US 20200117992A1

a2y Patent Application Publication o) Pub. No.: US 2020/0117992 Al

a9y United States

Srinivasan et al.

43) Pub. Date: Apr. 16, 2020

(54) DISTRIBUTED TRAINING OF

REINFORCEMENT LEARNING SYSTEMS

(71) Applicant: DeepMind Technologies Limited,
London (GB)

(72) Inventors: Praveen Deepak Srinivasan, L.ondon
(GB); Rory Fearon, London (GB);
Cagdas Alcicek, London (GB); Arun
Sarath Nair, London (GB); Samuel
Blackwell, London (GB); Vedavyas
Panneershelvam, London (GB);
Alessandro De Maria, Bromley (GB);
Volodymyr Mnih, London (GB);
Koray Kavukcuoglu, London (GB);
David Silver, Hitchin (GB); Mustafa
Suleyman, London (GB)

1) 16/601,455

(22)

Appl. No.:

Filed: Oct. 14, 2019

Related U.S. Application Data

Continuation of application No. 15/016,173, filed on
Feb. 4, 2016, now Pat. No. 10,445,641.

Provisional application No. 62/113,318, filed on Feb.
6, 2015.

1001

(63)

(60)

Publication Classification

(51) Int. CL
GOG6N 3/08 (2006.01)
GOG6N 3/04 (2006.01)
(52) US.CL
CPC oo GOG6N 3/08 (2013.01); GOGN 3/0454
(2013.01); GO6N 3/0472 (2013.01)
(57) ABSTRACT

Methods, systems, and apparatus, including computer pro-
grams encoded on computer storage media, for distributed
training of reinforcement learning systems. One of the
methods includes receiving, by a learner, current values of
the parameters of the Q network from a parameter server,
wherein each learner maintains a respective learner Q net-
work replica and a respective target Q network replica;
updating, by the learner, the parameters of the learner Q
network replica maintained by the learner using the current
values; selecting, by the learner, an experience tuple from a
respective replay memory; computing, by the learner, a
gradient from the experience tuple using the learner Q
network replica maintained by the learner and the target Q
network replica maintained by the learner; and providing, by
the learner, the computed gradient to the parameter server.

Parameter Server

150
4 A
|Bundleattoa | | ‘Bundle B110B |
. |
\ 4 l
Environment Actor Q Learner Q Target I
Replica Network Network Q Network l
Replica Replica Replica |
122A
124A 132A 134A L [
Learner 130A °
F ¢

I
|
I
| Actor 120A
I
|
|
|

Bundle N 110N

I___L

Apr. 16,2020 Sheet 1 of 5 US 2020/0117992 A1

Patent Application Publication

A

NOL 1 N 8jpung
el

g0l 1 g slpung

L "Old
_ Yovl _
Alows |e
_ Ae|day —
A
VOET JoulesT YOZT JOVY
vvel Vel ST 2d)
eoljdey eol|doy eoldey mw._mo_mmv
YIoMIaN D YIOMISN SIOMIBN llday
jobie D Jousea O Jopy justiuoiAUg
A
ﬂ VOl 1 Vv 8jpung
y

oSt

JeAleg Jsjauieled

MQE

1 -
< ¢ 9ld
o
(=)
(=
o~
Yo
Yo
(=
S NOEC NOZZ *
m Jeulesan] Joyy
wn
- \\l\.llll.'l/
0] 24
°
v, s Alows|y H
S Aejdey ¢
(o]
P O _
7 voee V0ze
- Jauiean Joyoy
o
(=]
(o]
&
Yo
™
=%
«
; 05¢

JoAIBg Jojsuleled

Patent Application Publication

AVLSN

Patent Application Publication Apr. 16,2020 Sheet 3 of 5 US 2020/0117992 A1

300‘<A

Receive current observation
302
Select an action to be performed
304
Receive reward and next observation
306
Generate experience tuple
308
Store the experience tuple in replay memory
310
Receive updated parameter values and update
parameters of actor Q network replica 19

FIG. 3

Patent Application Publication Apr. 16,2020 Sheet 4 of 5 US 2020/0117992 A1

400‘<A

Select experience tuple
402
Compute gradient
404
Provide gradient to parameter server
406

'

Receive updated parameter values from the parameter
server 408

v

Update the parameters of the learner Q network replica
410

FIG. 4

Patent Application Publication Apr. 16,2020 Sheet 5 of 5 US 2020/0117992 A1

500‘<A

Maintain current values of parameters
302
Receive gradient
204

!

Optionally, determine whether to accept or discard
gradients

506
Determine parameter value updates
208
Apply the parameter value updates
510

v

Provide updated parameter values to the actors and
learners 512

FIG. 5

US 2020/0117992 Al

DISTRIBUTED TRAINING OF
REINFORCEMENT LEARNING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This is a continuation of U.S. application Ser. No.
15/016,173, filed on Feb. 4, 2016, which claims priority to
U.S. Provisional Application No. 62/113,318, filed on Feb.
6, 2015. The disclosures of the prior applications are con-
sidered part of and are incorporated by reference in the
disclosure of this application.

BACKGROUND

[0002] This specification relates to training a reinforce-
ment learning system.

[0003] Reinforcement learning agents interact with an
environment by receiving an observation that characterizes
the current state of the environment, and in response,
performing an action from a predetermined set of actions.
Reinforcement learning agents generally receive rewards in
response to performing the actions and select the action to be
performed in response to receiving a given observation in
accordance with an output of a value function. Some rein-
forcement learning agents use a neural network in place of
a value function, e.g., to approximate the outcome of the
value function by processing the observation using the
neural network and selecting an action based on the output
of the neural network.

