US 20150135170A1

a2y Patent Application Publication o) Pub. No.: US 2015/0135170 A1

a9 United States

Murray et al. (43) Pub. Date: May 14, 2015
(54) METHODS AND SYSTEMS FOR PROVIDING (52) US.CL
COMPATIBILITY OF APPLICATIONS WITH CPC ..ot GO6F 9/45516 (2013.01)
MULTIPLE VERSIONS OF AN OPERATING
SYSTEM (57) ABSTRACT
(71) Applicant: Google Inc., Mountain View, CA (US) Methods and systems for providing compatibility of applica-
tions with multiple versions of an operating system are pro-
(72) Inventors: Timothy Murray, San Francisco, CA vided. The method may comprise receiving, by a device, a
(US); Stephen Roderick Hines, San request to perform a function-call of an application that ref-
Jose, CA (US); Rudy Jason Sams, San erences features of a first version of an operating system. The
Jose, CA (US) method also includes determining whether a version of the
) o operating system and a system library on the device supports
(73) Assignee: Google Inc., Mountain View, CA (US) the function-call of'the application so as to be able to perform
dynamic compilation of code in the system library for the
(21) Appl. No.: 14/079,897 function-call at run-time, and based on the determination,
_ accessing a compatibility library associated with the applica-
(22) Filed: Nov. 14, 2013 tion that includes pre-compiled code for execution by a given
s . . device having a given version of the operating system other
Publication Classification than the first version of the operating system. The method also
(51) Int.Cl includes at run-time, performing the function-call using cor-
G0;$ F 9 /455 (2006.01) responding pre-compiled code from the compatibility library.
400 — { START ’

RECEIVING A REQUEST TO PERFORM A FUNCTION-CALL OF AN APPLICATION ~
402
A
DETERMINING WHETHER A VERSION OF THE OPERATING SYSTEM AND THE SYSTEM
LIBRARY ON THE DEVICE SUPPORTS THE FUNCTION-CALL OF THE APPLICATION SO AS TO
BE ABLE TO PERFORM DYNAMIC COMPILATION OF CODE IN THE SYSTEM LIBRARY FOR [
THE FUNCTION-CALL AT RUN-TIME OF THE APPLICATION ON THE DEVICE 404
A
BASED ON THE DETERMINATION, ACCESSING A COMPATIBILITY LIBRARY ASSOCIATED
WITH THE APPLICATION ™
406
AT RUN-TIME OF THE APPLICATION ON THE DEVICE, PERFORMING THE FUNCTION-CALL
OF THE APPLICATION USING CORRESPONDING PRE-COMPILED CODE FROM THE ~
COMPATIBILITY LIBRARY 408

END

Patent Application Publication = May 14, 2015 Sheet 1 of 5 US 2015/0135170 A1

/1 00
SERVER
104
DATABASE
MODULE
110

FIG. 1

106

(]

~—

COMPUTING
DEVICE
0

May 14, 2015 Sheet 2 of 5 US 2015/0135170 A1

Patent Application Publication

90¢

(013 ‘0/1 ‘AdoWaN ‘NdO ‘NdD)
JHVMAHYH

y0c
W3LSAS ONILYYIdO

T 3

qcoc 4114
NOILYOIddY NOILYOIddY

—
—
—
—

T i ;
5
IR -

May 14, 2015 Sheet 3 of 5 US 2015/0135170 A1

Patent Application Publication

¢ Old

LININIOVNYN suIANQ

BLO¢

Savyan
mmz_zoé_ 4<:E_>U m W3LSAS/3H0)

‘qgo¢

)

‘egog

0€ JNILNNY WIALSAS ONILVYIHdO

AdvaElT YHOMINV 4
mm ._wzmn_ﬁw m SIIHAYHD vm viaap v

\970¢

‘qz0¢ ‘ezog

¢0¢ savaan

ALNIgILYdWO SY3AIA0Y
) Comas) Chramos) Goman) (masas wan)
30¢ PYOE Lap0¢ ay0¢ \ey0g

$0€ SAUVHEIT NOILYIIddY

HIOVNVIN 43HONNYT
JOVMIVd NOILYOIddY

090¢ q90¢

360¢

hoz_oe.wmm_ s_v m ERL/I4] v

Lqs0¢

0€ SNOILYOITddY

eg0¢

¥vg SNLVIS

290¢

0 SIOINY3S WIALSAS

>00€

Patent Application Publication = May 14, 2015 Sheet 4 of 5 US 2015/0135170 A1

RECEIVING A REQUEST TO PERFORM A FUNCTION-CALL OF AN APPLICATION ™~
402

Y
DETERMINING WHETHER A VERSION OF THE OPERATING SYSTEM AND THE SYSTEM
LIBRARY ON THE DEVICE SUPPORTS THE FUNCTION-CALL OF THE APPLICATION SO AS TO
BE ABLE TO PERFORM DYNAMIC COMPILATION OF CODE IN THE SYSTEM LIBRARY FOR |

