US 20020075293A1

a9 United States

a2 Patent Application Publication

Charisius et al.

(10) Pub. No.: US 2002/0075293 A1l
(43) Pub. Date: Jun. 20, 2002

(549) METHODS AND SYSTEMS FOR ANIMATING
A WORKFLOW AND A PROJECT PLAN

(76) Inventors: Dietrich Charisius, Stuttgart (DE);
Peter Coad, Raleigh, NC (US)
Correspondence Address:
SONNENSCHEIN NATH & ROSENTHAL
P.O. BOX 061080
WACKER DRIVE STATION
CHICAGO, IL 60606-1080 (US)
(21) Appl. No.: 09/944,696
(22) Filed: Aug. 31, 2001
Related U.S. Application Data
(63) Non-provisional of provisional application No.

60/230,054, filed on Sep. 1, 2000. Non-provisional of

provisional application No. 60/296,707, filed on Jun.
7, 2001.

Publication Classification

(51) Int.Cl7 GOGF 3/00
(52) US.Cl oo 345/704

(7) ABSTRACT

Methods and systems consistent with the present invention
allow a user to animate different versions of a plan or
workflow. Each version reflects an instance in an edit
history, i.e., reflects the changes made to the plan or work-
flow. Additionally, methods and systems consistent with the
present invention allow a user to view the various plans
created from a given workflow over time. Finally, methods
and systems consistent with the present invention may be
used to review the steps performed during the activation of
a plan.

TOZn\
100 102a
o N
\ Data Processing Computer
110
5
116 5
Memory
Secondary
1. Storage
13£ Client Interface Device
P&P Modules
JAVA
Virtual Machine
1387 136
110 P
Device rocessor
122 T

- w

106
~
114: Data Processing Computer
Memory
Tool 120
Seoreer 146 /
Yl WebDAV Secondary,
144 Proxy Storage
Device
Management |
Modules \ —
JAVA 148
Virtual Machine 132
\150 /e
l{e] P
Device rocessor
126

104 N
Data Processing Computer
118
112 5 3
Memory Secondary
Storage
L WebDAV Devioe
Server WebDAV
1490 Storage
7
142
[t{e] P
Device rocessor
124, 130 ./

Patent Application Publication Jun. 20,2002 Sheet 1 of 59 US 2002/0075293 A1

FIG. 1

102n\
100 102a -
|
k Data Processing Computer
a 110 N
116 5
Memory
Secondary
. Storage
13£ Client Interface Device
l P&P Modules
JAVA
Virtual Machine
138”7 136
I/Q Processor
Device
122~ 128
108
104
106 N \
114 Data Processing Computer Data Processing Computer
Memory
Tool 120 112 118,
Server 146 L
Memory Secondary
TI| WebDAV Secondary Storage
144 Proxy Storage WebDAV Device
Device /] il Server
Management | 140 Vg?obrgAg/
Modules \ 9
JAVA 148 1 42/
Virtual Machine 132
\150 'a
/O Vo Processor
; Processor Device
Device
126 1247 130 -/

Patent Application Publication Jun. 20,2002 Sheet 2 of 59 US 2002/0075293 A1

,,,,,,,,,,,,,,,,,,,,,,,,,,,, “
134 502 3
I ' L Storage
204 Client Interface l VFS |,

\} Module Loader l

06,
Resource
\ Manager Project Plan grOFeSS
Module Manager esigner
Module Module

1:;36% 214 26 DE

Task Tracker Module
Task Manager View Activity I/0
[Condition
S — 208/— Designer
\.//'\ Module
N
108
___ L
A
108
7 !
, "
WebDAV /145 144
Tool PI’OXy
Server (Servlet) 016
WebDAV 228\ | LDAP Module |~
/ SERVER _‘I_Import Loader 202
140 - ™
User Workflow Engine
1 Authorization| S rr=—
18 Module | Project Plan
— Management ‘
; Resource/Role | Module 224 | >1f’8
.1 Management
220 —{ Module ’ Project Task
‘ Management i
Module 226
_J
200

Patent Application Publication

FIG. 3

Begin
.

Y

Jun. 20,2002 Sheet 3 of 59 US 2002/0075293 A1

302

)
Create or Retrieve Workflow ;/

A

]

Display Workflow L/

A4

Create Plan from Workflow

308
Display Plan J

Y
/
Activate Plan -~

4

304

306

Manage Execution of Activated Plan 4

N

314

Modify Display of Plan as
Each Task is Executed

/

316

Execution of

Plan Complete?

Patent Application Publication Jun. 20,2002 Sheet 4 of 59 US 2002/0075293 A1

Artifact
(State 1)

. Artifact >410
(State 2)

| Artifact
(Complete)
_/ v

.

500
FIG. 5 @//

514

512

516

Patent Application Publication Jun. 20,2002 Sheet 5 of 59 US 2002/0075293 A1

FIG. 6

600

612

610

614 _
Left Special Right
: |

/ y
Co lete Ass bl
" y

!

|

@) J604

620

Patent Application Publication Jun. 20,2002 Sheet 6 of 59 US 2002/0075293 A1

‘Project Managey fg

- blame,

=% Serfal Project

== Step 1
=3 Step 2
812 510 ,814
A
/
Mame - i glg‘],Z'D[{T _ f]
- Sorial A B DR
%= Serial And Parallel :

a3 Senal 1

== Parallel |

=3 Zenal 2 i ;
i ;
=3 Parallel 2 S

900

Logic Branch Project
<3 Get Farts

wal O Rt Handed?

=3 Right

=3 Comglete Agsembly

Patent Application Publication Jun. 20,2002 Sheet 7 of 59 US 2002/0075293 A1

_Mame

w: “ . "}9 Sefiai F‘!’II)]E!'.IZ;{w o
" cagtept

= 5tep 2

H

‘Brojoc Horrager
{{ 8

I Mame,

% Serial Project |
e Gtep 1

£ Step 2

Ptvojeﬁhﬂénag:e? T 4

B

Marms

; ‘ “a Serial Project
=3 Step 1
=3 Stepn 2

Patent Application Publication Jun. 20,2002 Sheet 8 of 59 US 2002/0075293 A1

FIG. 13

) a1, 2001 JAug 2, 2001 . | A3, 2001 .-
Pame . ~ - - - -
t" I?‘SRT’?;’ln»% 3],> 96‘,,?{2“”?8 L ?5vlll?12,l|l‘118
1 Serial And Parallel
N
-3 Senal 1 - 1300
=2 Paraliel 1 =
~=Senal 2 :%!
—Parallel 2)
b3}
Cweme . BLEOU - ms2om JAug3, 200 1400
, S =
Serial &nd Parallel
wo Seral 1
= Parallel 1) : b m— 1404
= Serial 2 E %’I © -]
== Paraliel 2 - K —— ‘
1402 k1 406
FIG. 15
.) 1500
Name . g1, 200 | &uy 72001 _ . [5u93, 2@01 :
[i . HMH,\% .08 m??illl‘% ! Dainl??:im;@a
Seral And Parallel i
{:f
3 Setial 1 ¥
=3 Parallet 1 =
=3 Seral 2
Sernal é;:
— Parallel 2 : ‘ k
Com \
\
1502 1506 1508
FIG. 16
1600

g T, A

Name

 Serial And Parallel
= 8enal 1
=z Parallel 1
=3 Senal 2 ;
~aParallel 2 f

1602 1606 1608

Patent Application Publication

“= Logic Branch Project
-2 GetPars
o3 L Rt Handed?
<= Right
= Complete Asse«m\bgﬁg‘

“a Logic Branch Project
wm Get Parts
=] Or Rt Handed?
== Right
e Complele ABsembly

“= Logic Branch Project
= Get Pars
<o L O Rt Handed®
=73 Fight

‘e Corplete Assermaly

7= Logic Branch Project
2 Get Rarts
Zal Or Rt Handed?
=3 Right

S Complete Assermbly

7= Logic Branch Pragject
w3 Get Parts

" <sL OrRLHanded?

== Right

- gc:nr'rwplé{é Aaébf@m D

Jun. 20, 2002 Sheet 9 of 59

FIG. 17
3:;%1702

i

i

)
ot

&

US 2002/0075293 A1

1700

1900

2000

Patent Application Publication Jun. 20,2002 Sheet 10 of 539 US 2002/0075293 Al

“= Logic Branch Project

FIG. 22 2200

=1 et Parts
=L Or RtHanded?

S Right i 5 t‘g‘(
= Complete Assembly 1

2300

Sa Logic Branch Project
= Gel Pas
&=l Or Rt Handed?
=3 Right
=] Dc:rﬁp!ets Assernbly

FIG. 24

2400

s Logic Branch
= GetFarts
@ L Or Rt Handed?
wa] eff
“zleft Sperial

= Complete Ase:embl"gr

Patent Application Publication Jun. 20,2002 Sheet 11 of 59 US 2002/0075293 Al

FIG. 25

2500
“2 Logic Branch
a3 GetPats .
4= L Or Rt Handed ? = t}/r\ 2504
=tet P&y W " 2506
<= Left Special < 508
a3 Zomplete Assermbly % .]

FIG. 26

72 Logic Branch
— Get Farts
2ol Qr RtHanded?

—=Lett Ty 2606
= Left Special N n . 2608
= Complete Assermbly - ; —

;OO

“= Logic Branch

3 Get Parts ® ;f\2702
&= L Or Rt Handed? = beg 2704

== Left Ly o W 2706
= Lett Special }.;%i : 2708

w3 Complete Assermibly

2710

Patent Application Publication Jun. 20, 2002 Sheet 12 of 539 US 2002/0075293 Al

FIG. 28A ="

Y

2802

Use
Existing
Workflow
Group?

Ad y

2804 , .
__| Receive ldentification

of Workflow Group |

Receive Name of !/2808

Workflow Group

v v

2806 q Retrieve Create Workflow | /
' Workflow Group Group in storage
w |

2810

l 2812

Use

Existing
Workflow?
2814 — - 2818
_| Receive Identification Receive Name
of Workflow of Workflow
4 Y
‘ 2820
2816\ Retrieve Create Workflow | /
Workflow in storage

|
|

Jun. 20, 2002 Sheet 13 of 59 US 2002/0075293 A1

Patent Application Publication

FIG. 28B

2822
Receive Indication of | /

Type of Activity

y

I
Receive Name : 2824
of Activity [/

Receive Indication of Role 2826
Responsible for Activity

/ 2828
Any
Predecessor Y i /2830
Activities?
Receive Indication of
1 Predecessor Activities

/'\/2832
-~ Any

Successor I Y E 2834
Activities? v /
- f

N Receive Indication o
N J Successor Activities
|
/l 2836
Any
On Entry ¢ 2838
Scripts?
i Receive Indication
lof On Entry Scripts
N

\d

FIG. 28C

Patent Application Publication Jun. 20, 2002 Sheet 14 of 539 US 2002/0075293 Al

B

On Exit
Scripts?

4

“ 2842
Receive Indication| /

of On Exit Scripts T
|

2844

Any Input

Conditions? 2846

y

I
Receive Input |
l Conditions J

<’-\ny Output
o - 2850
2
gondlt:ons f j

[Receive Output

Conditions

Any More
Activities?

 Receive Indicationof | 2854
Starting Point for Workflow

, . . 2856
Receive Indication of L/
End Point for Workflow]

T

Patent Application Publication Jun. 20, 2002 Sheet 15 of 539 US 2002/0075293 Al

=0 FIG. 29

e

T hitp: Mocalhost BOB0MAwekday
+ = Reliase \ 2900

3
H

2008 . .

g ki3 I

— 2904 2906 A
Provess Designer |
§

“Projent Marager .

Tk Tradkar |
oy
hlewneriusn s

el

o

3002

“":“Eﬁi{v}:\?;'Cant;;éféég:: ’

w.f

Patent Application Publication Jun. 20, 2002 Sheet 16 of 539 US 2002/0075293 Al

FIG. 31

Eﬁ R 3100
hitpriocathost 8080~ E e e u

_) % '-v.lm; % : ;
3102 N L} Hpied"*e ;«;iw LT . o)
\ #] Release Orlgxn § $ a

S B

3104

3106 TR g T$;
\ Deiete ~ %
Refrezh

Foldsts Structure Designer . -

;
O 1) Caneel |
Fs

Patent Application Publication Jun. 20,2002 Sheet 17 of 539 US 2002/0075293 Al

FIG. 33A 330

3304

<?xmi version="1ﬂ.9e/ncodmg="UTF-8" ?>
- <process group="" names"Logic Branch Project">
3358 <description /> K 3302 3336

<rolerame="Assembler" /> [
- <activity 1d="10" name=x"Get Parts" responsiblerole="Assembler">
<description /> S~ 3322 ‘\
/ <defduration units="units" value="1" /> 3334
3306 < <predecessors_id id="11" />————3360
<successors_id id="1522" /> 3364

<out_antfacts id="1527" /> 3301 3348
</actvity> —3376 [
- <activity 1d="1523" nameil.eft" responsiblerole="Assembler" >

<description /> 3328
<defduration units="units" value="1" /> 3346
<predecessors_id 1d="1522" />____
<successors_id id="1524" /> 3382
<out_aritfacts 1d="1529" /> 3352
</activity> [
- <actwity 1d="1524" name="Left Special” responsiblercle="Assembler">

3312

<description /> 330

<defduration units="units" value="1" />

<predecessors_id id="1523" /> 3350

<successors_id id="1526" />

<out_aritfacts 1d="1531" /> 3344
</actvity> _— 3372

<activity 1d="1525" name=sx"Right" responsiblerole="Assembler">

3314

= A /_H/R\ —

F <description /> A\

/ <defduration units="units" value="1" /> 3342
3310 < <predecessors_id 1d="1522" />.____ 3380
N

<successors_id 1d="1526" />

<out_artfacts Id="1533" /k3396 3356
</activity > (
<activity 1Id="1526" name="Complete Assembly" responsiblerole="Assembler">

/ <description />
<defduration units="units" value="1" />
|\ /~ <onEntry> 3388 3354
| ' - <![CDATA[(
33844 sendMail(getOwnerEmail(), "Debugging penod started",
"All the SCR files should be placed into the '%SCR_FOLDER%' folder”);
11>
</onEntry>
3316 ~ <onkExit>
- <I[CDATA[- 3390
) 3386 sendMail{getOwnerEmail(), "Debugging finished. No more SCRs found", ™);
11>
</onExit>
| <predecessors_id 1d="1524" />
/ <predecessors_id 1Id="1525" />

{ <successors_id 1d="12" />
\ <out_aritfacts id="1535" />
</activity >

Patent Application Publication Jun. 20, 2002 Sheet 18 of 539 US 2002/0075293 Al

FIG. 33B

//—3392 /,7—3393

/- <artifact 1d="1527" identity="linkable1" name="Document is INITIAL">
f <description>The condition becomes true when the % Document% artifact gets the
INITIAL state. To make this condition valid you should define the %Document%
j parameter and optionally define the document template and the application to
open the document.</description>
3394 <type>linkable</type>
<link Ink="%Document%" />
<state>INITIAL</state> 3395
<event id="1528" />
<fartifact>
- <artifact id="1529" identity="linkablel" name="Document is LEFT">
<description>The condition becomes true when the %eDocument% artifact gets the
LEFT state. To make this condition valid you should define the %Document%
parameter and optionally define the document template and the application to
open the document.</description>
<type>linkable</type>
<lmk link="%Document%" />

1

<state>LEFT </state>
<event d="1530" />
</fartifact>

- <artifact 1d="1531" identity="linkable1l" name="Document is LEFT SPECIAL">
<description>The condition becomes true when the %Document% artifact gets the
LEFT SPECIAL state. To make this condition valid you should define the
%Document% parameter and optionaily define the document template and the
application to apen the document. </description>
<type>linkable</type>
<iink hink="%Document%" />
<state>LEFT SPECIAL</state>
<event id="1532" />
</artifact> — 3398
<artifact |d:@33" identity<"linkable1" name="Document is RIGHT">
<description>The condition becomes true when the %Document% artifact gets the
RIGHT state. To make this condition valid you should define the YoDocument%
parameter and optionally define the document template and the application to
open the document.</description>
<type>linkable</type>
<hnk Iink="%Document%" />
<state>RIGHT </state>
<event 1d="1534" /> 3399
</fartifact>
<arbifact 1d="1535" identity="linkablel" name="Document is APPROVED">
<description>The condition becomes true when the %Document% artifact gets the
APPROVED state. To make this condition valid you should define the
% Document®% parameter and optionally define the document template and the
application to open the document.</description>
<type>linkable</type>
<link ink="%Document®%" />
<state>APPROVED</state>
<event 1d="1536" />
</artifact>

¢

Patent Application Publication Jun. 20,2002 Sheet 19 of 59 US 2002/0075293 Al

FIG. 33C

3366 3340
- <logic id="1522" name="L or Rt Handed?" responsiblerole="Assembler">
<description /> 3324
- <script>
- <![CDATA[3338
, approved()
11>
3308 </script>
<predecessors_id id="10" />———3368
i <other_path_id 1d="1525" />m3370
/ <other_path_id id="1523" />———3374
/ <defpath_id id="1525" />— 3378
_ </logic>
- <syncbar id="11">———— 3362

<description />
<startBar>T</startBar>
<successors_id id="10" />
</syncbar>
<syncbar id="12">
<description />
3320 < <endBar>T</endBar>
<predecessors_id id="1526" />
</syncbar>
- <gvent id="1528" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
</event>
- <event 1d="1530" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH </request>
</event>
- <event 1d="1532" name="7?Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
</event>
- <event 1d="1534" name="??Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH </request>
</event>
- <event id="1536" name="?2?Event_name">
<description>??Event_desc</description>
<type>REQUEST-GUARD</type>
<request>PROPPATCH</request>
<fevent>
</process>

3318

(_A_

H

Patent Application Publication Jun. 20, 2002 Sheet 20 of 539 US 2002/0075293 Al

FIG. 34

3400
/

Qs /%‘7 {341)

Frovecs Daslgner

hitp Mocadhest 80E0Mvshday
7 Release e
= Relesse Orggnal .

B, Buld Relesse 341 6“*—:1:{

By Code Devalopment : L?; M .
B, scr Dbk @ Assignment £ 3404

B, Spece Cevelopmer: 1‘%‘%, B 3429
t‘":‘, Test Sotweare Developrnent Pro . B -

i
1
2

les

t“e, Sirnglet
B 3418

itred P aliet
3420
3424

3426 |,
i 3410——— 1

Patent Application Publication Jun. 20, 2002 Sheet 21 of 59 US 2002/0075293 Al

FIG. 35

e 4o

<
<

T w1 G d At e

Cpitroename T 0 o S
Prujer’[Manajer— 3502 -
i i Cancel |] L

SUFTVTISVEVRRTRNIS: S . 3 :

. — i

%

;“ldt* i Remove oo

ke s <Y e e e

Patent Application Publication Jun. 20, 2002 Sheet 22 of 539 US 2002/0075293 Al

FIG. 36 3600

3602

~___ 3604

v Specify the name, ink parsmeter and description for condition. d \

LErhon s é‘-stor'v Cad 3704

3706 - P

Link peremeter [STORY_CARD

- " - 5 - [—— e . -
D aoriton The story 1s usyally written by someore in Business
; 3708 3
% -

¥ Specity when techeck the condiion.

7 Vet Bt doacumen

¥ Change property of doctment —/”é/

T3 Put documeit inte régpostory s

w Syietify possible stetes of document.

s T ofates
" ODRAFT

3722 ﬁ APPROYVED

¥ Specify URL for template documert snd application to run i

372

Terrgdte sonament LIRL

E gt atior ko sun

Patent Application Publication Jun. 20, 2002 Sheet 23 of 539 US 2002/0075293 Al

FIG. 38

3800
//

¥ Epecify the name and descrphon tor condition

Corgionoems . ——— 3804 \

Dezorption

aals it the perc»:-nt/ completion iz 100%.

3806

w Specify. whien to chisck the condition.

_ 3810

*
s

Abizolitetime

3808< i Petimd

U chalge

R X

v Diefine st §;§sgggm,r§§ers and contert. 3825

Hame o

i

Seript condert. iy

Patent Application Publication Jun. 20, 2002 Sheet 24 of 59 US 2002/0075293 Al

FIG. 39

furction checking!
i
il

)
var mag =",
war SCRFolder = nevy URL/MWECR_FOLDERS",
i USCRFolder exists () || 'SCRFolder isFolder () return talze,
; war directoryList = SCRFolder getChildreni),
Ctar (=00 s directorylizt length, se+)
{
var nesdFile = directoryListfi],
1t 1 nestFile checkProperty(Mwarktow”, "status", "))
b
nedFile < etPropertyMeeorkflow, "status”, Minveork™y;
var procezsReference = getlURLD) getProperty("PROPERTIES", "ProcessReference™,
generatepewRequest("open”, processReference, "SCRY, nexdFile path),
zendMallgetOwnerEmail(), "Mew SCR gererated " + nextFile.wrl, "),
©} WENDIF
P} WERDFOR
1 return getPercent() == 100;

t
i
¢
£
H
H

Sy

#

hizckingl),

g

Ok -

ingert function -

oo

- -
o AT

 Proparties |

| name

! durstion

) durgtior: format

le

! responsble ro

Patent Application Publication Jun. 20, 2002 Sheet 25 of 59 US 2002/0075293 Al

FIG. 41A

(Begin)

A J

4102
Receive Indication /
of Plan Name

: 4104

Receive Indication |
of Working Hours ‘

Y 4106

Receive Indication of J

Start Date and Time

y

Retrieve | ./

Activity

4108

Y

! Start Time of Task= |/
- Start Date and Time

&

4110

Patent Application Publication Jun. 20, 2002 Sheet 26 of 539 US 2002/0075293 Al

FIG. 41B

A

A 4

4112
Set End Time of Task Based on Start | /

Time, Duration, and Working Hours

4

Receive Indication of |/
Resource Assigned to Task

l

Any More
Activities?

