US 20170123698A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2017/0123698 A1

Dhuse et al.

43) Pub. Date: May 4, 2017

(54)

(71)

(72)

@
(22)

(60)

DEPLOYING AND GROWING A SET OF
DISPERSED STORAGE UNITS AT AND BY
NON-INFORMATION DISPERSAL
ALGORITHM (IDA) WIDTH MULTIPLES

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Greg R. Dhuse, Chicago, IL (US);
Manish Motwani, Chicago, IL. (US);
Jason K. Resch, Chicago, IL (US); Ilya
Volvovski, Chicago, IL (US)

Appl. No.: 15/283,196
Filed: Sep. 30, 2016

Related U.S. Application Data

Provisional application No. 62/248,752, filed on Oct.
30, 2015.

Publication Classification

(51) Int. CL
GOGF 3/06 (2006.01)
(52) US.CL
CPC ... GOGF 3/0619 (2013.01); GOGF 3/0689
(2013.01); GOGF 3/0665 (2013.01)
(57) ABSTRACT

Methods and apparatus for use in a dispersed storage net-
work (DSN) to deploy and grow a set of dispersed storage
(DS) units for use in the DSN memory. In an example of
operation, a DS client module assigns one or more additional
DS units to a storage set to form a new storage set, where
data is encoded in the DSN utilizing a dispersed storage
error encoding function in accordance with an information
dispersal algorithm (IDA) width. For each encoded data
slice stored in the existing storage set, the DS client module
utilizes a distributed agreement protocol function to select a
storage unit of the new storage set for storage of the encoded
data slice.

computing device 12

computing device 16

computing core 28 . N data object 40
compuding core 26
DS client 08 shent
modiie 34 " computin
- module 34 gompuiing

[& core 28
v 1

interface 32 interface 32 |] interface 30 gﬂ # interface 30
r-y F-y

computing device 14

k4

k

I interface 33

(network 24 *

A

B interface 33

computing
core 26

managing
unit 18

storage unit 36.0

i
! storage unit {SU)
computing i gg_éj_li \' o8®
core 26 1
i
infegn WO] |
integrity processing | DSN memory 22

unit 20

|
!
: distributed, or dispersed, storage
|
{
i

US 2017/0123698 A1l

E o o e b {c hun
i ¢ 7 § :
m 27 Aiowsui NS i Buissssosd Aubaw
. i
: ot mzm%v HOMIBU m f i 87 2100
afieiols ‘pasisdsip 10 ‘PANGUISID I°6F 1un o8 i i Bugnduios
m UgFuunofeicls | ese (ns)uun sbesrs || UBNGLUGY
i X & i M
= b o o s o e e o o o] bl T ecepau
Suibeuaw j
g7 2100
Bunndwios

T7 SHOMIBU

¥

May 4, 2017 Sheet 1 of 11

Patent Application Publication

#1 o0map bupnduog
A 4
T aveLomt e - ww 0T sorpsws w _ 7 aoRpo)UI 5T 0RLISI
i i ,
Gz aion . 1
X T anpow -
Bugndiios 12K 5Q FC sppow
— — LSS 8¢
2509 Bugndiwuod
0% 1elgo eep — 9 ¥ G7 sl07 Bunnduwos
TT samep Bugndwos 7T eomap Bugndwoo

May 4,2017 Sheet 2 of 11 US 2017/0123698 A1l

Patent Application Publication

47 sppoiy 7 ainpow 27 SinpoL soral {7 sippow 85 sippow G5 ampow
s0BpEIU NS aoRpleiu H ysey BDBLSIUE OMIBU aoeLsIuE YaH B0BLBIU 9N
F-N 3 F-y F.

Ma A vy W
85 avepsp! [0d ¥3 s0Ig
- NG
FN
4 %
75 ainpow
3% 12lj0U00 |15 soepsul . mm%w.hwg
% % 3919p O
¥
G N 75 N 5 ampow
Aowsw uew | 7] Jeyonuos lowsw |- T Buissanoud

F:§

4

TG jun Buissasold

sadesd ospin

t_og
Lt

2405 Buandiuos

May 4,2017 Sheet 3 of 11 US 2017/0123698 A1l

Patent Application Publication

9 "D
Ol A8 alisslgoeep | qrymea m #uswbas eep # IRy
{5 aweu 2048
158039 Pax E8X 28X iGX 59 0 u w
L §503 PEX EPX ZPX X - _ 3 _
| €504 K| wex X gex e | [@0 MO 0@ 80 Ly o
A E! Fex gex X keX - 80 40 8a 50 } 2 p
RE X EIX ZIX X ¥Q £Q ¢ Ld] g e
S0 10 0S o -) o -7 -
o= (o) (@ @
| e nx Wa) * | s
L XLEAU a0t = (W) xiheuws viep _
LB DepoD Wa 1ep VB
| |
——
SO1S BIEP POPOIUS = §(03
BB DS = NG TEE
>sxm SC¢d >|w Sad >‘m $S03 >|KN 533 \Q a4 A ewbas
A GNS A VNS A ENS A CNS ALNS MmEEmm Bep
@ ® & ® ® g ‘Buinys & Awu 0% waigo
. . H . H ‘Bupoous H eiep
- = — = = 019 Buguswbes
b 6503 L 803 L €803 L 2503 L1803 | Wawhos
LGNS L F NS LENS LZNS LTINS “Hu eep
TSNS Ewns Eons ®ns NS gr 10T aomap Bupndwos

May 4,2017 Sheet 4 of 11 US 2017/0123698 A1l

Patent Application Publication

mav P, Eu
oz —

TR

(ol
XUpell pepo

il

3) xue
Buipossp
|
|

7 — q
A0HS BIEP PAPOOUS = G BT
SWIBL 2345 = NG
A G803 A 7503 A €803 A 2803 AL Sa3 Alustibes
A GNS A ¥ NS A CNS A ZNS A LNS mﬂuﬂuw eep
Bupoosp e
[@ 8 @ [! ® o3{00
8 ® & 8 8 101D & m....H,.HH,...v 0y 109G
& & & @ & @ elep
- - - - . 3 Guiysep BUIRUIOD
ARANEE | ¥503 L £504 ANEE] b1 Sd3 | uswbas
LGNS L NS L ENS L ZNS LTINS ﬂ.ﬂw eep
BEGHNS Ewns GEcHNs GETHNS 9 NS §T 07T somep bugndwios

May 4,2017 Sheet S of 11 US 2017/0123698 A1l

Patent Application Publication

|3 dnoud aoys

¥e iomau

! TR Ut R S
:
m 76 snpows 5T spnpow
] uognoaxs 1 Wl 8Q
m . o . 78 smpow
m 86 Aol G5 JolioNuos buiss000:d
D m e [
U S301[S paraLial
ug dnosf aous
&
B
g
198 »,
L4 R | 590y paneLjal
54 L4 458 e ed

o 9id

{0z yun

Busssnosd Ausbau

87 2100
Bunnduios

1

£F soeyiaul

66
SBOS PRABL]

73 Buissa00ud
S punoqu

1% Buisssnoud
Sa punogno

BT Sinpow Jusys 54

May 4,2017 Sheet 6 of 11 US 2017/0123698 A1l

Patent Application Publication

LI E

<
6T uoneuLIoul
BuLoos pauej

4
uoiouny
Bunjues

N N-GEE
NFGFE ublom uogsool | a1 voneso) &
N-FvL TIF N
g ¢ N-¢pL uooun § N-(pt uonouny m
FO%E 21098 MNMHWM eSS Buiziewiiou A‘zn,mw,m HISIUILLSIAN 5
® 11581 LS w HNSSS LS M (i 19558
M DeZIBLUIOU & &
£-5y¢ WO UoRea0) | @wmmog !
TE p—— p——
g , £-¢pt uonoung m £-0pL uogouny m
,mﬁ%mqmcuw MNHWMMW w..,.m-m.w. mc_Nmmmﬁnoc w.uﬂ,m.m umw_cﬁ%_mmmﬁ .w..w.m
STHE 1uBIoM LOREa0) Hinsal wisul NS WS 2-G00 (]} 19858
. . % DEZHELLION {j uoneso] %
a7 TR T
¢ ¢ £yt uonauny m &0t uogoun; ,
FIRE 81008 Mwwwcﬁm SEFE fuizyeuliou baRTS DNSIIILLISISD o
Tnsas Wis finsas Wil 1 -60Y (I Josse
[-CHE b uogeno) J pezpwioy 01 uoneso, &
¢ AP [-Z¥E uogouny | -0 uogoung |
TG alo0s | UoBoUNYy T Buzijeusou | T3 ORSIILUBIED 5F
Buuoos WV
. Tnsal wuslul Hnssr LSl Qi jesse
pezZiBLUIoU
06T snpow wswieasbe pezipiussep