THE FUNCTION-CALL AT RUN-TIME OF THE APPLICATION ON THE DEVICE 404

BASED ON THE DETERMINATION, ACCESSING A COMPATIBILITY LIBRARY ASSOCIATED
WITH THE APPLICATION

406
y
AT RUN-TIME OF THE APPLICATION ON THE DEVICE, PERFORMING THE FUNCTION-CALL
OF THE APPLICATION USING CORRESPONDING PRE-COMPILED CODE FROM THE ™~
COMPATIBILITY LIBRARY 408

END

FIG. 4

May 14, 2015 Sheet S of 5 US 2015/0135170 A1

Patent Application Publication

816
(S)y0ss300¥d

I\/

9IS

3009 INHOVN

3718v1ndaxy

G Old

IS

A

437IdNOD

vic
(s)ai4
AYVHEIT WALSAS

208
114 39YHOVd NOILYOITddY

y0S
(3714 394n0S ddv)
3goaollg

:'\I/

900G
3114 SSY19

806
A8

ALMIFILYdNOD

(%
(S)NolLONNA
ITIVMOAN|

US 2015/0135170 Al

METHODS AND SYSTEMS FOR PROVIDING
COMPATIBILITY OF APPLICATIONS WITH
MULTIPLE VERSIONS OF AN OPERATING
SYSTEM

BACKGROUND

[0001] Unless otherwise indicated herein, the materials
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

[0002] Mobile devices such as smartphones have become
more advanced. Some smartphones incorporate a processor
that runs computer code, including code that implements an
operating system (OS). Computer code run by a smartphone
may include both native code (e.g., code written by a creator
of the smartphone and/or the operating system) and code
developed by third parties (e.g., third party applications). To
aid third parties in developing applications, the creator of the
smartphone and/or the operating system may offer applica-
tion developers a software development kit (SDK) and/or an
application programming interface (API) that can be inte-
grated into or accessed by applications that the developers
create. An SDK may include a library of native code compo-
nents, samples and documentation.

SUMMARY

[0003] In one example, a method performed by a device
having an operating system and a system library is provided.
The method comprises receiving, by a processor of the
device, a request to perform a function-call of an application,
and the function-call references one or more features of a first
version of the operating system. The method also comprises
determining whether a version of the operating system and
the system library on the device supports the function-call of
the application so as to be able to perform dynamic compila-
tion of code in the system library for the function-call at
run-time of the application on the device. The method also
comprises based on the determination, accessing a compat-
ibility library associated with the application, and the com-
patibility library includes pre-compiled code for execution by
a given device having a given version of the operating system
other than the first version of the operating system. The
method also comprises at run-time of the application on the
device, performing the function-call of the application using
corresponding pre-compiled code from the compatibility
library.

[0004] In another example, a computer readable memory
configured to store instructions that, when executed by a
computing device having an operating system and a system
library, cause the computing device to perform functions is
provided. The functions comprise receiving a request to per-
form a function-call of an application, and the function-call
references one or more features of a first version of the oper-
ating system. The functions also comprise determining
whether a version of the operating system and the system
library on the computing device supports the function-call of
the application so as to be able to perform dynamic compila-
tion of code in the system library for the function-call at
run-time of the application on the computing device. The
functions further comprise based on the determination,
accessing a compatibility library associated with the applica-
tion, and the compatibility library includes pre-compiled
code for execution by a given device having a given version of

May 14, 2015

the operating system other than the first version of the oper-
ating system. The functions also comprise at run-time of the
application on the computing device, performing the func-
tion-call of the application using corresponding pre-compiled
code from the compatibility library.

[0005] Instill another example, a system comprising one or
more processors configured to execute functions of an oper-
ating system and a system library, and data storage configured
to store instructions that, when executed by the one or more
processors, cause the system to perform functions is pro-
vided. The functions comprise receiving a request to perform
a function-call of an application, and the function-call refer-
ences one or more features of a first version of the operating
system. The functions also comprise determining whether a
version of the operating system and the system library execut-
able by the one or more processors supports the function-call
of the application so as to be able to perform dynamic com-
pilation of code in the system library for the function-call at
run-time of the application on the system. The functions also
comprise based on the determination, accessing a compatibil-
ity library associated with the application, and the compat-
ibility library includes pre-compiled code for execution by a
given system having a given version of the operating system
other than the first version of the operating system. The func-
tions also comprise at run-time of the application on the
system, performing the function-call of the application using
corresponding pre-compiled code from the compatibility
library.

[0006] In yet another example, a system is provided that
includes a means for receiving a request to perform a func-
tion-call of an application, and the function-call references
one or more features of a first version of an operating system.
The system also includes a means for determining whether a
version of the operating system and a system library supports
the function-call of'the application so as to be able to perform
dynamic compilation of code in the system library for the
function-call at run-time of the application. The system also
includes a means for based on the determination, accessing a
compatibility library associated with the application, and the
compatibility library includes pre-compiled code for execu-
tion by a given device having a given version of the operating
system other than the first version of the operating system.
The system also includes a means for at run-time of the
application, performing the function-call of the application
using corresponding pre-compiled code from the compatibil-
ity library.

[0007] These as well as other aspects, advantages, and
alternatives, will become apparent to those of ordinary skill in
the art by reading the following detailed description, with
reference where appropriate to the accompanying figures.