4114

4116

. Retrieve

i

1 Activity i

4

Start Time of Task =End | /
ITime of Predecessor Task

Patent Application Publication Jun. 20,2002 Sheet 27 of 59 US 2002/0075293 Al

FIG. 42

et

4206

T T T R Spenity 8 projsct group for & nev praect f

[P

8 it Mocathost B080Mvebday
1 % ProgectGroupt
- , E,Pro}ect@roupl‘
i

4202
- .

Creats Sroup.

. Type name i

- Jsoftware Progets——42

< Prawius |, |

PO ~ AP S

FIG. 43 400

¥ Speciy s oroest oroup 16 & rew project

T bitp ocalhost B080Mwehdey |
L, ProjectGroupt |
_%, ProjectGroup? §
H -

i 7% Soffveara Prostls

3

FIG. 44 o

W Specifythe name of the naw prdistt for the &?eqp Software Prejects,

Progect neme Helio World Aop

Patent Application Publication Jun. 20, 2002 Sheet 28 of 539 US 2002/0075293 Al

FIG. 45

¥ Gpecify imatsble tor proect

e

~Seh imat%ytﬂgﬁﬂ%ww e

o

siiard Tamshatle

T Hﬂur~7»/(4518 «

nrang Devs Wfosnireg Hio P
[>= [o N .
Gty : " : N N
i 5 g x;~§2\ e \\‘; 3 "
! Eac o 5 et
' o s L Ry

/ hondsry

4502

Traslay
4 5 O 6 J Wiernesay
|
\.

Thursoey S) ;MW {W» ; g e R

5 B ; R 5 - <4 »»Iﬁ g3 T I H - °
Frday ARSI ERIRRE SPUCE SUUDS ML WL ORES WEFAS MRS SRS CEU L P

ARG e

FIG 46 4600

v Spec %f}g’ stsrt and® ﬂntsh d»afcs f:xf ﬂEé ip"ti';}ud

RS ——

o r——— gmavnm £Pud

Btk Caterdsr.

Patent Application Publication Jun. 20, 2002 Sheet 29 of 59 US 2002/0075293 Al

4700

FIG. 47 -

<?xml version="1.0" encoding="UTF-8" ?>
- <process group="" name="Serial & Parallel">

<description />

<role name="Worker" />

<activity 1d="10" name="Serial 1" responsiblerole="Worker">
<description />
<defduration units="hours" value="9" />——— 4704
<predecessors_id id="11" />
<successors_id id="1522" />

</activity >

- <achivity id="1523" name="Parallel 1" responsiblerole="Worker">

<description />
<defduration units="hours" value="24" />—— 4710
<predecessors_id id="1522" />
<successors_id id="1525" />
</activity>
<activity 1d="1524" name="Parallel 2" responsiblerole="Worker">
<description />
<defduration units="hours" value="24" />——— 4712
<predecessors_id 1d="1522" />
<successors_id 1d="15825" />
</activity >
<activity 1d="1526" name="Serial 2" responsiblerole="Worker">
<description />
<defduration units="hours" value="24" />——— 4716
<predecessors_id id="1525" />
<successors_id id="12" />
<factivity >
<syncbar id="11">
<description />
<startBar>T</startBar>
<successors_id id="10" />
</syncbar>
<syncbar id="12">
<description />
<endBar>T</endBar>
<predecessors_id 1d="1526" />
</syncbar>
<syncbar id="1522" name="Sync¢BarH1">
<description />
<predecessors_id 1d="10" />
<successors_id 1d="1523" />
<successors_id 1d="1524" />
</syncbar>
<syncbar id="1525" name="SyncBarH2">
<description />
<predecessors_id 1d="1523" />
<predecessors_id 1d="1524" />
<successors_id 1d="1526" />
</syncbar>

</process>

Patent Application Publication Jun. 20, 2002 Sheet 30 of 539 US 2002/0075293 Al

FIG. 48 4800
<

<?xmi version="1.0" encoding="UTF-8" ?> «

<A:plan name="Serial_And_Parallel" usend="JK" xmins: A="waorkfiow">
~ <A:description>
- <I[CDATA[
No Description
1=
</A:description>
/- <A:task activityID="10" caption="Serial 1"
/ link="Sample_Project_Plans/Serial_And_Parallel/Task_2.xml" name="Task 2"
owner="Worker"
| processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processi.xml"
/ type="general" usernd="JK">
<A:start>2001 8 1 9</A:start>——— 4804
4802< <A:finish>2001 8 1 18</A:finish>
\

4806

<A:supertask name="Task_1" />
‘ <A:user>JK</A:user>

<A:successor name="Task_3" />
\ <A:successor name="Task_4" />
\ </A:task>
s <A:task activitylD="1523" caption="Parallel 1"
/ link="Sample_Project_Plans/Serial_And_Parallel/Task_3.xml" name="Task_3"

r owner="Worker"
! processURL="http://localhost:8080/webdav/ProcessGroup2/Processi.xmi"
f type="general" userid="JK">
/ <A:start>2001 8 1 18</A:start>———— 4812
4808 <A:finish>2001 8 2 18</A:finish>———4816
\ <A:supertask name="Task_1" />
\ <A:user>JK</A:user>
| <A:predecessor name="Task_2" />
\ <A:successor name="Task_5" />

N </A:task>
/= <Atask activitylD="1524" caption="Parallel 2"
/ link="Sample_Project_Plans/Serial_And_Parallel/Task_4.xml" name="Task_4"

,’ owner="Worker"
} processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processi.xml"
type="general" userid="JK">
481 O/ <A:start>2001 8 1 18</A:start>—— 4814
\\ <A:finish>2001 8 2 18</A:ﬂmsh>——481 8
<A:supertask name="Task_1" />
\ <A:user>JK</A:user>
<A:predecessor name="Task_2" />
\\ <A:successor hame="Task_5" />
</A:task>
~ <Aitask activityID="1526" caption="Serial 2"
/ link="Sample_Project_Plans/Serial_And_Parallel/Task_5.xml" name="Task_5"
owner="Worker"
| processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processl.xmi"
// type="general" usend="JK"> 4829
4820< <A:start>2001 8 2 18</A:start>
A

<A:finish>2001 8 3 18</A:finish> 4824
\ <A:supertask name="Task_1" />
| <A:user>JK</A:user>
I <A:predecessor name="Task_3" />
\ <A:predecessor name="Task_4" />
</A:task>
- <Attask activityID="NONE" caption="Serial And Parallel”
link="Sample_Project_Plans/Serial_And_Parallel/Task_1.xml" name="Task_1"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processi.xml"
type="general" userid="JK">
<A:start>2001 8 1 8</A:start>
<A:finish>2001 8 3 18</A:finish>
<A:user>JK</A:user>
<A:subtask name="Task_2" />

Patent Application Publication Jun. 20, 2002 Sheet 31 of 539 US 2002/0075293 Al

FIG. 49

Mame ; [Paty Hair

4902 e e 4906 ;,
h ; o) ‘ v Project Ma :
H) &Mangge‘r‘i;«)

| Porty Hat

4904

H Addrate Erivie .
. T
rame Ship :

dura‘(l;)n 17
- BiR2001 5P

102001 4°M

2= genuhiail{ getQwrerEmait

- orEsit ongt

Patent Application Publication

5102—
5110—

5118—
5112—

Mstfe - . -

%o Serial And Paralle
w2 Senal |
= Parallel 1
= :E:Brrél 2

wa Paraliel 2

FIG. 51

Jun. 20, 2002 Sheet 32 of 59 US 2002/0075293 A1

5106—2104 5116,
‘., /i s108/ ./ o~
- *g”‘-z‘i; BUE v R S LT
RIS SR .]

o It Proj

[TR

Vf?_mpem:es_ e T

| Creaie Aase R

crEate Priviss Revindritgr Task

Patent Application Publication Jun. 20, 2002 Sheet 33 of 539 US 2002/0075293 Al

FIG. 53

5302
Receive Requestto| /

Add New Resource

J

, 5304
Y _~Import Resource N
} Information?
|
v 5308
Receive LDAP |/
Access Information
| A4
5306 | Receive Resource
Information from
Enterprise Affiliate
Y
Retrieve Resource 5/310

Information using LDAP
Access Information

r

Store Resource |/
Information

5312

End ~

Patent Application Publication Jun. 20, 2002 Sheet 34 of 539 US 2002/0075293 Al

FIG. 54

-2 Property values

a

ornerteen sl

=r phar Pointy Hair 4
= Aaman Mas Loy i
E
1 g
! i
i |
e i
o o d

5406

Patent Application Publication Jun. 20, 2002 Sheet 35 of 59 US 2002/0075293 Al

FIG. 55

SMewe 389

5502

ii:zm e passwort o R

oLty R*&-—551 G}

pave’;mgﬁ;“ 551 2|

é,ugm atie

Removwe ‘ Save Close 1 - Synchronize |

Patent Application Publication Jun. 20, 2002 Sheet 36 of 539 US 2002/0075293 Al

FIG. 56

<?xml version="1.0" encoding="UTF-8" ?>

» <users>
<user> 5610
<id>PH</id>
<name>Pointy Hair</name>—//
5602 <emall>ph@company.com</emall> 5612
<password>ZGV364==</password>
url= “Software_Projects/Hello-World_App/Users_1.xm-
</user>
- <user>

<id>MQ</id>
<name>Mister Quality</name:>
<emall>mqg@company.com</email>
<password>ZGV636==</password>
urt= “Software_Projects/Hello-World_App/Users_1.xml”
<fuser>

5604<L
- <user>
<id>MB</id>
<name>Mister Build</name>
<emaii>mb@company.com</emall>
<password>ZGV835==</password>
url= "Software_Projects/Hello-World_App/Users_1.xml”
</user>
- <user>
(<id>MT</id>
< <name>Mister Tee</name>
|

5606

5608 <email>mt@company.com</email>
<password>ZGV470==</password>
url= “Software_Projects/Hello-World_App/Users_1.xml”
</user>

</users>

Patent Application Publication Jun. 20, 2002 Sheet 37 of 539 US 2002/0075293 Al

FIG. 57A

(_Begin)

5702

Current Time
& Date > Start
Time & Date?

Is There
an Input
Condition?

5708

Input
Condition
~_Met?

. 1
i Store Actual /57 0

Start Time

Y

N

Patent Application Publication Jun. 20, 2002 Sheet 38 of 539 US 2002/0075293 Al

FIG. 57B

5720

Is There an On-
Exit Script?

Is There an On-

Y I
Entry Script? ! 5722
Y
Perform On-Exit
Script
| 5714
Y
Perform On-Entry
Script
|
i
‘ 5724
Store Actual
v End Time
5716
S
Is There\< N
an Output
Condition?

3Y

Y 5718

Output
Condition
Met?

Patent Application Publication

5802
5810

5818
5812

2, Serial And Parallel |

Mame

= Benal |
“Parallet 1
== Senal 2
SParalle!_E

Jun. 20, 2002 Sheet 39 of 59 US 2002/0075293 A1

FIG. 58

5800

e
-

5806 5808 5816/5814 5822 5820

3 / c [Aug 3, 200 /
1§ l g ¢ 1y

Patent Application Publication Jun. 20, 2002 Sheet 40 of 539 US 2002/0075293 Al

FIG. 59 o

<?xmi version="1.0" encoding="UTF-8" ?>
<A:plan name="Serial_And_Parallel" userid="JK" xmins: A="workflow">
~ <A:description>
- <I[CDATA]
No Description
1>
</A:description>
<A:task activityID="10" caption="Serial 1"
link="Sample_Project_Plans/Serial_And_Parallel/Task_2.xml" name="Task_2"
owner="Worker"
processURL="http:/ /localhost;8080/webdav/ProcessGroup2/Processl.xml"
type="general" userid="JK">
<A:start>2001 8 1 8</A:start>
<A:finish>2001 8 1 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:successor name="Task_3" />
<A:successor name="Task_4" />
</A:task>
<A:task activitylD="1523" caption="Parallel 1"
ink="Sample_Project_Plans/Serial_And_Parallel/Task_3.xml" name="Task_3"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Processl.xml"
type="general” userid="JK">
<A;start>2001 8 1 18</A:start>
<A:finish>2001 8 2 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_2" />
<A:successor hame="Task_5" />
</A:task>
<A:task activityID="1524" caption="Parallel 2"
link="Sample_Project_Plans/Serial_And_Parallel/Task_4.xml" name="Task_4"
owner="Worker"
processURL="http:/ /localhost:8080 /webdav/ProcessGroup2/Processl.xml"
type="general" userid="JK">
<A:start>2001 8 1 18</A:start>
<A:fimsh>2001 8 2 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_2" />
<A:successor name="Task_5" />
</A:task>
<A:task actwityID="1526" caption="Serial 2"
Iink="Sample_Project_Plans/Serial_And_Parallel/Task_5.xml" name="Task_5"
owner="Worker"
processURL="http:/ /localhost:8080 /wehdav/ProcessGroup2/Processl.xml"
type="general" userid="JK">
<A:start>2001 8 2 18</A:start>
<A:finish>2001 8 3 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:predecessor name="Task_3" />
<A:predecessor name="Task_4" />
</A:task>
<A:task activityID="NONE" caption="Serial And Parallel"
link="Sample_Project_Plans/Serial_And_Parallel/Task_1.xm!" name="Task_1"
processURL="http:/ /localhost:8080 /webdav/ProcessGroup2/Processl.xmi"
type="general" userid="JK">
<A:start>2001 8 1 8</A;start>
<A:finish>2001 8 3 18</A:finish>
<A:user>JK</A:user>
<A:subtask name="Task_2" />

Patent Application Publication Jun. 20, 2002 Sheet 41 of 539 US 2002/0075293 Al

FIG. 60) o000

g1, 2008

T ezt

Taug 2 2001
c iy

IS SR § (O P -5 R
6002 3o Serial And Parallel not st - .
S = genal /C:-.
@ Parallel 1 P - b g
2= Senal 2 : é? R E‘ E ,,,,,, 1
3P araliel 2 E - 6004

6100

FIG.61 =

<?xml version="1.0" encoding="UTF-8" 7>
- <A:FilePropertyMap xmins:A="adrenalin:">
<A:factstart xmins:A="workflow”>2001 8 1 9</A factstart>
<A:factfinish xmins:A="workflow"”>2001 8 1 14</A:factfinish>
<A:ProjectTask xmins:A="Serial 1”/>

</A:FilePropertyMap> \6102 \ 6106

FIG 62 6210 (6200

r;amé

6202 ’ ifs
\ g:ﬂSvgnal And Parallel (not st :
6206 == Senal 1 -
S~ = Paraliel :

6208 =33enal2

S~ tmParaliel 2

6300

FIG.63 -
6306

<?xml version="1.0" encoding="UTF-8" ?>

<A:FilePropertyMap xmins:A="adrenalin:">
<A:factstart xmins:A="workflow”>2001 8 1 14</A:factstart>
<A:factfinish xmins:A="workflow"”>2001 8 2 0</A:factfinish>
<A:ProjectTask xmins:A="Parallel 1" />
<A:ProjectTask xmins:A="Parallel 2" /> -

</A:FilePropertyMap> | 6308
_/ 6302
6304

FIG. 64 s:10 / o412 /6400

[SEEERNLE R 491, 20801 ToAe]Aug? 2‘001

P8 W??’ fng

: | AugEi 2001

%a Senal And baraliel (rmt st
6402

Senal 1 %3* :
6414 k = Parallel 1 =N E ,.3
64()4 ~——— 3 5enal 2 E. 2]
_ 3 Parallsl 2 7 6406

Patent Application Publication Jun. 20, 2002 Sheet 42 of 539 US 2002/0075293 Al

6500

FIG.65 -

<?xml version="1.0" encoding="UTF-8" ?> 6504
- <A:FllePropertyMap xmins:A="adrenalin:”>
<A:factstart xmins:A="workflow”>2001 8 2 0</A:factstart>
<A:factfinish xmins:A="workflow”>2001 8 2 12</A:factfinish>
<A:ProjectTask xmins:A="Serial 2" />
</A:FilePropertyMap> 6506

6502

FIG. 66

o 6600

; 13 1, 2001 [Aug 2, 2001 | Bug 3, 2001

6602 ... L T SE T 2l I ENS N - EIE T

%= Serial And Paratlel

6606\ I 3enal 1 i

661 4¥ == Parallel |

661 O w3 Seral 2

\sﬁ_

== Parallel 2

Matne

Patent Application Publication
FIG. 67

Begin)
-/

v 6702
Retrieve

Plan

\

6704

L4

Activate Plan

\

6706

A4

Select Task

\.

6708

Activate Task

6710

\ 4

Edit Task
Definition File

NN

Y 6712

Save Edits to Task /
Definition File

Jun. 20, 2002 Sheet 43 of 59 US

Y

2002/0075293 A1

6714

Save Edits to Plan
Definition File

N Task

Complete?

Edit Task
Definition File

A

6720

Save Edits to Task
Definition File

y

6722

Save Edits to Plan
Definition File

Y

Any More

Tasks?

End

6724

Patent Application Publication Jun. 20, 2002 Sheet 44 of 539 US 2002/0075293 Al

ST T
— [Bug 2, 200

< %2 Serial Project (not started:

——— —Siep i % e
— L
6802 . SEslepl = /

FIG. 69

6900

s
- <A:task activityID="10" caption="Step 1"

link="Sample_Project_Plans/Serial_Project/Task_2.xml" name="Task_2"
owner="Worker"
processURL="http://localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="JK">

<A:start>2001 8 1 9</A:start>

<A:fimish>2001 8 1 18</A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:successor name="Task_3" />

<state>UNEXECUTED</state>

</A:task>

6902

Patent Application Publication Jun. 20, 2002 Sheet 45 of 539 US 2002/0075293 Al

FIG. 70

Projact Marsgs
B /«’g o)
Name %ww«
| LI i1 7000
- ‘= Serial Project {not started:
o =
7002 <3 Gtep 2 =
7004
FIG. 71
7100

<A:task activityID="10" caption="Step 1"
Iink="Sample_Project_Plans/Serial_Project/Task_2.xml" name="Task_2"

owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process2.xml"

type="general” usend="JK">
<A:start>2001 8 1 9</A:start>
<A:finish>2001 8 1 18</A:finish>
<A:supertask name="Task_1" />
<A:user>JK</A:user>
<A:successor name="Task_3" />
<state>EXECUTING</state>
</A:task>

7102

Patent Application Publication Jun. 20, 2002 Sheet 46 of 539 US 2002/0075293 Al

FIG. 72

Vi e ey
Project Mansger |

‘ - Mame

9 Serial Project {(hot started;
= =3 8ep 1

7202

/////,/f'L:awz ;
7206 7204

7208

FIG. 73

- <A:task activityID="10" caption="Step 1"
link="Sample_Project_Plans/Serial_Project/Task_2.xml" name="Task_2"
owner="Worker"
processURL="http:/ /localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="JK">

<A:start>2001 8 1 9</A:start>

<A:finish>2001 8 1 18</A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:successor name="Task_3" />

<state>EXECUTED</state>
</A:task>

7300

7302

FIG. 74 7400
-

<A:task activityID="1527" caption="Step 2"
link="Sample_Project_Plans/Serial_Project/Task_3.xmi" name="Task_3"
owner="Worker"
processURL="http://localhost:8080/webdav/ProcessGroup2/Process2.xm!"
type="general" userid="3JK">

<A:start>2001 8 2 9</A:start>

<A:finish>2001 8 2 17</A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:predecessor name="Task_2" />

<state>UNEXECUTED</state>
</A:task>

7402

Patent Application Publication Jun. 20, 2002 Sheet 47 of 539 US 2002/0075293 Al

Preject Maragsr

e 7500

% %a Serial Project (not started;

— w3 Btep 1
7502 /,j’— == Stap 3
7506

7508

FIG. 76 7600
z

- <Atask activityID="1527" caption="Step 2"
link="Sample_Project_Plans/Serial_Project/Task_3.xml" name="Task_3"
owner="Worker"
processURL="http://localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general" userid="JK">

<A:start>2001 8 2 9</A:start>

<A:finish>2001 8 2 17 </A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:predecessor name="Task_2" />

<state>EXECUTING</state>
</A:task>

7602

Patent Application Publication Jun. 20, 2002 Sheet 48 of 539 US 2002/0075293 Al

FIG. 77

7700

; s

’—? . %a Serlal Pro;ect l[not startedi

//—— ::8’(9;31 § %‘2: »

7702 — w3 Gtep 2 { e
/

7706 7704

FIG. 78 7800
5

- <A:task activityID="1527" caption="Step 2"
link="Sample_Project_Plans/Serial_Project/Task_3.xml" name="Task_3"
owner="Worker"
processURL="http://localhost:8080/webdav/ProcessGroup2/Process2.xml"
type="general” userid="JK">

<A:start>2001 8 2 9</A:start>

<A:finish>2001 8 2 17</A:finish>

<A:supertask name="Task_1" />

<A:user>JK</A:user>

<A:predecessor name="Task_2" />

<state>EXECUTED</state>
</A:task>

7802

Patent Application Publication

FIG. 79

Y

Jun. 20, 2002 Sheet 49 of 59

Retrieve Plan

Y

7904

Edit Task in Plan

v

7906

Save Edits to Task
Definition File

4

7908

Save Edits to Plan
Definition File

More
Changes?

