
US010025929B2

(12) United States Patent
Sethumadhavan et al .

(10) Patent No . : US 10 , 025 , 929 B2
(45) Date of Patent : Jul . 17 , 2018

(54) DETECTION OF ANOMALOUS PROGRAM
EXECUTION USING HARDWARE - BASED
MICRO - ARCHITECTURAL DATA

(65) Prior Publication Data
US 2016 / 0275288 A1 Sep . 22 , 2016

Related U . S . Application Data
(60) Provisional application No . 61 / 803 , 029 , filed on Mar .

18 , 2013
(71) Applicants : THE TRUSTEES OF COLUMBIA

UNIVERSITY IN THE CITY OF
NEW YORK , New York , NY (US) ;
Lakshminarasimhan Sethumadhavan ,
New York , NY (US) ; John Demme ,
New York , NY (US) ; Jared Schmitz ,
New York , NY (US) ; Adrian Tang ,
New York , NY (US) ; Sal Stolfo , New
York , NY (US) ; Matthew Maycock ,
New York , NY (US)

(51) Int . Cl .
H04L 9 / 00 (2006 . 01)
G06F 21 / 56 (2013 . 01)

(Continued)
(52) U . S . CI .

??? . . G06F 21 / 566 (2013 . 01) ; G06F 21 / 572
(2013 . 01) ; G06N 99 / 2005 (2013 . 01) ;
(Continued)

(58) Field of Classification Search
CPC combination set (s) only .
See application file for complete search history .

p

(72) Inventors : Lakshminarasimhan Sethumadhavan ,
New York , NY (US) ; John Demme ,
New York , NY (US) ; Jared Schmitz ,
New York , NY (US) ; Adrian Tang ,
New York , NY (US) ; Sal Stolfo , New
York , NY (US) ; Matthew Maycock ,
New York , NY (US)

(56) References Cited
U . S . PATENT DOCUMENTS

7 , 590 , 880 B1
7 , 657 , 941 B1 (73) Assignee : The Trustees of Columbia University

in the City of New York , New York ,
NY (US)

9 / 2009 Hershman
2 / 2010 Zaitsev

(Continued)

FOREIGN PATENT DOCUMENTS
(*) Notice : EP 2141626 1 / 2010 Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .

(21) Appl . No . : 14 / 778 , 007

OTHER PUBLICATIONS
Notice to File a Response , Korean Application No . 10 - 2015
7027779 , dated May 12 , 2017 .

(Continued) (22) PCT Filed : Nov . 5 , 2013

PCT / US2013 / 068451
Primary Examiner — Josnel Jeudy
(74) Attorney , Agent , or Firm — Occhiuti & Rohlicek
LLP

(86) PCT No . :
$ 371 (c) (1) ,
(2) Date : Sep . 17 , 2015

(87) PCT Pub . No . : W02014 / 149080
PCT Pub . Date : Sep . 25 , 2014

(57) ABSTRACT
Disclosed are devices , systems , apparatus , methods , prod
ucts , media and other implementations , including a method

(Continued)

- 300

BEGIN

Obtain hardware - based micro - architectural
data , including hardware - based
micro - architectural counter data ,

for a hardware device executing one or
more processes .

310

320

Determine based , at least in part , on the
hardware - based micro - architectural data
whether at least one of the one or more
processes executing on the hardware
device corresponds to a malicious

process .

END

US 10 , 025 , 929 B2
Page 2

that includes obtaining hardware - based micro - architectural
data , including hardware - based micro - architectural counter
data , for a hardware device executing one or more processes ,
and determining based , at least in part , on the hardware
based micro - architectural data whether at least one of the
one or more processes executing on the hardware device
corresponds to a malicious process . In some embodiments ,
determining based on the hardware - based micro - architec
tural data whether the at least one of the one or more
processes corresponds to a malicious process may include
applying one or more machine - learning procedures to the
hardware - based micro - architectural data to determine
whether the at least one of the one or more processes
corresponds to the malicious process .

21 Claims , 9 Drawing Sheets

(51) Int . CI .
G06F 21 / 57 (2013 . 01)
GOON 99 / 00 (2010 . 01)
H04L 9 / 32 (2006 . 01)
H04L 29 / 06 (2006 . 01)
G06F 11 / 34 (2006 . 01)

(52) U . S . CI .
CPC H04L 9 / 3239 (2013 . 01) ; H04L 63 / 0428

(2013 . 01) ; G06F 11 / 3466 (2013 . 01) ; GOOF
2201 / 88 (2013 . 01) ; G06F 2221 / 034 (2013 . 01)

(56) References Cited
U . S . PATENT DOCUMENTS

Catuogno et al . , “ A Format - Independent Architecture for Run - Time
Integrity Checking of Executable Code ” , Proceedings of the 3rd
International Conference on Security in Communication Networks ,
Mar . 14 , 2003 .
Christodorescu et al . , “ Mining Specifications of Malicious Behav
ior ” , Proceedings of the oth Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering , Sep . 3 - 7 , 2007 , pp . 5 - 14 .
Hildebrandt , “ A computer architecture with hardwarebased mal
ware detection ” , 2010 International Conference on Availability ,
Reliability , and Security , Feb . 15 - 18 , 2010 , pp . 41 - 45 , Helmut
Schmidt - Univ . Hamburg , Germany .
Hypponen , “ Malware goes mobile ” , Scientific American , Nov .
2006 , pp . 70 - 77 .
Jana et al . , “ Abusing File Processing in Malware Detectors for Fun
and Profit ” , 2012 IEEE Symposium on Security and Privacy , pp .
80 - 94 , The University of Texas at Austin .
Lee et al . , " A Data Mining Framework for Building Intrusion
Detection Models ” , Proceedings of the 1999 IEEE Symposium on
Security and Privacy , pp . 120 - 132 .
Moir , Security MVP , “ Defining Malware : FAQ ” , Microsoft Technet
Library , Oct . 2003 [retrieved on Jan . 17 , 2017] Retrieved from the
Internet : < URL : http : / / technet . microsoft . com / en - us / library /
dd632948 (d = printer) . aspx > .
Notice to File a Response , Korean Application No . 10 - 2015
7027779 , dated Oct . 19 , 2016 .
Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority , or the
Declaration , International Search Report , and Written Opinion ,
PCT / US2013 / 068451 , dated May 2 , 2014 .
Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority , or the
Declaration , International Search Report , and Written Opinion ,
PCT / US2014 / 027375 , dated Aug . 8 , 2014 .
Petroni , et al . , “ Copilota Coprocessor - based Kernel Runtime
Integrity Monitor ” , Proceedings of the 13th USENIX Security
Symposium , San Diego , CA , Aug . 9 - 13 , 2004 , vol . 13 .
Tahan et al . , “ Automatic Malware Detection using Common Seg
ment , Analysis and Meta - Features ” , Journal of Machine Learning
Research 13 (2012) . [retrieved on Jul . 9 , 2014] Retrieved from the
Internet : < URL : http : / / imlr . org / papers / volume13 / tahan 12a /
tahan 12a . pdf > , pp . 949 - 979 .
Bayer et al . , " Scalable , behavior - based malware clustering , " in
NDSS , 2009 .
Caballero et al . , “ Measuring Pay - per - Install : The commoditization
of malware distribution , ” in Proceedings of the 20th USENIX
Security Symposium , Aug . 2011 .
Chien , L . OMurchu , and N . Falliere , “ W32 . Duqu : The Precursor to
the Next Stuxnet , ” in Proceedings of the 5th USENIX Workshop on
Large - Scale Exploits and Emergent Threats (LEET) , San Jose , CA ,
USA , Apr . 2012 .
Forrest et al . , “ A sense of self for unix processes , ” in Proceedings
of the 1996 IEEE Symposium on Security and Privacy , ser , SP ' 96 .
Washington , DC , USA : IEEE Computer Society , 1996 , pp . 120 - .
Isci , G . Contreras , and M . Martonosi , “ Live , runtime phase moni
toring and prediction on real systems with application to dynamic
power management , ” in Proceedings of the 39th Annual IEEE /
ACM International Symposium on Microarchitecture , ser . MICRO
39 . Washington , DC , USA : IEEE Computer Society , 2006 , pp .
359 - 370 .
Laboratory of Cryptography and System Security (CrySyS Lab) ,
“ Ky - Wiper : A Complex Malware for Targeted Attacks , " http : / /
www . crysys . hu / skywiper / skywiper . pdf , Budapest University of
Technology and Economics , Tech . Rep . v1 . 05 , May 2012 .
Lanzi et al . , “ Accessminer : using system - centric models for mal
ware protection , ” in Proceedings of the 17th ACM conference on
Computer and communications security , ser . CCS ' 10 . New York ,
NY , USA : ACM , 2010 , pp . 399 - 412 .
Rieck et al . , “ Learning and classification of malware behavior , " in
Proceedings of the 5th international conference on Detection of
Intrusions and Malware , and Vulnerability Assessment , ser . DIMVA
' 08 . Berlin , Heidelberg : Springer - Verlag , 2008 , pp . 103 - 125 .

7 , 801 , 837 B2 9 / 2010 Chang et al .
8 , 074 , 115 B2 12 / 2011 Stolfo et al .
8 , 229 , 726 B17 / 2012 Ramsay et al .
9 , 369 , 433 B1 * 6 / 2016 Paul . H04L 63 / 0227

2003 / 0070087 Al 4 / 2003 Grayaznov et al .
2007 / 0294768 A1 12 / 2007 Moskovitch et al .
2008 / 0184371 AL 7 / 2008 Moskovitch et al .
2008 / 0189530 A18 / 2008 McIntosh et al .
2009 / 0300765 A1 12 / 2009 Moskovitch et al .
2011 / 0041179 AL 2 / 2011 Stahlberg
2011 / 0228926 AL 9 / 2011 Shumow et al .
2011 / 0238855 A1 * 9 / 2011 Korsunsky GO6F 21 / 55

709 / 231
2011 / 0247071 Al 10 / 2011 Hooks et al .
2012 / 0254641 A1 10 / 2012 Rotem et al .
2012 / 0266244 A1 * 10 / 2012 Green GO6F 21 / 566

726 / 24
2012 / 0297057 AL 11 / 2012 Ghosh et al .
2014 / 0223553 A1 * 8 / 2014 Gupta . G06F 21 / 52

726 / 22
2016 / 0275289 AL 9 / 2016 Sethumadhavan

OTHER PUBLICATIONS
Office Action , Chinese Application No . 2013800766921 , dated May
4 , 2017 .
Office Action , Chinese Application No . 2014800287531 , dated Jun .
1 , 2017
Azab et al . , “ SICE : A Hardware - Level Strongly Isolated Computing
Environment for x86 Multi - core Platforms ” , Proceedings of the
18th ACM Conference on Computer and Communications Security ,
Oct . 17 - 21 , 2011 , pp . 375 - 388 .
Bailey et al . , “ Automated Classification and Analysis of Internet
Malware ” , Proceedings of the 10th International conference on
Recent Advances in Intrusion Detection , Apr . 26 , 2007 , University
of Michigan .