5

6T 1sonbay
UGHRLLIOH
Buuoos payurs

May 4,2017 Sheet 7 of 11 US 2017/0123698 A1l

Patent Application Publication

Ajus Buissnbal
241 01 ucHBULICIU BuLioos poyuRi syl nding

0% 1

uonewo Buuoss
pavuel asnposd 01 $8IC0S 10 188 SUL IBDIO YuB!

g% 1

581008
JO1ES B §0 24005 B 30npoId ¢) Jnsas uiul
AU Yl DIIBID0SSE BUN0SS) BEpipUeo B BY)
U paeinosse whiem uoeao) e Suizyan sl
LULISIUI POZIRLLICY BY) U0 uppouny Buuoos
2 WLOLIDT YNSEI LIS POZHRULCH YoRa I0]

95¢ T

YRS LS PRZHEULIOU
© asnpoid 01 INSel LLISIUL S UG Uooun
Suzypuioy g uuopsd Ynsal Lol yIBs 10}

2D 1

NS WSl ug
zonpoid 01 1sonbas uogeiiuou Bul0os poyue)
BUL O (] J8SSE U pue B0IN0S8) slepipues
B4} 40 (]} LONBOO| B UG UCHDUNY DISIILLIZISE
g WicuBd ‘eunesss SiBpIpuUBs Yoes oy

% 1

o
(o

§90IN0Sal SjepipUES
10183 & 0} spsefal uim Aqus Bunsenbal & woy
1sanbal ucteuLo BULI0TS PEYURS B ane08l

fap)

0%¢ 1

g0} "Oid

US 2017/0123698 A1l

30t Ol

TTREE00 |
T-RP0v 00 80

May 4, 2017 Sheet 8 of 11

Patent Application Publication

T TGE ssuodsau
_ S59208 BI1ED
06t LM,
sasundsald }
i 558338
30UN0SaF |
g ¥E anpoud
B3 5
{8¢
&
sisanbai Vet
k 1sanbal
553308
o uo
F enunosad
s IRUIIOHL
N0y Suisoos
o g6t uo payuel
euo
L e gupions
payuel v
0%t sjnpow
swgaide

1-¢0v
IS J
T 3mpow
Nsd
o8

paZijgiiuadsp

Xl
nun Buissacosd §Q

RE 15enbal ssaonoe mﬁm%

May 4,2017 Sheet 9 of 11 US 2017/0123698 A1l

Patent Application Publication

aoi "oid

AJOWBLY NG 8ub wioy) sasuodsal
$SO00E D0IN0SAL IO IO SUD HO POSE] AlBUR
Bunsonbal sy) 0} asU0dSa) S5RI02 BIED B 2NSSI

7 0

e

S|oAS] B0.N0SS
Jo Aeanid eul 0 YOBS J0) SS0UNOSAI S0 0
auo pauuap) Buryan AOUIBUI NG BUL 558008

<
<t

z T

uoneusioi Buuoos pasuel sy} uo paseq
[SAB] S2IN0SDI BY] UJIM PSIRICOSSE SR0IN0SS)
BI0LL IO BUC 109|985 '[PAS] BLIN0SES L0BS 10}

o)
>
<

1

uonEULIOI Buioos
DONUBI BUIULIZIAD ‘[ons] 92N0Sa YIED I0)

Ty 1

AIOWBLE NG B Y
DSIBIN0SSR SjBA8] 20UN0Sa) JO Aujenid e 108185

23 1

jsenba; $52008 ejep
U1 UM PEIBIDOSSE SSRUPPE NQQ € SUILLSIRD

o
<]

w 1

Amua Bugsenbsy
B LU0} 1S9NnDal $38908 BIBD R AAIB0A)

,Q f

US 2017/0123698 A1l

May 4, 2017 Sheet 10 of 11

Patent Application Publication

Vil oid
o m om0 o
7005 185 sfeiois
Gr9Cwun | o g0Cuwun || §0Cwn || BCuun | | §BCwun
sbeiois aBeiors abeios afbeiois abeinis
G-GCuun | poCuun || 00 wn | | ZOCwin | | 108 Wup
abeaois sbesoss abeias abeicis obrinis

205 1006
185 10 S35

¥0G 2-005
188 JO S8DS

{ w.m ROMBU

7% 2-00%

195 JO S301S

7T ainpow
Jsgo 180

{1G¢ smpou
watlesibe
paziRIuSoaD

= P
¢0% 1004

| 195 J0 SaTIS

g7 nun Buisseooid g0

US 2017/0123698 A1l

May 4, 2017 Sheet 11 of 11

Patent Application Publication

dii ol

yun aB2i0ls plos|es Byl LIYIM
D2ICIS AjJUSSaId 10U SI S0HS BIRD DBpOOUS
S usum 19s abeiols syl jo nun sbeiois
08102}9S au} 01195 abeiols Bunsing syl woy
3011 BIED pBpodus 3yl 4o uoneiBi Siepoe)

I 1

3015 BIRD PBpOsUS
ay} jo afielols 10} 18S oBri0)s Mat 8U} JO U
abe0ls B 108[85 0} uonouny 1000304 Jusiesibe
DRINGLISID B 8zZipn 195 abeios Bunsixe
i} Ul PRIOIS B01S BIBp Papoous Yoes io)

e 1

195
afri01s mau e ukio 01195 sbelois Bunsixe ue
0} sjun 2DRJ0IS [BUCIDDE 230 10 U0 ubisse

= ;

US 2017/0123698 Al

DEPLOYING AND GROWING A SET OF
DISPERSED STORAGE UNITS AT AND BY
NON-INFORMATION DISPERSAL
ALGORITHM (IDA) WIDTH MULTIPLES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present U.S. Utility patent application claims
priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional
Application No. 62/248,752, filed 30 Oct. 2015, entitled
“MIGRATING DATA IN A DISPERSED STORAGE NET-
WORK,” which is hereby incorporated herein by reference
in its entirety and made part of the present U.S. Utility Patent
Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT

DISC
[0003] Not Applicable.
BACKGROUND OF THE INVENTION
[0004] Technical Field of the Invention
[0005] This invention relates generally to computer net-

works, and more particularly to cloud storage.

[0006] Description of Related Art

[0007] Computing devices are known to communicate
data, process data, and/or store data. Such computing
devices range from wireless smart phones, laptops, tablets,
personal computers (PC), work stations, and video game
devices, to data centers that support millions of web
searches, stock trades, or on-line purchases every day. In
general, a computing device includes a central processing
unit (CPU), a memory system, user input/output interfaces,
peripheral device interfaces, and an interconnecting bus
structure.

[0008] As is further known, a computer may effectively
extend its CPU by using “cloud computing” to perform one
or more computing functions (e.g., a service, an application,
an algorithm, an arithmetic logic function, etc.) on behalf of
the computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

[0009] In addition to cloud computing, a computer may
use “cloud storage” as part of its memory system. As is
known, cloud storage enables a user, via its computer, to
store files, applications, etc. on a remote storage system. The
remote storage system may include a RAID (redundant array
of independent disks) system and/or a dispersed storage
system that uses an error correction scheme to encode data
for storage.

[0010] In a RAID system, a RAID controller adds parity
data to the original data before storing it across an array of
disks. The parity data is calculated from the original data
such that the failure of a single disk typically will not result

May 4, 2017

in the loss of the original data. While RAID systems can
address certain memory device failures, these systems may
suffer from effectiveness, efficiency and security issues. For
instance, as more disks are added to the array, the probability
of a disk failure rises, which may increase maintenance
costs. When a disk fails, for example, it needs to be manually
replaced before another disk(s) fails and the data stored in
the RAID system is lost. To reduce the risk of data loss, data
on a RAID device is often copied to one or more other RAID
devices. While this may reduce the possibility of data loss,
it also raises security issues since multiple copies of data
may be available, thereby increasing the chances of unau-
thorized access. In addition, co-location of some RAID
devices may result in a risk of a complete data loss in the
event of a natural disaster, fire, power surge/outage, etc.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

[0011] FIG. 1 is a schematic block diagram of an embodi-
ment of a dispersed, or distributed, storage network (DSN)
in accordance with the present disclosure;

[0012] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core in accordance with the present
disclosure;

[0013] FIG. 3 is a schematic block diagram of an example
of dispersed storage error encoding of data in accordance
with the present disclosure;

[0014] FIG. 4 is a schematic block diagram of a generic
example of an error encoding function in accordance with
the present disclosure;

[0015] FIG. 5 is a schematic block diagram of a specific
example of an error encoding function in accordance with
the present disclosure;

[0016] FIG. 6 is a schematic block diagram of an example
of slice naming information for an encoded data slice (EDS)
in accordance with the present disclosure;

[0017] FIG. 7 is a schematic block diagram of an example
of dispersed storage error decoding of data in accordance
with the present disclosure;

[0018] FIG. 8 is a schematic block diagram of a generic
example of an error decoding function in accordance with
the present disclosure;

[0019] FIG. 9 is a schematic block diagram of an example
of a dispersed storage network in accordance with the
present disclosure;

[0020] FIG. 10A is a schematic block diagram of an
embodiment of a decentralized agreement module in accor-
dance with the present invention;

[0021] FIG. 10B is a flowchart illustrating an example of
selecting the resource in accordance with the present inven-
tion;

[0022] FIG. 10C is a schematic block diagram of an
embodiment of a dispersed storage network (DSN) in accor-
dance with the present invention;

[0023] FIG. 10D is a flowchart illustrating an example of
accessing a dispersed storage network (DSN) memory in
accordance with the present invention;

[0024] FIG. 11A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) in accor-
dance with the present invention; and

[0025] FIG. 11B is a flowchart illustrating an example of
migrating data in accordance with the present invention.

