US 20210157626A1

a2y Patent Application Publication o) Pub. No.: US 2021/0157626 A1

a9y United States

MISRA et al. 43) Pub. Date: May 27, 2021
(54) PRIORITIZING BOOTING OF VIRTUAL GOG6F 9/4401 (2006.01)
EXECUTION ENVIRONMENTS HO4L 12724 (2006.01)
(52) US. CL
(71) Applicant: Intel Corporation, Santa Clara, CA CPC ... GOGF 9/45558 (2013.01); GOGF 9/5077
us) (2013.01); GOGF 2009/4557 (2013.01); HO4L
41/5003 (2013.01); GO6F 2009/45575
(72) Inventors: Amruta MISRA, Bangalo.re (IN); (2013.01); GO6F 9/4401 (2013.01)
Chris MACNAMARA, Limerick (IE);
John J. BROWNE, Limerick (IE);
Liang MA, Shannon (IE); Shobhi 7 ABSTRACT
JAIN, Shannon (IE); David HUNT, Examples described herein relate to circuitry to boot a
Meelick (IE) virtualized execution environment (VEE) by use of system
. resources, wherein the system resources are allocated based
(1) Appl. No.: 17/165,694 on a priority level of the VEE. In some examples, the
(22) Filed: Feb. 2, 2021 circuitry to boot a VEE by use of system resources is to
access an identification of system resources to use to boot
(30) Foreign Application Priority Data the VEE and priority level of the VEE from stored data. In
some examples, the priority level of the VEE is based on a
Dec. 26, 2020 (IN) 202041056500 service level agreement (SLA), service level objective
A . . (SLO), or class of service (COS) that identifies boot time of
Publication Classification the VEE. In some examples, the circuitry is to boot a VEE
(51) Int. CL by use of system resources, wherein the system resources are
GO6F 9/455 (2006.01) allocated based on a priority level of the VEE and also based
GO6F 9/50 (2006.01) on a number of VEEs that boot concurrently.
202\'
veeo 15| et | | Best
priofity efforts efforts efforts

204

~

VEE 5
priority

VEE 4
priority

Core 12

Core 13

VEE 1
Best
efforts

VEE 0
priority

@@

V V
efforts efforts

Patent Application Publication = May 27, 2021 Sheet 1 of 6

US 2021/0157626 Al

System 100

Processor 102-0

VEE

Processor 102-N

VEE

System agent 104

Frequency selector
106

Memory manager
108

Resource tracker
110

Resource allocator
112

Memory
114

118

Network interface

FIG. 1

Patent Application Publication = May 27, 2021 Sheet 2 of 6 US 2021/0157626 A1

~N

202

VEE 1 VEE 2 VEE 3
Vrliz_oErito Best Best Best
P y efforts efforts efforts

@@

204

~

VEE 4 VEE 5 VEE 2 VEE 3
riorit riorit Best Best
priority priority efforts efforts

@@

@@“

VEE 1
P y efforts

FIG. 2

Patent Application Publication = May 27, 2021 Sheet 3 of 6 US 2021/0157626 A1

SYSTEM BOOTED
302
v

DEFAULT SYSTEM CONFIGURATION
APPLIED
304

v

REQUEST BOOT OF VIRTUAL EXECUTION
» ENVIRONMENTS (VEES)
306

v

OBSERVE SYSTEM RESOURCES DURING
VEE BOOT
308

YSTEM RESOURCE
AVAILABLE FOR ADDITIONAL VE
BOOT REQUESTS?
310

PRIORITY VEE?
312

Y

APPLY BEST
EFFORTS TO
BOOT VEE
320 N APPLY VEE BOOT PRIORITY MODE
314

VEES BOOTED?
316

RETURN TO DEFAULT SYSTEM
CONFIGURATION
318

FIG. 3

US 2021/0157626 Al

:.
.}»
e

. ..\.\5\.\\.\3\% .

May 27,2021 Sheet 4 of 6

e E2*
bt : i C\ .
e : . g
G, : Z L
m\ 3 : \\ 3 \\\ [
ok : P 7
wooge : K H
iz : 4 27
4 , o
. erss 3 % e
b : \Nw 0o
w\ [(a1
: % o
: W wlnrns
: iy
: et
: e o
: ey
: h\ ’
: 7 o
: Z P
: Z L5 eegpen
: Z e L
: z k433 w5
: ; 1 vy
: z o oy
: 7 W :
: 7 “wr i L
N \\\\ iad e
: sreare
: \\\w... PP
: r 4 kA
: H ol 134
L7 Lal o L
: 2 R 2
: Z o P
Lo w\\\ deh !
: v dped, Sre
% N £
ndpoes : Z K
5 : \ 7%
o \ it
/s >4 ok wx
i ‘Z .
M\\) P NW\\\ A d
"
o P
o Lo,
o s
o ,
m“c, i I
3
i W
Wi i
(341

450

Patent Application Publication
400

FIG. 4

Patent Application Publication = May 27, 2021 Sheet 5 of 6 US 2021/0157626 A1

500

TN

__________________________________ ,
! Memory subsystem 520 !
i i
Processor ' [i
510 : i
, Memory 530 !
i i
1] i
1 0S8 532 :
' i
' Memory | i
i | controller 522 Apps 534 i
t i
Graphics ! !
540 Interface E Processes 5
512 : 536 :
] 3 1
Accelerators : H
542 ! !
Network Interface Peripheral
Interface 514 Interface
550 570
R
Controller
/O Interface 582
560

Storage 584

Code / data 586

Storage subsystem 580

FIG. 5

Patent Application Publication = May 27, 2021 Sheet 6 of 6 US 2021/0157626 A1

Tomputing Rack L~ 604

ToRk Switeh "L 606
i

Pod Manager 508 Managsment interface
i N,

{Xeon) Poclad Compute Drawer L/ . 624
i N !

chy Ji CPU 1} ICPULICRU L

: e S Rack Configuration Uala

4 Mamary % k : y A—
P ¢ 622

..... =

e et e e bt e e

¥

DY Ty
 Memory || Memary ||

{ Disaggragated Swich

: S -~ 610
{Atom) Podled Uompuse Drawer |

O] MOD! oD, Jatn] wob! T
T INODTIMODUNMODY | MOD!
3

3 3 ¢ e Y .
L iheagoregated Suieh \”\:
R e Network
e 612 o Sy

Pooled Storage Drawer | ;

Fooled Memory Dvawer ~ 614

618

. 616

Paoked VO Drawser i
FPGA | | FPGA |
H i

¥

{ FPBA |

o IRTCORNARY I
| ACCEL | |ACCEL| | ACCEL |

-~

£ 602
& % &

. *
Computing Rack 600

-

¢ 602

FIG. 6

US 2021/0157626 Al

PRIORITIZING BOOTING OF VIRTUAL
EXECUTION ENVIRONMENTS

RELATED APPLICATION

[0001] The application claims priority from Indian provi-
sional patent application number 202041056500, filed Dec.
26, 2020 in the Indian Patent Office. The contents of the
Indian provisional patent application number 202041056500
are incorporated by reference in its entirety.

DESCRIPTION

[0002] Virtual desktop infrastructure (VDI) provides for
hosting of desktop environments on a server in a datacenter
or edge network element. Backend desktop environments
can run within virtual machines (VMs) and images and
content can be delivered to client device over a network. In
some cases, multitudes of VDIs can be launched at about the
same time, which amounts to a so-called VDI boot storm. A
VDI boot storm can include booting of multitudes of VMs
to provide execution environments for VDIs. During boot-
up of a VM, computing resources (e.g., CPU, memory,
and/or network) are used and insufficient computing
resources can lead to a longer boot time of some VMs. For
example, if end users log into their VDI sessions at about the
same time of the day, VDI and corresponding VM boot can
be slow to complete due to resource unavailability and
contention over computing resources. For example, a net-
work can be overwhelmed with storage requests (e.g., Input/
Output Operations Per Second (IOPS)) at such a level that
VM boot-up times and service are unacceptably slow to
users.