[0004] Neural networks are machine learning models that
employ one or more layers of nonlinear units to predict an
output for a received input. Some neural networks are deep
neural networks that include one or more hidden layers in
addition to an output layer. The output of each hidden layer
is used as input to the next layer in the network, i.e., the next
hidden layer or the output layer. Each layer of the network
generates an output from a received input in accordance with
current values of a respective set of parameters.

SUMMARY

[0005] This specification describes technologies that relate
to training a reinforcement learning system.

[0006] For a system of one or more computers to be
configured to perform particular operations or actions means
that the system has installed on it software, firmware,
hardware, or a combination of them that in operation cause
the system to perform the operations or actions. For one or
more computer programs to be configured to perform par-
ticular operations or actions means that the one or more
programs include instructions that, when executed by data
processing apparatus, cause the apparatus to perform the
operations or actions.

[0007] The subject matter described in this specification
can be implemented in particular embodiments so as to
realize one or more of the following advantages. By paral-
lelizing training, a reinforcement learning system can be
trained faster. Additionally, a reinforcement learning system
trained using the distributed learning techniques described in
this specification can, after training, have an improved
performance on reinforcement learning tasks than the same
reinforcement learning system trained using a non-distrib-
uted reinforcement learning training technique. By provid-
ing an architecture that allows a distributed reinforcement
learning training system to include arbitrary numbers of

Apr. 16, 2020

learners, actors, and replay memories, the system can easily
be adapted for training a system to perform various rein-
forcement learning tasks. Additionally, the numbers of learn-
ers, actors, and, optionally, replay memories can easily be
adjusted during training, resulting in improved performance.
[0008] The details of one or more embodiments of the
subject matter of this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 shows an example distributed reinforcement
learning training system.

[0010] FIG. 2 shows another example distributed rein-
forcement learning training system.

[0011] FIG. 3 is a flow diagram of an example process for
generating an experience tuple during training of a rein-
forcement learning system.

[0012] FIG. 4 is a flow diagram of an example process for
computing a gradient during training of a reinforcement
learning system.

[0013] FIG. 5 is a flow diagram of an example process for
updating parameter values during training of a reinforce-
ment learning system.

[0014] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0015] This specification generally describes techniques
for distributed training of a reinforcement learning system.
In particular, the reinforcement learning system being
trained includes an agent that interacts with an environment.
In order to interact with the environment, the agent receives
observations characterizing the current state of the environ-
ment and selects an action to be performed using the
observation. In response to performing the selected action,
the agent receives a reward. While interacting with the
environment, the agent attempts to maximize the total
reward received by the agent in response to all of the actions
selected by the agent.

[0016] In particular, in response to a given observation, the
agent selects the action to be performed using a Q network.
The Q network is a deep neural network that is configured
to receive as an input an observation and an action and to
process the input to generate a neural network output in
accordance with current values of a set of parameters of the
Q network. In some implementations, the agent selects the
action that, when provided with the given observation as
input to the Q network, results in the Q network generating
the highest neural network output of any of the actions in the
predetermined set of actions. In some other implementa-
tions, the agent uses an e-greedy policy in selecting the
action, i.e., the agent selects an action randomly from the
predetermined set of actions with probability & and selects
the action that results in the Q network generating the
highest neural network output with probability 1-&.

[0017] During the training of the reinforcement learning
system, a distributed reinforcement learning training system
trains the reinforcement learning system to adjust the values
of the parameters of the Q network from initial values of the
parameters. In some implementations, the reinforcement

US 2020/0117992 Al

learning system is being trained offline, with the training
system training the reinforcement learning system to deter-
mine trained values of the parameters of the Q network. The
trained values are then used by the agent in interacting with
the environment at runtime. In some other implementations,
the reinforcement learning system is being trained online,
with the training system continuously adjusting the values of
the parameters of the Q network used by the agent as the
agent interacts with the environment at runtime.

[0018] Generally, the distributed reinforcement learning
training system includes one or more actors, one or more
learners, and one or more replay memories. Optionally, the
distributed reinforcement learning training system also
includes a parameter server.

[0019] FIG. 1 shows an example distributed reinforcement
learning training system 100. The distributed reinforcement
learning training system 100 is an example of a system
implemented as computer programs on one or more com-
puters in one or more locations in which the systems,
components, and techniques described below are imple-
mented.

[0020] The distributed reinforcement learning training
system 100 includes multiple bundles 110A-110N and a
parameter server 150. Each of the bundles 110A-N is
implemented on a respective computing unit. A computing
unit may be, e.g., a computer, a core within a computer
having multiple cores, or other hardware or software within
a computer capable of independently performing the com-
putation for the bundle.

[0021] Each of the bundles 110A-110N includes a respec-
tive actor, e.g., an actor 120A in bundle 110A, a respective
learner, e.g., a learner 130A in bundle 110A, and a respective
replay memory, e.g., a replay memory 140A in bundle 110A.
[0022] Each actor in each of the bundles interacts with a
respective replica of the same environment and maintains a
replica of the Q network that is being trained, referred to in
this specification as an actor Q network replica. For
example, the actor 120A interacts with an environment
replica 122A and maintains an actor Q network replica
124A. Areplica of a Q network is a neural network that has
the same neural network architecture as the Q network, with
possibly different parameter values, i.e., from other replicas
of the Q network.