US 2017/0123698 Al

DETAILED DESCRIPTION OF THE
INVENTION

[0026] FIG. 1 is a schematic block diagram of an embodi-
ment of a dispersed, or distributed, storage network (DSN)
10 that includes a plurality of dispersed storage (DS) com-
puting devices or processing units 12-16, a managing unit
18, an integrity processing unit 20, and a DSN memory 22.
The components of the DSN 10 are coupled to a network 24,
which may include one or more wireless and/or wire lined
communication systems; one or more non-public intranet
systems and/or public internet systems; and/or one or more
local area networks (LLAN) and/or wide area networks
(WAN).

[0027] The DSN memory 22 includes a plurality of dis-
persed storage units 36 (DS units) that may be located at
geographically different sites (e.g., one in Chicago, one in
Milwaukee, etc.), at a common site, or a combination
thereof. For example, if the DSN memory 22 includes eight
dispersed storage units 36, each storage unit is located at a
different site. As another example, if the DSN memory 22
includes eight storage units 36, all eight storage units are
located at the same site. As yet another example, if the DSN
memory 22 includes eight storage units 36, a first pair of
storage units are at a first common site, a second pair of
storage units are at a second common site, a third pair of
storage units are at a third common site, and a fourth pair of
storage units are at a fourth common site. Note that a DSN
memory 22 may include more or less than eight storage units
36.

[0028] Each of the DS computing devices 12-16, the
managing unit 18, and the integrity processing unit 20
include a computing core 26, and network or communica-
tions interfaces 30-33 which can be part of or external to
computing core 26. DS computing devices 12-16 may each
be a portable computing device and/or a fixed computing
device. A portable computing device may be a social net-
working device, a gaming device, a cell phone, a smart
phone, a digital assistant, a digital music player, a digital
video player, a laptop computer, a handheld computer, a
tablet, a video game controller, and/or any other portable
device that includes a computing core. A fixed computing
device may be a computer (PC), a computer server, a cable
set-top box, a satellite receiver, a television set, a printer, a
fax machine, home entertainment equipment, a video game
console, and/or any type of home or office computing
equipment. Note that each of the managing unit 18 and the
integrity processing unit 20 may be separate computing
devices, may be a common computing device, and/or may
be integrated into one or more of the computing devices
12-16 and/or into one or more of the dispersed storage units
36.

[0029] Each interface 30, 32, and 33 includes software and
hardware to support one or more communication links via
the network 24 indirectly and/or directly. For example,
interface 30 supports a communication link (e.g., wired,
wireless, direct, via a LAN, via the network 24, etc.)
between computing devices 14 and 16. As another example,
interface 32 supports communication links (e.g., a wired
connection, a wireless connection, a LAN connection, and/
or any other type of connection to/from the network 24)
between computing devices 12 and 16 and the DSN memory
22. As yet another example, interface 33 supports a com-
munication link for each of the managing unit 18 and the
integrity processing unit 20 to the network 24.

May 4, 2017

[0030] Computing devices 12 and 16 include a dispersed
storage (DS) client module 34, which enables the computing
device to dispersed storage error encode and decode data
(e.g., data object 40) as subsequently described with refer-
ence to one or more of FIGS. 3-8. In this example embodi-
ment, computing device 16 functions as a dispersed storage
processing agent for computing device 14. In this role,
computing device 16 dispersed storage error encodes and
decodes data on behalf of computing device 14. With the use
of dispersed storage error encoding and decoding, the DSN
10 is tolerant of a significant number of storage unit failures
(the number of failures is based on parameters of the
dispersed storage error encoding function) without loss of
data and without the need for a redundant or backup copies
of the data. Further, the DSN 10 stores data for an indefinite
period of time without data loss and in a secure manner (e.g.,
the system is very resistant to unauthorized attempts at
accessing the data).

[0031] In operation, the managing unit 18 performs DS
management services. For example, the managing unit 18
establishes distributed data storage parameters (e.g., vault
creation, distributed storage parameters, security param-
eters, billing information, user profile information, etc.) for
computing devices 12-16 individually or as part of a group
of'user devices. As a specific example, the managing unit 18
coordinates creation of a vault (e.g., a virtual memory block
associated with a portion of an overall namespace of the
DSN) within the DSN memory 22 for a user device, a group
of devices, or for public access and establishes per vault
dispersed storage (DS) error encoding parameters for a
vault. The managing unit 18 facilitates storage of DS error
encoding parameters for each vault by updating registry
information of the DSN 10, where the registry information
may be stored in the DSN memory 22, a computing device
12-16, the managing unit 18, and/or the integrity processing
unit 20. The DS error encoding parameters (e.g., or dis-
persed storage error coding parameters) include data seg-
menting information (e.g., how many segments data (e.g., a
file, a group of files, a data block, etc.) is divided into),
segment security information (e.g., per segment encryption,
compression, integrity checksum, etc.), error coding infor-
mation (e.g., pillar width, decode threshold, read threshold,
write threshold, etc.), slicing information (e.g., the number
of encoded data slices that will be created for each data
segment); and slice security information (e.g., per encoded
data slice encryption, compression, integrity checksum,
etc.).

[0032] The managing unit 18 creates and stores user
profile information (e.g., an access control list (ACL)) in
local memory and/or within memory of the DSN memory
22. The user profile information includes authentication
information, permissions, and/or the security parameters.
The security parameters may include encryption/decryption
scheme, one or more encryption keys, key generation
scheme, and/or data encoding/decoding scheme.

[0033] The managing unit 18 creates billing information
for a particular user, a user group, a vault access, public vault
access, etc. For instance, the managing unit 18 tracks the
number of times a user accesses a non-public vault and/or
public vaults, which can be used to generate per-access
billing information. In another instance, the managing unit
18 tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate
per-data-amount billing information.

US 2017/0123698 Al

[0034] As another example, the managing unit 18 per-
forms network operations, network administration, and/or
network maintenance. Network operations includes authen-
ticating user data allocation requests (e.g., read and/or write
requests), managing creation of vaults, establishing authen-
tication credentials for user devices, adding/deleting com-
ponents (e.g., user devices, storage units, and/or computing
devices with a DS client module 34) to/from the DSN 10,
and/or establishing authentication credentials for the storage
units 36. Network operations can further include monitoring
read, write and/or delete communications attempts, which
attempts could be in the form of requests. Network admin-
istration includes monitoring devices and/or units for fail-
ures, maintaining vault information, determining device
and/or unit activation status, determining device and/or unit
loading, and/or determining any other system level opera-
tion that affects the performance level of the DSN 10.
Network maintenance includes facilitating replacing,
upgrading, repairing, and/or expanding a device and/or unit
of the DSN 10.

[0035] To support data storage integrity verification within
the DSN 10, the integrity processing unit 20 (and/or other
devices in the DSN 10 such as managing unit 18) may assess
and perform rebuilding of ‘bad’ or missing encoded data
slices. At a high level, the integrity processing unit 20
performs rebuilding by periodically attempting to retrieve/
list encoded data slices, and/or slice names of the encoded
data slices, from the DSN memory 22. Retrieved encoded
slices are assessed and checked for errors due to data
corruption, outdated versioning, etc. If a slice includes an
error, it is flagged as a ‘bad’ or ‘corrupt’ slice. Encoded data
slices that are not received and/or not listed may be flagged
as missing slices. Bad and/or missing slices may be subse-
quently rebuilt using other retrieved encoded data slices that
are deemed to be good slices in order to produce rebuilt
slices. A multi-stage decoding process may be employed in
certain circumstances to recover data even when the number
of valid encoded data slices of a set of encoded data slices
is less than a relevant decode threshold number. The rebuilt
slices may then be written to DSN memory 22. Note that the
integrity processing unit 20 may be a separate unit as shown,
included in DSN memory 22, included in the computing
device 16, managing unit 18, stored on a DS unit 36, and/or
distributed among multiple storage units 36.