US 10 , 025 , 929 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Sethumadhavan , Simha , Salvatore J . Stolfo , Angelos Keromytis ,
Junfeng Yang , and David August . “ The sparchs project : Hardware
support for software security . ” In SysSec Workshap (SysSec) , 2011
First , pp . 119 - 122 , IEEE , 2011 .
Sherwood et al . , “ Discovering and exploiting program phases , "
Micro , IEEE , vol . 23 , No . 6 , pp . 84 - 93 , Nov . - Dec . 2003 .
Sherwood , S . Sair , and B . Calder , “ Phase tracking and prediction , ”
in Proceedings of the 30th annual international symposium on
Computer architecture , ser . ISCA ' 03 . New York , NY , USA : ACM ,
2003 , pp . 336 - 349 .
Ször and P . Ferrie , “ Hunting for metamorphic , ” in in Virus Bulletin
Conference , 2001 , pp . 123 - 144 .
Yuan , W . Xing , H . Chen , and B . Zang , “ Security breaches as pmu
deviation : detecting and identifying security attacks using perfor
mance counters , " in APSys , 2011 , p . 6 .
Zhou and X . Jiang , “ Dissecting android malware : Characterization
and evolution , " in Security and Privacy (SP) , 2012 IEEE Sympo
sium on , May 2012 , pp . 95 - 109 .
Borello and L Mé , " Code obfuscation techniques for metamorphic
viruses , ” Journal in Computer Virology , vol . 4 , No . 3 , pp . 211 - 220 ,
2008 .
Bruschi , L . Cavallaro , and A . Lanzi , “ An efficient technique for
preventing mimicry and impossible paths execution attacks , ” in
Performance , Computing , and Communications Conference , 2007 .
IPCCC 2007 . IEEE Internationa . IEEE , 2007 , pp . 418 - 425 .
chkrootkit , 2008 , Aprril [Online] . Available : http : / / freecode . com
projects / chkrootkit .
Clark , B . Ransford , A . Rahmati , S . Guineau , J . Sorber , K , Fu , and
W . Xu , “ WattsUpDoc : Power Side Channels to Nonintrusively
Discover Untargeted Malware on Embedded Medical Devices , " in
USENIX Workshop on Health Information Technologies , Aug
2013 .
Corelan Team , “ Corelan ROPdb , ” Jul 2011 . https : / / www . corelan .
be / index . php / security / corelan - ropdb / .
Demme , M . Maycock , J . Schmitz , A . Tang , A . Waksman , S .
Sethumadhavan , and S . Stolfo , “ On the feasibility of online mal
ware detection with performance counters , ” in Proceedings of the
40th Annual International Symposium on Computer Architecture ,
ser . ISCA ' 13 . New York , NY , USA : ACM , 2013 , pp . 559 - 570 .
Duda , P . E . Hart , and D . G . Stork , “ Pattern Classification , New
York : John Wiley & Sons , 2001 , pp . XX + 654 , isbn : 0 - 471 - 05669
3 , " J . Classif . , vol . 24 , No . 2 , pp . 305 - 307 , Sep . 2007 .
Fewer , S . , “ Reflective DLL injection , ” Oct . 2008 .
Gonzalez and J . H . Reed , “ Detecting unauthorized software execu
tion in sdr using power fingerprinting , " in Military Communications
Conference , 2010 - MILCOM 2010 . IEEE , 2010 , pp . 2211 - 2216 .
Henning , “ Spec cpu2006 benchmark descriptions , " SIGARCH
Comput . Archit . News , vol . 34 , No . 4 , pp . 1 - 17 , Sep . 2006 .
Hoffmann , S . Neumann , and T . Holz , “ Mobile malware detection
based on energy fingerprints — a dead end ? ” in Research in Attacks ,
Intrusions , and Defenses . Springer , 2013 , pp . 348 - 368 .
Hofmeyr , S . Forrest , and A . Somayaji , “ Intrusion detection using
sequences of system calls , ” Journal of computer security , vol . 6 , No .
3 , pp . 151 - 180 , 1998 .
Hoste and L . Eeckhout , “ Comparing Benchmarks Using Key
Microarchitecture - independent Characteristics , ” in Workload Char
acterization , 2006 IEEE International Symposium on IEEE , Oct .
2006 , pp . 83 - 92 .
Kayaalp , T . Schmitt , J . Nomani , D . Ponomarev , and N . B . Abu
Ghazaleh , “ Scrap : Architecture for signature - based protection from
code reuse attacks , ” in HPCA , 2013 , pp . 258 - 269 .
Kim , J . Smith , and K . G . Shin , “ Detecting energy - greedy anomalies
and mobile malware variants , ” in Proceedings of the 6th interna
tional conference on Mobile systems , applications , and services .
ACM , 2008 , pp . 239 - 252 .
Kong , D . Tian , P . Liu , and D . Wu , “ Sa3 : Automatic semantic aware
attribution analysis of remote exploits , " in Security and Privacy in
Communication Networks . Springer , 2012 , pp . 190 - 208 .

Krügel , T . Toth , and E . Kirda , “ Service specific anomaly detection
for network intrusion detection , ” in Proceedings of the 2002 ACM
symposium on Applied computing . ACM , 2002 , pp . 201 - 208 .
Mahoney , “ Network traffic anomaly detection based on packet
bytes , ” in Proceedings of the 2003 ACM symposium on Applied
computing . ACM , 2003 , pp . 346 - 350 .
Malone , M . Zahran , and R . Karri , “ Are hardware performance
counters a cost effective way for integrity checking of programs , "
in Proceedings of the sixth ACM workshop on Scalable trusted
computing , ser . STC ’ 11 . New York , NY , USA : ACM , 2011 , pp .
71 - 76 .
Marceau , “ Characterizing the behavior of a program using
multiplelength n - grams , ” in Proceedings of the 2000 workshop on
New security paradigms . ACM , 2001 , pp . 101 - 110 .
Matias , Linux rootkit implementation . Dec . , 2011 [online] Avail
able : http : / / average - coder . blogspot . com / 2011 / 12 / linux - rootkit . html .
Osvik , A . Shamir , and E . Tromer , “ Cache attacks and countermea
sures : the case of aes , ” in Proceedings of the 2006 The Cryptog
raphers ' Track at the RSA conference on Topics in Cryptology , ser .
CT - RSA ' 06 . Berlin , Heidelberg : Springer - Verlag , 2006 , pp . 1 - 20 .
Pappas , M . Polychronakis , and A . D . Keromytis , “ Transparent rop
exploit mitigation using indirect branch tracing , ” in Proceedings of
the 22nd USENIX conference on Security , ser , SEC ’ 13 . Berkeley ,
CA , USA : USENIX Association , 2013 , pp . 447 - 462 .
Peisert , M . Bishop , S . Karin , and K . Marzullo , “ Analysis of
computer intrusions using sequences of function calls , ” Dependable
and Secure Computing , IEEE Transactions on , vol . 4 , No . 2 , pp .
137 - 150 , 2007 .
Polychronakis , K . G . Anagnostakis , and E . P . Markatos , “ Compre
hensive shellcode detection using runtime heuristics , ” in Proceed
ings of the 26th Annual Computer Security Applications Confer
ence . ACM , 2010 , pp . 287 - 296 .
Polychronakis , K . G . Anagnostakis , and E . P . Markatos ,
“ Emulationbased detection of non - self - contained polymorphic
shellcode , ” in Recent Advances in Intrusion Detection . Springer ,
2007 , pp . 87 - 106 .
The rootkit hunter project . May , 2012 [Online] . Available : http : / /
rkhunter . sourceforge . net / .
Schölkopf , J . C . Platt , J . C . Shawe - Taylor , A . J . Smola , and R . C .
Williamson , “ Estimating the support of a high - dimensional distri
bution , " Neural Comput . , vol . 13 , No . 7 , pp . 1443 - 1471 , Jul . 2001 .
Szor , The art of computer virus research and defense . Pearson
Education , 2005 .
Sekar , M . Bendre , D . Dhurjati , and P . Bollineni , “ A fast
automatonbased method for detecting anomalous program behav
iors , " in Security and Privacy , 2001 , S & P 2001 . Proceedings . 2001
IEEE Symposium on . IEEE , 2001 , pp . 144 - 155 .
Shen , M . Zhong , S . Dwarkadas , C . Li , C . Stewart , and X . Zhang ,
“ Hardware counter driven on - the - fly request signatures , ” in Pro
ceedings of the 13th international conference on Architectural
support for programming languages and operating systems , ser .
ASPLOS XIII . New York , NY , USA : ACM , 2008 , pp . 189 - 200 .
Somayaji and S . Forrest , “ Automated response using system - call
delays , ” in Proceedings of the 9th USENIX Security Symposium ,
vol . 70 , 2000 .
Stewin , “ A primitive for revealing stealthy peripheral - based attacks
on the computing platform ' s main memory , ” in Research in Attacks ,
Intrusions , and Defenses . Springer , 2013 , pp . 1 - 20 .
Stone - Gross et al . , “ The underground economy of fake antivirus
software , ” in Economics of Information Security and Privacy III , B .
Schneier , Ed . Springer New York , 2013 , pp , 55 - 73 .
Trend Micro , “ The crimeware evolution , ” http : / / www . trendmicro .
com / cloud - content / us / pdfs / security - intelligence / white - papers / wp
the - crimeware - evolution . pdf , 2012 .
Trend Micro Corporation , “ Russian underground 2 . 0 . ” Feb . 20 ,
2018 .
Wang , J . J . Parekh , and S . J . Stoifo , “ Anagram : A content anomaly
detector resistant to mimicry attack , ” in Recent Advances in Intru
sion Detection . Springer , 2006 , pp . 226 - 248 .
Wang and R . Karri , “ Numchecker : detecting kernel control - flow
modifying rootkits by using hardware performance counters , " in
Proceedings of the 50th Annual Design Automation Conference , ser .
DAC ' 13 . New York , NY , USA : ACM , 2013 , pp . 79 : 1 - 79 : 7 .

US 10 , 025 , 929 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Xia , Y . Liu , H . Chen , and B . Zang , “ CFIMon : Detecting violation
of control flow integrity using performance counters , ” in Proceed
ings of the 2012 42nd Annual IEEE / IFIP International Conference
on Dependable Systems and Networks (DSN) , ser . DSN ’ 12 .
Washington , DC , USA : IEEE Computer Society , 2012 , pp . 1 - 12 .
Zhang Guang - hui , Shen Jian - mai , Nie Zhen - Iong , Wang Jin - zhe ,
Yan Ming - jiang , Hao Ming - liang , “ Theory and methodology of
regional groundwater function and sustainable utilization assess
ment in China " Institute of Hydrogeology and Environmental
Geology , CAGS , Shijiazhuang 050061 China , Apr . 2006 : pp . 161
185 [English Abstract Included] .

* cited by examiner

US 10 , 025 , 929 B2

wwwwwwwwwww

wwwwwwwwwwwwwwwww

wwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwww

2 . . 1

.

.

. .

WWIINIT mrem

p ro TTT

MWILI 1 . MILWruth TINTA

nh

Sheet 1 of 9 Sheet 1 of 9

LIT

LOE
w enig Mormomather than tomything when the partnerin tudi mana tahu apa yang mamamayan ang

they may pin a ghi loriy human who hadhara Www www maudhuwuwnyw marathongmalighartinya fehled fish that we have m

a ny

Montana nude fumaythan that one month only hundert hanythmethanae whiwhy than hantaran pera wan Muhamyra drewnythynnummy parent w indow internationality man this wakiormámour damai bandaran mimwwwwwwwwwwwwamang lah yang hanya tern et

wwwwwwwwwwwwwwwrotympanhinyn dahil sa w wwwww

another on the who wantemente m r thyglinni mwa mwanayoenampanyenan Lormaran putihmon protesqueleton w ym wymaganing point that is why the hunting english authention W WWWWWWWW photos to water was honnementalemw a wadhamini na malishindana nakon
- - - - - - - - - - - - - - - - - Tag

AUTOMOTI10 hours
moun yo pa remain hom itments

Xalanc astar astar omnetpp h264 libquantum sjeng / hmmer mcf / bzip2 bzip2 bzip2

TITITITITETIT playing
Jul . 17 , 2018 Jul . 17 , 2018

11h

MIN Well we will be will

.

. . . .

.

. .

. . .

112

TIFTE

atent U . S . Patent

Arithmetic Ops Executed Branch Instructions Executed 104

L2 Load Requests

102

L1 Exclusive Hits

U . S . Patent

200

210

atent

LLLL LLLL

-

-

-

-

-

-

-

-

P

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- I

-

-

220

-

216

- -

-

-

-

-

-

-

-

Old Malware

?

Classifier 1

-

-

-

-

DAMD

-

-

New Malware

-

ANDROID

214

Classifier 2

Jul . 17 , 2018

- - -

PANDABOARD

- -

u

Goodware

Classifier 3

- - - - - -

-
Performance

Counter Sampling

Performance Counter Database

- - -

- - - - -

Side Channel

Classifier N - 2

-

Sheet 2 of 9

- -

Rootkits

X86 L ' INUX

Classifier N - 1)

- - -

- 216n |

-

Goodware

-

vlasner N Classifier N

-

-

-

- - - -

222

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

FIG . 2

US 10 , 025 , 929 B2

U . S . Patent Jul . 17 , 2018 Sheet 3 of 9 US 10 , 025 , 929 B2

- 300

BEGIN

Obtain hardware - based micro - architectural
data , including hardware - based
micro - architectural counter data ,

for a hardware device executing one or
more processes .

