections to 1/O
devices via a local I/O bus. In one embodiment, the logic of
the memory controller hub 116 is integrated within the
processor.

[0054] Memory device 120 can be a dynamic random
access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device
having suitable performance to serve as process memory. In
one embodiment the memory device 120 can operate as
system memory for the system 100, to store data 122 and
instructions 121 for use when the one or more processors
102 executes an application or process. Memory controller
hub 116 also couples with an optional external graphics
processor 112, which may communicate with the one or
more graphics processors 108 in processors 102 to perform
graphics and media operations.

[0055] In some embodiments, ICH 130 enables peripher-
als to connect to memory device 120 and processor 102 via
a high-speed 1/O bus. The I/O peripherals include, but are
not limited to, an audio controller 146, a firmware interface
128, a wireless transceiver 126 (e.g., Wi-Fi, Bluetooth), a
data storage device 124 (e.g., hard disk drive, flash memory,
etc.), and a legacy 1/O controller 140 for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to the system. One
or more Universal Serial Bus (USB) controllers 142 connect
input devices, such as keyboard and mouse 144 combina-
tions. A network controller 134 may also couple with ICH
130. In some embodiments, a high-performance network
controller (not shown) couples with processor bus 110. It
will be appreciated that the system 100 shown is exemplary
and not limiting, as other types of data processing systems
that are differently configured may also be used. For
example, the /O controller hub 130 may be integrated
within the one or more processor 102, or the memory
controller hub 116 and I/O controller hub 130 may be
integrated into a discreet external graphics processor, such
as the external graphics processor 112.

[0056] FIG. 5 is a block diagram of an embodiment of a
processor 200 having one or more processor cores 202A-
202N, an integrated memory controller 214, and an inte-
grated graphics processor 208. Those elements of FIG. 5
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 200 can include additional
cores up to and including additional core 202N represented
by the dashed lined boxes. Each of processor cores 202A-
202N includes one or more internal cache units 204 A-204N.
In some embodiments each processor core also has access to
one or more shared cached units 206.

[0057] The internal cache units 204A-204N and shared
cache units 206 represent a cache memory hierarchy within
the processor 200. The cache memory hierarchy may include
at least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (1.2), Level 3 (L3), Level 4 (L4),
or other levels of cache, where the highest level of cache
before external memory is classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 206 and 204A-204N.

US 2018/0122037 Al

[0058] In some embodiments, processor 200 may also
include a set of one or more bus controller units 216 and a
system agent core 210. The one or more bus controller units
216 manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 210 provides management
functionality for the various processor components. In some
embodiments, system agent core 210 includes one or more
integrated memory controllers 214 to manage access to
various external memory devices (not shown).

[0059] In some embodiments, one or more of the proces-
sor cores 202A-202N include support for simultaneous
multi-threading. In such embodiment, the system agent core
210 includes components for coordinating and operating
cores 202A-202N during multi-threaded processing. System
agent core 210 may additionally include a power control unit
(PCU), which includes logic and components to regulate the
power state of processor cores 202A-202N and graphics
processor 208.

[0060] In some embodiments, processor 200 additionally
includes graphics processor 208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 208 couples with the set of shared cache units 206,
and the system agent core 210, including the one or more
integrated memory controllers 214. In some embodiments, a
display controller 211 is coupled with the graphics processor
208 to drive graphics processor output to one or more
coupled displays. In some embodiments, display controller
211 may be a separate module coupled with the graphics
processor via at least one interconnect, or may be integrated
within the graphics processor 208 or system agent core 210.
[0061] In some embodiments, a ring based interconnect
unit 212 is used to couple the internal components of the
processor 200. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known in the art. In some embodiments, graph-
ics processor 208 couples with the ring interconnect 212 via
an I/O link 213.

[0062] The exemplary I/O link 213 represents at least one
of multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 218, such as an eDRAM
module. In some embodiments, each of the processor cores
202A-202N and graphics processor 208 use embedded
memory modules 218 as a shared Last Level Cache.
[0063] Insomeembodiments, processor cores 202A-202N
are homogenous cores executing the same instruction set
architecture. In another embodiment, processor cores 202A-
202N are heterogeneous in terms of instruction set archi-
tecture (ISA), where one or more of processor cores 202A-
202N execute a first instruction set, while at least one of the
other cores executes a subset of the first instruction set or a
different instruction set. In one embodiment processor cores
202A-202N are heterogeneous in terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. Additionally, processor
200 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, in addi-
tion to other components.

[0064] FIG. 6 is a block diagram of a graphics processor
300, which may be a discrete graphics processing unit, or

May 3, 2018

may be a graphics processor integrated with a plurality of
processing cores. In some embodiments, the graphics pro-
cessor communicates via a memory mapped /O interface to
registers on the graphics processor and with commands
placed into the processor memory. In some embodiments,
graphics processor 300 includes a memory interface 314 to
access memory. Memory interface 314 can be an interface to
local memory, one or more internal caches, one or more
shared external caches, and/or to system memory.

[0065] Insome embodiments, graphics processor 300 also
includes a display controller 302 to drive display output data
to a display device 320. Display controller 302 includes
hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface
elements. In some embodiments, graphics processor 300
includes a video codec engine 306 to encode, decode, or
transcode media to, from, or between one or more media
encoding formats, including, but not limited to Moving
Picture Experts Group (MPEG) formats such as MPEG-2,
Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/VC-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

[0066] In some embodiments, graphics processor 300
includes a block image transfer (BLIT) engine 304 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in
one embodiment, 2D graphics operations are performed
using one or more components of graphics processing
engine (GPE) 310. In some embodiments, GPE 310 is a
compute engine for performing graphics operations, includ-
ing three-dimensional (3D) graphics operations and media
operations.