[0036] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core 26 that includes a processing
module 50, a memory controller 52, main memory 54, a
video graphics processing unit 55, an input/output (I0)
controller 56, a peripheral component interconnect (PCI)
interface 58, an IO interface module 60, at least one 10
device interface module 62, a read only memory (ROM)
basic input output system (BIOS) 64, and one or more
memory interface modules. The one or more memory inter-
face module(s) includes one or more of a universal serial bus
(USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and
a DSN interface module 76.

[0037] The DSN interface module 76 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),
disk file system (DFS), file transfer protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer

May 4, 2017

system interface (SCSI), internet small computer system
interface (iSCSI), etc.). The DSN interface module 76 and/or
the network interface module 70 may function as one or
more of the interface 30-33 of FIG. 1. Note that the 1O
device interface module 62 and/or the memory interface
modules 66-76 may be collectively or individually referred
to as 10 ports.

[0038] FIG. 3 is a schematic block diagram of an example
of dispersed storage error encoding of data. When a com-
puting device 12 or 16 has data to store it disperse storage
error encodes the data in accordance with a dispersed
storage error encoding process based on dispersed storage
error encoding parameters. The dispersed storage error
encoding parameters include an encoding function (e.g.,
information dispersal algorithm, Reed-Solomon, Cauchy
Reed-Solomon, systematic encoding, non-systematic encod-
ing, on-line codes, etc.), a data segmenting protocol (e.g.,
data segment size, fixed, variable, etc.), and per data seg-
ment encoding values. The per data segment encoding
values include a total, or pillar width, number (T) of encoded
data slices per encoding of a data segment (i.e., in a set of
encoded data slices); a decode threshold number (D) of
encoded data slices of a set of encoded data slices that are
needed to recover the data segment; a read threshold number
(R) of encoded data slices to indicate a number of encoded
data slices per set to be read from storage for decoding of the
data segment; and/or a write threshold number (W) to
indicate a number of encoded data slices per set that must be
accurately stored before the encoded data segment is
deemed to have been properly stored. The dispersed storage
error encoding parameters may further include slicing infor-
mation (e.g., the number of encoded data slices that will be
created for each data segment) and/or slice security infor-
mation (e.g., per encoded data slice encryption, compres-
sion, integrity checksum, etc.).

[0039] In the present example, Cauchy Reed-Solomon has
been selected as the encoding function (a generic example is
shown in FIG. 4 and a specific example is shown in FIG. 5);
the data segmenting protocol is to divide the data object into
fixed sized data segments; and the per data segment encod-
ing values include: a pillar width of 5, a decode threshold of
3, a read threshold of 4, and a write threshold of 4. In
accordance with the data segmenting protocol, the comput-
ing device 12 or 16 divides the data (e.g., a file (e.g., text,
video, audio, etc.), a data object, or other data arrangement)
into a plurality of fixed sized data segments (e.g., 1 through
Y of a fixed size in range of Kilo-bytes to Tera-bytes or
more). The number of data segments created is dependent of
the size of the data and the data segmenting protocol.

[0040] The computing device 12 or 16 then disperse
storage error encodes a data segment using the selected
encoding function (e.g., Cauchy Reed-Solomon) to produce
a set of encoded data slices. FIG. 4 illustrates a generic
Cauchy Reed-Solomon encoding function, which includes
an encoding matrix (EM), a data matrix (DM), and a coded
matrix (CM). The size of the encoding matrix (EM) is
dependent on the pillar width number (T) and the decode
threshold number (D) of selected per data segment encoding
values. To produce the data matrix (DM), the data segment
is divided into a plurality of data blocks and the data blocks
are arranged into D number of rows with Z data blocks per
row. Note that Z is a function of the number of data blocks
created from the data segment and the decode threshold

US 2017/0123698 Al

number (D). The coded matrix is produced by matrix
multiplying the data matrix by the encoding matrix.

[0041] FIG. 5 illustrates a specific example of Cauchy
Reed-Solomon encoding with a pillar number (T) of five and
decode threshold number of three. In this example, a first
data segment is divided into twelve data blocks (D1-D12).
The coded matrix includes five rows of coded data blocks,
where the first row of X11-X14 corresponds to a first
encoded data slice (EDS 1_1), the second row of X21-X24
corresponds to a second encoded data slice (EDS 2_1), the
third row of X31-X34 corresponds to a third encoded data
slice (EDS 3_1), the fourth row of X41-X44 corresponds to
a fourth encoded data slice (EDS 4_1), and the fifth row of
X51-X54 corresponds to a fifth encoded data slice (EDS
5_1). Note that the second number of the EDS designation
corresponds to the data segment number. In the illustrated
example, the value X11=aD1+bD5+cD9, X12=aD2+bD6+

cD10, . . . X53=mD3+nD7+0D11, and X54=mD4+nD8+
oD12.
[0042] Returning to the discussion of FIG. 3, the comput-

ing device also creates a slice name (SN) for each encoded
data slice (EDS) in the set of encoded data slices. A typical
format for a slice name 80 is shown in FIG. 6. As shown, the
slice name (SN) 80 includes a pillar number of the encoded
data slice (e.g., one of 1-T), a data segment number (e.g., one
of 1-Y), a vault identifier (ID), a data object identifier (ID),
and may further include revision level information of the
encoded data slices. The slice name functions as at least part
of a DSN address for the encoded data slice for storage and
retrieval from the DSN memory 22.

[0043] As aresult of encoding, the computing device 12 or
16 produces a plurality of sets of encoded data slices, which
are provided with their respective slice names to the storage
units for storage. As shown, the first set of encoded data
slices includes EDS 1_1 through EDS 5_1 and the first set
of slice names includes SN 1_1 through SN 5_1 and the last
set of encoded data slices includes EDS 1_Y through EDS
5_Y and the last set of slice names includes SN 1_Y through
SN 5_Y.

[0044] FIG. 7 is a schematic block diagram of an example
of dispersed storage error decoding of a data object that was
dispersed storage error encoded and stored in the example of
FIG. 4. In this example, the computing device 12 or 16
retrieves from the storage units at least the decode threshold
number of encoded data slices per data segment. As a
specific example, the computing device retrieves a read
threshold number of encoded data slices.

[0045] In order to recover a data segment from a decode
threshold number of encoded data slices, the computing
device uses a decoding function as shown in FIG. 8. As
shown, the decoding function is essentially an inverse of the
encoding function of FIG. 4. The coded matrix includes a
decode threshold number of rows (e.g., three in this
example) and the decoding matrix in an inversion of the
encoding matrix that includes the corresponding rows of the
coded matrix. For example, if the coded matrix includes
rows 1, 2, and 4, the encoding matrix is reduced to rows 1,
2, and 4, and then inverted to produce the decoding matrix.
[0046] FIG. 9 is a diagram of an example of a dispersed
storage network. The dispersed storage network includes a
DS (dispersed storage) client module 34 (which may be in
DS computing devices 12 and/or 16 of FIG. 1), a network
24, and a plurality of DS units 36-1 . . . 36-z (which may be
storage units 36 of FIG. 1 and which form at least a portion

May 4, 2017

of DS memory 22 of FIG. 1), a DSN managing unit (not
shown—device 18 in FIG. 1), and a DS integrity verification
module 20. The DS client module 34 includes an outbound
DS processing section 81 and an inbound DS processing
section 82. Each of the DS units 36-1 . . . 36-» includes a
controller 86, a processing module 84 including a commu-
nications interface for communicating over network 24 (not
shown), memory 88, a DT (distributed task) execution
module 90, and a DS client module 34.

[0047] In an example of operation, the DS client module
34 receives data 92. The data 92 may be of any size and of
any content, where, due to the size (e.g., greater than a few
Terabytes), the content (e.g., secure data, etc.), and/or con-
cerns over security and loss of data, distributed storage of
the data is desired. For example, the data 92 may be one or
more digital books, a copy of a company’s emails, a large-
scale Internet search, a video security file, one or more
entertainment video files (e.g., television programs, movies,
etc.), data files, and/or any other large amount of data (e.g.,
greater than a few Terabytes).

[0048] Within the DS client module 34, the outbound DS
processing section 81 receives the data 92. The outbound DS
processing section 81 processes the data 92 to produce slice
groupings 96. As an example of such processing, the out-
bound DS processing section 81 partitions the data 92 into
a plurality of data partitions. For each data partition, the
outbound DS processing section 81 dispersed storage (DS)
error encodes the data partition to produce encoded data
slices and groups the encoded data slices into a slice
grouping 96.

[0049] The outbound DS processing section 81 then sends,
via the network 24, the slice groupings 96 to the DS units
36-1 . . . 36-» of the DSN memory 22 of FIG. 1. For
example, the outbound DS processing section 81 sends slice
group to DS storage unit 36-1. As another example, the
outbound DS processing section 81 sends slice group #n to
DS unit #n.