310

320

Determine based , at least in part , on the
hardware - based micro - architectural data
whether at least one of the one or more
processes executing on the hardware
device corresponds to a malicious

process .

(END END)

FIG . 3

atent Jul . 17 , 2018 Sheet 4 of 9 US 10 , 025 , 929 B2

420
Monitor

4000

- - - - - - - - - - - - -

412 414

Storage
Processor

416

Keyboard
Controller device

-

410

NOC : Rx for
performance
cntr . data ,
Tx : security
exceptions

Strongly
Isolated
Core

413
- - - - - - - - - - -

* * *

La

- - - - - - -

Isolated
Secure Bus ! - - -

412

FIG . 4

U . S . Patent Jul . 17 , 2018 Sheet 5 of 9 US 10 , 025 , 929 B2

r500
502

7
lo o

1 Ñ

7 15

9 33

- 2 - - - - 2387
0

25
83 181

Malware Training Testing Correctly
Family APKs Threads Threads Identified | Rate 1504
Tapsnake Tapsnake 1 31 31 3 13 100 %
Zitmo 5 100 %
Loozfon 1 25 25 17 100 %
android
Android . Steek 3 19 100 %
Android . Trojan .
Qicsomos 11 112 12 100 %
CruseWin 11 2 4 100 %
Jifake 100 %
AnserverBot 9716 11904 11505 96 . 6 %
Gone60 1933 67 159 88 . 1 %
YZHC 87 . 5 %
FakePlayer 16 17 T1511386 . 7 % 15 13 86 . 7 %
LoveTrap 1 15 16 85 . 7 %
Bgserv 119 177 151 85 . 3 %
KMIN 40 43 30 83 . 3 %
DroidDreamLight 146 101 82 . 2 %
HippoSMS 4 127 128 82 . 1 %
Dropdialerab 18 * | 16 * 81 . 3 %
Zsone 12 44 80 . 8 %
Endofday 1 11 80 . 0 %
Angry Birds
LeNa . C 1 40 * 19 79 . 2 %
¡ SMSHider 16 101 89 70 78 . 7 %
Plankton 25 231 551 432 | 78 . 4 %
PJAPPS 16 124 174 136 78 . 2 %
Android . Sumzand 1 77 . 8 %
RogueSPPush 9 236 237 184 77 . 6 %
FakeNetflix 27 8 75 . 0 %
GEINIMI 28 189 203 154 75 . 9 %
SndApps 10 110 77 72 . 7 %
GoldDream 47 1160 237 169 71 . 3 %
CoinPirate 70 . 0 %
BASEBRIDGE 14 * 63 . 8 %
DougaLeaker . A 35 * 62 . 9 %
NewZitmo 62 . 5 %
BeanBot 60 . 2 %
GGTracker 60 . 0 %
FakeAngry 17 7 10 15 50 . 0 %
DogWars Dog Wars 11 14 14 18 2 25 . 0 %

???
10 F

P
- 24 *

18

56

1 7 10
72 46

* 22

_ 001 122 156 93
15 16

FIG . 5

U . S . Patent Jul . 17 , 2018 Sheet 6 of 9 US 10 , 025 , 929 B2

r600
Accuracy of Malware Classifiers

' P UTITYTTTT person to the property tapetype
moder

fashion
extenders the

— KNN
+ - - - + Decision Tree
- - - - Tensor
- - Random Forest
Y - - Y FANN make me formation after that on the

members

o
o

t

t

8

Fraction of Malware Threads Identified Correctly Ø
Å

13 .
O 20 40 60

False Postive Rate
80 100

FIG . 6

700

- KNN
+ - + Decision Tree
- - - Tensor
- Random Forest
Y - Y FANN

Is

KNN - Decision Tree
- - - Tensor
- Random Forest
Y - Y FANN

netstat

atent

Combined Rootkit Classifier
A

Fraction of Malware Threads
Identified Correctly

888

808 jo

Fraction of Malware Threads
Identified Correctly

Jul . 17 , 2018

an

8 8 8
Fraction of Malware Threads Identified Correctly

8 8

Om

0

KNN + - - + Decision Tree - - - Tensor
- - - Random Forest
Y - FANN

0 20 40 60 80 100 False Positive Rate
KNN + Decision Tree

- - - Tensor
* Random Forest
Y - Y FANN

20 40 60 80 100 False Positive Rate
| - - KNN

+ + Decision Tree
- - - Tensor
- Random Forest
Y - FANN

who

Sheet 7 of 9

ps

20

40 60 False Positive Rate

80

100

8 .

Fraction of Malware Threads
Identified Correctly

o Ø 8 8 8 8

Fraction of Malware Threads
Identified Correctly
So

20 40 60 80 100 False Positive Rate

20 40 60 80 100 False Positive Rate

FIG . 7

US 10 , 025 , 929 B2

U . S . Patent Jul . 17 , 2018 Sheet 8 of 9 US 10 , 025 , 929 B2

r 800
AT THE MALWARE VENDOR

- - - - - - - - - - - -

- -

- - - - -

| 1 : Encrypt Update Payload with AES key
2 : Take SHA - 2 Hash of Update Payload
3 : Include Hash of Verification Key
4 : Sign Hash and AES Key w / AV Signing key

- - - - - - - - - - - - -

UPDATE
ENCRYPTED
WI AES SIGNING KEY
ACTION ENCRYPTED

PROGRAM VERIF KEY
TRAINED HASH

CLASSIFIER SHA - 2 PERF . HASH FEATURES
REVISION AES KEY

FIG . 8A

atent Jul . 17 , 2018 Sheet 9 of 9 US 10 , 025 , 929 B2

. 850

DURING HARDWARE UPDATE

Apply Update 895

1 Yes
- 890

855 Check Revision
is the Current HW

Revision Receive Payload

- 860 - 885 Unencrypt with verif
| key embedded in HW

Decrypt payload w /
AES Key

1 Yes
- 875 - 865

Verify Hash of
Verif Key matches hash Yes

o verif key on chip

Check integrity
of payload with
SHA - 2 hash

INo 880 INo
Stop Stop

7870
) Stop

FIG . 8B

US 10 , 025 , 929 B2

- continued DETECTION OF ANOMALOUS PROGRAM
EXECUTION USING HARDWARE - BASED

MICRO - ARCHITECTURAL DATA Malware Brief Description

SpyWare

20

Malware that secretly observes and reports on
CROSS - REFERENCE TO RELATED users computer usage and personal information

APPLICATIONS accessible therein .
Botnet Malware that employs a user ' s computer as a

member of a network of infected computers This application claims the benefit of , and priority to , controlled by a central malicious agency .
International Application No . PCT / US2013 / 068451 , entitled Rootkit A malware package that exploits security holes

“ DETECTION OF ANOMALOUS PROGRAM EXECU in the operating system to gain superuser
access . Usually , a rootkit attempts to hide its TION USING HARDWARE - BASED MICRO - ARCHI existence while performing malicious

TECTURAL DATA , " and filed Nov . 5 , 2013 , which claims superuser activities by tampering with the file
the benefit of , and priority to , provisional U . S . application system .

Ser . No . 61 / 803 , 029 entitled “ SYSTEMS AND METHODS 15
TO DETECT ANOMALOUS PROGRAM EXECUTION Malicious processes , such as malware , were originally
USING PROCESSOR MICROARCHITECTURAL created to attain notoriety or for fun , but today malware
EVENTS , ” and filed Mar . 18 , 2013 , the contents of all of deployment is mostly motivated by economic gains . There
which are incorporated herein by reference in their entire are reports of active underground markets for personal

information , credit cards , logins into sensitive machines in ties . the United States , etc . Also , malicious processes such as
STATEMENT REGARDING FEDERALLY malware have been developed to target specific computers

for industrial espionage purposes and / or for sabotage .
SPONSORED RESEARCH

SUMMARY
This invention was made with government support under 25

grant FA 8750 - 10 - 2 - 0253 awarded by the Air Force The devices , systems , apparatus , methods , products ,
Research Laboratory , Information Directorate . The Govern media and other implementations disclosed herein include a
ment has certain rights in the invention . method including obtaining hardware - based micro - architec

tural data , including hardware - based micro - architectural
BACKGROUND 30 counter data , for a hardware device executing one or more

processes , and determining based , at least in part , on the
The proliferation of computers in a particular domain is hardware - based micro - architectural data whether at least

one of the one or more processes executing on the hardware generally followed by the proliferation of malicious pro device corresponds to a malicious process .
cesses (e . g . , malware) in that domain . For example , systems Embodiments of the method may include at least some of
that include the latest Android devices are laden with the features described in the present disclosure , including
viruses , rootkits spyware , adware and other classes of mali - one or more of the following features .
cious processes . Despite the existence of anti - virus software , Obtaining the hardware - based micro - architectural data
malware threats (as well as threats from other types of may include obtaining the hardware - based micro - architec
malicious processes) persist and are growing . Unfortunately , tural data at various time instances .
there exist myriad ways to subvert commercial anti - virus 40 Obtaining the hardware - based micro - architectural data at
software , including simply disabling the anti - virus . Further the various time instances may include performing one or

more of , for example , a data push operation initiated by the more , malware can mutate into new variants , which makes
static detection of malware difficult . hardware device to send the micro - architectural data , and / or

Examples of some common malware processes are pro - 45 the micro - architectural data
a data pull operation , initiated by an antivirus engine , to send

vided below : Obtaining the hardware - based micro - architectural data
may include obtaining multi - core hardware - based micro
architectural data resulting from execution of the one or Malware Brief Description more processes on a processor device with multiple proces

Worm Malware that propagates itself from one 50 sor cores , and correlating the respective hardware - based
infected host to other hosts via exploits micro - architectural data obtained from each of the multiple available on the surface (system call interfaces) processor cores to the one or more processes . of the operating system .

Virus Malware that attaches itself to running Determining based on the hardware - based micro - archi
programs and spreads itself through users ' tectural data whether the at least one of the one or more
interactions with various systems . 55 processes corresponds to a malicious process may include

Polymorphic Virus A virus that , when replicating to attach to a applying one or more machine - learning procedures to the new target , alters its payload to evade
detection , i . e . , takes on a different shape but hardware - based micro - architectural data to determine
performs the same function . whether the at least one of the one or more processes

Metamorphic Virus A virus that , when replicating to attach to a corresponds to the malicious process . new target , alters both the payload and
functionality , including the framework for 60 Applying the one or more machine - learning procedures to
generating future changes . the hardware - based micro - architectural data to determine

Trojan Malware that masquerades as non - malware and whether the at least one of the one or more processes
acts maliciously once installed (opening corresponds to the malicious process may include matching
backdoors , interfering with system behavior , the obtained hardware - based micro - architectural data to etc .)

AdWare Malware that forces the user to deal with 65 previously identified patterns of hardware - based micro - ar
unwanted advertisements . chitectural data associated with one or more malicious

processes .

US 10 , 025 , 929 B2

The method may further include obtaining updates for the micro - architectural data to previously identified patterns of
previously identified patterns of hardware - based micro - ar hardware - based micro - architectural data associated with one
chitectural data associated with the one or more malicious or more malicious processes .
processes . The antivirus engine may further be configured to obtain

Obtaining the updates may include downloading 5 updates for the previously identified patterns of hardware
encrypted data for the previously identified patterns of based micro - architectural data associated with the one or
hardware - based micro - architectural data associated with the more malicious processes .
one or more malicious processes to an antivirus engine in In some variations , a computer readable media storing a
communication with the hardware device providing the set of instructions executable on at least one programmable
hardware - based micro - architectural data , decrypting at the 10 device is provided . The set of instructions , when executed ,
antivirus engine the downloaded encrypted data for the causes operations including obtaining hardware - based
previously identified patterns of hardware - based micro - ar - micro - architectural data , including hardware - based micro
chitectural data associated with the one or more malicious architectural counter data , for a hardware device executing
processes , and updating a revision counter maintained by the one or more processes , and determining based , at least in
antivirus engine indicating a revision number of a most 15 part , on the hardware - based micro - architectural data
recent update of the previously identified patterns of hard whether at least one of the one or more processes executing
ware - based micro - architectural data . on the hardware device corresponds to a malicious process .