[0067] In some embodiments, GPE 310 includes a 3D
pipeline 312 for performing 3D operations, such as render-
ing three-dimensional images and scenes using processing
functions that act upon 3D primitive shapes (e.g., rectangle,
triangle, etc.). The 3D pipeline 312 includes programmable
and fixed function elements that perform various tasks
within the element and/or spawn execution threads to a
3D/Media sub-system 315. While 3D pipeline 312 can be
used to perform media operations, an embodiment of GPE
310 also includes a media pipeline 316 that is specifically
used to perform media operations, such as video post-
processing and image enhancement.

[0068] Insomeembodiments, media pipeline 316 includes
fixed function or programmable logic units to perform one
or more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
eration in place of, or on behalf of video codec engine 306.
In some embodiments, media pipeline 316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 315. The spawned threads
perform computations for the media operations on one or
more graphics execution units included in 3D/Media sub-
system 315.

[0069] In some embodiments, 3D/Media subsystem 315
includes logic for executing threads spawned by 3D pipeline
312 and media pipeline 316. In one embodiment, the pipe-
lines send thread execution requests to 3D/Media subsystem
315, which includes thread dispatch logic for arbitrating and
dispatching the various requests to available thread execu-
tion resources. The execution resources include an array of

US 2018/0122037 Al

graphics execution units to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 315
includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes
shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

[0070] FIG. 7 is a block diagram of a graphics processing
engine 410 of a graphics processor in accordance with some
embodiments. In one embodiment, the graphics processing
engine (GPE) 410 is a version of the GPE 310 shown in FIG.
7. Elements of FIG. 7 having the same reference numbers (or
names) as the elements of any other figure herein can operate
or function in any manner similar to that described else-
where herein, but are not limited to such. For example, the
3D pipeline 312 and media pipeline 316 of FIG. 6 are
illustrated. The media pipeline 316 is optional in some
embodiments of the GPE 410 and may not be explicitly
included within the GPE 410. For example and in at least
one embodiment, a separate media and/or image processor
is coupled to the GPE 410.

[0071] In some embodiments, GPE 410 couples with or
includes a command streamer 403, which provides a com-
mand stream to the 3D pipeline 312 and/or media pipelines
316. In some embodiments, command streamer 403 is
coupled with memory, which can be system memory, or one
or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 403
receives commands from the memory and sends the com-
mands to 3D pipeline 312 and/or media pipeline 316. The
commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 312 and media pipeline
316. In one embodiment, the ring buffer can additionally
include batch command buffers storing batches of multiple
commands. The commands for the 3D pipeline 312 can also
include references to data stored in memory, such as but not
limited to vertex and geometry data for the 3D pipeline 312
and/or image data and memory objects for the media pipe-
line 316. The 3D pipeline 312 and media pipeline 316
process the commands and data by performing operations
via logic within the respective pipelines or by dispatching
one or more execution threads to a graphics core array 414.

[0072] In various embodiments the 3D pipeline 312 can
execute one or more shader programs, such as vertex shad-
ers, geometry shaders, pixel shaders, fragment shaders,
compute shaders, or other shader programs, by processing
the instructions and dispatching execution threads to the
graphics core array 414. The graphics core array 414 pro-
vides a unified block of execution resources. Multi-purpose
execution logic (e.g., execution units) within the graphic
core array 414 includes support for various 3D API shader
languages and can execute multiple simultaneous execution
threads associated with multiple shaders.

[0073] In some embodiments the graphics core array 414
also includes execution logic to perform media functions,
such as video and/or image processing. In one embodiment,
the execution units additionally include general-purpose
logic that is programmable to perform parallel general
purpose computational operations, in addition to graphics
processing operations. The general purpose logic can per-
form processing operations in parallel or in conjunction with
general purpose logic within the processor core(s) 107 of
FIG. 4 or core 202A-202N as in FIG. 5.

May 3, 2018

[0074] Output data generated by threads executing on the
graphics core array 414 can output data to memory in a
unified return buffer (URB) 418. The URB 418 can store
data for multiple threads. In some embodiments the URB
418 may be used to send data between different threads
executing on the graphics core array 414. In some embodi-
ments the URB 418 may additionally be used for synchro-
nization between threads on the graphics core array and
fixed function logic within the shared function logic 420.
[0075] In some embodiments, graphics core array 414 is
scalable, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 410. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

[0076] The graphics core array 414 couples with shared
function logic 420 that includes multiple resources that are
shared between the graphics cores in the graphics core array.
The shared functions within the shared function logic 420
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 414.

[0077] In various embodiments, shared function logic 420
includes but is not limited to sampler 421, math 422, and
inter-thread communication (ITC) 423 logic. Additionally,
some embodiments implement one or more cache(s) 425
within the shared function logic 420. A shared function is
implemented where the demand for a given specialized
function is insufficient for inclusion within the graphics core
array 414. Instead a single instantiation of that specialized
function is implemented as a stand-alone entity in the shared
function logic 420 and shared among the execution
resources within the graphics core array 414. The precise set
of functions that are shared between the graphics core array
414 and included within the graphics core array 414 varies
between embodiments.

[0078] FIG. 8 is a block diagram of another embodiment
of a graphics processor 500. Elements of FIG. 8 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0079] In some embodiments, graphics processor 500
includes a ring interconnect 502, a pipeline front-end 504, a
media engine 537, and graphics cores 580A-580N. In some
embodiments, ring interconnect 502 couples the graphics
processor to other processing units, including other graphics
processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor is one of many
processors integrated within a multi-core processing system.
[0080] In some embodiments, graphics processor 500
receives batches of commands via ring interconnect 502.
The incoming commands are interpreted by a command
streamer 503 in the pipeline front-end 504. In some embodi-
ments, graphics processor 500 includes scalable execution
logic to perform 3D geometry processing and media pro-
cessing via the graphics core(s) 580A-580N. For 3D geom-
etry processing commands, command streamer 503 supplies
commands to geometry pipeline 536. For at least some
media processing commands, command streamer 503 sup-
plies the commands to a video front end 534, which couples
with a media engine 537. In some embodiments, media
engine 537 includes a Video Quality Engine (VQE) 530 for
video and image post-processing and a multi-format encode/

US 2018/0122037 Al

decode (MFX) 533 engine to provide hardware-accelerated
media data encode and decode. In some embodiments,
geometry pipeline 536 and media engine 537 each generate
execution threads for the thread execution resources pro-
vided by at least one graphics core 580A.