[0003] In a known solution, after a system is booted, a
computing configuration is applied to allocate computing
resources for booting of an integer n number of VMs.
However, if more than n number of VMs are requested to be
booted, VM boot time can increase as the computing
resources available can slow down to unacceptable levels.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 depicts an example system.

[0005] FIG. 2 depicts an example operation.

[0006] FIG. 3 depicts an example process.

[0007] FIG. 4 depicts results of experiments.

[0008] FIG. 5 depicts an example system.

[0009] FIG. 6 depicts an example environment.
DETAILED DESCRIPTION

[0010] Various embodiments provide for allocation of

system resources to a virtualized execution environment
(VEE) such as a VM or container at least during a time to
boot the VEE. System resources can include one or more of:
core frequency level during VEE boot, uncore frequency
level during VEE boot and potentially after VEE boot,
numbers of threads that execute a VEE during boot, numbers
of virtual processors (e.g., virtual centralized processing unit
(vCPU)) that execute a VEE during boot, amount of memory
allocated for use during boot of the VEE, amount of storage
allocated for use during boot of the VEE, device interface
(e.g., peripheral component interconnect express (PCle))
bandwidth during boot of the VEE, or power available to a
core or uncore during boot of the VEE. For example, a
thread can include a sequence of executable instructions. For
example, a virtual processor can represent a share of a

May 27, 2021

physical CPU (e.g., physical core, or virtual cores (e.g.,
hyper threads) within a core) that is assigned to a particular
VEE.

[0011] Various embodiments prioritize boots of certain
VEEs that boot simultaneously or at an overlapping time as
other VEEs. For example, certain VEEs can be assigned a
priority designation and various embodiments prioritize
booting priority designated VEEs by assigning system
resources at least during boot of the priority designated
VEEs so that the priority designated VEEs receive sufficient
resources to complete boot in accordance with applicable
boot time requirements. Non-priority designated VEEs that
are executing can be migrated to other resources to provide
sufficient system resources during the boot of the priority
designated VEEs. For example, sufficient system resources
for boot of a priority VEE can be identified as particular
levels of system resources that are to be allocated during
boot of a priority VEE. In some examples, multiple levels of
priority can be available to assign to a VEE and various
system resources can be allocated to boot the VEE based on
its priority level. For example, a VEE can have an associated
service level agreement (SLA), service level objective
(SLO), or class of service (COS or CLOS) and the SLA,
SLO, COS, or CLOS can indicate a time to boot the VEE or
indicate a relative priority level of the VEE. Various embodi-
ments can prioritize boot and or execution of VEEs based on
applicable SLA, SLO, COS, or CLOS. Various embodi-
ments can track system resources and allocate system
resources for VEE boot to comply with applicable SLA,
SLO, COS, or CLOS.

[0012] Various embodiments can potentially reduce the
boot time of VEEs and provide faster recovery time of
services after VEE boot, faster response time to user login
and availability of edge services (e.g., at a Mobile Edge
Compute network element (MEC)). Various embodiments
can potentially provide substantial improvement to VEE and
application boot time and address boot delays during boot
storm for VDI customers. Various embodiments can mitigate
or reduce VEE boot stalls in data centers or edge network
servers.

[0013] Description next turns to an example environment
in which some embodiments can be executed. FIG. 1 depicts
an example system. The system can be implemented as part
of a server, rack of servers, computing platform, or others.
In some examples, processors 102-0 to 102-N can include
one or more of: a central processing unit (CPU) core,
graphics processing unit (GPU), field programmable gate
array (FPGA), or application specific integrated circuit
(ASIC). In some examples, a core can be sold or designed
by Intel®, ARM®, AMD®, Qualcomm®, IBM®, Texas
Instruments®, among others. Various embodiments of any
of processors 102-0 to 102-N can include an XPU, where an
XPU can include at least to: a CPU, a graphics processing
unit (GPU), general purpose GPU (GPGPU), or other pro-
cessing units (e.g., accelerator).

[0014] Any of processors 102-0 to 102-N can execute an
operating system (OS), driver, applications, and/or a virtu-
alized execution environments (VEEs). In some examples,
an OS can include Linux®, Windows® Server, FreeBSD®,
Android®, MacOS®, iOS®, or any other operating system.
A driver can provide configuration and use of any device
such as network interface (NIC) 118.

[0015] An uncore or system agent 104 can include or more
of'a memory controller, a shared cache (e.g., last level cache

US 2021/0157626 Al

(LLC)), a cache coherency manager, arithmetic logic units,
floating point units, core or processor interconnects, Cach-
ing/Home Agent (CHA), or bus or link controllers. System
agent 104 can provide one or more of: direct memory access
(DMA) engine connection, non-cached coherent master
connection, data cache coherency between cores and arbi-
trates cache requests, or Advanced Microcontroller Bus
Architecture (AMBA) capabilities.

[0016] Memory 114 can include any type of volatile
memory, non-volatile memory, or persistent memory. Net-
work interface 118 can provide communication with other
servers through a local network in a rack, data center, or with
servers in other data centers or edge networks. Other hard-
ware and software resources described herein can be used.
[0017] Various embodiments provide for acceleration and
prioritization of booting of VEEs on cores by identifying
system resources specific to VEE boot and allocating
resources to booting VEEs. For example, frequency selector
106 and memory manager 108 can allocate resources to boot
a VEE in accordance with various embodiments.

[0018] Frequency selector 106 can provide an interface to
a hypervisor, orchestrator, or administrator to define priority
of a core and control power distribution among cores. In
some examples, frequency selector 106 can allow some
cores to run at higher frequencies than frequencies of
operation of other cores. For example, frequency selector
106 can increase frequency of operation of some cores while
reducing a frequency of operation of other cores. In some
examples, a device driver can be accessed to specify which
cores operate at a boosted or higher frequency for an amount
of time such as during VEE boot. In some examples,
frequency selector 106 can utilize Intel® Speed Select
Technology Core Power (SST-CP), Intel® Turbo Boost, or
AMD Turbo Core technologies.

[0019] For example, memory manager 108 can allow a
hypervisor, orchestrator, or administrator to control memory
bandwidth allocation to control memory bandwidth distri-
bution across executing VEEs or applications as well as an
amount of cache (e.g., L1, L.2, L3, or LLC) or volatile
memory (e.g., memory 114) allocated to a booting VEE.
Memory bandwidth can be a rate at which data can be read
from or stored into a memory or storage device. In some
examples, memory manager 108 can utilize memory band-
width allocation (MBA) technology and/or Intel® Resource
Director Technology (RDT) cache allocation technology
(CAT). For example, MBA can provide control over
memory bandwidth available to workloads. Memory band-
width can represent a rate at which data can be read from or
stored into a memory device or storage device by a proces-
sor. For example, CAT can allow an operating system (OS),
hypervisor, or virtual machine manager (VMM) to control
allocation of a cache (e.g., last level cache (LLC)) by
pinning or exclusively allocating cache lines of the cache for
use at least during a VEE boot. Some embodiments can
utilize AMD Platform quality of service (QoS) to control
memory bandwidth distribution across executing VEEs or
applications as well as an amount of cache (e.g., L1, L2, L3,
or LLC) or volatile memory (e.g., memory 114) allocated to
a booting VEE as well as other resources.

