
TOMMUNICATION AUTOMATION
US009841991B2

(12) United States Patent
Sizemore

(10) Patent No . :
(45) Date of Patent :

US 9 , 841 , 991 B2
Dec . 12 , 2017

(54) TECHNIQUES FOR VIRTUAL MACHINE
MIGRATION

(71) Applicant : NETAPP , INC . , Sunnyvale , CA (US)
(72) Inventor : Glenn Sizemore , Raleigh , NC (US)

6 , 131 , 192 A 10 / 2000 Henry
6 , 857 , 001 B2 2 / 2005 Hitz et al .
7 , 107 , 385 B2 9 / 2006 Rajan et al .
7 , 409 , 494 B28 / 2008 Edwards et al .
7 , 577 , 722 B1 * 8 / 2009 Khandekar GO6F 9 / 45558

709 / 220
7 , 933 , 872 B2 * 4 / 2011 Kulkarni G06F 11 / 1458

707 / 640
8 , 041 , 888 B2 10 / 2011 Rajan et al .
8 , 281 , 066 B1 10 / 2012 Trimmer et al .

(Continued)

(73) Assignee : NETAPP , INC . , Sunnyvale , CA (US)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days . OTHER PUBLICATIONS

(21) Appl . No . : 14 / 296 , 695
(22) Filed : Jun . 5 , 2014

Microsoft Virtual Hard Disk Image Format Specification 1 . 0 , Oct .
11 , 2006 , 17 pages .

(Continued)
(65) Prior Publication Data

US 2015 / 0324227 A1 Nov . 12 , 2015
Related U . S . Application Data

(60) Provisional application No . 61 / 992 , 108 , filed on May
12 , 2014 .

Primary Examiner - Mehran Kamran
(74) Attorney , Agent , or Firm — Klein , O ' Neill & Singh ,
LLP

(51) Int . Ci .
G06F 9 / 455 (2006 . 01)
GO6F 9 / 48 (2006 . 01)

(52) U . S . Cl .
CPC GO6F 9 / 48 (2013 . 01) ; G06F 9 / 45558

(2013 . 01) ; G06F 9 / 4856 (2013 . 01) ; G06F
2009 / 4557 (2013 . 01)

(58) Field of Classification Search
None
See application file for complete search history .

(57) ABSTRACT
Techniques for virtual machine migration are described . An
apparatus may comprise a script generation component
operative to generate a first script , the first script to migrate
a guest operating system running on a first virtual machine
to run on a second virtual machine . The first script may be
operative to collect configuration information of the guest
operating system , generate a second script based on the
collected configuration information , and configure the guest
operating system to execute the second script , the configu
ration information collected while the guest operating sys
tem is running on the first virtual machine , the guest
operating system configured for the execution of the second
script to occur while the guest operating system is running
on the second virtual machine . Other embodiments are
described and claimed .

(56) References Cited
U . S . PATENT DOCUMENTS

5 , 710 , 917 A
5 , 819 , 292 A

1 / 1998 Musa et al .
10 / 1998 Hitz et al . 21 Claims , 14 Drawing Sheets

Virtual Machine Migration System 100
Source Hypervisor 130 Host OS 120 Destination Hypervisor 135

Source M 140 Migration Destination IM 145
Application mm Guest OS 151) 10

- - - - - - - - - - - - - - - - - - - - -

:
Guest OS 130 www

w

File System 160 w with
- - - - - - - -

Source Vis Configuration 1
i File 180

VYYY -

Desimalioh
PM

Configuration
i File 185
-

-

Soove
mual Disk 170

- - - - -
Destiration VM
Firtual Disk 175

191 - 192

Virbal Disk Blocks 1 . X } Source VM
Configuration File

Blocks 195

Destination VM
Configuration File

Blocks 197

US 9 , 841 , 991 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

.

2013 / 0275596 A1 * 10 / 2013 Subramaniam 709 / 226
2013 / 0275971 A1 * 10 / 2013 Kruglick GO6F 9 / 5077

718 / 1
2013 / 0326505 A1 * 12 / 2013 Shah G06F 9 / 45558

718 / 1
2013 / 0339645 A1 12 / 2013 Barve
2013 / 0339956 A1 * 12 / 2013 Murase GO6F 9 / 505

718 / 1
2013 / 0343385 Al 12 / 2013 Benny et al .
2014 / 0007092 A1 * 1 / 2014 Barbee GO6F 9 / 4856

718 / 1
2014 / 0007093 A1 * 1 / 2014 Deshpande et al 718 / 1
2014 / 0032753 A1 * 1 / 2014 Watanabe H04L 29 / 08549

709 / 224
2014 / 0075437 A1 * 3 / 2014 Mousseau GO6F 8 / 61

718 / 1
2014 / 0137114 Al * 5 / 2014 Bolte GO6F 9 / 45533

718 / 1
2014 / 0149983 A15 / 2014 Bonilla et al .
2014 / 0165063 A1 * 6 / 2014 Shiva . G06F 21 / 57

718 / 1
2014 / 0172406 A1 * 6 / 2014 Baset F 11 / 3409

703 / 22
2014 / 0196030 A1 * 7 / 2014 Deshpande GO6F 9 / 45558

718 / 1
2014 / 0201732 AL 7 / 2014 Haag et al .
2014 / 0223435 A1 * 8 / 2014 Chang G06F 9 / 45533

718 / 1
2014 / 0245292 A1 * 8 / 2014 Balani GO6F 9 / 5077

718 / 1
2014 / 0281217 A1 9 / 2014 Beam et al .
2014 / 0282519 AL 9 / 2014 Apte et al .
2014 / 0344807 A1 * 11 / 2014 Bursell et al · 718 / 1
2014 / 0359610 A1 * 12 / 2014 Tian . G06F 9 / 45558

718 / 1
2015 / 0052521 A1 * 2 / 2015 Raghu HO4L 63 / 0272

718 / 1
2015 / 0058382 AL 2 / 2015 St . Laurent et al .
2015 / 0106809 A1 * 4 / 2015 Reddy et al 718 / 1
2015 / 0109923 A1 * 4 / 2015 Hwang HO4L 47 / 12

370 / 235
2015 / 0113530 A1 * 4 / 2015 Arcese G06F 9 / 45558

718 / 1
2015 / 0113531 A1 * 4 / 2015 Lv . GO6F 9 / 455

718 / 1
2015 / 0134615 Al 5 / 2015 Goodman et al .
2015 / 0140974 AL 5 / 2015 Liimatainen
2015 / 0154039 A1 * 6 / 2015 Zada G06F 9 / 5011

718 / 1
2015 / 0178113 A1 * 6 / 2015 Dake GO6F 9 / 45558

718 / 1
2015 / 0178128 AL 6 / 2015 Knowles et al .
2015 / 0242225 A1 * 8 / 2015 Muller . GO6F 9 / 542

718 / 1
2015 / 0254256 AL 9 / 2015 St . Laurent et al .
2015 / 0324216 AL 11 / 2015 Sizemore et al .
2015 / 0324217 A1 * 11 / 2015 Shilmover G06F 9 / 45558

718 / 1
2016 / 0019087 A1 * 1 / 2016 Hing G06F 9 / 45558

718 / 1
2016 / 0070623 AL 3 / 2016 Derk et al .
2016 / 0132400 A15 / 2016 Pawar et al .
2016 / 0241573 AL 8 / 2016 Mixer
2017 / 0168903 A16 / 2017 Dornemann et al .

8 , 332 , 847 B1 12 / 2012 Hyser et al .
8 , 352 , 608 B1 * 1 / 2013 Keagy et al . 709 / 226
8 , 386 , 838 B1 2 / 2013 Byan
8 , 417 , 938 B1 * 4 / 2013 Considine GO6F 9 / 5088

713 / 151
8 , 458 , 717 B1 6 / 2013 Keagy et al .
8 , 688 , 636 B1 . 4 / 2014 Barve
8 , 825 , 940 B1 . 9 / 2014 Diggs
8 , 826 , 033 B1 9 / 2014 Krishnaprasad et al .
9 , 146 , 769 B19 / 2015 Shankar et al .
9 , 177 , 337 B2 * 11 / 2015 Hing GO6Q 30 / 04

2005 / 02 16532 AL 9 / 2005 Lallier
2006 / 0089992 A1 * 4 / 2006 Blaho G06F 3 / 1431

709 / 227
2007 / 0171921 A1 7 / 2007 Wookey et al .
2007 / 0220248 A1 * 9 / 2007 Bittlingmayer GO6F 9 / 44505

713 / 100
2008 / 0235238 A1 9 / 2008 Jalobeanu et al .
2008 / 0263258 A 10 / 2008 Allwell et al .
2009 / 0172664 A1 * 7 / 2009 Mostafa GO6F 9 / 45504

718 / 1
2009 / 0228629 A1 * 9 / 2009 Gebhart . GO6F 8 / 63

711 / 6
2010 / 0070725 A1 3 / 2010 Prahlad et al .
2010 / 0250630 A1 9 / 2010 Kudo
2010 / 0257269 Al 10 / 2010 Clark
2010 / 0281467 A1 * 11 / 2010 Arteaga GO6F 11 / 3684

717 / 126
2010 / 0293349 Al 11 / 2010 Lionetti et al .
2011 / 0022694 A1 * 1 / 2011 Dalal HO4L 41 / 0843

709 / 222
2011 / 0078395 A1 * 3 / 2011 Okada GO6F 11 / 3442

711 / 162
2011 / 0107330 A1 5 / 2011 Freundlich et al .
2011 / 0126269 A1 5 / 2011 Youngworth
2011 / 0131524 A1 6 / 2011 Chang et al .
2011 / 0131576 A1 * 6 / 2011 Ikegaya G06F 9 / 455

718 / 1
2011 / 0307889 A1 * 12 / 2011 Moriki GO6F 9 / 45558

718 / 1
2012 / 0011193 A1 * 1 / 2012 Gilboa G06F 3 / 0383

709 / 203
2012 / 0011280 A1 * 1 / 2012 Gilboa G06F 3 / 0481

709 / 246
2012 / 0011445 Al * 1 / 2012 Gilboa G06F 3 / 0481

715 / 740
2012 / 0030669 AL 2 / 2012 Tsirkin
2012 / 0110574 AL 5 / 2012 Kumar
2012 / 0144391 AL 6 / 2012 Ueda
2012 / 0151476 A1 * 6 / 2012 Vincent G06F 9 / 45558

718 / 1
2012 / 0197772 A1 * 8 / 2012 Hing . GO6Q 30 / 04

705 / 34
2012 / 0221699 A1 * 8 / 2012 Moriyasu G06F 9 / 5077

709 / 223
2012 / 0233282 A1 * 9 / 2012 Voccio GO6F 9 / 45558

709 / 212
2012 / 0278804 A1 * 11 / 2012 Narayanasamy et al 718 / 1
2013 / 0014102 A11 / 2013 Shah
2013 / 0024722 AL 1 / 2013 Kotagiri et al .
2013 / 0139153 A1 * 5 / 2013 Shah G06F 9 / 45558

718 / 1
2013 / 0139155 A1 5 / 2013 Shah
2013 / 0151802 Al 6 / 2013 Bahadure et al .
2013 / 0152078 A1 * 6 / 2013 Arcilla GO6F 9 / 45558

718 / 1
2013 / 0166504 A1 6 / 2013 Varkhedi et al .
2013 / 0185715 A1 * 7 / 2013 Dunning H04L 41 / 0803

718 / 1
2013 / 0232474 A1 * 9 / 2013 Leclair GO6F 9 / 44

717 / 134
2013 / 0247136 A1 * 9 / 2013 Chieu GO6F 9 / 5072

726 / 1

.

OTHER PUBLICATIONS

Non - final Office Action dated Jun . 30 , 2016 for U . S . Appl . No .
13 / 796 , 010 .
Final Office Action dated Mar . 15 , 2016 for U . S . Appl . No .
13 / 796 , 010 .
Non - final Office Action dated Sep . 11 , 2015 for U . S . Appl . No .
13 / 796 , 010 .
Non - final Office Action dated Mar . 10 , 2017 for U . S . Appl . No .
14 / 530 , 135 .

US 9 , 841 , 991 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Final Office Action dated May 4 , 2017 for U . S . Appl . No .
14 / 503 , 338 .
John J . , “ Top Three Things to Know Before you Migrate to
Clustered Data ONTAP , " Jul . 23 , 2013 , 5 pages .
Non - Final Office Action on co - pending (U . S . Appl . No . 14 / 814 , 828)
dated Jul . 13 , 2016 .
Notice of Allowance on co - pending (U . S . Appl . No . 14 / 814 , 828)
dated Feb . 1 , 2017 .
Non - Final Office Action on co - pending (U . S . Appl . No . 14 / 712 , 845)
dated Sep . 2 , 2016 .
Final Office Action on co - pending (U . S . Appl . No . 14 / 712 , 845)
dated Jan . 26 , 2017 .
Non - Final Office Action on co - pending (U . S . Appl . No . 14 / 870 , 095)
dated Oct . 25 , 2016 .
Notice of Allowance dated Dec . 19 , 2016 for U . S . Appl . No .
13 / 796 , 010 , filed Mar . 12 , 2013 , 22 pages .
Whitehouse L . , et al . , “ Amazon Web Services : Enabling Cost
Efficient Disaster Recovery Leveraging Cloud Infrastructure ” ,
Enterprise Strategy Group , White Paper , Jan . 2012 , 16 pages .