[0023] In particular, during training, the actor in each of
the bundles interacts with the replica of the environment to
generate experience tuples and stores the experience tuples
in a replay memory. Each actor interacts with the environ-
ment replica by receiving a current observation that char-
acterizes the current state of the environment replica.
[0024] The actor then uses the actor Q network replica
maintained by the actor to determine the action to perform
in response to receiving the observation. Determining the
action to perform in response to receiving the observation is
described in more detail below with reference to FIG. 3.
[0025] Once the actor has performed the determined
action or has instructed another system to perform the
determined action, the actor receives a reward and a next
observation characterizing the next state of the environment
replica, i.e., the state of the environment replica after the
selected action has been performed. The actor then generates
an experience tuple and stores the experience tuple in the
replay memory. The experience tuple includes the current
observation that characterizes the current state of the envi-
ronment instance, the action performed in response to

Apr. 16, 2020

receiving the current observation, the reward received by the
actor for performing the action, and the next observation that
characterizes the next state of the environment replica. For
example, the actor 120A stores experience tuples in the
replay memory 140A.

[0026] The learner in each of the bundles maintains two
respective replicas of the Q network: one replica that will be
referred to in this specification as a learner Q network replica
and another replica that will be referred to in this specifi-
cation as a target Q network replica. For example, the learner
130A maintains a learner Q network replica 132A and a
target Q network replica 134A. In some implementations,
the learner Q network replica maintained by the learner is
the same instance of the Q network as the actor Q network
replica maintained by the actor in the same bundle as the
learner, i.e., either the learner and the actor in the bundle
share an instance of the Q network or the values of the
parameters of the actor Q network replica and the learner Q
network replica are otherwise synchronized.

[0027] As will be described in more detail below, the
values of the parameters of the learner Q network replica
maintained by a given learner will generally be updated
more frequently than the values of the parameters of the
target Q network replica maintained by the learner.

[0028] Each of the learners selects experience tuples from
the replay memory in the same bundle as the learner, e.g., the
learner 130A selects experience tuples from the replay
memory 140A, and computes a gradient for each experience
tuple using the tuple and the Q network replicas maintained
by the learner. Computing a gradient is described below with
reference to FIG. 4. The learner transmits the computed
gradients to the parameter server 150 through a network,
e.g., a local area network (LAN) or wide area network
(WAN), e.g., the Internet.

[0029] The parameter server 150 maintains the current
values of the parameters of the Q network and updates the
maintained values as gradients are uploaded to the server by
the learners. In particular, the parameter server 106 receives
gradient updates from the learners and applies the gradients
to modify the current values of the parameters of the Q
network using a conventional machine learning training
algorithm, e.g., a stochastic gradient descent algorithm.

[0030] The parameter server 150 provides updated param-
eter values to each of the bundles periodically during
training. The actor and learner in the bundle can use the
received updated parameter values to update the values of
the parameters of the Q network replicas maintained by the
actor and the learner. Updating parameter values during
training and providing updated parameter values is
described in more detail below with reference to FIG. 5.

[0031] Optionally, the functionality of the parameter
server 150 can be partitioned among multiple parameter
server shards. That is, each of the parameter server shards
can maintain values of a respective subset of the parameters
of the Q network, such that the parameters of the model are
partitioned among the parameter server shards. In these
cases, each parameter server shard can be implemented on
a respective independent computing unit, with the comput-
ing units being configured so that they can operate indepen-
dently of each other. In these cases, each shard of the
parameter server 150 can apply gradient updates for the
parameters that are assigned to that shard independently of
each other shard. Additionally, each shard of the parameter

US 2020/0117992 Al

server 150 can apply provided updated values for the
parameters that are assigned to the shard independently of
each other shard.

[0032] Thus, each bundle generates experience tuples,
computes gradients, and provides the computed gradients to
the parameter server 150 independently of and asynchro-
nously from each other bundle. In particular, the only
information shared between bundles during training are the
parameter value updates received by each of the bundles
from the parameter server 150.

[0033] Additionally, during the training, the learners col-
lectively train the Q network to determine the trained values
of the network parameters by providing the computed gra-
dients to the parameter server 150 and without needing to
transmit or receive data from any other learners.

[0034] In some implementations, a distributed reinforce-
ment learning training system may have a different archi-
tecture in which actors, learners, and replay memories are
not grouped into bundles, allowing the distributed reinforce-
ment learning training system to have different numbers of
actors, learners, and replay memories. With this different
architecture, each learner can operate independently from
not only each other learner, but also from any one actor.

[0035] FIG. 2 shows another example distributed rein-
forcement learning training system 200. The distributed
reinforcement learning training system 200 is an example of
a system implemented as computer programs on one or more
computers in one or more locations, in which the systems,
components, and techniques described below are imple-
mented.

[0036] Like the distributed reinforcement learning training
system 100 of FIG. 1, the distributed reinforcement learning
training system 200 includes multiple actors 220A-N and
multiple learners 230A-N. However, unlike the system 100
of FIG. 1, there is not a one-to-one coupling of actors to
learners in the distributed reinforcement learning training
system 200.

[0037] In particular, the reinforcement learning training
system 200 includes multiple actors 220A-N that each
interact with a respective replica of the environment to
generate experience tuples that are stored in a central replay
memory 240. As in FIG. 1, each actor 220A-N generates
experience tuples using a respective actor Q network replica
maintained by the actor. However, the parameter values of
the actor Q network replica of any given actor are not
synchronized with the parameters of the learner Q network
replica of any of the learners 230A-N.