US 2002/0075293 A1

Patent Application Publication Jun. 20, 2002 Sheet 50 of 539 US 2002/0075293 Al

FIG. 80A

(e)

y

7,”” —_i J8018

8002 ,
Kr 3 Pause for Time
| Retrieve Edits to Period

| Plan Definition File
{

8004 , : /

k Retrieve Edits to Task Select Edit
Definition Files

8020

8006 | |] /8022
lSet Rate of Display Apply Edit
8008 v 8024
N Time Period = Display Edited Plan ~
1/ Rate play
8010
Display in
N Forward DRat? Of? 8028
Mode? Ispiay
, /}
— Time Period
Q/ Y =1/ Rate ‘
|
8012 Remove Edits to
k Plan Definition File =
I Y
8014 , 8030
Task Definition Files B
N
8016
Y
\ ¥

Display Plan End

|

Patent Application Publication Jun. 20, 2002 Sheet 51 of 539 US 2002/0075293 Al

>
8032

o

Display Plan

FIG. 80B

| /8034
Pause for Time
! Period

8036

Y

Select Edit
| /8038
Remove Edit

8040

: _/

Display Edited Plan

Rate of

Display? 8044

. / _/
Time Period
=1/ Rate

Patent Application Publication Jun. 20, 2002 Sheet 52 of 539 US 2002/0075293 Al

FIG. 81

Begin
;9

8102

S

Retrieve Workflow

8104

A\
Edit Activity /
in Workflow

T

8106

Save Edits to -/
Activity Definition
File

y 8108

Save Edits to J

Workflow Definition
File

Patent Application Publication Jun. 20, 2002 Sheet 53 of 539 US 2002/0075293 Al

FIG. 82

8202

8200
) 8206
Get Parts
8214
v v 8216

CCompiete Assembly)J

|

1

8204

Patent Application Publication Jun. 20, 2002 Sheet 54 of 539 US 2002/0075293 Al

we FIG. 83

- <activity id="10" name="Get Parts" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_td id="11" />
<successors_id 1d="1522" />
<out_aritfacts id="1527" />
</activity> 8304

8300

FIG. 84

- <activity 1d="1525" name="Right" responsiblerole="Assembler'>
<descripticn />
<defduration units="units" value="1" />
<predecessors_id id="1522" />
<successors_id id="1526" />
<out_antfacts 1d="1533" />
</activity>

8400

8500

8502\ FIG- 85

- <achivity 1d="1526" name="Complete Assembly" responsiblerole="Assembler'>
<description />
<defduration units="units" value="1" />
<predecessors_id 1d="1524" />_
<predecessors_id id="1525" /> \
<successors_id id="12" />

<out_aritfacts id="1535" /> 8504

</activity>
FIG. 86 < 500

- <activity 1d="1523" name="Left" responsiblerole="Assembler">

<description />
<defduration units="units" value="1" />
<predecessors_id 1d="1522" />
<successors_id 1d="1524" /> —__
<out_aritfacts id="1529" /> ™~

<Jactivity> \

8602

8702\ FIG. 87 /8700

e

- <activity id="1524" name="Left Special" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id id="1523" />
<successors_id 1d="1526" />
<out_antfacts 1d="1531" />
</activity>

Patent Application Publication Jun. 20, 2002 Sheet 55 of 539 US 2002/0075293 Al

FIG. 88

8802

i 8806 8800
Get Parts J ,é

e

|

. ! 8814
(Compiete Assembly

8804

Patent Application Publication Jun. 20, 2002 Sheet 56 of 539 US 2002/0075293 Al

8900
FIG. 89 <
- <activity id="1523" name="Left" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />
<predecessors_id 1d="1522" />
<successors_id id="1526" />
<out_aritfacts id="1529" /> \
</activity>
8902
9000

FIG. 90

- <activity id="1526" name="Complete Assembly" responsiblerole="Assembler">
<description />
<defduration units="units" value="1" />

<predecessors_id 1d="1523" />
<predecessors_id 1d="1525" />\
<successors_id id="12" />

<out_antfacts 1d="1535" /> 9002
</activity >

Patent Application Publication Jun. 20, 2002 Sheet 57 of 539 US 2002/0075293 Al

|

, 9102
Create Plan F l G n 9 1
From Workflow
| 9104
Store Plan
Definition File
v /9106
i Store Edits to Workﬂovvj
f Definition File J

9108

Create Different
Plan From Workflow

| ' -1/

‘Store Different Plan ‘

9110

Definition File

|

| 9112

Store Edits to Workflow
Definition File

Patent Application Publication

7 .
{ Begin)
N g S/
9202
K Retrieve Edits to
Workflow Definition
Files
9204 v

kﬁ Retrieve Edits to
Activity Definition
File

9206

y

tSet Rate of Display
|

—
I ‘“ .

\\1 Time Period =
|

g 1/ Rate

Display in
Forward
Mode?

Remove Edits to
__| Workflow Definition
File

9210

9214 1

Remove Edits to

Activity Definition
Files

A

Display Workflow

Jun. 20,2002 Sheet 58 of 59

US 2002/0075293 A1

FIG. 92A

—
v

9218

Pause for Time
Period

/

¥

9220

Select Edit

_/

Y

9222

Apply Edit

_/

Y

9224

Display Edited
Workflow

Adjust
Rate of
Display®?

N

Time Period
=1/ Rate

7

More Edits?

9230

A 4
End

Patent Application Publication

[!

Jun. 20, 2002 Sheet 59 of 59 US 2002/0075293 A1

FIG. 92B

A
9232
h 4
Display Workflow
I 9234
' Pause for Time -/
\ Period
9236
A4 7/
Select Edit
|
Y 0238
[/
Remove Edit
9240
. —
Display Edited j
Workflow ‘

e

N

Rate of
Display?

More Edits?

9244

=1/Rate

US 2002/0075293 Al

METHODS AND SYSTEMS FOR ANIMATING A
WORKFLOW AND A PROJECT PLAN

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of the filing date
of U.S. Provisional Application No. 60/230,054, entitled
“Development Tool for Modeling Workflow,” filed on Sep.
1, 2000, and U.S. Provisional Application No. 60/296,707,
entitled “Improved Development Tool For Modeling Work-
flow,” filed on Jun. 7, 2001, both of which are incorporated
herein by reference.

[0002] The following identified U.S. patent applications
are also relied upon and are incorporated by reference in this
application:

[0003] U.S. patent application Ser. No. , entitled
“Methods and Systems for Integrating Process Modeling
and Project Planning,” bearing attorney docket no. TS1000,
and filed on the same date herewith;

[0004] U.S. patent application Ser. No. , entitled
“Methods and Systems for Improving a Workflow Based on
Data Mined from Plans Created from the Workflow,” bear-
ing attorney docket no. TS1001, and filed on the same date
herewith; and

[0005] U.S. patent application Ser. No. , entitled
“Methods and Systems for Optimizing Resource Allocation
Based on Data Mined from Plans Created from a Workflow,”
bearing attorney docket no. TS1006, and filed on the same
date herewith.

FIELD OF THE INVENTION

[0006] The present invention relates to a method and
system for integrating a business process or workflow with
a project plan. More particularly, the invention relates to a
method and system for creating and activating a project plan,
and animating the activation of the project plan. The method
and system may also track changes made to the workflow or
project plan, and animate the corresponding changes to the
workflow or project plan. Additionally, the invention relates
to a method and system for creating different project plans
from one workflow, and animating the creation of the
different project plans.

BACKGROUND OF THE INVENTION

[0007] To become more efficient and competitive, busi-
nesses and industries have striven to capture and streamline
the business processes or workflows they use to operate and
manage their respective enterprises. In general, a workflow
is a model of a process. More specifically, a workflow can
be viewed as a structured set of activities designed to
produce a specific output for a particular customer (internal
or external to an enterprise) or market. Although conven-
tional software tools define the steps performed by the
workflow, conventional tools do not schedule the resources
(e.g., the people, equipment, or software technologies)
responsible for completing each activity. Conventional tools
also do not prepare a timeline identifying the beginning or
end of each activity. Thus, conventional tools do not prepare
a schedule for completing the workflow.

[0008] Businesses and industries also use other conven-
tional software tools, such as Microsoft Project™, to build

Jun. 20, 2002

and manage a project plan for their respective enterprises. A
plan represents an instance of the workflow. More specifi-
cally, a plan can be viewed as a working schedule for a
project to produce a product or artifact, such as a computer,
bicycle, or software build, for the respective enterprise.
These other conventional software tools typically display the
working schedule in the form of an interactive Gantt chart,
i.e., a chart to which the user can make updates. A Gantt
chart is the linear, time-based representation of a project
schedule, usually laid out on a horizontal plane where the
times/dates increase to the right. These Gantt charts show
the temporal relationships between the different tasks in a
project, where the tasks are arranged along the vertical axis.
Gantt charts are typically used to lay out an initial plan/
timeline for the project, and then to track the actual progress
of a project from start to finish. The modern software-based
Gantt chart also identifies the resource(s) responsible for
completing each task of the plan, the dependencies between
the tasks, and, once the project has begun, the status of each
task.

[0009] The conventional tools that support the building
and managing of a project plan, however, do not provide
direct links between projects and the workflows or business
processes that the enterprise has defined and seeks to imple-
ment to gain business advantage and economies of efficien-
cies. Likewise, the conventional tools that enterprises use to
define and manage workflows are not linked to project plans.
Because both workflows and project plans do not exist on
the same tool, workflows and project plans cannot be
integrated or synchronized to keep the workflows and
project plans “in step” with each other. Thus, there is a need
in the art for a tool that avoids the limitations of these
conventional software tools.

SUMMARY OF THE INVENTION

[0010] Methods and systems consistent with the present
invention provide a workflow modeling and project plan-
ning integration tool that overcomes the limitations of
conventional tools. Contrary to conventional tools that do
not allow a user to integrate a business process or workflow
with a project plan, the integration tool, in accordance with
methods and systems consistent with the present invention,
allows a user to model a business process or workflow, to
create and activate or start a project plan based on the
workflow, to manage the execution of the activated plan, and
to track the progress of the activated project plan. In
addition, the tool may include a Web-based “Distributed
Authoring and Versioning” server that operates as a virtual
file system to allow more than one user to view the same
workflow or project plan, to provide persistent storage, to
monitor the progress of an activated project plan, to simul-
taneously create plans from the same workflow, and to have
essentially unlimited access to the power of the tool through
the ubiquity of the Internet. “Versioning is a term well-
known in the art for capturing the state of an entity at given
points in time.

[0011] Methods and systems consistent with the present
invention allow a user to animate different versions of a plan
or workflow. Each version reflects an instance in an edit
history, i.e., reflects the changes made to the plan or work-
flow. Additionally, methods and systems consistent with the
present invention allow a user to view the various plans
created from a given workflow over time. Methods and

US 2002/0075293 Al

systems consistent with the present invention also allow a
user to review the steps performed during the activation of
a plan. The user may adjust the rate at which the animation
is displayed. The animation may also be viewed in reverse
order.

[0012] In accordance with methods consistent with the
present invention, a method is provided in a data processing
system. The data processing system comprises versions of a
plan, and each version reflects an instance in an edit history.
The method comprises the steps of storing indications of the
versions of the plan, and displaying the versions of the plan
in a sequential manner to simulate animation of the edit
history.

[0013] In accordance with methods consistent with the
present invention, a method is provided in a data processing
system. The data processing system comprises versions of a
workflow, and each version reflects an instance in an edit
history. The method comprises the steps of storing indica-
tions of the versions of the workflow, and displaying the
versions of the workflow in a sequential manner to simulate
animation of the edit history.

[0014] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable
medium is provided. The computer-readable medium con-
tains instructions for controlling a data processing system to
perform a method. The method comprises the steps of
retrieving edits to a plan, and determining whether to display
in a forward mode. When it is determined to display in the
forward mode, the method further comprises the steps of
removing the edits from the plan, displaying the plan, and
for each of the edits, applying the edit to the plan, and
displaying the plan. When it is determined not to display in
the forward mode, the method further comprises the steps of
displaying the plan, and for each of the edits, removing the
edit from the plan, and displaying the plan.

[0015] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable
medium is provided. The computer-readable medium con-
tains instructions for controlling a data processing system to
perform a method. The method comprises the steps of
retrieving edits to a workflow, and determining whether to
display in a forward mode. When it is determined to display
in the forward mode, the method further comprises the steps
of removing the edits from the workflow, displaying the
workflow, and for each of the edits, applying the edit to the
workflow, and displaying the workflow. When it is deter-
mined not to display in the forward mode, the method
further comprises the steps of displaying the workflow, and
for each of the edits, removing the edit from the workflow,
and displaying the workflow.

[0016] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable
medium is provided. The computer-readable medium con-
tains instructions for controlling a data processing system to
perform a method. The method comprises the steps of
retrieving a plurality of plans generated from a workflow,
and displaying each of the plans in a sequential manner to
simulate the generation of the plans from the workflow.

[0017] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable
medium is provided. The computer-readable medium con-

Jun. 20, 2002

tains instructions for controlling a data processing system to
perform a method. The data processing system comprises a
plan and the plan comprises a plurality of tasks. The method
comprises the steps of displaying a graphical representation
of the plan, wherein the graphical representation has por-
tions that correspond to the tasks, retrieving edits to the plan,
wherein each of the edits modifies a state of one of the
plurality of tasks, and for each of the edits, applying the edit
to the corresponding task of the plan, and displaying the
portion of the graphical representation that corresponds to
the edited task in a visually distinctive manner.

[0018] Other systems, methods, features and advantages
of the present invention will be or will become apparent to
one with skill in the art upon examination of the following
figures and detailed description. It is intended that all such
additional systems, methods, features, and advantages be
included within this description, be within the scope of the
invention, and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
an implementation of the present invention and, together
with the description, serve to explain the advantages and
principles of the invention. In the drawings:

[0020] FIG. 1 depicts a data processing system suitable
for practicing methods and systems consistent with the
present invention;

[0021] FIG. 2 depicts an architectural overview of the
workflow modeling and project planning integration tool
used to perform methods and systems consistent with the
present invention;

[0022] FIG. 3 depicts a flow diagram illustrating the
high-level process performed by the tool of FIG. 2 in
accordance with methods and systems consistent with the
present invention;

[0023] FIG. 4 depicts an exemplary document workflow
modeled by an enterprise affiliate using the tool of FIG. 2;

[0024] FIG. 5 depicts an exemplary task workflow mod-
eled by an enterprise affiliate using the tool of FIG. 2;

[0025] FIG. 6 depicts another exemplary workflow mod-
eled by an enterprise affiliate using the tool of FIG. 2;

[0026] FIG. 7 depicts a timeline of the task created from
the workflow of FIG. 4,

[0027] FIG. 8 depicts a timeline of the task created from
the workflow of FIG. 5;

[0028] FIG. 9 depicts a timeline of the task created from
the workflow of FIG. 6;

[0029] FIGS. 10-12 depict the execution of the plan
depicted in FIG. 7,

[0030] FIGS. 13-16 depict the execution of the plan
depicted in FIG. 8;

[0031] FIGS. 17-21 depict the execution of the plan
depicted in FIG. 9 following the default path;

[0032] FIGS. 22-27 depict the execution of the plan
depicted in FIG. 9 following the non-default path;

US 2002/0075293 Al

[0033] FIGS. 28A-C depict a flow diagram illustrating the
creation or retrieval of a workflow by the tool of FIG. 2;

[0034] FIG. 29 depicts an exemplary user interface of the
tool of FIG. 2 used to begin creating or retrieving a
workflow;

[0035] FIG. 30 depicts an exemplary user interface of the
tool of FIG. 2 used to enter the name of a new workflow

group;

[0036] FIG. 31 depicts an exemplary user interface of the
tool of FIG. 2 used to begin creating a new workflow;

[0037] FIG. 32 depicts an exemplary user interface of the
tool of FIG. 2 used to enter the name of a new workflow;

[0038] FIG. 33A-C depict an exemplary workflow defi-
nition file produced by the tool of FIG. 2 for the workflow
depicted in FIG. 6; FIG. 34 depicts an exemplary user
interface of the tool of FIG. 2 used to manage a workflow;

[0039] FIG. 35 depicts an exemplary user interface of the
tool of FIG. 2 used to add a new role to a workflow;

[0040] FIG. 36 depicts an exemplary user interface of the
tool of FIG. 2 used to select an artifact type;

[0041] FIG. 37 depicts an exemplary user interface of the
tool of FIG. 2 used to enter condition properties for a
document-oriented artifact;

[0042] FIG. 38 depicts an exemplary user interface of the
tool of FIG. 2 used to enter condition properties for a
script-oriented artifact;

[0043] FIG. 39 depicts an exemplary user interface of a
script editor for the tool of FIG. 2;

[0044] FIG. 40 depicts an exemplary user interface of the
tool of FIG. 2 used to modify the properties of a workflow
activity;

[0045] FIGS. 41A and B depict a flow diagram illustrat-
ing the creation of a plan from a workflow;

[0046] FIG. 42 depicts an exemplary user interface of the
tool of FIG. 2 used to create a new plan group;

[0047] FIG. 43 depicts an exemplary user interface of the
tool of FIG. 2 displaying the available plan groups;

[0048] FIG. 44 depicts an exemplary user interface of the
tool of FIG. 2 used to enter a plan name;

[0049] FIG. 45 depicts an exemplary user interface of the
tool of FIG. 2 used to enter the working schedule;

[0050] FIG. 46 depicts an exemplary user interface of the
tool of FIG. 2 used to enter the scheduled start and end times
for the plan;

[0051] FIG. 47 depicts an exemplary workflow definition
file produced by the tool of FIG. 2 for the workflow of FIG.
5 is created;

[0052] FIG. 48 depicts an exemplary plan definition file
created from the workflow definition file of FIG. 47,

[0053] FIG. 49 depicts an exemplary user interface of the
tool of FIG. 2 used to assign users to a plan;

[0054] FIG. 50 depicts an exemplary user interface of the
tool of FIG. 2 used to edit the properties of a plan;

Jun. 20, 2002

[0055] FIG. 51 depicts a timeline of the task created from
the workflow of FIG. 5;

[0056] FIG. 52 depicts an exemplary timeline of the tool
of FIG. 2 used to activate a plan;

[0057] FIG. 53 depicts a flow diagram illustrating the
addition of a resource by the tool of FIG. 2;

[0058] FIG. 54 depicts an exemplary user interface of the
tool of FIG. 2 used to add a resource;

[0059] FIG. 55 depicts an exemplary user interface of the
tool of FIG. 2 used to receive LDAP access information;

[0060] FIG. 56 depicts an exemplary resource file created
by the tool of FIG. 2;

[0061] FIG. 57 depicts a flow diagram illustrating the
management of an activated plan;

[0062] FIG. 58 depicts a timeline of the task created from
the workflow of FIG. 5;

[0063] FIG. 59 depicts an exemplary plan definition file
created from the workflow of FIG. 5;

[0064] FIGS. 60, 62, 64 and 66 depict the actual timeline
showing the execution of the plan depicted in FIG. 58;

[0065] FIGS. 61, 63, and 65 depict the properties of the
executing tasks of FIGS. 62, 64, and 66;

[0066] FIG. 67 depicts a flow diagram illustrating the
modifications to the plan definition and task definition
during the activation of a plan;

[0067] FIGS. 68, 70, 72, 75, and 77 depict the activation
of the first task of an exemplary plan created using the tool
of FIG. 2;

[0068] FIGS. 69, 71, 73, 74, 76, and 78 depict the task
definition file for the first task of FIGS. 68, 70, and 72,

[0069] FIG. 79 depicts a flow diagram illustrating the
steps performed by the tool depicted in FIG. 2 to edit a plan;

[0070] FIGS. 80A and B depict a flow diagram illustrat-
ing the steps performed by the tool depicted in FIG. 2 to
sequentially displaying the versions of the plan definition
file;

[0071] FIG. 81 depicts a flow diagram illustrating the
steps performed by the tool depicted in FIG. 2 to edit a
workflow;

[0072] FIG. 82 depicts an exemplary workflow created
using the tool of FIG. 2;

[0073] FIGS. 83-87 depict activity definition files corre-
sponding to the activities depicted in FIG. 82;

[0074] FIG. 88 depicts the workflow of FIG. 82 with a

revision;

[0075] FIGS. 89 and 90 depict activity definition files
corresponding to the modified activities for the workflow
depicted in FIG. 88;

[0076] FIG. 91 depicts a flow diagram illustrating the
steps performed by the tool depicted in FIG. 2 to create
different plans from one workflow; and

US 2002/0075293 Al

[0077] FIGS. 92A and B depict a flow diagram illustrat-
ing the steps performed by the tool depicted in FIG. 2 to
sequentially display the versions of the plan definition file.

