
(19) United States
US 201701 24322A1

(12) Patent Application Publication (10) Pub. No.: US 2017/0124322 A1
GULLEY et al. (43) Pub. Date: May 4, 2017

(54) A COMPUTER IMPLEMENTED METHOD (52) U.S. Cl.
AND A SYSTEM FOR CONTROLLING CPC G06F 2 1/54 (2013.01); G06F 2 1/566
DYNAMICALLY THE EXECUTION OF A (2013.01); G06F 8/75 (2013.01); G06F
CODE 222 1/2125 (2013.01); G06F 222 1/034

(2013.01)
(71) Applicant: SECURE-IC SAS, Cesson-Sévigné (57) ABSTRACT

(FR)

(72) Inventors: Sylvain GUILLEY, PARIS (FR):
Thibault PORTEBOEUF, PARIS (FR)

(73) Assignee: SECURE-IC SAS, Cesson-Sévigné
(FR)

(21) Appl. No.: 15/317,325

(22) PCT Filed: Jun. 19, 2015

(86). PCT No.: PCT/EP2O15/06388O

S 371 (c)(1),
(2) Date: Dec. 8, 2016

(30) Foreign Application Priority Data

Jun. 20, 2014 (EP) 14305954.1

Publication Classification

(51) Int. Cl.
G06F 2/54 (2006.01)
G06F 9/44 (2006.01)
G06F 2/56 (2006.01)

300

A PROR
CONTRO

307

NEXT

According to the invention, there is provided a computer
implemented method for controlling dynamically the execu
tion of a code by a processing system, said execution being
described by a control flow graph comprising a plurality of
basic blocks composed of at least an input node and an
output node, a transition in the control flow graph corre
sponding to a link between an output node of origin belong
ing to a first basic block and an input node of a second basic
block, a plurality of initialization vectors being associated to
the output nodes at the time of generating the code, an a
priori control word being associated to each input node
which is linked to the same output node of origin according
the control flow graph, said a priori control word being
precomputed at the time of generating the code by applying
a predefined deterministic function F to the initialization
vector associated to its output node of origin, the following
steps being applied once the execution of the output node
belonging to a first basic block is terminated and at the time
of executing the input node of a second basic block: pro
viding (300) the a priori control word associated to the input
node of the second basic block; providing (301) the initial
ization vector associated to the output node of the first basic
block; determining (302) an a posteriori control word by
applying to the provided initialization vector the same
function F which has been used for generating the a priori
control word; determining (303, 304) if the a priori control
word matches with the aposteriori control word, a forbidden
transition in respect to the control flow graph being other
wise detected (305).

NITIALIZATION
WECTOR

ApOSERIOR
CONTROL WORd

Patent Application Publication

PC addr2
SP OxOOFFFOO4
R1 XX
R2 xx
R3 xx
R4 xx
R5 xx
R6 x 1 /
RA addr

103

1 O2

addr
OXOOFFFOO8

X

XX

X

X

XX

XX

OxOOFFEOOO R

May 4, 2017. Sheet 1 of 8 US 2017/O124322 A1

OX0000 0000 100

11 O

- 4.
booFF Foo

OxOOFF FFFC

FIG. 1A

0x0000 OOOO

11 O

40x00 FF E000
0x00FF F004
OxOOFF FOO8

OXOOFF FFFC

FIG.1B

Patent Application Publication May 4, 2017. Sheet 2 of 8 US 2017/O124322 A1

0x0000 0000

OXOOFFEOOO
OXOOFFFO1 O

X X

XX
11 O

X X 40x0OFF E000
OxOOFF FOO4
OxOOFF FOO8

X X

R

X

OxOOFF FFFC

FIG.1C

May 4, 2017. Sheet 3 of 8 US 2017/O124322 A1 Patent Application Publication

992

| 92

902

Patent Application Publication May 4, 2017. Sheet 4 of 8 US 2017/O124322 A1

INITIALIZATION
VECTOR

A PRIOR A POSTERIOR
CONTROL WORD CONTROL WORD

COMPARISON

NEXT
INSTRUCTION

305

ALTERATION

FIG.3

Patent Application Publication May 4, 2017. Sheet 5 of 8 US 2017/O124322 A1

500

504

FIG.5

Patent Application Publication May 4, 2017. Sheet 6 of 8

DETERMINATION
OF CONTROL
FLOW DAGRAM

GENERATION OF
INITIALIZATION
VECTORS

GENERATION
OF CONTROL
WORDS

CODE
MODIFICATION

FIG.6

6OO

602

603

US 2017/O124322 A1

Patent Application Publication May 4, 2017. Sheet 7 of 8 US 2017/O124322 A1

7OO
opcode = "load IV" 703

process
opCode register, IV

Set to 0

opcode A "load IV"

FIG.7

Patent Application Publication May 4, 2017. Sheet 8 of 8 US 2017/O124322 A1

8OO 803

process
OpCode

FIG.8

9 OO instruction n-1
instruction n-1 load IV

gotOL
901

instruction 1 check Control Word
instruction 1

FIG.9A FIG.9B

US 2017/O124322 A1

A COMPUTER IMPLEMENTED METHOD
AND A SYSTEM FOR CONTROLLING
DYNAMICALLY THE EXECUTION OF A

CODE

0001. This invention relates to a computer implemented
method for controlling dynamically the execution of a code,
a processing system and a method for generating a code
which can be executed by said processing system. The
invention is particularly, but not exclusively, applicable to
secured embedded systems.
0002 Cyber attacks consist into running a software code
in a way that has not been anticipated at design time.
0003. One possibility to do so results from obvious errors
(weak passwords, tricking the user into doing something bad
for him, and similar techniques also called as Social engi
neering) or poor quality Software (protection with holes or
backdoors for example). Protections against those Vulner
abilities are often non-technical.

0004 An alternative which can be considered to imple
ment cyber attacks consists in bringing the program in a
non-specified State by sending it crafted data. This means
that the program is designed to follow a certain amount of
paths, but that malevolent inputs are able to abuse the
programme. This results in a hijacking of the execution flow
and leads to a remote takeover. It is customary to make the
distinction between the crafted user-provided data that
allows deflecting the program from its intended behaviour
(also referred to as the trigger) and the malicious behaviour
(also referred to as the payload).
0005 Briefly, the intimate reasons why these exploits are
possible are due to a two-factor reason, namely a combina
tion of programming language weaknesses and execution
permissivity.
0006. One typical example is the stack smashing thanks

to a buffer overflow, for instance. Listing 1 is a simple C
program which is used hereinafter to illustrate the principle
of stack Smashing.