[0038] During training, each of the learners 230A-N in the
reinforcement learning training system 200 selects experi-
ence tuples from the central replay memory 204 and pro-
cesses the tuples using a respective learner Q network
replica and a respective target Q network replica maintained
by the learner to compute gradients for the experience
tuples. Thus, each learner can select from experience tuples
generated by multiple actors. Each learner then transmits the
gradients to a parameter server 250 through a network. The
parameter server 250 then updates the parameters of the Q
network and provides the updated parameter values to the
actors 220A-220N and the learners 230A-230N.

[0039] Because the actors 220A-220N and the learners
230A-230N are not coupled, the reinforcement learning
training system 200 can include different numbers of actors
than learners. In some implementations, in the reinforcement

Apr. 16, 2020

learning training system 200, each actor 220A-220N and
each learner 230A-230N is implemented on a respective
computing unit.

[0040] While in the example of FIG. 2, the reinforcement
learning training system 200 includes a single central replay
memory 240, in some implementations, the reinforcement
learning training system 200 can include multiple replay
memories, with each actor storing experience tuples in an
assigned one of the multiple replay memories. Similarly,
each of the learners 230A-230N can be assigned a replay
memory of the multiple replay memories from which to
select the experience tuples the learner uses to compute
gradients during training.

[0041] Similarly, while in the example of FIG. 2 the
reinforcement learning training system 200 includes mul-
tiple actors and multiple learners, in some implementations,
the reinforcement learning training system 200 can include
only a single actor and multiple learners. In this case, each
of the multiple learners operates on experience tuples gen-
erated by the single actor.

[0042] Additionally, while in the example of FIG. 2 the
reinforcement learning training system 200 includes mul-
tiple actors and multiple learners, in some implementations,
the reinforcement learning training system 200 can include
multiple actors and a single learner. In this case, the rein-
forcement learning training system 200 may not include the
parameter server 250. That is, the single learner can process
tuples from the replay memory 240 and compute both the
gradients and the updated parameter values. The single
learner or another process in the reinforcement learning
training system 200 can then provide the updated parameter
values to each of the multiple actors.

[0043] FIG. 3 is a flow diagram of an example process 300
for generating an experience tuple during training of a
reinforcement learning system. For convenience, the process
300 will be described as being performed by an actor, e.g.,
one of the actors 120A-N of FIG. 1 or one of the actors
220A-N of FIG. 2.

[0044] The actor receives a current observation character-
izing the current state of the environment replica that is
being interacted with by the actor (step 302).

[0045] The actor processes the current observation using
the replica of the Q network maintained by the actor to select
an action to be performed in response to the current obser-
vation (step 304). In particular, the Q network replica
maintained by the actor is a deep neural network that is
configured to take as an input an action and an observations
and generate a neural network output in accordance with
current values of the parameters of the deep neural network.
In order to select the action to be performed, the actor
determines the action that, when provided with the current
observation as input to the Q network replica, results in the
actor Q network replica generating the highest neural net-
work output. In some implementations, the actor uses an
e-greedy policy in selecting the action, i.e., selects the action
that generates the highest neural network output with prob-
ability 1-& and selects an action randomly from the prede-
termined set of actions with probability e.

[0046] Inresponse to the action being performed, the actor
receives a reward and a next observation characterizing the
next state of the environment replica, e.g., the state of the
environment replica after the selected action is performed
(step 306).

US 2020/0117992 Al

[0047] The actor generates an experience tuple that
includes the current observation, the selected action, the
received reward, and the next observation (step 308).
[0048] The actor stores the experience tuple in a replay
memory (step 310). In some implementations, the replay
memory is local to the actor, i.e., is only accessible to the
actor and not any other actors. In some other implementa-
tions, the replay memory is shared with one or more other
actors, i.e., multiple actors store their experience tuples in
the same replay memory.

[0049] The actor receives updated parameter values and
updates the parameters of the actor Q network replica
maintained by the actor with the updated parameter values
(step 312). In implementations where the distributed rein-
forcement learning training system includes a parameter
server, the actor receives the updated parameter values from
the parameter server. In implementations whether the dis-
tributed reinforcement learning training system does not
include a parameter server, i.e., in implementations where
the system includes only a single learner, the actor can
receive the updated parameter values directly from the
single learner.

[0050] Each actor that is included in the distributed rein-
forcement learning training system can perform the process
300 multiple times during training of the reinforcement
learning training system. Because each actor performs each
iteration of the process 300 independently from each other
actor during training, each actor may explore different
portions of the state space of the environment than each
other actor. Thus, in implementations where the distributed
reinforcement learning training system includes multiple
actors, the reinforcement learning system can be trained on
a greater variety of experience tuples than when trained
using a reinforcement learning training system that is not
distributed.

[0051] FIG. 4 is a flow diagram of an example process 400
for computing a gradient during training of a reinforcement
learning system. For convenience, the process 400 will be
described as being performed by a learner, e.g., one of the
learners 130A-N of FIG. 1 or one of the learners 230A-N of
FIG. 2.

[0052] The learner selects an experience tuple from a
replay memory (step 402). In some implementations, e.g.,
when the learner is part of a bundle that includes a replay
memory, the replay memory is specific to the learner. In
some other implementations, the replay memory is shared
by multiple learners and each of the learners selects expe-
rience tuples from the same replay memory. In either case,
the learner may select the experience tuple from the replay
memory by sampling a tuple randomly from the tuples that
are stored in the replay memory.