BRIEF DESCRIPTION OF THE FIGURES

[0008] FIG. 1 illustrates an example communication sys-
tem by which an example method may be implemented.
[0009] FIG. 2 illustrates an example computing device by
which an example method may be implemented.

[0010] FIG. 3 is a block diagram illustrating example com-
ponents of an operating system used by a computing device.
[0011] FIG. 4 is a block diagram of an example method for
providing compatibility of applications with multiple ver-
sions of an operating system, in accordance with at least some
embodiments described herein.

[0012] FIG. 5 illustrates an example run-time compiler
flow diagram.

US 2015/0135170 Al

DETAILED DESCRIPTION

[0013] The following detailed description describes vari-
ous features and functions of the disclosed systems and meth-
ods with reference to the accompanying figures. In the fig-
ures, similar symbols identify similar components, unless
context dictates otherwise. The illustrative system and
method embodiments described herein are not meant to be
limiting. It may be readily understood that certain aspects of
the disclosed systems and methods can be arranged and com-
bined in a wide variety of different configurations, all of
which are contemplated herein.

[0014] Computing devices are often configured to operate
using an operating system (OS), and the operating system is
often updated over time with newer versions that offer addi-
tional and/or alternate functionality. Computing devices also
may include a number of applications, each of which may be
developed based on functionality offered by a specific version
of'an operating system. For example, newer versions of oper-
ating systems may have new versions of system frameworks
that are not available in older versions of the operating sys-
tem. I[f an application is written based on the newer version of
the operating system, the application may not be able to be
executed on devices that have the older version. The same
applies for applications that are written based on older ver-
sions of the operating system that may not be able to be
executed on the newer version (if the newer version does not
have backwards compatibility). Thus, if a system framework
does not support all functionality required by a particular
piece of code of an application, the code may not be able to be
generated at run-time, and the application may not function
properly.

[0015] In some examples, computing devices may have a
system library that is bundled with an operating system of the
device (and may be updated with every new release of the
operating system), and developers can specify the system
library for execution of features of the application. To avoid
the need for developers to develop multiple versions of an
application for each of multiple versions of existing operating
systems, (e.g., a version that takes advantage of new func-
tionality available in new frameworks and a version that is
compatible with a wide range of operating systems), a com-
patibility library can also be provided for pre-compiled code
when needed. Thus, if an application specifies newer features
than what is installed on the device, the compatibility library
can be accessed to emulate a feature set that is included in a
latest version of the operating system. As a result, a determi-
nation can be made as to whether an operating system is of a
sufficient version to run the application using the system
library, or whether to emulate functions of the system library
through use of the compatibility library to enable full perfor-
mance ofall applications on latest versions and older versions
of an operating system.

[0016] Thus, within examples herein, a method is provided
that includes receiving a request to perform a function-call of
an application that references one or more features of a first
version of the operating system, and determining whether a
version of the operating system and the system library on the
device supports the function-call of the application so as to be
able to perform dynamic compilation of code in the system
library for the function-call at run-time of the application on
the device. Based on the determination, the method includes
accessing a compatibility library associated with the applica-
tion that includes pre-compiled code for execution by a given
device having a given version of the operating system other

May 14, 2015

than the first version of the operating system, and at run-time
of'the application on the device, performing the function-call
of the application using corresponding pre-compiled code
from the compatibility library. In some examples, when the
operating system is not compatible with the application, the
compatibility library can be accessed to obtain pre-compiled
code for execution. Alternatively, when the operating system
is compatible with the application, the application may be
executed using dynamic compilation.

[0017] Referring now to the figures, FIG. 1 illustrates an
example communication system 100 by which an example
method may be implemented. The system 100 includes a
computing device 102 that may communicate with a server
104 via one or more wired and/or wireless interfaces. The
computing device 102 and the server 104 may communicate
within a network. Alternatively, the computing device 102
and the server 104 may each reside within a respective net-
work.

[0018] The computing device 102 may be any type of com-
puting device or transmitter including a laptop computer, a
mobile telephone, or tablet computing device, etc., that is
configured to transmit data 106 to, or receive data 108 from,
the server 104 in accordance with the method and functions
described herein. The computing device 102 may include a
user interface, a communication interface, a processor, and
data storage comprising instructions executable by the pro-
cessor for carrying out one or more functions relating to the
data sent to, or received by, the server 104. The user interface
may include buttons, a touchscreen, a microphone, and/or any
other elements for receiving inputs, as well as a speaker, one
or more displays, and/or any other elements for communicat-
ing outputs.

[0019] The server 104 may be any entity or computing
device arranged to carry out the method and computing
device functions described herein. Server 104 may include
the same components as computing device 102. Further, the
server 104 may be configured to send data 108 to or receive
data 106 from the computing device 102. The server 104 may
have a database module 110 configured to store a number of
applications, music, electronic books, etc., for purchase and/
or download by various computing devices. The database
module 110 may thus include a digital distribution platform
forapplications, online electronic data, or other digital media.
[0020] The data 106 received by the server 104 from the
computing device 102 may take various forms. For example,
the computing device 102 may request applications to be
downloaded from the server 104. The data 108 sent to the
computing device 102 from the server 104 may also take
various forms. For example, the server 104 may send to the
computing device 102 any requested applications, system
libraries, updates to operating systems, etc.