[0020] Various embodiments use resource tracker 110 and
resource allocator 112 to manage resources allocated to a
VEE during its boot. Resource tracker 110 can track system
resources and parameters during booting of one or more
VEE such as core frequency, uncore frequency, memory

May 27, 2021

bandwidth, device interface bandwidth (e.g., peripheral
component interconnect express (PCle)), rate of IOPS, and
so forth. Resource tracker 110 can also track boot time for
one or more VEEs to assist with determination if VEE boot
time of an SLA is complied with. In some examples,
resource tracker 110 can be implemented as a collection
agent such as collectD, Telegraf, or Node Exportor.
Resource usage can be sent to a management and orches-
tration control systems to indicate resource usage and avail-
able resources for VEE boot as well as VEE boot times.

[0021] Resource allocator 112 can receive resource utili-
zation information from resource tracker 110, and allocate
sufficient resources for use during a VEE boot. For example,
resources allocated to a VEE during boot can include one or
more of: core frequency level during boot, uncore frequency
level during boot and potentially after boot, numbers of
threads that execute a VEE during boot, numbers of virtual
processor (e.g., virtual centralized processing unit (vCPU))
that execute a VEE during boot, amount of memory allo-
cated for use during boot of the VEE, amount of storage
allocated for use during boot of the VEE, power available to
a core or uncore, or others. For example, if a booting VEE
is a priority VEE, then resource allocator 112 can allocate
sufficient resources to boot the VEE in accordance with its
boot time requirement. For example, if a booting VEE is a
normal priority VEE or does not have a priority attached to
it, resource allocator 112 can apply best efforts to boot the
VEE using available resources or increase one or more
resources such as core frequency to potentially reduce a time
to boot the VEE. In some examples, resource allocator 112
can be part of a Virtualized Infrastructure Manager (VIM)
layer consistent with European Telecommunications Stan-
dards Institute (ETSI) Network Function Virtualization
(NFV) Management and Orchestration (MANO); part of a
management software stack such as Kubernetes, OpenStack,
or VMware vSphere; or integrated into an software defined
networking (SDN) controller or load balancer management
stack.

[0022] For example, if a booting VEE has a priority
attached to it such as to meet a certain boot time in an SLA,
resource allocator 112 can attempt to allocate resources to
attempt to reduce a time to boot the VEE. For example,
resource allocator 112 can use frequency selector 106 to
increase a frequency of operation or power available to a
core that boots the VEE. Frequency selector 106 can place
one or more cores in offline or lower power mode so that the
core that boots the VEE can run at a higher frequency.
Frequency selector 106 can increase a frequency of system
agent 104 to reduce boot time of the VEE. For example,
increasing the frequency of system agent 104 can reduce
VEE boot time, in some examples. In some examples,
memory manager 108 can allocate more memory bandwidth
or cache space to the core that is to boot the priority VEE.
If bandwidth is not available, then memory manager 108 can
reduce the memory bandwidth available to already booted
VEEs, whether normal priority or not. If there is a limit on
available resources to boot a priority VEE, resource alloca-
tor 112 can prioritize resource allocation to the priority VEE
in an order such as: increase frequency of a core that boots
the VEE as a first priority and attempt to increase uncore or
system frequency as a second priority.

[0023] Various non-limiting examples of VEE boot are
described next. For example, VEE boot can be completed at
any of: an operating system (OS) executing as part of a VEE

US 2021/0157626 Al

is running or query-able to run applications; an OS responds
to communications from other devices or software; an
opened connectivity socket or command line socket by the
VEE (e.g., with a NIC or load balancer); VEE login prompt
is available so that an end user can login (e.g., session ID and
password appears on a system administrator’s machine); or
a hypervisor (e.g., Xen or Vcenter (resource manager)) that
visually identifies a state of a VEE as running.

[0024] According to various embodiments, resources for
an integer X number of VEEs can be allocated for VEE boot
so that the VEEs boot concurrently. Concurrent VEE boot
can include multiple VEEs booting at any stage of boot at an
overlapping instant of time even if the VEEs do not start
booting at the same time. VEEs can boot on the same CPU,
same server but different CPUs, same rack of servers or on
disaggregated processor resources, where the disaggregated
processor resources form a composite node and the proces-
sor resources are different CPUs, potentially in different
servers, or different racks of servers. In a situation where
X+y number of VEEs attempt to boot, a priority level of the
y number of VEEs can be used to determine which system
resources are allocated to boot the y number of VEEs. For
example, for a high priority level VEE among the y number
of VEEs, system resources can be allocated to boot at least
the high priority level VEEs. In some cases, certain cores
can be allocated or reserved for use to boot high priority
VEEs. VEEs that execute on such cores, after boot, can be
migrated to other cores for execution and allow such cores
to be used at least to boot other high priority VEEs. In some
examples, if a lower priority VEE executes on a core
allocated to boot VEEs, the low priority VEE can be
migrated to execute on another core after boot, such as a core
operating at lower frequency or lower power. In some
examples, for cores with boosted frequency of operation
(e.g., Turbo Boost or Turbo Core), a frequency of a core can
be reduced after VEE boot and during execution of the VEE.

[0025] A virtualized execution environment (VEE) can
include at least a virtual machine or a container. A virtual
machine (VM) can be software that runs an operating system
and one or more applications. A VM can be defined by
specification, configuration files, virtual disk file, non-vola-
tile random access memory (NVRAM) setting file, and the
log file and is backed by the physical resources of a host
computing platform. A VM can include an operating system
(OS) or application environment that is installed on soft-
ware, which imitates dedicated hardware. The end user has
the same experience on a virtual machine as they would have
on dedicated hardware. Specialized software, called a hyper-
visor, emulates the PC client or server’s CPU, memory, hard
disk, network and other hardware resources completely,
enabling virtual machines to share the resources. The hyper-
visor can emulate multiple virtual hardware platforms that
are isolated from each other, allowing virtual machines to
run Linux®, Windows® Server, VMware ESXi, and other
operating systems on the same underlying physical host.

[0026] A container can be a software package of applica-
tions, configurations and dependencies so the applications
run reliably on one computing environment to another.
Containers can share an operating system installed on the
server platform and run as isolated processes. A container
can be a software package that contains everything the
software needs to run such as system tools, libraries, and
settings. Containers may be isolated from the other software
and the operating system itself. The isolated nature of

May 27, 2021

containers provides several benefits. First, the software in a
container will run the same in different environments. For
example, a container that includes PHP and MySQL can run
identically on both a Linux® computer and a Windows®
machine. Second, containers provide added security since
the software will not affect the host operating system. While
an installed application may alter system settings and
modify resources, such as the Windows registry, a container
can only modify settings within the container.

[0027] For example, applications can execute on proces-
sors 102-0 to 102-N and in a VEE. An application can
include a service, microservice, cloud native microservice,
workload, or software. An application can include a VDI.
Any application can perform packet processing based on one
or more of Data Plane Development Kit (DPDK), Storage
Performance Development Kit (SPDK), OpenDataPlane,
Network Function Virtualization (NFV), software-defined
networking (SDN), Evolved Packet Core (EPC), or 5G
network slicing. Some example implementations of NFV are
described in ETSI specifications or Open Source NFV
MANO from ETSI’s Open Source Mano (OSM) group. A
virtual network function (VNF) can include a service chain
or sequence of virtualized tasks executed on generic con-
figurable hardware such as firewalls, domain name system
(DNS), caching or network address translation (NAT) and
can run in VEEs. VNFs can be linked together as a service
chain. In some examples, EPC is a 3GPP-specified core
architecture at least for Long Term Evolution (LTE) access.
5G network slicing can provide for multiplexing of virtual-
ized and independent logical networks on the same physical
network infrastructure. Some applications can perform
video processing or media transcoding (e.g., changing the
encoding of audio, image or video files).