Non - final Office Action dated Oct . 6 , 2016 for U . S . Appl . No .
14 / 503 , 338 .
Alvarez . , et al . , “ Back to Basics : FlexClone " , Tech on Tap , Apr .
2011 , 12 pages .
Bolosky W . J . , et al . , “ Single Instance Storage in Windows 2000 , ”
Microsoft Corporation , [retrieved on May 2 , 2011] , URL : http : / /
citeseerx . ist . psu . edu / viewdoc / download ? doi = 10 . 1 . 1 . 67 . 5656
& rep = rep1 - & type = pdf , Aug . 2000 , 12 pages .
Feresten . , et al . , “ Back to Basics : NetApp Thin Provisioning ” , Tech
on Tap , Oct . 2011 , 8 pages .
Notice of Allowance on co - pending U . S . Appl . No . 14 / 530 , 135
dated Aug . 4 , 2017 .
Final Office Action on co - pending U . S . Appl . No . 14 / 870 , 095 dated
Jun . 1 , 2017 .
Non - Final Office Action on co - pending U . S . Appl . No . 14 / 928 , 158
dated Jun . 8 , 2017 .
Non - Final Office Action on co - pending U . S . Appl . No . 15 / 140 , 372
dated Sep . 8 , 2017 .

* cited by examiner

Virtual Machine Migration System 100

|

U . S . Patent

Host OS 120

Source Hypervisor 130

Destinai

* * STRY Source VM 140

Destination

.

Migration Application 110

Guest OS 150

Guest OS 150

.

w wwwwwwwwwwwwwwwwww
wwwww

1 . . .

. .

TTTTTTTTTT

Dec . 12 , 2017

File System 160

Desination

toto

Source VN Configuration 1 File 180

wote

Source VM Virtual Disk 170

Configuration !
File 185

Destination VM Virtual Disk 175

Sheet 1 of 14

191

2

wwwiiiiiiiii

L

Virtual Disk Blocks 190

Source VM Configuration File Blocks 195

Destination VM Configuration File Blocks 197

FIG . 1

US 9 , 841 , 991 B2

mm 210

Begin

200

U . S . Patent

220
On Error

Backup Source VM
23

232

234

236 -

vo

Source VM Accessible to Commands ?

Dec . 12 , 2017

-

Run Offline Script in Guest OS

On Error 1

Generate Offline Script

Wait for Source VM to Power Off

Yes

240 mm 00 : 0 : 00
On Error

Prep VM

Sheet 2 of 14

250 mm 1

Migrate to Destination Environment
On Error

260 .

Wait for Migration

Restore Source VM

FIG . 2

US 9 , 841 , 991 B2

U . S . Patent Dec . 12 , 2017 Sheet 3 of 14 US 9 , 841 , 991 B2

300
om 310

Start Backup

320
- 325

Use
Hypervisor

Snapshotting ?
No Shutdown

Source VM

Yes
- 330 335

Yes Does Source
VM Snapshot
Already Exist ?

Delete
Existing
Snapshot

No
m 340

Create
Hypervisor
Snapshot

anterior 350

Clone Virtual
Disk Copy www 375

370 No
Start VM

Delete
Snapshot

Is the VM
Powered On ? 390

Yes Continue to
Next Step in

Process
FIG . 3

432

U . S . Patent

Configure OS to Install Tools on Next Boot

Start VM Prep

w 424

* 430

Yes

Save MAC Address

Yes

Dump Current Network Settings to Temp File in Guest OS

Backup Network ?

No .

Use Temp File to Generate Network Restore Script

Destination Hypervisor Needs Integration Tools ?

Dec . 12 , 2017

to

Configure OS to Restore Network on Next Boot

Adapter Mapping

No

men 445

Sheet 4 of 14

- 460

-

462

Yes

No

Remove Hypervisor Integration Software ?

Yes

Initiate Integration Removal in Guest OS

VM Powered Down ?

Continue Waiting ?

Sleep

Report Warning
466 mm

No

Yes

Initiate VM Shutdown from Hypervisor

490

Continue to Next Step in Process

. . . 464

FIG . 4

US 9 , 841 , 991 B2

U . S . Patent Dec . 12 , 2017 Sheet 5 of 14 US 9 , 841 , 991 B2

500 Start Migration
510

No 520 535
- 540

Yes Create New
VM Failure ? At Retry Yes

Limit ? Migration Failed

550 550

On Error

mine
Configure
Destination
VM Settings
Per the Source

VM

WWW

No 555 - 565
560
Yes

Create NIC
Using Same
MAC Address
as Source VM

NIC
Relationship

Exists ?

Set NIC
Connections

Per the
Network Map
Relationship

mm 570

Shift Virtual
Disk

NO No 5505 575 381) may 585 590 mm

Yes Start
Destination

VM

Install
Integration

Tools ?
Install Install
Tools

Continue to
Next Step in

Process

FIG . 5

Start Wait

600

U . S . Patent

610 620

630

635

No

Yes

Destination VM Powered Off ?

Continue Waiting ?

Sleep

mm 640

Dec . 12 , 2017

No

Yes

Return Warning That Unable to Determine Migration Status

650

660

Yes

Yes

Keep Static MAC ?

Yes pt

Start Destination VM ?

Start Destination VM

Sheet 6 of 14

m 665

No

655 www

.

690

Set MAC to

Continue to Next Step in Process

Dynamic

FIG . 6

US 9 , 841 , 991 B2

U . S . Patent Dec . 12 , 2017 Sheet 7 of 14 ? US 9 , 841 , 991 B2

- 710 700
Start Restore

? 720 730
73S

NO Source VM
Powered Off ?

Continue Yes
Waiting ') Sleep ? 740

No
Yes

Generate
Warning

Restore May
Fail Due to
File Locks

730

Clone from
Backup File to
Virtual Disk

760 770
775

\ No Yes Clean Up
Backup ?

Start
Source
VM ?

Start
Source
VM

Yes

… 765
End Delete

Backup File

FIG . 7

Virtual Machine Migration System 100

U . S . Patent

Migration Application 110

.

*

. *

.

. *

. *

. . *

* .

.

Destinatio . visor 135 Destination VM 145 :

- -

-

-

- -

- - -

YrX

inimiiiiiii Guest OS 750
por pertanian dan pen gertian

*

1 :

Application Configuration Component 810

VM Information 820
*

Dec . 12 , 2017

Source Hypervisor 130

??? ??? ?? ??

?? ?? ??? : ??? ??

? ??

.

.

.

.

1

.

1 LATT . . .

>

.

First Script 840)

-

Remote Access Component 850

Guest OS 150 - mavu

-

wwwwww

Sheet 8 of 14

mm

Information 820
First Script 8401

Script Generation Component 830

FIG . 8

US 9 , 841 , 991 B2

Virtual Machine Migration System 100

U . S . Patent

Guest OS 150

-

-

-

-

-

-

-

Source VM 140

First Script 840

Configuration | Information 920

Dec . 12 , 2017

960 Configuration 960

wwwwwwwwwwwwwwwwwwwwwwww

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

. .

. . .

. .

. .

. .

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Sheet 9 of 14

memer

Y7n MY
.

Destination VM 145

Second Script 940

Reconfiguration Conimands 930

Configuration 965

www . FIG . 9

US 9 , 841 , 991 B2

U . S . Patent Dec . 12 , 2017 Sheet 10 of 14 US 9 , 841 , 991 B2

1000

24ti ?

Execute a first script in a guest operating system running on a
virtual niachine , the first sé

information of the guest operating system .
1002

inimii

Generate a second script based on the collected Configuration

information .
1004

YA 11 ETY 1 Oy . 127 1 . Y0 / 17
CELE 870 SCH ! Execute the second script in the guest operating system running

on a destination virtual machine , the second script reconfiguring
the guest operating system to run on the destination virtual

machine
1006

w

FIG . 10

U . S . Patent Dec . 12 , 2017 Sheet 11 of 14 US 9 , 841 , 991 B2

Centralized System 1100

Device 1120
.

IIIXOLON 1 . PUTCWLIUI I10 : : Migration Application 110
Wiii

170111 c . 21 . KIL : ; ' , '
wvvv .

Source VM 140 tt :

: :

: :

:

: : : : :

mini m um omnium www
: : :

estination 1er VISOM) :

:

: : :

: MY
:

: : : Destination VM 145
: : : : :

: : : Guest OS 150
:

:

: : :

:

:

: : :

: : : : :

: : :

:

: File System 160 :

:

:

:

: : :

: : : : :

: : : Processing Component 1130 :

:

:

:

:

:

: : :

: : : : : Communications Component 1140 Signals 1114
Media 1112

Device
1110 : : :

:

:

FIG . 11

Distributed System 1200

Server Device 1250

Server Device 1270

U . S . Patent

:

225

ANVA .

UT

C

.

TINATION TOST O

T LED

ci

.

. .

1

.)

nematom

Source Hypervisor 130 Source VM 140 Guest OS 150

iiiiiiiiiii

Destination Host OS 1225
Destination Hy

Destination Hypervisor 13 . Destination VM 145 Guest OS 750

.

III .

.

o rromonimommunion

Dec . 12 , 2017

. . . .

.

. 7 ' .
.

. . .

.

.

Proces

ponent 1230

OUI

Processing Component 1230 Communications Component 1240 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Y

Y ? ? MUELLVICULU .
JOY TO

Signals 1214 Media 1212

Sheet 12 of 14

wiiiiiiiiiiiiiiiiiiiiii
an Ju?ll?

uo ? jpu8IW

winninnisiniiiiiiiiiiiii ONTI ? suolyd?lunumo
File

iddy

ULU

7 . 712

Application 110 Component 1240 Processing Component 1230

Server

File Server 1260 - 2

File Server 1260 - 1

1 - 0971

FIG . 12

US 9 , 841 , 991 B2

U . S . Patent Dec . 12 , 2017 Sheet 13 of 14 US 9 , 841 , 991 B2

1300
1302

- 1330
, PROCESSING 1304

stu , , , , ,
TIZZY

1 : 11V
www . OPERATING SYSTEM I 16 . 411 . . .

TUTT . .

1332
APPLICATIONS 1306 Limild . I

1308
SYSTEM
MEMORY

1334
1310 MODULES

t

NON - VOL pirmi ! ning

DATA
Dom ww what it i n ' n mi mente

f 1312 VOLATILE
www where to m y www www me - - 1314 - 1314 pre 1324

INTERFACE *
Laimminminmin i ininin INTERNAL HDD EXTERNAL HDD

came one w ho 1316

1326 FDD mmmmmmmmud 1318
INTERFACE

DISK - 1344 BUS It 1320
1328 MONITOR

INTERFACE
OPTICAL
DRIVE
DISK

to 1322 1338
1346

KEYBOARD
VIDEO

ADAPTOR winning 1340

(WIRED / WIRELESS) MOUSE
Liewe

1358 1348 INPUT
DEVICE

INTERFACE
1354

» MODEM fmohan WAN REMOTE
COMPUTER (S) 1356 mer 1352

- 1350 NETWORK
ADAPTOR LAN LAN +

(WIRED / WIRELESS)
MEMORY /
STORAGE

FIG . 13

1400

U . S . Patent

- 1402

1404 4

Dec . 12 , 2017

CLIENT (S)

SERVER (S) ,

COMMUNICATION FRAMEWORK
1 408 -

* 1410 .

- 1406

Sheet 14 of 14

CLIENT DATA STORE (S)

SERVER DATA STORE (S)

FIG . 14

US 9 , 841 , 991 B2

US 9 , 841 , 991 B2

re

TECHNIQUES FOR VIRTUAL MACHINE use of only minimal human interaction , limited to , for
MIGRATION example , bridging physical isolation or logical separation

between a virtual machine environment and a control sys
RELATED CASES tem .

Various embodiments are directed to techniques for vir
This application claims the benefit of priority under 35 tual machine migration . A guest operating system (OS) runs

U . S . C . $ 119 (e) to U . S . Provisional Patent Application No . on top of an execution environment platform known as the
61 / 992 , 108 , titled " Techniques for Virtual Machine Migra virtual machine (VM) , which abstracts a hardware platform
tion , ” filed on May 12 , 2014 , which is hereby incorporated from the perspective of the guest OS . The abstraction of the
by reference in its entirety . 10 hardware platform , the providing of the virtual machine , is

This application is related to U . S . patent application Ser performed by a hypervisor , also known as a virtual machine
No . 13 / 796 , 010 , titled “ Technique for Rapidly Converting monitor , which runs as a piece of software on a host OS . The
Between Storage Representations in a Virtualized Comput host OS typically runs on an actual hardware platform ,
ing Environment , ” filed on Mar . 12 , 2013 , which is hereby though multiple tiers of abstraction may be possible . While
incorporated by reference in its entirety . 15 the actions of the guest OS are performed using the actual

hardware platform , access to this platform is mediated by the
BACKGROUND hypervisor . For instance , virtual network interfaces may be

presented to the guest OS that present the actual network
A virtual machine (VM) is a software implementation of interfaces of the base hardware platform through an inter

a machine , such as a computer , that executes programs like 20 mediary software layer . The processes of the guest OS and
a physical machine . A VM allows multiple operating sys - its guest applications may execute their code directly on the
tems to co - exist on a same hardware platform in strong processors of the base hardware platform , but under the
isolation from each other , utilize different instruction set management of the hypervisor .
architectures , and facilitate high - availability and disaster Multiple vendors provide hypervisors for the execution of
recovery operations . Migrating data between VM architec - 25 virtual machines using abstraction technology unique to the
tures , however , may be problematic . For instance , migration vendor ' s implementation . The vendors use technology
may cause a disruption in services , lengthy migration times , selected according to their own development process . How
or in some cases lead to data corruption . ever these are frequently different from vendor to vendor .