DETAILED DESCRIPTION OF THE
INVENTION

[0078] Methods and systems consistent with the present
invention provide an integrated workflow modeling and
project planning integration tool that improves the efficiency
and reduces the operating cost of an enterprise or business
conglomerate. Contrary to conventional tools that do not
allow a user to integrate a workflow and a project plan, the
integration tool allows a user to model a business process or
workflow, to create and activate a project plan based on the
workflow, and to track the progress of the activated project
plan. The tool also allows the workflow to be reused to
create more than one project plan based on the workflow.
The tool simultaneously manages the execution of the plans.
Moreover, the integration tool may include a virtual file
system server, such as a Web-based “Distributed Authoring
and Versioning” (WebDAV) server that operates as a virtual
file system for computers on a network. With the WebDAV
server, more than one user on different computer systems
may view the same workflow or project plan, monitor the
progress of an activated project plan, or simultaneously
create and activate different plans from the same workflow.

System Overview

[0079] While methods and systems consistent with the
present invention may apply to any enterprise in any indus-
try, they will be further described below with reference to the
software industry to provide clarity, consistency, and to
demonstrate the invention as applied to one of the more
difficult process industries. More particularly, methods and
systems consistent with the present invention will be
described with reference to a software development business
process that is applicable to the software industry.

[0080] FIG. 1 depicts a data processing system 100 suit-
able for practicing methods and systems consistent with the
present invention. Data processing system 100 includes a
group of computers 102a, 104, and 106 that are connected
via a network 108. Network 108 may be any known physical
or wireless network capable of supporting a data transmis-
sion between two computer systems, such as a Local Area
Network (LAN), a Wide Area Network (WAN), the Internet,
or leased phone lines.

[0081] As further explained herein, computer 1022 may
actually be one of multiple computers (i.e., computers 1024
and 102x) used by affiliates of an enterprise or business
conglomerate to communicate with one another via network
108. The enterprise affiliates may be employees, managers,
administrators, suppliers, customers, other computer appli-
cations, other computer systems, or other users within the
enterprise who may need to create, view, or receive infor-
mation regarding an activated project plan in accordance
with methods and systems consistent with the present inven-
tion.

[0082] Each computer 102¢, 104, and 106 includes a
memory (110, 112, and 114, respectively), a secondary
storage device (116, 118, and 120, respectively), an I/O
device (122, 124, and 126, respectively), and a processor
(128, 130, and 132, respectively). Memory 110 in computer

Jun. 20, 2002

1024 includes a Client Interface 134 to a Web-based “Dis-
tributed Authoring and Versioning” (WebDAV) server 140 in
memory 112. Client Interface 134 has Process and Plan
modules 136 that collectively allow an enterprise affiliate to
create a reusable workflow and to create and activate a
project plan based on the reusable workflow.

[0083] Memory 110 in computer 102 also includes a
target processor interpreter, such as a Java™ Virtual
Machine 138. To permit the Client Interface 134 to run on
most any computer, the Client Interface 134 may be devel-
oped using the Java™ Programming Language. Thus, Client
Interface 134 may include Java™ bytecodes. The Java™
Virtual Machine 138 interprets the Java™ bytecodes of the
Client Interface 134 so that the Client Interface 134 may
execute on computer 102a.

[0084] The WebDAV server 140 in memory 112 of com-
puter 104 operates as a virtual file system for computers
1024, 102x, and 106 on the network 108. To operate as a
virtual file system, WebDAV Server 140 communicates on
the network 108 using the WebDAV protocol, and stores
files on WebDAV storage 142. In one implementation,
WebDAV storage 142 may be a known database, such as
Oracle, DB2, MS Structured Query Language (SQL) stor-
age, or any Java Database Connectivity (JDBC)-compliant
database. In this implementation, WebDAV Server 140
includes a database management system (DBMS) or a JIDBC
interface to control access to the WebDAYV storage 142.

[0085] In accordance with methods and systems consistent
with the present invention, two separate enterprise affiliates
using their respective Client Interfaces 134 on their respec-
tive computers 1024 and 1027 may independently request
and view the same workflow or plan stored on WebDAV
Storage 142. In addition, the Client Interface 134 allows any
enterprise affiliate to create, delete, move, and copy work-
flows, project plans, and associated roles/resource lists on
WebDAV server 140. Furthermore, properties of a process,
aplan, or a task of a plan may be added, located, or changed
on WebDAV Storage 142 by Client Interface 134 using
known methods of the WebDAV protocol.

[0086] The WebDAV protocol is a set of known extensions
to the standard HyperText Transfer protocol (HTTP) that
allows enterprise affiliates using client computers 102a and
102n to collaboratively store, edit, and manage files
remotely on a Web Server, such as WebDAV Server 140
using network 108. As known to one skilled in the art, HTTP
defines how messages sent to or from a Web server on the
Internet are formatted and transmitted. HTTP also defines
what actions a Web server or Web browser of a computer on
the Internet should take in response to various commands
submitted as part of an HTTP message.

[0087] The WebDAV protocol defines a WebDAV
resource to be a collection (e.g., a directory or folder on
WebDAV Storage 142) or a collection member (e.g., a file or
Web page on WebDAV Storage 142). Each WebDAV
resource has a content file and properties associated with the
content file. The properties include the creation date, the
author, and the access rights for the WebDAV resource. The
WebDAV protocol specifies the methods to create, delete,
move, and copy a WebDAV resource. It also specifies the
methods to add, find, or change a property of a WebDAV
resource. The WebDAV protocol and the HTTP extensions
that comprise the WebDAV protocol are more clearly

US 2002/0075293 Al

described in the following reference, which is incorporated
herein by reference: HTTP Extensions For Distributed
Authoring—WebDAV, RFC 2518, Standards Track, Pro-
posed Standard, February 1999, available at http:/
andrew2.andrew.cmu.edu/rfc/rfc2518.html.

[0088] Memory 114 in computer 106 includes a Tool
Server 144. The Tool Server 144 includes a WebDAV proxy
146 and Management Modules 148. WebDAV proxy 146
mediates communication between the Client Interface 134
and the WebDAYV server 140. The messages or requests
directed to the WebDAV server 140 from the Client Interface
134 are initially sent to the WebDAV proxy 146, as discussed
in detail below. The WebDAV proxy 146 passes these
messages and requests to the Management Modules 148.
Each of the Management Modules 148 is configured to
inform the WebDAV proxy 146 when a message or request
has been serviced. If none of the Management Modules 148
services the message or request, then the WebDAV proxy
146 sends the message or request to the WebDAV Server 140
via the network 108. If, on the other hand, the Management
Modules 148 are able to service the message or request, the
message or request is not sent to the WebDAV Server 140.
The types of messages or requests serviced by the Manage-
ment Modules 148 include activating a project plan, noti-
fying various enterprise affiliates assigned to each task of the
plan, and managing the execution of the plan to the enter-
prise affiliates.

[0089] In another implementation, memory 114 in com-
puter 106 includes a WebDAYV servlet (not shown), which is
an application designed to perform as a WebDAV Engine in
lieu of WebDAYV Server 140. The WebDAYV servlet may be
started by and executed within the Tool Server 144. In this
implementation, WebDAYV servlet is persistent. Thus, once
WebDAV servlet is started, it stays in memory and can fulfill
multiple requests. WebDAYV servlet is configured to control
access to WebDAYV Storage 142, which may be included in
secondary storage 120 in computer 106.

[0090] Memory 114 in computer 106 also includes a target
processor interpreter, such as a Java™ Virtual Machine 150.
As with the Client Interface 134 on computer 1024, the Tool
Server 144 includes Java™ bytecodes that the Java Virtual
Machine 150 interprets so that the Tool Server 144 may
execute on computer 106.

[0091] In another implementation, the data processing
system 100 may operate in a local host configuration rather
than across the network 108. In this implementation, the
memory 110 of computer 1024 may include the Tool Server
144 and the WebDAYV Server 140. In addition, the secondary
storage device 116 may include the WebDAV Storage 142.

[0092] Although aspects of the present invention are
described as being stored in memory, one skilled in the art
will appreciate that these aspects can also be stored on or
read from other types of computer-readable media, such as
secondary storage devices, like hard disks, floppy disks, or
CD-ROM; a carrier wave from a network, such as Internet;
or other forms of RAM or ROM.

[0093] FIG. 2 depicts a functional architectural overview
of the workflow modeling and project planning integration
tool 200 used to integrate workflow modeling and project
planning. As shown in FIG. 2, the tool 200 includes the
Client Interface 134 as well as the Tool Server 144. Although

Jun. 20, 2002

part of the same tool 200, the Client Interface 134 and the
Tool Server 144 may be located on different computer
systems, as discussed above.

[0094] The Client Interface 134 includes a Virtual File
System (“VFS”) Interface 202 that is configured to allow the
Client Interface 134 to connect to the secondary storage
device 116 for local file access or to connect to the WebDAV
Storage 142 via the WebDAV proxy 146 for virtual file
access. To allow the WebDAV proxy 146 to mediate com-
munication between the Client Interface 134 and the Web-
DAV Storage 142, the VFES Interface 202 is configured to
send the virtual file access requests from the Client Interface
134 to a Uniform Resource Locator (URL) or network
address for the WebDAV proxy 146. For example, the URL
for the WebDAV proxy 146 may be “http://www.Tool Serv-
er.com/WebDAVproxy.” A URL typically consists of an
access protocol (e.g., http), a domain name (e.g., www.Tool
Server.com), and, optionally, the path to a file or resource
residing on that server (e.g., WebDA Vproxy). If the Tool
Server 144, where the WebDAV proxy 146 is located, has an
IP address of 192.168.5.1 and an assigned port address of
8088, then the URL for the WebDAV proxy translates to
“http://192.168.5.1:8088/WebDAVproxy.” As discussed
above, the VFES Interface 202 initially sends the requests that
the Client Interface 134 directs to the WebDAV Storage 142
to the WebDAYV proxy 146. The WebDAV proxy 146 sends
these requests to the Management Modules 148. After the
Management Modules 148 review these requests, the Web-
DAV proxy 146 sends the request to the WebDAV server 140
if the Management Modules 148 do not respond to the
requests from the Client Interface 134. If the request is to be
sent to the WebDAYV server 140, the Tool Server 144 directs
the request to a URL or network address for the WebDAV
server 140.

[0095] The Client Interface 134 also includes a module
loader 204 to load the Process and Plan modules 136. As one
skilled in the art will appreciate, Client Interface 134 may be
developed so that the functionality provided by Process and
Plan modules 136 is not loaded by a known module loader
204, but integrally incorporated within the element corre-
sponding to the Client Interface 134. The Process and Plan
modules 136 produce the requests to store or modify the
various client files on the WebDAV storage 142. As further
described below, the various types of client files include a
condition model, a user profile, a resource profile, a work-
flow definition file, and a plan definition file. Each of these
files has properties defined in accordance with the WebDAV
protocol. The various types of client files follow a schema or
document type definition that is known to the Tool Server
144 so that the Tool Server 144 can identify the type of client
file sent by the Client Interface 134 and intercepted by the
WebDAV Proxy 146. In addition, each type of client file has
a unique identifier, such as a URL network address, which
the Tool Server 144 may use to locate the associated client
file for processing. The various types of client files are
discussed in context with the general description of the
Process and Plan modules 136 and also further discussed
with the implementation details of creating a workflow and
a project plan from the workflow. Although XML files are
used to represent the client files used with methods and
systems consistent with the present invention, one skilled in
the art will recognize that any file type can be used to
represent the client files.

US 2002/0075293 Al

[0096] The Process and Plan Modules 136 include a
Resource Manager Module 206, an Activity I[/O Condition
Designer Module 208, a Process Designer Module 210, a
Project Plan Manager Module 212, and a Task Tracker
Module 214. The Resource Manager Module 206 allows an
enterprise affiliate with system administrative privileges or
permissions, such as a project manager, to create, modify,
and store a user profile for an enterprise affiliate. The user
profile identifies the access control rights that are associated
with the enterprise affiliate, such as whether the enterprise
affiliate may create or edit or delete a project plan based on
a workflow or whether the enterprise affiliate is limited to
viewing an existing workflow or plan. When the Client
Interface 134 sends a request to the WebD AV Server 140 to
store the user profile, the Client Interface 134 may specify
that the user profile be stored with a unique identifier so that
the Tool Server 144 may later locate the user profile for
further processing. For example, the Client Interface 134
may request that the unique identifier be a location or URL
where the user profile is to be stored on the WebDAV
Storage 142. If the unique identifier is stored as a property
of the user profile on the WebDAYV storage 142, the Client
Interface 134 sends a request to the WebD AV Server 140 to
set the value of the property.

[0097] The Resource Manager Module 206 also allows an
enterprise affiliate to create, modify, and store the role
profiles that may be assigned to an activity of a workflow
that is modeled using the tool 200. The role profile identifies
a group of resources that may be assigned to complete a task
created from the activity. The role profile is a type of client
file that the Client Interface 134 may store on WebDAV
storage 142 with a unique identifier (e.g., a URL for the role
profile) to locate the role profile at a later time. A role profile
may include a Rolename that represents a “capability” or
“skill set” for the role. For example, using methods and
systems consistent with the present invention, an enterprise
affiliate may identify one of the following Rolenames to the
Resource Manager Module 206 so that the associated role
profiles are later available to assign when defining a soft-
ware development process: Manager, Analyst, Software
Architect, Software Developer, Tester, Hardware Architect,
and Editor.

[0098] In addition to the above, the Resource Manager
Module 206 further allows an enterprise affiliate to create,
modify, and store the resource profiles (e.g., the person,
equipment, or systems, such as a development facility) that
may be assigned to a task of a plan created from a workflow.
The resource profile includes a resource ID and a unique
identifier for the role profile so that the Client Interface 134
may communicate to the Tool Server 144 that the identified
resource has skills or capabilities corresponding to the role
profile. For example, when the resource is a person, the Tool
Server 144 may recognize that the person can play a given
role (e.g., Analyst) in a specific activity (e.g., Requirements
Analysis) in a workflow (e.g., Software Development Pro-
cess) based on the skills or capabilities required by the role
assigned to the activity to be performed.

[0099] The Activity I/O Condition Designer Module 208
allows an enterprise affiliate, such as a manager, to define a
condition model, i.e., an input condition or an output con-
dition, for an activity of a workflow. The Activity I/O
Condition Designer Module 208 stores the condition model
with a unique identifier so that the Tool Server 144 may later
locate the condition model for processing, such as when a
task of a plan is created from the activity of the workflow,
as explained below.

Jun. 20, 2002

[0100] As discussed above, there are two types of work-
flows: a document workflow and a task workflow. Similarly,
there are two types of conditions: a document-type condition
and a logic-type condition. The Activity /O Condition
Designer Module 208 allows the enterprise affiliate to create
a condition model based on one of these two condition types.
The Activity I/O Condition Designer Module 208 also
allows the enterprise affiliate to assign a document-type
condition model or a logic-type condition model to an
activity when creating the activity in a workflow. Each
document-type and logic-type condition model has proper-
ties defined by the enterprise affiliate that created the respec-
tive condition model using the Activity I[/O Condition
Designer Module 208.

[0101] The properties of the document-type condition
model include a location property (e.g., a URL) identifying
the location of the document or artifact being monitored.
Thus, when executing a task based on an activity, the Client
Interface 134 uses the location property to notify the
resource responsible for the task where to find the document
or artifact so that the resource may complete its task.

[0102] Another property of the document-type condition
model is a state property that indicates the allowable states
of the document or artifact. For example, the document may
have the states “DRAFT” and “APPROVED.” When creat-
ing the workflow, the enterprise affiliate assigns one of these
allowable states as a condition for entry into or exit from the
activity (or the task created from the activity). When the task
is activated, the Workflow Engine 222 evaluates whether the
state property of the document condition satisfies the input
or output condition of the activated task before starting or
closing the task.

[0103] When creating a logic-type condition model, Activ-
ity I/O Condition Designer Module 208 allows the enterprise
affiliate to define the properties shown in Table 1.

TABLE 1

Property Description

Name The name used to identify the condition.

Description A description of the condition.

‘When to This section identifies when and/or how

Check often the condition should be checked.

Abs. Time The condition is checked when this
absolute time (calendar time) arrives.

Period Integer expression in Javascript that
defines the periodicity of condition check,
where a “1” means once a minute. (If
absolute time is also specified, then the
condition should be checked when the
absolute time arrives and periodically
thereafter.)

URL The condition is checked after URL

Change undergoes a property or content change.

Task The condition is checked when the task

Change that is specified during plan creation
changes its state (e.g., starts, finishes).

Any The condition is checked when any HTTP

Request request is detected.

Script The script to run when the condition is

met. The script must return “true” or
“false” (a Boolean). Script is an
extensible method for users to enter in ad
hoc logic.

[0104] When a plan is created from a workflow, the Client
Interface 134 uses the logic-type condition model to gener-
ated a logic-type condition for entry/exit and the script (e.g.

US 2002/0075293 Al

logic element to be performed to determine if the condition
is met. For example, the enterprice affiliate may indicate to
the Activity I/O Condition Designer Module 208 that the
condition is to check if the task is complete and that the logic
to be performed is to check the status property of the task.
In this case, the user resourse assigned to this task must
notify the Client Interface 134 that the task is complete. In
another example the interprice affiliate may indicate to the
Activity I/O Condition Designer Module 208 that the con-
dition id to check if the task is complete and that the logic
to be performed is to check for the existence of a file in a
specific directory folder on WebDAV Storage 142 in order to
determine if the task is complete. In this case, the user or
resourse assigned to this task must create or move a file into
the specific directory folder to indicate that the task is
complete.

[0105] The Process Designer Module 210 allows an enter-
prise affiliate to create, modify, and store a workflow. When
the enterprise affiliate indicates to Process Designer Module
210 that the modeled process is to be saved, Process
Designer Module 210 produces a workflow definition file
based on the modeled workflow object. Client Interface 134
then sends as the workflow definition file as a client file to
WebDAV Server 140 to be stored on WebDAV Storage 142.
Each workflow definition file produced by Process Designer
Module 210 includes a unique identifier (e.g., a URL for the
workflow definition file) so that Tool Server 144 may later
locate the workflow definition file corresponding to the
modeled workflow for further processing.

[0106] Project Plan Manager Module 212 allows an enter-
prise affiliate to create and activate a project plan from a
workflow definition file. In general, upon request to create a
project plan, Project Plan Manager Module 212 sends a
query message to the WebDAV Server 140 for the workflow
definition files contained in WebDAV Storage 142. As
further described below, Project Plan Manager Module 212
receives the workflow definition files, allows the enterprise
affiliate to select one of the workflow definition files to
create a project plan, and then produces a plan definition file
based on the selected workflow definition file. When
instructed to save the plan by the enterprise affiliate, Project
Plan Manager Module 212 sends the plan definition file as
a client file to WebDAV Server 140 to be stored on WebDAV
Storage 142. Each plan definition file produced by Process
Designer Module 210 includes a unique identifier (e.g., a
URL for the plan definition file) so that Tool Server 144 may
later locate the workflow definition file corresponding to the
modeled workflow for further processing.

[0107] The Task Tracker Module 214 allows an enterprise
affiliate to view the tasks of an activated project plan that are
assigned to a specific resource, to activate or start a task of
the project plan (e.g., indicate actual start time to Client
Interface 134), to open or check-out a document artifact
needed to accomplish the task, to close or check-in the
document artifact after accomplishing the task, and to indi-
cate that the task is completed.

[0108] The Tool Server 144 includes a module loader 216
to load the Management Modules 148. Similar to the Client
Interface 134, the Tool Server 144 may be developed so that
the functionality provided by Management Modules 148 is
not loaded by a known module loader 216, but integrally
incorporated within the element corresponding to the Tool

Jun. 20, 2002

Server 144. Management Modules 148 include a User
Authorization Module 218, a Resource/Role Management
Module 220, and a Workflow Engine 222. The Workflow
Engine 222 includes a Project Plan Management Module
224 and a Project Task Management Module 226.

[0109] When the Client Interface 134 requests access to a
client file on the WebDAV Storage 142, the User Authori-
zation Module 218 verifies that that the enterprise affiliate
making the request has a user profile on the WebDAV
Storage 142 with the proper authorization or permission to
access the requested client file. The User Authorization
Module 218 may be connected to a Light Directory Access
Protocol (LDAP) Import Module 228, which follows a
known LDAP protocol to allow the User Authorization
Module 218 to obtain existing user profiles from another
computer on network 108. As known to those skilled in the
art, an LDAP protocol is based on “entries,” where an entry
is a collection of attributes that have a “distinguished name”
(DN). According to the LDAP protocol, directory entries are
arranged in a hierarchical tree-like structure that reflects
political, geographic, and/or organizational boundaries. For
example, entries representing countries may appear at the
top of the tree. The entries below the countries may represent
states or national organizations. Below the states or national
organizations may be entries representing people (e.g., user
profiles), organizational units, printers, documents, or any
other accessible entity. Each level in the hierarchical tree-
like structure for the directory entries may be identified by
a known standardized keyword, such as “CN” for the
common name of the entry (e.g., user profile), “L” for
locality name, “ST” for state or province name, “O” for
organization name, “OU” for organizational unit name, and
“C” for country name. The LDAP Import Module 228 uses
a DN to refer to the entry unambiguously via a concatenation
of the hierarchical tree-like structure. After user profiles are
retrieved by the User Authorization Module 218 via the
LDAP import module 228, the user profiles may then be
stored on the WebDAV Storage 142 by a request from the
Client Interface 134.