[0028] Various examples described herein can perform an
application composed of microservices, where each micro-
service runs in its own process and communicates using
protocols (e.g., a Hypertext Transfer Protocol (HTTP)
resource application program interface (API), message ser-
vice, remote procedure calls (RPC), or Google RPC
(gRPC)). Microservices can be independently deployed
using centralized management of these services. The man-
agement system may be written in different programming
languages and use different data storage technologies. A
microservice can be characterized by one or more of: use of
interfaces to independently deployable services (e.g., API,
RPC, gRPC), polyglot programming (e.g., code written in
multiple languages to capture additional functionality and
efficiency not available in a single language), or container or
virtual machine deployment, and decentralized continuous
microservice delivery.

[0029] Various examples can also apply to services boot-
ing on bare metal servers. A bare metal server can host a
single tenant or consumer and its VEEs. For example,
services can include applications, network stack services
(e.g., Linux network stack services), or microservices. For
example, for a sequence or chain of services, where comple-
tion of a prior service is a condition to starting a subsequent
service, booting such prior service can be given priority
treatment and allocation of resources to reduce boot time of
such service. Booting such prior service may lead to faster
completion of the service and reduce a time to complete the
sequence or chain. Various example of services chains or

US 2021/0157626 Al

service sequences include DPDK-based applications such as
memory allocation, hash table access followed by lookup
table access.

[0030] Various examples can apply to booting of VEEs on
another core, CPU, or server after migration, including live
migration. In some examples, after a VEE migrates, the VEE
can be re-booted. For example, VEEs can be migration
because of a power outage, renewable energy optimization,
planned maintenance, or other reasons. For example, an
orchestrator (e.g., VMware ESXi, Xen, MSFT Azure, Ama-
zon Web Services (AWS)) can determine when to migrate a
VEE to execute on another core. A kernel scheduler (e.g.,
Linux task scheduler, Windows task scheduler, etc.) could
determine to change a VEE to execute on a different core of
a CPU or different CPU. Various examples can be used to
determine whether and which CPU or server to migrate a
VEE to based on available resources indicated by resource
tracker 110. Accordingly, multiple different servers can
utilize one or more replicas of resource tracker 110 to
indicate available resources to an orchestrator or kernel
scheduler so that the orchestrator or kernel scheduler can
determine which CPU core or server has sufficient resources
to boot the VEE rapidly enough or at least sufficient
resources specified in an applicable SLA, SLO, or COS. The
orchestrator or kernel scheduler can select a CPU core or
server to migrate the VEE to based on the CPU core or
server that have sufficient resources to boot the VEE based
on its applicable SLA, SLO or COS. In some cases, if an
orchestrator or kernel scheduler determine that boot objec-
tives cannot be met on another CPU core or server, the
orchestrator or kernel scheduler can determine not to
migrate the VEE.

[0031] FIG. 2 depicts an example operation. In scenario
202, VEEO receives priority resources at least during boot to
attempt to reduce time to boot. VEE1 is identified to utilize
best efforts resources during boot. VEE2 and VEE3 receive
best efforts resources at least during boot as the time to boot
may not be subject to an SLA or SLO. In scenario 202, cores
0 and 1 are allocated higher frequency and power and can be
allocated to boot priority VEEs whereas cores 2-15 can
operate at lower frequency and power than that of cores 0
and 1. VEEO is allocated to boot using core 0 whereas VEE1
is executing on core 1 in this example.

[0032] In scenario 204, VEEO has booted and VEE4 and
VEES5 are to boot. VEEO can be migrated to core 12 for
execution and VEE1 can be migrated from higher frequency
core 1 to core 13 for execution. This frees cores 0 and 1 to
boot other VEEs. VEE4 and VEES can be allocated to boot
on respective cores 0 and 1.

[0033] Note that in some scenarios, a CPU and its cores or
CPUs and their cores can be dedicated to boot VEEs
whereas some other CPUs are dedicated to execute VEEs
during run time and after boot. A farm or rack of servers
could be allocated to boot VEEs whereas another farm or
rack of servers could be allocated to boot VEEs and another
farm or rack of servers can be allocated to execute VEEs
after boot. In some examples, migration of a VEE can occur
from a core to a second core where the core and second core
share a cache. VEE context and state information can be
stored in the cache and available for access by the second
core that boots the migrated VEE.

[0034] FIG. 3 depicts an example process. At 302, a
system boot can occur. At 304, a system configuration can be
applied that indicates resource allocation to VEEs during

May 27, 2021

boot and execution. At 306, a number of VEEs can be
requested to be booted on the system. For example, a system
administrator can request X number of VEEs to be booted.
At 308, system resources can be allocated to the booting
VEEs. For example, designated core frequency, uncore
frequency, memory allocation, cache allocation, device con-
nection bandwidth, and so forth can be allocated for use to
boot at least some of the X number of VEEs. At 310, a
determination is made if system resources are available to
boot additional VEEs. System resources can be identified to
be available if additional VEEs can be expected to boot
within applicable boot time requirements, if any. If system
resources are available to boot additional VEEs, the process
can proceed to 306 to boot the additional VEEs using default
system resource configurations for VEE boot. However, if
system resources are determined to not be available to boot
additional VEEs, the process can proceed to 312.

[0035] At 312, a determination can be made to determine
if an additional VEE that is to be booted is a priority VEE.
A VEE can be considered a priority VEE if the VEE has an
SLA, SLO, CLOS, or COS or a specified boot time require-
ment to satisfy. If the VEE is considered a priority VEE, the
process can proceed to 314. If the VEE is not considered a
priority VEE, the VEE can be boot using best efforts on
available resources at 320.

[0036] At 314, resources can be allocated to boot the VEE
according to applicable boot time requirements. Allocation
of resources to a priority VEE during boot can include
increase of one or more of: core frequency level during boot,
uncore frequency level during boot and potentially after
boot, numbers of threads that execute a VEE during boot,
numbers of virtual processor (e.g., virtual centralized pro-
cessing unit (vCPU)) that execute a VEE during boot,
amount of memory allocated for use during boot of the VEE,
amount of storage allocated for use during boot of the VEE,
device interface bandwidth (e.g., to a NIC), or power
available to a core or uncore. At 316, a determination can be
made if all VEEs requested to be booted in 310 have booted.
If all such VEEs have not booted, the process can return to
314. If all such VEEs have booted, the process can proceed
to 318 to return to application of the default system con-
figuration for booting of VEEs.

[0037] Accordingly the process of FIG. 3 can be used to
increase resource allocation to VEEs that are high priority or
priority to attempt VEE boot in accordance with boot time
requirements while allowing non-priority VEEs to boot best
efforts.

[0038] FIG. 4 depicts results of experiments. Sample
results 400 show results of experiments performed using a
VMware ESXi environment. The total VEE boot time
improves nearly 100% when core frequency is increased by
three times for a VEE booting using 4 vCPU with 8 GB
RAM and 25 GB disk size.

[0039] Sample results 450 show results of experiments
whereby VEE boot time depends on uncore frequency as
well. For an ESXi system with 10 VMs with core frequency
fixed at 2.4 Ghz, increasing the uncore frequency from 1.2
Ghz to 2.6 GHz can reduce boot time for a VEE using 4
vCPU with 8 GB RAM and 25 GB disk size.

[0040] Experimental results from frequency boosting
cores used to boot VEE in a ESXi system with VEE size of
4 vCPU using 8 GB RAM, 25 GB disk size is as follows.