[0081] In some embodiments, graphics processor 500
includes scalable thread execution resources featuring
modular cores 580A-580N (sometimes referred to as core
slices), each having multiple sub-cores 550A-550N, 560A-
560N (sometimes referred to as core sub-slices). In some
embodiments, graphics processor 500 can have any number
of graphics cores 580A through 580N. In some embodi-
ments, graphics processor 500 includes a graphics core
580A having at least a first sub-core 550A and a second
sub-core 560A. In other embodiments, the graphics proces-
sor is a low power processor with a single sub-core (e.g.,
550A). In some embodiments, graphics processor 500
includes multiple graphics cores 580A-580N, each including
a set of first sub-cores 550A-550N and a set of second
sub-cores 560A-560N. Each sub-core in the set of first
sub-cores 550A-550N includes at least a first set of execu-
tion units 552A-552N and media/texture samplers 554A-
554N. Each sub-core in the set of second sub-cores 560A-
560N includes at least a second set of execution units
562A-562N and samplers 564A-564N. In some embodi-
ments, each sub-core 550A-550N, 560A-560N shares a set
of shared resources 570A-570N. In some embodiments, the
shared resources include shared cache memory and pixel
operation logic. Other shared resources may also be
included in the various embodiments of the graphics pro-
Cessor.

[0082] FIG. 9 illustrates thread execution logic 600
including an array of processing elements employed in some
embodiments of'a GPE. Elements of FIG. 9 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such.

[0083] In some embodiments, thread execution logic 600
includes a shader processor 602, a thread dispatcher 604,
instruction cache 606, a scalable execution unit array includ-
ing a plurality of execution units 608 A-608N, a sampler 610,
a data cache 612, and a data port 614. In one embodiment the
scalable execution unit array can dynamically scale by
enabling or disabling one or more execution units (e.g., any
of execution unit 608A, 608B, 608C, 608D, through 608N-1
and 608N) based on the computational requirements of a
workload. In one embodiment the included components are
interconnected via an interconnect fabric that links to each
of the components. In some embodiments, thread execution
logic 600 includes one or more connections to memory, such
as system memory or cache memory, through one or more
of instruction cache 606, data port 614, sampler 610, and
execution units 608A-608N. In some embodiments, each
execution unit (e.g. 608A) is a stand-alone programmable
general purpose computational unit that is capable of execut-
ing multiple simultaneous hardware threads while process-
ing multiple data elements in parallel for each thread. In
various embodiments, the array of execution units 608A-
608N is scalable to include any number individual execution
units.

[0084] In some embodiments, the execution units 608A-
608N are primarily used to execute shader programs. A
shader processor 602 can process the various shader pro-

May 3, 2018

grams and dispatch execution threads associated with the
shader programs via a thread dispatcher 604. In one embodi-
ment the thread dispatcher includes logic to arbitrate thread
initiation requests from the graphics and media pipelines and
instantiate the requested threads on one or more execution
unit in the execution units 608A-608N. For example, the
geometry pipeline (e.g., 536 of FIG. 8) can dispatch vertex,
tessellation, or geometry shaders to the thread execution
logic 600 (FIG. 9) for processing. In some embodiments,
thread dispatcher 604 can also process runtime thread
spawning requests from the executing shader programs.

[0085] In some embodiments, the execution units 608A-
608N support an instruction set that includes native support
for many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 608A-608N is capable of
multi-issue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an efficient execu-
tion environment in the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution is multi-issue per clock
to pipelines capable of integer, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 608A-608N causes a waiting thread to sleep
until the requested data has been returned. While the waiting
thread is sleeping, hardware resources may be devoted to
processing other threads. For example, during a delay asso-
ciated with a vertex shader operation, an execution unit can
perform operations for a pixel shader, fragment shader, or
another type of shader program, including a different vertex
shader.

[0086] Each execution unit in execution units 608 A-608N
operates on arrays of data elements. The number of data
elements is the “execution size,” or the number of channels
for the instruction. An execution channel is a logical unit of
execution for data element access, masking, and flow control
within instructions. The number of channels may be inde-
pendent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units
608A-608N support integer and floating-point data types.

[0087] The execution unit instruction set includes SIMD
instructions. The various data elements can be stored as a
packed data type in a register and the execution unit will
process the various elements based on the data size of the
elements. For example, when operating on a 256-bit wide
vector, the 256 bits of the vector are stored in a register and
the execution unit operates on the vector as four separate
64-bit packed data elements (Quad-Word (QW) size data
elements), eight separate 32-bit packed data elements
(Double Word (DW) size data elements), sixteen separate
16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data
elements). However, different vector widths and register
sizes are possible.

US 2018/0122037 Al

[0088] One or more internal instruction caches (e.g., 606)
are included in the thread execution logic 600 to cache
thread instructions for the execution units. In some embodi-
ments, one or more data caches (e.g., 612) are included to
cache thread data during thread execution. In some embodi-
ments, a sampler 610 is included to provide texture sampling
for 3D operations and media sampling for media operations.
In some embodiments, sampler 610 includes specialized
texture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

[0089] During execution, the graphics and media pipelines
send thread initiation requests to thread execution logic 600
via thread spawning and dispatch logic. Once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within the shader processor 602
is invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In some embodiments, a
pixel shader or fragment shader calculates the values of the
various vertex attributes that are to be interpolated across the
rasterized object. In some embodiments, pixel processor
logic within the shader processor 602 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. To execute the shader program,
the shader processor 602 dispatches threads to an execution
unit (e.g., 608A) via thread dispatcher 604. In some embodi-
ments, pixel shader 602 uses texture sampling logic in the
sampler 610 to access texture data in texture maps stored in
memory. Arithmetic operations on the texture data and the
input geometry data compute pixel color data for each
geometric fragment, or discards one or more pixels from
further processing.