[0110] The Resource/Role Management Module 220
reviews requests from an enterprise affiliate to assign a
resource to a plan (e.g., to assign a user to a task of the plan).
The Resource/Role Management Module 220 may check the
resource profile corresponding to the assigned resource on
the WebDAV Storage 142 to verify that the resource is not
overloaded. For example, the Resource/Role Management
Module 220 determines whether a resource is already
assigned to another task in another plan during the same time
frame, thus preventing it from being able to complete one of
the tasks to which it is assigned. The Resource/Role Man-
agement Module 220 may also be connected to the LDAP
Import Module 228 to allow the Resource/Role Manage-
ment Module 220 to obtain existing resource profiles from
another computer on network 108. The resource profiles
may also be stored on WebDAV Storage 142 by a request
from Client Interface 134.

[0111] The Workflow Engine 222 reviews requests to
activate, deactivate, or update a plan. For example, a request
to update a plan occurs if the enterprise affiliate who is an
owner of a task indicates in its request that the task is
complete. The Workflow Engine 222 also manages the
execution of the activated plans.

US 2002/0075293 Al

High-Level Process

[0112] FIG. 3 depicts a flow diagram illustrating the
high-level process performed by the workflow modeling and
project planning integration tool in accordance with methods
and systems consistent with the present invention. Initially,
the tool creates or retrieves a workflow (step 302). The tool
then displays the workflow (step 304). The workflow com-
prises a set of activities that represents the steps to be
performed as part of a plan executed from the workflow.
Each activity has an activity description and at least one role
responsible for the activity. The activity description indi-
cates what step is to be performed by the role.

[0113] There are two types of workflows: a document
workflow and a task workflow. In a document workflow, the
state of one document (or, more generally, any item or
artifact) is monitored by the activities of the workflow. Thus,
a document workflow cannot usually have parallel activities,
which would require the parallel activities to monitor the
states of more than one artifact or would require the parallel
activities to monitor different states of the same artifact
simultaneously. The document is in one state at a time. FIG.
4 depicts an exemplary document workflow 400. As shown,
the workflow 400 includes a start element 402, an end
element 404, and two activities, “Step 17406 and “Step
27408. Because “Step 17406 occurs directly before “Step
27408, “Step 17406 is the “predecessor activity” to “Step
27408. Similarly, “Step 27408 is the “successor activity” to
“Step 17406. The workflow 400 is used to monitor the state
of Artifact 410. In particular, in “Step 17406, the state of
Artifact 410 is “State 17412, in “Step 27408, the state of
Artifact 410 is “State 2”414, and at the end 404 of the
workflow, the state of Artifact 410 is “Complete”416.

[0114] A task workflow, on the other hand, typically has
no limitations regarding the number of artifacts that may be
monitored or modified by each activity of the workflow to
achieve or contribute to the business process goal, such as an
auditing process that determines if multiple accounts are
balanced properly. FIG. 5 depicts an exemplary task work-
flow 500. The task workflow 500 includes a start element
502, an end element 504, two serial activities 506 and 508
and two parallel activities 510 and 512. The workflow also
includes two synch bars 514 and 516, which are used to
connect the ends of parallel activities. Contrary to the
document workflow, the task workflow allows for parallel
activities.

[0115] Another exemplary workflow 600 is depicted in
FIG. 6. The workflow 600 includes a start element 602 and
an end element 604. The first activity of the workflow 600
is “Get Parts”606, which is followed by a logic activity, “L.
or Rt Handed?”608. Logic activities have two successor
activities: a “default activity” and a “non-default activity.”
As the name implies, the workflow generally follows the
path of the default activity unless a condition is met in the
logic activity, as discussed in detail below. In FIG. 6, the
default activity is “Right”610. The non-default activity is
“Left”612, which is followed by another activity “Left
Special”’614. The default path is represented as a solid
connector 616 while the non-default path is represented as a
dotted connector 618. One skilled in the art, however, will
recognize that any visible difference in the connectors, e.g.,
a change in type, color, shading, labeling, etc., may be used
to represent both the default path as well as the non-default

Jun. 20, 2002

path. Both the default activity 610 and the non-default
activities 612 and 614 are followed by another activity,
“Complete Assembly”620. In addition, though we show
only two paths (616 & 618) out of the decision block 608,
there could be any number of exit paths (not shown).

[0116] Returning to FIG. 3, the next step performed by the
tool is to create a plan from the workflow (step 306). Each
activity in the default path of the workflow generally cor-
responds to a task in the plan. The task identifies the
scheduled start and stop times for the task. The tool then
displays the plan (step 308). For example, the plan created
from the workflow 400 depicted in FIG. 4 is shown in FIG.
7. The plan 700 includes two tasks 702 and 704 that
correspond to the two activities 406 and 408 from the
workflow 400. The first task 702 is scheduled to begin at 9
a.m. 706 on Aug. 1, 2001 (not shown), and end at 6 p.m. 708
on the same day. The second task 704 is scheduled to begin
at 9 a.m. 710 on Aug. 2, 2001 (712) and end at 5 p.m. 714
on the same day.

[0117] The plan 800 created from the workflow 500
depicted in FIG. 5 is shown in FIG. 8. The plan 800
includes two serial tasks 802 and 804 that correspond to the
two serial activities 506 and 508 from the workflow 500. The
plan 800 also includes two parallel tasks 806 and 808 that
correspond to the two parallel activities 510 and 512 from
the workflow 500. As shown in FIG. 8, “Serial 1” task 802
is scheduled to begin at 9 a.m. 810 on Aug. 1, 2001 (812) and
end at 5:30 p.m. 814 on the same day. The parallel tasks 806
and 808 are scheduled to start at the completion of the
“Serial 17 task 802, and are scheduled to end at 6 p.m. 816
on Aug. 2, 2001 (818). The “Serial 2 task 804 is scheduled
to begin upon completion of the parallel tasks 806 and 808
and is scheduled to end at 6 p.m. 820 on Aug. 3, 2001 (822).

[0118] The plan 900 created from the workflow 600
depicted in FIG. 6 is shown in FIG. 9. The plan 900
includes a task 902 corresponding to the activity “Get
Parts”606, followed by a task 904 corresponding to the
activity “L. or Rt Handed?”608. The following task 906
corresponds to the activity “Right”610. The final task 908
corresponds to the activity “Complete Assembly”620. The
plan 900 depicts the default path, and does not include any
of the tasks corresponding to the non-default path. Although
the start and end times are not depicted in the plan 900
shown in FIG. 9, each task has a scheduled start and stop
time. In addition, the tool 200 requires that an enterprise
affiliate assign a resource to each task, as described below.

[0119] Returning to the high-level process of FIG. 3, the
tool then activates the plan (step 310). Next, the tool
manages the execution of the activated plan (step 312). The
tool also modifies the display of the plan as each task is
executed (step 314). The tool then determines whether the
execution of the plan is complete (step 316). If the execution
of the plan is complete, processing ends. Otherwise, pro-
cessing continues to step 312.

[0120] For the exemplary plan 700 depicted in FIG. 7,
upon activation, the first task 702 begins execution. The tool
depicts the executing task 1002 by darkening the outer
borders of the block representing the task 1002, as depicted
in the plan 1000 shown in FIG. 10. After completion of the
task, the tool depicts the executed task 1102 as a darkened
block in the plan 1100, as shown in FIG. 11. At this point,
the second task 1104 begins execution, as indicated by the

US 2002/0075293 Al

darkened outer borders of the task 1104. Finally, after both
tasks 1102 and 1104 of the plan 1100 have been executed,
both tasks 1202 and 1204 are depicted as darkened blocks in
the plan 1200, as shown in FIG. 12. In this embodiment, the
tool represents an executing task with darkened borders and
represents an executed task as a darkened block. One skilled
in the art, however, will recognize that any visible change in
the blocks representing the tasks, e.g., a change in shape,
color, shading, labeling, etc., may be used to represent the
tasks in their various states. For example, in another imple-
mentation, color may be used to indicate active tasks; for
example a gray rectangle may be used behind the task to
indicate an actual activity since the actual dates may not
coincide with the dates of the planned task. Thus, the
representation of the tasks used in the methods, systems, and
articles of manufacture consistent with the present invention
are not limited to those used in the present embodiment.

[0121] The activation and execution of the tasks of the
plan 800 depicted in FIG. 8 are shown in FIGS. 13-16. FIG.
13 depicts the state of the plan 1300 while the “Serial 1 task
1302 is executing. FIG. 14 depicts the state of the plan 1400
after execution of the “Serial 1” task 1402, while the
“Parallel 1” and the “Parallel 2 tasks 1404 and 1406 are
executing. FIG. 15 depicts the state of the plan 1500 after
execution of the “Serial 1” task 1502 and the “Parallel 17
and the “Parallel 2” tasks 1504 and 1506, while the “Serial
2” task 1508 is executing. Finally, FIG. 16 depicts the state
of the plan 1600 after execution of the tasks 1602, 1604,
1606, and 1608.

[0122] As discussed above, FIG. 9 represents a plan 900
created from a workflow 600 having a logic block 608. The
activation and execution of the tasks of the plan 900 fol-
lowing the default path are shown in FIGS. 17-21, while the
activation and execution of the tasks of the plan 900 fol-
lowing the non-default path are shown in FIGS. 22-27.

[0123] FIG. 17 depicts the state of the plan 1700 while the
“Get Parts” task 1702 is executing. FIG. 18 depicts the state
of the plan 1800 after the execution of the “Get Parts” task
1802, while the “IL. Or Rt Handed?” logic task 1804 is
executing. The logic task may pop up a dialog (not shown)
to prompt the resource assigned to this task to provide an
answer for this “left or right-handed” question. In addition,
the tool allows the question to be “answered” by running a
logic script. This script may examine properties of an
indicated artifact or it may execute a separate program on a
separate system to compute the answer. Upon selection of
the default path, the plan 1900 shown in FIG. 19 depicts
both the “Get Parts” task 1902 and the “L. Or Rt Handed?”
logic task 1904 in executed states, while the “Right” task
1906 is depicted in an executing state. After the execution of
the “Right” task 1906 is complete, the state of the plan 2000
is depicted in FIG. 20 with the “Get Parts” task 2002, the “L.
Or Rt Handed?” logic task 2004, and the “Right” task 2006
in executed states and with the “Complete Assembly” task
2008 in an executing state. Finally, upon completion of the
“Complete Assembly” task 2008, the state of the plan 2100
after execution of the tasks 2102, 2104, 2106, and 2108 is
complete is depicted in FIG. 21.

[0124] Alternatively, if the non-default path is to be cho-
sen, the execution of the plan is initially the same as when
the default path is chosen. Thus, as depicted in FIG. 22, the
plan 2200 begins with the execution of the “Get Parts™ task

Jun. 20, 2002

2202. After completion of the “Get Parts” task 2202, the plan
2300 shown in FIG. 23 depicts the “Get Parts™ task 2302 in
an executed state while the “L Or Rt Handed?” task 2304 is
shown in an executing state. At this point, the resource
assigned to choose the default or the non-default path
chooses the non-default path, thus completing the execution
of the “LL Or Rt Handed?” task 2404, as indicated in FIG. 24.
Upon selection of the non-default path, the tool 200 modifies
the plan 2400 to correspond to the non-default path of the
corresponding workflow. The plan 2400 depicts the tasks
included in the non-default path. Thus, the plan 2400
includes the “Left” and “Left Special” tasks 2406 and 2408
rather than the “Right” task 2306, which is depicted in FIG.
23 before the non-default path was chosen. As shown in
FIG. 24, the “Left” task 2406 is executing. FIG. 25 depicts
the plan 2500 after the “Get Parts™ task 2502, the “L. Or Rt
Handed?” logic task 2504, and the “Left” task 2506 have
been executed, while the “Left Special” task 2508 is execut-
ing. Continuing with the execution of the plan, FIG. 26
depicts the state of the plan 2600 after the “Get Parts” task
2602, the “L Or Rt Handed?” logic task 2604, the “Left” task
2606, and the “Left Special” task 2608 are done executing,
while the “Complete Assembly” task 2610 is executing.
Finally, FIG. 27 depicts the state of the plan 2700 after
completion of the tasks 2702, 2704, 2706, 2708, and 2710.

Retrieving Or Creating A Workflow

[0125] FIGS. 28A-C depict a flow diagram illustrating an
exemplary process for retrieving or creating a workflow, i.e.,
step 302 in FIG. 3. Initially, the tool 200 determines whether
to use an existing process or workflow group (step 2802). A
workflow group is a collection of workflows (e.g., a direc-
tory or folder containing the collection of workflows) cre-
ated by the Client Interface 134 on WebDAV Storage 142.
Each workflow group is created by the Client Interface 134
on WebDAV Storage 142 with the “workflow group” prop-
erty as explained further below. When creating a workflow,
the Client Interface 134 allows the enterprise affiliate to store
the workflow within an identified workflow group so that
any enterprise affiliate using the Client Interface 134 is able
to easily identify related workflows using a hierarchical
relationship. For example, software-related workflows may
be stored within the same workflow group so that an
enterprise affiliate is able to quickly locate a desired work-
flow in order to create a corresponding plan using the Client
Interface 134. One skilled in the art will appreciate that
Client Interface 134 may store a workflow on WebDAV
Storage 142 without associating the workflow with a work-
flow group.

[0126] The tool 200 receives user input from an enterprise
affiliate with system administrative privileges or permis-
sions, such as a process designer or a project manager, to
determine whether to retrieve an existing workflow group or
to create a new workflow group. If the tool 200 determines
that it will use an existing workflow group, the tool 200
receives an identification of the workflow group from the
enterprise affiliate (step 2804). In one implementation, the
Client Interface 134 may retrieve the identifications for the
workflow groups on the WebDAV Storage 142 by requesting
that the folders or directories on WebDAV Storage 142
having a “workflow” property be returned by the WebDAV
Server 140. The Client Interface may use any known method
in accordance with WebDAV protocol to request that the
WebDAV Server 140 return any directory or folder on

US 2002/0075293 Al

WebDAV Storage 142 that corresponds to a workflow group.
The tool 200 may then display the available workflow
groups to allow the enterprise affiliate to select one of the
available workflow groups. For example, as shown on the
user interface 2900 depicted in FIG. 29, the tool 200 may
display a hierarchical view 2902 of an identified workflow
group 2904 stored on the root directory 2906 of WebDAV
Storage 142. Alternatively, the enterprise affiliate may enter
the identification of the desired workflow group to the tool
200 for retrieval. Using the identification, the tool 200 then
retrieves the workflow group (step 2806).

[0127] If the tool 200 determines that a new workflow
group will be created, the tool 200 receives the name of the
workflow group from the enterprise affiliate (step 2808). For
example, the enterprise affiliate may request a new workflow
group by clicking on “Process Designer” button 2908 of the
user interface 2900 depicted in FIG. 29. The enterprise
affiliate may, alternatively, use any known data input tech-
nique, such as an icon or keyboard input, to indicate the
request to the tool 200. Upon selecting the “Process
Designer” button 2908, the tool 200 displays an exemplary
user interface 3000 depicted in FIG. 30 for receiving a new
workflow group identification 3002 via keyboard input from
an enterprise affiliate using computer 102a or 102x.

[0128] After receiving the new workflow group identifi-
cation, the tool 200 creates a new workflow group in storage
(step 2810). For example, the tool 200 may create the
workflow group on WebDAV Storage 142. To generate a
new workflow group on WebDAV Storage 142, the Client
Interface 134 sends the WebDAV Server 140 a request to
create a new collection or folder on WebDAV Storage 142
with the same identification as the new workflow group
identification 3002. In accordance with WebDAV protocol,
the Client Interface 134 receives a response from the Web-
DAYV Server 140 confirming that the new workflow group
folder was created on WebDAV Storage 142. As previously
discussed, when a new collection or folder is created using
the WebDAV protocol, the WebDAV properties (e.g., “date
of creation,”“property name” and “lockdiscovery” proper-
ties) are created and stored in association with the new
directory by the WebDAV Server 140. Thus, when generat-
ing the new workflow group, the Client Interface 134 also
sets the “property name” of the new workflow group to be
“workflow group” so that the Client Interface may subse-
quently use known WebDAV methods, such as “PropFind,”
to retrieve the identification of each workflow group on
WebDAV Storage 142.

[0129] After retrieving an existing workflow group or
creating a new workflow group, the tool 200 determines
whether to use an existing workflow (step 2812). The tool
200 receives user input from an enterprise affiliate with
appropriate privileges or permissions to determine whether
to retrieve an existing workflow or to create a new workflow.
If the tool 200 determines that it will use an existing
workflow, the tool 200 receives an identification of the
workflow from the enterprise affiliate (step 2814). In one
implementation, the Client Interface 134 may retrieve the
identifications for the workflows in the selected workflow
group and display the available workflows to allow the
enterprise affiliate to select one of the available workflows.
Alternatively, the enterprise affiliate may enter the identifi-

Jun. 20, 2002

cation of the desired workflow to the tool 200 for retrieval.
Using the identification, the tool 200 then retrieves the
workflow (step 2816).

[0130] If the tool 200 determines that a new workflow will
be created, the tool 200 receives the name of the workflow
from the enterprise affiliate (step 2818). For example, the
enterprise affiliate may request a new workflow by clicking
on the desired workflow group 3102 and selecting the “New
Process” option 3104 from a pull-down menu 3106 on the
user interface 3100 depicted in FIG. 31. The enterprise
affiliate may, alternatively, use any known data input tech-
nique, such as an icon or keyboard input, to indicate the
request to the tool 200. Upon selecting the “New Process”
option 3104, the tool 200 may display the exemplary dialog
box 3200 depicted in FIG. 32 to the enterprise affiliate. The
enterprise affiliate may then enter the name of a new
workflow 3202. After receiving the name for the workflow,
the tool 200 creates the workflow in storage (step 2820).

[0131] FIGS. 33A-C depict an exemplary workflow defi-
nition file 3300 that is produced by the tool 200 when the
workflow 600 depicted in FIG. 6 is created. The name 3302
of the workflow, “Logic Branch Project,” is identified in the
workflow definition file 3300. Also, as shown in the defi-
nition file 3300, the workflow 600 does not have a workflow
group 3304. The element 3306 in the workflow definition
file 3300 represents the “Get Parts” activity 606. Similarly,
the element 3308 (FIG. 33C) represents the “L or Rt
Handed?” logic activity 608, the element 3310 represents
the “Right” activity 610, the element 3312 represents the
“Left” activity 612, the element 3314 represents the “Left
Special” activity 614, and the element 3316 represents the
“Complete Assembly” activity 620. The start element 602 is
represented by the element 3318, and the end element 604
is represented by the element 3320.

[0132] The next step performed by the tool 200 is to
receive an indication of the type of activity to be created for
the workflow (step 2822 in FIG. 28B). As discussed above,
the activity may be a standard activity or a logic activity. For
example, the workflow 3402 depicted in the user interface
3400 of FIG. 34 includes five standard activitics 3404, 3406,
3408, 3410, and 3412. The workflow 3402 also includes one
logic activity 3414. The selection of the type of activity may
be made by clicking on the icon for a standard activity 3416
or the icon for the logic activity 3418. Alternatively, any
known data input technique, such as a pull-down menu or
keyboard input, may be used to select the type of activity.

[0133] After receiving an indication of the type of activity,
the tool 200 receives the name of the activity (step 2824).
The names of the activities depicted in the workflow 3402
are included with the activity. Thus, the name of activity
3404 is “Assignment,” the name of activity 3406 is “Analy-

2

sis,” etc.

[0134] Returning to the example workflow 600 depicted in
FIG. 6, the name of the first activity 606 is “Get Parts,”
which is identified by the element 3322 in the workflow
definition file 3300 of FIG. 33. Similarly, the name of the
logic activity 608 is “L. or Rt Handed?,” which is identified
by the element 3324. The name of the activity 610 is
“Right,” as identified by the element 3326. The name of the
activity 612 is “Left,” as identified by the element 3328. The
name of the activity 614 is “Left Special,” as identified by
the element 3330. Finally, the name of the activity 620 is
“Complete Activity,” as identified by the element 3332.