The one or more machine learning procedures may Embodiments of the computer readable media may
include one or more of , for example , a k - nearest neighbor include at least some of the features described in the present
procedure , a decision tree procedure , a random forest pro - 20 disclosure , including at least some of the features described
cedure , an artificial neural network procedure , a tensor above in relation to the method and the system .
density procedure , and / or a hidden Markov model proce In some variations , an apparatus is provided . The appa
dure . ratus includes means for obtaining hardware - based micro

The malicious process may include one or more of , for architectural data , including hardware - based micro - architec
example , a malware process , and / or a side - channel attack 25 tural counter data , for a hardware device executing one or
process . more processes , and means for determining based , at least in

The hardware - based micro - architectural data may include part , on the hardware - based micro - architectural data
one or more of , for example , processor load density data , whether at least one of the one or more processes executing
branch prediction performance data , and / or data regarding on the hardware device corresponds to a malicious process .
instruction cache misses . 30 Embodiments of the apparatus may include at least some

In some variations , a system is provided that includes a of the features described in the present disclosure , including
hardware device executing one or more processes , and an at least some of the features described above in relation to
antivirus engine in communication with the hardware the method , the system , and the computer readable media .
device . The antivirus engine is configured obtain hardware - Unless defined otherwise , all technical and scientific
based micro - architectural data , including hardware - based 35 terms used herein have the same meaning as commonly or
micro - architectural counter data , for the hardware device conventionally understood . As used herein , the articles “ a ”
executing the one or more processes , and determine based , and “ an ” refer to one or to more than one (i . e . , to at least one)
at least in part , on the hardware - based micro - architectural of the grammatical object of the article . By way of example ,
data whether at least one of the one or more processes “ an element ” means one element or more than one element .
executing on the hardware device corresponds to a malicious 40 “ About ” and / or " approximately ” as used herein when refer
process . ring to a measurable value such as an amount , a temporal

Embodiments of the system may include at least some of duration , and the like , is meant to encompass variations of
the features described in the present disclosure , including at + 20 % or + 10 % , 15 % , or + 0 . 1 % from the specified value , as
least some of the features described above in relation to the such variations are appropriate to in the context of the
method , as well as one or more of the following features . 45 systems , devices , circuits , methods , and other implementa

The antivirus engine configured to obtain the hardware - tions described herein . “ Substantially ” as used herein when
based micro - architectural data may be configured to obtain referring to a measurable value such as an amount , a
the hardware - based micro - architectural data at various time temporal duration , a physical attribute (such as frequency) ,
instances . and the like , is also meant to encompass variations of + 20 %

The antivirus engine configured to obtain the hardware - 50 or + 10 % , 25 % , or + 0 . 1 % from the specified value , as such
based micro - architectural data at the various time instances variations are appropriate to in the context of the systems ,
may be configured to receive the micro - architectural data in devices , circuits , methods , and other implementations
response to one or more of , for example , a data push described herein .
operation initiated by the hardware device , and / or a data pull As used herein , including in the claims , “ or ” or “ and ” as
operation initiated by the antivirus engine . 55 used in a list of items prefaced by " at least one of " or " one

The antivirus engine configured to determine based on the or more of indicates that any combination of the listed
hardware - based micro - architectural data whether the at least items may be used . For example , a list of at least one of A ,
one of the one or more processes corresponds to a malicious B , or C ” includes any of the combinations A or B or C or AB
process may be configured to apply one or more machine - or AC or BC and / or ABC (i . e . , A and B and C) . Furthermore ,
learning procedures to the hardware - based micro - architec - 60 to the extent more than one occurrence or use of the items
tural data to determine whether the at least one of the one or A , B , or C is possible , multiple uses of A , B , and / or C may
more processes corresponds to the malicious process . form part of the contemplated combinations . For example , a

The antivirus engine configured to apply the one or more list of “ at least one of A , B , or C " may also include AA ,
machine learning procedures to the hardware - based micro - AAB , AAA , BB , etc .
architectural data to determine whether the at least one of the 65 As used herein , including in the claims , unless otherwise
one or more processes corresponds to the malicious process stated , a statement that a function , operation , or feature , is
may be configured to match the obtained hardware - based “ based on ” an item and / or condition means that the function ,

US 10 , 025 , 929 B2

operation , function is based on the stated item and / or con example , FIG . 1 , providing example illustrations of micro
dition and may be based on one or more items and / or architectural activity graphs for several different processes ,
conditions in addition to the stated item and / or condition . show that the micro - architectural behavior for different

Details of one or more implementations are set forth in the processes (in the example of FIG . 1 , the processes were from
accompanying drawings and in the description below . Fur - 5 the SPEC benchmark suite) tend to be different , resulting in
ther features , aspects , and advantages will become apparent different hardware micro - architectural traces or patterns . For
from the description , the drawings , and the claims . example , as shown in FIG . 1 , the behavior for the L1

exclusive hits and the executed branch instructions moni
BRIEF DESCRIPTION OF THE DRAWINGS tored for the bzip2 ' process (as illustrated in graphs 102 and

10 104) is different from the behavior for the L1 exclusive hits
These and other aspects will now be described in detail and the executed branch instructions for the ‘ mcf process

with reference to the following drawings . (illustrated in graphs 112 and 114) , which in turn is different
FIG . 1 includes example illustrations of graphs of hard from the behavior for the Ll exclusive hits and the executed

ware micro - architectural activity for several different pro - branch instructions for the ' sjeng ' process (illustrated in
cesses . 15 graphs 122 and 124) . It is to be noted that monitoring the

FIG . 2 is a schematic diagram of an example system to micro - architectural behavior may be facilitated by specific
detect malicious processes built - in counters , and / or may be achieved by measuring

FIG . 3 is a flow chart of an example procedure to detect monitoring occurrences of event at specific points on the
malicious processes . circuits of the hardware device being monitored .

FIG . 4 is a schematic diagram of an example system in 20 Accordingly , processes executing on a hardware device
which an AV engine is implemented . (e . g . , hardware - based controller device) may be distin

FIG . 5 is a table of Android malware families , and guished (and thus identified) based on such time - varying
detection results therefor , tested using , for example , the micro - architectural signatures / traces . Generally , minor
systems and procedures of FIGS . 2 - 4 . variations in the exact implementation of a particular pro

FIG . 6 is a graph illustrating accuracy of various binary 25 cess do not significantly affect the generated hardware - based
classifiers when applied to micro - architectural data pro - micro - architectural traces resulting from the process , and ,
duced , in part , by Android malware . therefore , identifying the process and / or a determining

FIG . 7 includes graphs showing the accuracy of classifiers whether the process is malicious or not (e . g . , via machine
when applied to rootkits processes . learning classification procedures , heuristic and non - heuris

FIG . 8A is a schematic diagram of an example security 30 tic procedures analyzing the micro - architectural data , etc .)
update payload . can still be performed . This is because regardless of how a

FIG . 8B is a flowchart of an example procedure to receive malicious process (e . g . , malware) writers change the under
a security update payload and update the configuration of an lying implementation (e . g . , the software program) , the
AV engine . semantics of the process do not change significantly . For

Like reference symbols in the various drawings indicate 35 instance , if a piece of malware is designed to collect and log
like elements . GPS data , then no matter how its writer re - arranges the code ,

the process will still have to collect and log GPS data . In
DESCRIPTION other words , the activity phases characterizing the process

will generally remain regardless of the specific implemen
Described herein are systems , devices , apparatus , com - 40 tation of the process . Additionally , a particular task that

puter program products , and other implementations for needs to be accomplished will include various sub - tasks that
detection of anomalous program execution processes , such cannot be significantly modified . For example , a GPS logger
as malware . In some implementations , hardware - based will always have to warm up the GPS , wait for signals ,
micro - architectural data , including hardware - based micro decode the data , log it , and , at some future point , exfiltrate
architectural counter data (e . g . , from hardware - based per - 45 the data back to the rogue user (privacy thief) seeking to
formance counters) is obtained from a hardware device obtain the data . As a result of these generally invariant
(such as a processor / computing - based device) , and analyzed operations required to accomplish particular tasks or pro
(e . g . , to analyze the temporal behavior of executing pro - cesses , particular phases of the malicious process ' execution
cesses that resulted in the micro - architectural data) using remain relatively invariant for different implementation
machine - learning procedures (e . g . , classification proce - 50 variations .
dures) , to identify malicious processes from one or more Thus , hardware - based micro - architectural data (e . g . , data
processes executing on the hardware device being monitored from hardware performance counters) such as processor

Generally , processes executing on a hardware - imple - load density data , branch prediction performance data , data
mented controller device (be it a general - purpose processor , regarding instruction cache misses , etc . , can be used to
an application - specific controller , etc .) exhibit phase behav - 55 identify malware and / or other types of malicious processes .
ior . A process (be it a malicious or non - malicious process) Experimental results (more particularly discusses below)
that is configured to achieve a particular functionality may show that the detection techniques / procedures described
perform activity A for a while , then switch to activity B , then herein tend to be robust to variations in malware programs
to activity C . Although such a process may alternate in the (or other types of malicious processes) . Thus , after exam
exact order of performance of the activities , typically the 60 ining a small set of variations within a family of malware on
process would need to perform activities A , B , and C to a processing platform (e . g . , Android ARM and Intel Linux
accomplish its particular functionality . The activity phases platforms) , many variations within that family may be
that correspond to a particular process typically correspond substantially accurately detected . Further , various imple
to patterns in architectural and micro - architectural events . mentations described herein enable malicious process detec
Additionally , different processes (e . g . , different programs 65 tors , such as the detectors described herein , to run securely
configured to perform different functionalities) result in beneath the system software , thus reducing , or all together
different hardware - based micro - architectural behavior . For avoiding , the danger of being turned off .

4

US 10 , 025 , 929 B2

Accordingly , in some embodiments , methods , systems , Examples of common counters (feature event number
devices , products , and other implementations are disclosed assignments) on the ARM Cortex - A9 cores architecture ,
that include a method including obtaining hardware - based through which micro - architectural data can be obtained ,
micro - architectural data , including , for example , hardware - include event numbers :
based micro - architectural counter data , for a hardware 5 Ox06 — Memory - reading instruction architecturally
device executing one or more processes , and determining executed (counter increments for every instruction that
based , at least in part , on the hardware - based micro - archi explicitly read data) ;

tectural data whether at least one of the one or more 0x07 — Memory - writing instruction architecturally
processes executing on the processor - based system corre executed (counter increments for every instruction that