[0090] In some embodiments, the data port 614 provides
a memory access mechanism for the thread execution logic
600 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 614 includes or couples to one or more cache
memories (e.g., data cache 612) to cache data for memory
access via the data port.

[0091] FIG. 10 is a block diagram illustrating a graphics
processor instruction formats 700 according to some
embodiments. In one or more embodiment, the graphics
processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include
components that are optional or that are only included in a
sub-set of the instructions. In some embodiments, instruc-
tion format 700 described and illustrated are macro-instruc-
tions, in that they are instructions supplied to the execution
unit, as opposed to micro-operations resulting from instruc-
tion decode once the instruction is processed.

[0092] In some embodiments, the graphics processor
execution units natively support instructions in a 128-bit
instruction format 710. A 64-bit compacted instruction for-
mat 730 is available for some instructions based on the
selected instruction, instruction options, and number of
operands. The native 128-bit instruction format 710 pro-
vides access to all instruction options, while some options
and operations are restricted in the 64-bit instruction format
730. The native instructions available in the 64-bit instruc-
tion format 730 vary by embodiment. In some embodiments,

May 3, 2018

the instruction is compacted in part using a set of index
values in an index field 713. The execution unit hardware
references a set of compaction tables based on the index
values and uses the compaction table outputs to reconstruct
a native instruction in the 128-bit instruction format 710.
[0093] For each format, instruction opcode 712 defines the
operation that the execution unit is to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 714 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit instruction format 710 an exec-size field 716 limits
the number of data channels that will be executed in parallel.
In some embodiments, exec-size field 716 is not available
for use in the 64-bit compact instruction format 730.
[0094] Some execution unit instructions have up to three
operands including two source operands, src0 720, srcl 722,
and one destination 718. In some embodiments, the execu-
tion units support dual destination instructions, where one of
the destinations is implied. Data manipulation instructions
can have a third source operand (e.g., SRC2 724), where the
instruction opcode 712 determines the number of source
operands. An instruction’s last source operand can be an
immediate (e.g., hard-coded) value passed with the instruc-
tion.

[0095] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode field 726 speci-
fying, for example, whether direct register addressing mode
or indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one
or more operands is directly provided by bits in the instruc-
tion.

[0096] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode field 726, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode is used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the instruction operands. For example,
when in a first mode, the instruction may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

[0097] In one embodiment, the address mode portion of
the access/address mode field 726 determines whether the
instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode is used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field in the instruction.

[0098] In some embodiments instructions are grouped
based on opcode 712 bit-fields to simplify Opcode decode
740. For an 8-bit opcode, bits 4, 5, and 6 allow the execution
unit to determine the type of opcode. The precise opcode

US 2018/0122037 Al

grouping shown is merely an example. In some embodi-
ments, a move and logic opcode group 742 includes data
movement and logic instructions (e.g., move (mov), com-
pare (cmp)). In some embodiments, move and logic group
742 shares the five most significant bits (MSB), where move
(mov) instructions are in the form of 0000xxxxb and logic
instructions are in the form of 0001xxxxb. A flow control
instruction group 744 (e.g., call, jump (jmp)) includes
instructions in the form of 0010xxxxb (e.g., 0x20). A
miscellaneous instruction group 746 includes a mix of
instructions, including synchronization instructions (e.g.,
wait, send) in the form of 0011xxxxb (e.g., 0x30). A parallel
math instruction group 748 includes component-wise arith-
metic instructions (e.g., add, multiply (mul)) in the form of
0100xxxxb (e.g., 0x40). The parallel math group 748 per-
forms the arithmetic operations in parallel across data chan-
nels. The vector math group 750 includes arithmetic instruc-
tions (e.g., dp4) in the form of 0101xxxxb (e.g., 0x50). The
vector math group performs arithmetic such as dot product
calculations on vector operands.

[0099] FIG. 11 is a block diagram of another embodiment
of'a graphics processor 800. Elements of FIG. 11 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0100] In some embodiments, graphics processor 800
includes a graphics pipeline 820, a media pipeline 830, a
display engine 840, thread execution logic 850, and a render
output pipeline 870. In some embodiments, graphics pro-
cessor 800 is a graphics processor within a multi-core
processing system that includes one or more general purpose
processing cores. The graphics processor is controlled by
register writes to one or more control registers (not shown)
or via commands issued to graphics processor 800 via a ring
interconnect 802. In some embodiments, ring interconnect
802 couples graphics processor 800 to other processing
components, such as other graphics processors or general-
purpose processors. Commands from ring interconnect 802
are interpreted by a command streamer 803, which supplies
instructions to individual components of graphics pipeline
820 or media pipeline 830.

[0101] In some embodiments, command streamer 803
directs the operation of a vertex fetcher 805 that reads vertex
data from memory and executes vertex-processing com-
mands provided by command streamer 803. In some
embodiments, vertex fetcher 805 provides vertex data to a
vertex shader 807, which performs coordinate space trans-
formation and lighting operations to each vertex. In some
embodiments, vertex fetcher 805 and vertex shader 807
execute vertex-processing instructions by dispatching
execution threads to execution units 852A-852B via a thread
dispatcher 831.

[0102] Insome embodiments, execution units 852A-852B
are an array of vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 852A-852B have an attached L1
cache 851 that is specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that is partitioned to
contain data and instructions in different partitions.

[0103] In some embodiments, graphics pipeline 820
includes tessellation components to perform hardware-ac-
celerated tessellation of 3D objects. In some embodiments,

May 3, 2018

a programmable hull shader 811 configures the tessellation
operations. A programmable domain shader 817 provides
back-end evaluation of tessellation output. A tessellator 813
operates at the direction of hull shader 811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that is provided
as input to graphics pipeline 820. In some embodiments, if
tessellation is not used, tessellation components (e.g., hull
shader 811, tessellator 813, and domain shader 817) can be
bypassed.