[0021] FIG. 2 illustrates an example computing device 200
by which an example method may be implemented. Comput-
ing device 200 may include applications 202a and 2025 and
an operating system 204 being executed by hardware 206.
Although the example computing device 200 is a smartphone,
aspects of this disclosure are applicable to other computing
devices such as PCs, laptops, tablet computers, etc.

[0022] Each ofthe applications 202a and 2026 may include
instructions that when executed cause the computing device
200 to perform specific tasks or functions. Applications 2024
and 2025 may be native applications (i.e., installed by a
manufacturer of the computing device 200 and/or a manufac-
turer of the operating system 204) or may be a third-party

US 2015/0135170 Al

application installed by a user of the computing device 200
after purchasing the computing device. A non-exhaustive list
of'example applications includes: a media player application
that accepts media files as inputs and generates corresponding
video and/or audio to the output device(s); an e-reader appli-
cation which accepts electronic documents (books, maga-
zines, etc.) as input and presents the content of the document
via the output device(s); a feed reader that accepts feeds
delivered over the Internet (e.g., RSS feeds and/or feeds from
social network sites) as input and presents the feeds via the
output device(s); amap application that displays amap via the
output device(s); a note-taking application, a bookmarking
application, and a word processing, spreadsheet, and/or pre-
sentation application that accepts specifically formatted files
as inputs and presents them via the output devices for viewing
and/or editing.

[0023] The operating system 204 may interact with and
manage hardware 206 to provide services for the applications
202a and 202b. For example, an application 202¢ may
request that the operating system 204 direct an integrated
camera of hardware 206 to capture a visual image and that the
hardware 206 store the image to memory.

[0024] The hardware 206 may include, for example, a cen-
tral processing unit (CPU), a graphics processor (GPU),
memory, an input/output (I/O) interface, user input device(s),
output device(s), or other sensors. Components of hardware
206 may be controlled by instructions contained in applica-
tions 202a and 2025 and operating system 204.

[0025] The central processing unit (CPU) may be operable
to effectuate the operation of the computing device 200 by
executing instructions stored in memory or disk storage. Such
instructions may include the operating system 204 and the
applications 202a and 2026. The CPU may, for example,
comprise a single or multi-core processor, an application
specific integrated circuit (ASIC), field programmable gate
array (FPGA), and/or any other suitable circuitry.

[0026] The graphics processor (i.e., GPU) may be operable
to generate a video stream for output to the screen based on
instructions and/or data received from the CPU. That is, data
structures corresponding to images to be displayed on the
screen may be stored to and read from the memory or disk
storage by the CPU. The CPU may convey such data struc-
tures to the graphics processor via a standardized application
programming interface (API) such as, for example, Standard
Widget Toolkit (SWT), the DirectX Video Acceleration API,
the Video Decode Acceleration Framework API, or other
suitable API.

[0027] The memory may include program memory and
run-time memory. The memory may, for example, comprise
non-volatile memory, volatile memory, read only memory
(ROM), random access memory (RAM), flash memory, mag-
netic storage, and/or any other suitable memory (which may
be non-transitory media). Program memory may store
instructions executable by the CPU to effectuate operation of
the operating system 204 and the applications 202a and 2025.
Runtime memory may store data generated or used during
execution of the operating system 204 or applications 202a
and 2025.

[0028] The input/output (I/O) interface may be operable to
receive signals from the input device(s), and provide corre-
sponding signals to the CPU and/or the graphics processor,
for example.

[0029] The input device(s) may include, for example, a
mouse, a touchpad, a motion sensor, a trackball, a voice

May 14, 2015

recognition device, a keyboard, or any other suitable input
device which enables a user to interact with the computing
device 200.

[0030] The output devices may include, for example, a
screen and speakers. The screen may be, for example, a liquid
crystal display (LCD) screen, an organic light emitting diode
(OLED) screen, an e-ink screen, and/or any other suitable
device for presenting a graphical user interface.

[0031] FIG. 3 is a block diagram illustrating example com-
ponents of an operating system 300 used by a computing
device. The operating system 300 may invoke multiple pro-
cesses, while ensuring that an associated phone application is
responsive, and that wayward applications do not cause a
fault of the operating system 300. Using task switching, the
operating system 300 may allow for the switching of appli-
cations while on a telephone call, without losing the state of
each associated application. The operating system 300 may
use an application framework to enable reuse of components,
and provide a scalable experience by combining pointing
device and keyboard inputs and by allowing for pivoting. The
operating system 300 may generally be organized into com-
ponents including a kernel 301, libraries 302, an operating
system runtime 303, application libraries 304, applications
305, and system services 306.

[0032] Thekernel 301 may include drivers 301a thatenable
software such as the operating system 300 and applications
306 to interact with input/output devices. The kernel 301 may
also include power management processes 3015 that coordi-
nate hardware power usage and provide alerts when an inte-
grated battery is running low on power, for example.