Listing 1

#include <stdio.h>
void dummy()
{

printf("Should not be calledyn);

void get data (char data)
{

printf("Input your data:\n");
scanf("%s",data);

int main()
{

char data10;
get data (data);
return 0;

0007. With a specially crafted string data input by the
user from outside of the program, it is possible to call
function dummy() that is otherwise not callable from the
functional control flow graph. Data will certainly contain
Some binary nonprintable characters, but this is not checked
in this example.

May 4, 2017

0008. The exploit is sketched in FIGS. 1A, 1B and 1C
wherein a physical memory is represented, said memory
being used as a buffer containing two distinct areas 100 and
101.

0009. In this example, the stack 101 grows from address
0x00FF FFFC downwards, and contains the stacking of
multiple frames, a frame comprising local variables, argu
ments and a return address. Namely, the stack depth is equal
to the depth of the functions call tree.
0010. The program is itself in a text segment 100, from
address 0x0000 0000 upwards.
0011. If the attacker is able to write some data in the
buffer which is intended to be used by the program, then
some data 103 can be written into the stack 101. In particu
lar, the return address of a called function can be overwritten
and replaced by a different address 102 chosen by the
attacker (see FIG. 1A).
0012. When the current function returns which also
means that the current frame is quitted, then the processor
pops the crafted return function (FIG. 1B) and branches on
it (see FIG. 1C). Then, the program is executing the payload
110 of the attacker, and not the original program.
0013 The stack is deliberately a memory area which can
be freely read from and written to. Indeed, some processors
are able to forbid some accesses to some given memory
areas. For instance, when a MMU (Memory Management
Unit) is implemented in a processing system, large portions
of the RAM memory (Random Access Memory) can be set
in read-only mode. This prevents for instance a program
from inadvertently or malevolently overwriting constants.
The text segment 100 can also be set to read-only mode
when executing it.
0014. The stack is nevertheless a general purpose
memory chunk where any access is possible, for a better
convenience of the execution. Therefore, the attacker is able
to corrupt the stack by illegally writing out a buffer bound
a1S.

0015 Besides, the attacker can write code in the stack
and then to jump on it. This strategy would even be more
straightforward. However, this attack technique is easy to
counteract by using state-of-the-art techniques, such as the
NX bit technology. NX bit technology is described in the
document entitled "Data Execution Prevention', Hewlett
Packard, 2005.
0016. Therefore, with most of the state-of-the-art proces
sors, the attacker must inject his payload by writing only
data and not machine code. As depicted before, an interest
ing approach for the attacker is to overwrite the return
address memorized in the stack (FIGS. 1A-1C). In that case
and as already explained, the program is re-routed elsewhere
which means that the control flow is diverted.

0017 Even if the execution of arbitrary code stays com
plex, several existing techniques allow taking advantage of
this situation. For instance, return-oriented programming
technique (ROP) makes possible to build a program by
borrowing chunks of code from different places, especially
in the legacy libraries that are linked with the program (e.g.,
the C library aka libc, where handy and hardly avoidable
functions such as malloc are implemented).
0018. As a summary, these state-of-the-art attacks alter
the execution graph by replacing jump addresses with a
forged data that will be erroneously interpreted by the
processor as addresses.

US 2017/O124322 A1

0019. Several existing protections can be used depending
of the context.

0020 Virus can be detected and then quarantined or
removed by anti-viruses >> programs, that either check
statistically their source code (against Some portions of the
binary that are renowned to be evil) or dynamically analyze
their behaviors. However, anti-viruses act too late, since
they detect the virus once it is already inserted in the
execution system.
0021. Other techniques allow to proactively catch the
exploit when it is triggered, so as to block it just-in-time
> (JIT) that is to say red-handed. For that purpose, two
strategies are usually employed.
0022. The first strategy is called randomization. The
ASLR technique (Address Space Layout Randomization) is
one of them. The memory locations of program functions
and data are chosen differently at each execution, and thus
their addresses are not predictable. However, due to some
limitations (e.g. finite length of the addresses), the ASLR can
be bypassed. Also, some advanced attacks manage to
execute the virus within the ASLR. Hence, this protection
can be considered as weak.

0023. A second strategy is hardening and CFI (Control
Flow Integrity) is one example. CFI can be used with a static
pre-processing, or dynamically (what we called JITs).
But this solution is pure software and has therefore several
shortcomings. It considerably slows down the execution of
the program. Furthermore, it is itself attackable as it is a
software only solution. For example, it can be bypassed if
there is an exploitable bug in it.
0024. It would be desirable to address the above issues,
to develop a solution for controlling the execution of a code
by a processing system.
0025. According to the invention, there is provided a
computer implemented method for controlling dynamically
the execution of a code by a processing system, said
execution being described by a control flow graph compris
ing a plurality of basic blocks composed of at least an input
node and an output node, a transition in the control flow
graph corresponding to a link between an output node of
origin belonging to a first basic block and an input node of
a second basic block, a plurality of initialization vectors
being associated to the output nodes at the time of generating
the code, an a priori control word being associated to each
input node which is linked to the same output node of origin
according the control flow graph, said a priori control word
being precomputed at the time of generating the code by
applying a predefined deterministic function F to the initial
ization vector associated to its output node of origin, the
following steps being applied once the execution of the
output node belonging to a first basic block is terminated and
at the time of executing the input node of a second basic
block:

0026 providing the a priori control word associated to
the input node of the second basic block;

0027 providing the initialization vector associated to
the output node of the first basic block;

0028 determining an a posteriori control word by
applying to the provided initialization vector the same
function F which has been used for generating the a
priori control word;

May 4, 2017

0029 determining if the a priori control word matches
with the a posteriori control word, a forbidden transi
tion in respect to the control flow graph being otherwise
detected.