[0104] In some embodiments, complete geometric objects
can be processed by a geometry shader 819 via one or more
threads dispatched to execution units 852A-852B, or can
proceed directly to the clipper 829. In some embodiments,
the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 819 receives input from the vertex
shader 807. In some embodiments, geometry shader 819 is
programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.
[0105] Before rasterization, a clipper 829 processes vertex
data. The clipper 829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 873 in the render output pipeline 870 dispatches
pixel shaders to convert the geometric objects into their per
pixel representations. In some embodiments, pixel shader
logic is included in thread execution logic 850. In some
embodiments, an application can bypass the rasterizer and
depth test component 873 and access un-rasterized vertex
data via a stream out unit 823.

[0106] The graphics processor 800 has an interconnect
bus, interconnect fabric, or some other interconnect mecha-
nism that allows data and message passing amongst the
major components of the processor. In some embodiments,
execution units 852A-852B and associated cache(s) 851,
texture and media sampler 854, and texture/sampler cache
858 interconnect via a data port 856 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
854, caches 851, 858 and execution units 852A-852B each
have separate memory access paths.

[0107] In some embodiments, render output pipeline 870
contains a rasterizer and depth test component 873 that
converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
878 and depth cache 879 are also available in some embodi-
ments. A pixel operations component 877 performs pixel-
based operations on the data, though in some instances, pixel
operations associated with 2D operations (e.g. bit block
image transfers with blending) are performed by the 2D
engine 841, or substituted at display time by the display
controller 843 using overlay display planes. In some
embodiments, a shared L3 cache 875 is available to all
graphics components, allowing the sharing of data without
the use of main system memory.

[0108] In some embodiments, graphics processor media
pipeline 830 includes a media engine 837 and a video front
end 834. In some embodiments, video front end 834 receives
pipeline commands from the command streamer 803. In
some embodiments, media pipeline 830 includes a separate

US 2018/0122037 Al

command streamer. In some embodiments, video front-end
834 processes media commands before sending the com-
mand to the media engine 837. In some embodiments, media
engine 837 includes thread spawning functionality to spawn
threads for dispatch to thread execution logic 850 via thread
dispatcher 831.

[0109] In some embodiments, graphics processor 800
includes a display engine 840. In some embodiments, dis-
play engine 840 is external to processor 800 and couples
with the graphics processor via the ring interconnect 802, or
some other interconnect bus or fabric. In some embodi-
ments, display engine 840 includes a 2D engine 841 and a
display controller 843. In some embodiments, display
engine 840 contains special purpose logic capable of oper-
ating independently of the 3D pipeline. In some embodi-
ments, display controller 843 couples with a display device
(not shown), which may be a system integrated display
device, as in a laptop computer, or an external display device
attached via a display device connector.

[0110] In some embodiments, graphics pipeline 820 and
media pipeline 830 are configurable to perform operations
based on multiple graphics and media programming inter-
faces and are not specific to any one application program-
ming interface (API). In some embodiments, driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com-
mands that can be processed by the graphics processor. In
some embodiments, support is provided for the Open Graph-
ics Library (OpenGL), Open Computing Language
(OpenCL), and/or Vulkan graphics and compute API, all
from the Khronos Group. In some embodiments, support
may also be provided for the Direct3D library from the
Microsoft Corporation. In some embodiments, a combina-
tion of these libraries may be supported. Support may also
be provided for the Open Source Computer Vision Library
(OpenCV). A future API with a compatible 3D pipeline
would also be supported if a mapping can be made from the
pipeline of the future API to the pipeline of the graphics
processor.

[0111] FIG. 12Ais a block diagram illustrating a graphics
processor command format 900 according to some embodi-
ments. FIG. 12B is a block diagram illustrating a graphics
processor command sequence 910 according to an embodi-
ment. The solid lined boxes in FIG. 12A illustrate the
components that are generally included in a graphics com-
mand while the dashed lines include components that are
optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 900 of FIG. 12A includes data fields to identify a
target client 902 of the command, a command operation
code (opcode) 904, and the relevant data 906 for the
command. A sub-opcode 905 and a command size 908 are
also included in some commands.

[0112] In some embodiments, client 902 specifies the
client unit of the graphics device that processes the com-
mand data. In some embodiments, a graphics processor
command parser examines the client field of each command
to condition the further processing of the command and
route the command data to the appropriate client unit. In
some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a
3D unit, and a media unit. Each client unit has a correspond-
ing processing pipeline that processes the commands. Once
the command is received by the client unit, the client unit

May 3, 2018

reads the opcode 904 and, if present, sub-opcode 905 to
determine the operation to perform. The client unit performs
the command using information in data field 906. For some
commands an explicit command size 908 is expected to
specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least
some of the commands based on the command opcode. In
some embodiments commands are aligned via multiples of
a double word.

[0113] The flow diagram in FIG. 12B shows an exemplary
graphics processor command sequence 910. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

[0114] In some embodiments, the graphics processor com-
mand sequence 910 may begin with a pipeline flush com-
mand 912 to cause any active graphics pipeline to complete
the currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 922 and the media pipeline
924 do not operate concurrently. The pipeline flush is
performed to cause the active graphics pipeline to complete
any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 912 can be used for pipeline
synchronization or before placing the graphics processor
into a low power state.

[0115] In some embodiments, a pipeline select command
913 is used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 913 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command 912 is required immediately before a pipeline
switch via the pipeline select command 913.

[0116] In some embodiments, a pipeline control command
914 configures a graphics pipeline for operation and is used
to program the 3D pipeline 922 and the media pipeline 924.
In some embodiments, pipeline control command 914 con-
figures the pipeline state for the active pipeline. In one
embodiment, the pipeline control command 914 is used for
pipeline synchronization and to clear data from one or more
cache memories within the active pipeline before processing
a batch of commands.

[0117] In some embodiments, commands for the return
buffer state 916 are used to configure a set of return buffers
for the respective pipelines to write data. Some pipeline
operations require the allocation, selection, or configuration
of'one or more return buffers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communi-

US 2018/0122037 Al

cation. In some embodiments, configuring the return buffer
state 916 includes selecting the size and number of return
buffers to use for a set of pipeline operations.