US 2021/0157626 Al

System Setting Boot Time Core Frequency observed

2.8 Ghz
3.35 Ghz

Default: 28 Cores active
Boosted frequency: 8 cores offline,
20 core active

81 sec
69 sec

[0041] FIG. 5 depicts a system. Various embodiments of
system 500 can be used to allocate resources to VEEs during
boot. System 500 includes processor 510, which provides
processing, operation management, and execution of
instructions for system 500. Processor 510 can include any
type of microprocessor, central processing unit (CPU),
graphics processing unit (GPU), Accelerated Processing
Unit (APU), XPU, processing core, or other processing
hardware to provide processing for system 500, or a com-
bination of processors. Processor 510 controls the overall
operation of system 500, and can be or include, one or more
programmable general-purpose or special-purpose micro-
processors, digital signal processors (DSPs), programmable
controllers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a com-
bination of such devices.

[0042] In one example, system 500 includes interface 512
coupled to processor 510, which can represent a higher
speed interface or a high throughput interface for system
components that uses higher bandwidth connections, such as
memory subsystem 520 or graphics interface components
540, or accelerators 542. Interface 512 represents an inter-
face circuit, which can be a standalone component or
integrated onto a processor die. Where present, graphics
interface 540 interfaces to graphics components for provid-
ing a visual display to a user of system 500. In one example,
graphics interface 540 can drive a high definition (HD)
display that provides an output to a user. High definition can
refer to a display having a pixel density of approximately
100 PPI (pixels per inch) or greater and can include formats
such as full HD (e.g., 1080p), retina displays, 4K (ultra-high
definition or UHD), or others. In one example, the display
can include a touchscreen display. In one example, graphics
interface 540 generates a display based on data stored in
memory 530 or based on operations executed by processor
510 or both. In one example, graphics interface 540 gener-
ates a display based on data stored in memory 530 or based
on operations executed by processor 510 or both.

[0043] Accelerators 542 can be fixed function and/or
programmable offload engines that can be accessed or used
by a processor 510. For example, an accelerator among
accelerators 542 can provide compression (DC) capability,
cryptography services such as public key encryption (PKE),
cipher, hash/authentication capabilities, decryption, or other
capabilities or services. In some embodiments, in addition or
alternatively, an accelerator among accelerators 542 pro-
vides field select controller capabilities as described herein.
In some cases, accelerators 542 can be integrated into a CPU
socket (e.g., a connector to a motherboard or circuit board
that includes a CPU and provides an electrical interface with
the CPU). For example, accelerators 542 can include a
single or multi-core processor, graphics processing unit,
logical execution unit single or multi-level cache, functional
units usable to independently execute programs or threads,
application specific integrated circuits (ASICs), neural net-
work processors (NNPs), programmable control logic, and
programmable processing elements such as field program-
mable gate arrays (FPGAs).

May 27, 2021

[0044] Accelerators 542 can provide multiple neural net-
works, CPUs, processor cores, general purpose graphics
processing units, or graphics processing units can be made
available for use by artificial intelligence (AI) or machine
learning (ML) models. For example, the Al model can use
or include any or a combination of: a reinforcement learning
scheme, Q-learning scheme, deep-Q learning, or Asynchro-
nous Advantage Actor-Critic (A3C), combinatorial neural
network, recurrent combinatorial neural network, or other Al
or ML model. Multiple neural networks, processor cores, or
graphics processing units can be made available for use by
Al or ML models.

[0045] Memory subsystem 520 represents the main
memory of system 500 and provides storage for code to be
executed by processor 510, or data values to be used in
executing a routine. Memory subsystem 520 can include one
or more memory devices 530 such as read-only memory
(ROM), flash memory, one or more varieties of random
access memory (RAM) such as DRAM, or other memory
devices, or a combination of such devices. Memory 530
stores and hosts, among other things, operating system (OS)
532 to provide a software platform for execution of instruc-
tions in system 500. Additionally, applications 534 can
execute on the software platform of OS 532 from memory
530. Applications 534 represent programs that have their
own operational logic to perform execution of one or more
functions. Processes 536 represent agents or routines that
provide auxiliary functions to OS 532 or one or more
applications 534 or a combination. OS 532, applications
534, and processes 536 provide software logic to provide
functions for system 500. In one example, memory subsys-
tem 520 includes memory controller 522, which is a memory
controller to generate and issue commands to memory 530.
It can be understood that memory controller 522 could be a
physical part of processor 510 or a physical part of interface
512. For example, memory controller 522 can be an inte-
grated memory controller, integrated onto a circuit with
processor 510.

[0046] While not specifically illustrated, it can be under-
stood that system 500 can include one or more buses or bus
systems between devices, such as a memory bus, a graphics
bus, interface buses, or others. Buses or other signal lines
can communicatively or electrically couple components
together, or both communicatively and electrically couple
the components. Buses can include physical communication
lines, point-to-point connections, bridges, adapters, control-
lers, or other circuitry or a combination. Buses can include,
for example, one or more of a system bus, a Peripheral
Component Interconnect (PCI) bus, a Hyper Transport or
industry standard architecture (ISA) bus, a small computer
system interface (SCSI) bus, a universal serial bus (USB), or
an Institute of Electrical and Electronics Engineers (IEEE)
standard 1394 bus (Firewire).

[0047] Inone example, system 500 includes interface 514,
which can be coupled to interface 512. In one example,
interface 514 represents an interface circuit, which can
include standalone components and integrated circuitry. In
one example, multiple user interface components or periph-
eral components, or both, couple to interface 514. Network
interface 550 provides system 500 the ability to communi-
cate with remote devices (e.g., servers or other computing
devices) over one or more networks. Network interface 550
can include an Ethernet adapter, wireless interconnection
components, cellular network interconnection components,

US 2021/0157626 Al

USB (universal serial bus), or other wired or wireless
standards-based or proprietary interfaces. Network interface
550 can transmit data to a device that is in the same data
center or rack or a remote device, which can include sending
data stored in memory. Network interface 550 can receive
data from a remote device, which can include storing
received data into memory. Various embodiments can be
used in connection with network interface 550, processor
510, and memory subsystem 520.

[0048] Various embodiments of network interface 550 can
include an infrastructure processing unit (IPU), data pro-
cessing unit (DPU), or smartNIC. An IPU or DPU can
include a network interface with one or more programmable
or fixed function processors to perform offload of operations
that could have been performed by a CPU. The IPU or DPU
can include one or more memory devices. In some
examples, the IPU or DPU can perform virtual switch
operations, manage storage transactions (e.g., compression,
cryptography, virtualization), and manage operations per-
formed on other IPUs, DPUs, servers, or devices.

[0049] In one example, system 500 includes one or more
input/output (I/O) interface(s) 560. /O interface 560 can
include one or more interface components through which a
user interacts with system 500 (e.g., audio, alphanumeric,
tactile/touch, or other interfacing). Peripheral interface 570
can include any hardware interface not specifically men-
tioned above. Peripherals refer generally to devices that
connect dependently to system 500. A dependent connection
is one where system 500 provides the software platform or
hardware platform or both on which operation executes, and
with which a user interacts.

[0050] In one example, system 500 includes storage sub-
system 580 to store data in a nonvolatile manner. In one
example, in certain system implementations, at least certain
components of storage 580 can overlap with components of
memory subsystem 520. Storage subsystem 580 includes
storage device(s) 584, which can be or include any conven-
tional medium for storing large amounts of data in a non-
volatile manner, such as one or more magnetic, solid state,
or optical based disks, or a combination. Storage 584 holds
code or instructions and data 586 in a persistent state (e.g.,
the value is retained despite interruption of power to system
500). Storage 584 can be generically considered to be a
“memory,” although memory 530 is typically the executing
or operating memory to provide instructions to processor
510. Whereas storage 584 is nonvolatile, memory 530 can
include volatile memory (e.g., the value or state of the data
is indeterminate if power is interrupted to system 500). In
one example, storage subsystem 580 includes controller 582
to interface with storage 584. In one example controller 582
is a physical part of interface 514 or processor 510 or can
include circuits or logic in both processor 510 and interface
514.