0030. According to one aspect of the invention, the code
execution is interrupted when an output control word and an
input control word belonging to two Subsequent basic blocs
are not identical.
0031. For example, the second basic block is enciphered
at the time of generating the code by using its associated a
priori control word as a ciphering key, said method com
prising the step of deciphering the second basic block by
using its associated a posteriori control word as a decipher
ing key at the time of executing the input node of said second
basic block.
0032. According to the invention, there is also provided
a processing system for executing a code comprising a
processor, said system comprising also:

0033 a memory area configured to store the code to be
executed, said code being associated to a control flow
graph comprising a plurality of basic blocks composed
of at least an input node and an output node, a transition
in the control flow graph corresponding to a link
between an output node of origin belonging to a first
basic block and an input node of a second basic block,
said memory area being also configured to store a
plurality of initialization vectors associated to the out
put nodes at the time of generating the code, to store a
plurality of a priori control words, an a priori control
word being associated to each input node which is
linked to the same output node of origin according the
control flow graph, said a priori control word being
precomputed at the time of generating the code by
applying a predefined deterministic function F to the
initialization vector associated to its output node of
origin;

0034 an hardware implemented module configured to
generate a posteriori control words, an a posteriori
control word being generated for a given input node by
applying to the initialization vector the same function F
which has been used for generating the a priori control
associated to the same input node,

0035 a module configured for determining if an a
posteriori control and an a priori control word which
are associated to the same input node are matching, a
forbidden transition in respect to the control flow graph
being otherwise detected.

0036. As an example, the initialization vectors encode the
nature of the jumps implementing allowed transitions in the
control flow graph.
0037 According to one aspect of the invention, the
initialization vectors are memorized in the processing sys
tem using a set of dedicated registers. According to another
aspect of the invention, function F can be adapted to take
into account an additional input which plays the role of an
activation key.
0038. As an example, the activation key is unique per
device.
0039. Alternatively, the activation key can be unique per
program.

0040. In one embodiment, the basic blocks are enci
phered at the time of generating the code by using their
associated a priori control words as a ciphering key, said
system comprising a module to decipher said basic blocks at

US 2017/O124322 A1

the time of executing their input node by using their asso
ciated a posteriori control word as a deciphering key.
0041 According to the invention, there is also provided
a computer implemented method for generating an improved
version of an initial code intended to be executed on the
processing system as described before, comprising the steps
of:

0042 determining a control flow graph representative
of an unaltered execution of the code, said control flow
graph comprising a plurality of basic blocks composed
of at least an input node and an output node, a transition
in the control flow graph corresponding to a link
between an output node of origin belonging to a first
basic block and an input node of a second basic block
in the control flow graph;

0043 generating a plurality of initialization vectors, an
initialization vector being associated to each output
node at the time of generating the code:

0044 for each input node, determining an a priori
control word associated to each input node which is
linked to the same output node of origin according the
control flow graph, said a priori control word being
precomputed at the time of generating the code by
applying a predefined deterministic function F to the
initialization vector associated to its output node of
origin;

0045 modifying the initial code by inserting the a
priori control words in line with their corresponding
instructions.

0046. The control flow diagram is determined for
example through a static analysis of an initial code, said
initial code being a source code.
0047 For example, the control flow diagram is deter
mined through a static analysis of an initial code, said initial
code being an assembly code.
0048 For example, the control flow diagram is deter
mined through a static analysis of an initial code, said initial
code being a binary code.
0049. For example, the initialization vectors are attrib
uted randomly.
0050 For example, the value of an a priori control word

is chosen as a function F of at least a destination address
which is the address where the instruction corresponding to
an input node following an output node of origin according
to the control flow graph is located.
0051. For example, the a priori control words are inserted
inside the code to be executed.
0052 For example, the a priori control words are inserted
in line with the instructions corresponding to their associated
input node.
0053 For example, the initialization vectors are inserted
in line with the instructions corresponding to their associated
output nodes.
0054 According to the invention, there is also provided
a computer program product, stored on a computer readable
medium comprising code means for causing a computer to
implement the method for generating an improved version
of an initial code as described before.
0055. A better understanding of the embodiments of the
present invention can be obtained from the following
detailed description in conjunction with the following draw
ings, in which:
0056 FIGS. 1A, 1B and 1C give an example of stack
smashing thanks to a buffer overflow:

May 4, 2017

0057 FIG. 2A is an example of control flow diagram;
0058 FIG. 2B provides an example of a control flow
diagram which is abstracted as an oriented graph containing
only basic blocks;
0059 FIG. 3 illustrates a method for controlling dynami
cally the execution of a code:
0060 FIG. 4 gives an example of a representation of a
control flow graph including transformed input and output
nodes;
0061 FIG. 5 illustrates an example of a processing sys
tem comprising a mechanism to control the execution of a
code;
0062 FIG. 6 provides an example of a method for
generating an improved version of a code which is execut
able by the processing system according to the invention;
0063 FIG. 7 shows the operation of an opcode designed
to set a new initialization vector in the form of a finite state
machine;
0064 FIG. 8 illustrates the upgraded operation of the
processing system in the form of a new finite state machine;
0065 FIG. 9A provides an example of a simple control
flow graph where two nodes are connected with an edge;
0.066 FIG. 9B gives an example of insertion of the
initialization vector at the output node and the a priori
control word and its check instruction at the other end of the
edge, that is to say the input node.
0067. In the following description, a basic block desig
nates linear portions of code, that is to say a sequence of
instructions without deviations from a straight execution.
0068 Additionally, divergences or convergences are des
ignating locations in the code which are corresponding
respectively to the beginning and the end of a basic block.
A basic block is composed of at least an input node and an
output node which are representing respectively a conver
gence and a divergence in the control flow graph.
0069. Moreover, the jump from the output node of a first
basic block towards the input node of a second basic block
is designated as a transition.
0070 Further, the word instruction refers to an assembly
line of code.
0071. A source code can be analyzed in order to produce
an oriented graph, customarily referred as the CFG (Control
Flow Graph). The CFG is an oriented graph wherein each
instruction is a node (or vertex) and possible sequences of
instructions are indicated by the presence of an oriented
edge from one node to the other.
0072 Basic blocks correspond to linear portions of a
control flow graph. In Such a block, and without special
instruction, the program implicitly continues to the next
instruction. This means the register in the processor, which
is often referred as the Program Counter (PC), is by default
incremented by the size of an instruction after every instruc
tion which is non special (i.e. non-jump).
0073. The end of a basic block corresponds to an instruc
tion implementing a divergence, for example:

0.074 a conditional jump, like in if, switch, while and
goto constructs, “I” and “&& binary operators, “?:
ternary operator, and also calls in function arrays;

0075 a function call/a function return.
0076. The difference between these two is that a function
call/return it implies, in addition to the sequence break >>.
the saving of Some variables on the stack (referred to as a
push) for a function call, and the restoration of variables on
the stack (referred to as a pop). In assembly language, they

US 2017/O124322 A1

also belong to kinds of opcodes: JUMPs» and CALLs
/>> RETs». For the sake of simplicity, we refer to both

sequence breaks as jumps ss.
0077. In the scope of this invention, it is important to
make a difference between statically determined jump des
tinations and destinations which are discovered dynamically.
Several examples are provided below:

0078 static jumps are gotos to fixed labels or function
calls,

0079 dynamic jumps are all the others.
0080. There is a characteristic which allows differentiat
ing dynamic jumps into two families.
0081. A first family comprises the dynamic jumps whose
possible destinations are known to belong to a finite State
when the program is analyzed. Those are called direct
jumps. Direct jumps are:

I0082) if, switch (at least with few cases), while, &&.
call of functions via an array of functions pointers;

I0083) goto to built labels (because they are necessarily
within the scope of one function).