Consequently , the guest OS has tailored virtual hardware
BRIEF DESCRIPTION OF THE DRAWINGS 30 and drivers to support the vendor implementation . This

variation may lead to a core incompatibility between VM
FIG . 1 illustrates an embodiment of a virtual machine platforms . For example , different VM platforms may use

migration system . different technologies for bridging to a network , where
FIG . 2 illustrates an embodiment of an overall logic flow virtualized network interfaces are presented to the guest OS .

for the virtual machine migration system of FIG . 1 . 35 Similarly , different VM platforms may use different formats
FIG . 3 illustrates an embodiment of a detailed logic flow for arranging the data stored in virtual disks onto actual

for the backup stage of the overall logic flow of FIG . 2 . storage hardware . As such , migrating a guest OS from one
FIG . 4 illustrates an embodiment of a detailed logic flow VM platform to another may require reconfiguration of the

for the VM prep stage of the overall logic flow of FIG . 2 . guest OS and modification of files stored on the host OS that
FIG . 5 illustrates an embodiment of a detailed logic flow 40 are referenced by the hypervisor . Performing this reconfigu

for the migration stage of the overall logic flow of FIG . 2 . ration and modification may improve the affordability and
FIG . 6 illustrates an embodiment of a detailed logic flow practicality of transitioning a virtual machine between VM

for the wait stage of the overall logic flow of FIG . 2 . platforms .
FIG . 7 illustrates an embodiment of a detailed logic flow It may be of particular value to perform virtual machine

for the restore stage of the overall logic flow of FIG . 2 . 45 migration without the installation of additional software
FIG . 8 illustrates a second embodiment of a virtual tools , besides those that may be used for integration of the

machine migration system . guest OS with the VM platform . For instance , the migration
FIG . 9 illustrates an embodiment of a first and second process may include the installation of integration tools ,

script executing in the guest operating system for the virtual including drivers that provide support for the virtualized
machine migration system . 50 hardware devices of the destination VM platform to the

FIG . 10 illustrates an embodiment of a logic flow for the guest OS . However , the migration itself may be performed
virtual machine migration system of FIG . 1 . entirely through scripts executed in the guest OS and remote

FIG . 11 illustrates an embodiment of a centralized system commands from an external migration application , the
for the virtual machine migration system of FIG . 1 . migration application running on the host OS without virtual

FIG . 12 illustrates an embodiment of a distributed system 55 machine mediation . Avoiding the installation of migration
for the virtual machine migration system of FIG . 1 . tools within the guest OS may increase the dependability of

FIG . 13 illustrates an embodiment of a computing archi - the migration process , reduce the footprint of the software
tecture . used for the migration , and reduce the time used for the

FIG . 14 illustrates an embodiment of a communications migration process , thereby reducing the downtime for the
architecture . 60 guest OS and any services it may host .

Reference is now made to the drawings , wherein like
DETAILED DESCRIPTION reference numerals are used to refer to like elements

throughout . In the following description , for purposes of
Various embodiments are generally directed to techniques explanation , numerous specific details are set forth in order

for virtual machine migration . Some embodiments are par - 65 to provide a thorough understanding thereof . It may be
ticularly directed to techniques for automated virtual evident , however , that the novel embodiments can be prac
machine migration that is either fully - automated or makes ticed without these specific details . In other instances , well

US 9 , 841 , 991 B2

can

known structures and devices are shown in block diagram may be able to be built from almost entirely the same set of
form in order to facilitate a description thereof . The intention blocks , with the common blocks being those that correspond
is to cover all modifications , equivalents , and alternatives to the storage of data visible to the guest OS 150 . Each of
consistent with the claimed subject matter . the source VM virtual disk 170 and destination VM virtual

FIG . 1 illustrates a block diagram for a virtual machine 5 disk 175 may have one or more blocks dedicated to storage
migration system 100 . In one embodiment , the virtual of data and metadata used by the source hypervisor 130 and machine migration system 100 may comprise a computer destination hypervisor 135 , respectively , that is not acces implemented system having a software migration applica sible to the guest OS 150 . For example , block 191 may be tion 110 comprising one or more components . Although the exclusively used by source hypervisor 130 for storing data virtual machine migration system 100 shown in FIG . 1 has 10 and metadata used for managing its access to the common a limited number of elements in a certain topology , it may blocks of virtual disk blocks 190 . Similarly , block 192 may be appreciated that the virtual machine migration system be exclusively used by destination hypervisor 135 for stor 100 may include more or less elements in alternate topolo
gies as desired for a given implementation . ing data and metadata used for managing its access to the

It is worthy to note that “ a ” and “ b ” and “ c " and similar 15 common blocks of virtual disk blocks 190 . It will be
designators as used herein are intended to be variables appreciated that multiple blocks may be used by either or
representing any positive integer . Thus , for example , if an both of source hypervisor 130 and destination hypervisor
implementation sets a value for a = 5 , then a complete set of 135 for the storage of this data and metadata . Because of this
components 122 - a may include components 122 - 1 , 122 - 2 , overlap in storage blocks transitioning from source hyper
122 - 3 , 122 - 4 and 122 - 5 . The embodiments are not limited in 20 visor 130 to destination hypervisor 135 may involve simply
this context . creating block 192 , with its data and metadata for managing

The virtual machine migration system 100 may comprise the common blocks , and constructing destination VM virtual
the migration application 110 . The migration application 110 disk 175 from those blocks used by source VM virtual disk
may be generally arranged to migrate guest OS 150 from 170 that are not exclusive to the management data and
source VM 140 running on source hypervisor 130 to desti - 25 metadata of source hypervisor 130 .
nation VM 145 running on destination hypervisor 135 , The migration application 110 may interact with the
wherein each of migration application 110 , source hypervi source hypervisor 130 , the destination hypervisor 135 , the
sor 130 , and destination hypervisor 135 all run on top of host guest OS 150 , and the file system 160 to migrate the guest
OS 120 . OS 150 from the source hypervisor 130 to the destination File system 160 may store various files used in the 30 hypervisor 135 . The migration application 110 may generate operation of source VM 140 and destination VM 145 , and one or more scripts that run in the guest OS 150 running on thereby the operation of guest OS 140 . File system 160 may top of each of the source VM 140 and the destination VM store various files used by migration application 110 . File
system 160 may store various files used by the host OS 120 . 145 to perform the migration . The migration application 110
File system 160 may be provided by host OS 120 or may be 35 may use one or more scripts that run in the guest OS 150 on
a third - party file system working in conjunction by host OS top of the source VM 140 to gather configuration informa
120 . File system 160 may be a local file system , a network tion for use in generation of one or more scripts that run in
accessible file system , a distributed file system , or use any the guest OS 150 on top of destination VM 145 . The
other file system techniques for the storage of , maintenance migration application 110 may send commands to and
of , and access to files . 40 monitor the source hypervisor 130 and destination hypervi

File system 160 may store source VM configuration file s or 135 . For instance , the migration application 110 may
180 used by source hypervisor 130 for the determination of script or use direct commands to initiate power cycles of the
various configurations of source VM 140 . File system 160 virtual machines and use the power cycling of virtual
may store destination VM configuration file 185 used by machines to monitor the progress of scripts . By using scripts
destination hypervisor 130 for the determination of various 45 that use the built - in scripting of the guest OS 150 the
configurations of source VM 140 . Source VM configuration migration application 110 may avoid installing software
file 180 may be composed of one or more source VM agents within the guest OS 150 for performing the migra
configuration file blocks 195 . Destination VM configuration tion , thereby simplifying the migration process .
file 185 may be composed of one or more destination VM Included herein is a set of flow charts representative of
configuration file blocks 197 . The configuration of a virtual 50 exemplary methodologies for performing novel aspects of
machine may comprise , among other elements , specifying the disclosed architecture . While , for purposes of simplicity
the configuration of the hardware platform to be virtualized , of explanation , the one or more methodologies shown
such as number and type of CPU , memory size , disk size , herein , for example , in the form of a flow chart or flow
etc . diagram , are shown and described as a series of acts , it is to
Guest OS 150 may be presented a virtual disk by the 55 be understood and appreciated that the methodologies are

virtual machines , the virtual disk an abstraction of the not limited by the order of acts , as some acts may , in
physical storage used by the virtual machines . File system accordance therewith , occur in a different order and / or
160 may store source VM virtual disk 170 , where source concurrently with other acts from that shown and described
VM virtual disk 170 is an arrangement of blocks corre - herein . For example , those skilled in the art will understand
sponding to a virtual disk format used by the source hyper - 60 and appreciate that a methodology could alternatively be
visor 130 . File system 160 may store destination VM virtual represented as a series of interrelated states or events , such
disk 175 , where destination VM virtual disk 175 is an as in a state diagram . Moreover , not all acts illustrated in a
arrangement of blocks corresponding to a virtual disk format methodology may be required for a novel implementation .
used by the destination hypervisor 135 . Virtual disk blocks FIG . 2 illustrates one embodiment of a logic flow 200 .
190 is the joint collection of blocks used by both source VM 65 The logic flow 200 may be representative of some or all of
virtual disk 170 and destination VM virtual disk 175 . Source the operations executed by one or more embodiments
VM virtual disk 170 and destination VM virtual disk 175 described herein . The logic flow 200 may be an overall logic

US 9 , 841 , 991 B2

flow for the virtual machine migration system 100 , present - logic flow 200 are part of the migration process , box 250
ing a high - level view of the workflow of the migration corresponds to the actual transition of configuration infor
process . mation from one environment to another . If an error occurs

In the illustrated embodiment shown in FIG . 2 , the logic the logic flow 200 proceeds to block 236 . Otherwise , the
flow 200 may begin at block 210 . This may correspond to 5 logic flow 200 proceeds to block 260 .
the initiation of a virtual machine migration for a particular The logic flow 200 may include the migration application
instantiation of a guest OS . In some cases , the logic flow 200 110 waiting for the migration to complete at block 260 . As
may be initiated manually be an administrator of a computer the migration makes use of scripts that run within the guest
system . In others , the logic flow 200 may be initiated OS 150 running on the destination VM 145 the migration
programmatically as part of a group of migrations . For 10 application 110 may not be able to directly monitor the
example , a plurality of guest OS installations may all be progress of the scripts and instead depend on the power
migrated from one hypervisor to another with an automated cycling of the destination VM 145 to monitor whether the
process automatically migrating each one in turn or in scripts have completed . The logic flow 200 then proceeds to
parallel . The logic flow 200 then proceeds to block 220 . box 236 .

The logic flow 200 may back up the source VM 140 at 15 The logic flow 200 may restore the source VM 140 at
block 220 . Errors may occur during the migration process - block 236 . This restoration allows for a return to the original
from bugs , from some unusual element of the VM environ - source VM 140 run by the source hypervisor 130 in case , for
ment not accounted for in the migration application 110 , etc . example , a problem develops with the destination VM 145 .
When this occurs it is beneficial to have the option to restore With this step complete the migration application 110 may
the source VM 140 . If an error occurs during the backup 20 have completed its task or may continue with the migration
SO source VM process itself the logic flow 200 may proceed to of other virtual machines .
block 236 where the source VM 140 is attempted to be The embodiments are not limited to this example .
restored . Otherwise , the logic flow 200 may continue to FIG . 3 illustrates one embodiment of a logic flow 300 .
block 230 . The logic flow 300 may be representative of some or all of

The logic flow 200 may determined whether the source 25 the operations executed by one or more embodiments
VM 140 is accessible to automated commands at block 230 . described herein . The logic flow 300 may be an detailed
If the source VM 140 is accessible then the migration logic flow for the backup stage of the overall logic flow 200
application 110 can initiate scripts within the guest OS 150 of FIG . 2 .
within the source VM 140 , and the logic flow 200 proceeds In the illustrated embodiment shown in FIG . 3 , the logic
to box 240 . If the source VM 140 is not accessible then the 30 flow 300 may begin at block 310 . This may correspond to
migration application 110 will generate an offline script and the transition of the overall logic flow 200 into block 220 of
hand that script off to a human operator to run in the guest FIG . 2 . The logic flow then proceeds to block 320 .
OS 140 , and the logic flow 200 proceeds to box 232 . The logic flow 300 may determine whether to use hyper

The logic flow 200 may generate an offline script at box visor snapshotting at block 320 . This decision may be made
232 . This offline script contains all of the work that needs to 35 as a question of policy (whether the administrator wants to
be done by the migration application 110 in the guest OS 150 use hypervisor snapshotting) or possibility (whether the
in the source VM 140 . The logic flow 200 then proceeds to hypervisor supports snapshotting) . In either case , if hyper
box 234 . visor snapshotting is not to be used the logic flow 300

The logic flow 200 may run the offline script in the guest proceeds to box 325 . If hypervisor snapshotting is to be used
OS 150 in the source VM 140 at box 234 . While the activity 40 the logic flow 300 proceeds to box 330 .
of the offline script is performed programmatically through The logic flow 300 may shutdown the source VM 140 at
the scripting application programming interface (API) of the block 325 . This may leave the guest OS 150 in the source
guest OS 150 , the transfer of the offline script into the guest VM 140 in a safe state for backing up . The logic flow 300
OS 150 and the initiation of it are performed by a human then proceeds to block 350 .
operator . The logic flow 200 then proceeds to box 236 . 45 The logic flow 300 may determine whether a source VM

The logic flow 200 may wait for the source VM 140 to snapshot already exists at block 330 . For example , a snap
power off at box 236 . The final operation of the offline script shot may have been taken as part of a failed migration
is to power - down the source VM 140 - stopping execution attempt with the current instantiation of logic flow 300 a
of the virtual machine by the physical host . The migration second or later attempt . If one does , the logic flow proceeds
application 110 waits for this powered - off state in order to 50 to block 335 . If not , the logic flow proceeds to block 340 .
know that the offline script has completed . If an error occurs The logic flow 300 may delete the existing snapshot at
the logic flow 200 proceeds to block 236 . Otherwise , the block 335 and then proceed to block 340 .
logic flow 200 proceeds to block 250 . The logic flow 300 may create a hypervisor snapshot at