10 sponds to a malicious process . The malicious process being explicitly wrote data) ;
identified / detected may include one or more of , for example , Ox0C — Software change of PC , except by an exception ,

architecturally executed (counter does not increment a malware process , and / or a side - channel attack process . for a conditional instruction that fails its condition With reference to FIG . 2 , a schematic diagram of an code) ;
example system 200 to detect and / or resolve malicious 15 . OxOD _ Immediate branch architecturally executed (coun
processes is shown . The system 200 includes an antivirus ter counts for all immediate branch instructions that are (AV) engine 210 that comprises , in some embodiments , a architecturally executed) ;
performance counter sampling unit (also referred to as a OxOF _ Unaligned access architecturally executed (coun
" sampler ”) 212 , a performance counter database 214 that ter counts each instruction that is an access to an
stores / maintains representative micro - architectural profiles 20 unaligned address) ; and
or signatures (including performance counter profiles or Ox12 _ Counter counts branch or other change in program
signatures) corresponding to various processes (including flow that could have been predicted by the branch
malware processes) , and micro - architectural data collected prediction resources of the processor .
by the sampling unit 212 , and a classifier 216 configured to Additional information on micro - architectural counters
analyze the collected hardware micro - architectural data to 25 that may be implemented on the ARM Cortex - A9 cores
determine if the one or more processes running on the architecture is provided , for example , at “ ARM® Architec
hardware device being observed / monitored includes at least ture Reference Manual , Arm®7 - A and ARM®v7 - R edi
one malicious process (in some embodiments , the classifier tion , Errata markup , " the content of which is incorporated
216 may also be configured to more particularly identify herein by reference in its entirety .
such a malicious process) . The AV engine 210 is generally 30 In some embodiments , the sampling unit 212 may be

configured to obtain hardware micro - architectural data (in in communication with one or more hardware devices such cluding micro - architectural performance counter data) from as processor devices 220 and / or 222 shown in FIG . 2 . the counters of the hardware monitored through data push The sampling unit 212 is configured to obtain hardware procedures and / or through data pull procedures . For
based micro - architectural data , including , for example , hard 35 example , when pulling data , the AV engine 210 initiates the
ware - based micro - architectural performance counter data data collection , causing hardware targets (e . g . , specific hard
from the one or more hardware - devices , which may include ware performance counters implemented in the hardware
devices such as controller devices , e . g . , processor devices being monitored) to be accessed by , for example , interrupt
such as the devices 220 and 222 , or any other type of ing execution of the counters and / or querying the counters
controller devices including controller devices implemented 40 without interruptions . In some embodiments , the AV engine
using modules such as an FPGA (field programmable gate 210 may be configured , e . g . , via the sampling module 212 ,
array) , an ASIC (application - specific integrated circuit) , a to interrupts the hardware once every N cycles (where N
DSP processor , etc . Generally , hardware - based controller may be a constant pre - determined number , or may be a
devices include hardware - related performance counters that varying number , e . g . , based on a random or pseudo - random
may be configured to count a variety of events such as 45 generator) , and sample the various performancelevent coun
cycles , instructions , cache misses , etc . In some implemen - ters , as well as other values (e . g . , the currently executing
tations , these performance counters are used to assist in process ' PID) . When performing sampling operations using
software performance optimization . For example , the Intel an interrupt - based procedure , the sampling unit 212 may be
For x86 processor device implements four (4) configurable configured to send control signals or otherwise cause the
performance counters , and the OMAP4460 processor with 50 executing hardware to be interrupted , access the perfor
dual ARM Cortex - A9 cores includes six (6) configurable mance counters and / or other storage hardware , and retrieve
performance counters . The AV engine 210 is implemented to the values stored on the counters of the interrupted hardware
obtain micro - architectural data (e . g . , performance counter for further processing by the AV engine 210 . In some
data) from known controller designs , and as such the AV embodiments , upon interruption of the hardware and / or the
engine 210 may be configured to obtain micro - architectural 55 counters , the interrupted hardware may first store data held
data from specific known performance counters particular to by its various performance counters in a central storage
the hardware that is being monitored by the AV engine . That location (e . g . , in a state stack) , and the data stored at the
is , knowledge of the specific architecture of the hardware to central storage location may then be accessed and retrieved
be monitored may be required in order to obtain perfor - by the sampling unit 212 . When implementing a data - push
mance counter data and other micro - architectural data from 60 sampling mode , data held by the performance counters
the performance counters corresponding to the specific (and / or other sampling points on the hardware being moni
architecture . Examples of micro - architectural counters used tored) may be configured to be communicated to the AV
on an Intel x86 processor architecture include : engine 210 (e . g . , to the sampling unit 212) at regular or
Ox0440L1D _ CACHE _ LD . E _ STATE ; irregular intervals , with or without interrupting the execu
0x0324 - L2 ROSTS . LOADS ; 65 tion of the hardware being monitored or of its performance
Ox03b1 — UOPS _ EXECUTED . PORT (1 or 2) ; and counters . Thus , in such embodiments , the hardware device
0x7188 - BR _ INST _ EXEC . ANY . to be monitored is configured to initiate sending the micro

US 10 , 025 , 929 B2
10

architectural data to the AV engine 210 . For example , in a tural data resulting from execution of malicious processes
data push mode , the hardware device being monitored may (e . g . , malware) and non - malicious processes . Thus , in some
be configured to send micro - architectural data without need embodiments , the classifier 216 (also referred to as a
ing to receive a request (e . g . , from the sampling unit 212) . machine - learning engine) is configured to determine

The sampling operations implemented by the sampling 5 whether at least one of the processes with respect to which
unit 212 of the AV engine 210 thus obtain time - based data the micro - architectural data was collected corresponds to a
of the output of the various hardware performance counters malicious process (e . g . , whether some of the micro - archi
(and / or other output points) monitored for one or more tectural data traces collected potentially resulted from
processes executing on the hardware being monitored . As execution of the at least one malicious process) and / or
noted , in addition to micro - architectural data , information 10 identify the at least one malicious process .
such as a process ’ ID (e . g . , PID) is also recorded to enable In some implementations , a classifier , such as the classi
associating / correlating the micro - architectural data with the fier 216 of the AV engine 210 , may be configured to
process whose execution resulted in the obtained micro - iteratively analyze training input data and the input data ' s
architectural data . By also recording processes ’ IDs and corresponding output (e . g . , a determination of a process type
associating / correlating them with the obtained micro - archi - 15 and / or identification of a process corresponding to the input
tectural data , the implementations described herein can track data) , and derive functions or models that cause subsequent
micro - architectural data resulting from execution of a pro - micro - architectural inputs , collected from the hardware
cess across different hardware devices . For example , in being monitored , to produce outputs consistent with the
situations where a system being monitored includes multiple classifier ' s learned behavior . Such a classifier should be
processor cores (each with its own set of performance 20 configured to distinguish malicious processes from non
counters) , where processes / threads may be suspend and malicious processes .
resume execution on different cores , maintaining processes ' Generally , machine learning classifiers are configured to
PID ' s along with obtained micro - architectural data may examine data items and determine to which of N groups
enable tracking the behavior of processes as they switch (classes) each data item belongs . Classification procedures
execution to different hardware devices . 25 can produce a vector of probabilities , e . g . , the likelihoods of

In some embodiments , the sampling unit 212 may be the data item belonging to each class . In the case of
realized , at least in part , on the hardware device being malicious process detection , two classes may be defined :
monitored . For example , the sampling unit 212 may be malicious process (e . g . , malware) and non - malicious pro
implemented as a hardware realization on a specialized cess (e . g . , non - malware) . As a result , the output from
hardware - based controller such as an FPGA , an ASIC , etc .) 30 classifiers may include probabilities representing the likeli
In some embodiments , the micro - architectural database 212 hood of a data item being malicious . In situations where a
may be realized , at least in part , as a software implementa particular classifier is not adapted to process / classify time
tion executing on a machine that includes a processor - based series data (like the time - series micro - architectural data
device that is being monitored by the AV engine 210 to collected by the AV engine 210) this difficulty can be
detect malicious processes that are executing on the 35 overcome by arranging input data (e . g . , corresponding to
machine . For example , one of a processor - device ' s multiple micro - architectural events occurring at a particular location
general - purpose cores may be allocated to execute a soft - of the hardware , such as at a particular counter) that
ware realization of at least part of the AV engine . occurred at different time instances into a single vector of
As noted the AV engine 210 also includes a micro - features that is presented as input to the classifier . Under this

architectural database 214 configured to store the micro - 40 approach , time - based data may be consolidated into a vector
architectural data obtained from the hardware being moni - of data , where each vector point corresponds to a micro
tored / observed , as well as pre - determined data sets , obtained architectural sample for a certain counter or location that
from remote nodes (e . g . , servers) , that include data repre - occurred at a different time instance . Additionally and / or
sentative of micro - architectural signatures / traces of known alternatively , another approach for processing time - depen
malicious processes (e . g . , time - series traces for various 45 dent data (micro - architectural data) using classifiers that are
micro - architectural events or performance counters) and generally not configured to handle sequences of time - de
training data that includes micro - architectural data (e . g . , pendent data is to separately process with such a classifier
time - based data) for non - malicious / benign processes . As data points taken for a particular process at different time
will be described below in greater details , in some embodi - instances , and aggregate the classifier ' s results in order to
ments , the AV engine 210 is periodically (at regular or 50 classify the entire process . In some embodiments , different
irregular intervals) updated to include new or modified aggregation operations may be applied to a classifier ' s
micro - architectural signature data defining the behavior of results , and the aggregation operation that is determined
new or existing malicious processes by receiving from a (e . g . , through testing and experimentation) to yield the best
remote node micro - architectural signature data . classification results may be used to perform future aggre

In some embodiments , the database 214 may be realized , 55 gation operations . For example , one aggregation operation
at least in part on the hardware device being monitored . In that may be used is a simple average operation . Another
some embodiments , the micro - architectural database 214 aggregation operation that may be used is a weighted
may be realized , at least in part , as a software implementa - average operation in which , for example , data points which
tion executing on a machine that includes a processor - based are equally probable to belong to each of the various
device being monitored by the AV engine 210 (e . g . , allo - 60 available classes are given zero weight , whereas data points
cating one of a processor - device ' s multiple general - purpose with high probabilities are given relatively large weights .
cores to execute a software realization of the database 214) . The types of classifiers that may be used to process

Collection of micro - architectural data (including micro - analyze the collected micro - architectural data points corre
architectural performance counter data) using , for example , sponding to the executing processes belong to two main
the sampling unit 212 , and / or storage of the collected data 65 classifier categories : linear classifiers , and non - linear clas
using , for example , the database 214 , provides a relatively sifiers . Linear classification procedures are configured to
large amount of labeled data that includes micro - architec - attempt to separate n - dimensional data points by a hyper

US 10 , 025 , 929 B2
12

plane _ points on one side of the plane are points of class X erate , for example , classification functions or general regres
and points on the other side are of class Y . Non - linear sion functions . In some embodiments , the classifiers may be
classifiers generally do not rely on this type of linear implemented using regression techniques to derive best - fit
separation . Thus , any operation to derive a classification curves , a classification procedure based on hidden Markov
may be applied . 5 model , and / or other types of machine learning techniques . In

In some of the implementations described herein , non - embodiments in which a hidden Markov model - based clas
linear classifiers were used to perform the data processing sifier is used , patterns in the data (e . g . , micro - architectural
analysis operations to reflect the fact that the data (e . g . , data) being processed may be identified using self - similarity
micro - architectural data) that was used to determine whether analysis , and the transitions in patterns may be used to build
at least one executing process may be malicious , or to 10 the hidden Markov model with which malware / goodware
identify a malicious process , may not necessarily be lin can be predicted / classified . Additionally , linear classification
early - separable . Some examples of classifiers , configured to techniques like kernel methods which are capable of accu
determine if a particular process (for which micro - architec - rately classifying data but with reduced computational
tural time - based data was collected) is malicious or non - requirements may also be used .
malicious , that may be used with implementations of the AV 15 To train the classifiers to identify suspected malicious
engine 210 include : processes based on micro - architectural data collected from a

K - Nearest Neighbors (KNN - A KNN classifier is hardware - based device that is to be monitored , in some
trained by inserting the training data points along with implementations , a remote system whose hardware configu
their labels into a spatial data structure , like a k - dimen - ration may be the same or similar to the hardware configu
sional tree (referred to as a “ k - d - tree ”) used for orga - 20 ration of the hardware device with respect to which the
nizing points / data in a k - dimensional space . In order to procedures described herein are performed , may execute
classify a data point , that point ' s k nearest neighbors (in variants of a known malicious process (e . g . , a malware
Euclidean space) are found using the spatial data struc - discovered and / or tracked by some third party) . Micro
ture . The probability that the data point is of a particular architectural data resulting from execution of the variants of
class is determined by how many of the data point ' s 25 the particular malware (e . g . , represented in a form that may
neighbors are of that class and how far they are from be similar to the data used to generate graphs similar to those
each other . illustrated in FIG . 1) is collected . Periodically , data repre