0084. A second family comprises the other dynamic
jumps which are called indirect jumps. For these jumps, the
number of destinations is unknown at the compilation.
Indirect jumps are:

I0085 switch (with many cases, usually >3);
I0086 return from functions that are exported, or
I0087 function calls via a register (virtual functions in
C++ for example).

0088. In this description, the destination of a jump is
called a label and is noted L. The destination of a function
call is called as the function address and is noted &f f being
the function. It can also be noted flike in the C language.
The destination of a return has no special name, but it is
implicitly saved by the processor. It is a destination address.
0089. The entrance of a basic block does not correspond
to a particular assembly location. But, when compiling a
program, those are known:

0090 for conditional jumps, as the next instruction that
follows the jump instruction;

0091 for function calls, as the beginning of the func
tion, and for function returns, as the instruction that
directly follows the call.

0092. A special case is for longjumps in C and exceptions
in C++, in this case, the stack management is exceptional
>>, as the execution flow.
0093. A program can be associated with a control flow
graph which describes all of its instructions.
0094 FIG. 2A is an example of control flow graph CFG.
Each circle 200-211 stands for one instruction, that is to say
one line in the assembly dump of the code. More precisely,
the CFG is depicted by the full arrows 212-222. The dashed
arrows 223, 224 represent the next instruction of a given
instruction 202, 203, that allow deriving the return address
in function calls.
0095 FIG. 2B provides an example of a control flow
graph which is abstracted as an oriented graph containing
only basic blocks 230-235. As already mentioned, a basic
block is made of one or more instructions jumping from one
to the following without divergences or convergences,
except for the first and the last ones. In FIG. 2B, the array
of function pointers f ptr contains the addresses of two
functions, namely f and g. This representation illustrates
function calls/returns but is also applicable to jumps.

May 4, 2017

0096. Some programs are more complex since they are
not monolithic, but use dynamic libraries as for example. So
object files under GNU/Linux and .dll under Windows. In
this case, the call between basic blocks from the main
program to a dynamic library needs to pass through dedi
cated functions, but that can still be seen as basic blocks.
0097. The construction of a control flow diagram can be
achieved through a static analysis of the Source code. It is
also possible to recover the structure of a binary code. The
recovery might be partial, all the more so as obfuscation
techniques are employed to obscure the binary. But still,
tools like IDA Pro perform quite well in this functionality
and one can write its own disassembly tool.
0.098 FIG. 3 illustrates a method for controlling dynami
cally the execution of a code and FIG. 4 gives an example
of a representation of a control flow graph including input
and output nodes across which the control is enforced.
0099. This method is computer-implemented. This means
that the steps (or substantially all the steps) of the method are
executed by at least one processor.
0100. The method comprises a sequence of several steps
which are applied during the code execution each time a
basic block execution terminates, that is to say before the
execution of a Subsequent instruction.
0101 The unaltered execution of the code can be
described by a control flow graph comprising a plurality of
basic blocks 420-425 and edges defining allowed transitions
between basic blocks. A basic block 420-425 is composed of
at least an input node 400-405 and an output node 410-415
which are representing respectively a convergence and a
divergence in the control flow graph. As already explained,
a node corresponds to an instruction of the code to be
executed Such as a machine code. According to the inven
tion, a plurality of initialization vectors is attributed to the
output nodes at the time of generating the code, for example
at the time of compiling a source code or at the time of
analyzing an assembly code. In one embodiment, a distinct
initialization vector is generated for each output node iden
tified in the control flow graph.
0102 The initialization vectors can be memorized into
the processing system. In a preferred embodiment, the
initialization vectors are memorized in the processing sys
tem using a set of dedicated registers.
0103) The method according to the invention carries out
several steps once the execution of an output node belonging
to a first basic block is terminated and at the time of
executing the input node of a second basic block.
0104. A step 300 aims at providing an a priori control
word associated to the input node of the second basic block.
This a priori control word is precomputed at the time of
generating the code by applying a predefined function F to
an initialization vector, said initialization vector being asso
ciated to the output node of origin. Said differently, an
allowed transition according to the control flow graph can be
defined by an output node of origin which belongs to a first
basic block and an input node of destination which belongs
to a second basic block. Thus, an initialization vector is
associated to the output node of origin and an a priori control
word is associated to the input node of destination. More
precisely, the a priori control word is deduced of the
initialization vector associated to the output node of origin
by applying function F to it.

US 2017/O124322 A1

0105. In one embodiment, the a priori control word is
inserted inside the code to be executed, for example in line
with the instruction corresponding to the input node of the
basic blocks.
010.6 Another step 301 aims at providing the initializa
tion vector associated to the output node of the first basic
block. As an example, this initialization vector is memorized
in a dedicated register, providing this vector means reading
its value for a future use.
0107. In one embodiment, the initialization vector is
inserted inside the code to be executed, for example in line
with the instruction corresponding to the output node of the
basic blocks.
0108. In one embodiment, a different initialization vector