[0033] The libraries 302 may include several subcompo-
nents, such as media framework 302a, graphics library 3025,
and OpenGL ES 302¢. The media framework 302a¢ may
include functionality that supports standard video, audio and
still-frame formats. The graphics library 30256 may support
two-dimensional application drawing. The OpenGL ES 302¢
may support gaming and three-dimensional graphics render-
ing.

[0034] The operating system runtime 303 may include
core/system libraries 3034 and virtual machines 30354. The
virtual machines 3035 may be custom virtual machines that
run a customized file format. The virtual machines 3035 may
be used with an embedded environment since the virtual
machines 3035 use runtime memory efficiently, implement a
CPU optimized bytecode interpreter, and support multiple
virtual machine processes per device.

[0035] The application libraries 304 may include libraries
for view system 3044, resource manager 3045, and content
providers 304¢. These application libraries may provide sup-
port for applications 305. The application libraries 304 may
also include software developer kit(s) (SDKs) 3044 and app
compatibility 304e, both of which may be associated with or
used by applications 305 to perform functions of the applica-
tions 305.

[0036] The SDKs 304d may further adapt the applications
305 to be able to communicate with one or more pieces of
code or functions in the operating system 300. As an example,
an application may incorporate an SDK that may adapt the
application to be able to communicate with one or more
content servers. A content server may provide advertisements
and the content SDK may include information about where to
get the advertisements, for example, an address of the content
server.

US 2015/0135170 Al

[0037] The applications 305 may include any number of
applications, and examples include a dialer 3054, messaging
3055, and a browser 305¢. The dialer 3054 may provide
functionality related to placing or receiving phone calls. The
messaging 30556 may provide functionality related to receiv-
ing and sending messages, such as email, voice mail, or text
messages. The browser 305¢ may provide functionality
related to sending or receiving information via the world wide
web. Many other types of applications exist as well and may
be downloaded and installed on a computing device.

[0038] The system services 306 may include status bar
306a, application launcher 3065, and package manager 306c¢.
The status bar 306a may provide functionality related to
providing system notifications. The application launcher
3065 may provide functionality related to organization and
execution of applications 305. The package manager 306¢
may maintain information for installed applications 305.
[0039] FIG.4 is ablock diagram of an example method 400
for providing compatibility of applications with multiple ver-
sions of an operating system, in accordance with at least some
embodiments described herein. Method 400 shown in FIG. 4
presents an embodiment of a method that, for example, could
be used with a computing device, such as illustrated in FIGS.
1-2. Method 400 may include one or more operations, func-
tions, or actions as illustrated by one or more blocks of 402-
408. Although the blocks are illustrated in a sequential order,
these blocks may in some instances be performed in parallel,
and/or in a different order than those described herein. Also,
the various blocks may be combined into fewer blocks,
divided into additional blocks, and/or removed based on the
desired implementation.

[0040] In addition, for the method 400 and other processes
and methods disclosed herein, the flowchart shows function-
ality and operation of one possible implementation of present
embodiments. In this regard, each block may represent a
module, a segment, or a portion of program code, which
includes one or more instructions executable by a processor
for implementing specific logical functions or steps in the
process. The program code may be stored on any type of
computer readable medium, for example, such as a storage
device including a disk or hard drive. The computer readable
medium may include a non-transitory computer readable
medium, for example, such as computer-readable media that
stores data for short periods of time like register memory,
processor cache and Random Access Memory (RAM). The
computer readable medium may also include non-transitory
media, such as secondary or persistent long term storage, like
read only memory (ROM), optical or magnetic disks, com-
pact-disc read only memory (CD-ROM), for example. The
computer readable media may also be any other volatile or
non-volatile storage systems. The computer readable medium
may be considered a computer readable storage medium, a
tangible storage device, or other article of manufacture, for
example. The program code (or data for the code) may also be
stored or provided on other media including communication
media, such as a wireless communication media, for example.
[0041] In addition, for the method 400 and other processes
and methods disclosed herein, each block in FIG. 4 may
represent circuitry that is wired to perform the specific logical
functions in the process. Functions of the method 400 may be
fully performed by a computing device, or may be distributed
across multiple computing devices and/or a server (e.g., as
shown in FIG. 1). The computing device may have an oper-
ating system, such as the operating system 300 in FIG. 3, and

May 14, 2015

the computing device may also have a system library acces-
sible by the operating system. Other example configurations
of'the computing device are also possible for performing the
method 400 in FIG. 4.

[0042] At block 402, the method 400 includes receiving a
request to perform a function-call of an application. The
request may be received by a processor of the device, and the
function-call may reference one or more features of a first
version of the operating system on the device. As an example,
the function-call may reference a certain API of a given ver-
sion of the operating system. Generally, an operating system
may be updated over time, and newer versions of the operat-
ing system may be released that provide additional or alter-
native functionality than prior versions, for example.

[0043] Atblock 404, the method 400 includes determining
whether a version of the operating system and the system
library on the device supports the function-call of the appli-
cation so as to be able to perform dynamic compilation of
code in the system library for the function-call at run-time of
the application on the device. Depending on a version of the
operating system, the function-call may not be able to be
executed. In examples of the version of the operating system
on the device being able to support the function-call of the
application, at run-time of the application on the device, the
function-call can be performed using dynamic compilation of
code in the system library for the function-call. Dynamic
compilation of code in the system library can be performed at
run-time, and can be based on specific hardware components
of the device.