Decision Tree - Another way to classify data points it to sentative of the micro - architectural data captured by the
use a non - spatial tree called a decision tree . This tree is remote system may be communicated to the AV engine 210 ,
built by recursively splitting training data into groups 30 and stored on the database 214 . The remote system may also
on a particular dimension . The dimension and split provide micro - architectural data corresponding to known
points are chosen to minimize the entropy with each non - malicious processes . The example micro - architectural
group . These decisions can also integrate some ran - data communicated by the remote system may be used to
domness , decreasing the quality of the tree but helping train the classifier 216 by providing that micro - architectural
to prevent overtraining . After some minimum entropy 35 data and the respective identities and / or type (e . g . , malicious
is met , or a maximum depth hit , a branch terminates , or non - malicious) of the processes that caused that micro
storing in it the mix of labels in its group , e . g . , 30 % architectural data to be produced to at least some of the one
malware vs . 70 % non - malware . To classify a new data or more of the classifiers 216a - n . The training data will
point , the decision tree traverses the tree to find the new cause the classifiers 216a - n to be configured (e . g . , dynami
point ' s group (leaf node) , and returns the stored mix . 40 cally configured) so that upon presenting similar micro

Random Forest — One way to increase the accuracy of a architectural data (collected from the hardware device to be
classifier is to use a lot of different classifiers and monitored) to the classifiers , output consistent with the
combine the results . In a random forest , multiple deci - processes types / identities of the training data will be pro
sion trees are built using some randomness . When duced .
classifying a new data point , the results of all trees in 45 As noted , an AV engine , such as the AV engine 210 of
the forest are weighted equally to produce a result . FIG . 2 , may be realized entirely in hardware (e . g . , imple

Artificial Neural Network (ANN) - A neural network mented as a module on the hardware device that is to be
machine attempts to model biological brains by includ - monitored) , entirely in software (e . g . , as a multi - module
ing neurons which are connected to each other with application executing on a computing system that includes
various weights . The weight values between connec - 50 the hardware to be monitored) , or as a hardware - software
tions can be varied , thus enabling the neural network to combination implementation in which one component (e . g . ,
adapt (or learn) in response to training data it receives . the sampling unit 212 of FIG . 2) is implemented in hard
In feed - forward neural nets , input values are supplied at ware , while the database and classifier units 214 and 216 are
one edge and propagate through a cycle - less network to implemented via software) . If implemented at least partly by
the output nodes . In some embodiments , one input 55 software , the software components may be configured to
neuron for each dimension , and two output nodes (e . g . , communicate with the hardware component (e . g . , using an
one indicating the probability that malware is running , interfacing procedure) to receive data (e . g . , micro - architec
one indicating the probability that non - malware is tural data obtained by the sampling unit) and / or to transmit
running) are defined . data or control signals to the hardware - based component .

Tensor Density — this classifier discretizes the input space 60 In addition to being configured to collect and store
into different buckets . Each bucket contains the mix of micro - architectural data and analyze collected micro - archi
classes in the training data set . A data point is classified tectural data to determine whether or not malicious behavior
by finding its bin and returning the stored mix . Gen - is occurring (and possibly more particularly identify the
erally , a tensor density classifier uses O (1) lookup time , malicious process (es)) , the AV engine 210 is also configured
and is thus considered to be time - efficient . 65 to take certain actions if a threat is detected (e . g . , shut down

Other classifiers that may be used also include , in some the hardware or report the malicious behavior) , and update
embodiments , a support vector machine configured to gen - the AV engine with malicious processes definitions and

em

US 10 , 025 , 929 B2
13 14

micro - architectural signatures . More particularly , there are a be delivered to the AV engine securely using techniques /
wide variety of security policies that can be implemented by procedures adapted for a hardware setting . A schematic
an AV engine such as the AV engine 210 . Some viable diagram of an example security update payload 800 that is
security policies include : to be sent from a system security vendor , including the

Using the AV engine as a first - stage malware predictor — 5 various encryption levels applied to the payload , is depicted
When the AV engine suspects a program to be mali - in FIG . 8A . An example procedure 850 , generally performed
cious it can run more sophisticated behavioral analysis by an AV engine , to receive a security update payload (such
on the program . Hardware analysis happens ' at speed as the encrypted payload 800) and update the configuration
and is significantly faster than behavioral analysis used of the AV engine , is depicted FIG . 8B . As shown in the
by malicious process analysts to create signatures . Such 10 figure , the procedure 850 includes receiving 855 the pay
pre - filtering can avoid costly behavioral processing for load , and decrypting 80 the payload with a " verif ” key
' goodware . ' embedded in the hardware (on which the AV engine is

Migrating sensitive computation - In multi - tenant set - implemented) . A determination is then made 865 of whether
tings such as public clouds , when the AV engine a resulting hash of the “ verif " matches the expected hash of
suspects that an active thread on the system is being 15 the verif key embedded in the hardware . If it doesn ' t , the
attacked (e . g . , through a side - channel) the AV engine procedure 850 terminates 870 . If there is a match of the hash
can move the sensitive computation . In some scenarios of the “ verif " key , a determination is made 875 of the
it may be acceptable for the AV system to simply kill integrity of the payload with a SHA - 2 hash function . If the
a suspect process . integrity is confirmed , the payload is decrypted 885 with an

Using the AV engine for forensics — Logging data for 20 AES key (otherwise , the procedure terminates 880) , and
forensics is expensive as it often involves logging all upon a determination that the update revision number indi
interactions between the suspect process and the envi cated in the payload is in agreement with a revision number
ronment . To mitigate these overheads , the information indicator maintained in the hardware device (at 890) , the
necessary for forensics can be logged only when the AV updates in the payload are applied 895 .
engine suspects that a process is malicious . 25 As indicated in relation to the operation 890 of the

Screening for goodware In some embodiments , the procedure 850 , in some embodiments , the hardware device
hardware - based micro - architectural data collected can on which the AV engine is , at least partly , implemented ,
be used to identity non - malicious processes , and to maintains the revision number of the last update , and that
corroborate that those processes are in fact non - mali - revision number is incremented on every update . This is to
cious . For example , in some implementations , under - 30 prevent / inhibit an attacker from rolling back the AV system ,
lying code samples of processes identified by the AV which an attacker might do to prevent the system from
engine as non - malicious can be analyzed by , for discovering new malicious processes . The AV engine may
example , comparing the code sample to known code offer this protection by rejecting updates with a revision
samples (that were previously obtained) corresponding number that is older than the revision number maintained in
to the processes analyzed . If the examined underlying 35 the hardware counter .
code of the executing processes matches the known With reference now to FIG . 3 , a flowchart of an example
code listing previously obtained , the executing process procedure 300 to detect malicious processes is shown . The
is confirmed as being non - malicious . procedure 300 includes obtaining 310 hardware - based

Thus , there is a broad spectrum of actions that can be micro - architectural data , including hardware - based micro
taken based on the AV engine ' s output . The systems and 40 architectural counter data , for a hardware device executing
procedures described herein to implement an AV engine one or more processes . As noted , in some embodiments ,
should be flexible enough to implement the above - described obtaining the micro - architectural data may be performed by
security policies . Conceptually , this means that , in some a sampling unit , which may be implemented , at least partly ,
embodiments , the AV engine should be able to interrupt in hardware as part of the hardware - device that is to be
computation on any given core and run the policy payload 45 monitored (i . e . , the hardware device executing the one or
on that machine . This requires the AV engine to be able to more processes with respect to which the micro - architectural
issue a non - maskable inter - processor interrupt . Optionally , data is to be collected) . In some embodiments , the micro
in some embodiments , the AV engine can communicate to architectural data may be obtained periodically at regular or
the OS or supervisory software that it has detected a suspect irregular intervals (e . g . , at intervals of length determined by
process so that the system can start migrating other co - 50 a pseudo random process) , and may be obtained through a
resident sensitive computation . In some embodiments , the data - pull (e . g . , by the sampling unit initiating the collection
AV engine may also be configured to run in the highest of the micro - architectural data , with or without interruption
privilege mode . the hardware device being observed) or through a data push

Additionally , as noted , in some embodiments , the AV process (e . g . , the hardware device initiating periodic com
engine 210 may be configured to be updated with new 55 munication of micro - architectural data to an AV engine) .
malware signatures as they become available , or when new Based , at least in part , on the obtained hardware - based
classification techniques are implemented . The AV update micro - architectural data , a determination is made 320
should be implemented in a way to prevent attackers from whether at least one of the one or more processes executing
compromising the AV . For instance , a rogue user should not on the hardware device corresponds to a malicious process .
be able to mute the AV engine or subvert the AV engine to 60 In some embodiments , a more specific determination may be
create a persistent , high - privilege rootkit . made of the type or identity of the at least one of the one or

Generally , security updates may include one or more of , more processes executing on the hardware device . As noted ,
for example , a classifier , an action program that specifies determination of whether at least one process is malicious
security policies , a configuration file that determines which and / or the type and / or identity of the at least one of the one
performance features are to be used with what classifiers , 65 or more processes executing on the hardware device may be
micro - architectural data for malicious and / or non - malicious performed using a machine learning system that may include
processes , and / or an update revision number . This data can one or more classifiers (such as the one or more classifiers

15
US 10 , 025 , 929 B2

16
216a - n) that were trained with training data including micro monitor 420 , e . g . , a CRT (cathode ray tube) , LCD (liquid
architectural data for variants of known malicious and crystal display) monitor , etc . , that may be placed where a
non - malicious processes . user can access them .

Thus , when a variant of a known malicious process The controller device 410 is configured to facilitate , for
executes on the hardware device to be monitored , even in 5 example , the implementation of operations to obtain hard
situations where the exact implementation of the malicious ware - based micro - architectural data resulting from execu
process has been modified , the malicious process will gen tion of one or more processes on the CPU 412 and / or on
erally perform operations that are characteristic of that some other application - specific device on which processes
process (e . g . , accessing particular modules , retrieving spe - are executing (or can be executed) and determine , based on
cific types of data , etc .) . These operations that are charac - 10 the micro - architectural data obtained , whether at least one of
teristic of the known malicious process will result in a one or more of the processes executing on the controller
micro - architectural data signature (that may be represented device 410 of the system 400 is a potentially malicious
as a time series) , which may then be identified (or at least process (e . g . , malware) . In some embodiments , identities of
identified as being malicious or non - malicious) through at the one or more processes executing on the hardware of the
least one of the one or more classifiers of the machine 15 controller device 410 may be determined based on the
learning system of the AV engine . micro - architectural data collected . The storage device 414

With reference to FIG . 4 , an example system 400 in which may thus include a computer program product that when
an AV engine (such as the AV engine 210 of FIG . 2) is executed on , for example , a processor - based implementation
implemented , is shown . The system 400 includes a hardware of the controller device 410 causes the device to perform
device such as controller device 410 , which may be a 20 operations to facilitate the implementation of procedures
processor - based personal computer , a specialized computing described , including the procedures to obtain micro - archi
device , and so forth , and which includes , in some imple - tectural data and determine based on that data whether at
mentations , a processor - based unit such as central processor least one of the one or more executing processes is poten
unit (CPU) 412 . In some embodiments , the controller device tially malicious .
410 may be realized , at least in part , using modules such as 25 The controller device 410 may further include peripheral
an FPGA (field programmable gate array) , an ASIC (appli - devices to enable input / output functionality . Such peripheral
cation - specific integrated circuit) , a DSP processor , etc . devices may include , for example , a CD - ROM drive and / or