The logic flow 200 may prepare the source VM 140 at block 340 . This may comprise sending a command to the
block 240 . The preparation of the source VM 140 may 55 source hypervisor 130 instructing it to create the hypervisor
generally correspond to the functions of the offline script , snapshot . A hypervisor snapshot may comprise the creation
but initiated programmatically by the migration application the hypervisor modifying the manner in which it provides
110 and performed in stages rather than unified into a single source VM virtual disk 170 . The hypervisor may , upon
offline script . Initiating the script in the guest OS 150 may taking the snapshot , continue to use the existing virtual disk
comprise using a remote administration API of the guest OS 60 blocks 190 for when the guest OS 150 reads the source VM
150 or may comprise using a remote administration API of virtual disk 170 but create additional blocks , rather than
the source hypervisor 130 . If an error occurs the logic flow overwriting the existing virtual disk blocks 190 , wherever
200 proceeds to block 236 . Otherwise , the logic flow 200 the guest OS 150 (either of its own accord or on behalf of
proceeds to block 250 . an application it supports) performs a write to the source VM

The logic flow 200 may migrate the guest OS 150 to the 65 virtual disk 170 . These additional blocks may be known as
destination environment provided by the destination hyper - a delta disk , containing the changes to the source VM virtual
visor 135 at block 250 . While all of the described steps of disk 170 since the creation of the snapshot . As such , the

US 9 , 841 , 991 B2

existing virtual disk blocks 190 are maintained in a known script may be used there to set up the network for the guest
safe state while the guest OS 150 continues to operate , OS 150 in the destination VM 145 . The logic flow 400 then
preventing downtime for the guest OS 150 and its applica - proceeds to block 430 .
tions during this state of the migration process . The logic The logic flow 400 may determine whether the destination
flow 300 then proceeds to block 350 . 5 hypervisor 135 needs integration tools and services at block

The logic flow 300 may clone a virtual disk copy at block 430 . Some operating systems require integration tools and
350 . This may not involve copying all or any of the virtual services in order to function properly within a virtual
disk blocks 190 comprising the source VM virtual disk 170 . machine provided by a hypervisor . If integration tools and
Instead it may involve creating a new file that merely links services are needed then the logic flow 400 proceeds to
to the existing blocks , for example via a hard link , instead of 10 block 432 . Otherwise the logic flow 400 proceeds to block
duplicating the blocks . This clone may be made from the 434 .
hypervisor snapshot where one exists . The logic flow 300 The logic flow 400 may configure the guest OS 150 to
then proceeds to block 360 . install integration tools and services on the next boot at

The logic flow 300 may delete the hypervisor snapshot , if block 432 . The next boot is expected to occur on top the
any , at block 360 . With the clone of the virtual disk prepared 15 destination VM 145 where the tools and services will be
the hypervisor snapshot is no longer of use and can be needed . This configuration may comprise setting installation
discarded . With the clone of the virtual disk prepared , the file scripts to run on the next boot . The logic flow 400 then
system 160 will prevent the virtual disk blocks 190 refer proceeds to block 434 .
enced by the clone from being modified , with new blocks The logic flow 400 may configure the guest OS 150 to
being created when the guest OS 150 performs writes . This 20 restore the network on next boot at block 434 . This con
is similar to the technique used by the source hypervisor figuration may comprise setting the network restore script to
130 , but performed by the file system 160 instead of the run on the next boot . The logic flow may then proceed to
source hypervisor 130 . This clone of the virtual disk is now block 440 .
available for use in restoring the guest OS 150 to a known The logic flow 400 may determine whether to remove
good state in case of problems with the migration process . 25 integration software for the source hypervisor 130 from the
The source hypervisor 130 will , from its own perspective , guest OS 150 at block 440 . In some cases , the administrators
merge the additional blocks it created , the delta disk , back of the computing system may desire to keep existing inte
into the virtual disk blocks 180 . However , due to the gration tools and services installed in order to allow transi
references to these blocks created by the cloned virtual disk , tion back to the source VM 130 . In some cases , transitioning
the file system 160 will maintain the distinction between the 30 back to the source VM 130 may be motivated by eventual
live - updating source VM virtual disk 170 and the clone dissatisfaction with the destination VM 145 or may be
created by the migration application 110 . The logic flow 300 motivated by the use of software applications on top the
then proceeds to block 370 . guest OS 150 where one or more only work or work better

The logic flow 300 may determine whether the source VM on the source VM 140 and one or more only work or work
140 is powered on at block 370 . The source VM 140 may 35 better on the destination VM 145 . Alternatively , the removal
have been powered off at block 325 . If the source VM 140 of hypervisor integration software may be unnecessary due
is not powered on the logic flow 300 proceeds to block 375 . to hypervisor integration software not being used with the
Otherwise the logic flow 300 proceeds to block 390 . source hypervisor 130 . Whatever the reason , if hypervisor

The logic flow 300 may start the source VM 140 at block integration software is to be removed the logic flow 400
375 and then proceed to bloc 390 . 40 proceeds to block 445 . Otherwise , the logic flow 400 pro

The logic flow 300 may continue to the next step in the ceeds to block 490 .
overall process at block 390 . This may correspond to the The logic flow 400 may initiate removal of the integration
transition of the overall logic flow 200 out of block 220 of software in the guest OS 150 at block 445 . This may be
FIG . 2 . performed by initiating the running of a script within the

The embodiments are not limited to this example . 45 guest OS 150 . This script may conclude with a command to
FIG . 4 illustrates one embodiment of a logic flow 400 . power down the source VM 140 to indicate that the script

The logic flow 400 may be representative of some or all of has completed its task . As this removal occurs after creation
the operations executed by one or more embodiments of the cloned backup disk , the restoration of the source VM
described herein . The logic flow 400 may be an detailed virtual disk 170 , if performed , will restore these tools . The
logic flow for the VM prep stage of the overall logic flow 50 logic flow 400 may then proceed to block 450 .
200 of FIG . 2 . The logic flow 400 may check with the source VM 140

In the illustrated embodiment shown in FIG . 4 , the logic has powered down at block 450 . If so , the hypervisor tools
flow 400 may begin at block 410 . This may correspond to and services have been successfully removed and the logic
the transition of the overall logic flow 200 into block 240 of flow 400 may proceed to block 490 . Otherwise , the logic
FIG . 2 . The logic flow then proceeds to block 420 . 55 flow 400 proceeds to block 460 .

The logic flow 400 may determine whether to backup the The logic flow 400 may determine whether to continue
network settings at block 420 . This may be determined waiting for the source VM 140 to power down at block 460 .
according to configuration of the migration application 110 . The migration application 110 may have a limit to how long
If the network settings are to be backed up the logic flow 400 it will wait for the tools to be removed as measured by a
proceeds to block 422 . Otherwise , the logic flow 400 pro - 60 watchdog timer . If that limit has not been reached the logic
ceeds to block 440 . flow 400 may proceed to block 462 . If it has been reached

The logic flow 400 may dump the current network set - the logic flow 400 may proceed to block 464 .
tings to a temp file in the guest OS 150 at block 422 and then The logic flow 400 may have the migration application
proceed to block 424 . 110 sleep at block 462 . This may consist of a timed period

The logic flow 400 may use the temp file to generate a 65 of inactivity such as may be registered with the host OS
network restore script at block 424 . When the guest OS 150 120 — to give the source VM 140 more time to power down .
later boots in the destination VM 145 the network restore The logic flow 400 may then loop back to block 450 .

US 9 , 841 , 991 B2
10

The logic flow 400 may initiate shutdown of the source error occurs during this process the logic flow 500 may
VM 140 with the source hypervisor 130 at block 464 . If the proceed to block 540 . If this process completes successfully
watchdog timer has expired the migration application 110 the logic flow 500 may proceed to block 555 .
has reached the point where it is no longer willing to wait for The logic flow 500 may create one or more network
the guest OS 150 to shut down the source VM 140 on the 5 interface controllers (NICs) in the destination VM 145 using
basis of the integration software removal script . As such , the the same media access control (MAC) addresses as in the
migration application 110 directly commands the source source VM 140 at block 555 . These NICs are virtualized
hypervisor 130 to stop the source VM 140 . The logic flow network adaptors used by the destination hypervisor 135 to 400 then proceeds to block 466 . bridge real network interfaces to the guest OS 150 when The logic flow 400 may report a warning at block 466 . 10 running on the destination VM 145 . By configuring the Having forced the source VM 140 to power down from the destination VM 145 with the same MAC addresses as used hypervisor may leave the guest OS 150 in a unclean or with the source VM 140 the guest OS 150 will be able to be otherwise problematic state . This warning reports to an
administrator of the migration application 110 of this pos configured by scripts running within the guest OS 150 to
sibility . The logic flow may then proceed back to block 450 15 match up internal network connections for the OS with the
to check for the source hypervisor 130 having powered virtualized network adaptors . If new MAC addresses were
down the source VM 140 . assigned then the scripts may be unable to determine which

The logic flow 400 may continue to the next step in the NIC should be connected with which internal connections
overall process at block 490 . This may correspond to the for the guest OS 150 as programs running within the guest
transition of the overall logic flow 200 out of block 240 of 20 OS 150 don ' t have visibility to the actual network configu
FIG . 2 . ration of the host OS 120 . The logic flow 500 then proceeds

The embodiments are not limited to this example . to block 560 .
FIG . 5 illustrates one embodiment of a logic flow 500 . The logic flow 500 determines whether it has access to a

The logic flow 500 may be representative of some or all of NIC relationship map at block 560 . The NIC relationship
the operations executed by one or more embodiments 25 map is a simple one for one relational link between the
described herein . The logic flow 500 may be an detailed various host operating systems , which may be used where a
logic flow for the migration stage of the overall logic flow different host operating system is used for the source VM
200 of FIG . 2 . 140 and the destination VM 145 . Since each hypervisor In the illustrated embodiment shown in FIG . 5 , the logic employs a specialized network implementation it is valuable flow 500 may begin at block 510 . This may correspond to 30 + su to maintain a key . If an appropriate map is found then the the transition of the overall logic flow 200 into block 250 of destination VMNIC is connected to the appropriate network FIG . 2 . The logic flow then proceeds to block 520 . on the destination host OS . If it does not , it cannot configure The logic flow 500 may create a new virtual machine , the the network and the logic flow 500 proceeds to block 540 . destination VM 145 , at block 520 . This may be created on
the same physical hardware as the source VM 140 or at new 35 If it does , the logic flow 500 proceeds to block 565 .
physical hardware . The logic flow 500 then proceeds to The logic flow 500 sets NIC connections per the network
block 530 . map relationship at block 565 . Connections between the

The logic flow 500 may determine whether the creation of guest OS 150 are configured to the virtualized NICs based
destination VM 145 has failed at block 530 . In some cases on the preconfigured relational mapping . The network con
errors may occur in the VM - creation process and the process 40 nections of the guest OS 150 are rebuilt such that each
may have to be attempted multiple times . If the VM creation internal connection connects to the virtualized NIC with the
failed then the logic flow 500 proceeds to block 535 . same MAC address as that internal connection was con
Otherwise , the logic flow 500 proceeds to block 550 . nected to when the guest OS 150 was in the source VM 140 .

The logic flow 500 may determine whether the migration The logic flow 500 then proceeds to block 570 .
application 110 has reached its retry limit at block 535 . The 45 The logic flow 500 may shift the virtual disk at block 570 .
migration application 110 may be configured to only attempt This may correspond to the creation of the destination VM
VM creation a limited number of times in order to forestall virtual disk 175 through the creation of one or more new
a potentially infinite loop . If it is at the retry limit , the logic header , footer , or other metadata blocks for the virtual disk
flow 500 may then proceed to block 540 . If the retry limit blocks 190 of the source VM virtual disk 170 . The logic flow
has not been reached then the logic flow 500 may loop back 50 500 then proceeds to block 575 .
to block 520 and re - attempt the creation of destination VM The logic flow 500 may start the destination VM 145 at
145 . block 575 . This may comprise sending a power - on com

The logic flow 500 may determine that migration has mand to the destination hypervisor 135 . The logic flow 500
failed at block 540 . With the VM creation retry limit then proceeds to block 580 .
reached , or configuration of the destination VM 145 having 55 The logic flow 500 may determine whether to install
failed , the migration is not successful . The migration appli - integration tools and services at block 580 . This determina
cation 110 may indicate this failure to an administrator of the tion may be an inherent consequence of whether the guest
application . The migration application 110 may proceed to OS 150 was configured to automatically install integration
restore the source VM 140 , as following the “ on error " path tools and services for the destination hypervisor 135 at its
from block 250 of FIG . 2 . 60 next boot at block 432 of FIG . 4 . If this boot configuration

The logic flow 500 may configure the destination VM 145 was performed , the logic flow 500 proceeds to block 585 .
settings per the source VM 140 settings at block 550 . For Otherwise , the logic flow 500 proceeds to block 590 .
example , the destination VM 145 may be configured to have The logic flow 500 may install integration tool and
the same number of CPUs , same amount of RAM , and other services in the guest OS 150 at block 585 . This may be
virtualized hardware configurations as with the source VM 65 performed automatically by scripts initiated at boot by the
140 so as to provide as much continuity of virtualized guest OS 150 . The logic flow 500 then proceeds to block
hardware platform as possible to the guest OS 150 . If an 590 .