is randomly attributed to output nodes for every authorized
transitions or edges in the control flow graph.
0109. In another step 302, an a posteriori control word is
determined by applying the predefined function F to the
provided initialization vector. According to an essential
aspect of the invention, the same deterministic function F
should be used for computing the a priori and the a posteriori
control words associated to a given transition in the control
flow graph.
0110. An example of a deterministic function F taking an
initialization vector is a SHA (Secured Hash Algorithm)
cryptographic hash function of said initialization vector.
0111. The method also comprises a step of determining
303, 304 if one of the a priori control words matches with
the a posteriori control word.
0112) If the a priori and the a posteriori control words do
not match i.e. are different, an alteration 305 of the code
execution is detected. More precisely, this means that a
forbidden transition in respect to the control flow graph
being is detected. In that case, the code execution may be
interrupted.
0113. In one embodiment, after detecting a forbidden
transition in respect to the control flow graph, a security
policy is enforced by triggering a hardware and/or Software
function.
0114. The method according to the invention enables a
hardware-assisted protection of a program from attacks that
aim at re-routing the execution flow.
0115 Advantageously, the protection is efficient in terms
of security and performance-wise.
0116. Additionally, some hardware resources such as key
registers can be hidden to the attacker. Further, the verifi
cation of the control flow graph integrity cannot be bypassed
as it can be encoded in a finite state machine, and the
function F itself can be hardware implemented or hidden
from access of a purported attacker. Another advantage is
that the control can be done in parallel with the code
execution which minimizes the impact on the execution
speed.
0117 FIG. 5 illustrates a processing system comprising a
mechanism to control the execution of a code.
0118. The processing system comprises a central process
ing unit (CPU) 500 connected to an internal communication
BUS 501, a random access memory (RAM) 502 also con
nected to the BUS. The processing system further comprises
a mass storage device controller 504 managing accesses to
a mass memory device. Such as hard drive. Mass memory
devices Suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor

May 4, 2017

memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
disks. Any of the foregoing may be Supplemented by, or
incorporated in, specially designed ASICs (application-spe
cific integrated circuits).
0119. In one embodiment, the processing system com
prises a stack stored inside the random access memory 501.
0.120. As an example, a memory area located for example
in the random access memory 502 stores the code to be
executed. Alternatively, a memory which is located in the
mass memory device 504 can be used to store the code to be
executed.

I0121 This code execution can be described by a control
flow graph which comprises a plurality of basic blocks. As
already mentioned, a basic block is composed of at least an
input node and an output node which are representing
respectively a convergence and a divergence in the control
flow graph. A plurality of initialization vectors is attributed
to the output nodes at the time of generating said code which
means before its execution by the processing system.
0.122 The processing system also comprises a memory
area wherein said initialization vectors are stored. This
memory area can be a memory area which belongs to the
stack of the system. Alternatively, this memory area can be
implemented by adding a set of dedicated registers to the
CPU 500.
0123 The processing system also comprises a memory
area wherein a plurality of a priori control words is stored.
As already explained, a priori control words are precom
puted at the time of generating the code. For that purpose, a
predefined function F is applied to the aforementioned
initialization vectors.

0.124. In one embodiment, the a priori control word is
inserted inside the code to be executed, for example in line
with the instruction corresponding to the input node.
0.125 Further, the processing system comprises a hard
ware implemented module 503 for generating a posteriori
control words. An a posteriori control word is generated by
applying the function F to the initialization vector which is
associated to a given output node at the time of executing an
instruction which follows the execution of this output node.
0.126 Additionally, the processing system comprises a
module for determining if an a posteriori control word which
has been calculated at the time of leaving a basic block
matches an a priori control word. An alteration of the code
execution is detected if the two control words do not match.
This module can be either software or hardware imple
mented. For example, this module can be implemented by
the processor 500.
I0127 FIG. 6 provides an example of a method for
generating an improved version of a code which is execut
able by the processing system according to the invention.
I0128. The improved code can be generated thanks to a
computer implemented method which uses an initial code as
an input.
I0129. A step 600 determines a control flow graph repre
sentative of an unaltered execution of the initial code. As
already explained, the control flow graph comprises a plu
rality of basic blocks, a basic block being composed of at
least an input node and an output node which are represent
ing respectively a convergence and a divergence in the
control flow graph.

US 2017/O124322 A1

0130. The method also comprises a step 601 for gener
ating a plurality of initialization vectors, a given initializa
tion vector being allocated to a given output node.
0131 Further, for each input node linked in the control
flow graph to an output node associated to an initialization
vector, a step 602 determines an a priori control word by
applying a predefined function F to said initialization vector.
0.132. In one embodiment, for example if the code gen
eration platform is similar to the code execution platform
depicted in FIG. 5, the function F is hardware accelerated.
0133. Then, the initial code is modified 603 in order to
generate an improved version of the code by inserting the a
priori control words in line with their corresponding instruc
tions, that is to say the instructions corresponding to their
associated input nodes.
0134. In one embodiment, the modification 603 of the
code also embeds initialization vectors in the improved
version of the code in line with their corresponding instruc
tions, that is to say the instructions corresponding to their
associated output nodes.
0135) In this description, a program is said to execute
with an unaltered control flow diagram if it dynamically
upon execution travels through the edges and nodes previ
ously identified statically during the link and/or dynamic
link processes, for example at compilation. A processing
system such as a processor can typically identify at runtime
divergences (that correspond for example to jump
> instructions) but has no means to identify which instruc
tion is a licit destination. This comes from the fact that this
information is not present statically in a binary code because
the notion of convergence has been semantically removed
after compilation.
0136. This information is nonetheless present while com
piling, and can be extracted albeit with non-trivial efforts
from a dynamic analysis of the binary. The method accord
ing to the invention verifies at runtime that the CFG is
unaltered.
0.137 According to the invention, binary information
called control word can be added directly to a set of chosen
instructions or between instructions in order to secure the
association between intended departures and arrival points.
This means that the text segment 100 will slightly grow.
Alternatively, the control words may be calculated on the fly.
0138. The verification of unaltered execution ensures that
no new edge is created in the control flow graph, and
therefore that an attacker cannot inject new nodes. But, of
course. Such verification cannot check that the correct (licite)
selection of vertices is made. For example, in an “if then
else' statement, a program executes with an unaltered con
trol flow graph if after the test, the program counter points
either to the beginning of the “then” or of the "else'
statement, and not anywhere else.
0.139. In order to keep the control flow graph execution
unaltered and to prevent a drastic slow-down in the execu
tion, a combination of new hardware and new information in
the software code is implemented. Some values can be
added in the binary and these values are called control words
in this description. A control word is a precomputed value
which is inserted statically in the binary at compile time.
0140 Besides, the hardware is augmented to check the
control words dynamically by recomputing them. This
recomputation can be made mandatory, which avoids “for
getting the verification of “warranty of legality” of one
jump in the program.