US 2002/0075293 Al

[0135] After receiving a name for the activity, the tool 200
receives an indication of the role responsible for the activity
(step 2826). As discussed above, the Client Interface (via
Resource Manager Module 206) allows an enterprise affili-
ate to identify a role or role profile that may be assigned to
an activity of the workflow. A role profile includes a Role-
name that represents a “capability” or “skill set,” which is
needed to perform a task of a plan created from the work-
flow, where the task corresponds to the activity of the
workflow. For example, FIG. 35 depicts a user interface
3500 displayed by the Client Interface to receive a role
profile. In the implementation shown in FIG. 35, the Client
Interface receives a Rolename 3502 (e.g., “Project Man-
ager”) for the role profile via the enterprise affiliate clicking
on an “Add” button 3504 and then entering Rolename 3502
in a dialog box 3506 that is displayed by the Client Interface.
In another implementation, the Client Interface may also
receive as additional entries (not shown) to dialog box 3506
a skill and an associated skill level for Rolename 3502 as
part of this role profile. For example, the enterprise affiliate
may indicate to the Client Interface via the additional entries
to dialog box 3506 that the Rolename 3502 of “Project
Manager” be associated with a skill entitled “Object-ori-
ented software programming” and with a skill strength of
“7” on a scale of 10. Assuming an enterprise affiliate is
developing a workflow for producing a software develop-
ment tool, the enterprise affiliate may assign to activities in
the workflow the “Project Manager” role profile with this
skill and skill level. Thus, when a plan is created from this
workflow, a resource having the appropriate skill and skill
level will automatically be assigned by the Client Interface
to tasks corresponding to the activities with the “Project
Manager” role assignment.

[0136] The tool 200 stores the role profiles in association
with the selected workflow activity on WebDAV Storage
142. The tool 200 saves significant costs in developing
multiple workflows by allowing the enterprise affiliate to
store the role profiles in association with the selected work-
flow activity on WebDAV Storage 142 so that the role
profiles may be available for the enterprise affiliate to assign
to an activity of another workflow that is also related to the
selected workflow activity. In one implementation, the Cli-
ent Interface stores the role profiles in a single role definition
file (not shown) on WebDAV Storage 142. In another
implementation, the Client Interface stores the role profiles
in separate files (not shown) on WebDAV Storage 142. Each
separate file has a name that is the same as the received
Rolename 3502. In this implementation, using known Web-
DAV protocol, the Client Interface defines an associated
WebDAV property having a common name, such as “role
profile,” so that the Client Interface may later retrieve the
role profiles stored on WebDAYV storage.

[0137] The role profiles may also be stored with the
workflow definition file. As shown in the workflow defini-
tion file 3300 depicted in FIG. 33, the role profile 3334 for
the “Get Parts” activity 606 indicates that the role respon-
sible for the activity is “Assembler”3336. Similarly, the role
profile 3338 for the “L or Rt Handed?” activity 608 indicates
that the role responsible for the activity is “ Assembler”3340.
The role profile 3342 for the “Right” activity 610 indicates
that the role responsible for the activity is “ Assembler”3344.
The role profile 3346 for the “Left” activity 612 indicates
that the role responsible for the activity is “ Assembler”3348.
The role profile 3350 for the “Left Special” activity 614

Jun. 20, 2002

indicates that the role responsible for the activity is “ Assem-
bler”3352. Finally, the role profile 3354 for the “Complete
Assembly” activity 620 indicates that the role responsible
for the activity is “Assembler”3356.

[0138] The next step performed by the tool 200 is to
determine whether the activity has any predecessor activities
(step 2828). If the activity does have a predecessor activity,
the tool 200 receives an indication of the predecessor
activities from the workflow definition file (step 2830). After
checking for any predecessor activities and/or receiving the
predecessor activities, the tool 200 determines whether the
activity has any successor activities (step 2832). If the
activity has a successor activity, the tool 200 receives an
indication of the successor activities from the workflow
definition file (step 2834). In the user interface 3400 of FIG.
34, the “Path” icon 3420 is used to connect the predecessor
activity to the successor activity. For example, in the work-
flow 3402, a path 3422 was drawn from the “Assignment”
activity 3404 to the “Analysis” activity 3406. Thus, the
“Assignment” activity 3404 is the predecessor activity to the
“Analysis” activity 3406, and the “Analysis” activity 3406
is the successor activity to the “Assignment” activity 3404.
Alternatively, a “Vertical Fork/Join” icon 3424 or a “Hori-
zontal Fork/Join” activity may be used to connect more than
one predecessor activities to a successor activity, or to
connect a predecessor activity to more than one successor
activities.

[0139] In the workflow 600 depicted in FIG. 6, the
activity ID 3358 of the “Get Parts” activity 606 is “10.” The
predecessor 3360 to the “Get Parts”activity 606 has an ID of
“1173362, which corresponds to the start element 602. The
successor 3364 to the “Get Parts” activity 606 has an ID of
“152273366, which corresponds to the “L. or Rt Handed?”
logic activity 608. The predecessor 3368 to the “L. or Rt
Handed?” logic activity 608 has an ID of “10”3358, which
corresponds to the “Get Parts” activity 606. Because the “L
or Rt Handed?” activity 608 is a logic activity, it has both a
default successor and a non-default successor. Thus, the
workflow definition file 3300 identifies two paths out of the
“L or Rt Handed?” logic activity 608, one path 3370 has an
ID of “152573372, which corresponds to the “Right” activ-
ity 610, and the other path 3374 has an ID of “152373376,
which corresponds to the “Left” activity 612. The element
representing the “L. or Rt Handed? logic activity 608 also
identifies that the default path 3378 has an ID of
“152573372, which corresponds to the “Right” activity 610.
The predecessor 3380 to the “Right” activity 610 and the
predecessor 3382 to the “Left” activity 612 have an ID of
“152273366, which corresponds to the “L. or Rt Handed?”
logic activity 608. The remaining predecessor and succes-
sors follow this convention.

[0140] After checking for any successor activities and/or
receiving the successor activities, the tool 200 determines
whether the activity has any on-entry scripts (step 2836). An
on-entry script is a step to be performed by the tool 200 upon
entry into the activity. For example, the on-entry script may
send an email notifying an interested user about the activity
being started. The on-entry script may also send a dialog box
to an enterprise affiliate to obtain data in real-time, or send
a request to a separate device to gather input, e.g., by
sending a message to a computer to receive data files. Other
examples of on-entry scripts include checking stock levels
and issuing reorder commands, if necessary, or paging the

US 2002/0075293 Al

user assigned to perform the activity. If the activity has an
on-entry script, the tool 200 receives an indication of the
on-entry scripts (step 2838). After checking for any on-entry
scripts and/or receiving the on-entry scripts, the tool 200
determines whether the activity has any on-exit scripts (step
2840 in FIG. 28C). An on-exit script is a step to be
performed by the tool 200 upon exiting the activity. For
example, the on-exit script may send an email notifying an
interested user about the end of an activity. Other examples
of on-exit scripts include sending a message to another
device to have the other device perform enterprise applica-
tion integration, notifying a downstream consumer about the
activity so that the consumer knows what is coming, and
placing an activity on a user’s personal calendar. If the
activity has an on-exit script, the tool 200 receives an
indication of the on-exit scripts (step 2842). For example,
the “Complete Assembly” activity 620 depicted in FIG. 6
includes both an on-entry script 3384 as well as an on-exit
script 3386. Upon entering the task created from the “Com-
plete Assembly™ activity, the tool 200 sends an email to the
owner indicating that the “Debugging period started”3388.
Prior to exiting the task created from the “Complete Assem-
bly” activity, the tool 200 sends an email to the owner
indicating that the “Debugging finished”3390.

[0141] After checking for any on-exit scripts and/or
receiving the on-exit scripts, the tool 200 determines
whether the activity has any input (i.e., begin or starting)
conditions (step 2844). If the activity has an input condition,
the tool 200 receives an indication of the input conditions
(step 2846). Example input conditions are to expect an
artifact required for the task to have a specific status. After
checking for any input conditions and/or receiving the input
conditions, the tool 200 determines whether the activity has
any output (i.e., exit or ending) conditions (step 2848). An
example exit condition could be to automatically check the
quality of an artifact generated by the task. If the artifact
meets quality standards, the task completion occurs; other-
wise, the task completion is rejected and the user is informed
that more quality is required. If the activity has an output
condition, the tool 200 receives an indication of the output
conditions (step 2850). The output condition 3391 for the
“Get Parts” activity 606 has an ID of “152773392 (FIG.
33B), and is a document-type condition, as indicated by the
“linkablel” identity 3393 in the element 3394 representing
the condition 3391. In general, based on the condition 3391,
the tool 200 (in particular, the Workflow Engine 222)
monitors the state of an artifact for an activated “Get Parts”
task created from the “Get Parts” activity 606 until the state
of the artifact is the “INITIAL” state 3395 before the tool
200 continues with the next task in the plan. Similarly, the
output condition 3396 for the “Right” activity 610 has an ID
of “153373397. The output condition 3396 for the “Right”
activity 610 is also a document-type condition, as indicated
by the “linkablel” identity 3398. This condition 3396 sig-
nals the tool 200 to monitor the state of an artifact until it is
in the “RIGHT” state 3399.

[0142] FIG. 36 depicts an exemplary user interface 3600
displayed by the Client Interface 134 to include either a
document-oriented 3602 or a script (or logic)-oriented 3604
condition. As shown in FIG. 36, the Client Interface 134
may receive the request to add a condition to the activity via
a pull-down menu selection 3606. The enterprise affiliate
may, however, use any known data input technique to
request that a condition be added to an activity, such as an

Jun. 20, 2002

icon or keyboard input, to indicate the request to the Client
Interface 134. If the enterprise affiliate selects a document-
oriented condition, the enterprise affiliate may be presented
with the user interface 3700 depicted in FIG. 37 to identify
the properties of the condition to the Client Interface 134.
The condition properties 3702 include condition-name prop-
erty 3704 for the document-type condition model. In the
example shown in FIG. 37, the Client Interface 134 receives
the condition-name property 3704 via a keyboard input by
the enterprise affiliate. The Client Interface 134 uses the
condition-name property 3704 to distinguish the condition
model to be created from other condition models stored on
WebDAV Storage 142. The Client Interface 134 may store
the document-type condition model file on WebDAV Stor-
age 142 having the same name as the condition-name
property 3704. In another implementation, the Client Inter-
face 134 may store the condition-name property 3704 as a
WebDAV property stored in association with the document-
type condition model file on WebDAV Storage 142.

[0143] The Client Interface 134 also receives a link-
parameter property 3706 as one of Condition properties
3702 for the document-type condition model to be created
by the Client Interface. As shown in FIG. 37, the enterprise
affiliate may identify link-parameter property 3706 to the
Client Interface via keyboard input. Link-parameter prop-
erty 3706 may be used by an enterprise affiliate in an
activity-related script that is identified to the Client Interface
during the creation of a workflow as described below. Thus,
when executing the activity-related script in a task of a plan
created from the workflow, the Workflow Engine 222 in
FIG. 2 is able to locate the corresponding document con-
dition so that the corresponding input or output condition
may be evaluated by the Workflow Engine 222.

[0144] The Client Interface 134 may also receive a
description property 3708 as one of Condition properties
3702 for the document-type condition model to be created
by the Client Interface. When creating a workflow as
described below, the Client Interface may display descrip-
tion property 3708 in association with condition-name prop-
erty 3704 to allow an enterprise affiliate to effectively choose
whether the document-type condition model should be
assigned to an activity of the workflow.

[0145] The Client Interface may also receive one or more
triggering-event properties 3710 for the document-type con-
dition model. In the example shown in FIG. 37, the Client
Interface may receive the triggering-event properties as one
of the condition properties 3702 for the document-type
condition model to be created by the Client Interface.
Triggering-event properties 3710 indicate to the Workflow
Engine 222 when to check the state property of a document
condition as an entry or exit condition of an activated task.
Triggering-event properties 3710 may include a “Write into
document™ event 3712, a “Change property of document”
event 3714, a “Put document into repository” event 3716, a
“copy or move into document” event 3718, and a “delete
document™” event 3720.

[0146] Next, the Client Interface 134 receives document
state properties 3722 as one of the Condition properties 3702
for the document-type condition model to be created by the
Client Interface. Document state properties 3722 identify
possible values for a state property of a document condition
that is created using the document-type condition model. As

US 2002/0075293 Al

further explained herein, an enterprise affiliate who has been
identified as the responsible owner of an activated task may
change the state property of a document condition (e.g.,
from “DRAFT” to “APPROVED?”) using the Client Inter-
face, which sends a request to WebDAV Server 140 in FIG.
2 to set the state property of the document condition as
indicated by the enterprise affiliate. Workflow Engine 222 in
FIG. 2 may then check the state property of the document
condition on WebDAYV Storage 142 when triggering-events
3710 occur.

[0147] The Client Interface also receives a location prop-
erty 3724 as one of Condition properties 3702 identified by
the enterprise affiliate for the document-type condition
model. Location property 3724 is a unique identifier or URL
for a document template that the Client Interface uses to
create the document condition that is then stored by the
Client Interface on WebDAYV Storage 142. Location property
3724 may be a location on secondary storage device 116 of
computer 102a or a location on WebDAV Storage 142. As
described in greater detail below, the document condition is
created by the Client Interface 134 when a plan is instanti-
ated or created from a workflow having an activity with an
entry or exit condition created using the document-type
condition model. Finally, the Client Interface receives appli-
cation property 3726 as one of Condition properties 3702
identified by the enterprise affiliate for the document-type
condition model. Application property 3726 is a unique
identifier or URL for an application, such as Microsoft
Word, that the Client Interface may run to create an instant
of the document template that may be found at the location
specified by location property 3724. The Client Interface
uses the instant of the document template to create and store
the document condition on WebDAV Storage 142.

[0148] FIG. 38 depicts an exemplary user interface 3800
displayed by the Client Interface 134 to receive the condi-
tion properties 3802 for a logic-type condition model that is
to be created by the Client Interface 134. The condition
properties 3802 include a condition-name property 3804 for
the document-type condition model. In the example shown
in FIG. 38, the Client Interface 134 receives the condition-
name property 3804 via a keyboard input by the enterprise
affiliate. The Client Interface 134 uses the condition-name
property 3804 to distinguish the logic-type condition model
to be created from other condition models stored on Web-
DAV Storage 142. As described below, the Client Interface
134 stores a logic-type condition model file on WebDAV
Storage 142 that has the same name as condition-name
property 3804. In another implementation, the Client Inter-
face 134 may also store condition-name property 3804 as a
WebDAV property stored in association with the logic-type
condition model file on WebDAV Storage 142.

[0149] In the example shown in FIG. 38, the Client
Interface 134 may receive a description property 3806 as
one of the Condition properties 3802 for the logic-type
condition model to be created by the Client Interface 134.
When creating a workflow as described below, the Client
Interface 134 may display the description property 3806 in
association with the condition-name property 3804 to allow
an enterprise affiliate to effectively choose whether the
logic-type condition model should be assigned to an activity
of the workflow.

[0150] The Client Interface 134 may also receive one or
more triggering-event properties 3808 for the logic-type

Jun. 20, 2002

condition model as one of the condition properties 3802 for
the logic-type condition model to be created by the Client
Interface 134. Triggering-event properties 3808 indicate to
the Workflow Engine 222 when to check an entry or exit
condition of an activated task. Triggering-event properties
3808 include: an “Absolute time” event 3810, a “Period”
event 3812, a “URL change” event 3814, a “Task change”
event 3816, and “any http request” event 3818. “Absolute
time” event 3810 identifies a trigger for a specific data and
time from the start time of the activated task. “Period” event
3812 identifies a trigger for a specific unit of time, such as
once every minute. “URL change” event 3814 identifies a
trigger when the contents of the directory or folder located
at the URL changes. “Task change” event 3816 identifies a
trigger for any time the activated task definition file or
associated property changes. For example, when an enter-
prise affiliate that is responsible for the task uses the Client
Interface 134 to identify that the task is complete, the Client
Interface 134 in response sends a request to the WebDAV
Server 140 to set the status property of the activated task to
“FINISHED.” As part of the processing for managing an
activated plan as described below, the Workflow Engine 222
will receive this request before the WebDAV Server 140 and
interpret the request as an example of a “Task change” event
3816. Similarly, “Any http request” event 3818 indicates to
the Workflow Engine 222 to check the entry or exit condition
of the activated task when any request is received from the
Client Interface 134 that pertains to the activated task. For
example, the Client Interface 134 may send a request to the
WebDAV Server 140 to retrieve the activated task file so that
a status of the activated task can be viewed by an enterprise
affiliate. Workflow Engine 222 will receive this request
before the WebDAV Server 140 and interpret the request as
an example of an “Any http request” event 3818.

[0151] The Client Interface 134 may also receive a script
3820 as one of the condition properties 3802 for the logic-
type condition model to be created by the Client Interface
134. Script 3820 is executed by the Workflow Engine 222
when a triggering-event occurs that corresponds to one of
the triggering-event properties 3808 selected by the enter-
prise user using the Client Interface 134. As shown in FIG.
38, Script 3820 may include a script parameter 3822, a script
value 3824 for script parameter 3822, and script content
3826 that may use the script parameter 3822 initialized to the
script value 3824. The enterprise affiliate may provide the
script content 3826 to the Client Interface 134 via a Script
Editor User Interface 3900 in FIG. 39. Script Editor User
Interface 3900 is displayed by the Client Interface 134 when
the enterprise affiliate actuates button 3828 on user interface
3800 shown in FIG. 38. Script content 3820 may contain
any known application program interface (API) script
method that would be recognizable by the target processor
interpreter on computer 106, such as Java™ Virtual Machine
150 in FIG. 1.

[0152] After checking for any output conditions and/or
receiving the output conditions, the tool 200 determines
whether there are any more activities to add to the workflow
(step 2852). If there are more activities, the process contin-
ues at step 2822 for the next activity. If there are no more
activities to add to the workflow, the tool 200 receives an
indication of the starting point for the workflow (step 2854).
Next, the tool 200 receives an indication of the ending point
for the workflow (step 2856) before the process ends.

US 2002/0075293 Al

[0153] FIG. 40 depicts an exemplary user interface 4000
displayed by the Client Interface 134 to receive the proper-
ties of an activity of a workflow. As depicted, the name 4002
of the activity (e.g., “Specs Development”), the duration
4004 of the activity (e.g., 1 unit) and the role 4006 respon-
sible for the activity may be entered by the enterprise
affiliate responsible for creating or modifying the workflow.
In addition, the enterprise affiliate may enter an on-entry
script 4008 as well as an on-exit script 4010. If the activity
represents an entire other workflow, the properties of the
activity also include the location 4012 of the sub-process
defining the workflow. This allows an enterprise to save
significant resources by providing a mechanism for reusing
workflows within other workflows. Thus, workflows may be
modularly built from constituent workflows. For example,
the defect tracking workflow depicted in FIG. 34 can be
used inside many “outer” or “higher-level” processes for
software development.

Creating A Plan From A Workflow

[0154] FIGS. 41A-B depict a flow diagram illustrating the
process of creating a plan from a workflow, i.e., step 306 in
FIG. 3. At this point, the enterprise affiliate has already
selected the workflow that will be used to create the plan.
Initially, the tool 200 receives an indication of the plan name
(step 4102). In selecting the plan name, the Client Interface
134 allows the enterprise affiliate to store the project plan
within an identified project plan group so that any enterprise
affiliate using the Client Interface 134 is able to easily
identify related project plans. A process plan group is a
collection of project plans (e.g., a directory or folder con-
taining the collection of project plans) created by the Client
Interface 134 on WebDAV Storage 142. For example, the
software-related project plans may be stored within the same
project plan group so that an enterprise affiliate is able to
quickly locate a desired project plan in order to create a
corresponding plan using the Client Interface 134. One
skilled in the art will appreciate that Client Interface 134
may store a project plan on WebDAV Storage 142 without
associating the project plan with a project plan group. FIG.
42 depicts an exemplary user interface 4200 used to receive
a project plan group.

[0155] Inthe implementation shown in FIG. 42, the Client
Interface 134 receives a dialog box 4202 to enter the name
of a new project plan group 4204 (e.g., “Software Projects”)
after clicking on a “Create Group” button 4206. Alterna-
tively, if the enterprise affiliate decides to select an existing
project plan group, the tool 200 provides the enterprise
affiliate with a list 4300 of available project groups from
which the enterprise affiliate may choose, as depicted in
FIG. 43. The tool 200 then provides the enterprise affiliate
with a dialog box 4400 to enter the name 4402 of the project,
as shown in FIG. 44.

[0156] The next step performed by the tool 200 is to
receive an indication of the working hours (step 4104). FIG.
45 depicts an exemplary timetable 4500 which the enterprise
affiliate may use to identify the timetable defining a work-
day. As shown, the enterprise affiliate may select a timetable
template 4502 with predefined working hours. The Standard
Timetable 4504 includes five Working Days 4506 (Monday
through Friday) and Working Hours 4508 from 8 a.m.
(4510) through 12 p.m. (4512) and from 1 p.m. (4514) until
5 p.m. (4516). Alternatively, the enterprise affiliate may

Jun. 20, 2002

select a 24 Hour Timetable 4518 or an Intensive Timetable
4520, i.c., more than the Standard Timetable 4504, but less
than the 24 Hour Timetable 4518. The tool 200 also receives
an indication of the start date and time for the project plan
(step 4106). An exemplary dialog box 4600 may be used to
select the start date and time 4602 and end date and time
4604.