US 9 , 841 , 991 B2
11 12

The logic flow 500 may continue to the next step in the real hardware , where the applications running on the guest
OV overall process at block 590 . This may correspond to the OS 150 make use of a static MAC address . If static MACs
transition of the overall logic flow 200 out of block 250 of are to be kept the logic flow 600 proceeds to block 660 .
FIG . 2 . Otherwise , the logic flow 600 proceeds to block 655 .

The embodiments are not limited to this example . 5 The logic flow 600 may set MAC addresses to dynamic
FIG . 6 illustrates one embodiment of a logic flow 600 . assignment by the destination hypervisor 135 at block 655 . The logic flow 600 may be representative of some or all of The logic flow 600 then proceeds to block 660 . the operations executed by one or more embodiments The logic flow 600 may determine whether to start the described herein . The logic flow 600 may be an detailed destination VM 145 at block 660 . This may be a configu logic flow for the wait stage of the overall logic flow 200 of 10 ration option of the migration application 110 . For example , FIG . 2 . an administrator may have decided to perform a test migra In the illustrated embodiment shown in FIG . 6 , the logic tion to confirm that the migration process may be performed flow 600 may begin at block 610 . This may correspond to

the transition of the overall logic flow 200 into block 260 of without error , without an interest in bringing the destination
FIG . 2 . The logic flow then proceeds to block 620 . 15 VM 145 online at that time . If the destination VM 145 is to

The logic flow 600 may determine whether the destination be started , the logic flow 600 proceeds to block 665 .
VM 145 has powered off at block 620 . The one or more Otherwise , the logic flow 600 proceeds to block 690 .
scripts configured to be automatically initiated at the boot of The logic flow 600 may start the destination VM 145 at
guest OS 150 may conclude with a command to the guest OS block 665 . This may comprise the migration application 110
150 to power off . As the migration application 110 may not 20 sending a power - on command to the destination hypervisor
have visibility into the internal operation of the guest OS 150 135 . The logic flow 600 then proceeds to block 690 .
it may use power state transitions to monitor the progress of The logic flow 600 may continue to the next step in the
the scripts . If the destination VM 145 has powered off , the overall process at block 690 . This may correspond to the
logic flow 600 proceeds to block 650 . Otherwise , the logic transition of the overall logic flow 200 out of block 260 of
flow 600 proceeds to block 630 . 25 FIG . 2 .

The logic flow 600 may determine whether to continue The embodiments are not limited to this example .
waiting for the destination VM 145 to power down at block FIG . 7 illustrates one embodiment of a logic flow 700 .
630 . The migration application 110 may have a limit to how The logic flow 700 may be representative of some or all of
long it will wait for the scripts initiated at the boot of the the operations executed by one or more embodiments
guest OS 140 to complete as measured by a watchdog timer . 30 described herein . The logic flow 700 may be an detailed
If that limit has not been reached the logic flow 600 may logic flow for the restore stage of the overall logic flow 200
proceed to block 635 . If it has been reached the logic flow of FIG . 2 .
600 may proceed to block 640 . In the illustrated embodiment shown in FIG . 7 , the logic

The logic flow 600 may have the migration application flow 700 may begin at block 710 . This may correspond to
110 sleep at block 635 . This may consist of a timed period 35 the transition of the overall logic flow 200 into block 236 of
of inactivity — such as may be registered with the host OS FIG . 2 . The logic flow then proceeds to block 720 .
120 — to give the destination VM 145 more time to power The logic flow 700 may determine whether the source VM
down . The logic flow 600 may then loop back to block 620 . 140 has powered off at block 720 . If the source VM 140 has

The logic flow 600 may return a warning that the migra - powered off , the logic flow 700 proceeds to block 750 .
tion application 110 is unable to determine migration status 40 Otherwise , the logic flow 700 proceeds to block 730 .
of the guest OS 150 at block 640 . The migration application The logic flow 700 may determine whether to continue
110 may proceed to restore the source VM 140 as with waiting for the source VM 140 to power down at block 730 .
proceeding to block 250 of FIG . 2 or may allow an admin - If the migration application 110 is willing to continue
istrator to determine how to proceed as an administrator may waiting the logic flow 700 may proceed to block 735 . If the
be able to , for example , view into the operation of guest OS 45 limit of its willingness to wait has been reached the logic
150 and determine that more time should or should not be flow 700 may proceed to block 740 .
allowed for the scripts to complete . The logic flow 700 may have the migration application

The logic flow 600 may determine whether to keep a static 110 sleep at block 735 . This may consist of a timed period
MAC at block 650 . The schemes used by the source hyper - of inactivity , such as may be registered with the host OS
visor 130 and destination hypervisor 135 may differ as to 50 120 — to give the source VM 140 more time to power down .
how they create MAC addresses for virtualized NICs . Main - The logic flow 700 may then loop back to block 720 .
taining MAC addresses generated by the source hypervisor T he logic flow 700 may return a warning that the restore
130 may result in eventual problems as the source hypervi - may fail due to file locks at block 740 . The failure of the
sor 130 may decide that , having lost control of guest OS 150 source VM 720 to shut down may result in some of the files
that the MAC address the source hypervisor 130 assigned to 55 used by the source hypervisor 130 in generation the source
the source VM 140 for use by guest OS 150 are available VM 140 to still be locked and thereby interfere with the
again and assign those MAC addresses to a new VM . These restoration of the source VM 140 . The logic flow 700 may
problems may be avoided by allowing the destination hyper then continue to block 750 .
visor 135 to assign new MAC addresses to the virtualized The logic flow 700 may clone from the backup file to the
NICs . Alternatively , some virtual machines may be , for 60 virtual disk to restore the source VM virtual disk 170 . The
example , recreations of real hardware so as to smoothly logic flow 700 then proceeds to block 760 .
transition an operating system from running on real hard - The logic flow 700 may determine whether to clean up the
ware to running on virtualized hardware . In these cases the backup file at block 760 . This may be a configuration option
MAC addresses may be guaranteed to remain unique and , as of the migration application 110 . Some administrators may
such , not need to be set to be assigned by the destination 65 choose to keep around the backup file in order to , for
hypervisor 135 . This may be of particular importance , even example , have a known good configuration of the source
where the MAC addresses did not originally correspond to VM 140 during testing of the destination hypervisor 135 . If

US 9 , 841 , 991 B2
13 14

770 .

clean up is to be performed the logic flow 700 proceeds to evant to that embodiment . In some embodiments , the migra
block 765 . Otherwise , the logic flow 700 proceeds to block tion scripts may be generated without the VM information

820 being collected from the hypervisors 130 , 135 . In these
The logic flow 700 may delete the backup file at block embodiments , the particular hypervisors 130 , 135 and guest

765 . This may not result in the removal of any actual blocks 5 OS 150 being used for example , a product name for the
from the file system 160 but instead simply the decrement hypervisors 130 , 135 and guest OS 150 — may be specified
ing of a file reference counter on any of the virtual disk during a configuration of migration application 110 by an
blocks 190 referenced by the backup file . The logic flow 700 administrator of the virtual machine migration system 100 . may then proceed to block 770 . The script generation component 830 may be generally The logic flow 700 may determine whether to start the 10 arranged to generate a first script 840 , the first script 840 to source VM 140 at block 770 . This may be a configuration migrate a guest OS 150 running on a source VM 140 to run option of the migration application 110 . For example , if the on a destination VM 145 . The source VM 140 may be migration was a test migration , the destination VM 145 may
not have been started at the decision point of block 660 in provided by a source hypervisor 130 and the destination VM
FIG . 6 and instead the source VM 140 is restarted in order 15 145 may be provided by a destination hypervisor 135 . The
to resume operation of the guest OS 150 on top of source source hypervisor 130 and the destination hypervisor 135
VM 140 provided by source hypervisor 130 . If the source may differ in hardware virtualization as to prevent the guest
VM 140 is to be started again the logic flow 700 proceeds OS 150 from making full use of the destination VM 145
to block 775 . without reconfiguration . For instance , the guest OS 150 may

The logic flow 700 may start the source VM 140 at block 20 be able to boot and run scripts on the destination VM 145
775 . This may be performed by the migration application without reconfiguration , but be unable to access any or all of
110 sending a power - on command to the source hypervisor one or more networks provided by the destination VM 145
130 . The logic flow 700 then proceeds to block 790 . without reconfiguration by the virtual machine migration

The logic flow 700 may end at block 790 . This may system 100 . In general , the guest OS 150 being prevented
correspond to the transition of the overall logic flow 200 out 25 from making full use of the destination VM 145 without
of block 236 of FIG . 2 . As discussed with reference to block reconfiguration may correspond to the guest OS 150 making
236 of FIG . 2 , this may indicate that the migration applica - use of one or more virtualized hardware resources of the
tion 110 has completed its task or may result in the migration source VM 140 that it is unable to make use of on the
application 110 continuing with the migration of other destination VM 145 without reconfiguration .
virtual machines . 30 In some cases , the first script 840 may have its execution

The embodiments are not limited to this example . within the guest OS 150 initiated by the remote access
FIG . 8 illustrates a second block diagram for the virtual component 850 . In these cases , the first script 840 may be

machine migration system 100 . In one embodiment , the part of a plurality of scripts , wherein all of the plurality of
virtual machine migration system 100 may comprise a scripts are executed within the guest OS 150 . Each of the
computer - implemented system having a migration applica - 35 plurality of scripts may be associated with a particular area
tion 110 comprising one or more components . Although the of reconfiguration , such as network reconfiguration , tools
virtual machine migration system 100 shown in FIG . 8 has reconfiguration , etc . However , in some cases , the guest OS
a limited number of elements in a certain topology , it may 150 may not be accessible to automated commands by the
be appreciated that the virtual machine migration system migration application 110 . In these cases , the script genera
100 may include more or less elements in alternate topolo - 40 tion component 830 may generate the first script 840 as an
gies as desired for a given implementation . offline script operative for human - initiated execution . The

The system 100 may comprise the migration application first script 840 may be generated as an offline script in
110 . The migration application 110 may be generally response to the remote access component 850 determining
arranged to oversee the deployment of one or more scripts that source VM 140 is inaccessible to automated commands .
to a guest OS 150 to migrate the guest OS 150 from a source 45 The offline script may contain all of the scripted activities
VM 140 provided by a source hypervisor 130 to a destina - that would otherwise be performed by the plurality of scripts
tion VM 145 provided by a destination hypervisor 135 . The into a single script , to ease the process for the human
migration application 110 may comprise an application operator manually loading it into the guest OS 150 and
configuration component 810 , script generation component initiating it .
830 , and a remote access component 850 . 50 The script generation component 830 may generate the

The application configuration component 810 may be first script 840 using templates configured into the migration
generally arranged to request VM information 820 from the application 110 . For instance , the migration application 110
source hypervisor 130 and destination hypervisor 135 . This may store script elements for the performance of various
may comprise use an API for the hypervisors 130 , 135 to migration tasks , which may be specific to any individual or
retrieve information relevant to the generation of scripts 55 combination of particular tasks , particular guest operating
specific to the source hypervisor 130 , destination hypervisor systems , particular source hypervisors , particular destination
135 , the source VM 140 , destination VM 145 , and guest OS hypervisors , and particular options selected by an adminis
150 . The application configuration component 810 may trator of the virtual machine migration system 100 . The
receive the VM information 820 from the source hypervisor script element may include templates variables for which
130 and destination hypervisor 135 and pass the VM infor - 60 values may be assigned based on any individual or combi
mation 820 to the script generation component 830 . nation of particular tasks , particular guest operating systems ,

In some embodiments , the collecting of information about particular source hypervisors , particular destination hyper
some or all of the source hypervisor 130 , destination hyper - visors , and particular options selected by an administrator of
visor 135 , the source VM 140 , destination VM 145 , and the virtual machine migration system 100 . In general , any
guest OS 150 may be irrelevant to the generation of the 65 known technique for generating a script , including any
migration scripts . As such , the application configuration known technique for generating scripts based on templates ,
component 810 may only collect such information as rel - may be used .