May 4, 2017

0.141. The control flow graph alteration is detected unam
biguously if the control words do not match across a jump,
for example if they differ.
0142. Different ways of computing control words are
provided hereafter by means of examples. They are obtained
by the evaluation of a function F, that can have one or more
inputs, depending on the targeted security level.
0.143 A minima, it can be checked that the nature of the
jump is respected, for example that it is illegal to jump at the
beginning of a function from a conditional test Such as an if
statement. Reciprocally, it is not allowed to jump at the
beginning of a basic block from a function call or return.
Technically speaking, this means that the nature of the jump
can be taken as an input of F while computing a control
word.
0144. However, more advanced verifications can be
done. For instance, in case of a jump destination instruction
wherein all the possible sources are identified, the source
point can be constrained to be within the list of possible
origins leading to a given destination instruction. Note that
in this description, a jump destination refers to the first
instruction of a basic block. Additionally, the jump destina
tion instructions that are considered in this case include
conditional jumps and even dynamic jumps, except as
discussed before instructions such as return from exported
function or calls to virtual functions.
0145 This implies a notion of classes of compatible
Source and destination pairs, that can be enforced by initial
ization vectors that creates classes of matching divergences
and convergences. Concretely, this means that the initial
ization vector is an input to the function F in charge of
creating control words. The previous minimal example (the
nature of jump shall impact the control word) can be seen as
a special case of an initialization vector wherein the nature
of the jump is implicitly converted as an initialization vector.
For example:

0146 in case of an if instruction, the initialization
vector will be equal to 0x00;

0147 in case of a call instruction, the initialization
vector will be equal to 0x01;

0.148 and so on for other kind of jumps which may be
encountered in the code.

0149 According to one aspect of the invention, the value
of a control word can be chosen as a function of the
destination address that should be reached after a jump
instruction. The advantage is that reuse and displacement of
control words are impossible.
0150. In another embodiment, the control words may
depend on a key concealed in the processor. The advantage
of this embodiment is that it prevents the dynamic forgery of
the control words.
0151. In another embodiment, the control words may
depend on a key concealed in a segment of the code that is
not readable from outside. The advantage of this embodi
ment is also that it prevents the dynamic forgery of the
control words.
0152. A combination of these embodiments may also be
considered, which means that the F function may have two
or three inputs in addition to the mandatory initialization
Vector.

0153. In a processing system implementing the invention,
the binary text section 100 must be upgraded in order to
embed the control words and/or the initialization vectors.
They can be placed after the opcodes in line. This means that

US 2017/O124322 A1

the words must be longer or that a second memory must be
used as a padding >> of the first one. Alternatively, specific
instructions may be used, said instructions being adapted
such that:

0154 initialization vectors are loaded before any
jump' operation;

0155 a control word check computed knowing the
current initialization vector is requested, along with the
expected (a priori) control word value.

0156 According to the invention, the initial vectors can
be computed and allocated using different techniques. For
instance, every parent vertex (also called output nodes)
corresponding to any licit input node has identical initial
ization vectors attributed, so that an initialization vector
depends only on the destination. This allows a graph tra
versal with colorings) of vertices.
0157. In an alternative embodiment, the parent node can
dynamically compute the initialization vector or select the
initialization vector in a precomputed table depending on the
computed or selected destination. This implementation has
the advantage of increasing the number of possible initial
ization vectors and thus decreasing the possibility of unde
tected malicious control flow hijacking.
0158. In addition to classical registers that contain the
current opcode and the current address and usually called PC
(Program Counter), at least one register is added to the
system. This additional register comprises the initialization
Vector.

0159. In one embodiment, this initial vector can be set
and reset by a specific instructions which is added to the
instruction set of the processing system. We recall that the
initialization vector is a piece of information that is required
for the a priori and a posteriori control words (over a jump
>) to be compatible by association.
0160 A deterministic function F is used and designed to
compute the control words. This function F is implemented
in the processing system. F takes as input at least the
initialization vector, which for instance encodes the nature
of the opcode, that is to say: jump or not, and ifjump, several
Sub-categories can be defined (classes of matching end
points).
0161. As previously stated, an example of a deterministic
function of an initialization vector is a SHA cryptographic
hash of said initialization vector.
0162 The function F also aims at recomputing dynami
cally and just in time (JIT) a control word during the
program execution. It is in particular automatically reevalu
ated if the current instruction is a jump (this can be achieved
trivially in the pipeline of a processor, and is indeed most of
the time already implemented, let alone to know whether the
PC must be incremented no jump or loaded from an
external value jump).
0163 The result of applying the F function is a control
word, that is compared with a Boolean test to the statically
and read-only declared a priori control word, which can be
found in the binary.
0164. The function F can advantageously be adapted to
take into account an additional input which plays the role of
a key. As already mentioned, this key can be unique per
device or unique per program. Alternatively, it can be unique
per process, a process being an instance of a program. Using
a key has the advantage to associate one binary code to one
device or program or process, thereby further reducing the

May 4, 2017

possibility of an attacker to fraud the protection. In that case,
a second additional register is required to host the key.
0.165 So, in general, for flexibility considerations, the
function F might well depends on only a subset of these
arguments, depending on the expected level of verification.
For example, if the association between the code and the
processing system is not a requirement, the key > input
can be ignored.
0166 The F function can be chosen as a compression
function. Indeed, since the output must fit on a limited
amount of bits which will generally correspond to the word
size used by the system (for example 32 bits) minus the
possible opcode length when the control word is introduced
by an instruction in the code. This value must be large
enough to avoid accidental control words equality, which
happens with probability about 2", where ibits is the
control word bitwidth.
0167. The F function can be advantageously chosen so
that it will be collision resistant.
0168 Additionally, the F function can be one-way (at
least for the key). That way, it will not possible to recover
its arguments by knowing its output. This will advanta
geously protect the processing system against the recovery
of the key.
(0169. Then the F function can be chosen such that it will
be fast to compute, ideally in one clock cycle or with the
number of clock cycles required to execute one instruction
on the processing system, so as not to impede the latency.
0170 It is also possible to add optional new opcodes. An
opcode can be added to initialize? set a new initialization
vector, which can be for example equal to zero by default.
0171 FIG. 7 shows the operation of an opcode designed
to set a new initialization vector in the form of a finite state
machine with one State 700 and three transitions 701-703.
0172 An opcode can be added to request the verification
of a control word, in the case this is not done by default at
each clock cycle. This implicit behavior does not slow down
the execution, because the control word computation and
check is done in parallel with the nominal program execu
tion.
0173 FIG. 8 illustrates the upgraded operation of the
processing system in the form of a new finite state machine
with two states 800, 803 and two transitions 801, 802. The
minimal condition for the control word to be checked is
twofold:

0.174 the current opcode is a jump (in the general
sense, i.e. a conditional branch, a function call or
return), and

0.175 if it is a conditional branch, the jump is effective
(opposed to continue to the next instruction >).