[0050] In one example of operation, the DS client module
34 requests retrieval of stored data within the memory of the
DS units 36. In this example, the task 94 is retrieve data
stored in the DSN memory 22. Accordingly, and according
to one embodiment, the outbound DS processing section 81
converts the task 94 into a plurality of partial tasks 98 and
sends the partial tasks 98 to the respective DS storage units
36-1...36-n

[0051] In response to the partial task 98 of retrieving
stored data, a DS storage unit 36 identifies the corresponding
encoded data slices 99 and retrieves them. For example, DS
unit #1 receives partial task #1 and retrieves, in response
thereto, retrieved slices #1. The DS units 36 send their
respective retrieved slices 99 to the inbound DS processing
section 82 via the network 24.

[0052] The inbound DS processing section 82 converts the
retrieved slices 99 into data 92. For example, the inbound
DS processing section 82 de-groups the retrieved slices 99
to produce encoded slices per data partition. The inbound
DS processing section 82 then DS error decodes the encoded
slices per data partition to produce data partitions. The
inbound DS processing section 82 de-partitions the data
partitions to recapture the data 92.

[0053] FIG. 10A is a schematic block diagram of an
embodiment of a decentralized agreement module 350 that
includes a set of deterministic functions 340-1 . . . 340-N, a
set of normalizing functions 342-1 . . . 342-N, a set of

US 2017/0123698 Al

scoring functions 344-1 . . . 344-N, and a ranking function
352. Each of the deterministic function, the normalizing
function, the scoring function, and the ranking function 352,
may be implemented utilizing the processing module 84 of
FIG. 9. The decentralized agreement module 350 may be
implemented utilizing any module and/or unit of a dispersed
storage network (DSN). For example, the decentralized
agreement module is implemented utilizing the distributed
storage (DS) client module 34 of FIG. 1.

[0054] The decentralized agreement module 350 functions
to receive a ranked scoring information request 354 and to
generate ranked scoring information 358 based on the
ranked scoring information request 354 and other informa-
tion. The ranked scoring information request 354 includes
one or more of an asset identifier (ID) 356 of an asset
associated with the request, an asset type indicator, one or
more location identifiers of locations associated with the
DSN, one or more corresponding location weights, and a
requesting entity ID. The asset includes any portion of data
associated with the DSN including one or more asset types
including a data object, a data record, an encoded data slice,
a data segment, a set of encoded data slices, and a plurality
of sets of encoded data slices. As such, the asset ID 356 of
the asset includes one or more of a data name, a data record
identifier, a source name, a slice name, and a plurality of sets
of slice names.

[0055] Each location of the DSN includes an aspect of a
DSN resource. Examples of locations include one or more of
a storage unit, a memory device of the storage unit, a site,
a storage pool of storage units, a pillar index associated with
each encoded data slice of a set of encoded data slices
generated by an information dispersal algorithm (IDA), a
DS client module 34 of FIG. 1, a DS processing unit
(computing device) 16 of FIG. 1, a DS integrity processing
unit 20 of FIG. 1, a DSN managing unit 18 of FIG. 1, a user
device (computing device) 12 of FIG. 1, and a user device
(computing device) 14 of FIG. 1.

[0056] Each location is associated with a location weight
based on one or more of a resource prioritization of utili-
zation scheme and physical configuration of the DSN. The
location weight includes an arbitrary bias which adjusts a
proportion of selections to an associated location such that
a probability that an asset will be mapped to that location is
equal to the location weight divided by a sum of all location
weights for all locations of comparison. For example, each
storage pool of a plurality of storage pools is associated with
a location weight based on storage capacity. For instance,
storage pools with more storage capacity are associated with
higher location weights than others. The other information
may include a set of location identifiers and a set of location
weights associated with the set of location identifiers. For
example, the other information includes location identifiers
and location weights associated with a set of memory
devices of a storage unit when the requesting entity utilizes
the decentralized agreement module 350 to produce ranked
scoring information 358 with regards to selection of a
memory device of the set of memory devices for accessing
a particular encoded data slice (e.g., where the asset ID
includes a slice name of the particular encoded data slice).
[0057] The decentralized agreement module 350 outputs
substantially identical ranked scoring information for each
ranked scoring information request that includes substan-
tially identical content of the ranked scoring information
request. For example, a first requesting entity issues a first

May 4, 2017

ranked scoring information request to the decentralized
agreement module 350 and receives first ranked scoring
information. A second requesting entity issues a second
ranked scoring information request to the decentralized
agreement module and receives second ranked scoring infor-
mation. The second ranked scoring information is substan-
tially the same as the first ranked scoring information when
the second ranked scoring information request is substan-
tially the same as the first ranked scoring information
request.

[0058] As such, two or more requesting entities may
utilize the decentralized agreement module 350 to determine
substantially identical ranked scoring information. As a
specific example, the first requesting entity selects a first
storage pool of a plurality of storage pools for storing a set
of encoded data slices utilizing the decentralized agreement
module 350 and the second requesting entity identifies the
first storage pool of the plurality of storage pools for
retrieving the set of encoded data slices utilizing the decen-
tralized agreement module 350.

[0059] In an example of operation, the decentralized
agreement module 350 receives the ranked scoring infor-
mation request 354. Each deterministic function performs a
deterministic function on a combination and/or concatena-
tion (e.g., add, append, interleave) of the asset ID 356 of the
ranked scoring information request 354 and an associated
location ID of the set of location 1Ds to produce an interim
result 341-1 . . . 341-N. The deterministic function includes
at least one of a hashing function, a hash-based message
authentication code function, a mask generating function, a
cyclic redundancy code function, hashing module of a
number of locations, consistent hashing, rendezvous hash-
ing, and a sponge function. As a specific example, deter-
ministic function 340-2 appends a location ID 339-2 of a
storage pool to a source name as the asset ID to produce a
combined value and performs the mask generating function
on the combined value to produce interim result 341-2.
[0060] With a set of interim results 341-1 . . . 341-N, each
normalizing function 342-1 . . . 342N performs a normal-
izing function on a corresponding interim result to produce
a corresponding normalized interim result. The performing
of the normalizing function includes dividing the interim
result by a number of possible permutations of the output of
the deterministic function to produce the normalized interim
result. For example, normalizing function 342-2 performs
the normalizing function on the interim result 341-2 to
produce a normalized interim result 343-2.

[0061] With a set of normalized interim results 343-1 . . .
343-N, each scoring function performs a scoring function on
a corresponding normalized interim result to produce a
corresponding score. The performing of the scoring function
includes dividing an associated location weight by a nega-
tive log of the normalized interim result. For example,
scoring function 344-2 divides location weight 345-2 of the
storage pool (e.g., associated with location ID 339-2) by a
negative log of the normalized interim result 343-2 to
produce a score 346-2.

[0062] With a set of scores 346-1 . . . 346-N, the ranking
function 352 performs a ranking function on the set of scores
346-1 . . . 346-N to generate the ranked scoring information
358. The ranking function includes rank ordering each score
with other scores of the set of scores 346-1 . . . 346-N, where
a highest score is ranked first. As such, a location associated
with the highest score may be considered a highest priority

US 2017/0123698 Al

location for resource utilization (e.g., accessing, storing,
retrieving, etc., the given asset of the request). Having
generated the ranked scoring information 358, the decen-
tralized agreement module 350 outputs the ranked scoring
information 358 to the requesting entity.

[0063] FIG. 10B is a flowchart illustrating an example of
selecting a resource. The method begins or continues at step
360 where a processing module (e.g., of a decentralized
agreement module) receives a ranked scoring information
request from a requesting entity with regards to a set of
candidate resources. For each candidate resource, the
method continues at step 362 where the processing module
performs a deterministic function on a location identifier
(ID) of the candidate resource and an asset ID of the ranked
scoring information request to produce an interim result. As
a specific example, the processing module combines the
asset ID and the location ID of the candidate resource to
produce a combined value and performs a hashing function
on the combined value to produce the interim result.
[0064] For each interim result, the method continues at
step 364 where the processing module performs a normal-
izing function on the interim result to produce a normalized
interim result. As a specific example, the processing module
obtains a permutation value associated with the determinis-
tic function (e.g., maximum number of permutations of
output of the deterministic function) and divides the interim
result by the permutation value to produce the normalized
interim result (e.g., with a value between 0 and 1).

[0065] For each normalized interim result, the method
continues at step 366 where the processing module performs
a scoring function on the normalized interim result utilizing
a location weight associated with the candidate resource
associated with the interim result to produce a score of a set
of scores. As a specific example, the processing module
divides the location weight by a negative log of the normal-
ized interim result to produce the score.

[0066] The method continues at step 368 where the pro-
cessing module rank orders the set of scores to produce
ranked scoring information (e.g., ranking a highest value
first). The method continues at step 370 where the process-
ing module outputs the ranked scoring information to the
requesting entity. The requesting entity may utilize the
ranked scoring information to select one location of a
plurality of locations.