[0118] The remaining commands in the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 920, the command
sequence is tailored to the 3D pipeline 922 beginning with
the 3D pipeline state 930 or the media pipeline 924 begin-
ning at the media pipeline state 940.

[0119] The commands to configure the 3D pipeline state
930 include 3D state setting commands for vertex buffer
state, vertex element state, constant color state, depth buffer
state, and other state variables that are to be configured
before 3D primitive commands are processed. The values of
these commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 930 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used.

[0120] Insome embodiments, 3D primitive 932 command
is used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 932
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 932
command is used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics
processor execution units.

[0121] In some embodiments, 3D pipeline 922 is triggered
via an execute 934 command or event. In some embodi-
ments, a register write triggers command execution. In some
embodiments execution is triggered via a ‘go’ or ‘kick’
command in the command sequence. In one embodiment,
command execution is triggered using a pipeline synchro-
nization command to flush the command sequence through
the graphics pipeline. The 3D pipeline will perform geom-
etry processing for the 3D primitives. Once operations are
complete, the resulting geometric objects are rasterized and
the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0122] Insome embodiments, the graphics processor com-
mand sequence 910 follows the media pipeline 924 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

[0123] In some embodiments, media pipeline 924 is con-
figured in a similar manner as the 3D pipeline 922. A set of
commands to configure the media pipeline state 940 are

May 3, 2018

dispatched or placed into a command queue before the
media object commands 942. In some embodiments, com-
mands for the media pipeline state 940 include data to
configure the media pipeline elements that will be used to
process the media objects. This includes data to configure
the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 940 also
support the use of one or more pointers to “indirect” state
elements that contain a batch of state settings.

[0124] In some embodiments, media object commands
942 supply pointers to media objects for processing by the
media pipeline. The media objects include memory buffers
containing video data to be processed. In some embodi-
ments, all media pipeline states must be valid before issuing
a media object command 942. Once the pipeline state is
configured and media object commands 942 are queued, the
media pipeline 924 is triggered via an execute command 944
or an equivalent execute event (e.g., register write). Output
from media pipeline 924 may then be post processed by
operations provided by the 3D pipeline 922 or the media
pipeline 924. In some embodiments, GPGPU operations are
configured and executed in a similar manner as media
operations.

[0125] FIG. 13 illustrates exemplary graphics software
architecture for a data processing system 1000 according to
some embodiments. In some embodiments, software archi-
tecture includes a 3D graphics application 1010, an operat-
ing system 1020, and at least one processor 1030. In some
embodiments, processor 1030 includes a graphics processor
1032 and one or more general-purpose processor core(s)
1034. The graphics application 1010 and operating system
1020 each execute in the system memory 1050 of the data
processing system.

[0126] In some embodiments, 3D graphics application
1010 contains one or more shader programs including
shader instructions 1012. The shader language instructions
may be in a high-level shader language, such as the High
Level Shader Language (HLSL) or the OpenGL Shader
Language (GLSL). The application also includes executable
instructions 1014 in a machine language suitable for execu-
tion by the general-purpose processor core 1034. The appli-
cation also includes graphics objects 1016 defined by vertex
data.

[0127] In some embodiments, operating system 1020 is a
Microsoft® Windows® operating system from the Micro-
soft Corporation, a proprietary UNIX-like operating system,
or an open source UNIX-like operating system using a
variant of the Linux kernel. The operating system 1020 can
support a graphics API 1022 such as the Direct3D API, the
OpenGL API, or the Vulkan API. When the Direct3D API is
in use, the operating system 1020 uses a front-end shader
compiler 1024 to compile any shader instructions 1012 in
HLSL into a lower-level shader language. The compilation
may be a just-in-time (JIT) compilation or the application
can perform shader pre-compilation. In some embodiments,
high-level shaders are compiled into low-level shaders dur-
ing the compilation of the 3D graphics application 1010. In
some embodiments, the shader instructions 1012 are pro-
vided in an intermediate form, such as a version of the
Standard Portable Intermediate Representation (SPIR) used
by the Vulkan API.

[0128] In some embodiments, user mode graphics driver
1026 contains a back-end shader compiler 1027 to convert

US 2018/0122037 Al

the shader instructions 1012 into a hardware specific repre-
sentation. When the OpenGL API is in use, shader instruc-
tions 1012 in the GLSL high-level language are passed to a
user mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operat-
ing system kernel mode functions 1028 to communicate
with a kernel mode graphics driver 1029. In some embodi-
ments, kernel mode graphics driver 1029 communicates
with graphics processor 1032 to dispatch commands and
instructions.

[0129] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.

[0130] FIG. 14 is a block diagram illustrating an IP core
development system 1100 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a software simulation 1110
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 1110 can be used to
design, test, and verify the behavior of the IP core using a
simulation model 1112. The simulation model 1112 may
include functional, behavioral, and/or timing simulations. A
register transfer level (RTL) design 1115 can then be created
or synthesized from the simulation model 1112. The RTL
design 1115 is an abstraction of the behavior of the inte-
grated circuit that models the flow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 1115, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

[0131] The RTL design 1115 or equivalent may be further
synthesized by the design facility into a hardware model
1120, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3’7 party fabrication facility 1165 using non-volatile
memory 1140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 1150 or wireless connection 1160. The fabrica-
tion facility 1165 may then fabricate an integrated circuit
that is based at least in part on the IP core design. The

May 3, 2018

fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

[0132] FIGS. 15-17 illustrate exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general purpose processor cores.

[0133] FIG. 15 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 1200 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 1200 includes
one or more application processor(s) 1205 (e.g., CPUs), at
least one graphics processor 1210, and may additionally
include an image processor 1215 and/or a video processor
1220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 1200
includes peripheral or bus logic including a USB controller
1225, UART controller 1230, an SPI/SDIO controller 1235,
and an I°S/I°C controller 1240. Additionally, the integrated
circuit can include a display device 1245 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 1250 and a mobile industry processor interface
(MIP]) display interface 1255. Storage may be provided by
a flash memory subsystem 1260 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 1265 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 1270.