[0157] The tool 200 then retrieves an activity from the
workflow (step 4108). The tool 200 sets the start time of the
task equal to the start date and time of the project plan (step
4110). Next, the tool 200 sets the end time of the task based
on the start time of the task, the duration of the activity from
which the task is based, and on the working hours (step 4112
in FIG. 41B). The tool 200 then receives an indication of the
resource assigned to the task (step 4114).

[0158] For example, FIG. 47 depicts an exemplary work-
flow definition file 4700 that is produced by the tool 200
when the workflow 500 depicted in FIG. 5 is created. FIG.
48 depicts an exemplary project plan definition file 4800
created from the workflow definition file 4700. The element
4702 in the workflow definition file 4700 represents the
“Serial 1” activity 506. As shown, the “Serial 17 activity 506
has a duration 4704 of 9 hours. If the working hours are
determined based on the “24 Hour Timetable”4818 and the
start date and time for the project plan is 9 a.m. on Aug. 1,
2001, the start time 4804 for the “Serial 1” task 4802 is 9
a.m. on Aug. 1, 2001. The end time 4806 of the task 4802
occurs 9 hours later, i.e., at 6 p.m. on Aug. 1, 2001.

[0159] FIG. 49 depicts an exemplary user interface 4900
displayed by the Client Interface 134 to assign users or
resources to the project and to assign these users specific
roles related to the roles required by the project. The tool 200
displays a list of available users or resources 4902 (on the
left), a list of the assigned users (central), and a list of the
roles 4904 (on the right) in a given workflow. In this
embodiment, the enterprise affiliate is allowed to selectively
add or remove available resources to the project by high-
lighting the resource and selecting either the “Add” button
4906 or the “Remove” button 4908, respectively. Alterna-
tively, the enterprise affiliate may add or remove the
resources to the project by selecting the “Add all” button
4910 or the “Remove all”’4912 button, respectively. For each
resource, the user can selectively indicate (checkboxes)
which roles the user should play. Thus, the enterprise
affiliate may identify to the tool 200 resources that are
capable of performing the role when assigned to a task in the
plan. As discussed below, the tool 200 may automatically
assign a resource to a role of a task in the plan based on the
identified, capable resources for the role.

[0160] The properties of an activity may be modified using
the exemplary user interface 5000 depicted in FIG. 50. The
user interface 5000 displays the name 5002 of the activity,
the duration 5004 assigned to the corresponding activity, the
start date and time 5006 for the activity, the end date and
time 5008 for the activity, the responsible role 5010 assigned
to the corresponding activity, the responsible resource or
user 5012 assigned to the task, the owners 5014 of the task,
the priority 5016 of the task, the on-entry script 5018 of the
task, and the on-exit script 5020 of the task. The responsible
resource 5012 of the task is the resource with the authority
to notify the tool 200 when the task is complete. The
owner(s) 5014 of the task, on the other hand, are notified

US 2002/0075293 Al

when the task is started or completed, but do not have the
authority to modify the tool 200 when the task is complete.

[0161] The next step performed by the tool 200 is to
determine whether there are any more activities in the
workflow (step 4116). If there are no more activities, the
process ends. If there are more activities, the tool 200
retrieves the next activity (step 4118). The tool 200 then sets
the start time of the task equal to the end time of the
predecessor task (step 4120). The process then continues at
step 4112.

[0162] The next activities that are retrieved by the tool 200
are “Parallel 17510 and “Parallel 2”512. Element 4706 and
element 4708 in the workflow definition file 4700 represent
these activities 510 and 512. The durations 4710 and 4712
of both of these activities is 24 hours. The start time 4812
and 4814 of these tasks 4808 and 4810 is equal to the end
time 4806 of the predecessor task, i.., 6 p.m. on Aug. 1,
2001. Because the duration 4710 and 4712 of the activities
510 and 512 is 24 hours, the end times 4816 and 4818 of
these tasks 4808 and 4810 occur 24 hours later, i.e., at 6 p.m.
on Aug. 2, 2001. The next activity retrieved by the tool 200
is “Serial 2”508. The element 4714 in the workflow defini-
tion file 4700 represents this activity. The duration 4716 of
the “Serial 27 activity 508 is 24 hours. The start time 4822
of the task 4820 created from the “Serial 27 activity 508 is
the end time 4816 and 4818 of the predecessor task, ie., 6
p-m. on Aug. 2, 2001. Because the duration 4716 of the
“Serial 17 activity is 24 hours, the end time 4824 of the task
4820 is 6 p.m. on Aug. 3, 2001. The project plan is displayed
in the Gantt chart 5100 depicted in FIG. 51. As shown, the
“Serial 1” task 5102 is scheduled to execute from 9 a.m.
5104 on Aug. 1, 2001 (5106) through 6 p.m. 5108 on the
same day. The “Parallel 1” task 5110 and the “Parallel 2”
task 5112 are scheduled to execute from 6 p.m. 5108 on Aug.
1, 2001 (5106) through 6 p.m. 5114 on Aug. 2, 2001 (5116).
Finally, the “Serial 17 task 5118 is scheduled to execute from
6 p.m. 5114 on Aug. 2, 2001 (5116) through 6 p.m. 5120 on
Aug. 3, 2001 (5122). Note that an enterprise affiliate using
the Client Interface 134 on the computer 102a may create a
plan from the workflow 600 at the same time that a second
enterprise affiliate using the Client Interface 134 on com-
puter 102n creates a second plan from the workflow 600.

[0163] After the project plan is created from the workflow,
the plan may be activated. As depicted in FIG. 52, the
enterprise affiliate may activate the project by selecting the
“Activate Project” option 5202 from the pull-down menu
5200. The enterprise affiliate may, however, use any known
data input technique, such as an icon or keyboard input, to
indicate the request to Client Interface 134.

[0164] In one implementation, the Client Interface 134
then sends an activate request to the WebDAV server 140 to
change the status of the plan definition file to “Active.” As
discussed further below, the Workflow Engine 222 may
intercept this request and process the request in preparation
for managing the execution of the activated plan. Once the
plan is created and stored on WebDAV storage 142, any
enterprise affiliate with appropriate privileges (e.g., project
manager that “owns” the plan) may activate the plan using
the Client Interface 134 from any computer 1024 and 102x.

Adding A Resource

[0165] FIG. 53 depicts a flow diagram illustrating an
exemplary process performed by the Client Interface 134 to

Jun. 20, 2002

add a new resource to the list of available resources. The
Client Interface 134 may later assign the resource to a plan
in accordance with methods and systems consistent with the
present invention. Initially, the Client Interface 134 receives
a request to add a new resource (step 5302). As shown in
FIG. 54, the Client Interface 134 may receive the request to
add a new resource via a pull-down menu selection 5402 and
5404 that is chosen by an enterprise affiliate. The enterprise
affiliate may, however, use any known data input technique,
such as an icon or keyboard input, to indicate the request to
the Client Interface 134.

[0166] Next, the Client Interface 134 determines whether
the request is to import the resource information (step 5304).
In the implementation shown in FIG. 54, an enterprise
affiliate requests that the Client Interface 134 import a
resource profile containing the resource information by
choosing the pull-down menu selection 5404. Alternatively,
the enterprise affiliate may request that the Client Interface
134 create the resource profile from resource information
that the enterprise affiliate provides to the Client Interface
134. Thus, if the request is not to import the resource
information, the Client Interface 134 receives the resource
information from the enterprise affiliate (step 5306). As
shown in FIG. 54, the Client Interface 134 may receive
resource information 5404 for an enterprise affiliate (e.g., a
user or person) that may later be assigned to a plan by the
Client Interface 134 in accordance with processes described
in greater detail below. The Resource Information 5404 may
include a login name 5408, a resource name 5410 that the
Client Interface 134 is to use when assigning the resource to
a task of a plan, and an e-mail address 5412 that the Client
Interface 134 or the Workflow Engine 222 may use to notify
the resource of an assignment or another event.

[0167] The Client Interface 134 may also receive other
resource information (not shown) for other types of
resources (e.g., equipment, facilities, computer systems, or
other known entities) that may be assigned to any task of a
plan. The other resource information may include: a
resource name that the Client Interface 134 is to use when
assigning the resource to a task of a plan; a resource owner
name that identifies a manager or other enterprise affiliate
who is responsible for the named resource; and an e-mail
address for the named resource owner, which the Client
Interface 134 or the Workflow Engine 222 may notify when
the named resource is assigned to a task or for another
associated event.

[0168] Resource information 5404 may also include one
or more skill identifiers that indicate one or more capabilities
that a task of a plan may require for the task to be completed.
Skill identifiers may include any foreseeable skill for the
named resource, including a user, equipment, facilities,
computer systems, or other known entities that may be
assigned to any task of a plan. For example, when the named
resource is an enterprise affiliate, the skill identifiers that
may be identified for the enterprise affiliate may include:
“Java programming,”“architecture,” or “carpentry.” When
the named resource is equipment, the skill identifiers may
include “punch-press,”“printing,” or “Windows N'T Operat-
ing System.” Or, when the resource is another system, skills
may involve the ability to execute specific functions (much
like distributed or web services, “credit card
validation,”“shop for best air freight shipper prices”).

US 2002/0075293 Al

Resource information 5404 may also include a skill strength
(not shown) for each skill identifier. The skill strength may
be used by the tool to differentiate one resource from another
resource when matching a resource to a role of a task in a
plan.

[0169] Resource information 5404 may also include an
availability timetable (not shown) that indicates to the Client
Interface 134 the calendar days, the hours in a weekday, and
the hours in a weekend day that the named resource is
available to work. Resource information 5404 may also
include an assignment timetable (not shown) that has
assigned calendar days. The assigned calendar days indicate
to the Client Interface 134 which calendar days the named
resource has been assigned to one or more tasks. In addition,
the assignment timetable may include unique identifiers or
URLSs for the one or more tasks to which the named resource
has been assigned. Thus, the Client Interface 134 or the
Workflow Engine 222 may access the one or more tasks that
the named resource has been assigned when performing
processing for resource leveling of a plan in accordance with
methods and systems consistent with the present invention.

[0170] If the request is to import the resource information,
the Client Interface 134 receives access information for a
“Lightweight Directory Access Protocol (LDAP)” resource
directory entry (e.g., a resource profile) on the network 108
of FIG. 1 (step 5308). FIG. 55 depicts an exemplary user
interface 5500 showing access information 5502 received by
the Client Interface 134. Access information 5502 includes
an LDAP Server 5504 (e.g., “Frodo”) on the network 108,
an LDAP Port 5506 for the Client Interface 134 to commu-
nicate with the LDAP Server 5504, and a resource distin-
guished name (DN) 5508 identifying the location on LDAP
Server 5504 where the resource profile may be found. The
access information 5502 may be default access information
that the Client Interface 134 retrieves from a configuration
file (not shown) on the computer 1024, or it may be access
information entered by an enterprise affiliate. In the imple-
mentation illustrated in FIG. 55, the access information
5502 may also include: a security distinguished name (DN)
5510, a password 5512, and a login alias 5514. Security DN
5510 identifies to the Client Interface 134 where a security
profile for the enterprise affiliate is located. The Client
Interface 134 uses the password 5512 and the login alias
5514 to access the resource information on the LDAP Server
5504 in accordance with privileges identified in the security
profile.

[0171] Having received the access information for the
LDAP directory entry on network 108, the Client Interface
134 retrieves the resource information using the LDAP
access information (step 5310). The resource information
that the Client Interface 134 retrieves includes resource
profiles for a user, equipment, facilities, computer systems,
or other known entities that may be assigned to any task of
a plan.

[0172] After the resource information is received from the
enterprise affiliate or is retrieved using LDAP access infor-
mation, the Client Interface 134 stores the resource infor-
mation in resource profiles on the WebDAV Storage 142
(step 5312).

[0173] FIG. 56 depicts an exemplary resource file 5600
that the Client Interface 134 may use to store resource
profiles 5602, 5604, 5606, and 5608 on WebDAV Storage

Jun. 20, 2002

142. As shown in FIG. 56, the resource profile 5600
includes a unique identifier or URL 5612 where the resource
profile 5600 is to be stored on the WebDAV Storage 142.
Each resource profile 5602, 5604, 5606, and 5608 may be
stored separately by the Client Interface 134 on WebDAV
Storage 142. In the implementation shown in FIG. 56, the
resource profile 5602 includes resource information 5610
that corresponds to an enterprise affiliate that may be
assigned to a task of a plan. In another implementation, the
resource information 5610 may be added as properties rather
than as the content of the resource profile 5602 on WebDAV
Storage 142. This implementation may be advantageous as
the Client Interface 134 or the Workflow Engine 222 may
use a known WebDAV method to retrieve resource profiles
from the WebDAV Storage 142 that have the same property.
For example, the WebDAV “PropFind” method may be used
by the Client Interface 134 or the Workflow Engine 222 to
retrieve the resource profiles having a skill identifier of
“Java Programming” so that an available resource having
this skill can be assigned to a task in accordance with
processes described below.

Managing A Plan

[0174] FIG. 57 depicts a flow diagram illustrating an
exemplary process performed by the Workflow Engine 222
to manage the execution of an activated plan. The Workflow
Engine 222 may execute the process in FIG. 57 for each
activated plan stored on WebDAV Storage 142. Thus, the
tool manages the execution of multiple plans simulta-
neously.

[0175] Initially, the tool 200 waits until the current time
and date are later than the start time and date (step 5702) of
the plan. Alternatively, a plan may not require a start time
and date for each plan. Rather, the start time and date may
be incorporated as an input condition for each task. At this
point, the tool 200 selects the current next task (or tasks in
the event of parallel tasks) from the activated project plan
created from a workflow (step 5704). Note that the Work-
flow Engine 222 may retrieve the plan from WebDAV
storage. Next, the tool 200 determines whether there is an
input condition (step 5706). If there is an input condition, the
tool 200 waits to see if the triggering event (described
above) is met before it checks to see if the input condition
is met (step 5708). If the input condition required monitoring
of certain items on a periodic basis, the Workflow Engine
222 will add this event to its “Event Monitoring” log. After
the input condition is met or if there is no input condition,
the tool 200 stores the actual start time (step 5710). The next
step performed by the tool 200 is to determine whether there
iS an on-entry script to execute, such as a message to send
to the resource (step 5712 in FIG. 57B). If there is an
on-entry script, the tool 200 performs the on-entry script
(step 5714). After performing the on-entry script or if there
iS no on-entry script, the tool 200 determines whether there
is an output condition (step 5716). If there is an output
condition, the tool 200 waits to see if the triggering event
(described above) is met before it checks to see if the output
condition is met (step 5718). After the output condition is
met or if there is no output condition, the tool 200 deter-
mines whether there is an on-exit script (step 5720). If there
is an on-exit script, the tool 200 performs the on-exit script
(step 5722). After performing the on-exit script or if there is
no on-exit script, the tool 200 stores the actual end time (step
5724). Then the tool 200 determines whether there are any

US 2002/0075293 Al

more tasks in the project plan (step 5726). If there are no
more tasks, the process ends. Otherwise, the process returns
to step 5704 and selects the next task.

[0176] The plan 5800 created from the workflow 500
depicted in FIG. 5 is shown in FIG. 58. As shown in FIG.
58, “Serial 1” task 5802 is scheduled to begin at 9 a.m. 5804
on Aug. 1, 2001 (5806) and end at 6 p.m. 5808 on the same
day. The parallel tasks 5810 and 5812 are scheduled to start
at the completion of the “Serial 1” task 5808, and are
scheduled to end at 6 p.m. 5814 on Aug. 2, 2001 (5816). The
“Serial 2” task 5818 is scheduled to begin upon completion
of the parallel tasks 5814 and is scheduled to end at 6 p.m.
5820 on Aug. 3, 2001 (5822). FIG. 59 depicts an exemplary
project plan definition file 5900 corresponding to the plan
5800 of FIG. 58.

[0177] Upon activation, the “Serial 17 task 6002 begins
execution, as depicted by the task 6004 in the Gantt chart
6000 of FIG. 60. Contrary to the plan, however, the “Serial
17 task ends earlier than planned. As depicted in FIG. 61, the
actual properties 6100 of the “Serial 17 task 6102 include the
actual-start-date 6104 (i.e., year-2001 month-8 day-1 hour-
9) and actual-finish-date 6106 (i.e., year-2001 month-8
day-1 hour-14, i.e., 2 p.m.). The actual execution 6204 of the
“Serial 1” task 6202 is shown in the Gantt chart 6200 of
FIG. 62.

[0178] Because the “Serial 1” task 6202 ended earlier than
planned, both the “Parallel 1” task 6206 and the “Parallel 2
task 6208 begin execution at 2 p.m. 6210 rather than waiting
until their scheduled start time of 6 p.m. The earlier execu-
tion 6212 and 6214 of these tasks 6206 and 6208 is also
depicted in the Gantt chart 6200. As depicted in FIG. 63, the
actual properties 6300 of the “Parallel 1” task 6302 and the
“Parallel 2” task 6304 include the actual-start-date 6306
(ie., year-2001 month-8 day-1 hour-14) and actual-finish-
date 6308 (i.c., year-2001 month-8 day-2 hour-0). The actual
execution 6406 and 6408 of the “Parallel 1” task 6402 and
the “Parallel 2” task 6404 is shown in the Gantt chart 6400
of FIG. 64. The Gantt chart 6400 also visually indicates that
the start time 6410 for the tasks 6402 and 6404 was 2 p.m.
on Aug. 1, 2001, while the end time 6412 for the tasks 6402
and 6404 was 12 a.m. on Aug. 2, 2001.

[0179] Finally, the execution of the “Serial 2” task 6414
begins at 12 a.m. on Aug. 2, 2001 (6412). As depicted in
FIG. 65, the actual properties 6500 of the “Serial 2” task
6502 includes the actual-start-date 6504 (ie., year-2001
month-8 day-2 hour-0) and actual-finish-date 6506 (i.c.,
year-2001 month-8 day-2 hour-12). The actual execution
6604 of the “Serial 1”task 6602, the actual execution 6608
of the “Parallel 1” task 6606, the actual execution 6612 of
the “Parallel 2” task 6610, and the actual execution 6616 of
the “Serial 2” task 6614, are shown in the Gantt chart 6600
of FIG. 66.

Animation Of Workflows And Project Plans

[0180] Methods and systems consistent with the present
invention allow a user to animate the edits to a plan or
workflow. Thus, an enterprise affiliate may view the changes
made to a plan or workflow over time, or may view the
various plans created from a given workflow over time. An
enterprise affiliate may also use the tool 200 to review the
steps performed during the activation of a plan.

Jun. 20, 2002

[0181] FIG. 67 depicts a flow diagram illustrating an
exemplary process for storing the edits to a plan definition
file and the corresponding task definition files during the
activation of the plan. Initially, the tool 200 retrieves a plan
selected by an enterprise affiliate (step 6702). Next, the tool
200 activates the plan (step 6704). The next step performed
by the tool 200 in activating the plan is to select a task from
the plan (step 6706). Then, the tool 200 activates the task
(step 6708). Thus, in the plan depicted in FIG. 68, upon
activation, the tool 200 selects the first task 6802. The block
6804 represents the task 6802, as defined by duration and
start time, on the timeline 6800 or Gantt Chart. FIG. 69
illustrates the task definition file 6900 corresponding to the
task 6802 of FIG. 68. As shown in the task definition file
6900 of FIG. 69, prior to activation, the state of the task is
“unexecuted”6902. After activating the task 6802, the tool
200 darkens of the outer borders of the block 7004 repre-
senting the task 7002, as depicted in the timeline 7000 of
FIG. 70. The activation of the task is reflected in the task
definition file (step 6710). As shown in the task definition
file 7100 depicted in FIG. 71, the state of the task is changed
to “executing”7102 after the task is activated. Alternatively,
the state of the task may be changed to “active™ rather than
“executing.” The tool 200 then saves the edits to the task
definition file (step 6712). The tool 200 also includes a link
to the task definition file in the plan definition file, and saves
the plan definition file (step 6714).

[0182] The next step performed by the tool 200 is to wait
until the execution of the task is complete (step 6716). The
tool 200 depicts a completed task 7202 on the timeline 7200
in FIG. 72 as a darkened block 7204. After the execution of
the task is complete, the tool 200 edits the task definition file
to reflect the completed task (step 6718). As shown in the
task definition file 7300 of FIG. 73, the state of the task is
changed to “executed”7302. After editing the task definition
file, the tool 200 saves the edits to the task definition file
(step 6720). The tool 200 also includes a link to the task
definition file in the plan definition file, and saves the plan
definition file (step 6722). Next, the tool 200 determines
whether there are any more tasks (step 6724). If there are no
more tasks, the process ends. Otherwise, if there are more
tasks, the process continues at step 6704.