[0044] In some examples, the method 400 includes deter-
mining whether the version of the operating system on the
device is the first version of the operating system. One way to
do so is through the API in the SDK to query for a level of the
operating system that corresponds to a given version of the
operating system. An API level may be expressed by a single
integer, which indicates a compatibility of a version of the
operating system with an application. The API level may
identify or be associated with a framework API revision
offered by a version of the operating system, and the frame-
work may include a set of packages or classes, a set of XML
elements and attributes for declaring a manifest file, a set of
XML elements and attributes for declaring and accessing
resources, a set of intents, and a set of permissions that appli-
cations can request, for example. The level may indicate a
minimum API required for the application to run, and the
operating system may prevent installation of an application if
the device’s API level is lower than a specified value. The
application may also have an associated integer designating
an API level that the application specifies.

[0045] Updates may often be provided for the framework
API so that new API remains compatible with earlier versions
of'the API, and so many changes to the API are additive and
introduce new or replacement functionality. As parts of the
APl are upgraded, older replaced parts may be deprecated but
not removed so that existing applications can still use the
framework. A particular version of an operating system may
support one API level, although support may be implicit for
all earlier API levels.

[0046] Within examples, the API Level integer or identifier
allows application developers to describe a framework API
revision that is required to execute the application, and allows
the device to negotiate installation of applications such that
version-incompatible applications may not be installed.
Applications can use a manifest element provided by the

US 2015/0135170 Al

framework API to describe minimum and maximum API
Levels under which the applications are able to run, as well as
a preferred API Level that the application is designed to
support. For example, to specify a minimum system API
Level that an application requires to run, the application
would include in its manifest a value of an integer correspond-
ing to the API Level of an earliest version of the operating
system under which the application can run. When the device
attempts to install an application, or when revalidating an
application after a system update, the operating system may
first check the attributes in the application’s manifest and
compare the values to an internal API level of the operating
system. The device may allow installation to begin if the
application API level is less than or equal to the device’s API
level integer. As an example, a specific package may be intro-
duced with APIlevel 3, and if an application uses that AP, the
application may declare so with an attribute with a value of
“3”. The application can then be installable on devices having
operating systems that support API level 3 or higher.

[0047] Atblock 406, the method 400 includes based on the
determination, accessing a compatibility library associated
with the application. The compatibility library includes pre-
compiled code for execution by a given device having a given
version of the operating system other than the first version of
the operating system. For example, based on the version of
the operating system and the system library on the device
being unable to support the function-call of the application,
corresponding pre-compiled code from the compatibility
library is used. In this example, since the operating system
cannot support the function-call, code that has been pre-
compiled for execution by the device can be accessed and
used to execute the function-call, or at least portions of the
function-call. The pre-compiled code in the compatibility
library may be executable to emulate the features of the first
version of the operating system as referenced by the function-
call.

[0048] The device may include the application and the
compatibility library stored on the device. In some examples,
an application package may be downloaded to the device
including the application and the compatibility library
bundled with the application.

[0049] In some examples, the compatibility library
includes the pre-compiled code that when executed provides
less functionality than functionality of code based on
dynamic compilation of code in the system library. The pre-
compiled code may be intended for execution by a device that
has a given version of the operating system released prior to
the first version of the operating system, or released subse-
quent to the first version of the operating system. For
example, newer versions of operating systems may have new
versions of system frameworks that are not available in older
versions of the operating system, and if the application is
written based on the newer version of the operating system,
the application may not be able to be executed on devices that
have the older version. The same applies for applications that
are written based on older versions of the operating system
that may not be able to be executed on the newer version (if
the newer version does not have backwards compatibility).
Thus, if a system framework does not support all functionality
required by a particular piece of code, the code may not be
able to be generated at run-time, and the application may not
function properly. To avoid the need for developers to devel-
oper multiple versions of an application for each of multiple
versions of existing operating systems, (e.g., a version that

May 14, 2015

takes advantage of new functionality available in new frame-
works and a version that is compatible with a wide range of
operating systems), the compatibility library can be accessed
for pre-compiled code when needed.

[0050] In some examples, the compatibility library
includes pre-compiled code that is based on requirements
within an application binary interface (ABI) for a native
developerkit (NDK) of the operating system, and the require-
ments indicate hardware of the given device for using the
given version of the operating system. The NDK may indicate
requirements for functionality that devices have to run the
operating system that guarantee a fundamental subset of
hardware be present on the device. The pre-compiled code
may be configured to be executed on a baseline version of the
operating system, so as to provide compiled functionality for
a lowest common denominator, for example, so that devices
running older operating systems that may not have some
features can still execute the applications.

[0051] Insome examples, the method 400 includes switch-
ing to a compatibility mode for execution of the application,
and then accessing the compatibility library based on the
version of the operating system and the system library on the
device being unable to support the function-call of the appli-
cation. The compatibility mode may be indicative of use of
the compatibility library in contrast to use of the system
library, for example.