[0051] A volatile memory is memory whose state (and
therefore the data stored in it) is indeterminate if power is
interrupted to the device. Dynamic volatile memory requires
refreshing the data stored in the device to maintain state.
One example of dynamic volatile memory incudes DRAM
(Dynamic Random Access Memory), or some variant such
as Synchronous DRAM (SDRAM). Another example of
volatile memory includes cache or static random access
memory (SRAM). A memory subsystem as described herein
may be compatible with a number of memory technologies,
such as DDR3 (Double Data Rate version 3, original release

May 27, 2021

by JEDEC (Joint Electronic Device Engineering Council) on
Jun. 27, 2007). DDR4 (DDR version 4, initial specification
published in September 2012 by JEDEC), DDR4E (DDR
version 4), LPDDR3 (Low Power DDR version3, JESD209-
3B, August 2013 by JEDEC), LPDDR4) LPDDR version 4,
JESD209-4, originally published by JEDEC in August
2014), WI02 (Wide Input/output version 2, JESD229-2
originally published by JEDEC in August 2014, HBM (High
Bandwidth Memory, JESD325, originally published by
JEDEC in October 2013, LPDDRS (currently in discussion
by JEDEC), HBM2 (HBM version 2), currently in discus-
sion by JEDEC, or others or combinations of memory
technologies, and technologies based on derivatives or
extensions of such specifications.

[0052] A non-volatile memory (NVM) device is a memory
whose state is determinate even if power is interrupted to the
device. In one embodiment, the NVM device can comprise
a block addressable memory device, such as NAND tech-
nologies, or more specifically, multi-threshold level NAND
flash memory (for example, Single-Level Cell (“SLC”),
Multi-Level Cell (“MLC”), Quad-Level Cell (“QLC”), Tri-
Level Cell (“TLC”), or some other NAND). ANVM device
can also comprise a byte-addressable write-in-place three
dimensional cross point memory device, or other byte
addressable write-in-place NVM device (also referred to as
persistent memory), such as single or multi-level Phase
Change Memory (PCM) or phase change memory with a
switch (PCMS), NVM devices that use chalcogenide phase
change material (for example, chalcogenide glass), resistive
memory including metal oxide base, oxygen vacancy base
and Conductive Bridge Random Access Memory (CB-
RAM), nanowire memory, ferroelectric random access
memory (FeRAM, FRAM), magneto resistive random
access memory (MRAM) that incorporates memristor tech-
nology, spin transfer torque (STT)-MRAM, a spintronic
magnetic junction memory based device, a magnetic tun-
neling junction (MTJ) based device, a DW (Domain Wall)
and SOT (Spin Orbit Transfer) based device, a thyristor
based memory device, or a combination of any of the above,
or other memory.

[0053] A power source (not depicted) provides power to
the components of system 500. More specifically, power
source typically interfaces to one or multiple power supplies
in system 500 to provide power to the components of system
500. In one example, the power supply includes an AC to
DC (alternating current to direct current) adapter to plug into
a wall outlet. Such AC power can be renewable energy (e.g.,
solar power) power source. In one example, power source
includes a DC power source, such as an external AC to DC
converter. In one example, power source or power supply
includes wireless charging hardware to charge via proximity
to a charging field. In one example, power source can
include an internal battery, alternating current supply,
motion-based power supply, solar power supply, or fuel cell
source.

[0054] In an example, system 500 can be implemented
using interconnected compute sleds of processors, memo-
ries, storages, network interfaces, and other components.
High speed interconnects can be used such as: Ethernet
(IEEE 802.3), remote direct memory access (RDMA),
InfiniBand, Internet Wide Area RDMA Protocol (iWARP),
Transmission Control Protocol (TCP), User Datagram Pro-
tocol (UDP), quick UDP Internet Connections (QUIC),
RDMA over Converged Ethernet (RoCE), Peripheral Com-

US 2021/0157626 Al

ponent Interconnect express (PCle), Intel QuickPath Inter-
connect (QPI), Intel Ultra Path Interconnect (UPI), Intel
On-Chip System Fabric (IOSF), Omnipath, Compute
Express Link (CXL), HyperTransport, high-speed fabric,
NVLink, Advanced Microcontroller Bus Architecture
(AMBA) interconnect, OpenCAPI, Gen-Z, Cache Coherent
Interconnect for Accelerators (CCIX), Infinity Fabric (IF),
3GPP Long Term Evolution (LTE) (4G), 3GPP 5G, and
variations thereof. Data can be copied or stored to virtual-
ized storage nodes using a protocol such as NVMe over
Fabrics (NVMe-oF) or NVMe.

[0055] Embodiments herein may be implemented in vari-
ous types of computing and networking equipment, such as
switches, routers, racks, and blade servers such as those
employed in a data center and/or server farm environment.
The servers used in data centers and server farms comprise
arrayed server configurations such as rack-based servers or
blade servers. These servers are interconnected in commu-
nication via various network provisions, such as partitioning
sets of servers into Local Area Networks (LANs) with
appropriate switching and routing facilities between the
LANS to form a private Intranet. For example, cloud hosting
facilities may typically employ large data centers with a
multitude of servers. A blade comprises a separate comput-
ing platform that is configured to perform server-type func-
tions, that is, a “server on a card.” Accordingly, each blade
includes components common to conventional servers,
including a main printed circuit board (main board) provid-
ing internal wiring (e.g., buses) for coupling appropriate
integrated circuits (ICs) and other components mounted to
the board.

[0056] FIG. 6 depicts an environment 600 includes mul-
tiple computing racks 602, one or more including a Top of
Rack (ToR) switch 604, a pod manager 606, and a plurality
of pooled system drawers. Various embodiments can be used
among servers in racks to attempt to increase speed of VEE
boot. Generally, the pooled system drawers may include
pooled compute drawers and pooled storage drawers.
Optionally, the pooled system drawers may also include
pooled memory drawers and pooled Input/Output (I/O)
drawers. In the illustrated embodiment the pooled system
drawers include an Intel® XEON® pooled computer drawer
608, and Intel® ATOM™ pooled compute drawer 610, a
pooled storage drawer 612, a pooled memory drawer 614,
and a pooled /O drawer 616. Any of the pooled system
drawers is connected to ToR switch 604 via a high-speed
link 618, such as an Ethernet link and/or a Silicon Photonics
(SiPh) optical link.

[0057] Multiple of the computing racks 602 may be inter-
connected via their ToR switches 604 (e.g., to a pod-level
switch or data center switch), as illustrated by connections
to a network 620. In some embodiments, groups of com-
puting racks 602 are managed as separate pods via pod
manager(s) 606. In one embodiment, a single pod manager
is used to manage all of the racks in the pod. Alternatively,
distributed pod managers may be used for pod management
operations.

[0058] Environment 600 further includes a management
interface 622 that is used to manage various aspects of the
environment. This includes managing rack configuration,
with corresponding parameters stored as rack configuration
data 624.

[0059] In some examples, embodiments described herein
can be used in connection with a base station (e.g., 3G, 4G,

May 27, 2021

5G and so forth), macro base station (e.g., 5G networks),
picostation (e.g., an IEEE 802.11 compatible access point),
nanostation (e.g., for Point-to-MultiPoint (PtMP) applica-
tions), on-premises data centers, off-premises data centers,
edge network elements, fog network elements, and/or hybrid
data centers (e.g., data center that use virtualization, cloud
and software-defined networking to deliver application
workloads across physical data centers and distributed
multi-cloud environments).