[0067] FIG. 10C is a schematic block diagram of an
embodiment of a dispersed storage network (DSN) that
includes the distributed storage (DS) processing unit (com-
puting device) 16 of FIG. 1, the network 24 of FIG. 1, and
the distributed storage network (DSN) module 22 of FIG. 1.
Hereafter, the DSN module 22 may be interchangeably
referred to as a DSN memory. The DS processing unit 16
includes a decentralized agreement module 380 and the DS
client module 34 of FIG. 1. The decentralized agreement
module 380 being implemented utilizing the decentralized
agreement module 350 of FIG. 10A. The DSN module 22
includes a plurality of DS unit pools 400-1 . . . 400-N. Each
DS unit pool includes one or more sites 402-1 . . . 402-N.
Each site includes one or more DS units 404-1-1 . . .
404-1-N. Each DS unit may be associated with at least one
pillar of N pillars associated with an information dispersal
algorithm (IDA) (406-1 . . . 406-N), where a data segment
is dispersed storage error encoded using the IDA to produce
one or more sets of encoded data slices, and where each set
includes N encoded data slices and like encoded data slices

May 4, 2017

(e.g., slice 3’s) of two or more sets of encoded data slices are
included in a common pillar (e.g., pillar 406-3). Each site
may not include every pillar and a given pillar may be
implemented at more than one site. Each DS unit includes a
plurality of memories (e.g. DS unit 404-1-1 includes memo-
ries 408-1-1-1 . . . 408-1-1-N. Each DS unit may be
implemented utilizing the DS unit 36 of FIG. 1 and the
memories 408 of DS units can be implemented utilizing
memory 88 of DS unit 36 in FIG. 9. Hereafter, a DS unit may
be referred to interchangeably as a storage unit and a set of
DS units may be interchangeably referred to as a set of
storage units and/or as a storage unit set.

[0068] The DSN functions to receive data access requests
382, select resources of at least one DS unit pool for data
access, utilize the selected DS unit pool for the data access,
and issue a data access response 392 based on the data
access. The selecting of the resources includes utilizing a
decentralized agreement function of the decentralized agree-
ment module 380, where a plurality of locations are ranked
against each other. The selecting may include selecting one
storage pool of the plurality of storage pools, selecting DS
units at various sites of the plurality of sites, selecting a
memory of the plurality of memories for each DS unit, and
selecting combinations of memories, DS units, sites, pillars,
and storage pools.

[0069] In an example of operation, the DS client module
34 receives the data access request 382 from a requesting
entity, where the data access request 382 includes at least
one of a store data request, a retrieve data request, a delete
data request, a data name, and a requesting entity identifier
(ID). Having received the data access request 382, the DS
client module 34 determines a DSN address associated with
the data access request. The DSN address includes at least
one of a source name (e.g., including a vault ID and an
object number associated with the data name), a data seg-
ment 1D, a set of slice names, a plurality of sets of slice
names. The determining includes at least one of generating
(e.g., for the store data request) and retrieving (e.g., from a
DSN directory, from a dispersed hierarchical index) based
on the data name (e.g., for the retrieve data request).
[0070] Having determined the DSN address, the DS client
module 34 selects a plurality of resource levels (e.g., DS unit
pool, site, DS unit, pillar, memory) associated with the DSN
module 22. The determining may be based on one or more
of the data name, the requesting entity 1D, a predetermina-
tion, a lookup, a DSN performance indicator, and interpret-
ing an error message. For example, the DS client module 34
selects the DS unit pool as a first resource level and a set of
memory devices of a plurality of memory devices as a
second resource level based on a system registry lookup for
a vault associated with the requesting entity.

[0071] Having selected the plurality of resource levels, the
DS client module 34, for each resource level, issues a ranked
scoring information request 384 to the decentralized agree-
ment module 380 utilizing the DSN address as an asset 1D.
The decentralized agreement module 380 performs the
decentralized agreement function based on the asset ID (e.g.,
the DSN address), identifiers of locations of the selected
resource levels, and location weights of the locations to
generate ranked scoring information 386.

[0072] For each resource level, the DS client module 34
receives corresponding ranked scoring information 386.
Having received the ranked scoring information 386, the DS
client module 34 identifies one or more resources associated

US 2017/0123698 Al

with the resource level based on the rank scoring informa-
tion 386. For example, the DS client module 34 identifies a
DS unit pool associated with a highest score and identifies
a set of memory devices within DS units of the identified DS
unit pool with a highest score.

[0073] Having identified the one or more resources, the
DS client module 34 accesses the DSN module 22 based on
the identified one or more resources associated with each
resource level. For example, the DS client module 34 issues
resource access requests 388 (e.g., write slice requests when
storing data, read slice requests when recovering data) to the
identified DS unit pool, where the resource access requests
388 further identify the identified set of memory devices.
Having accessed the DSN module 22, the DS client module
34 receives resource access responses 390 (e.g., write slice
responses, read slice responses). The DS client module 34
issues the data access response 392 based on the received
resource access responses 390. For example, the DS client
module 34 decodes received encoded data slices to repro-
duce data and generates the data access response 392 to
include the reproduced data.

[0074] FIG. 10D is a flowchart illustrating an example of
accessing a dispersed storage network (DSN) memory. The
method begins or continues at step 410 where a processing
module (e.g., of a distributed storage (DS) client module)
receives a data access request from a requesting entity. The
data access request includes one or more of a storage
request, a retrieval request, a requesting entity identifier, and
a data identifier (ID). The method continues at step 412
where the processing module determines a DSN address
associated with the data access request. For example, the
processing module generates the DSN address for the stor-
age request. As another example, the processing module
performs a lookup for the retrieval request based on the data
identifier.

[0075] The method continues at step 414 where the pro-
cessing module selects a plurality of resource levels asso-
ciated with the DSN memory. The selecting may be based on
one or more of a predetermination, a range of weights
associated with available resources, a resource performance
level, and a resource performance requirement level. For
each resource level, the method continues at step 416 where
the processing module determines ranked scoring informa-
tion. For example, the processing module issues a ranked
scoring information request to a decentralized agreement
module based on the DSN address and receives correspond-
ing ranked scoring information for the resource level, where
the decentralized agreement module performs a decentral-
ized agreement protocol function on the DSN address using
the associated resource identifiers and resource weights for
the resource level to produce the ranked scoring information
for the resource level.

[0076] For each resource level, the method continues at
step 418 where the processing module selects one or more
resources associated with the resource level based on the
ranked scoring information. For example, the processing
module selects a resource associated with a highest score
when one resource is required. As another example, the
processing module selects a plurality of resources associated
with highest scores when a plurality of resources are
required.

[0077] The method continues at step 420 where the pro-
cessing module accesses the DSN memory utilizing the
selected one or more resources for each of the plurality of

May 4, 2017

resource levels. For example, the processing module iden-
tifies network addressing information based on the selected
resources including one or more of a storage unit Internet
protocol address and a memory device identifier, generates
a set of encoded data slice access requests based on the data
access request and the DSN address, and sends the set of
encoded data slice access requests to the DSN memory
utilizing the identified network addressing information.
[0078] The method continues at step 422 where the pro-
cessing module issues a data access response to the request-
ing entity based on one or more resource access responses
from the DSN memory. For example, the processing module
issues a data storage status indicator when storing data. As
another example, the processing module generates the data
access response to include recovered data when retrieving
data.

[0079] In one example of operation, the DSN of FIG. 1 is
grown to accommodate additional DS units. Further expla-
nations of this process of deploying and growing a set of ds
units at and by non-IDA width multiples are set out below
in conjunction with FIGS. 11A and 11B. When DS units are
deployed in a DSN memory with at least an IDA width
number of DS units at a time, then maximum failure
independence and accordingly, maximum reliability and
availability are achieved. This set of DS units may be used
to create or expand a storage pool for example. However,
when fewer than an IDA width number of DS units are
deployed, it is necessary that some DS units will store more
than one slice for the same data source (e.g. when storing 15
slices across 5 DS units, each DS unit might store 3 slices
each for the same data source). At some future time, it may
become necessary to expand the DSN memory with more
DS units. If the DSN memory was initially deployed with
fewer than IDA width number of DS units then it may be
desirable to use the additional DS units to more evenly
distribute slices across a larger number of DS units, thereby
improving reliability and availability. For example, two
options exist for growing the initial deployment of 5 DS
units when growing by an additional 5 DS units. Option 1:
Treat each set of 5 DS units (each set) independently, and in
a 15-wide continue storing 3 slices each to each DS unit and
store all slices on either the first set of 5 DS units, or the
second set of 5 DS units. Option 2: Use the existing set of
5 DS units, together with the new set of 5 DS units, to form
a larger set containing 10 DS units, over which some no DS
unit need to store more than 2 slices of the same source. The
second option is preferable from a reliability and availability
perspective.