As noted , in some embodiments , at least part of the AV flash drive (e . g . , a removable flash drive) , or a network
engine may be implemented in hardware directly on the connection (e . g . , implemented using a USB port and / or a
hardware device that is to be monitored , and / or may be 30 wireless transceiver) , for downloading related content to the
implemented in software executing on a dedicated and connected system . Such peripheral devices may also be used
secure controller device . For example , as depicted in FIG . 4 , for downloading software containing computer instructions
the CPU 412 may be a multi - core processor , and the to enable general operation of the respective system / device .
hardware portion of the AV engine may thus be realized on As noted , alternatively and / or additionally , in some embodi
one or more of the cores 413 of the CPU 412 , and be 35 ments , special purpose logic circuitry , e . g . , an FPGA (field
configured (e . g . , through pre - or post - manufacturing pro - programmable gate array) , an ASIC (application - specific
gramming) to perform one or more of the functions of the integrated circuit) , a DSP processor , etc . , may be used in the
AV engine (e . g . , collect micro - architectural data) . If the implementation of the system 400 . Other modules that may
hardware device to be monitored is an application - specific be included with the controller device 410 are speakers , a
controller device (e . g . , implemented as an application - spe - 40 sound card , a pointing device , e . g . , a mouse or a trackball ,
cific integrated circuit) , the hardware - portion of the AV may by which the user can provide input to the system 400 . The
be realized at the time of manufacturing of the controller , controller device 410 may include an operating system , e . g . ,
e . g . , as a special - purpose malware detection units that sit on Windows XP® Microsoft Corporation operating system ,
a network - on - chip , on - chip / off - chip FPGA , or off - chip Ubuntu operating system , etc .
ASIC co - processor . These choices represent different trade - 45 Computer programs (also known as programs , software ,
offs in terms of flexibility and area - and energy - efficiency . software applications or code) include machine instructions
Moving security protection to the hardware level solves for a programmable processor , and may be implemented in
several problems and provides some interesting opportuni - a high - level procedural and / or object - oriented programming
ties . For example , it ensures that the security system cannot language , and / or in assembly / machine language . As used
be disabled by software , even if the kernel is compromised . 50 herein , the term “ machine - readable medium ” refers to any
Second , because the security system runs beneath the oper non - transitory computer program product , apparatus and / or
ating system , the security system might be able to protect device (e . g . , magnetic discs , optical disks , memory , Pro
against kernel exploits and other attacks against the kernel . grammable Logic Devices (PLDs)) used to provide machine
Third , because the hardware itself is being modified (to instructions and / or data to a programmable processor ,
accommodate at least some portions of the AV engine) , 55 including a non - transitory machine - readable medium that
arbitrary static and dynamic monitoring capabilities can be receives machine instructions as a machine - readable signal .
added . This gives the security system extensive viewing Non - transitory computer readable media can include media
capabilities into software behavior . such as magnetic media (such as hard disks , floppy disks ,

As further shown in FIG . 4 , in addition to the CPU 412 etc .) , optical media (such as compact discs , digital video
and / or other application - specific hardware to implement 60 discs , Blu - ray discs , etc .) , semiconductor media (such as
controller functionality , the system 400 includes main flash memory , electrically programmable read only memory
memory , cache memory and bus interface circuits (not (EPROM) , electrically erasable programmable read only
shown in FIG . 4) . For example , the controller device 410 Memory (EEPROM) , etc .) , any suitable media that is not
may include a mass storage element 414 , such as a hard fleeting or not devoid of any semblance of permanence
drive or flash drive associated with the system . The com - 65 during transmission , and / or any suitable tangible media .
puting system 400 may further include a keyboard , or Some or all of the subject matter described herein may be
keypad , or some other user input interface 416 , and a implemented in a computing system that includes a back

to

17
US 10 , 025 , 929 B2

18
end component (e . g . , as a data server) , or that includes a adjustable configuration parameter . To identify an optimal
middleware component (e . g . , an application server) , or that set of parameters , the classifier (or , in some situations ,
includes a front - end component (e . g . , a client computer several classifiers) that is chosen is the one that identifies the
having a graphical user interface or a Web browser through most malware correctly . However , the amount of malware
which a user may interact with an embodiment of the subject 5 identified varies with false positive rate . As a classifier is
matter described herein) , or any combination of such back configured to make it more sensitive , more malware is
end , middleware , or front - end components . The components identified , but non - malicious , legitimate processes are then
of the system may be interconnected by any form or medium also identified as malware . To determine which classifier (or
of digital data communication , e . g . , a communication net - classifiers) to use , in some embodiments , the classifier (s)
work . Examples of communication networks include a local 10 that performs best (on the training data) for a given false
area network (“ LAN ”) , a wide area network (“ WAN ”) , and positive percentage may be selected .
the Internet . FIG . 6 contains a graph 600 showing the accuracy of

The computing system may include clients and servers . A various binary classifiers in detecting Android malware . As
client and server are generally remote from each other and illustrated in the graph 600 , as the false positives rate is
typically interact through a communication network . The 15 increased , the classifiers find more malware (column 504 of
relationship of client and server generally arises by virtue of table 500 in FIG . 5 provides the rate for correctly identifying
computer programs running on the respective computers and the executed processes for the various malware families on
having a client - server relationship to each other . which the classifiers , such the decision tree classifier , were

To evaluate the efficacy of the systems and procedures applied for a false positive rate of 10 % or better) . The results
described herein to detect / identify the existence of different 20 obtained for the Android malware testing indicate that the
types of malicious processes , testing for different hardware classifiers tested work properly and that micro - architectural
device (e . g . , different processor architecture) and for differ data (including micro - architectural performance counter
ent malicious processes (malware , side channel attack pro data) can , with simple analysis , be used to detect Android
cesses , etc .) was conducted . malware with relatively good accuracy . For example , the

The evaluations and testing performed included testing to 25 “ AnserverBot ” malware had 187 known variants (which , as
determine the efficacy of the systems and procedures noted , were obtained from third parties that study and
described herein to detect Android malware . Examples of categorize malicious processes such as Android malware) .
Android malware include malware to create advertisements Of those 187 known variants , 61 variants were used to train
and install unwanted links , cluttering up the user ' s device , the classifiers of the systems and procedures described
etc . More advanced malware may take advantage of a 30 herein . After being trained with those 61 variants , the
phone ' s features , e . g . , making phone calls or sending text classifiers tested were able to identify 96 . 6 % of the threads
messages to premium services , resulting in charges on the of the remaining 126 variants .
user ' s cell phone bill . Other type of Android malware may Evaluations and testing to determine the efficacy of the
compromise a user ' s privacy in various ways , including systems and procedures described herein was also per
accessing information like phone numbers , contact informa - 35 formed on known Linux rootkits . Rootkits are malicious
tion , IMEI numbers and other sensitive data . Moreover , software that attackers install on compromised systems to
many Android - based mobile devices have GPS capability , evade detection and maximize their period of access on the
and therefore malware may be capable of physically track systems . Once installed , rootkits hide their presence in the
ing victims . systems , typically by modifying portions of the operating

The systems and procedures described herein were 40 systems to obscure specific processes , network ports , files ,
applied to Android malware obtained from various sources directories and session log - on traces . With their stealth
that catalog or study malwares . The malware data sets capabilities , they can pose a significant threat to systems
acquired were divided into families of variants . In families security due to the difficulty in detecting such infections .
with only one variant , different execution cycles were used In evaluating and testing the efficacy of the systems and
to acquire micro - architecture data for the malware speci - 45 procedures to detect Linux rootkit processes , two publicly
men . For families with more than one variant , some of the available Linux rootkits were used that , once loaded , gave
variants were used for training purposes (e . g . , generally an attacker the ability to hide log - on session traces , network
about a 1 / 3 of the variants were used for training) , while the ports , processes , files and directories . The two rootkits used
remaining variants were used for testing (e . g . , to determine were :
if the system and procedures described herein would detect 50 1 . Average Coder Rootkit — This rootkit works as a load
those variants) . FIG . 5 is a table 500 of some of the Android able kernel module that hide traces via hooking the
malware families that were tested . Column 502 in the table kernel file system function calls . It is loaded into the
500 , identified as APKs , indicates the number of variants kernel via the Linux command insmod . It allows the
that were available for the respective malware families . attacker to modify the system information to hide at

To train the classifiers that were used to process micro - 55 runtime by writing via the echo command to a pre
architectural data , micro - architectural performance data was defined file / proc / buddyinfo .
collected on all malware samples . In the evaluations and 2 . Jynx2 Rootkit — This rootkit functions as a shared
testing performed , the collection infrastructure operated at library and is installed by configuring the LDPRE
the thread level . In addition to data on malware , data for 86 LOAD environment variable to reference this rootkit .
non - malware applications was also collected , resulting in 60 When this is done , the rootkit is executed as a shared
data on 92 , 475 non - malware threads . These data sets were library whenever any program runs . The information it
used for both training and testing , with generally a 1 / 3 of the hides is pre - configured at compile - time and cannot be
data sets used for training , and the rest of the data sets used modified once it is loaded
for testing . The performance of the various classifiers that The Linux operating system has native utility programs
may be used to process the micro - architectural data can be 65 that produce listings of the system current state (such as
adjusted using their respective configuration parameters . For current process listing and network ports) . To evade detec
instance , for a k - Nearest Neighbors (KNN) classifier , k is an tion , the rootkits are designed to obscure portions of the

19

ps
Is

US 10 , 025 , 929 B2
20

output of these programs . Therefore , it is likely that micro - rootkits . As with the testing performed with respect to the
architecture performance counter data for these programs Android malware , the micro - architectural data collected
(produced on the processor device on which the rootkit about the rootkits was divided into testing and training sets ,
processes are executing) will show some degree of deviation with 1 / 3 of the data being used for training a large number of
after a rootkit infection . To examine the presence of such 5 classifiers , and the remaining data used for testing the
deviation , collection of per - process performance counter trained classifiers . The classifiers were trained to determine
data focused on the following processes if the processes / programs for which micro - architectural data

was being collected were running with or without rootkits
(i . e . , whether or not there was a rootkit contamination) . FIG .

Program Relevant function 7 includes graphs 700 showing the accuracy in terms of the
number of correctly identified malicious threads as a func List active running processes

List files and directories tion of false - positive rate) of the classifiers used as part of
who List active log - on sessions AV engine implemented herein . Although the accuracy
netstat List active network connections achieved by the systems and procedures described herein for

15 rootkit detection is generally lower than that achieved when
Micro - architectural performance counter data was col the systems and procedures were applied to the Android

lected for various arbitrarily selected event types (such as malware , it is to be noted that because rootkits do not operate
number of branch misprediction , number of data TLB as separate programs , but rather are configured to dynami
misses , number of L1 instruction cache reads) for multiple cally intercept programs ' normal control flow , the training
execution runs of all the programs . Two sets of data were 20 data used is affected by the rootkits to a relatively small
collected — one set was collected before the rootkits were degree . As a result , identification of rootkits is generally
installed (that collected set was referred to as the “ clean more difficult than identification of other types of malicious
set ”) , and the second set was collected after the system was processes .
infected with the rootkits (that set was referred to as the Evaluation and testing of the systems and procedures
“ dirty set ”) . To introduce variation to the execution flows of 25 described herein was also performed in relation to side
the programs , each run of the programs was executed with channel attacks . The term side - channel refers to unintended
a random combination of their associated parameters . To do information leakage present in real implementations of
this , a list of command - lines comprising the program names systems . Because specific implementations cannot adhere to
combined with a random set of valid parameters was gen - the idealized axioms of theoretical models , side - channels
erated . Each command - line was then randomly tagged as 30 can be used to steal information from theoretically secure
either clean or dirty to indicate the set of data it would be systems . For example , RSA cryptographic keys can be
used in . An example subset list of the command - lines is stolen by observing the performance of the branch predictor ,
provided below : or of the caches , for most existing implementations . Com

mon side - channel mediums include acoustic or electrical
signals , power draw , application - level timing channels ,

(clean) netstat - n architectural or micro - architectural affects , or , in general ,
(clean) netstat - nt any shared resources . Although side - channel attacks are not (dirty) netstat - ntu generally considered malware , they render security of a
(dirty) ls - 1 / usr / include hardware - based device vulnerable , and furthermore , have
(clean) ls - ld / home 40 characteristic micro - architectural behavior that may be
(dirty) ls - lar / home / user detected by the systems and procedures described herein .
(clean) ls - lart / A side - channel " attacker ” process is a process that gets

placed within the system in such a way that it shares a
resource and uses that resource to learn information . Micro

With the random list of command - lines generated , per - 45 architectural examples include sharing a network card , a
process per - run performance data was collected . Addition - core pipeline , memory bandwidth and caches . In embodi
ally , to reduce input bias and to make the collected data more ments involving side - channel attacks on a cache , shared
realistic , the action of various users logging into the server on - chip caches can leak tremendous amounts of data that
and doing a series of tasks (like creating new files and can be readily used to , for example , steal cryptographic keys
running new processes) was simulated . Because both the 50 and / or other types of private data . Intuitively , attacker pro
rootkits that were used have different stealth capabilities and grams that exploit micro - architectural side - channels should
target the outputs of different programs , dirty data was have clear signatures in terms of performance . For example ,
collected separately for each rootkit . The collection of the side - channel attack processes repeatedly thrash a particular
data for each rootkit was performed with the following shared resource so as to gauge all the activity of the victim
programs it was designed against : 55 process with respect to that shared resource . Micro - archi

tectural events and performance counters are therefore likely
to take on extreme values during such attacks , and thus Program Average Coder Jynx2 indicate that the occurrence of attacker programs / processes
(and possibly identify those attacker programs / processes) .