15
US 9 , 841 , 991 B2

16
The remote access component 850 may be generally OS 150 is still running on the source VM 140 allows the

arranged to command the guest OS 150 to execute the first collected configuration information 920 to be read from the
script 840 using at least one of a remote access API of the guest OS source configuration 960 while it is operating
guest OS 150 or a remote administration API of a source correctly within the virtualized hardware environment pro
hypervisor 130 for the source VM 140 . A remote access API 5 vided by the source hypervisor 130 .
of the guest OS 150 may be provided by the guest OS 150 The first script 840 may configure the guest OS 150 to
for remote administration of the guest OS 150 . A remote execute the second script 940 . The guest OS 150 may be administration API of a source hypervisor 130 may be y be configured for the execution of the second script 840 to provided by the source hypervisor 130 for remote access to occur while the guest OS 150 is running on the destination the guest OS 150 by providing a bridge between the envi - 10 VM 145 . As the second script 840 will be reconfiguring the ronment external to the source VM 140 and the guest OS
150 within it . guest OS 150 to properly run on the destination VM 145 , this
Where neither such API exists , or , alternatively , where a reconfiguration occurs while the guest OS 150 is running on

virtualized hardware environment provided by the destina particular API relied on by an embodiment of the virtual
machine migration system 100 does not exist the remote 15 tion hypervisor 135 . Because the virtualized hardware envi
access component 850 may be operative to determine that ronment provided by the destination hypervisor 135 may
that the source VM 140 is inaccessible to automated com - differ from the virtualized hardware environment provided
mands and report such to the script generation component by the source hypervisor 130 , the reconfiguration is best
830 so as to indicate that an offline script should be gener - performed with access to the changes in environment pre
ated . In other cases , the use of an offline script may be 20 sented by the new virtualized hardware environment of the
specified by an administrator of the virtual machine migra - destination VM 145 as the reconfiguration may be specific
tion system 100 , with the script generation component 830 to the destination VM 145 . The second script 940 may
producing the first script 840 as an offline script in response reconfigure the guest OS 150 using scripting - based recon
to the specification by the administrator rather than in figuration commands 930 to create the guest OS destination
response to a determination by the remote access component 25 configuration 965 . The reconfiguration commands 930 may
850 that the source VM 140 is inaccessible to automated be encoded in the second script 940 by the first script 840
commands . Such configuration by the administrator may be based on the configuration information 920 . In some
performed even where the source VM 140 would be acces embodiments , the second script 940 may be part of a
sible to automated commands . plurality of scripts generated by the first script 840 , wherein FIG . 9 illustrates an embodiment of a first script 840 and 30 the plurality of scripts are executed within the guest OS 150 second script 940 executing in the guest OS 150 for the running on top of the destination VM 145 based on the first virtual machine migration system 100 . script 840 configuring the guest OS 150 to execute them . The first script 840 may be generally arranged to collect The first script 840 may configure the guest OS 150 to configuration information 920 of the guest OS 150 based on
the current guest OS source configuration 960 while the 35 exe 25 execute the second script 940 on a next booting up of the
guest OS 150 is running on the source VM 140 . The first guest OS 150 . The first script 840 may perform this con
script 840 may collect the configuration information 920 by figuration while the guest OS 150 is running on the source
querying the guest OS 150 , utilities of the guest OS 150 , and VM 140 , after the configuration information 920 has been
configuration files of the guest OS 150 . collected and the second script 940 generated . The first

The first script 840 may generate a second script 940 40 script 840 may then shut down the guest OS 150 .
based on the collected configuration information 960 . The The remote access component 850 may monitor the
first script 840 may generate the second script 940 using source hypervisor 130 to determine when the guest OS 150
templates configured into the first script 840 . For instance , has shut down and , accordingly , the source VM 140 has
the migration application 110 may store script elements for moved to a virtualized power - off state . The remote access
the performance of various migration tasks , which may be 45 component 850 may monitor the source hypervisor 130 for
specific to any individual or combination of particular tasks , the guest OS 150 shutting down in order to determine when
particular guest operating systems , particular source hyper - the first script 840 has completed its tasks and has made the
visors , particular destination hypervisors , and particular guest OS 150 ready to boot on top the destination VM 145 .
options selected by an administrator of the virtual machine As such , when the remote access component 850 determines
migration system 100 . The script element may include 50 that the guest OS 150 has shut down on the source VM 140
templates variables for which values may be assigned based it may then command the destination hypervisor 125 to boot
on any individual or combination of particular tasks , par - up the guest OS 150 on the destination VM 145 in response .
ticular guest operating systems , particular source hypervi - In some cases , the guest OS 150 may fail to shut down
sors , particular destination hypervisors , and particular when running on the source VM 140 . As such , the migration
options selected by an administrator of the virtual machine 55 application 110 may have a limited amount of time it is
migration system 100 . In general , any known technique for willing to wait for the first script 840 to complete . When this
generating a script , including any known technique for time has expired the remote access component 850 may
generating scripts based on templates , may be used . The instruct the source hypervisor 130 to force the shut down of
script elements relevant to the current migration may be the guest OS 150 by forcing the source VM 140 into a
made available to the first script 840 by the script generation 60 virtualized power - off state . While this risks leaving the guest
component 830 , which may include providing multiple OS 150 in an unsafe state , it may be preferable to allowing
potential elements that may be selected from by the first the guest OS 150 to indefinitely hang without shutting down .
script 840 according to the collected configuration informa The migration application 110 may be configured to wait an
tion 920 . amount of time estimated to be a sufficient amount of time

The configuration information 920 may be collected while 65 for the first script 840 to collect the configuration informa
the guest OS 150 is running on the source VM 140 . tion 920 and generate the second script 940 . Once the guest
Collecting the configuration information 920 while the guest OS 150 has been forced to shut down , the remote access

US 9 , 841 , 991 B2
17 18

component 850 may command the destination hypervisor OS 150 while its running on the source VM 140 to auto
135 to boot up the guest OS 150 on top of the destination matically execute the second script 940 on a next booting up
VM 145 in response . of the guest operating system . The first script 840 may then

In some cases , the configuration information 920 col - shut down the guest OS 150 . The guest OS 150 may be
lected may include a mapping between one or more network 5 booted up on the destination VM 145 after being shut down .
interfaces of the source VM 140 and media access control The first script 840 may configure the guest OS 150 to
(MAC) addresses assigned to the one or more network immediate boot after the shut down (e . g . , a reboot) , or may
interfaces of the source VM 140 . The second script 940 may allow an external migration application 110 running without
reconfigure the guest OS 150 by creating associations virtual machine mediation on the host OS 120 to boot the
between the guest OS 150 and one or more network inter - 10 guest OS 150 . This migration application 110 may act to
faces of the destination VM 145 based on the mapping have the next boot be on the destination VM 145 provided
generated by the first script 840 . The associations created by by the destination hypervisor 135 and may perform other
be based on the mapping by virtue of the second script 940 tasks between the shut down of the guest OS 150 and its next
having been created by the first script 840 using the mapping boot to further the migration of the guest OS 150 .
in order to reproduce the association between internal net - 15 The second script 94 may reconfigure the guest OS 150 by
work interfaces of the guest OS 150 and the MAC addresses creating associations between the guest OS 150 and one or
to which they were assigned in the destination VM 145 as more network interfaces of the destination VM 135 based on
they were in the source VM 140 . This may serve to resolve the NIC - to - MAC mapping .
any networking complications created by using different The embodiments are not limited to this example .
technologies for virtualizing a network interface or using a 20 FIG . 11 illustrates a block diagram of a centralized system
different naming scheme for the virtualized network inter - 1100 . The centralized system 1100 may implement some or
faces . all of the structure and / or operations for the virtual machine

FIG . 10 illustrates one embodiment of a logic flow 1000 . migration system 100 in a single computing entity , such as
The logic flow 1000 may be representative of some or all of entirely within a single device 1120 .
the operations executed by one or more embodiments 25 The device 1120 may comprise any electronic device
described herein . capable of receiving , processing , and sending information

In the illustrated embodiment shown in FIG . 10 , the logic for the system 100 . Examples of an electronic device may
flow 1000 may . . . at block 1002 . include without limitation an ultra - mobile device , a mobile

The logic flow 1000 may execute a first script 840 in a device , a personal digital assistant (PDA) , a mobile com
guest OS 150 running on a source VM 140 , the first script 30 puting device , a smart phone , a telephone , a digital tele
840 collecting configuration information 920 of the guest phone , a cellular telephone , eBook readers , a handset , a
OS 150 at block 1004 . The first script 840 may be executed one - way pager , a two - way pager , a messaging device , a
in the guest OS 150 using at least one of a remote access API computer , a personal computer (PC) , a desktop computer , a
of the guest OS 150 or a remote administration API of a laptop computer , a notebook computer , a netbook computer ,
source hypervisor 130 for the source VM 140 . Alternatively , 35 a handheld computer , a tablet computer , a server , a server
it may be determined that the source VM 140 is inaccessible array or server farm , a web server , a network server , an
to automated commands , with the first script 84 generated as Internet server , a work station , a mini - computer , a main
an offline script operative for human - initiated execution in frame computer , a supercomputer , a network appliance , a
response . web appliance , a distributed computing system , multipro

The source VM 140 may be provided by a source hyper - 40 cessor systems , processor - based systems , consumer elec
visor 130 , the destination VM 145 provided by a destination tronics , programmable consumer electronics , game devices ,
hypervisor 135 , the source hypervisor 130 and destination television , digital television , set top box , wireless access
hypervisor 135 differing in hardware virtualization as to point , base station , subscriber station , mobile subscriber
prevent the guest OS 150 from making full use of the center , radio network controller , router , hub , gateway ,
destination VM 135 without reconfiguration . In particular , 45 bridge , switch , machine , or combination thereof . The
the networking configuration of the guest OS 150 may be embodiments are not limited in this context .
incompatible with the virtualized networking hardware pre The device 1120 may execute processing operations or
sented to the guest OS 150 as part of the virtualized logic for the system 100 using a processing component 1130 .
hardware environment of the destination VM 145 . The processing component 1130 may comprise various

The configuration information 920 collected may com - 50 hardware elements , software elements , or a combination of
prise a NIC - to - MAC mapping between one or more network both . Examples of hardware elements may include devices ,
interfaces of the source VM 140 and media access control logic devices , components , processors , microprocessors , cir
addresses assigned to the one or more network interfaces of cuits , processor circuits , circuit elements (e . g . , transistors ,
the source VM 140 . This mapping may allow the logic flow resistors , capacitors , inductors , and so forth) , integrated
1000 to recreate the associations between non - virtualized , 55 circuits , application specific integrated circuits (ASIC) , pro
physical NICs and the virtualized NICs of the virtualized grammable logic devices (PLD) , digital signal processors
hardware environment despite changes in how the virtual - (DSP) , field programmable gate array (FPGA) , memory
ized hardware environment is created . units , logic gates , registers , semiconductor device , chips ,

The logic flow 1000 may generate a second script 940 microchips , chip sets , and so forth . Examples of software
based on the collected configuration information 920 at 60 elements may include software components , programs ,
block 1006 . This second script 940 may be generated by the applications , computer programs , application programs , sys
first script 840 . tem programs , software development programs , machine

The logic flow 1000 may execute the second script 940 in programs , operating system software , middleware , firm
the guest OS 150 running on the destination VM 145 , the ware , software modules , routines , subroutines , functions ,
second script 940 reconfiguring the guest OS 150 to run on 65 methods , procedures , software interfaces , application pro
the destination VM 145 at block 1008 . The second script 940 gram interfaces (API) , instruction sets , computing code ,
may be executed by the first script 840 configuring the guest computer code , code segments , computer code segments ,

US 9 , 841 , 991 B2
19 20

words , values , symbols , or any combination thereof . Deter - migration system 100 across multiple computing entities .
mining whether an embodiment is implemented using hard Examples of distributed system 1200 may include without
ware elements and / or software elements may vary in accor - limitation a client - server architecture , a S - tier architecture ,
dance with any number of factors , such as desired an N - tier architecture , a tightly - coupled or clustered archi
computational rate , power levels , heat tolerances , processing 5 tecture , a peer - to - peer architecture , a master - slave architec
cycle budget , input data rates , output data rates , memory ture , a shared database architecture , and other types of
resources , data bus speeds and other design or performance distributed systems . The embodiments are not limited in this
constraints , as desired for a given implementation . context . The device 1120 may execute communications operations The distributed system 1200 may comprise a client device or logic for the system 100 using communications compo - 10 1210 and server devices 1250 and 1270 . In general , the nent 1140 . The communications component 1140 may client device 1210 and the server devices 1250 and 1270 implement any well - known communications techniques and may be the same or similar to the client device 1120 as protocols , such as techniques suitable for use with packet

described with reference to FIG . 11 . For instance , the client switched networks (e . g . , public networks such as the Inter
net , private networks such as an enterprise intranet , and so 15 dev device 1210 and the server devices 1250 and 1270 may each
forth) , circuit - switched networks (e . g . , the public switched comprise a processing component 1230 and a communica
telephone network) , or a combination of packet - switched tions component 1240 which are the same or similar to the
networks and circuit - switched networks (with suitable gate processing component 1130 and the communications com
ways and translators) . The communications component 1140 ponent 1140 , respectively , as described with reference to
may include various types of standard communication ele - 20 FIG . 11 . In another example , the devices 1210 , 1250 , and
ments , such as one or more communications interfaces , 1270 may communicate over a communications media 1212
network interfaces , network interface cards (NIC) , radios , using communications signals 1214 via the communications
wireless transmitters / receivers (transceivers) , wired and / or components 1240 . The distributed system 1200 may com
wireless communication media , physical connectors , and so prise a distributed file system implemented by distributed
forth . By way of example , and not limitation , communica - 25 file servers 1260 including file servers 1260 - 1 through
tion media 1112 include wired communications media and 1260 - n , where the value of n may vary in different embodi
wireless communications media . Examples of wired com - ments and implementations . The local storage of the client
munications media may include a wire , cable , metal leads , device 1210 and server devices 1250 , 1270 may work in
printed circuit boards (PCB) , backplanes , switch fabrics , conjunction with the file servers 1260 in the operation of the
semiconductor material , twisted - pair wire , co - axial cable , 30 distributed file system , such as by providing a local cache for
fiber optics , a propagated signal , and so forth . Examples of the distributed file system primarily hosted on the file
wireless communications media may include acoustic , servers 1260 so as to reduce latency and network bandwidth
radio - frequency (RF) spectrum , infrared and other wireless usage for the client device 1210 and server devices 1250 ,
media . 1270 .