[0080] To grow the system in this second way, the existing
system expansion by reallocation via a Decentralized Agree-
ment Protocol (DAP) can, according to one example, be
used as follows:

1. Maintain the existing set of DS units as its own indepen-
dent set in a storage pool;

2. Form a second set of DS units composed of the existing
DS units together with the new DS units;

3. Initiate a reallocation of slices between these two sets, e.g.
by setting the weight of the first set to “0” and the weight of
the newly formed composite set equal to the size of the total
number of DS units in the composite set;

4. Migrate slices from the smaller set to the larger set,
moving slices to their new location in the new set within
which each DS unit has a smaller fraction of the namespace;
and

US 2017/0123698 Al

5. When the migration of all slices is complete, eliminate the
original set of DS units, leaving behind only the new
composite set.

[0081] In this way a set of DS units can be grown by as
little as one DS unit at a time. However, once the set is
grown to a size equal to 2*IDA width, it may make sense to
“break” the large set into two smaller sets, each of size IDA
width (set’s in the sense of independent locations which
slices may be mapped to by a Decentralized Agreement
Protocol). Once the set is broken in this way, only the second
set is grown, while the previous sets (each containing IDA
width DS units) remain unchanged in the pool and is not
expanded in this manner. The motivation for breaking off
sets is it makes expanding the system by fewer than IDA
width at a time more efficient. The fewer DS units in the set
that is expanded in this way, the less total data transfer is
required.

[0082] FIG. 11A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) that
includes the distributed storage (DS) processing unit 16 of
FIG. 1, the network 24 of FIG. 1, and at least two storage
sets 500-1 and 500-2. The DS processing unit (computing
device) 16 includes the DS client module 34 of FIG. 1 and
a decentralized agreement module. The decentralized agree-
ment module may be implemented utilizing the decentral-
ized agreement module 350 of FIG. 10A. Each storage set
includes a set of storage units 36-z and may be expanded to
accommodate increasing a storage capacity level of the
storage set. For example, the storage set 500-1 initially
includes storage units 36-1 to 36-5 and is expanded to
include storage units 36-6 to 36-10 to form the storage set
500-2. Each storage unit may be implemented utilizing the
DS units 36 of FIG. 1. The DSN functions to migrate data
when the set of storage units is expanded.

[0083] Inanexample of operation of the migrating of data,
the DS client module 34 assigns one or more additional
dispersed storage units to the storage set 500-1 to form a new
storage set 500-2, where data is encoded utilizing a dis-
persed storage error encoding function in accordance with
an information dispersal algorithm (IDA) width to produce
a plurality of sets of encoded data slices that the DS
processing unit 16 stores in the storage set 500-1 and where
each set of encoded data slices includes an IDA width
number of encoded data slices. For example, the DS pro-
cessing unit 16 stores three encoded data slices per storage
unit of the storage units 36-1 to 36-5 when the IDA width is
15. The assigning of the one or more additional storage units
includes one or more of determining a number of additional
storage units, identifying available storage units, and select-
ing from the dispersed storage units identified for assign-
ment by the middle storage units to produce the one or more
additional storage units. The determining of the number of
additional storage units to add may be based on one or more
of estimated future storage requirements, an existing storage
utilization level, and a predetermination.

[0084] For each encoded data slice stored in the existing
storage set 500-1, the DS client module 34 utilizes a
distributed agreement protocol function to select a storage
unit of the new storage set 500-2 for storage of an encoded
data slice. This function may be implemented utilizing any
module and/or unit of a dispersed storage network (DSN)
including the DS Managing Unit 18, the Integrity Processing
Unit 20, and/or by one or more DS units 36-1 . . . 36-» shown
in FIG. 1. For example, the DS client module 34 utilizes the

May 4, 2017

decentralized agreement module to perform the distributed
agreement protocol function on a slice name associated with
encoded data slice utilizing updated weights for each of the
storage units of the existing storage set and newly estab-
lished weights for each of the additional storage units to
produce a score for each storage unit of the new storage set
and identifies a storage unit associated with a highest score
as the selected storage unit of the new storage set for storage
of the encoded data slice.

[0085] Having selected the storage unit, the DS client
module 34 facilitates migration of the encoded data slice
from the existing storage set 500-1 to the selected storage
unit of the new storage set 500-2 when the encoded data
slice is not presently stored in the selected storage unit. This
could include migration to new DS units 36-6 to 36-10. For
example, the DS client module 34 receives, via the network
24, encoded data slices of storage set 500-1 (502) that
includes encoded data slice, and sends, via the network 24,
encoded data slices of storage set 500-2 (504) that includes
the encoded data slice for migration, to the selected storage
unit of the new storage set 500-2 for storage.

[0086] FIG. 11B is a flowchart illustrating an example of
migrating data. The method includes a step 600 where a
processing module of one or more processing modules of
one or more computing devices (e.g., of a distributed storage
(DS) client module) assigns one or more additional storage
units to an existing storage set to form a new storage set of
a dispersed storage network (DSN). The assigning includes
one or more of determining a number of additional storage
units (e.g., based on one or more of a predetermination,
estimated future storage requirement, and existing storage
utilization level), identifying available storage units, and
selecting from the identified available storage units based on
the number of additional storage units.

[0087] For each encoded data slice stored in existing
storage set, the method continues at the step 602 where the
processing module utilizes a distributed agreement protocol
function to select a storage unit of the new storage set for
storage of the encoded data slice. For example, the process-
ing module performs the distributed agreement protocol
function on a slice name associated with encoded data slice
utilizing updated weights for the storage units of the existing
storage set and newly established weights for the additional
storage units of the new storage set to produce a score for
each storage unit of the storage set and identifies a storage
unit associated with a highest score of a plurality of scores
as the selected storage unit.

[0088] The method continues at the step 604 where the
processing module facilitates migration of encoded data
slice from the existing storage set to the selected storage unit
of the storage set when the encoded data slice is not
presently stored within the selected storage unit. For
example, the processing module retrieves encoded data slice
from the existing storage set and sends the encoded data
slice to the selected storage unit for storage.

[0089] The methods described above in conjunction with
the computing device and the storage units can alternatively
be performed by other modules of the dispersed storage
network or by other devices. For example, any combination
of a first module, a second module, a third module, a fourth
module, etc. of the computing device and the storage units
may perform the method described above. In addition, at
least one memory section (e.g., a first memory section, a
second memory section, a third memory section, a fourth

US 2017/0123698 Al

memory section, a fifth memory section, a sixth memory
section, etc. of a non-transitory computer readable storage
medium) that stores operational instructions can, when
executed by one or more processing modules of one or more
computing devices and/or by the storage units of the dis-
persed storage network (DSN), cause the one or more
computing devices and/or the storage units to perform any or
all of the method steps described above.

[0090] As may be used herein, the terms “substantially”
and “approximately” provides an industry-accepted toler-
ance for its corresponding term and/or relativity between
items. Such an industry-accepted tolerance ranges from less
than one percent to fifty percent. Such relativity between
items ranges from a difference of a few percent to magnitude
differences. As may also be used herein, the term(s) “con-
figured to”, “operably coupled to”, “coupled to”, and/or
“coupling” includes direct coupling between items and/or
indirect coupling between items via an intervening item
(e.g., an item includes, but is not limited to, a component, an
element, a circuit, and/or a module) where, for an example
of indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “config-
ured to”, “operable to”, “coupled to”, or “operably coupled
to” indicates that an item includes one or more of power
connections, input(s), output(s), etc., to perform, when acti-
vated, one or more its corresponding functions and may
further include inferred coupling to one or more other items.
As may still further be used herein, the term “associated
with”, includes direct and/or indirect coupling of separate
items and/or one item being embedded within another item.

[0091] As may be used herein, the term “compares favor-
ably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal A has
a greater magnitude than signal B, a favorable comparison
may be achieved when the magnitude of signal A is greater
than that of signal B or when the magnitude of signal B is
less than that of signal A. As may be used herein, the term
“compares unfavorably”, indicates that a comparison
between two or more items, signals, etc., fails to provide the

desired relationship.
[0092] As may also be used herein, the terms “processing
module”, “processing circuit”, “processor”, and/or “process-
ing unit” may be a single processing device or a plurality of
processing devices. Such a processing device may be a
microprocessor, micro-controller, digital signal processor,
microcomputet, central processing unit, field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on
hard coding of the circuitry and/or operational instructions.
The processing module, module, processing circuit, and/or
processing unit may be, or further include, memory and/or
an integrated memory element, which may be a single
memory device, a plurality of memory devices, and/or
embedded circuitry of another processing module, module,
processing circuit, and/or processing unit. Such a memory
device may be a read-only memory, random access memory,
volatile memory, non-volatile memory, static memory,

May 4, 2017

dynamic memory, flash memory, cache memory, and/or any
device that stores digital information. Note that if the
processing module, module, processing circuit, and/or pro-
cessing unit includes more than one processing device, the
processing devices may be centrally located (e.g., directly
coupled together via a wired and/or wireless bus structure)
or may be distributedly located (e.g., cloud computing via
indirect coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.