[0052] At block 408, the method 400 includes at run-time
of'the application on the device, performing the function-call
of the application using corresponding pre-compiled code
from the compatibility library. In some examples, the com-
patibility library may include a version of pre-compiled code
for a number of versions of the operating system, and thus,
pre-compiled code that corresponds to the version of the
operating system on the device may be selected (e.g., using
the designated API level) and executed on the device.

[0053] FIG. 5 illustrates an example run-time compiler
flow diagram. The run-time compiler may be at run-time or
execution time during which an application is running or
executing. An application package file 502 may be down-
loaded and installed on a computing device, and the applica-
tion package file 502 may include bitcode 504 (e.g., converted
app source files using a host compiler tool), class files 506, a
compatibility library 508, and invokable function(s) 510. At
build time, a version of class files and the bitcode for each
specified version of an operating system may be determined,
and such files may be stored and included in the compatibility
library 508.

[0054] Atrun-time,a compiler 512 may execute the bitcode
504 to compile the code for execution. The compiler 512 may
determine an API level designated by the application package
file 502, and if the API level is less than or equal to an API
level of an operating system of the device, the compiler 512
may access system library file(s) 514 to enable execution of
the application. In contrast, if the API level designated by the
application is more than the API level of the operating system
on the device, the compiler 512 may access the compatibility
library 508 of the application package file 502 to enable
execution of the application. The compiler 512 may then
output executable machine code 516 (e.g., CPU instructions
or GPU instructions) to one or more processors 518 for execu-
tion of the invokable functions 510 of the application.
[0055] Thus, at runtime, after a check to verify API levels
for the operating system on the device (i.e., does the operating
system support AP level greater than or equal to the API level

US 2015/0135170 Al

designated by the application), use the classes to proxy com-
mands to actual operating system when the API levels are
supported. Otherwise, the device is run in compatibility mode
for the application, which in turn, uses compatibility APIs
stored in the compatibility library 508.

[0056] Within examples, applications may generally be
forward-compatible with new versions of a given operating
system. Because many changes to a framework API are addi-
tive, an application developed using any given version of the
API (as specified by the API Level) is forward-compatible
with later versions of the operating system and higher API
levels. The application may be able to be run on all later
versions of the operating system, except in some examples
where the application uses a part of the API that may have
been later removed.

[0057] Incontrast, applications are not generally backward
compatible with versions of the operating system older than
the version against which the application was compiled. Each
new version of the operating system can include new frame-
work APIs, such as those that give applications access to new
platform capabilities or replace existing API parts. The new
APIs are accessible to applications when running on the new
operating system, and also when running on later versions of
the platform, as specified by API Level. Conversely, because
earlier versions of the operating system do not include the
new APIs, applications that use the new APIs may be unable
to run on those operating systems. There may be many
devices in the field that run earlier versions of the operating
system, and within many examples, such devices may be
configured to execute any application using a system library
or compatibility library as described herein.

[0058] Itshould be understood that arrangements described
herein are for purposes of example only. As such, those
skilled in the art will appreciate that other arrangements and
other elements (e.g. machines, interfaces, functions, orders,
and groupings of functions, etc.) can be used instead, and
some elements may be omitted altogether according to the
desired results. Further, many of the elements that are
described are functional entities that may be implemented as
discrete or distributed components or in conjunction with
other components, in any suitable combination and location,
or other structural elements described as independent struc-
tures may be combined.

[0059] While various aspects and embodiments have been
disclosed herein, other aspects and embodiments will be
apparent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of illustration
and are not intended to be limiting, with the true scope being
indicated by the following claims, along with the full scope of
equivalents to which such claims are entitled. It is also to be
understood that the terminology used herein is for the purpose
of describing particular embodiments only, and is not
intended to be limiting.

1. A method performed by a device having an operating
system and a system library, the method comprising:

receiving, by a processor of the device, a request to perform
a function-call of an application, wherein the function-
call references one or more features of a first version of
the operating system;

at run-time of the application on the device, based on an
identification of a version of the operating system and
the system library on the device, determining whether
the version supports the function-call of the application

May 14, 2015

so as to be able to perform dynamic compilation of code
in the system library for the function-call;
based on the version of the operating system and the system
library on the device being unable to support the func-
tion-call, accessing a compatibility library associated
with the application, wherein the compatibility library
includes pre-compiled code for execution by a reference
device having a given version of the operating system
other than the first version of the operating system;

determining, based on the given version of the operating
system hardware requirements for using the given ver-
sion of the operating system;

identifying compatibility between hardware of the device

and the determined hardware requirements; and

based on the identification of the compatibility, at run-time

of the application on the device, executing given pre-
compiled code from the compatibility library to emulate
at least a portion of functionality of the code in the
system library referenced by the function-call of the
application.

2. The method of claim 1, wherein the compatibility library
includes the pre-compiled code that when executed provides
less functionality than functionality of code based on the
dynamic compilation of the code in the system library.

3. The method of claim 1, wherein the compatibility library
includes the pre-compiled code that is based on requirements
within an application binary interface (ABI) for a native
developer kit (NDK) of the operating system, wherein deter-
mining the hardware requirements is based on the require-
ments within the ABL

4. The method of claim 1, wherein the compatibility library
includes the pre-compiled code for execution by the reference
device having the given version of the operating system
released prior to the first version of the operating system.