[0053] The learner computes a gradient using the experi-
ence tuple (step 404). In particular, the learner maintains a
learner Q network replica and a target Q network replica.
The learner Q network replica and the target Q network
replica are both deep neural networks having the same
network architecture as the Q network and the same network
architecture as the actor Q network replicas maintained by
each of the actors, but with possibly different values of the
parameters of the deep neural network, both from each other
and from the actor Q network replicas. Thus, like the actor
Q network replicas maintained by the actors, the target Q
network replica and the learner Q network replica are
configured to take as an input an action and an observation

Apr. 16, 2020

and generate a neural network output in accordance with
current values of the parameters of the respective deep
neural network. In particular, as will be described in more
detail below, the parameter values of the learner Q network
replica maintained by the learner are updated more fre-
quently during the training of the reinforcement learning
system than the parameter values of the target Q network
replica maintained by the learner.

[0054] In order to compute the gradient using the experi-
ence tuple, the learner processes the selected action and the
current observation from the tuple using the learner Q
network replica to determine a learner Q network output for
the selected action.

[0055] The learner also determines the largest target Q
network output that is generated by processing the next
observation from the tuple with any of the actions in the
predetermined set of actions.

[0056] The learner then computes the gradient of a loss
function using the reward from the tuple, the learner Q
network output, and the largest target Q network output. The
loss function and computing the gradient of the loss function
is described in Mnih, Volodymyr, Kavukcuoglu, Koray,
Silver, David, Graves, Alex, Antonoglou, loannis, Wierstra,
Daan, and Riedmiller, Martin, Playing atari with deep
reinforcement learning, In NIPS Deep Learning Workshop,
2013 and in U.S. patent application Ser. No. 14/097,862,
filed Dec. 5, 2013 and titled “COMPUTER SYSTEM,” the
entire contents of each of which are hereby incorporated by
reference herein.

[0057] The learner provides the gradient to a parameter
server (step 406). That is, the learner transmits the gradients
to the parameter server over a network. If the parameter
server is sharded, the learner can transmit, to each of the
shards, the portion of the gradient that corresponds to the
parameter partition maintained by the shard.

[0058] The learner receives updated parameter values
from the parameter server (408). The parameter updates
include updated values for the parameters of the learner Q
network replica maintained by the learner and, optionally,
updated values for the parameters of the target Q network
replica maintained by the learner. In particular, if the learner
processes the experience tuples in multiple tuple batches, the
learner may receive parameter updates for the learner Q
network replica one or more times during processing of a
given batch. However, the learner may receive updates for
the parameters of the target Q network replica at longer
intervals. Thus, not every parameter value update received
from the parameter server will include updated values for
the parameters of the target Q network replica.

[0059] The learner updates the parameters of the learner Q
network replica and, optionally, the target Q network replica
using the parameter updates (step 410).

[0060] Each learner in the distributed reinforcement learn-
ing training system can perform multiple iterations of the
process 400 during the training. In particular, each learner
can perform the process 400 independently of and asynchro-
nously from each other learner in the system.

[0061] In implementations where the distributed rein-
forcement learning training system includes only a single
learner and does not include the parameter server, rather than
provide gradients to the parameter server and then receive
parameter value updates from the parameter server, the
learner computes the updated parameter values, e.g., as
described below with reference to FIG. 5, and provides the

US 2020/0117992 Al

updated parameter values to the actors that are included in
the distributed reinforcement learning training system.
[0062] FIG.5is aflow diagram of an example process 500
for updating parameter values during training of a reinforce-
ment learning system. For convenience, the process 500 will
be described as being performed by a parameter server, e.g.,
the parameter server 150 of FIG. 1 or the parameter server
250 of FIG. 2.

[0063] The parameter server maintains current values of
the parameters of a Q network (step 502). In implementa-
tions where the training is performed offline, once the
training procedure is terminated, the values of the param-
eters of the Q network maintained by the parameter become
the trained values used by the agent in interacting with the
environment. In some implementations, however, the train-
ing is being performed on-line, with the actors in the system
being the agents of the reinforcement learning system that is
being trained. In these cases, rather than determining trained
values of the parameters and then terminating the training,
the parameter values of the agents can be continuously
updated as they continue to interact with the environment.
[0064] The parameter server receives gradients from one
or more learners (step 504). The parameter server receives
gradients from the learners asynchronously, as each learner
operates independently from each other learner during the
training.

[0065] Optionally, the parameter server can determine, for
each received gradient, whether to accept or discard the
gradient (step 506). For example, in some implementations,
the parameter server can track the time delay between the
values of the parameters used by the learner that computed
the gradient and the values of the parameters maintained by
the parameter server. The parameter server can then discard
all gradients for which the delay is longer than a threshold.
Thus, gradients that are computed using parameter values
that are too stale are discarded rather than being accepted by
the parameter server. As another example, each learner can
keep a running average and standard deviation of the abso-
Iute DQN loss for the data it sees. Either the learner or the
parameter server can then discard gradients with an absolute
loss that is higher than the mean plus a threshold number of
standard deviations.

[0066] The parameter server determines parameter value
updates from the received gradients (step 508) and applies
the parameter value updates to the current values of the
parameters maintained by the parameter server to determine
updated values of the parameters (step 510). In particular,
the parameter server determines parameter value updates
from the received gradients using a conventional machine
learning training technique, e.g., a stochastic gradient
descent training technique. Optionally, the training tech-
nique can include an adaptive learning rate. Example
machine learning training techniques that use adaptive learn-
ing rates are described in J. C. Duchi, E. Hazan, and Y.
Singer, Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization, Journal of Machine Learning
Research, 12:2121-2159, 2011, and in V. P. Plagianakos, D.
G. Sotiropoulos and M. N. Vrahatis, An Improved Back-
propagation Method with Adaptive Learning Rate. Proceed-
ing of the 2nd Intern. Confer. on: Circuits, Systems and
Computers, 1998.