[0134] FIG. 15 is a block diagram illustrating an exem-
plary graphics processor 1310 of a system on a chip inte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment. Graphics processor
1310 can be a variant of the graphics processor 1210 of FIG.
15. Graphics processor 1310 includes a vertex processor
1305 and one or more fragment processor(s) 1315A1315N
(e.g., 1315A, 1315B, 1315C, 1315D, through 1315N-1, and
1315N). Graphics processor 1310 can execute different
shader programs via separate logic, such that the vertex
processor 1305 is optimized to execute operations for vertex
shader programs, while the one or more fragment processor
(s) 1315A-1315N execute fragment (e.g., pixel) shading
operations for fragment or pixel shader programs. The
vertex processor 1305 performs the vertex processing stage
of the 3D graphics pipeline and generates primitives and
vertex data. The fragment processor(s) 1315A-1315N use
the primitive and vertex data generated by the vertex pro-
cessor 1305 to produce a framebuffer that is displayed on a
display device. In one embodiment, the fragment processor
(s) 1315A-1315N are optimized to execute fragment shader
programs as provided for in the OpenGL API, which may be
used to perform similar operations as a pixel shader program
as provided for in the Direct 3D APL

[0135] Graphics processor 1310 additionally includes one
or more memory management units (MMUs) 1320A-1320B,
cache(s) 1325A-1325B, and circuit interconnect(s) 1330A-
1330B. The one or more MMU(s) 1320A-1320B provide for
virtual to physical address mapping for graphics processor
1310, including for the vertex processor 1305 and/or frag-
ment processor(s) 1315A-1315N, which may reference ver-
tex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in the one or more

US 2018/0122037 Al

cache(s) 1325A-1325B. In one embodiment the one or more
MMU(s) 1320A-1320B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
1205, image processor 1215, and/or video processor 1220 of
FIG. 16, such that each processor 1205-1220 can participate
in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 1330A-1330B enable graphics
processor 1310 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

[0136] FIG. 17 is a block diagram illustrating an addi-
tional exemplary graphics processor 1410 of a system on a
chip integrated circuit that may be fabricated using one or
more IP cores, according to an embodiment. Graphics pro-
cessor 1410 can be a variant of the graphics processor 1210
of FIG. 15. Graphics processor 1410 includes the one or
more MMU(s) 1320A-1320B, cache(s) 1325A-1325B, and
circuit interconnect(s) 1330A-1330B of the integrated cir-
cuit 1300 of FIG. 16.

[0137] Graphics processor 1410 includes one or more
shader core(s) 1415A-1415N (e.g., 1415A, 14158, 1415C,
1415D, 1415E, 1415F, through 1315N-1, and 1315N),
which provides for a unified shader core architecture in
which a single core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Addition-
ally, graphics processor 1410 includes an inter-core task
manager 1405, which acts as a thread dispatcher to dispatch
execution threads to one or more shader core(s) 1415A-
1415N and a tiling unit 1418 to accelerate tiling operations
for tile-based rendering, in which rendering operations for a
scene are subdivided in image space, for example to exploit
local spatial coherence within a scene or to optimize use of
internal caches.

[0138] The following clauses and/or examples pertain to
further embodiments:

[0139] One example embodiment may be a method com-
prising combining first and second kernels into a combined
kernel by a compiler, receiving at runtime, the combined
kernel on a central processing unit for offloading to a
graphics processing unit, and offloading said combined
kernel for execution on said graphics processing unit. The
method may also include offloading execution of a first
kernel using a ring task buffer with a fixed number of task
slots, offloading execution of a second and all subsequent
kernels using said ring task buffer, and offloading at least
two kernels from a central processing unit to a graphics
processing unit via said ring task buffer. The method may
also include resolving identification of said first and second
and all subsequent kernels. The method may also include
fetching parameters of said first and second and all subse-
quent kernels. The method may also include creating an
object and writing said parameters and said identifications to
said object. The method may also include blocking until a
graphics processing unit completes a current task when no
slots are available in the ring buffer. The method may also
include starting a thread to periodically enqueue an exit task
in said ring buffer to make the combined kernel finish and
exit. The method may also include enabling users to decide

May 3, 2018

when to engage offloading. The method may also include
providing a mechanism to stop and start execution of the
combined kernel.

[0140] In another example embodiment may be one or
more non-transitory computer readable media storing
instructions to perform a sequence comprising combining
first and second kernels into a combined kernel by a com-
piler, receiving at runtime, the combined kernel on a central
processing unit for offloading to a graphics processing unit,
and offloading said combined kernel for execution on said
graphics processing unit. The media may store instructions
to perform a sequence including offloading execution of a
first kernel using a ring task buffer with a fixed number of
task slots, offloading execution of a second and all subse-
quent kernels using said ring task buffer, and offloading at
least two kernels from a central processing unit to a graphics
processing unit via said ring task buffer. The media may
store instructions to perform a sequence including resolving
identification of said first and second and all subsequent
kernels. The media may store instructions to perform a
sequence including fetching parameters of said first and
second and all subsequent kernels. The media may store
instructions to perform a sequence including creating an
object and writing said parameters and said identifications to
said object. The media may store instructions to perform a
sequence including blocking until a graphics processing unit
completes a current task when no slots are available in the
ring buffer. The media may store instructions to perform a
sequence including starting a thread to periodically enqueue
an exit task in said ring buffer to make the combined kernel
finish and exit. The media may store instructions to perform
a sequence including enabling users to decide when to
engage offloading. The media may store instructions to
perform a sequence including providing a mechanism to
stop and start execution of the combined kernel.