[0183] Returning to the timeline 7200 in FIG. 72, the tool
200 selects the next task 7206 from the plan, which is
depicted as block 7208. The task definition file 7400 of FIG.
74 represents the second task 7206, which indicates that the
state of the task is “unexecuted”7402. After activating the
second task, the tool 200 darkens of the outer borders of the
block 7508 representing the task 7506, as depicted in the
timeline 7500 of FIG. 75. The activation of the task is
reflected in the task definition file 7600 depicted in FIG. 76.
In particular, the state of the task is changed to “execut-
ing”7602 after the task is activated. The tool 200 then saves
the edits to the task definition file 7600, includes a link to the
task definition file 7600 in the plan definition file, and saves
the plan definition file. The tool 200 then waits until the
execution of the task is complete, and depicts the completed
task 7706 on the timeline 7700 in FIG. 77 as a darkened
block 7708. After the execution of the task is complete, the
tool 200 edits the task definition file 7800 of FIG. 78 to
reflect the completed task, i.e., the state of the task is
changed to “executed”7802. After editing the task definition
file 7800, the tool 200 saves the edits to the task definition
file 7800, includes a link to the task definition file 7800 in

US 2002/0075293 Al

the plan definition file, and saves the plan definition file. In
the example above, the tool represents an executing task
with darkened borders and represents an executed task as a
darkened block. One skilled in the art, however, will rec-
ognize that any visible change in the blocks representing the
tasks, e.g., a change in shape, color, shading, etc., may be
used to represent the tasks in their various states. Thus, the
representation of the tasks used in the methods, systems, and
articles of manufacture consistent with the present invention
are not limited to those used in the present embodiment.

[0184] In another implementation, the tool 200 allows a
user to store the modifications made to a plan, and allows the
user to view the changes made to a plan over time. FIG. 79
depicts a flow diagram illustrating an exemplary process for
storing the edits to a plan. Initially, the tool 200 retrieves a
plan selected by a user (step 7902). The user makes modi-
fications to a task in the plan, which are reflected in the task
definition file by the tool 200 (step 7904). Next, the tool 200
saves the edits to the task definition file (step 7906) The tool
200 also includes a link to the task definition file in the plan
definition file and saves the plan definition file (step 7908).
The next step performed by the tool 200 is to determine
whether there are any more changes to be made to the plan
(step 7910). If there are no more changes to be made, the
process ends. Otherwise, if there are more changes, the
process continues at step 7904. The modifications to the
tasks may include changing the resource assigned to the task
or changing the start time of the task. The modifications to
the tasks may be made before the activation of the plan.
Alternatively, modifications may be made to the tasks during
the execution of the plan as long as the task that is being
modified has not yet become active.

[0185] In general, the storage of the complete version
history of a workflow or a plan allows methods and systems
consistent with the present invention to sequentially step
through the versions, display the workflow or plan, and
provide “video cassette recorder”-like navigation (e.g.,
pause/resume, play, forward, reverse, go to start, go to end)
through the versions of the workflow or plan. Forward
implies going from an earlier version, forward in time,
through newer versions. Going backwards implies starting
from, for example, the current version and tracing back
through the earlier versions; for example, to the initial
version.

[0186] All available versions of a plan may be retrieved,
and the user may choose the range of versions desired. The
system may be set up to retrieve all versions by default. The
system may also use a VCR-like mechanism to receive the
indication of how the user wishes to step through the
versions. The system may then receives an indication from
the user as to how to view the animation (e.g., play forward
from the beginning). When it is determined to display in the
forward mode, the method may retrieve the earliest version
in the selected range and displaying the plan. At a user-
selectable rate (e.g., display one version every 5 seconds),
the system may retrieve the next version, apply the edits to
the plan, and display the plan. The portions of the plan may
be visually distinctive as a function of frequency of change.
For example, areas of the plan that do not change from
version to version may remain in a visually non-distinctive
color. Those areas that undergo the most change may be
visually distinct (e.g., red or bolded or tagged with a number
indicating changes). Those areas that are “removed” may

Jun. 20, 2002

also be visually distinct (e.g., grayed out, or faint or tagged
with a small “removed” symbol).

[0187] FIGS. 80A and B depict the process performed by
the tool 200 to animate the changes to the plan. Initially, the
tool 200 retrieves the edits to the plan definition file (step
8002). In one implementation, each edit may be stored in a
separate file with a link to the plan definition file. In another
implementation, all edits may be stored in a single file with
a link to the plan definition file. In yet another implemen-
tation, all edits may be stored with the plan definition file.
The tool 200 also retrieves edits to the task definition files
(step 8004). Similar to the edits to the plan definition file,
each edit may be stored in a separate file with a link to the
task definition file. Alternatively, all of the edits may be
stored in a single file with a link to the task definition file,
or all of the edits may be stored with the task definition file.
Then, the user sets the rate of the display (step 8006). Next,
the tool 200 sets the time period equal to the reciprocal of the
rate (step 8008). The time period indicates the amount of
time the tool 200 pauses between the different displays of the
animation. Thus, if the rate is 1/sec, the tool pauses 1 sec.
between each of the different displays of the animation. The
enterprise affiliate may choose to display the animation in
the forward or reverse direction. Thus, the tool 200 deter-
mines whether the user chose to display the animation in the
forward mode (step 8010). If the tool 200 determines that the
animation will be displayed in the forward mode, the tool
200 removes the edits to the plan definition file (step 8012).
The tool 200 also removes the edits to the task definition
files (step 8014). Next, the tool 200 displays the plan (step
8016). The tool 200 then pauses for the time period (step
8018). After waiting the time period, the tool 200 selects the
first edit (step 8020). The next step performed by the tool
200 is to apply the edit (step 8022). The tool 200 then
displays the edited plan (step 8024). The tool 200 also
determines whether the enterprise affiliate has decided to
adjust the rate of the display (step 8026). If the tool 200
receives a request from the user to adjust the rate of the
display, the tool 200 resets the time period to the reciprocal
of the new rate (step 8028). Then, the tool 200 determines
whether there are any more edits (step 8030). If there are no
more edits, the process ends. Otherwise, if there are addi-
tional edits, the process continues at step 8018.

[0188] If the enterprise affiliate chose not to display the
animation in the forward mode, the next step performed by
the tool 200 is to display the plan (step 8032 in FIG. 80B).
Next, the tool 200 pauses for the time period (step 8034).
The tool 200 then selects an edit (step 8036). After selecting
the edit, the tool 200 removes the edit (step 8038). The tool
200 then displays the edited plan (step 8040). The next step
performed by the tool 200 is to determine whether the
enterprise affiliate has requested an adjustment in the rate of
display (step 8042). If the tool 200 determines that the
enterprise affiliate requested an adjustment to the rate, the
tool 200 resets the time period to the reciprocal of the new
rate (step 8044). The tool 200 then determines whether there
are any more edits (step 8046). If there are no more edits, the
process ends. Otherwise, if there are additional edits, the
process continues at step 8034.

[0189] Similar to the plan discussed above, methods and
systems consistent with the present invention may be used to
animate changes to a workflow. FIG. 81 depicts a flow
diagram illustrating an exemplary process for storing indi-

US 2002/0075293 Al

cations of edits to a workflow. Initially, the tool 200 retrieves
a workflow (step 8102). For example, an enterprise affiliate
may choose the workflow 8200 depicted in FIG. 82. The
workflow includes a start element 8202 and an end element
8204. The workflow depicted also includes “Get Parts”
activity 8206 followed by “L or Rt Handed?” logic activity
8208. The activity definition file 8300 representing “Get
Parts” activity 8206 is depicted in FIG. 83. The default path,
represented by a solid line out of the decision block or logic
activity 8208, leads to a “Right” activity 8214, which is
followed by a “Complete Assembly” activity 8216. The
activity definition file 8400 representing “Right” activity
8214 is depicted in FIG. 84, and the activity definition file
8500 representing “Complete Assembly” activity 8216 is
depicted in FIG. 85. The non-default path, represented by a
dashed line out of the decision block or logic activity 8208,
leads to a “Left” activity 8210, followed by a “Left Special”
activity 8212, and the “Complete Assembly” activity 8216.
The activity definition file 8600 representing “Left” activity
8210 is depicted in FIG. 86, and the activity definition file
8700 representing “Left Special” activity 8212 is depicted in
FIG. 87. In response to a modification made to the work-
flow, the tool 200 edits an activity in the workflow (step
8104). Thus, if the “Left Special” activity 8212 of workflow
of FIG. 82 were removed, the resulting workflow 8800 is
depicted in FIG. 88. Because the “Left Special” activity
8212 was between the “Left” activity 8210 and the “Com-
plete Assembly” activity 8216, the activity definition files
corresponding to these activities will be edited. The activity
definition file corresponding to the revised “Left” activity
8810 is depicted in FIG. 89, and the activity definition file
corresponding to the “Complete Assembly” activity 8814 is
depicted in FIG. 90. The two activity definition files corre-
sponding to the “Left” activity before and after the removal
of the “Left Special” activity 8212 are depicted in FIGS. 86
and 89, respectively. In particular, the successor from the
“Left” activity is changed from id 1524 (8602) to id 1526
(8902), which corresponds to a change in successor from the
“Left Special” activity 8702 to the “Complete Assembly”
activity 8502. Similarly, modification to the activity defini-
tion file for the “Complete Assembly” activity indicates that
the predecessor activity changed from the “Left Special”
activity 8504 in FIG. 85 to the “Left” activity 9002 in FIG.
90.

[0190] The next step performed by the tool 200 is to save
the edits to the activity definition file (step 8106). The tool
200 also saves the edits to the workflow definition file (step
8108). The tool 200 then determines whether there are any
more changes made to the workflow (step 8110). If there are
no more changes, the process ends. Otherwise, the process
continues at step 8104.

[0191] In another implementation, the tool 200 allows a
user to store the different plans created from one workflow.
FIG. 91 depicts a flow diagram illustrating an exemplary
process for storing the different plans. Initially, the tool 200
creates a plan from the workflow (step 9102). The tool 200
then stores the plan definition file (step 9104). The tool 200
creates a link from the workflow definition file to the plan
definition file and stores the edited workflow definition file
(step 9106). Next, the tool 200 creates a different plan from
the workflow (step 9108). After creating the different plan,
the tool 200 stores the different plan definition file (step
9110). The next step performed by the tool 200 is to include
a link to the different plan definition file with the workflow

Jun. 20, 2002

definition file and store the edited workflow definition file
(step 9112). The tool 200 then determines whether to create
more plans (step 9114). If the tool 200 determines that no
additional plans will be created, the process ends. Other-
wise, the process continues at step 9108.

[0192] FIGS. 92A and B depict the process performed by
the tool 200 to animate the changes to the workflow.
Initially, the tool 200 retrieves the edits to the workflow
definition file (step 9202). In one implementation, each edit
may be stored in a separate file with a link to the workflow
definition file. In another implementation, all edits may be
stored in a single file with a link to the workflow definition
file. In yet another implementation, all edits may be stored
with the workflow definition file. The tool 200 also retrieves
edits to the activity definition files (step 9204). Similar to the
edits to the workflow definition file, each edit may be stored
in a separate file with a link to the activity definition file.
Alternatively, all of the edits may be stored in a single file
with a link to the activity definition file, or all of the edits
may be stored with the activity definition file. Then, the user
sets the rate of the display (step 9206). Next, the tool 200
sets the time period equal to the reciprocal of the rate (step
9208). The time period indicates the amount of time the tool
200 pauses between the different displays of the animation.
Thus, if the rate is 1/sec, the tool pauses 1 sec. between each
of the different displays of the animation. Similar to the
above implementation, the enterprise affiliate may choose to
display the animation in the forward or reverse direction.
Thus, the tool 200 determines whether the user chose to
display the animation in the forward mode (step 9210). If the
tool 200 determines that the animation will be displayed in
the forward mode, the tool 200 removes the edits to the
workflow definition file (step 9212). The tool 200 also
removes the edits to the activity definition files (step 9214).
Next, the tool 200 displays the workflow (step 9216). The
tool 200 then pauses for the time period (step 9218). After
waiting the time period, the tool 200 selects the first edit
(step 9220). The next step performed by the tool 200 is to
apply the edit (step 9222). The tool 200 then displays the
edited workflow (step 9224). The tool 200 also determines
whether the enterprise affiliate has decided to adjust the rate
of the display (step 9226). If the tool 200 receives a request
from the enterprise affiliate to adjust the rate, the tool 200
resets the time period to the reciprocal of the new rate (step
9228). Then, the tool 200 determines whether there are any
more edits (step 9230). If there are no more edits, the process
ends. Otherwise, if there are additional edits, the process
continues at step 9218.

[0193] If the enterprise affiliate chose not to display the
animation in the forward mode, the next step performed by
the tool 200 is to display the plan (step 9232 in FIG. 92B).
Next, the tool 200 pauses for the time period (step 9234).
The tool 200 then selects an edit (step 9236). After selecting
the edit, the tool 200 removes the edit (step 9238). The tool
200 then displays the edited workflow (step 9240). The next
step performed by the tool 200 is to determine whether the
enterprise affiliate has requested an adjustment in the rate of
display (step 9242). If the tool 200 determines that the
enterprise affiliate requested an adjustment in the rate, the
tool 200 resets the time period to the reciprocal of the new
rate (step 9244). The tool 200 then determines whether there
are any more edits (step 9246). If there are no more edits, the
process ends. Otherwise, if there are additional edits, the
process continues at step 9234.

US 2002/0075293 Al

[0194] While various embodiments of the present inven-
tion have been described, it will be apparent to those of skill
in the art that many more embodiments and implementations
are possible that are within the scope of this invention.
Accordingly, the present invention is not to be restricted
except in light of the attached claims and their equivalents.

What is claimed is:
1. A method in a data processing system, comprising the
steps of:

retrieving edits to a plan;
receiving an indication of a rate of display;
setting a time period equal to a reciprocal of the rate;
determining whether to display in a forward mode;
when it is determined to display in the forward mode,
removing the edits from the plan;
displaying the plan; and
for each of the edits,
applying the edit to the plan;
displaying the plan;
pausing for the time period;

determining whether to adjust the rate of the display;
and

when it is determined that the rate of the display will
be adjusted,

receiving an indication of a new rate of display;
and

setting the time period equal to a reciprocal of the
new rate; and

when it is determined not to display in the forward mode,
displaying the plan; and
for each of the edits,
removing the edit from the plan;
displaying the plan;
pausing for the time period;

determining whether to adjust the rate of the display;
and

when it is determined that the rate of the display will
be adjusted,

receiving an indication of the new rate of display;
and

setting the time period equal to the reciprocal of
the new rate.
2. A method in a data processing system, comprising the
steps of:

retrieving edits to a workflow;

receiving an indication of a rate of display;

setting a time period equal to a reciprocal of the rate;
determining whether to display in a forward mode;

when it is determined to display in the forward mode,

Jun. 20, 2002

removing the edits from the workflow;
displaying the workflow; and
for each of the edits,
applying the edit to the workflow;
displaying the workflow;
pausing for the time period;

determining whether to adjust the rate of the display;
and

when it is determined that the rate of the display will
be adjusted,

receiving an indication of a new rate of display;
and

setting the time period equal to a reciprocal of the
new rate; and

when it is determined not to display in the forward mode,
displaying the workflow; and
for each of the edits,
removing the edit from the workflow;
displaying the workflow;
pausing for the time period;

determining whether to adjust the rate of the display;
and

when it is determined that the rate of the display will
be adjusted,

receiving an indication of the new rate of display;
and

setting the time period equal to the reciprocal of
the new rate.
3. A method in a data processing system having versions
of a plan, each reflecting an instance in an edit history, the
method comprising the steps of:

storing indications of the versions of the plan; and

displaying the versions of the plan in a sequential manner
to simulate animation of the edit history.

4. The method of claim 3, wherein the step of storing

indications of the versions of the plan comprises the steps of:

storing versions of a task of the plan; and

creating a link from the plan to the versions of the task.

5. The method of claim 3, wherein the versions of the plan
reflect an activation of the plan.

6. The method of claim 5, wherein the plan comprises a
plurality of tasks, and the indications of the versions of the
plan comprise the states of the tasks.

7. The method of claim 6, wherein the state comprises an
unexecuted state.

8. The method of claim 6, wherein the state comprises an
executing state.

9. The method of claim 6, wherein the state comprises an
executed state.

10. The method of claim 3, wherein the indications of
versions of the plan reflect a modification to the plan.

11. The method of claim 3, wherein the versions of the
plan are displayed in reverse order.

US 2002/0075293 Al

12. The method of claim 3, wherein the display comprises
a Gantt chart.

13. A method in a data processing system having versions
of a workflow, each reflecting an instance in an edit history,
the method comprising the steps of:

storing indications of the versions of the workflow; and

displaying the versions of the workflow in a sequential
manner to simulate animation of the edit history.
14. The method of claim 13, wherein the step of storing
indications of the versions of the workflow comprises the
steps of:

storing versions of an activity of the workflow; and

creating a link from the workflow to the versions of the

activity.

15. The method of claim 13 wherein the indications of
versions of the workflow reflect a modification to the
workflow.

16. The method of claim 13 wherein the versions of the
workflow are displayed in reverse order.

17. The method of claim 13 wherein the display com-
prises a flow diagram.

18. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method, the method comprising the steps of:

retrieving edits to a plan;
determining whether to display in a forward mode;
when it is determined to display in the forward mode,
removing the edits from the plan;
displaying the plan; and
for each of the edits,
applying the edit to the plan; and
displaying the plan; and
when it is determined not to display in the forward mode,
displaying the plan; and
for each of the edits,
removing the edit from the plan; and

displaying the plan.

19. The computer-readable medium of claim 18 wherein
the plan comprises a plurality of tasks and the edits to the
plan reflect a state of each task in the plan.

20. The computer-readable medium of claim 19 wherein
the state comprises an unexecuted state.

21. The computer-readable medium of claim 19 wherein
the state comprises an executing state.

22. The computer-readable medium of claim 19 wherein
the state comprises an executed state.

23. The computer-readable medium of claim 18 wherein
the edits to the plan reflect a modification to the plan.

24. The computer-readable medium of claim 18 wherein
the plan is displayed in a Gantt chart.

25. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method, the method comprising the steps of:

retrieving edits to a workflow;

determining whether to display in a forward mode;

Jun. 20, 2002

when it is determined to display in the forward mode,
removing the edits from the workflow;
displaying the workflow; and
for each of the edits,
applying the edit to the workflow; and
displaying the workflow; and
when it is determined not to display in the forward mode,
displaying the workflow; and
for each of the edits,
removing the edit from the workflow; and

displaying the workflow.

26. The computer-readable medium of claim 25 wherein
the edits to the workflow reflect a modification to the
workflow.

27. The computer-readable medium of claim 25 wherein
the workflow is displayed in a flow diagram.

28. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method, the method comprising the steps of:

retrieving a plurality of plans generated from a workflow;
and

displaying each of the plans in a sequential manner to

simulate the generation of the plans from the workflow.

29. The computer-readable medium of claim 28, farther
comprising the steps of:

receiving an indication of a rate of display;
setting a time period equal to a reciprocal of the rate; and

pausing for the time period before displaying each of the

plans.

30. The computer-readable medium of claim 28, wherein
the plans are displayed in reverse order.

31. The computer-readable medium of claim 28 wherein
the display comprises a Gantt chart.

32. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method, the data processing system comprising a plan and
the plan comprising a plurality of tasks, the method com-
prising the steps of:

displaying a graphical representation of the plan, wherein
the graphical representation has portions that corre-
spond to the tasks;

retrieving edits to the plan, wherein each of the edits
modifies a state of one of the plurality of tasks; and

for each of the edits,

applying the edit to the corresponding task of the plan;
and

displaying the portion of the graphical representation
that corresponds to the edited task in a visually
distinctive manner.
33. The computer-readable medium of claim 32, wherein
the state comprises an unexecuted state.
34. The computer-readable medium of claim 32, wherein
the state comprises an executing state.

US 2002/0075293 Al

35. The computer-readable medium of claim 32, wherein
the state comprises an executed state.

36. The computer-readable medium of claim 32, wherein
the graphical display comprises a Gantt chart.

37. The computer-readable medium of claim 32, wherein
the method further comprises the steps of:

receiving an indication of a rate of display;
setting a time period equal to a reciprocal of the rate; and

pausing for the time period before applying the edit to the
corresponding task of the plan for each of the edits.
38. A data processing system comprising:

a secondary storage device further comprising a work-
flow;

a memory device further comprising a program that
retrieves the workflow from the secondary storage
device, that creates versions of the workflow, wherein
each version reflects an instance in an edit history, that
stores the versions of the workflow on the secondary
storage device, and that displays the versions of the
workflow in a sequential manner to simulate animation
of the edit history; and

a processor for running the program.

39. The data processing system of claim 38, wherein the
program displays the versions of the workflow in reverse
order.

Jun. 20, 2002

40. The data processing system of claim 38, wherein the
program displays the versions of the workflow as flow
diagrams.

41. A data processing system comprising:

a secondary storage device further comprising a plan;

a memory device further comprising a program that
retrieves the plan from the secondary storage device,
that creates versions of the plan, wherein each version
reflects an instance in an edit history, that stores the
versions of the plan on the secondary storage device,
and that displays the versions of the plan in a sequential
manner to simulate animation of the edit history; and

a processor for running the program.

42. The data processing system of claim 41, wherein the
program displays the versions of the plan in reverse order.

43. The data processing system of claim 41, wherein the
program displays the versions of the plan as Gantt charts.

44. A system having versions of a plan, each reflecting an
instance in an edit history, the system comprising:

means for storing indications of the versions of the plan;
and

means for displaying the versions of the plan in a sequen-
tial manner to simulate animation of the edit history.