[0093] One or more embodiments have been described
above with the aid of method steps illustrating the perfor-
mance of specified functions and relationships thereof. The
boundaries and sequence of these functional building blocks
and method steps have been arbitrarily defined herein for
convenience of description. Alternate boundaries and
sequences can be defined so long as the specified functions
and relationships are appropriately performed. Any such
alternate boundaries or sequences are thus within the scope
and spirit of the claims. Further, the boundaries of these
functional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality.

[0094] To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims. One of average skill in the art will also
recognize that the functional building blocks, and other
illustrative blocks, modules and components herein, can be
implemented as illustrated or by discrete components, appli-
cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereof.

[0095] In addition, a flow diagram may include a “start”
and/or “continue” indication. The “start” and “continue”
indications reflect that the steps presented can optionally be
incorporated in or otherwise used in conjunction with other
routines. In this context, “start” indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown. Further, the “continue”
indication reflects that the steps presented may be performed
multiple times and/or may be succeeded by other activities
not specifically shown. Further, while a flow diagram indi-
cates a particular ordering of steps, other orderings are
likewise possible provided that the principles of causality
are maintained.

US 2017/0123698 Al

[0096] The one or more embodiments are used herein to
illustrate one or more aspects, one or more features, one or
more concepts, and/or one or more examples. A physical
embodiment of an apparatus, an article of manufacture, a
machine, and/or of a process may include one or more of the
aspects, features, concepts, examples, etc. described with
reference to one or more of the embodiments discussed
herein. Further, from Figure to Figure, the embodiments
may incorporate the same or similarly named functions,
steps, modules, etc. that may use the same or different
reference numbers and, as such, the functions, steps, mod-
ules, etc. may be the same or similar functions, steps,
modules, etc. or different ones.

[0097] Unless specifically stated to the contra, signals to,
from, and/or between elements in a figure of any of the
figures presented herein may be analog or digital, continu-
ous time or discrete time, and single-ended or differential.
For instance, if a signal path is shown as a single-ended path,
it also represents a differential signal path. Similarly, if a
signal path is shown as a differential path, it also represents
a single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

[0098] The term “module” is used in the description of one
or more of the embodiments. A module implements one or
more functions via a device such as a processor or other
processing device or other hardware that may include or
operate in association with a memory that stores operational
instructions. A module may operate independently and/or in
conjunction with software and/or firmware. As also used
herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

[0099] As may further be used herein, a computer readable
memory includes one or more memory elements. A memory
element may be a separate memory device, multiple
memory devices, or a set of memory locations within a
memory device. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-
volatile memory, static memory, dynamic memory, flash
memory, cache memory, and/or any device that stores digital
information. The memory device may be in a form a solid
state memory, a hard drive memory, cloud memory, thumb
drive, server memory, computing device memory, and/or
other physical medium for storing digital information. A
computer readable memory/storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0100] While particular combinations of various functions
and features of the one or more embodiments have been
expressly described herein, other combinations of these
features and functions are likewise possible. The present
disclosure is not limited by the particular examples disclosed
herein and expressly incorporates these other combinations.

What is claimed is:

1. A method of growing a dispersed storage network, the
dispersed storage network including a first set of dispersed
storage units, wherein a first dispersed storage unit of the

May 4, 2017

first set of dispersed storage units stores a first encoded data
slice and a second encoded data slice and wherein the first
encoded data slice and the second encoded data slice origi-
nate from a first data source, the method comprising:
assigning one or more additional dispersed storage units
to the dispersed storage network including the first set
of dispersed storage units to form a second set of
dispersed storage units the second set of dispersed
storage units including the first set of dispersed storage
units and the one or more additional dispersed storage
units;

reallocating the first encoded data slice from the first

dispersed storage unit to at least one of the one or more
additional dispersed storage units of the second set of
dispersed storage units that does not presently store the
first encoded data slice; and

facilitating migration of the first encoded data slice from

the first dispersed storage unit to the at least one of the
one or more additional dispersed storage units of the
second set of dispersed storage units that does not
presently store the first encoded data slice.

2. The method of claim 1, wherein the dispersed storage
units in the first set of dispersed storage units are fewer than
an information dispersal algorithm width number.

3. The method of claim 1, wherein assigning one or more
additional dispersed storage units to the dispersed storage
network comprises determining a number of additional
dispersed storage units.

4. The method of claim 3, wherein assigning one or more
additional dispersed storage units to the dispersed storage
network comprises identifying the one or more additional
dispersed storage units.

5. The method of claim 4, further comprising selecting the
one or more additional dispersed storage units identified for
assignment.

6. The method of claim 3, wherein determining the
number of additional dispersed storage units is based on one
or more of a predetermination, an estimated future storage
requirements and existing storage utilization levels.

7. The method of claim 1, wherein assigning one or more
additional dispersed storage units to the dispersed storage
network uses a distributed agreement protocol.

8. The method of claim 7, wherein the distributed agree-
ment protocol updates first weights for dispersed storage
units of the first set of dispersed storage units and establishes
second weights for the one or more additional dispersed
storage units.

9. The method of claim 1, wherein facilitating migration
comprises sending the first encoded data slice to a dispersed
storage computing device.

10. A first dispersed storage unit of a first set of dispersed
storage units for use in a dispersed storage network, the first
dispersed storage unit comprising:

a communications interface;

a memory; and

a processor;

wherein the memory includes a first encoded data slice

and a second encoded data wherein the first encoded
data slice and the second encoded data slice originate
from a first data source and wherein the memory further
includes instructions for causing the processor to:
assign one or more additional dispersed storage units to
the dispersed storage network including the first set
of dispersed storage units to form a second set of

US 2017/0123698 Al

dispersed storage units the second set of dispersed
storage units including the first set of dispersed
storage units and the one or more additional dis-
persed storage units;

reallocate the first encoded data slice from the first
dispersed storage unit to at least one of the one or
more additional dispersed storage units of the second
set of dispersed storage units that does not presently
store the first encoded data slice; and

facilitate migration of the first encoded data slice from
the first dispersed storage unit to the at least one of
the one or more additional dispersed storage units of
the second set of dispersed storage units that does not
presently store the first encoded data slice.

11. The first dispersed storage unit of claim 10, wherein
the dispersed storage units in the first set of dispersed storage
units are fewer than an information dispersal algorithm
width number.

12. The first dispersed storage unit of claim 10, wherein
the memory further comprises instructions for causing the
processor to determine a number of additional dispersed
storage units.

13. The first dispersed storage unit of claim 12, wherein
the memory further comprises instructions for causing the
processor identify the one or more additional dispersed
storage units.

14. The first dispersed storage unit of claim 13, wherein
the memory further comprises instructions for causing the
processor to select the one or more additional dispersed
storage units for assignment.

15. The first dispersed storage unit of claim 12, wherein
the instructions for causing the processor to determine a
number of additional dispersed storage units uses one or
more of a predetermination, estimated future storage
requirements and existing storage utilization levels.

16. The first dispersed storage unit of claim 10, wherein
the instructions for causing the processor to assign one or
more additional dispersed storage units to the dispersed
storage network uses a distributed agreement protocol.

17. The first dispersed storage unit of claim 16, wherein
the distributed agreement protocol is operable to update first
weights for dispersed storage units of the first set of dis-

11

May 4, 2017

persed storage units and operable to establish second
weights for the one or more additional dispersed storage
units.

18. The first dispersed storage unit of claim 10, wherein
the memory further comprises instructions for causing the
processor to send the first encoded data slice to a dispersed
storage computing device.

19. A dispersed storage network comprising:

a first set of dispersed storage units including a first

dispersed storage unit;

the first dispersed storage unit including:

a communications interface;
a memory; and
a processor;
wherein the memory includes a first encoded data
slice and a second encoded data wherein the first
encoded data slice and the second encoded data
slice originate from a first data source and wherein
the memory further includes instructions for caus-
ing the processor to:
assign one or more additional dispersed storage
units to the dispersed storage network including
the first set of dispersed storage units to form a
second set of dispersed storage units the second
set of dispersed storage units including the first
set of dispersed storage units and the one or
more additional dispersed storage units;
reallocate the first encoded data slice from the first
dispersed storage unit to at least one of the one
or more additional dispersed storage units of the
second set of dispersed storage units that does
not presently store the first encoded data slice;
and
facilitate migration of the first encoded data slice
from the first dispersed storage unit to the at
least one of the one or more additional dis-
persed storage units of the second set of dis-
persed storage units that does not presently
store the first encoded data slice.

20. The dispersed storage network of claim 19, wherein
the dispersed storage units in the first set of dispersed storage
units are fewer than an information dispersal algorithm
width number.