[0067] The parameter server provides updated parameter
values to each of the actors and each of the learners in the
distributed reinforcement learning training system (step

Apr. 16, 2020

512). In particular, after each update of the parameters, the
parameter server provides the updated parameter values to
the actors and the learners for use in updating the parameters
of the actor Q network replicas and the learner Q network
replicas maintained by the actors and the learners. The
parameter server also determines whether criteria are satis-
fied for providing updated parameter values for target Q
network replicas maintained by the learners and, if the
criteria are satisfied, provides data to the learners that
indicates the updated parameters are also to be used to
update the parameter values of the target Q network replicas.
In some implementations, the server determines that the
criteria have been satisfied when the server has made a
threshold number of parameter updates to the values main-
tained by the server since the last time the target Q network
replica parameters were updated or when a threshold amount
of time has elapsed since the last time the target Q network
replica parameters were updated.

[0068] The process 500 can be performed multiple times
during training of the reinforcement learning system. For
example, the parameter server can perform the process 500
repeatedly on received gradients until no more gradients are
being received, until the parameter updates satisty a prede-
termined termination condition, or until the training is
terminated, by a system administrator, for example.

[0069] In some implementations, the parameter server
includes multiple shards, each of which operates indepen-
dently from each other shard, and each of which maintains
values for a respective disjoint partition of the parameters of
the Q network. In these implementations, each shard of the
parameter server can perform the process 500 independently
of each other shard for the parameter values that are main-
tained by the shard.

[0070] In some cases, during the training, it may be
beneficial to modify the number of actors, learners, or both
that are involved in the training. For example, the distributed
training system can determine that the number of actors or
learners should be adjusted by monitoring the number of
reads and writes to the replay memory. That is, when the
number of writes to the memory exceeds the number of
reads from the memory by more than a threshold, the system
can determine that the number of learners needs to be
increased relative to the number of actors. When the number
of reads exceeds the number of writes by more than a
threshold, the system can determine that the number of
actors needs to be increased relative to the number of
learners.

[0071] As another example, the system can monitor the
throughput of the parameter server to determine when the
number of actors or learners should be adjusted. For
example, if the number of updates to the parameters of the
Q network is less than the number of new experience tuples
added to the replay memory, the system can determine that
the number of learners should be increased relative to the
number of actors.

[0072] As another example, the system can monitor the
number of gradients discarded during training. If the portion
of gradients that are being discarded exceeds a threshold
proportion, then the system can determine that the number
of learners should be decreased or that the performance of
the parameter server should be increased, e.g., by allocating
the parameter server more computing resources or increas-
ing the number of parameter shards.

US 2020/0117992 Al

[0073] In architectures when the learners and actors in the
system are not bundled, once the system determines that the
numbers of learners or actors should be adjusted, a learner
can be added or removed without changing the number of
actors, and vice versa. In architectures when each learner is
bundled with an actor, the number of actors and learners can
be changed by adding a bundle to or removing a bundle from
the system.

[0074] Embodiments of the subject matter and the func-
tional operations described in this specification can be
implemented in digital electronic circuitry, in tangibly-
embodied computer software or firmware, in computer hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non-transitory
program carrier for execution by, or to control the operation
of, data processing apparatus. Alternatively or in addition,
the program instructions can be encoded on an artificially-
generated propagated signal, e.g., a machine-generated elec-
trical, optical, or electromagnetic signal, that is generated to
encode information for transmission to suitable receiver
apparatus for execution by a data processing apparatus. The
computer storage medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a random
or serial access memory device, or a combination of one or
more of them.

[0075] The term “data processing apparatus” refers to data
processing hardware and encompasses all kinds of appara-
tus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or
multiple processors or computers. The apparatus can also be
or further include special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, e.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

[0076] A computer program (which may also be referred
to or described as a program, software, a software applica-
tion, a module, a software module, a script, or code) can be
written in any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages, and it can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program may, but need not, cor-
respond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or data, e.g., one
or more scripts stored in a markup language document, in a
single file dedicated to the program in question, or in
multiple coordinated files, e.g., files that store one or more
modules, sub-programs, or portions of code. A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

[0077] The processes and logic flows described in this
specification can be performed by one or more program-
mable computers executing one or more computer programs

Apr. 16, 2020

to perform functions by operating on input data and gener-
ating output. The processes and logic flows can also be
performed by, and apparatus can also be implemented as,
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application-specific
integrated circuit).

[0078] Computers suitable for the execution of a computer
program include, by way of example, can be based on
general or special purpose microprocessors or both, or any
other kind of central processing unit. Generally, a central
processing unit will receive instructions and data from a
read-only memory or a random access memory or both. The
essential elements of a computer are a central processing
unit for performing or executing instructions and one or
more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., mag-
netic, magneto-optical disks, or optical disks. However, a
computer need not have such devices. Moreover, a computer
can be embedded in another device, e.g., a mobile telephone,
a personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device, e.g., a universal serial
bus (USB) flash drive, to name just a few.

[0079] Computer-readable media suitable for storing com-
puter program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

[0080] To provide for interaction with a user, embodi-
ments of the subject matter described in this specification
can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and
a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user can provide input to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the
user; for example, by sending web pages to a web browser
on a user’s client device in response to requests received
from the web browser.

[0081] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back-end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a relationship graphical user interface or a
Web browser through which a user can interact with an
implementation of the subject matter described in this speci-
fication, or any combination of one or more such back-end,
middleware, or front-end components. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.