0176). In case the a priori and a posteriori control words
do not match after a jump, the new finite state machine
enters an error state 803 which means that the control flow
graph has been corrupted. In that case, several actions can be
taken, for example halt the program execution and/or active
Some defensive countermeasures (erase Some secrets from
memory).
0177. In another embodiment, the opcodes can be enci
phered by a transformation function that depends on the
control words. This does not impede the normal execution of
the code, as the verification of the control word is necessary
before executing the sequel of the code: hence the control
word is readily available to decipher in real-time the arriving
enciphered opcodes.

US 2017/O124322 A1

0.178 The advantage of this technique is that code injec
tion or reuse elsewhere is rendered very chancy, if not
impossible. Furthermore, if for some reason the code hap
pens to leak out of the processing system, then it will be
unintelligible, and thus impossible to reverse-engineer, for
instance so as to find Vulnerabilities in it.
0179. In one embodiment, encoding the opcodes is done
using a block cipher, the key being equal or derived from the
control word, for example by using a hash function.
0180. In one embodiment the block cipher is used in
conjunction with cryptographic mode of operations such as
ECB (Electronic Code Book), CBC (Cipher Block Chain
ing), PCBC (Propagating Cipher Block Chaining), CFB
(Cipher Feedback), OFB (Output Feedback) and CTR
(CounTeR).
0181. In one embodiment, encoding the opcodes is done
by means of a stream cipher, the key being equal or derived
from the control word, for example by using a hash function.
0182 FIG. 9A provides an example of a simple control
flow graph where two nodes are connected with a vertice
910. FIG. 9B gives an example of insertion of the a priori
control word and its check at the other end of the vertice 910.
0183 In order to forbid an attacker from derouting a
program by overwriting the return addresses, the control
flow graph is made more robust by modifying the ends of the
basic blocks, so that:

0.184 on leaving a basic block, some value based on
the possible destinations is computed. It is called a set
of a priori control words:

0185 on entering a basic block, the precomputed con
trol word fitting this location is checked against the
control word from the incoming vertex. By design,
those two values differ only if a new edge, either to an
existing node or to a newly created (forged) node, has
been created in the control flow graph.

0186 The transmission of the control word can be done
on the stack. The modified final instruction of the basic block
900 and the modified first instruction of the basic bloc 901
are both represented hatched subset of instructions.
0187. For functions, a similar mechanism can be used,
with in addition the push/pop of the a priori control words.
This is depicted in listing 2 which shows on an example
wherein transitions are verified along function calls freturns
in a control flow graph.

Listing 2

Without protection With protection

Ret pop IV (deciphered)
(equivalent to: ret

pop 96eax

)
call f push IV (enciphered)
(equivalent to: call f

push return address
jmp f

)

0188 In one embodiment the initialization vector (IV) is
not pushed in the clear on the stack. Instead, it is encrypted
by some function that depend on an exposed key (to avoid
their retrieval) and on their address (namely % esp. to avoid
replay).

May 4, 2017

(0189 In mirror, the state machine of the hardware must
be upgraded, for the verification to be done automatically.
This will prevent jumping at an unplausible address, that is
to say inside a basic block.
0190. The described embodiments thus allows to reac
tively fight cyber-attacks, i.e. malicious modifications of the
computer state by the abuse of bugs in the program it runs.
For instance, a cyber-attacker might guide the program into
unexpected States, that is undocumented by the specification
and/or unanticipated by the developer, through various
mechanisms.
0191) One example of such cyber-attacks is to have the
program reach a state with corner-case arguments (e.g.,
negative values when the program semantics would expect
only positive values). In this example, the code is too
permissive, and the cyber-attacker takes advantage of this
weakness. Another example is to have the program fall into
a bug uncarefully left by the developer. Such bug can
represent an overflow in size when reading into a buffer of
characters or an overflow of values (two integers, at least
one of which is provided externally, and whose sum, com
puted by the program, overflows to maximum value for an
integer, say 232-1 or 264-1 or 0xffff. . . ff in hexadecimal
notation). It should be noted that the invention also applies
to many other program state corruption techniques not
described herein for the sake of conciseness.
0.192 Depending on the nature of the Vulnerability, the
attacker can also modify the program memory, including
control-flow related information with variable degree of
flexibility.
0193 This kind of threat may be addressed by the use of
a specially crafted cryptographic function F, which is con
figured so that it cannot be forged by an attacker, according
to certain embodiments. Indeed, a cyber-attacker is capable
of running the program multiple times with different argu
ments and observe the way it reacts (legal output, crash, or
not etc.). This means the cyber-attacker is adaptative, hence
the properties of the above described cryptographic function
F. It should be noted that in the embodiments where the
cryptographic function F is hardcoded (in hardware), less
computational effort is required. Further, by implementing
the cryptographic function F in hardware, the attacker is
deprived of the possibility of manipulating this function F.
Similarly, security verifications using the function F may be
implemented in hardware in order to obtain a similar advan
tage: the security checks cannot be tampered, disabled,
modified or by-passed. It should be noted that the invention
may be also applied for protection against faults other than
from a “cyber origin, Such as bugs in the program (e.g.,
caused by problems in the compiler, which would generate
an incorrect control flow graph), or even physical faults
induced by a perturbation of the environment (for example,
low voltage, electromagnetic injection due to bad “electro
magnetic compatibility' shield, overclocking, etc.), whether
natural or triggered by an attacker.
0194 It should be noted that the cryptographic function
may be implemented according to different techniques. For
example, the cryptographic function F may be implemented
using a HMAC (Keyed Hash Message Authentication Code)
computation of the initialization vector and a secret key
stored in a hardware configuration register. The HMAC
input may also comprise the jump class (call, jump, etc).
Additionally, the HMAC input may also comprise the des
tination address.