5. The method of claim 1, wherein the compatibility library
includes the pre-compiled code for execution by the reference
device having the given version of the operating system
released subsequent to the first version of the operating sys-
tem.

6. The method of claim 1, wherein the pre-compiled code
in the compatibility library is executable by the processor to
emulate the one or more features of the first version of the
operating system.

7. The method of claim 1, wherein the application and the
compatibility library are stored on the device.

8. The method of claim 1, wherein the compatibility library
comprises a version of pre-compiled code for a number of
versions of the operating system other than the first version of
the operating system, and the method further comprises:

selecting from the compatibility library the given pre-com-

piled code that corresponds to the version of the operat-
ing system on the device.

9. The method of claim 1, further comprising determining
whether the version of the operating system on the device is
the first version of the operating system.

10. The method of claim 1, further comprising based on the
version of the operating system and the system library on the
device being unable to support the function-call of the appli-
cation:

switching to a compatibility mode for execution of the

application.

11. The method of claim 1, wherein executing the given
pre-compiled code is based on the version of the operating

US 2015/0135170 Al

system and the system library on the device being unable to
support the function-call of the application, and the method
further comprises:

based on the version of the operating system and the system

library on the device being able to support the function-
call of the application, at run-time of the application on
the device, performing the function-call of the applica-
tion based on dynamic compilation of the code in the
system library for the function-call.

12. The method of claim 1, further comprising download-
ing an application package including the application and the
compatibility library bundled with the application.

13. A computer readable memory configured to store
instructions that, when executed by a computing device hav-
ing an operating system and a system library, cause the com-
puting device to perform functions comprising:

receiving a request to perform a function-call of an appli-

cation, wherein the function-call references one or more
features of a first version of the operating system;

at run-time of the application on the computing device,

based on an identification of a version of the operating
system and the system library on the computing device,
determining whether the version supports the function-
call of the application so as to be able to perform
dynamic compilation of code in the system library for
the function-call;

based on the version of the operating system and the system

library on the computing device being unable to support
the function-call, accessing a compatibility library asso-
ciated with the application, wherein the compatibility
library includes pre-compiled code for execution by a
reference device having a given version of the operating
system other than the first version of the operating sys-
tem;

determining, based on the given version of the operating

system, hardware requirements for using the given ver-
sion of the operating system;

identifying compatibility between hardware of the com-

puting device and the determined hardware require-
ments; and

based on the identification of the compatibility, at run-time

of the application on the computing device, executing
given pre-compiled code from the compatibility library
to emulate at least a portion of functionality of the code
in the system library referenced by the function-call of
the application.

14. The computer readable memory of claim 13, wherein
the compatibility library includes the pre-compiled code that
when executed provides less functionality than functionality
of code based on dynamic compilation of the code in the
system library.

15. The computer readable memory of claim 13, wherein
the compatibility library includes the pre-compiled code for
execution by the reference device having the given version of
the operating system released prior to the first version of the
operating system.

16. The computer readable memory of claim 13, wherein
the compatibility library includes the pre-compiled code for
execution by the reference device having the given version of
the operating system released subsequent to the first version
of the operating system.

May 14, 2015

17. A system comprising:

one or more processors configured to execute functions of

an operating system and a system library; and

data storage configured to store instructions that, when

executed by the one or more processors, cause the sys-

tem to perform functions comprising:

receiving a request to perform a function-call of an
application, wherein the function-call references one
or more features of a first version of the operating
system,

at run-time of the application on the system, based on an
identification of a version of the operating system and
the system library executable by the one or more
processors, determining whether the version supports
dynamic compilation of code in the system library for
the function-call of the application;

based on the version of the operating system and the
system library on the device being unable to support
the function-call, accessing a compatibility library
associated with the application, wherein the compat-
ibility library includes pre-compiled code for execu-
tion by a reference system having a given version of
the operating system other than the first version of the
operating system;

determining, based on the given version of the operating
system, hardware requirements for using the given
version of the operating system;

identifying compatibility between hardware of the sys-
tem and the determined hardware requirements; and

based on the identification of the compatibility, at run-
time of the application on the system, executing given
pre-compiled code from the compatibility library to
emulate at least a portion of functionality of the code
in the system library referenced by the function-call
of the application.

18. The system of claim 17, wherein the pre-compiled code
in the compatibility library is executable by the one or more
processors to emulate the one or more features of the first
version of the operating system.

19. The system of claim 17, wherein the compatibility
library comprises a version of pre-compiled code for a num-
ber of versions of the operating system other than the first
version of the operating system, and the functions further
comprise:

selecting from the compatibility library the given pre-com-

piled code that corresponds to the version of the operat-
ing system on the system.

20. The system of claim 17, wherein executing the given
pre-compiled code is based on the version of the operating
system and the system library on the system being unable to
support the function-call of the application, and the functions
further comprise:

based on the version of the operating system and the system

library on the system being able to support the function-
call of the application, at run-time of the application on
the system, performing the function-call of the applica-
tion based on dynamic compilation of the code in the
system library for the function-call.

#* #* #* #* #*