US 2020/0117992 Al

Examples of communication networks include a local area
network (“LAN”) and a wide area network (“WAN”), e.g.,
the Internet.

[0082] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.

[0083] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of any invention or of what may be
claimed, but rather as descriptions of features that may be
specific to particular embodiments of particular inventions.
Certain features that are described in this specification in the
context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various
features that are described in the context of a single embodi-
ment can also be implemented in multiple embodiments
separately or in any suitable subcombination. Moreover,
although features may be described above as acting in
certain combinations and even initially claimed as such, one
or more features from a claimed combination can in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.

[0084] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-
ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
In certain circumstances, multitasking and parallel process-
ing may be advantageous. Moreover, the separation of
various system modules and components in the embodi-
ments described above should not be understood as requir-
ing such separation in all embodiments, and it should be
understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

[0085] Particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous.

What is claimed is:

1. A system for training a reinforcement learning system,
the reinforcement learning system comprising an agent that
interacts with an environment by receiving observations
characterizing a current state of the environment and select-
ing an action to be performed from a predetermined set of
actions, wherein the agent selects an action to be performed
using a Q network, wherein the Q network is a deep neural
network that is configured to receive as input an observation
and an action and to generate a neural network output from
the input in accordance with a set of parameters, wherein
training the reinforcement learning system comprises adjust-
ing the values of the set of parameters of the Q network, and
wherein the system comprises:

Apr. 16, 2020

a plurality of learners, wherein each learner executes on
a respective computing unit, wherein each learner is
configured to operate independently of each other
learner, wherein each learner maintains a respective
learner Q network replica and a respective target Q
network replica, and wherein each learner is further
configured to repeatedly perform operations compris-
ing:
receiving, from a parameter server, current values of
the parameters of the Q network;

updating the parameters of the learner Q network
replica maintained by the learner using the current
values;

selecting an experience tuple from a respective replay
memory;

computing a gradient from the experience tuple using
the learner Q network replica maintained by the
learner and the target Q network replica maintained
by the learner; and

providing the computed gradient to the parameter
server.
2. The system of claim 1, further comprising:
one or more actors, wherein each actor executes on a
respective computing unit, wherein each actor is con-
figured to operate independently of each other actor,
wherein each actor interacts with a respective replica of
the environment, wherein each actor maintains a
respective actor Q network replica, and wherein each
actor is further configured to repeatedly perform opera-
tions comprising:
receiving, from the parameter server, current values of
the parameters of the Q network;

updating the values of the parameters of the actor Q
network replica maintained by the actor using the
current values;

receiving an observation characterizing a current state
of the environment replica interacted with by the
actor:

selecting an action to be performed in response to the
observation using the actor Q network replica main-
tained by the actor;

receiving a reward in response to the action being
performed and a next observation characterizing a
next state of the environment replica interacted with
by the actor;

generating an experience tuple that comprises the cur-
rent observation, the action selected, the reward, and
the next observation; and

storing the experience tuple in a respective replay
memory.
3. The system of claim 2, further comprising:
the parameter server, wherein the parameter server is
configured to repeatedly perform operations compris-
ing:
receiving a succession of gradients from the plurality of
learners;

computing updates to the values of the parameters of
the Q network using the gradients;

updating the values of the parameters of the Q network
using the computed updates; and

providing the updated values of the parameters to the
one or more actors and the plurality of learners.

4. The system of claim 3, wherein the parameter server

comprises a plurality of parameter server shards, wherein

US 2020/0117992 Al

each shard is configured to maintain values of a respective
disjoint partition of the parameters of the Q network, and
wherein each shard is configured to operate asynchronously
with respect to every other shard.

5. The system of claim 3, wherein the operations that the
parameter server is configured to perform further comprise:

determining whether criteria are satisfied for updating the

parameters of the target Q network replicas maintained
by the learners; and

when the criteria are satisfied, providing data to the

learners indicating that the updated parameter values
are to be used to update the parameters of the target Q
network replicas.
6. The system of claim 5, wherein the operations that each
of the learners is configured to perform further comprise:
receiving data indicating that the updated parameter val-
ues are to be used to update the parameters of the target
Q network replica maintained by the learner; and

updating the parameters of the target Q network replica
maintained by the learner using the updated parameter
values.

7. The system of claim 2, wherein each of the learners is
bundled with a respective one of the actors and a respective
replay memory, wherein each bundle of an actor, a learner,
and a replay memory is implemented on a respective com-
puting unit, wherein each bundle is configured to operate
independently from each other bundle, and wherein, for each
bundle, the learner in the bundle selects from among expe-
rience tuples generated by the actor in the bundle.

8. The system of claim 7, wherein, for each bundle, the
current values of the parameters of the actor Q network
replica maintained by the actor in the bundle are synchro-
nized with the current values of the parameters of the learner
Q network replica maintained by the learner in the bundle.

9. The system of claim 2, wherein selecting an action to
be performed in response to the observation using the actor
Q network replica maintained by the actor comprises:

determining an action from the predetermined set of

actions that, when provided as input to the actor Q
network replica maintained by the actor with the cur-
rent observation, generates a largest actor Q network
replica output.

10. The system of claim 9, wherein selecting an action to
be performed in response to the observation using the actor
Q network replica maintained by the actor further com-
prises:

selecting a random action from the set of predetermined

actions with probability & and selecting the determined
action with probability 1-e.
11. The system of claim 1, wherein computing a gradient
from the experience tuple using the learner Q network
replica maintained by the learner and the target Q network
replica maintained by the learner comprises:
processing the action from experience tuple and the
current observation from the experience tuple using the
learner QQ network replica maintained by the learner to
determine a learner Q network replica output;

determining a largest target Q network replica output that
is generated by processing any of the actions in the
predetermined set of actions with the next observation
from the experience tuple using the target Q network
replica maintained by the learner; and

Apr. 16, 2020

computing the gradient using the learner Q network
replica output, the largest target Q network replica
output, and the reward from the experience tuple.