The device 1120 may communicate with a device 1110 35 The client device 1210 may comprise or employ one or
over a communications media 1112 using communications more client programs that operate to perform various meth
signals 1114 via the communications component 1140 . The o dologies in accordance with the described embodiments . In
device 1110 may be internal or external to the device 1120 one embodiment , for example , the client device 1210 may
as desired for a given implementation . implement the migration application 110 initiating , manag

The device 1120 may host the host OS 120 , the host 120 40 ing , and monitoring the migration of the guest OS 150 from
running the migration application 110 , source hypervisor the source VM 140 to the destination VM 145 . The client
130 , and destination hypervisor 135 , with the source VM device 1210 may use signals 1214 to interact with the source
140 and destination VM 145 provided by the respective hypervisor 130 , destination hypervisor 135 and / or guest OS
hypervisors 130 , 135 . The device 1120 may also host the file 150 while they are running on each of the source VM 140
system 160 storing the virtual disk blocks 190 for the source 45 and destination VM 145 , and file servers 1260 .
VM virtual disk 170 and destination VM virtual disk 175 . The server devices 1250 , 1270 may comprise or employ
The migration application 110 may perform the migration of one or more server programs that operate to perform various
the guest OS 150 from the source VM 140 to the destination methodologies in accordance with the described embodi
VM 145 on the device 1120 . ments . In one embodiment , for example , the server device

The device 1110 may provide support or control for the 50 1250 may implement a source host OS 1220 hosting the
migration operations of the migration application 110 and / or source hypervisor 130 providing the source VM 140 . The
the hosting operations of the device 1120 and host 120 . The server device 1250 may use signals 1214 to receive control
device 1110 may comprise an external device externally signals from the migration application 110 on client device
controlling the device 1120 , such as where device 1110 is a 1210 and to transmit configuration and status information to
server device hosting the guest OS 150 and the device 1110 55 the migration application 110 . The server device 1250 may
is a client administrator device used to administrate device use signals 1214 communicate with the file servers 1260
1110 and initiate the migration using migration application both for the providing of source VM 140 and for the
110 . In some of these cases , the migration application 110 migration of guest OS 150 from the source VM 140 to the
may instead be hosted on the device 1110 with the remainder destination VM 145 .
of the virtual machine migration system 100 hosted on the 60 The server device 1270 may implement a destination host
device 1120 . Alternatively , the device 1110 may have hosted OS 1225 hosting the destination hypervisor 135 providing
the migration application 110 as a distribution repository , the destination VM 145 . The server device 1270 may use
with the migration application 110 downloaded to the device signals 1214 to receive control signals from the migration
1120 from the device 1110 . application 110 on client device 1210 and to transmit

FIG . 12 illustrates a block diagram of a distributed system 65 configuration and status information to the migration appli
1200 . The distributed system 1200 may distribute portions cation 110 . The server device 1270 may use signals 1214
of the structure and / or operations for the virtual machine communicate with the file servers 1260 both for the provid

US 9 , 841 , 991 B2
21 22

ing of destination VM 145 and for the migration of guest OS The system bus 1308 provides an interface for system
150 to the destination VM 145 to the source VM 140 . components including , but not limited to , the system

In some embodiments , the same server device may imple memory 1306 to the processing unit 1304 . The system bus
ment both the source hypervisor 130 and the destination 1308 can be any of several types of bus structure that may
hypervisor 135 . In these embodiments , the migration appli - 5 further interconnect to a memory bus (with or without a
cation 110 hosted on a client device 1210 may perform the memory controller) , a peripheral bus , and a local bus using
migration of the guest OS 150 from the source VM 140 to any of a variety of commercially available bus architectures .
the destination VM 145 on this single server device , in Interface adapters may connect to the system bus 1308 via
conjunction with migration operations performed using the a slot architecture . Example slot architectures may include

10 without limitation Accelerated Graphics Port (AGP) , Card distributed file system . Bus , (Extended) Industry Standard Architecture ((E) ISA) , FIG . 13 illustrates an embodiment of an exemplary com Micro Channel Architecture (MCA) , NuBus , Peripheral puting architecture 1300 suitable for implementing various Component Interconnect (Extended) (PCI (X)) , PCI Express ,
embodiments as previously described . In one embodiment , Personal Computer Memory Card International Association the computing architecture 1300 may comprise or be imple - 15 (PCMCIA) and the like
mented as part of an electronic device . Examples of an The computing architecture 1300 may comprise or imple
electronic device may include those described with refer ment various articles of manufacture . An article of manu
ence to FIG . 11 , among others . The embodiments are not facture may comprise a computer - readable storage medium
limited in this context . to store logic . Examples of a computer - readable storage

As used in this application , the terms “ system ” and 20 medium may include any tangible media capable of storing
“ component ” are intended to refer to a computer - related electronic data , including volatile memory or non - volatile
entity , either hardware , a combination of hardware and memory , removable or non - removable memory , erasable or
software , software , or software in execution , examples of non - erasable memory , writeable or re - writeable memory ,
which are provided by the exemplary computing architec - and so forth . Examples of logic may include executable
ture 1300 . For example , a component can be , but is not 25 computer program instructions implemented using any suit
limited to being , a process running on a processor , a pro - able type of code , such as source code , compiled code ,
cessor , a hard disk drive , multiple storage drives (of optical interpreted code , executable code , static code , dynamic
and / or magnetic storage medium) , an object , an executable , code , object - oriented code , visual code , and the like .
a thread of execution , a program , and / or a computer . By way Embodiments may also be at least partly implemented as
of illustration , both an application running on a server and 30 instructions contained in or on a non - transitory computer
the server can be a component . One or more components can readable medium , which may be read and executed by one
reside within a process and / or thread of execution , and a or more processors to enable performance of the operations
component can be localized on one computer and / or dis described herein .
tributed between two or more computers . Further , compo The system memory 1306 may include various types of
nents may be communicatively coupled to each other by 35 computer - readable storage media in the form of one or more
various types of communications media to coordinate opera - higher speed memory units , such as read - only memory
tions . The coordination may involve the uni - directional or (ROM) , random - access memory (RAM) , dynamic RAM
bi - directional exchange of information . For instance , the (DRAM) , Double - Data - Rate DRAM (DDRAM) , synchro
components may communicate information in the form of nous DRAM (SDRAM) , static RAM (SRAM) , program
signals communicated over the communications media . The 40 mable ROM (PROM) , erasable programmable ROM
information can be implemented as signals allocated to (EPROM) , electrically erasable programmable ROM (EE
various signal lines . In such allocations , each message is a PROM) , flash memory , polymer memory such as ferroelec
signal . Further embodiments , however , may alternatively tric polymer memory , ovonic memory , phase change or
employ data messages . Such data messages may be sent ferroelectric memory , silicon - oxide - nitride - oxide - silicon
across various connections . Exemplary connections include 45 (SONOS) memory , magnetic or optical cards , an array of
parallel interfaces , serial interfaces , and bus interfaces . devices such as Redundant Array of Independent Disks

The computing architecture 1300 includes various com (RAID) drives , solid state memory devices (e . g . , USB
mon computing elements , such as one or more processors , memory , solid state drives (SSD) and any other type of
multi - core processors , co - processors , memory units , chip - storage media suitable for storing information . In the illus
sets , controllers , peripherals , interfaces , oscillators , timing 50 trated embodiment shown in FIG . 13 , the system memory
devices , video cards , audio cards , multimedia input / output 1306 can include non - volatile memory 1310 and / or volatile
(1 / 0) components , power supplies , and so forth . The memory 1312 . A basic input / output system (BIOS) can be
embodiments , however , are not limited to implementation stored in the non - volatile memory 1310 .
by the computing architecture 1300 . The computer 1302 may include various types of com

As shown in FIG . 13 , the computing architecture 1300 55 puter - readable storage media in the form of one or more
comprises a processing unit 1304 , a system memory 1306 lower speed memory units , including an internal (or exter
and a system bus 1308 . The processing unit 1304 can be any nal) hard disk drive (HDD) 1314 , a magnetic floppy disk
of various commercially available processors , including drive (FDD) 1316 to read from or write to a removable
without limitation an AMD Athlon® , Duron® and magnetic disk 1318 , and an optical disk drive 1320 to read
Opteron® processors ; ARM® application , embedded and 60 from or write to a removable optical disk 1322 (e . g . , a
secure processors ; IBM® and Motorola® DragonBall® and CD - ROM or DVD) . The HDD 1314 , FDD 1316 and optical
PowerPC® processors ; IBM and Sony Cell processors ; disk drive 1320 can be connected to the system bus 1308 by
Intel® Celeron® , Core (2) Duo® , Itanium® , Pentium® , a HDD interface 1324 , an FDD interface 1326 and an optical
Xeon® , and XScale® processors ; and similar processors . drive interface 1328 , respectively . The HDD interface 1324
Dual microprocessors , multi - core processors , and other 65 for external drive implementations can include at least one
multi - processor architectures may also be employed as the or both of Universal Serial Bus (USB) and IEEE 1394
processing unit 1304 . interface technologies .

23
US 9 , 841 , 991 B2

24
The drives and associated computer - readable media pro 1350 . It will be appreciated that the network connections

vide volatile and / or nonvolatile storage of data , data struc shown are exemplary and other means of establishing a
tures , computer - executable instructions , and so forth . For communications link between the computers can be used .
example , a number of program modules can be stored in the The computer 1302 is operable to communicate with wire
drives and memory units 1310 , 1312 , including an operating 5 and wireless devices or entities using the IEEE 802 family
system 1330 , one or more application programs 1332 , other of standards , such as wireless devices operatively disposed
program modules 1334 , and program data 1336 . In one in wireless communication (e . g . , IEEE 802 . 13 over - the - air
embodiment , the one or more application programs 1332 , modulation techniques) . This includes at least Wi - Fi (or
other program modules 1334 , and program data 1336 can Wireless Fidelity) , WiMax , and BluetoothTM wireless tech
include , for example , the various applications and / or com - 10 nologies , among others . Thus , the communication can be a
ponents of the system 100 . predefined structure as with a conventional network or

A user can enter commands and information into the simply an ad hoc communication between at least two
computer 1302 through one or more wire / wireless input devices . Wi - Fi networks use radio technologies called IEEE
devices , for example , a keyboard 1338 and a pointing 802 . 13x (a , b , g , n , etc .) to provide secure , reliable , fast
device , such as a mouse 1340 . Other input devices may 15 wireless connectivity . A Wi - Fi network can be used to
include microphones , infra - red (IR) remote controls , radio - connect computers to each other , to the Internet , and to wire
frequency (RF) remote controls , game pads , stylus pens , networks (which use IEEE 802 . 3 - related media and func
card readers , dongles , finger print readers , gloves , graphics tions) .
tablets , joysticks , keyboards , retina readers , touch screens FIG . 14 illustrates a block diagram of an exemplary
(e . g . , capacitive , resistive , etc .) , trackballs , trackpads , sen - 20 communications architecture 1400 suitable for implement
sors , styluses , and the like . These and other input devices are ing various embodiments as previously described . The com
often connected to the processing unit 1304 through an input munications architecture 1400 includes various common
device interface 1342 that is coupled to the system bus 1308 , communications elements , such as a transmitter , receiver ,
but can be connected by other interfaces such as a parallel transceiver , radio , network interface , baseband processor ,
port , IEEE 1394 serial port , a game port , a USB port , an IR 25 antenna , amplifiers , filters , power supplies , and so forth . The
interface , and so forth . embodiments , however , are not limited to implementation

A monitor 1344 or other type of display device is also by the communications architecture 1400 .
connected to the system bus 1308 via an interface , such as As shown in FIG . 14 , the communications architecture
a video adaptor 1346 . The monitor 1344 may be internal or 1400 comprises includes one or more clients 1402 and
external to the computer 1302 . In addition to the monitor 30 servers 1404 . The clients 1402 may implement the client
1344 , a computer typically includes other peripheral output device 910 . The servers 1404 may implement the server
devices , such as speakers , printers , and so forth . device 950 . The clients 1402 and the servers 1404 are

The computer 1302 may operate in a networked environ operatively connected to one or more respective client data
ment using logical connections via wire and / or wireless stores 1408 and server data stores 1410 that can be employed
communications to one or more remote computers , such as 35 to store information local to the respective clients 1402 and
a remote computer 1348 . The remote computer 1348 can be servers 1404 , such as cookies and / or associated contextual
a workstation , a server computer , a router , a personal com information .
puter , portable computer , microprocessor - based entertain - The clients 1402 and the servers 1404 may communicate
ment appliance , a peer device or other common network information between each other using a communication
node , and typically includes many or all of the elements 40 framework 1406 . The communications framework 1406
described relative to the computer 1302 , although , for pur - may implement any well - known communications tech
poses of brevity , only a memory / storage device 1350 is niques and protocols . The communications framework 1406
illustrated . The logical connections depicted include wirel may be implemented as a packet - switched network (e . g . ,
wireless connectivity to a local area network (LAN) 1352 public networks such as the Internet , private networks such
and / or larger networks , for example , a wide area network 45 as an enterprise intranet , and so forth) , a circuit - switched
(WAN) 1354 . Such LAN and WAN networking environ - network (e . g . , the public switched telephone network) , or a
ments are commonplace in offices and companies , and combination of a packet - switched network and a circuit
facilitate enterprise - wide computer networks , such as intra - switched network (with suitable gateways and translators) .
nets , all of which may connect to a global communications The communications framework 1406 may implement
network , for example , the Internet . 50 various network interfaces arranged to accept , communi

When used in a LAN networking environment , the com - cate , and connect to a communications network . A network
puter 1302 is connected to the LAN 1352 through a wire interface may be regarded as a specialized form of an input
and / or wireless communication network interface or adaptor output interface . Network interfaces may employ connection
1356 . The adaptor 1356 can facilitate wire and / or wireless protocols including without limitation direct connect , Eth
communications to the LAN 1352 , which may also include 55 ernet (e . g . , thick , thin , twisted pair 10 / 100 / 1000 Base T , and
a wireless access point disposed thereon for communicating the like) , token ring , wireless network interfaces , cellular
with the wireless functionality of the adaptor 1356 . network interfaces , IEEE 802 . 11a - x network interfaces ,