60 To test the efficacy of the systems and procedures
described herein to determine the occurrence of side - channel

netstat attacks (and / or identify the specific side - channel attack
processes) , an array of cache side - channel attacks was

While the dirty data was being collected , the information implemented . Variants of the standard prime - and - probe
hidden by the rootkits was also varied . This included adding 65 technique were implemented , in which an attacker program /
to , and removing from , the list of network ports , files , process wrote to every line in the L1 data cache , and then
processes and log - on session logs that were hidden by the scanned the cache repeatedly (using a pattern chosen at

Ps
who

US 10 , 025 , 929 B2
21

compile time) to read every line . Whenever a miss occurred , determining that the at least one of the one or more
it meant there was a conflict miss caused by the victim processes corresponds to an anomalous process based
process sharing the cache . The result data of a successful on the applied one or more machine - learning proce
prime - and - probe attack includes data about the cache lines dures ; and
used by the victim process over time . The prime - and - probe 5 terminating the execution of the at least one of the one or
variants were implemented and executed against an more processes determined to correspond to an anoma
OpenSSL victim process . The cache side - channel attack lous process .

2 . The method of claim 1 , wherein obtaining the hard processes were compared against a wide array of normal ware - based micro - architectural data comprises : processes , which included programs of SPEC2006 int ,
SPEC2006 fp , PARSEC , web browsers , games , graphics 10 obtaining the hardware - based micro - architectural data at

various time instances . editors and other common desktop applications , as well as 3 . The method of claim 2 , wherein obtaining the hard generic system - level processes . ware - based micro - architectural data at the various time As with testing performed for the Android malware and instances comprises :
Linux rootkits , 1 / 3 of the micro - architectural data collected 15 performing one or more of a data push operation initiated
was used to train the classifiers of the AV engine (namely , the by the hardware device to send the hardware - based
KNN , Decision Tree , Tensor , Random Forest , and FANN micro - architectural data , or a data pull operation , ini
classifiers) . In this case , the training data included 3872 tiated by an antivirus engine , to send the hardware
normal program threads and 12 attack threads . The trained based micro - architectural data .
classifiers were used to analyze the remaining two thirds of 20 4 . The method of claim 1 , wherein obtaining the hard
the collected data . The classifiers achieved perfect results ware - based micro - architectural data comprises :
when analyzing the 7744 normal threads and 24 attacks obtaining multi - core hardware - based micro - architectural
threads of this example testing , detecting all 24 attack data resulting from execution of the one or more
threads without producing any false positives . The results processes on a processor device with multiple proces
also indicated that in processing side - channel attack micro - 25 sor cores ; and
architectural data , it did not matter which particular classifier correlating the respective hardware - based micro - architec
was used . tural data obtained from each of the multiple processor

Although particular embodiments have been disclosed cores to the one or more processes .
herein in detail , this has been done by way of example for 5 . The method of claim 1 , wherein applying the one or
purposes of illustration only , and is not intended to be 30 more machine learning procedures to the hardware - based
limiting with respect to the scope of the appended claims , micro - architectural data to determine whether the at least
which follow . Some other aspects , advantages , and modifi one of the one or more processes corresponds to the anoma
cations are considered to be within the scope of the claims lous process comprises :
provided below . The claims presented are representative of matching the obtained hardware - based time - varying
at least some of the embodiments and features disclosed 35 micro - architectural performance counter data to the
herein . Other unclaimed embodiments and features are also previously identified patterns of hardware - based micro
contemplated . architectural data associated with one or more anoma

lous processes .
What is claimed is : 6 . The method of claim 5 , further comprising :
1 . A method for detection of anomalous program execu - 40 obtaining updates for one or more patterns of hardware

tion using hardware - based micro - architectural data using based micro - architectural data associated with the one
performance counters internal to one or more processors and or more anomalous processes .
configured to count internal events of the one or more 7 . The method of claim 6 , wherein obtaining the updates
processors , the method comprising : comprises :

obtaining hardware - based micro - architectural data , 45 downloading encrypted data for previously identified pat
including hardware - based time - varying micro - archi terns of hardware - based micro - architectural data asso
tectural performance counter data , for a hardware ciated with the one or more anomalous processes to an
device executing one or more processes , wherein the antivirus engine in communication with the hardware
time - varying micro - architectural performance counter device providing the hardware - based micro - architec
data measures instruction - level events that occur on 50 tural data ;
one or more circuits of the hardware device , wherein decrypting at the antivirus engine the downloaded
the events are internal to the one or more processors encrypted data for the previously identified patterns of
executing said processes , the events are counted on hardware - based micro - architectural data associated
performance counters of said one or more processors , with the one or more anomalous processes ; and
and the performance counters are configured to count 55 updating a revision counter maintained by the antivirus
said events ; engine indicating a revision number of a most recent

applying one or more machine - learning procedures to the update of the previously identified patterns of hard
obtained hardware - based micro - architectural data of ware - based micro - architectural data .
the hardware device to determine whether at least one 8 . The method of claim 1 , wherein the one or more
of the one or more processes executing on the hardware 60 machine learning procedures comprise one or more of : a
device corresponds to an anomalous process , wherein k - nearest neighbor procedure , a decision tree procedure , a
applying one or more machine - learning procedures random forest procedure , an artificial neural network pro
comprises classifying the obtained hardware - based cedure , a tensor density procedure , a hidden Markov model
time - varying micro - architectural performance counter p rocedure , or a Support Vector Machine (SVM) .
data based on previously identified patterns of hard - 65 9 . The method of claim 1 , wherein the at least one of the
ware - based micro - architectural data associated with one or more processes that corresponds to the anomalous
one or more anomalous processes ; process comprises one or more of a non - malicious , or a

US 10 , 025 , 929 B2
23 24

malicious process , the malicious process including one or match the obtained hardware - based micro - architectural
more of : a malware process , or a side - channel attack pro data to one or more patterns of hardware - based micro
cess . architectural data associated with one or more anoma

10 . The method of claim 1 , wherein the hardware - based lous processes .
micro - architectural data comprise one or more of : processor 5 15 . The system of claim 14 , wherein the antivirus engine
load density data , branch prediction performance data , or is further configured to :
data regarding instruction cache misses . obtain updates for the one or more patterns of hardware

11 . A system for detection of anomalous program execu based micro - architectural data associated with the one
tion using hardware - based micro - architectural data using or more anomalous processes .
performance counters of one or more processors and con - 10 16 . A non - transitory computer readable media storing a
figured to count internal events of the one or more proces - set of instructions executable on at least one programmable
sors , the one or more processors including performance device that , when executed , causes operations for detection
counters configurable to count events internal to said one or of anomalous program execution using hardware - based
more processors , the system comprising : micro - architectural data using performance counters internal

a hardware device executing one or more processes , 15 to one or more processors and configured to count internal
including the one or more processors ; and events of the one or more processors , the operations com

an antivirus engine in communication with the hardware prising :
device , the antivirus engine configured to : obtaining hardware - based micro - architectural data ,
obtain hardware - based micro - architectural data , including hardware - based time - varying micro - archi

including hardware - based time - varying micro - archi - 20 tectural performance counter data , for a hardware
tectural performance counter data , for the hardware device executing one or more processes , wherein the
device executing the one or more processes , wherein time - varying micro - architectural performance counter
the time - varying micro - architectural performance data measures instruction - level events that occur on
counter data measures instruction - level events that one or more circuits of the hardware device , wherein
occur on one or more circuits of the hardware device , 25 the events are internal to the one or more processors
wherein the events are internal to the one or more executing said processes , the events are counted on
processors executing said processes , the events are performance counters of said one or more processors ,
counted on the performance counters of said one or and the performance counters are configured to count
more processors , and the performance counters are said events ;
configured to count said events ; 30 applying one or more machine - learning procedures to the

apply one or more machine learning procedures to the obtained hardware - based micro - architectural data of
obtained hardware - based micro - architectural data of the hardware device to determine whether at least one
the hardware device to determine whether at least of the one or more processes executing on the hardware
one of the one or more processes executing on the device corresponds to an anomalous process , wherein
hardware device corresponds to an anomalous pro - 35 applying one or more machine - learning procedures
cess , wherein applying one or more machine - learn comprises classifying the obtained hardware - based
ing procedures comprises classifying the obtained time - varying micro - architectural performance counter
hardware - based time - varying micro - architectural data based on previously identified patterns of hard
performance counter data based on previously iden ware - based micro - architectural data associated with
tified patterns of hardware - based micro - architectural 40 one or more anomalous processes ;
data associated with one or more anomalous pro determining that the at least one of the one or more
cesses ; processes corresponds to an anomalous program based

determine that the at least one of the one or more on the applied one or more machine - learning proce
processes corresponds to an anomalous process dures ; and
based on the applied one or more machine - learning 45 terminating the execution of the at least one of the one or
procedures ; and more processes determined to correspond to an anoma

terminate the execution of the at least one of the one or lous program .
more processes determined to correspond to an 17 . The computer readable media of claim 16 , wherein
anomalous process . applying the one or more machine - learning procedures to

12 . The system of claim 11 , wherein the antivirus engine 50 the hardware - based micro - architectural data to determine
configured to obtain the hardware - based micro - architectural whether the at least one of the one or more processes
data is configured to : corresponds to the anomalous process comprises :

obtain the hardware - based micro - architectural data at matching the obtained hardware - based time - varying
various time instances . micro - architectural performance counter data to the

13 . The system of claim 12 , wherein the antivirus engine 55 previously identified patterns of hardware - based micro
configured to obtain the hardware - based micro - architectural architectural data associated with one or more anoma
data at the various time instances is configured to : lous processes .

receive the hardware - based micro - architectural data in 18 . An apparatus for detection of anomalous program
response to one or more of : a data push operation execution using hardware - based micro architectural data
initiated by the hardware device , or a data pull opera - 60 using performance counters internal to one or more hard
tion initiated by the antivirus engine . ware processors and configured to count internal events of

14 . The system of claim 11 , wherein the antivirus engine the one or more hardware processors , the apparatus com
configured to apply the one or more machine - learning prising :
procedures to the hardware - based micro - architectural data a sampling unit configured to obtain hardware - based
to determine whether the at least one of the one or more 65 micro architectural data , including hardware - based
processes corresponds to the anomalous process is config time - varying micro - architectural performance counter
ured to : data , for a hardware device executing one or more

25
US 10 , 025 , 929 B2

26
processes , wherein the time - varying micro - architec ware - based micro - architectural data associated with
tural performance counter data measures instruction one or more anomalous processes ;
level events that occur on one or more circuits of the wherein upon determining that the at least one of the one
hardware device , wherein the events are internal to the or more processes corresponds to an anomalous process

based on the applied one or more machine learning one or more processors executing said processes , the 5 procedures , the apparatus terminates the execution of events are counted on performance counters of said one the at least one of the one or more processes determined or more processors , and the performance counters are to correspond to an anomalous process .
configured to count said events , the sampling unit being 19 . The method of claim 5 , wherein the previously
realized on the hardware device or implemented as a identified patterns of hardware - based micro - architectural
hardware realization ; and data correspond to different hardware - based micro - architec

a software - implemented classifier configured to apply one tural behaviors .
or more machine - learning procedures to the obtained 20 . The system of claim 14 , wherein the previously
hardware - based micro - architectural data of the hard identified patterns of hardware - based micro - architectural
ware device to determine whether at least one of the 16 data correspond to different hardware - based micro - architec
one or more processes executing on the hardware tural behaviors .
device corresponds to an anomalous process , wherein 21 . The computer readable media of claim 17 , wherein the
applying one or more machine - learning procedures previously identified patterns of hardware - based micro - ar
comprises classifying the obtained hardware - based chitectural data correspond to different hardware - based
time varying micro - architectural performance counter micro - architectural behaviors .
data based on previously identified patterns of hard * * * * *

10