[0060] For example, various embodiments can be used for
wired or wireless protocols (e.g., 3GPP Long Term Evolu-
tion (LTE) (4G) or 3GPP 5@G), on-premises data centers,
off-premises data centers, base station devices, sensor data
sender or receiver devices (e.g., for autonomous vehicles or
augmented reality applications), endpoint devices, servers,
routers, edge network elements (computing elements pro-
vided physically closer to a base station or network access
point than a data center), fog network elements (computing
elements provided physically closer to a base station or
network access point than a data center but further from an
edge network), and/or hybrid data centers (e.g., data center
that use virtualization, cloud and software-defined network-
ing to deliver application workloads across physical data
centers and distributed multi-cloud environments). Network
or computing elements can be used in local area network
(LAN), metropolitan area network (MAN), network with
devices connected using optical fiber links, campus area
network (CAN), or wide area network (WAN).

[0061] Various examples may be implemented using hard-
ware elements, software elements, or a combination of both.
In some examples, hardware elements may include devices,
components, processors, Microprocessors, circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, ASICs, PLDs, DSPs,
FPGAs, memory units, logic gates, registers, semiconductor
device, chips, microchips, chip sets, and so forth. In some
examples, software elements may include software compo-
nents, programs, applications, computer programs, applica-
tion programs, system programs, machine programs, oper-
ating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, APIs, instruction sets, computing
code, computer code, code segments, computer code seg-
ments, words, values, symbols, or any combination thereof.
Determining whether an example is implemented using
hardware elements and/or software elements may vary in
accordance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, input data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints, as desired for a given implementation. It is noted
that hardware, firmware and/or software elements may be
collectively or individually referred to herein as “module,”
or “logic.” A processor can be one or more combination of
a hardware state machine, digital control logic, central
processing unit, or any hardware, firmware and/or software
elements.

[0062] Some examples may be implemented using or as an
article of manufacture or at least one computer-readable
medium. A computer-readable medium may include a non-
transitory storage medium to store logic. In some examples,
the non-transitory storage medium may include one or more
types of computer-readable storage media capable of storing
electronic data, including volatile memory or non-volatile

US 2021/0157626 Al

memory, removable or non-removable memory, erasable or
non-erasable memory, writeable or re-writeable memory,
and so forth. In some examples, the logic may include
various software elements, such as software components,
programs, applications, computer programs, application
programs, system programs, machine programs, operating
system software, middleware, firmware, software modules,
routines, subroutines, functions, methods, procedures, soft-
ware interfaces, AP, instruction sets, computing code, com-
puter code, code segments, computer code segments, words,
values, symbols, or any combination thereof.

[0063] According to some examples, a computer-readable
medium may include a non-transitory storage medium to
store or maintain instructions that when executed by a
machine, computing device or system, cause the machine,
computing device or system to perform methods and/or
operations in accordance with the described examples. The
instructions may include any suitable type of code, such as
source code, compiled code, interpreted code, executable
code, static code, dynamic code, and the like. The instruc-
tions may be implemented according to a predefined com-
puter language, manner or syntax, for instructing a machine,
computing device or system to perform a certain function.
The instructions may be implemented using any suitable
high-level, low-level, object-oriented, visual, compiled and/
or interpreted programming language.

[0064] One or more aspects of at least one example may
be implemented by representative instructions stored on at
least one machine-readable medium which represents vari-
ous logic within the processor, which when read by a
machine, computing device or system causes the machine,
computing device or system to fabricate logic to perform the
techniques described herein. Such representations, known as
“IP cores” may be stored on a tangible, machine readable
medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually
make the logic or processor.

[0065] The appearances of the phrase “one example” or
“an example” are not necessarily all referring to the same
example or embodiment. Any aspect described herein can be
combined with any other aspect or similar aspect described
herein, regardless of whether the aspects are described with
respect to the same figure or element. Division, omission or
inclusion of block functions depicted in the accompanying
figures does not infer that the hardware components, cir-
cuits, software and/or elements for implementing these
functions would necessarily be divided, omitted, or included
in embodiments.

[0066] Some examples may be described using the expres-
sion “coupled” and “connected” along with their derivatives.
These terms are not necessarily intended as synonyms for
each other. For example, descriptions using the terms “con-
nected” and/or “coupled” may indicate that two or more
elements are in direct physical or electrical contact with each
other. The term “coupled,” however, may also mean that two
or more elements are not in direct contact with each other,
but yet still co-operate or interact with each other.

[0067] The terms “first,” “second,” and the like, herein do
not denote any order, quantity, or importance, but rather are
used to distinguish one element from another. The terms “a”
and “an” herein do not denote a limitation of quantity, but
rather denote the presence of at least one of the referenced
items. The term “asserted” used herein with reference to a
signal denote a state of the signal, in which the signal is

May 27, 2021

active, and which can be achieved by applying any logic
level either logic O or logic 1 to the signal. The terms
“follow” or “after” can refer to immediately following or
following after some other event or events. Other sequences
of steps may also be performed according to alternative
embodiments. Furthermore, additional steps may be added
or removed depending on the particular applications. Any
combination of changes can be used and one of ordinary
skill in the art with the benefit of this disclosure would
understand the many variations, modifications, and alterna-
tive embodiments thereof.

[0068] Disjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, is
otherwise understood within the context as used in general
to present that an item, term, etc., may be either X, Y, or Z,
or any combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language is not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one of Y, or at least one of Z to each be present.
Additionally, conjunctive language such as the phrase “at
least one of X, Y, and Z,” unless specifically stated other-
wise, should also be understood to mean X, Y, Z, or any
combination thereof, including “X, Y, and/or Z.”

[0069] Illustrative examples of the devices, systems, and
methods disclosed herein are provided below. An embodi-
ment of the devices, systems, and methods may include any
one or more, and any combination of, the examples
described below.

[0070] Flow diagrams as illustrated herein provide
examples of sequences of various process actions. The flow
diagrams can indicate operations to be executed by a soft-
ware or firmware routine, as well as physical operations. In
some embodiments, a flow diagram can illustrate the state of
a finite state machine (FSM), which can be implemented in
hardware and/or software. Although shown in a particular
sequence or order, unless otherwise specified, the order of
the actions can be modified. Thus, the illustrated embodi-
ments should be understood only as an example, and the
process can be performed in a different order, and some
actions can be performed in parallel. Additionally, one or
more actions can be omitted in various embodiments; thus,
not all actions are required in every embodiment. Other
process flows are possible.

[0071] Various components described herein can be a
means for performing the operations or functions described.
Each component described herein includes software, hard-
ware, or a combination of these. The components can be
implemented as software modules, hardware modules, spe-
cial-purpose hardware (e.g., application specific hardware,
application specific integrated circuits (ASICs), digital sig-
nal processors (DSPs), etc.), embedded controllers, hard-
wired circuitry, and so forth.

[0072] Example 1 includes an apparatus comprising: cir-
cuitry to boot a virtualized execution environment (VEE) by
use of system resources, wherein the system resources are
allocated based on a priority level of the VEE.

[0073] Example 2 includes any example, wherein the
circuitry to boot a VEE by use of system resources is to
access an identification of system resources to use to boot
the VEE and priority level of the VEE from stored data.
[0074] Example 3 includes any example, wherein the
system resources comprise one or more of: frequency of a
core that is to boot the VEE, uncore frequency during boot
of the VEE, device interface bandwidth during boot of the

US 2021/0157626 Al

VEE, memory bandwidth during boot of the VEE, memory
allocation during boot of the VEE, or cache allocation
during boot of the VEE.

[0075] Example 4 includes any example, wherein the
resources comprise a group of two or more cores, wherein
at least one core among the group of two or more cores is to
operate at a first frequency and at least one other core among
the group of two or more cores is to operate at a second
frequency, wherein the first frequency is higher than the
second frequency, and wherein a core that operates at the
first frequency is to boot a high priority level VEE.