12. A method for training a reinforcement learning sys-
tem, the reinforcement learning system comprising an agent
that interacts with an environment by receiving observations
characterizing a current state of the environment and select-
ing an action to be performed from a predetermined set of
actions, wherein the agent selects an action to be performed
using a Q network, wherein the Q network is a deep neural
network that is configured to receive as input an observation
and an action and to generate a neural network output from
the input in accordance with a set of parameters, wherein
training the reinforcement learning system comprises adjust-
ing the values of the set of parameters of the Q network,
wherein the method comprises:

receiving, by a learner of a plurality learners, current

values of the parameters of the Q network from a
parameter server, wherein each learner executes on a
respective computing unit, wherein each learner is
configured to operate independently of each other
learner, and wherein each learner maintains a respec-
tive learner Q network replica and a respective target Q
network replica;

updating, by the learner, the parameters of the learner Q

network replica maintained by the learner using the
current values;

selecting, by the learner, an experience tuple from a

respective replay memory;

computing, by the learner, a gradient from the experience

tuple using the learner Q network replica maintained by
the learner and the target Q network replica maintained
by the learner; and

providing, by the learner, the computed gradient to the

parameter server.

13. The method of claim 12, further comprising:

receiving, by one of one or more actors and from the

parameter server, current values of the parameters of
the Q network, wherein each actor is configured to
operate independently of each other actor, and wherein
each actor interacts with a respective replica of the
environment, wherein each actor maintains a respective
actor Q network replica;

updating, by the actor, the values of the parameters of the

actor Q network replica maintained by the actor using
the current values;

receiving, by the actor, an observation characterizing a

current state of the environment replica interacted with
by the actor:

selecting, by the actor, an action to be performed in

response to the observation using the actor Q network
replica maintained by the actor;

receiving, by the actor, a reward in response to the action

being performed and a next observation characterizing
a next state of the environment replica interacted with
by the actor;

generating, by the actor, an experience tuple that com-

prises the current observation, the action selected, the
reward, and the next observation; and

storing, by the actor, the experience tuple in a respective

replay memory.

14. The method of claim 13, further comprising:

receiving, by the parameter server, a succession of gra-

dients from the plurality of learners;

US 2020/0117992 Al

computing, by the parameter server, updates to the values
of the parameters of the Q network using the gradients;

updating, by the parameter server, the values of the
parameters of the Q network using the computed
updates; and

providing, by the parameter server, the updated values of

the parameters to the one or more actors and the
plurality of learners.
15. The method of claim 14, wherein the parameter server
comprises a plurality of parameter server shards, wherein
each shard is configured to maintain values of a respective
disjoint partition of the parameters of the Q network, and
wherein each shard is configured to operate asynchronously
with respect to every other shard.
16. The method of claim 14, further comprising:
determining, by the parameter server, whether criteria are
satisfied for updating the parameters of the target Q
network replicas maintained by the learners; and

when the criteria are satisfied, providing, by the parameter
server, data to the learners indicating that the updated
parameter values are to be used to update the param-
eters of the target Q network replicas.

17. The method of claim 16, further comprising:

receiving, by the learner, data indicating that the updated

parameter values are to be used to update the param-
eters of the target Q network replica maintained by the
learner; and

updating, by the learner, the parameters of the target Q

network replica maintained by the learner using the
updated parameter values.

18. The method of claim 13, wherein each of the learners
is bundled with a respective one of the actors and a respec-
tive replay memory, wherein each bundle of an actor, a
learner, and a replay memory is implemented on a respective
computing unit, wherein each bundle is configured to oper-
ate independently from each other bundle, and wherein, for
each bundle, the learner in the bundle selects from among
experience tuples generated by the actor in the bundle.

19. The method of claim 18, wherein, for each bundle, the
current values of the parameters of the actor Q network
replica maintained by the actor in the bundle are synchro-

Apr. 16, 2020

nized with the current values of the parameters of the learner
Q network replica maintained by the learner in the bundle.
20. One or more computer storage media encoded with
instructions that, when executed by one or more computers,
cause the one or more computers to implement a system for
training a reinforcement learning system, the reinforcement
learning system comprising an agent that interacts with an
environment by receiving observations characterizing a cur-
rent state of the environment and selecting an action to be
performed from a predetermined set of actions, wherein the
agent selects an action to be performed using a Q network,
wherein the Q network is a deep neural network that is
configured to receive as input an observation and an action
and to generate a neural network output from the input in
accordance with a set of parameters, wherein training the
reinforcement learning system comprises adjusting the val-
ues of the set of parameters of the Q network, and wherein
the system comprises:
a plurality of learners, wherein each learner executes on
a respective computing unit, wherein each learner is
configured to operate independently of each other
learner, wherein each learner maintains a respective
learner Q network replica and a respective target Q
network replica, and wherein each learner is further
configured to repeatedly perform operations compris-
ing:
receiving, from a parameter server, current values of
the parameters of the Q network;
updating the parameters of the learner Q network
replica maintained by the learner using the current
values;
selecting an experience tuple from a respective replay
memory;
computing a gradient from the experience tuple using
the learner Q network replica maintained by the
learner and the target Q network replica maintained
by the learner; and
providing the computed gradient to the parameter
server.