[0141] Another example embodiment may be an apparatus
a processor to combine first and second kernels into a
combined kernel by a compiler, receive at runtime, the
combined kernel on a central processing unit for offloading
to a graphics processing unit, offload said combined kernel
for execution on said graphics processing unit, and a
memory coupled to said processor. The apparatus of said
processor to offload execution of a first kernel using a ring
task buffer with a fixed number of task slots, offload execu-
tion of a second and all subsequent kernels using said ring
task buffer, and offload at least two kernels from a central
processing unit to a graphics processing unit via said ring
task buffer. The apparatus of said processor to resolve
identification of said first and second and all subsequent
kernels. The apparatus of said processor to fetch parameters
of said first and second and all subsequent kernels. The
apparatus of said processor to create an object and writing
said parameters and said identifications to said object. The
apparatus of said processor to block until a graphics pro-
cessing unit completes a current task when no slots are
available in the ring buffer. The apparatus of said processor
to start a thread to periodically enqueue an exit task in said
ring buffer to make the combined kernel finish and exit. The
apparatus of said processor to enable users to decide when
to engage offloading. The apparatus of said processor to
provide a mechanism to stop and start execution of the
combined kernel.

[0142] The graphics processing techniques described
herein may be implemented in various hardware architec-

US 2018/0122037 Al

tures. For example, graphics functionality may be integrated
within a chipset. Alternatively, a discrete graphics processor
may be used. As still another embodiment, the graphics
functions may be implemented by a general purpose pro-
cessor, including a multicore processor.

[0143] References throughout this specification to “one
embodiment” or “an embodiment” mean that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one implemen-
tation encompassed within the present disclosure. Thus,
appearances of the phrase “one embodiment” or “in an
embodiment” are not necessarily referring to the same
embodiment. Furthermore, the particular features, struc-
tures, or characteristics may be instituted in other suitable
forms other than the particular embodiment illustrated and
all such forms may be encompassed within the claims of the
present application.

[0144] While a limited number of embodiments have been
described, those skilled in the art will appreciate numerous
modifications and variations therefrom. It is intended that
the appended claims cover all such modifications and varia-
tions as fall within the true spirit and scope of this disclosure.

1. A method comprising:

combining first and second kernels into a combined kernel

by a compiler;

receiving at runtime, the combined kernel on a central

processing unit for offloading to a graphics processing
unit; and

offloading said combined kernel for execution on said

graphics processing unit.

2. The method of claim 1 further including:

offloading execution of a first kernel using a ring task

buffer with a fixed number of task slots;

offloading execution of a second and all subsequent

kernels using said ring task buffer; and

offloading at least two kernels from a central processing

unit to a graphics processing unit via said ring task
buffer.

3. The method of claim 2 including resolving identifica-
tion of said first and second and all subsequent kernels.

4. The method of claim 3 including fetching parameters of
said first and second and all subsequent kernels.

5. The method of claim 4 including creating an object and
writing said parameters and said identifications to said
object.

6. The method of claim 5 including blocking until a
graphics processing unit completes a current task when no
slots are available in the ring buffer.

7. The method of claim 6 including starting a thread to
periodically enqueue an exit task in said ring buffer to make
the combined kernel finish and exit.

8. The method of claim 7 including enabling users to
decide when to engage offloading.

9. The method of claim 8 including providing a mecha-
nism to stop and start execution of the combined kernel.

10. One or more non-transitory computer readable media
storing instructions to perform a sequence comprising:

combining first and second kernels into a combined kernel

by a compiler;

receiving at runtime, the combined kernel on a central

processing unit for offloading to a graphics processing
unit; and

offloading said combined kernel for execution on said

graphics processing unit.

May 3, 2018

11. The media of claim 10, further storing instructions to
perform a sequence including:

offloading execution of a first kernel using a ring task
buffer with a fixed number of task slots;

offloading execution of a second and all subsequent
kernels using said ring task buffer; and

offloading at least two kernels from a central processing
unit to a graphics processing unit via said ring task
buffer.

12. The media of claim 11, further storing instructions to
perform a sequence including resolving identification of said
first and second and all subsequent kernels.

13. The media of claim 12, further storing instructions to
perform a sequence including fetching parameters of said
first and second and all subsequent kernels.

14. The media of claim 13, further storing instructions to
perform a sequence including creating an object and writing
said parameters and said identifications to said object.

15. The media of claim 14, further storing instructions to
perform a sequence including blocking until a graphics
processing unit completes a current task when no slots are
available in the ring buffer.

16. The media of claim 15, further storing instructions to
perform a sequence including starting a thread to periodi-
cally enqueue an exit task in said ring buffer to make the
combined kernel finish and exit.

17. The media of claim 16, further storing instructions to
perform a sequence including enabling users to decide when
to engage offloading.

18. The media of claim 17, further storing instructions to
perform a sequence including providing a mechanism to
stop and start execution of the combined kernel.

19. An apparatus comprising:

a processor to combine first and second kernels into a
combined kernel by a compiler, receive at runtime, the
combined kernel on a central processing unit for
offloading to a graphics processing unit, offload said
combined kernel for execution on said graphics pro-
cessing unit; and

a memory coupled to said processor.

20. The apparatus of claim 19, said processor to offload
execution of a first kernel using a ring task buffer with a
fixed number of task slots, offload execution of a second and
all subsequent kernels using said ring task buffer, and offload
at least two kernels from a central processing unit to a
graphics processing unit via said ring task buffer.

21. The apparatus of claim 20, said processor to resolve
identification of said first and second and all subsequent
kernels.

22. The apparatus of claim 21, said processor to fetch
parameters of said first and second and all subsequent
kernels.

23. The apparatus of claim 22, said processor to create an
object and writing said parameters and said identifications to
said object.

24. The apparatus of claim 23, said processor to block
until a graphics processing unit completes a current task
when no slots are available in the ring buffer.

25. The apparatus of claim 24, said processor to start a
thread to periodically enqueue an exit task in said ring buffer
to make the combined kernel finish and exit.

26. The apparatus of claim 25, said processor to enable
users to decide when to engage offloading.

US 2018/0122037 Al
14

27. The apparatus of claim 26, said processor to provide
a mechanism to stop and start execution of the combined
kernel.

May 3, 2018