When used in a WAN networking environment , the com - IEEE 802 . 16 network interfaces , IEEE 802 . 20 network
puter 1302 can include a modem 1358 , or is connected to a interfaces , and the like . Further , multiple network interfaces
communications server on the WAN 1354 , or has other 60 may be used to engage with various communications net
means for establishing communications over the WAN work types . For example , multiple network interfaces may
1354 , such as by way of the Internet . The modem 1358 , be employed to allow for the communication over broadcast ,
which can be internal or external and a wire and / or wireless multicast , and unicast networks . Should processing require
device , connects to the system bus 1308 via the input device ments dictate a greater amount speed and capacity , distrib
interface 1342 . In a networked environment , program mod - 65 uted network controller architectures may similarly be
ules depicted relative to the computer 1302 , or portions employed to pool , load balance , and otherwise increase the
thereof , can be stored in the remote memory / storage device communicative bandwidth required by clients 1402 and the

25
US 9 , 841 , 991 B2

26
servers 1404 . A communications network may be any one ratus to perform the required method steps . The required
and the combination of wired and / or wireless networks structure for a variety of these machines will appear from the
including without limitation a direct interconnection , a description given .
secured custom connection , a private network (e . g . , an It is emphasized that the Abstract of the Disclosure is
enterprise intranet) , a public network (e . g . , the Internet) , a 5 provided to allow a reader to quickly ascertain the nature of
Personal Area Network (PAN) , a Local Area Network the technical disclosure . It is submitted with the understand
(LAN) , a Metropolitan Area Network (MAN) , an Operating ing that it will not be used to interpret or limit the scope or
Missions as Nodes on the Internet (OMNI) , a Wide Area meaning of the claims . In addition , in the foregoing Detailed
Network (WAN) , a wireless network , a cellular network , and Description , it can be seen that various features are grouped
other communications networks . 10 together in a single embodiment for the purpose of stream

Some embodiments may be described using the expres - lining the disclosure . This method of disclosure is not to be
sion " one embodiment ” or “ an embodiment " along with interpreted as reflecting an intention that the claimed
their derivatives . These terms mean that a particular feature , embodiments require more features than are expressly
structure , or characteristic described in connection with the recited in each claim . Rather , as the following claims reflect ,
embodiment is included in at least one embodiment . The 15 inventive subject matter lies in less than all features of a
appearances of the phrase " in one embodiment ” in various single disclosed embodiment . Thus the following claims are
places in the specification are not necessarily all referring to hereby incorporated into the Detailed Description , with each
the same embodiment . Further , some embodiments may be claim standing on its own as a separate embodiment . In the
described using the expression " coupled ” and “ connected " appended claims , the terms “ including ” and “ in which ” are
along with their derivatives . These terms are not necessarily 20 used as the plain - English equivalents of the respective terms
intended as synonyms for each other . For example , some " comprising ” and “ wherein , ” respectively . Moreover , the
embodiments may be described using the terms “ connected ” terms “ first , " " second , " " third , " and so forth , are used
and / or " coupled ” to indicate that two or more elements are merely as labels , and are not intended to impose numerical
in direct physical or electrical contact with each other . The requirements on their objects .
term “ coupled , ” however , may also mean that two or more 25 What has been described above includes examples of the
elements are not in direct contact with each other , but yet disclosed architecture . It is , of course , not possible to
still co - operate or interact with each other . describe every conceivable combination of components and /

With general reference to notations and nomenclature or methodologies , but one of ordinary skill in the art may
used herein , the detailed descriptions herein may be pre - recognize that many further combinations and permutations
sented in terms of program procedures executed on a com - 30 are possible . Accordingly , the novel architecture is intended
puter or network of computers . These procedural descrip - to embrace all such alterations , modifications and variations
tions and representations are used by those skilled in the art that fall within the spirit and scope of the appended claims .
to most effectively convey the substance of their work to The invention claimed is :
others skilled in the art . 1 . A computer - implemented method , comprising :

A procedure is here , and generally , conceived to be a 35 retrieving information regarding a source virtual machine
self - consistent sequence of operations leading to a desired provided by a source hypervisor and a destination
result . These operations are those requiring physical virtual machine provided by a destination hypervisor ;
manipulations of physical quantities . Usually , though not using the retrieved information to generate a first script
necessarily , these quantities take the form of electrical , for migrating a guest operating system executed at the
magnetic or optical signals capable of being stored , trans - 40 source virtual machine to the destination virtual
ferred , combined , compared , and otherwise manipulated . It machine ; wherein the first script is generated by an
proves convenient at times , principally for reasons of com application using script elements with assignable tem
mon usage , to refer to these signals as bits , values , elements , plate variable values for performing a plurality of tasks
symbols , characters , terms , numbers , or the like . It should be for migrating the guest operating system ;
noted , however , that all of these and similar terms are to be 45 determining that the source virtual machine is accessible
associated with the appropriate physical quantities and are to automated commands ;
merely convenient labels applied to those quantities . executing the first script in the guest operating system

Further , the manipulations performed are often referred to running on the source virtual machine , the first script
in terms , such as adding or comparing , which are commonly collecting configuration information of the guest oper
associated with mental operations performed by a human 50 ating system based on current guest operating system
operator . No such capability of a human operator is neces configuration and by querying the guest operating
sary , or desirable in most cases , in any of the operations system and configuration files of the guest operating
described herein which form part of one or more embodi system ;
ments . Rather , the operations are machine operations . Useful generating a second script by the first script based on the
machines for performing operations of various embodiments 55 collected configuration information using script ele
include general purpose digital computers or similar ments specific to a source hypervisor type and a des
devices . tination hypervisor type ; and

Various embodiments also relate to apparatus or systems executing the second script in the guest operating system
for performing these operations . This apparatus may be running on the destination virtual machine , the second
specially constructed for the required purpose or it may 60 script reconfiguring the guest operating system using
comprise a general purpose computer as selectively acti reconfiguration commands that are encoded by the first
vated or reconfigured by a computer program stored in the script , to run the guest operating system on the desti
computer . The procedures presented herein are not inher nation virtual machine ; wherein the source hypervisor
ently related to a particular computer or other apparatus . and destination hypervisor differ in hardware virtual
Various general purpose machines may be used with pro - 65 ization as to prevent the guest operating system from
grams written in accordance with the teachings herein , or it making full use of the destination virtual machine
may prove convenient to construct more specialized appa without reconfiguration .

27

15

20

25

US 9 , 841 , 991 B2
28

2 . The method of claim 1 , the configuration information virtualization as to prevent the guest operating system
collected comprising a mapping between one or more net from making full use of the destination virtual machine
work interfaces of the source virtual machine and media without reconfiguration .
access control addresses assigned to the one or more net 9 . The apparatus of claim 8 , the configuration information
work interfaces of the source virtual machine , wherein the 5 collected comprising a mapping between one or more net
second script reconfigures the guest operating system by work interfaces of the source virtual machine and media
creating associations between the guest operating system access control addresses assigned to the one or more net
and one or more network interfaces of the destination virtual work interfaces of the source virtual machine , wherein the
machine based on the mapping . second script reconfigures the guest operating system by

3 . The method of claim 1 , the first script executed in the creating associations between the guest operating system
guest operating system using at least one of a remote access and one or more network interfaces of the destination virtual
application programming interface of the guest operating machine based on the mapping .
system or a remote administration application programming 10 . The apparatus of claim 8 , further comprising :
interface of a hypervisor for the source virtual machine . 16 a remote access component operative on the processor

4 . The method of claim 1 , further comprising : circuit to command the guest operating system to
determining that the source virtual machine is inacces execute the first script using at least one of a remote

sible to automated commands ; and access application programming interface of the guest
generating the first script as an offline script operative for operating system or a remote administration applica
human - initiated execution . 20 tion programming interface of the source hypervisor for

5 . The method of claim 1 , further comprising : the source virtual machine .
configuring the guest operating system running on the 11 . The apparatus of claim 8 , further comprising :

source virtual machine to automatically execute the a remote access component operative on the processor
second script on a next booting up of the guest oper circuit to determine that the source virtual machine is
ating system ; 25 inaccessible to automated commands ; and

shutting down the guest operating system ; and the script generation component operative to generate the
booting up the guest operating system on the destination first script as an offline script operative for human

virtual machine . initiated execution based on the remote access compo
6 . The method of claim 1 , wherein the application uses nent determining that the source virtual machine is

inaccessible to automated commands . power cycling of the source virtual machine and the desti - 30
nation virtual machine for monitoring progress of the first 12 . The apparatus of claim 8 , further comprising :
script and the second script , without having to install agents the first script operative to configure the guest operating

system running on the source virtual machine to auto within the guest operating systems . matically execute the second script on a next booting 7 . The method of claim 1 , wherein the second script is 3 up of the guest operating system and shut down the generated using script elements specific to a source virtual guest operating system ;
machine type and a destination virtual machine type . the remote access component operative on the processor

8 . An apparatus , comprising : a processor circuit on a circuit to command a hypervisor to boot up the guest
device ; operating system on the destination virtual machine .

a script generation component operative on the processor 40 13 . The apparatus of claim 8 , wherein power cycling of
circuit to generate a first script , the first script to the source virtual machine and the destination virtual
migrate a guest operating system running on a source machine is used for monitoring progress of the first script
virtual machine to run on a destination virtual machine ; and the second script , without having to install agents within
wherein information regarding the source virtual the guest operating systems .
machine provided by a source hypervisor and the 45 14 . At least one non - transitory computer - readable storage
destination virtual machine provided by a destination medium comprising instructions that , when executed , cause
hypervisor is retrieved and the script generation com - a system to :
ponent uses the retrieved information to generate the retrieve information regarding a source virtual machine
first script with assignable template variable values for provided by a source hypervisor and a destination
performing a plurality of tasks for migrating the guest 50 virtual machine provided by a destination hypervisor ;
operating system ; use the retrieved information to generate a first script for

the first script operative to collect configuration informa migrating a guest operating system executed at the
tion of the guest operating system by querying the guest source virtual machine to the destination virtual
operating system and configuration files of the guest machine ; wherein the first script is generated by an
operating system , generate a second script based on the 55 application using script elements with assignable tem
collected configuration information using script ele plate variable values for performing a plurality of tasks
ments specific to a source hypervisor type and a des for migrating the guest operating system ;
tination hypervisor type , and configure the guest oper determine that the source virtual machine is accessible to
ating system to execute the second script , the automated commands ;
configuration information collected while the guest 60 execute the first script in the guest operating system
operating system is running on the source virtual running on the source virtual machine , the first script
machine , the guest operating system configured for the collecting configuration information of the guest oper
execution of the second script to occur while the guest ating system based on current guest operating system
operating system is running on the destination virtual configuration and by querying the guest operating
machine using reconfiguration commands that are 65 system and configuration files of the guest operating
encoded by the first script ; wherein the source hyper system and generating a second script based on the
visor and destination hypervisor differ in hardware collected configuration information using script ele

US 9 , 841 , 991 B2
30

ments specific to a source hypervisor type and a des monitoring progress of the first script and the second script ,
tination hypervisor type ; and without having to install agents within the guest operating

execute the second script in the guest operating system systems .
running on the destination virtual machine , the second 20 . The computer - readable storage medium of claim 14 ,
script reconfiguring the guest operating system using 5 5 wherein the second script is generated using script elements
reconfiguration commands that are encoded by the first specific to a source virtual machine type and a destination
script to run the guest operating system on the desti virtual machine type .
nation virtual machine ; wherein the source hypervisor 21 . A computer - implemented method , comprising :
and destination hypervisor differ in hardware virtual retrieving information regarding a source virtual machine
ization as to prevent the guest operating system from 10 provided by a source hypervisor and a destination
making full use of the destination virtual machine virtual machine provided by a destination hypervisor ;
without reconfiguration . using the retrieved information to generate a first script

15 . The computer - readable storage medium of claim 14 , for migrating a guest operating system executed at the
the configuration information collected comprising a map source virtual machine to the destination virtual
ping between one or more network interfaces of the source 15 machine ; wherein the first script is generated by an
virtual machine and media access control addresses assigned application using script elements with assignable tem
to the one or more network interfaces of the source virtual plate variable values for performing a plurality of tasks
machine , wherein the second script reconfigures the guest for migrating the guest operating system ;

determining that the source virtual machine is accessible operating system by creating associations between the guest
operating system and one or more network interfaces of the 20 to automated commands ;
destination virtual machine based on the mapping . executing the first script in the guest operating system

16 . The computer - readable storage medium of claim 14 , running on the source virtual machine , the first script
the first script executed in the guest operating system using collecting configuration information of the guest oper
at least one of a remote access application programming ating system based on current guest operating system
interface of the guest operating system or a remote admin - 25 configuration and by querying the guest operating
istration application programming interface of a hypervisor system and configuration files of the guest operating
for the source virtual machine . system ;

17 . The computer - readable storage medium of claim 14 , generating a second script by the first script based on the
comprising further instructions that , when executed , cause a collected configuration information using script ele
system to : ments specific to a source hypervisor type and a des

determine that the source virtual machine is inaccessible tination hypervisor type ; and executing the second
to automated commands ; and script in the guest operating system running on the

generate the first script as an offline script operative for destination virtual machine , the second script reconfig
human - initiated execution . uring the guest operating system using reconfiguration

18 . The computer - readable storage medium of claim 14 , 35 commands that are encoded by the first script , to run the
comprising further instructions that , when executed , cause a guest operating system on the destination virtual
system to : machine ;

wherein the configuration information collected compris configure the guest operating system running on the
source virtual machine to automatically execute the ing a mapping between one or more network interfaces

of the source virtual machine and media access control second script on a next booting up of the guest oper - 40
ating system ; addresses assigned to the one or more network inter

shut down the guest operating system ; and faces of the source virtual machine , wherein the second
boot up the guest operating system on the destination script reconfigures the guest operating system by cre

virtual machine . ating associations between the guest operating system
19 . The computer - readable storage medium of claim 14 , 45 and one or more network interfaces of the destination

wherein the application uses power cycling of the source virtual machine based on the mapping .

virtual machine and the destination virtual machine for * *

30