US 2017/O124322 A1

0.195 Alternatively, the cryptographic function F may be
implemented using a block cipher taking as plaintext input
the initialization vector and a secret key stored in a hardware
configuration register. The block cipher input may comprise
the jump class (call, jump, etc), and/or the destination
address. Examples of block ciphers comprise with no limi
tation different types of ciphering algorithms such as AES
(Advanced Encryption Standard) and 3DES (DES stands for
Data Encryption Standard). In particular, the block cipher
may be chosen to be lightweight and fast to compute in
hardware. Examples of Such block ciphers comprise
SMALL PRESENT and SIMON.
0196. The function F may be also implemented by using
a CBC-MAC (Cipher Block Chaining Message Authentica
tion Code) computation of the initialization vector and a
secret key stored in a hardware configuration register.
0197) In another embodiment, the function F may be
implemented using a stream cipher taking as plaintext input
the initialization vector and a secret key stored in a hardware
configuration register. The stream cipher input may also
comprise the jump class (call, jump, etc) and/or the desti
nation address. The stream ciphers may comprise any type
of algorithm such as TRIVIUM or chained block ciphers
such as AES-CBC. The stream cipher may be also chosen to
be lightweight and fast to compute in hardware (like stream
ciphers comprising TRIVIUM).
0198 In still another embodiment, the function F may be
implemented using a asymmetric cryptography signature of
the initialization vector and a secret key stored in a hardware
configuration register. The signed data may also comprise
the jump class (call, jump, etc) and/or the signed data also
comprises the destination address.
0199 The processing system, methods and configura
tions as described above and in the drawings are for ease of
description only and are not meant to restrict the apparatus
or methods to a particular arrangement or process in use.

1. A computer implemented method for controlling
dynamically the execution of a code by a processing system,
said execution being described by a control flow graph
comprising a plurality of basic blocks composed of at least
an input node and an output node, a transition in the control
flow graph corresponding to a link between an output node
of origin belonging to a first basic block and an input node
of a second basic block, a plurality of initialization vectors
being associated to the output nodes at the time of generating
the code, an a priori control word being associated to each
input node which is linked to the same output node of origin
according the control flow graph, said a priori control word
being precomputed at the time of generating the code by
applying a predefined deterministic function F to the initial
ization vector associated to its output node of origin, the
following steps being applied once the execution of the
output node belonging to a first basic block is terminated and
at the time of executing the input node of a second basic
block:

providing the a priori control word associated to the input
node of the second basic block;

providing the initialization vector associated to the output
node of the first basic block;

determining an a posteriori control word by applying to
the provided initialization vector the same function F
which has been used for generating the a priori control
word;

May 4, 2017

determining if the a priori control word matches with the
a posteriori control word, a forbidden transition in
respect to the control flow graph being otherwise
detected.

2. A method according to claim 1 wherein the code
execution is interrupted when an output control word and an
input control word belonging to two Subsequent basic blocs
are not identical.

3. A method according to claim 1 wherein the second
basic block is enciphered at the time of generating the code
by using its associated a priori control word as a ciphering
key, said method comprising the step of deciphering the
second basic block by using its associated a posteriori
control word as a deciphering key at the time of executing
the input node of said second basic block.

4. A processing system for executing a code comprising a
processor, said system comprising also:

a memory area configured to store the code to be
executed, said code being associated to a control flow
graph comprising a plurality of basic blocks composed
of at least an input node and an output node, a transition
in the control flow graph corresponding to a link
between an output node of origin belonging to a first
basic block and an input node of a second basic block,
said memory area being also configured to store a
plurality of initialization vectors associated to the out
put nodes at the time of generating the code, to store a
plurality of a priori control words, an a priori control
word being associated to each input node which is
linked to the same output node of origin according the
control flow graph, said a priori control word being
precomputed at the time of generating the code by
applying a predefined deterministic function F to the
initialization vector associated to its output node of
origin;

an hardware implemented module configured to generate
a posteriori control words, an a posteriori control word
being generated for a given input node by applying to
the initialization vector the same function F which has
been used for generating the a priori control associated
to the same input node:

a module configured for determining if an a posteriori
control and an a priori control word which are associ
ated to the same input node are matching, a forbidden
transition in respect to the control flow graph being
otherwise detected.

5. A processing system according to claim 4 wherein the
initialization vectors encode the nature of the jumps imple
menting allowed transitions in the control flow graph.

6. A processing system according to claim 4 wherein the
initialization vectors are memorized in the processing sys
tem using a set of dedicated registers.

7. A processing system according to claim 4 wherein
function F is adapted to take into account an additional input
which plays the role of an activation key.

8. A processing system according to claim 4 wherein the
activation key is unique per device.

9. A processing system according to claim 4 wherein the
activation key is unique per program.

10. A processing system to claim 4 wherein the basic
blocks are enciphered at the time of generating the code by
using their associated a priori control words as a ciphering
key, said system comprising a module to decipher said basic

US 2017/O124322 A1

blocks at the time of executing their input node by using
their associated a posteriori control word as a deciphering
key.

11. A computer implemented method for generating an
improved version of an initial code intended to be executed
on the processing system according to the claim 3, com
prising the steps of

determining a control flow graph representative of an
unaltered execution of the code, said control flow graph
comprising a plurality of basic blocks composed of at
least an input node and an output node, a transition in
the control flow graph corresponding to a link between
an output node of origin belonging to a first basic block
and an input node of a second basic block in the control
flow graph;

generating a plurality of initialization vectors, an initial
ization vector being associated to each output node at
the time of generating the code:

for each input node, determining an a priori control word
associated to each input node which is linked to the
same output node of origin according the control flow
graph, said a priori control word being precomputed at
the time of generating the code by applying a pre
defined deterministic function F to the initialization
vector associated to its output node of origin;

modifying the initial code by inserting the a priori control
words in line with their corresponding instructions.

May 4, 2017

12. A method according to claim 11 wherein the control
flow diagram is determined through a static analysis of an
initial code, said initial code being a source code.

13. A method according to claim 11 wherein the control
flow diagram is determined through a static analysis of an
initial code, said initial code being an assembly code.

14. A method according to claim 11 wherein the control
flow diagram is determined through a static analysis of an
initial code, said initial code being a binary code

15. A method according to claim 11 wherein the initial
ization vectors are attributed randomly.

16. A method according to claim 11 wherein the value of
an a priori control word is chosen as a function F of at least
a destination address which is the address where the instruc
tion corresponding to an input node following an output
node of origin according to the control flow graph is located.

17. A method according to claim 11 wherein the a priori
control words are inserted inside the code to be executed.

18. A method according to claim 17 wherein the a priori
control words are inserted in line with the instructions
corresponding to their associated input node.

19. A method according to claim 11 wherein the initial
ization vectors are inserted in line with the instructions
corresponding to their associated output nodes.

20. A computer program product, stored on a non transi
tory computer readable medium comprising code for caus
ing a computer to implement the method according to claim
1.