[0076] Example 5 includes any example, wherein the
priority level of the VEE is based on a service level
agreement (SLA), service level objective (SLO), or class of
service (COS) that identifies boot time of the VEE.

[0077] Example 6 includes any example, and includes
circuitry to migrate the VEE, after boot, to another core for
execution.

[0078] Example 7 includes any example, wherein the
circuitry is to migrate a second VEE executing on a first core
to a second core to permit the VEE to boot at least using the
first core.

[0079] Example 8 includes any example, wherein the
circuitry is to track available system resources and allocate
a portion of the available system resources to boot the VEE.
[0080] Example 9 includes any example, wherein the
circuitry is to boot a VEE by use of system resources,
wherein the system resources are allocated based on a
priority level of the VEE and also based on a number of
VEEs that boot concurrently.

[0081] Example 10 includes any example, wherein boot
concurrently comprises booting at an overlapping instant in
time at any stage of boot.

[0082] Example 11 includes any example, comprising a
rack with multiple servers to boot multiple VEEs.

[0083] Example 12 includes any example, comprising a
composite node of resources with multiple servers to boot
multiple VEEs.

[0084] Example 13 includes any example, and includes a
computer-readable medium comprising instructions stored
thereon, that if executed by one or more processors, cause
the one or more processors to: allocate resources to boot a
virtualized execution environment (VEE) based on one or
more of: a priority level of the VEE or a number of VEEs
that boot concurrently.

[0085] Example 14 includes any example, wherein the
priority level of the VEE is based on a service level
agreement (SLA), service level objective (SLO), or class of
service (COS) associated with the VEE.

[0086] Example 15 includes any example, wherein the
resources comprise one or more of: frequency of a core that
is to boot the VEE, uncore frequency during boot of the
VEE, device interface bandwidth during boot of the VEE,
memory bandwidth during boot of the VEE, memory allo-
cation during boot of the VEE, or cache allocation during
boot of the VEE.

[0087] Example 16 includes any example, wherein the
resources comprise a group of two or more cores, wherein
at least one core among the group of two or more cores is to
operate at a first frequency and at least one other core among
the group of two or more cores is to operate at a second
frequency, wherein the first frequency is higher than the
second frequency, and wherein a core that operates at the
first frequency is to boot a high priority level VEE.

May 27, 2021

[0088] Example 17 includes any example, and includes a
method comprising: selecting resources to utilize to boot a
virtualized execution environment (VEE) based on one or
more of: a priority level of the VEE or a number of VEEs
that are in a boot state.

[0089] Example 18 includes any example, wherein the
priority level of the VEE is based on a service level
agreement (SLA), service level objective (SLO), or class of
service (COS) associated with the VEE.

[0090] Example 19 includes any example, wherein the
resources comprise one or more of: frequency of a core that
is to boot the VEE, uncore frequency during boot of the
VEE, device interface bandwidth during boot of the VEE,
memory bandwidth during boot of the VEE, memory allo-
cation during boot of the VEE, or cache allocation during
boot of the VEE.

[0091] Example 20 includes any example, wherein the
resources comprise a group of two or more cores, wherein
at least one core among the group of two or more cores
operates at a first frequency and at least one other core
among the group of two or more cores operates at a second
frequency, wherein the first frequency is higher than the
second frequency, and wherein a core that operates at the
first frequency executes boots a high priority level VEE.
[0092] Example 21 includes any example, and includes:
after boot of the VEE, migrating the VEE for execution on
another processor.

What is claimed is:

1. An apparatus comprising:

circuitry to boot a virtualized execution environment

(VEE) by use of system resources, wherein the system
resources are allocated based on a priority level of the
VEE.

2. The apparatus of claim 1, wherein the circuitry to boot
a VEE by use of system resources is to access an identifi-
cation of system resources to use to boot the VEE and
priority level of the VEE from stored data.

3. The apparatus of claim 1, wherein the system resources
comprise one or more of: frequency of a core that is to boot
the VEE, uncore frequency during boot of the VEE, device
interface bandwidth during boot of the VEE, memory band-
width during boot of the VEE, memory allocation during
boot of the VEE, or cache allocation during boot of the VEE.

4. The apparatus of claim 1, wherein the resources com-
prise a group of two or more cores, wherein at least one core
among the group of two or more cores is to operate at a first
frequency and at least one other core among the group of
two or more cores is to operate at a second frequency,
wherein the first frequency is higher than the second fre-
quency, and wherein a core that operates at the first fre-
quency is to boot a high priority level VEE.

5. The apparatus of claim 1, wherein the priority level of
the VEE is based on a service level agreement (SLA),
service level objective (SLO), or class of service (COS) that
identifies boot time of the VEE.

6. The apparatus of claim 1, comprising:

circuitry to migrate the VEE, after boot, to another core

for execution.

7. The apparatus of claim 1, wherein the circuitry is to
migrate a second VEE executing on a first core to a second
core to permit the VEE to boot at least using the first core.

8. The apparatus of claim 1, wherein the circuitry is to
track available system resources and allocate a portion of the
available system resources to boot the VEE.

US 2021/0157626 Al

9. The apparatus of claim 1, wherein the circuitry is to
boot a VEE by use of system resources, wherein the system
resources are allocated based on a priority level of the VEE
and also based on a number of VEEs that boot concurrently.

10. The apparatus of claim 9, wherein boot concurrently
comprises booting at an overlapping instant in time at any
stage of boot.

11. The apparatus of claim 1, comprising a rack with
multiple servers to boot multiple VEEs.

12. The apparatus of claim 1, comprising a composite
node of resources with multiple servers to boot multiple
VEEs.

13. A computer-readable medium comprising instructions
stored thereon, that if executed by one or more processors,
cause the one or more processors to:

allocate resources to boot a virtualized execution envi-

ronment (VEE) based on one or more of: a priority
level of the VEE or a number of VEEs that boot
concurrently.

14. The computer-readable medium of claim 13, wherein
the priority level of the VEE is based on a service level
agreement (SLA), service level objective (SLO), or class of
service (COS) associated with the VEE.

15. The computer-readable medium of claim 13, wherein
the resources comprise one or more of: frequency of a core
that is to boot the VEE, uncore frequency during boot of the
VEE, device interface bandwidth during boot of the VEE,
memory bandwidth during boot of the VEE, memory allo-
cation during boot of the VEE, or cache allocation during
boot of the VEE.

16. The computer-readable medium of claim 13, wherein
the resources comprise a group of two or more cores,

May 27, 2021

wherein at least one core among the group of two or more
cores is to operate at a first frequency and at least one other
core among the group of two or more cores is to operate at
a second frequency, wherein the first frequency is higher
than the second frequency, and wherein a core that operates
at the first frequency is to boot a high priority level VEE.

17. A method comprising:

selecting resources to utilize to boot a virtualized execu-

tion environment (VEE) based on one or more of: a
priority level of the VEE or a number of VEEs that are
in a boot state.

18. The method of claim 17, wherein the priority level of
the VEE is based on a service level agreement (SLA),
service level objective (SLO), or class of service (COS)
associated with the VEE.

19. The method of claim 17, wherein the resources
comprise one or more of: frequency of a core that is to boot
the VEE, uncore frequency during boot of the VEE, device
interface bandwidth during boot of the VEE, memory band-
width during boot of the VEE, memory allocation during
boot of the VEE, or cache allocation during boot of the VEE.

20. The method of claim 17, wherein the resources
comprise a group of two or more cores, wherein at least one
core among the group of two or more cores operates at a first
frequency and at least one other core among the group of
two or more cores operates at a second frequency, wherein
the first frequency is higher than the second frequency, and
wherein a core that operates at the first frequency executes
boots a high priority level VEE.

21. The method of claim 17, comprising: after boot of the
VEE, migrating the VEE for execution on another processor.

#* #* #* #* #*

